正余弦定理中的范围问题(推荐)
正余弦定理知识点及题型归纳
正余弦定理是三角学中的重要知识点,用于解决与三角形相关的问题。
下面是对正余弦定理的知识点及题型归纳:一、正弦定理1. 定义:在任意三角形ABC中,设角A、B、C所对应的边分别为a、b、c,那么有sinA/a = sinB/b = sinC/c。
2. 性质:-等式两边同时乘以任意非零常数,等式仍然成立;-等式两边同时除以相同的角,等式仍然成立;-等式两边同时取反函数,等式仍然成立。
3. 应用:-已知三个角的度数,求边长;-已知两个边的长度,求第三个边的长度;-已知一个角和一条边的长度,求另外两个角的度数;-已知一个角和两条边的长度,求第三个角的度数。
二、余弦定理1. 定义:在任意三角形ABC中,设角A、B、C所对应的边分别为a、b、c,那么有cosA = (b ²+ c²- a²) / (2bc)。
2. 性质:-等式两边同时乘以任意非零常数,等式仍然成立;-等式两边同时除以相同的角,等式仍然成立;-等式两边同时取反函数,等式仍然成立。
3. 应用:-已知三个角的度数,求边长;-已知两个边的长度,求第三个边的长度;-已知一个角和一条边的长度,求另外两个角的度数;-已知一个角和两条边的长度,求第三个角的度数。
三、题型归纳1. 已知三个角的度数,求边长:-根据正弦定理或余弦定理,将已知的角度代入公式中,求解边长;-如果已知的是弧度制的角度,需要将其转换为角度制。
2. 已知两个边的长度,求第三个边的长度:-根据正弦定理或余弦定理,将已知的两个边的长度代入公式中,求解第三个边的长度;-如果已知的是弧度制的角度,需要将其转换为角度制。
3. 已知一个角和一条边的长度,求另外两个角的度数:-根据正弦定理或余弦定理,将已知的角度和边的长度代入公式中,求解另外两个角的度数;-如果已知的是弧度制的角度,需要将其转换为角度制。
4. 已知一个角和两条边的长度,求第三个角的度数:-根据正弦定理或余弦定理,将已知的角度和两条边的长度代入公式中,求解第三个角的度数;-如果已知的是弧度制的角度,需要将其转换为角度制。
正、余弦定理及应用举例
02
余弦定理
定义与性质
定义
余弦定理是三角形中的重要定理,它 描述了三角形三边与其对应角的余弦 值之间的关系。
性质
余弦定理具有对称性,即交换任意两 边及其对应的角,定理仍然成立。此 外,余弦定理还可以用来判断三角形 的形状。
证明方法
证明方法一
利用向量的数量积和向量模长的性质来 证明余弦定理。
VS
定理应用举例
总结词
正弦定理在解决三角形问题中具有广泛的应用,例如求三角形边长、角度等。
详细描述
利用正弦定理,我们可以解决许多三角形问题,例如求三角形的边长、角度等。例如,已知三角形的 两边及其夹角,我们可以利用正弦定理求出第三边的长度。此外,正弦定理还可以用于判断三角形的 解的个数和类型,以及解决一些几何作图问题。
正、余弦定理及应用 举例
目录
• 正弦定理 • 余弦定理 • 正、余弦定理的综合应用 • 正、余弦定理的扩展与推广 • 正、余弦定理在数学竞赛中的应用
01
正弦定理
定义与性质
总结词
正弦定理是三角形中一个基本的定理 ,它描述了三角形边长和对应角的正 弦值之间的关系。
详细描述
正弦定理是指在一个三角形中,任意 一边与其对应的角的正弦值的比等于 三角形外接圆的直径,也等于其他两 边与它们的对应角的正弦值的比。
证明方法二
通过作高线,将三角形转化为直角三角形 ,再利用勾股定理来证明余弦定理。
定理应用举例
应用一
已知三角形的两边及其夹角,求第三边。
应用二
判断三角形的形状。例如,如果一个三角形中存在两个角相等,则 这个三角形是等腰三角形。
应用三
解决一些实际问题,如测量、工程设计等。例如,在测量中,可以 利用余弦定理来计算两点之间的距离。
正弦定理和余弦定理求解三角形中的范围 专题汇编
应用正弦定理和余弦定理求解三角形中的范围问题1.已知函数()2sin cos f x x x x =+(Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)在△ABC 中,角,,A B C 的对边分别为,,a b c ,若A 为锐角且()f A =4b c +=,求a 的取值范围. 【答案】(1) ()sin 23f x x π⎛⎫=- ⎪⎝⎭,单调增区间()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(2)[)2,4a ∈试题解析:(1)函数变形()1c o s 13s n2s i n 22223x fx x π-⎫⎛⎫=+-=-⎪ ⎪⎭⎝⎭,即()sin 23f x x π⎛⎫=- ⎪⎝⎭,令222,232k x k k Z πππππ-+≤-≤+∈,解得51212k x k ππππ-+≤≤+,所以单调增区间()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(2)()sin 23f A A π⎛⎫=-=⎪⎝⎭,0,2A π<<22333A πππ-<-<所以233A ππ-=解得3A π=,又4b c +=,在△ABC中,()()22222344b c a b c bc b c bc +=+-=+-≥=,等边三角形时等号成立,所以2a ≥,又因为是三角形所以,4b c a a +><,所以[)2,4a ∈。
2.已知函数()2sin cos 333x x x f x =. (Ⅰ)求()f x 的最小正周期;(Ⅱ)若a , b , c 是ABC ∆的三条边,且2b ac =,边b 所对的角为x 弧度,求()f x 的最大值.【答案】(1) ()f x 的最小正周期为3T π=;(2) 4x π=时, ()f x 的1+. 【解析】试题分析:(Ⅰ)利用二倍角的正弦、余弦公式及辅助角公式可将()f x 化为2sin 33x π⎛⎫+ ⎪⎝⎭,从而可得结果;(Ⅱ)根据余弦定理以及基本不等式求得03x π<≤,结合正弦函数的图象与单调性可得结果.试题解析:(Ⅰ)因为()122sin 1cos 2323x x f x ⎛⎫=++ ⎪⎝⎭ 2sin 332x π⎛⎫=++ ⎪⎝⎭, 所以()f x 的最小正周期为3T π=. (Ⅱ)因为2b ac =,所以22222cos 22a c b a c acx ac ac+-+-== 2122ac ac ac -≥=.则1cos 12x ≤<,从而03x π<≤.因为253339x πππ<+≤2sin 133x π⎛⎫<+≤ ⎪⎝⎭.所以当2332x ππ+=,即4x π=时, ()f x 的最大值为12+. 3.已知a , b , c 分别为ABC 三个内角A , B , C 的对边,cos sin 0a C C b c --=.(Ⅰ)求A 的大小; (Ⅱ)若ABC 为锐角三角形,且a =22b c +的取值范围.【答案】(Ⅰ)3A π= (Ⅱ)12sin 226B π⎛⎫<-≤ ⎪⎝⎭, 2256b c <+≤【解析】试题分析:(Ⅰ)根据条件,由正弦定理可得sinAcosC sinB sinC sin A C sinC =+=++(),化简可得1302sinA -︒=() ,由此求得A 的值. (Ⅱ)由正弦定理:sin sin sin a b cA B C==,则()22224s i ns i n 2s i n246b c B C B π⎛⎫+=+=-+ ⎪⎝⎭ 讨论26B π-的范围,可得22b c +的取值范围.(Ⅱ)由正弦定理:sin sin sin a b c A B C==,()22224sin sin b c B C +=+= ()22cos2cos24B C --= 22cos22cos23B B π⎛⎫--- ⎪⎝⎭4cos2B B =- 2sin 246B π⎛⎫=-+ ⎪⎝⎭又02{2032B B πππ<<<-<,得62B ππ<<, 52666B πππ<-<;所以12sin 226B π⎛⎫<-≤ ⎪⎝⎭, 2256b c <+≤.4.在错误!未找到引用源。
正余弦定理中的范围问题(推荐)
1 正余弦定理中的范围(含最值)问题(编者:李成伦)范围问题,是正余弦定理中较困难的问题,也是考试比较头疼的问题。
下面通过以下几个例题来谈谈怎样解决这类问题。
一,利用角的范围,和三角函数的“有界性”相结合例:设锐角三角形ABC ,内角A,B,C 的所对的边为c b a ,,,且A b a sin 2⋅=(1)求角B 的大小(2)求 的求值范围c A cos cos +例:在三角形ABC 中,的范围求b a C c +=+=,30,62例:三角形ABC 的三个内角A,B,C 一次成等差数列(1)若C A B sin sin sin 2=,试判断∆ABC 的形状 (2)若∆ABC 为钝角三角形,且c a >,试求代数式212cos 2sin 32sin2-+A A C 的值的范围 例:ABC ∆中,角A ,B ,C 的对边是c b a ,,,已知c b a B A 2cos cos +-= (1)求角A 的大小(2)求C B sin sin 的最大值二,挖掘三角形中的隐含条件例:在三角形ABC 中,角A ,B ,C 的对边是c b a ,,,且222,c b a c b a +<>>,则角A 的取值范围是 A,⎪⎭⎫ ⎝⎛ππ,2 B,⎪⎭⎫ ⎝⎛24ππ, C,⎪⎭⎫ ⎝⎛23ππ, D,⎪⎭⎫ ⎝⎛20π, 例:(2011年浙江高考)在∆ABC 中,角ABC 的对边是c b a ,,已知B p C A sin sin sin =+,且241b ac = (1)1,45==b p 时,求c a ,的值 (2)若角B 为锐角,求p 的取值范围 三:利用“基本不等式”求范围例:(12年陕西)在三角形ABC 中,角A,B,C 的对边是c b a ,,若,2222c b a =+则C cos 的最小值为:_—— 例:(2014年新课标)已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,2a =,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .例: (2014年陕西理)ABC ∆的内角C B A ,,所对的边分别为c b a ,,. (I )若c b a ,,成等差数列,证明:()C A C A +=+sin 2sin sin ;2 (II )若c b a ,,成等比数列,求B cos 的最小值.例:在三角形ABC 中,角A,B,C 的对边是c b a ,,,且ac b c a 56222=-+ (1)求B C A 2sin 2sin 22++的值 (2)若的面积的最大值求三角形ABC b ,2=例,(1年全国新课标)在三角形ABC 中,角A,B,C 的对边是c b a ,,,B c C b a sin cos +=已知,(1)求角B(2)若的面积的最大值求三角形ABC b ,2=例:在三角形ABC 中,角A,B,C 的对边是c b a ,,,c a C b -=2cos 2(1)求角B(2)若ABC ∆的面积为3,求b 的取值范围例:已知ABC ∆是半径为R 的圆内接三角形,且B b a C A R sin )2()sin (sin 222-=-⋅(1)求角C(2)试求ABC ∆面积的最大值(3)。
专题24-解三角形中的最值、范围问题(解析版)
专题24 解三角形中的最值、范围问题解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者的关系. 高考中经常将三角变换及解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式. 1、正弦定理:2sin sin sin a b cR A B C===,其中R 为ABC 外接圆的半径 正弦定理的主要作用是方程和分式中的边角互化.其原则为关于边,或是角的正弦值是否具备齐次的特征.如果齐次则可直接进行边化角或是角化边,否则不可行 学/科-+网例如:(1)222222sin sin sin sin sin A B A B C a b ab c +-=⇔+-=(2)cos cos sin cos sin cos sin b C c B a B C C B A +=⇒+=(恒等式) (3)22sin sin sin bc B Ca A= 2、余弦定理:2222cos a b c bc A =+-变式:()()2221cos a b c bc A =+-+ 此公式在已知,a A 的情况下,配合均值不等式可得到b c +和bc 的最值 4、三角形中的不等关系(1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可.由于不存在等号成立的条件,在求最值时使用较少(2)在三角形中,边角以及角的三角函数值存在等价关系:其中由cos cos>⇔>仅在A B A B>⇔<利用的是余弦函数单调性,而sin sinA B A B一个三角形内有效.5、解三角形中处理不等关系的几种方法(1)转变为一个变量的函数:通过边角互化和代入消元,将多变量表达式转变为函数,从而将问题转化为求函数的值域(最值)(2)利用均值不等式求得最值【经典例题】例1.【2018届百校联盟TOP20高三四月联考全国一卷】已知四边形中,,设及面积分别为,则的最大值为_____.【答案】【解析】分析:利用余弦定理推,求出的表达式,利用二次函数以及余弦函数的值的范围,求的最大值即可.点睛:求解三角函数的最值(或值域)时一定要注意自变量的取值范围,由于三角函数的周期性,正弦函数、余弦函数的最大值和最小值可能不在自变量区间的端点处取得.例2.【2018届普通高等学校招生全国统一考试高三下学期第二次调研】在中,角A,B,C所对的边分别为,则实数a 的取值范围是____________.【答案】.【解析】由,得,所以,则由余弦定理,得,解得,又,所以的范围是.例3.【2018届浙江省杭州市高三第二次检测】在△ABC 中,角A,B,C 所对的边分别为a,b,c.若对任意λ∈R,不等式恒成立,则的最大值为_____.【答案】2例4.【衡水金卷信息卷三】已知的三边分别为,,,所对的角分别为,,,且满足,且的外接圆的面积为,则的最大值的取值范围为__________.【答案】【解析】由的三边分别为,,可得:可知:,例5.【2018届湖南省株洲市高三检测(二)】已知中,角所对的边分别是,且.(1)求角的大小;(2)设向量,边长,当取最大值时,求边的长.【答案】(1)(2).【解析】分析:(1)由题意,根据正弦定理可得,再由余弦定理可得,由此可求角的大小;(2)因为由此可求当取最大值时,求边的长.(2)因为所以当时, 取最大值,此时, 由正弦定理得,例6.【2018届四川省攀枝花市高三第三次(4月)统考】已知的内角的对边分别为其面积为,且.学/科/*网(Ⅰ)求角;(II )若,当有且只有一解时,求实数的范围及的最大值. 【答案】(Ⅰ).(Ⅱ).【解析】分析:(Ⅰ)利用余弦定理和三角形的面积公式化简得到,再解这个三角方程即得A 的值. (II )先根据有且只有一解利用正弦定理和三角函数的图像得到m 的取值范围,再写出S 的函数表达式求其最大值. 详解:(Ⅰ)由己知(Ⅱ)由己知,当有且只有一解时,或,所以;当时,为直角三角形,当 时,由正弦定理 , 所以,当时,综上所述,.例7.【2018届四川省资阳市高三4月(三诊)】在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且()()sin sin a b A B +- ()sin sin c C B =-.(1)求A .(2)若4a =,求22b c +的取值范围.【答案】(1)3A π=;(2)(]16,32.221616b c bc +=+>,进而可得结果.试题解析:(1)根据正弦定理得()()a b a b +- ()c c b =-,即222a b c bc -=-,则222122b c a bc +-=,即1cos 2A =,由于0πA <<, 【方法点睛】本题主要考查正弦定理及余弦定理的应用,属于中档题.在解及三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 除了直接利用两定理求边和角以外,恒等变形过程中,一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.例8.【2018届甘肃省张掖市高三三诊】已知3cos ,cos 44x x m ⎛⎫=⎪⎝⎭,sin ,cos 44x x n ⎛⎫= ⎪⎝⎭,设函数()f x m n =⋅.(1)求函数()f x 的单调增区间;(2)设ABC ∆的内角A , B , C 所对的边分别为a , b , c ,且a , b , c 成等比数列,求()f B 的取值范围.【答案】(1) 424,433k k ππππ⎡⎤-+⎢⎥⎣⎦, k Z ∈.(2) ⎛ ⎝⎦. 【解析】试题分析:(1)由题()13cos ,cos sin ,cos sin 4444262x x x x x f x m n π⎛⎫⎛⎫⎛⎫=⋅=⋅=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,根据正弦函数的性质222262x k k πππππ-≤+≤+可求其单调增区间;(2)由题2b ac =可知2222221cos 2222a cb ac ac ac ac B ac ac ac +-+--==≥=, (当且仅当a c =时取等号),所以03B π<≤, 6263B πππ<+≤,由此可求 ()f B 的取值范围.(当且仅当a c =时取等号),所以03B π<≤, 6263B πππ<+≤, ()311f B +<≤,综上, ()f B 的取值范围为311,2⎛⎤⎥⎝⎦. 例9.【2018届吉林省吉林市高三第三次调研】锐角ABC ∆中, ,,A B C 对边为,,a b c , ()()()222sin 3cos b a c B C ac A C --+=+(1)求A 的大小; (2)求代数式b c a+的取值范围.【答案】(1)3π(2)32b ca+≤ 【解析】试题分析:(1)由()()()222sin 3cos b a c B C ac A C --+=+及余弦定理的变形可得2cos sin 3cos B A B -=,因为cos 0B ≠,故得3sin 2A =,从而可得锐角ABC∆中3A π=.(2)利用正弦定理将所求变形为2sin sin 32sin sin 6B B b c B a A ππ⎛⎫++ ⎪+⎛⎫⎝⎭==+ ⎪⎝⎭,然后根据6B π+的取值范围求出代数式b c a+的取值范围即可.试题解析:(1)∵2222cos b a c ac B --=-, ()()()222sin 3cos b a c B C ac A C --+=+, ∵ABC ∆为锐角三角形,且3A π= ∴02{02B C ππ<<<<,即02{ 2032B B πππ<<<-<, 解得62B ππ<<,∴2,363B πππ<+<sin 16B π⎛⎫<+≤ ⎪⎝⎭.2b c a +<≤.故代数式b c a +的取值范围2⎤⎦.点睛:(1)求b c a+的取值范围时,可根据正弦定理将问题转化为形如()sin y A x ωϕ=+的函数的取值范围的问题解决,这是在解三角形问题中常用的一种方法,但在解题中要注意确定角x ωϕ+的范围.(2)解答本题时要注意“锐角三角形”这一条件的运用,根据此条件可的求得6B π+的范围,然后结合函数的图象可得sin 6B π⎛⎫+ ⎪⎝⎭的范围,以达到求解的目的.例10.【2018届衡水金卷信息卷(一)】已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,若向量()()2,cos ,,cos m b c B n a A =-=-,且//m n .(1)求角A 的值;(2)已知ABC ∆的外接圆半径为3,求ABC ∆周长的取值范围.【答案】(1) 3A π= (2) (]4,6【解析】试题分析:(1)由//m n ,得62)0c cosA acosB -+=(,利用正弦定理统一到角上易得1cos 2A =;(2)根据题意,得2sin 2a R A ==,由余弦定理,得()223a b c bc =+-,结合均值不等式可得()216b c +≤,所以b c +的最大值为4,又2b c a +>=,从而得到ABC ∆周长的取值范围.得1cos 2A =.又()0,A π∈,所以3A π=.(2)根据题意,得4332sin 232a R A ==⨯=.由余弦定理,得()22222cos 3a b c bc A b c bc =+-=+-,即()223432b c bc b c +⎛⎫=+-≤ ⎪⎝⎭,整理得()216b c +≤,当且仅当2b c ==时,取等号,所以b c +的最大值为4.又2b c a +>=,所以24b c <+≤,所以46a b c <++≤. 所以ABC ∆的周长的取值范围为(]4,6.【精选精练】1.【2018届东莞市高三第二次考试】在中,若,则的取值范围为( ) A.B.C.D. 【答案】D【解析】因为,所以,即,即,2.【2018届湖南省衡阳市高三二模】在中,已知为的面积),若,则的取值范围是( )A. B.C.D. 【答案】C【解析】,,,,又,,,,故选C.3.【2018届四川省绵阳市高三三诊】四边形ABCD 中, 2AB =,1BC CD DA ===,设ABD ∆、BCD ∆的面积分别为1S 、2S ,则当2212S S +取最大值时, BD =__________.【答案】102【点睛】本小题主要考查三角形的面积公式的应用,考查同角三角函数关系,考查利用余弦定理解三角形,考查二次函数最值的求法.首先根据题目所求,利用三角形面积公式,写出面积的表达式,利用同角三角函数关系转化为余弦值,利用余弦定理化简,再利用配方法求得面积的最值,并求得取得最值时BD 的值.4.【2018届广东省肇庆市高三第三次模拟】已知的角对边分别为,若,且的面积为,则的最小值为________.【答案】5.【2018届辽宁省辽南协作校高三下学期一模】设的内角所对的边分别为且+,则的范围是__________.【答案】【解析】由+得,所以,即,再由余弦定理得,即,解得,又,所以的范围是.点睛:在解三角形问题中,一般需要利用余弦定理结合均值不等式,来求两边和的取值范围或者是三角形的面积的最值,只需运用余弦定理,并变形为两边和及两边积的等式,在利用均值不等式转化为关于两边和或两边积的不等式,解不等式即可求出范围.6.【2018届四川省攀枝花市高三第三次(4月)统考】已知锐角ABC ∆的内角A B C 、、的对边分别为a b c 、、,且2cos 2,2a C c b a +==,则ABC ∆的最大值为__________.即4bc ≤,所以ABC ∆的最大值为max 11sin 422S bc A ==⨯=. 点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.7.【2018届宁夏石嘴山市高三4月适应性测试(一模)】已知,,a b c 分别为ABC ∆内角,,A B C 的对边,且sin cos b A B =.(1)求角B ;(2)若b =,求ABC ∆面积的最大值.【答案】(1)3B π=;(2).【解析】试题分析:(1)由正弦定理边化角得到tan B =,从而得解;(2)由余弦定理得2222cos b a c ac B =+-, 2212a c ac =+-结合222a c ac +≥即可得最值. 试题解析: (1)∵sin cos b A B =,∴由正弦定理可得sin sin cos B A A B =,即ABC面积的最大值为33. 8.【2018届四川省攀枝花市高三第三次(4月)统考】已知的内角的对边分别为其面积为,且.(Ⅰ)求角;(II)若,当有且只有一解时,求实数的范围及的最大值.【答案】(Ⅰ).(Ⅱ).【解析】分析:(Ⅰ)利用余弦定理和三角形的面积公式化简得到,再解这个三角方程即得A的值. (II)先根据有且只有一解利用正弦定理和三角函数的图像得到m的取值范围,再写出S的函数表达式求其最大值.详解:(Ⅰ)由己知由余弦定理得,所以,即,,所以.由正弦定理,,所以,当时,综上所述,.点睛:本题在转化有且只有一解时,容易漏掉m=2这一种情况.此时要通过正弦定理和正弦函数的图像分析,不能死记硬背.先由正弦定理得再画正弦函数的图像得到或.9.【衡水金卷信息卷(二)】在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知sin 3cos a C c A =.(1)求角A 的大小;(2)若2b =,且43B ππ≤≤,求边c 的取值范围.【答案】(1) 3A π=;(2) 31⎡⎤⎣⎦. 在ABC ∆中,由正弦定理,得sin sin b cB C=,∴22sin 2sin 3cos 3311sin sin B C B c B B π⎛⎫- ⎪⎝⎭===+=,∵43B ππ≤≤,∴1tan 3B ≤≤231c ≤≤,即c 的取值范围为31⎡⎤⎣⎦.10.【2018届辽宁省沈阳市东北育才学校高三三模】已知ABC ∆三个内角,,A B C 的对边分别为,,a b c , ABC ∆的面积S 满足2223a b c =+-. (1)求角C 的值;(2)求()cos2cos A A B +-的取值范围. 【答案】(1)23π;(2)(3tan 3C =-,又0C π<<, 23C π∴=.(2)()33cos2cos =cos2cos 2cos2322A A B A A A A π⎛⎫+-+-=+ ⎪⎝⎭=3sin 23A π⎛⎫+ ⎪⎝⎭11.【2018届江苏省姜堰、溧阳、前黄中学高三4月联考】在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知222a c b -=,且sin cos 3cos sin A C A C =.(1)求b 的值;(2)若4B π=, S 为ABC ∆的面积,求82cos cos S A C +的取值范围.【答案】(1) 4b =(2) (【解析】试题分析:(1)利用正余弦定理, sin cos 3cos sin A C A C =可转化为2222b ac -=,又222a c b -=,从而得到b 的值;(2)由正弦定理1sin sin 2S bc A A C ==,故324S AcosC A π⎛⎫+=-⎪⎝⎭限制角A的范围,求出cos S A C +的取值范围. (2)由正弦定理sin sin b c B C=得114sin 4sin sin sin 22sin4S bc A A C A C π==⋅⋅=在ABC ∆中,由3040{202A A C A Cπππ<<<<<<> 得3,82A ππ⎛⎫∈ ⎪⎝⎭320,44A ππ⎛⎫∴-∈ ⎪⎝⎭,3cos 2,142A π⎛⎫⎛⎫∴-∈ ⎪ ⎪⎪⎝⎭⎝⎭12.【衡水金卷信息卷 (五)】在锐角ABC ∆中,内角A , B , C 的对边分别为a , b , c ,且25sin 2sin 224B C A π+⎛⎫+-=- ⎪⎝⎭. (1)求角A ;(2)若a =ABC ∆周长的取值范围.【答案】(1) 3A π=(2) (3试题解析:(1)∵252224B C sin A sin π+⎛⎫+-=- ⎪⎝⎭,∴()15224cos B C cos A -+-=-, ∴2152124cosA cos A +--=-,整理,得28210cos A cosA --=,∴14cosA =-或12cosA =,∵02A π<<,∴12cosA =,即3A π=.(2)设ABC ∆的外接圆半径为r,则22a r sinA===,∴1r =.∴ABC ∆周长的取值范围是(3+.。
正余弦定理中的范围问题(推荐)(完整资料).doc
此文档下载后即可编辑正余弦定理中的范围(含最值)问题(编者:李成伦) 范围问题,是正余弦定理中较困难的问题,也是考试比较头疼的问题。
下面通过以下几个例题来谈谈怎样解决这类问题。
一,利用角的范围,和三角函数的“有界性”相结合 例:设锐角三角形ABC ,内角A,B,C 的所对的边为c b a ,,,且A b a sin 2⋅=(1)求角B 的大小(2)求 的求值范围c A cos cos +例:在三角形ABC 中,的范围求b a C c +=+=,30,62例:三角形ABC 的三个内角A,B,C 一次成等差数列(1)若C A B sin sin sin 2=,试判断∆ABC 的形状(2)若∆ABC 为钝角三角形,且c a >,试求代数式212cos 2sin 32sin 2-+A A C 的值的范围 例:ABC ∆中,角A ,B ,C 的对边是c b a ,,,已知c b a B A 2cos cos +-= (1)求角A 的大小(2)求C B sin sin 的最大值二,挖掘三角形中的隐含条件例:在三角形ABC 中,角A ,B ,C 的对边是c b a ,,,且222,c b a c b a +<>>,则角A 的取值范围是 A,⎪⎭⎫ ⎝⎛ππ,2 B,⎪⎭⎫ ⎝⎛24ππ, C,⎪⎭⎫ ⎝⎛23ππ, D,⎪⎭⎫ ⎝⎛20π,例:(2011年浙江高考)在∆ABC 中,角ABC 的对边是c b a ,,已知B p C A sin sin sin =+,且241b ac =(1)1,45==b p 时,求c a ,的值 (2)若角B 为锐角,求p 的取值范围三:利用“基本不等式”求范围例:(12年陕西)在三角形ABC 中,角A,B,C 的对边是c b a ,,若,2222c b a =+则C cos 的最小值为:_——例:(2014年新课标)已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,2a =,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .例: (2014年陕西理)ABC ∆的内角C B A ,,所对的边分别为c b a ,,. (I )若c b a ,,成等差数列,证明:()C A C A +=+sin 2sin sin ; (II )若c b a ,,成等比数列,求B cos 的最小值.例:在三角形ABC 中,角A,B,C 的对边是c b a ,,,且ac b c a 56222=-+(1)求B C A 2sin 2sin 22++的值 (2)若的面积的最大值求三角形ABC b ,2=例,(1年全国新课标)在三角形ABC 中,角A,B,C 的对边是c b a ,,,B c C b a sin cos +=已知,(1)求角B(2)若的面积的最大值求三角形ABC b ,2=例:在三角形ABC 中,角A,B,C 的对边是c b a ,,,c a C b -=2cos 2(1)求角B(2)若ABC ∆的面积为3,求b 的取值范围例:已知ABC ∆是半径为R 的圆内接三角形,且B b a C A R sin )2()sin (sin 222-=-⋅(1)求角C(2)试求ABC ∆面积的最大值。
正弦定理的解决范围问
正弦定理的解决范围问全文共四篇示例,供读者参考第一篇示例:正弦定理作为三角形中重要的定理之一,被广泛应用于解决三角形中角度和边长的关系问题。
正弦定理描述了三角形中的角度和边长之间的关系,通过该定理,我们可以求解不完全已知的三角形各边长或角度。
在实际问题中,正弦定理的应用范围非常广泛,下面我们来详细探讨一下正弦定理的解决范围及其应用。
让我们来回顾一下正弦定理的表达形式。
对于一个三角形ABC,其三个内角分别为A、B、C,对应的三条边分别为a、b、c。
根据正弦定理可知:\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}这就是正弦定理的基本表达形式。
从这个表达式可以看出,正弦定理适用于任意的三角形,无论是锐角三角形、直角三角形还是钝角三角形,都可以通过正弦定理来求解。
正弦定理还可以应用于求解已知两个角和一个边长的三角形中的另外一个角或边长。
当我们知道三角形中两个角和一个边长时,可以利用正弦定理求解第三个角的大小,或者求解另外一个边长的长度。
这种情况常常出现在实际问题中,正弦定理的灵活运用可以帮助我们快速解决这类问题。
第二篇示例:正弦定理是解决三角形中角和边之间关系的重要定理之一,它可以帮助我们在已知三角形中一些角或边的情况下,推导出其他角或边的长度。
正弦定理的应用范围非常广泛,涉及到数学、物理、工程等各个领域。
下面我们将详细介绍正弦定理的解决范围及其应用。
正弦定理是通过三角形的边和角之间的关系推导出来的。
在任意一个三角形中,我们都可以应用正弦定理来求解三角形中的各个角和边的关系。
正弦定理的表达形式为:在一个三角形ABC中,设三个角分别为A、B、C,对应的边分别为a、b、c,那么有如下式子成立:a / sinA =b / sinB =c / sinCa、b、c为三角形的三条边的长度,A、B、C为三角形的三个角的大小。
通过这个定理,我们可以求解已知三边或两边一角的三角形,也可以求解已知两角一边的三角形。
解三角形中的最值与范围问题4大题型
解三角形中的最值与范围问题4大题型解三角形中的最值与范围问题是近几年高考数学的热点,这类试题主要考查学生数形结合、等价转化、数学运算和逻辑推理的能力。
一般为中等难度,但题目相对综合,涉及知识较多,可通过三角恒等变换、构造函数或构造基本不等式等方法加以解决。
一、三角形中的最值范围问题处理方法1、利用基本不等式求最值-化角为边余弦定理公式里有“平方和”和“积”这样的整体,一般可先由余弦定理得到等式,再由基本不等式求最值或范围,但是要注意“一正二定三相等”,尤其是取得最值的条件。
2、转为三角函数求最值-化边为角如果所求整体结构不对称,或者角度有更细致的要求,用余弦定理和基本不等式难以解决,这时候可以转化为角的关系,消元后使得式子里只有一个角,变为三角函数最值问题进行解决。
要注意三角形隐含角的范围、三角形两边之和大于第三边。
二、边化角与角化边的变换原则在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;(2)若式子中含有a、b、c的齐次式,优先考虑正弦定理“边化角”;(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”;(4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.【题型1与角或三角值有关的问题】【例1】(2023春·江西赣州·高三统考阶段练习)在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知1a =,且cos cos 1b A B -=22sin B A +的取值范围是()A.()1+B .()1C .(]1,3D .(]2,3【变式1-1】(2023·四川泸州·统考二模)在ABC 中,2,2BC AB AC ==,D 为BC 的中点,则tan ADC ∠的最大值为______.【变式1-2】(2023·福建福州·统考二模)记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .已知2222b a c -=.(1)求tan tan BA的值:(2)求C 的最大值.【变式1-3】(2023春·辽宁本溪·高三校考阶段练习)已知ABC 的内角,,A B C 的对边分别为,,a b c ,B 为钝角.若ABC 的面积为S ,且()2224bS a b c a =+-.(1)证明:2B A π=+;(2)求sin sin A C +的最大值.【变式1-4】(2023春·湖北武汉·高三华中师大一附中校考阶段练习)在锐角ABC中,角,,A B C 所对的边分别是,,a b c ,满足()2c b b a =+.(1)求证:2C B =;(2)求113sin tan tan C B C-+的取值范围.【题型2求周长的最值与范围问题】【例2】(2023春·四川成都·高三四川省成都市玉林中学校考阶段练习)在ABC 中,sin cos c B C =.(1)求C ∠;(2)若6a b +=,求ABC 周长的最小值.【变式2-1】(2023·云南昆明·已知△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,且)222sin 2a c b A bc+-=.(1)求B 的大小;(2)若△ABC 为钝角三角形,且b =,求△ABC 的周长的取值范围.【变式2-2】(2023·全国·高三专题练习)已知函数21()cos ())cos()2f x x x x ωωω=-,其中0ω>,且函数()f x 的两个相邻零点间的距离为π2,(1)求ω的值及函数()f x 的对称轴方程;(2)在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若()1,f A a =-=求ABC周长的取值范围.【变式2-3】(2023·湖南·模拟预测)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC 的面积为S ,且22sin sin 2sin sin C ASa b sinA B C+=+()().(1)求C 的值;(2)若a ABC 周长的取值范围.【变式2-4】(2023春·河北邢台·高三邢台市第二中学校考阶段练习)在四边形ABCD 中,,,,A B C D 四点共圆,5AB =,3BC =,3cos 5ABC ∠=-.(1)若sin 5ACD ∠=,求AD 的长;(2)求四边形ABCD 周长的最大值.【题型3求面积的最值与范围问题】【例3】(2023·重庆渝中·高三重庆巴蜀中学校考阶段练习)已知函数()()()2πcos 2cos f x x x x x =-⋅-∈R .(1)求函数()f x 的值域;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若()2f A =-,a =求△ABC 的面积S 的最大值.【变式3-1】(2023·浙江嘉兴·统考模拟预测)已知ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足sin 2tan 11cos 2tan 1B C B C +=+-.(1)求角A 的大小;(2)设AD 是BC 边上的高,且2AD =,求ABC 面积的最小值.【变式3-2】(2023·山东临沂·统考一模)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知cos cos 2cos a B b A c C +=.(1)求C ;(2)若1c =,求ABC 面积的取值范围.【变式3-3】(2023·全国·模拟预测)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ()sin sin 4sin C B a C =-.(1)求A ;(2)若O 是ABC 的内心,2a =,且224b c +>,求OBC △面积的最大值.【变式3-4】(2023·江苏南通·校联考模拟预测)如图,在平面四边形ABCD 中,1AB =,AD =,2CD =,BC =(1)若BC CD ⊥,求sin ADC ∠;(2)记ABD △与BCD △的面积分别记为1S 和2S ,求2212S S +的最大值.【题型4与边有关的最值与范围问题】【例4】(2023·江西南昌·统考一模)在锐角ABC 中,角,,A B C 所对的边分别为,,a b c ,若1,60a B == ,则b 的取值范围为______.【变式4-1】(2023春·湖南·高三校联考阶段练习)已知ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,()()cos sin cos a B C B a A -=-.(1)求角A ;(2)若ABC22b a b+的取值范围.【变式4-2】(2023·广东江门·统考一模)在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,且1tan B ,1sin A ,1tan C依次组成等差数列.(1)求2a bc的值;(2)若b c >,求222b c a+的取值范围.【变式4-3】(2023·江苏南通·统考模拟预测)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =4,且1cos 2b Cc a +=.(1)求B ;(2)若D 在AC 上,且BD ⊥AC ,求BD 的最大值.【变式4-4】(2023·新疆·统考一模)在ABC 中,,,a b c 分别为内角,,A B C 的对边,22sin c ab C =.(1)若sin cos sin sin 2C B B A +=,求tan C 的值;(2)求ab的最大值.(建议用时:60分钟)1.(2023·甘肃武威·统考一模)在ABC 中,32,,AB AC BC ==>cos A 的范围是()A .51,6⎛⎫- ⎪⎝⎭B .111,12⎛⎫- ⎪⎝⎭C .5,16⎛⎫ ⎪⎝⎭D .11,112⎛⎫ ⎪⎝⎭2.(2023秋·浙江宁波·高三期末)在ABC 中,内角A ,B ,C 的对应边分别为a ,b ,c ,已知sin()sin2A Cb B C a ++=,且ABC 的面积为,则ABC 周长的最小值为()A .B .C .D .6+3.(2023·江西赣州·统考一模)已知锐角ABC 的内角A B C 、、的对应边依次记为a b c、、,且满足2cos c b b A -=,则()()2sin 2cos C B A B ++-的取值范围为__________.4.(2023·陕西西安·统考一模)已知在ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,满足2cos 2b A a c +=,且b =,则ABC 周长的取值范围为______________.5.(2023·全国·校联考一模)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,22c ac b +=.(1)证明:2B C =;(2)求a b c+的取值范围.6.(2023春·湖南长沙·高三雅礼中学校考阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2sin sin tan cos C B A B -=.(1)求A ;(2)若2a =,求2c b -的取值范围.7.(2023·河南·校联考模拟预测)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c 是2a 与πsin6C ⎛⎫+ ⎪⎝⎭的等比中项.(1)求A ﹔(2)若ABC 是锐角三角形,且2c =,求sin a B 的取值范围.8.(2023·全国·高三专题练习)在①)cos sin a b C c B -=,②22cos a c b C -=,③()()()a b a b a c c -+=-这三个条件中任选一个,补充在下面的问题中,并解答该问题.在ABC 中,内角A B C ,,的对边分别是a b c ,,,且满足_______,b =(1)若4a c +=,求ABC 的面积;(2)求ABC 周长l 的取值范围.9.(2023春·山西·高三校联考阶段练习)求△ABC ,角A ,B ,C 所对的边分别为a ,b ,c ,已知3A π=,且△ABC 的周长为6.(1)证明:()124bc b c +=+;(2)求△ABC 面积的最大值.10.(2023·四川凉山·统考一模)在锐角ABC 中,角A ,B ,C 所对的边分别为,,,sin cos a b c b c A a C -=.(1)求A ;(2)若2b =,求ABC 面积的取值范围.参考答案【题型1与角或三角值有关的问题】【例1】(2023春·江西赣州·高三统考阶段练习)在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知1a =,且cos cos 1b A B -=22sin B A +的取值范围是()A.()1+B.()1C .(]1,3D .(]2,3【答案】B【解析】∵cos cos 1b A B -=,即:cos cos 1b A B =+,1a =,∴cos (cos 1)b A B a =+,∴由正弦定理得:sin cos (cos 1)sin B A B A =+,即:sin cos sin cos sin B A A B A =+,∴sin()sin B A A -=,∴B A A -=或πB A A -+=,解得:2B A =或B π=(舍),又∵△ABC 为锐角三角形,则ππ3C A B A =--=-,∴ππ0022ππ00222ππ00π322A A B A C ⎧⎧<<<<⎪⎪⎪⎪⎪⎪<<⇒<<⎨⎨⎪⎪⎪⎪<<<-<⎪⎪⎩⎩,解得:ππ64A <<,2π2sin 21cos 22sin(2)16B A A A A +=+-=-+,又∵ππ64A <<,∴πππ2663A <-<,∴1πsin(2262A <-<,∴π22sin(2)116A <-+<,22sin B A +的取值范围1).故选:B.【变式1-1】(2023·四川泸州·统考二模)在ABC 中,2,2BC AB AC ==,D 为BC 的中点,则tan ADC ∠的最大值为______.【答案】43【解析】设AC x =,则2AB x =,因为D 为BC 的中点,2BC =,所以1BD DC ==,由三角形三边关系,可知22x x +>且22x x -<,解得223x <<,在ABD △中,由余弦定理,得()2212cos 2AD x ADB AD +-∠=,在ACD 中,由余弦定理,得221cos 2AD x ADC AD+-∠=,因为πADB ADC ∠+∠=,所以()cos cos πcos ADB ADC ADC ∠=-∠=-∠,所以()222212122AD x AD x AD AD+-+-=-,解得22512AD x =-,则2242251132cos 54512122x x x ADC x x -+-∠=⨯-⨯-223x <<,令2512x t -=,则1,99t ⎛⎫∈ ⎪⎝⎭,()2215x t =+,()4242125x t t =++,则232131313cos 2221010105t t ADC t t t t t ++∠==⨯++≥⨯⋅+=,当且仅当1t t =,即1t =时,等号成立,此时25112x -=,解得25x =因为3cos 05ADC ∠≥>,所以π0,2ADC ⎛⎫∠∈ ⎪⎝⎭.因为cos y x =在π0,2⎛⎫ ⎪⎝⎭上单调递减,tan y x =在π0,2⎛⎫ ⎪⎝⎭单调递增,所以当cos ADC ∠取得最小值时,tan ADC ∠取得最大值,此时24sin 1cos 5ADC ADC ∠-∠=,则4tan 3ADC ∠=,所以tan ADC ∠的最大值为43.【变式1-2】(2023·福建福州·统考二模)记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .已知2222b a c -=.(1)求tan tan BA的值:(2)求C 的最大值.【答案】(1)tan 3tan B A=-;(2)π6【解析】(1)由余弦定理可得2222cos b c a ac B =+-,代入2222b a c -=,得到()22222cos 2c a ac B a c +--=,化简得22cos 0c ac B +=,即2cos 0c a B +=.由正弦定理可得sin 2sin cos 0C A B +=,即()sin 2sin cos 0A B A B ++=,展开得sin cos cos sin 2sin cos 0A B A B A B ++=,即3sin cos cos sin A B A B =-,所以tan 3tan BA=-.(2)由2222b a c -=得2222b ac -=,故222cos 2a b c C ab +-=222222b a a b ab-+-=2233444a b a b ab b a +==+≥=当且仅当223b a =,即b =时等号成立.因为()0,πC ∈,所以π6C ≤,所以C 的最大值为π6.【变式1-3】(2023春·辽宁本溪·高三校考阶段练习)已知ABC 的内角,,A B C 的对边分别为,,a b c ,B 为钝角.若ABC 的面积为S ,且()2224bS a b c a =+-.(1)证明:2B A π=+;(2)求sin sin A C +的最大值.【答案】(1)证明见解析;(2)98【解析】(1)由余弦定理222cos 2b c a A bc+-=得2222cos bc A b c a =+-,4412cos sin 2bS b bc A ac B a a ∴==⨯,cos sin A B ∴=,cos cos 2πA B ⎛⎫∴=- ⎪⎝⎭,B 为钝角,则,2πA B -均为锐角,2B A π∴-=,即2B A π=+;(2)2ππsin sin sin sin cos cos 22cos cos 122A C B B B B B B B ⎛⎫⎛⎫+=-++-=--=--+ ⎪ ⎪⎝⎭⎝⎭,令cos B t =,B 为钝角,则()1,0t ∈-,2219sin sin 21248A C t t t ⎛⎫∴+=--+=-++ ⎪⎝⎭,当14t =-,即1cos 4B =-时,sin sin A C +取最大值,且为98.【变式1-4】(2023春·湖北武汉·高三华中师大一附中校考阶段练习)在锐角ABC中,角,,A B C 所对的边分别是,,a b c ,满足()2c b b a =+.(1)求证:2C B =;(2)求113sin tan tan C B C-+的取值范围.【答案】(1)证明见解析;(2),46⎛⎫⎪ ⎪⎝⎭【解析】(1)由22c b ab =+及余弦定理2222cos c a b ab C =+-,得()2cos 1a b C =+,由正弦定理得:()sin sin 2cos 1A B C =+,又πA B C ++=,()sin sin sin cos cos sin 2sin cos sin A B C B C B C B C B ∴=+=+⋅=+,cos sin sin cos sin B C B C B ∴-=,()sin sin C B B ∴-=,,,A B C 都是锐角,C B B ∴-=,即2C B =.(2)令113sin tan tan y C B C =-+cos cos 3sin sin sin B C C B C =-+sin cos cos sin 3sin sin sin C B C BC B C -⋅=+⋅()sin 3sin sin sin C B C B C-=+⋅,由(1)2C B =得13sin sin y C C=+,在锐角三角形ABC 中,π02π02π02A B C ⎧<<⎪⎪⎪<<⎨⎪⎪<<⎪⎩,即()π02π022π02B C C B C π⎧<-+<⎪⎪⎪<=<⎨⎪⎪<<⎪⎩,解得ππ32<<C,sin C ⎫∴∈⎪⎪⎝⎭,令sin ,12t C ⎛⎫=∈ ⎪ ⎪⎝⎭,()13,2y f t t t t ⎛⎫∴==+∈ ⎪ ⎪⎝⎭,又函数()13y f t t t ==+在2⎛⎫ ⎪ ⎪⎝⎭上单调递增,()4y f t ⎫∴=∈⎪⎪⎝⎭,故113sin tan tan C B C -+的取值范围是46⎛⎫ ⎪ ⎪⎝⎭.【题型2求周长的最值与范围问题】【例2】(2023春·四川成都·高三四川省成都市玉林中学校考阶段练习)在ABC 中,sin cos c B C =.(1)求C ∠;(2)若6a b +=,求ABC 周长的最小值.【答案】(1)π3C =;(2)9【解析】(1)因为sin cos c B C =,所以由正弦定理得sin sin cos C B B C =,又因为()0,πB ∈,sin 0B ≠,所以sin C C =,即有tan C =又因为()0,πC ∈,所以π3C =.(2)因为π3C =,6a b +=,所以由余弦定理可得222222cos ()236336392a b c a b ab C a b ab ab ab +⎛⎫=+-=+--=-≥-⨯= ⎪⎝⎭,当3a b ==时,等号成立,所以3c ≥,故ABC 周长的最小值9.【变式2-1】(2023·云南昆明·高三昆明一中校考阶段练习)已知△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,且)222sin 2a c b A bc+-=.(1)求B 的大小;(2)若△ABC 为钝角三角形,且b =,求△ABC 的周长的取值范围.【答案】(1)π3;(2)(+【解析】(1)根据余弦定理可知,222cos 2a c b B ac+-=,所以2cos sin 2ac B A bc =,即cos sin cos sin sin sin B A BA A b B=⇔,则tan B =()0,πB ∈,所以π3B =;(2)设π2π,23A ⎛⎫∠∈ ⎪⎝⎭,根据正弦定理可知2πsin sin sin sin 3a cb A C B ====,所以2sin a A =,2π2sin 2sin 3c C A ⎛⎫==- ⎪⎝⎭,所以周长2π2sin 2sin 3a b c A A ⎛⎫++=+-+ ⎪⎝⎭12sin 2sin 2A A A ⎫=++⎪⎪⎝⎭3sin A A =++π6A ⎛⎫=+ ⎪⎝⎭,因为π2π,23A ⎛⎫∈ ⎪⎝⎭,,πππ25636A ⎛⎫+∈ ⎪⎝⎭,所以1sin 622πA ⎛⎫⎛⎫+∈ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以π36A ⎛⎫<+++ ⎪⎝⎭,所以ABC的周长为(+.【变式2-2】(2023·全国·高三专题练习)已知函数21()cos ())cos()2f x x x ωωω=,其中0ω>,且函数()f x 的两个相邻零点间的距离为π2,(1)求ω的值及函数()f x 的对称轴方程;(2)在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若()1,f A a =-=求ABC 周长的取值范围.【答案】(1)1ω=,对称轴方程为:()ππ26k x k =+∈Z ;;(2)2.【解析】(1)211cos(2))1()cos ())cos()2222x x f x x x x ωωωωω+=-=+-,()πsin 26f x x ω⎛⎫=+ ⎪⎝⎭,因为函数()f x 的两个相邻零点间的距离为π2,所以函数()f x 的最小正周期为2ππ2⨯=,因为0ω>,所以2ππ12ωω=⇒=,即()πsin 26f x x ⎛⎫=+ ⎪⎝⎭,令()()ππππ2πZ Z 6226k x k k x k +=+∈⇒=+∈,所以对称轴为()ππ26k x k =+∈Z ;(2)由πsin 6(12)1A f A ⎛⎫+=- ⇒⎪⎝⎭=-,因为(0,π)A ∈,所以ππ13ππ3π2π2(,)2666623A A A +∈⇒+=⇒=,因为a22sin ,2sin sin sin sin a b c b B c CA B C ===⇒==,π2sin 2sin 2sin 2sin 3B C B B ⎛⎫+=+- ⎪⎝⎭,1π2sin sin 2sin 223B B B B B B ⎛⎫⎛⎫+-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,因为π(0,)3B ∈,所以ππ2π(,)333B +∈,因此ππsin ,1]2sin (2323B B ⎛⎫⎛⎫+∈⇒+++ ⎪ ⎪⎝⎭⎝⎭,所以ABC周长的取值范围为2.【变式2-3】(2023·湖南·模拟预测)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC 的面积为S ,且22sin sin 2sin sin C ASa b sinA B C+=+()().(1)求C 的值;(2)若a ABC 周长的取值范围.【答案】(1)3π;(2)()∞+.【解析】(1)在ABC 中,由三角形面积公式得:1sin 2S bc A =,由正弦定理得:()2212sin sin 2cabc A a b A b c⎛⎫⨯+=+ ⎪⎝⎭,整理得:222a b c ab +-=,由余弦定理得:2221cos 22a b c C ab +-==,又0C π<<,故3C π=.(2)因为a 3C π=,由正弦定理得32sin c A=,23cos 3sin 2sin A A b A A π⎛⎫- ⎪⎝⎭===即ABC的周长()31cos 33cos 2sin 2sin 2sin A A l a b c A A A +=++=+=26cos 32224sincos 2tan222AA AA =++,因为203A π⎛⎫∈ ⎪⎝⎭,,则023Aπ⎛⎫∈ ⎪⎝⎭,,故0tan 2A<所以322tan2A +>ABC的周长的取值范围是∞).【变式2-4】(2023春·河北邢台·高三邢台市第二中学校考阶段练习)在四边形ABCD 中,,,,A B C D 四点共圆,5AB =,3BC =,3cos 5ABC ∠=-.(1)若sin 5ACD ∠=,求AD 的长;(2)求四边形ABCD 周长的最大值.【答案】(1(2)8+【解析】(1)因为,,,A B C D 四点共圆,所以πABC ADC ∠+∠=,因为3cos 5ABC ∠=-,所以3cos cos 5ADC ABC ∠=-∠=,因为()0,πADC ∠∈,故sin 54ADC ∠==,在ABC 中,由余弦定理得:22232cos 25930525AC AB BC AB BC ABC ⎛⎫=+-⋅∠=+-⨯-= ⎪⎝⎭,故AC =在ADC △中,由正弦定理得:sin sin AD ACACD ADC=∠∠,5=,解得:AD(2)由(1)知:AC=3cos5ADC∠=,在ADC△中,由余弦定理得:22222523cos225AD CD AC AD CDADCAD CD AD CD+-+-∠===⋅⋅,整理得:226525AD CD AD CD+=⋅+,故()216525AD CD AD CD+-=⋅,其中22AD CDAD CD+⎛⎫⋅≤ ⎪⎝⎭,故()()221645255AD CD AD CD AD CD+-=⋅≤+,解得:AD CD+≤AD CD=故四边形ABCD周长的最大值为8AB BC AD CD+++≤+【题型3求面积的最值与范围问题】【例3】(2023·重庆渝中·高三重庆巴蜀中学校考阶段练习)已知函数()()()2πcos2cosf x x x x x=-⋅-∈R.(1)求函数()f x的值域;(2)在△ABC中,角A,B,C的对边分别为a,b,c,若()2f A=-,a=求△ABC的面积S的最大值.【答案】(1)[]3,1-;(2【解析】(1)()1cos2πcos2sin2cos212sin2126xf x x x x x x+⎛⎫=⋅-⋅--=--⎪⎝⎭,∴()f x的值域为[]3,1-.(2)()π2sin2126f A A⎛⎫=--=-⎝⎭,即π1sin262A⎛⎫-=-⎪⎝⎭,由()0,πA∈,得ππ11π2<666A-<-∴π7π2=66A-,即2π3A=,又222222π32cos33a b c bc b c bc bc==+-=++≥,即1bc≤,∴11sin 12224ABC S bc A =≤⨯ ,∴()max 4ABC S =,当且仅当1b c ==时取得.【变式3-1】(2023·浙江嘉兴·统考模拟预测)已知ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足sin 2tan 11cos 2tan 1B C B C +=+-.(1)求角A 的大小;(2)设AD 是BC 边上的高,且2AD =,求ABC 面积的最小值.【答案】(1)π4;(2)4【解析】(1)法一:左边2sin 22sin cos sin 1cos 22cos cos B B B BB B B===+,右边sin 1tan 1sin cos cos sin tan 1sin cos 1cos CC C CC C C C CC+++===---,由题意得sin sin cos sin sin sin cos cos sin cos cos cos sin cos B C CB C B C B C B C B C C+=⇒-=+-()()()sin cos 0tan 1B C B C B C ⇒+++=⇒+=-,即tan 1A =,又因为0πA <<,所以π4A =.法二:左边2sin 22sin cos tan 1cos 22cos B B BB B B===+,右边πtan tantan 1ππ4tan tan πtan 1441tan tan4C C C C C C ++⎛⎫⎛⎫==--+=-- ⎪ ⎪-⎝⎭⎝⎭-,由题意得ππππ44B C k B C k =--+⇒+=-+,又因为0πB C <+<,所以3ππ44B C A +=⇒=.(2)由11π2sin 2244ABC S a bc a bc =⨯=⇒=△,由余弦定理得222222π2cos 4a b c bc a b c =+-⇒=+,2222222211288b c b c b c b c bc ⇒=+⇒+=+≥,(82bc ⇒≥,当且仅当b c =时取“等号”,而1πsin24ABC S bc ==△,故()(min 824ABC S =-=△【变式3-2】(2023·山东临沂·统考一模)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知cos cos 2cos a B b A c C +=.(1)求C ;(2)若1c =,求ABC 面积的取值范围.【答案】(1)π3C =;(2).【解析】(1)在ABC 中,由已知及正弦定理得:sin cos sin cos 2sin cos A B B A C C +=,即有()sin 2sin cos A B C C +=,即sin 2sin cos C C C =,而0πC <<,sin 0C >,则1cos 2C =,所以π3C =.(2)在ABC 中,由余弦定理2222cos c a b ab C =+-得:221a b ab =+-,因此12ab ab ≥-,即01ab <≤,当且仅当a b =时取等号,又11sin (0,22ABC S ab C ===∈△,所以ABC 面积的取值范围是4.【变式3-3】(2023·全国·模拟预测)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ()sin sin 4sin C B a C =-.(1)求A ;(2)若O 是ABC 的内心,2a =,且224b c +>,求OBC △面积的最大值.【答案】(1)π3或2π3;(2【解析】(1)()sin sin 4sin C B a C =-,4sin s sin sin in C B a B C =,)sin sin sin sin 4sin sin sin B C C B A B C +=,sin 2sin sin sin B C A B C =,因为sin sin 0B C ≠,所以sin2A =,因为()0,πA ∈,所以π3A =或2π3A =(2)因为2a =,且224b c +>,所以由余弦定理得222224cos 022b c a b c A bc bc+-+-==>,所以A 为锐角,由(1)知π3A =.因为O 是ABC 的内心,所以()()112ππππ223BOC ABC ACB A ∠=-∠+∠=--=,在OBC △中,由余弦定理得2222cos BC OB OC OB OC BOC =+-⋅∠,所以2222242cos3OB OC OB OC OB OC OB OC π=+-⋅=++⋅23OB OC OB OC OB OC ≥⋅+⋅=⋅,当且仅当33OB OC ==时等号成立,所以43OB OC ⋅≤,所以1142π3sin sin 2233OBC S OB OC BOC =⋅∠≤⨯=△所以OBC △33【变式3-4】(2023·江苏南通·校联考模拟预测)如图,在平面四边形ABCD 中,1AB =,3AD =,2CD =,2BC =(1)若BC CD ⊥,求sin ADC ∠;(2)记ABD △与BCD △的面积分别记为1S 和2S ,求2212S S +的最大值.【答案】(163;(2)218【解析】(1)∵BC CD ⊥,∴426BD =+=22cos 326362ADB ∠=⋅⋅,1in 3s ADB ∠=,3sin 3BDC ∠=,6cos 36BDC ∠==∴sin sin()sin cos cos sin ADC BDC ADB BDC ADB BDC ADB∠∠∠=+=∠∠+∠∠13===;(2)设BAD ∠=α,BCD β∠=,∴23142BD αβ=+-=+-,∴2βα-=,∴1βα=,①22222212131sin 1sin sin 2sin 24S S αβαβ⎫⎛⎫+=⨯+⋅⨯=+⎪ ⎪⎭⎝⎭()222233sin 21cos sin 2144αβα⎡⎤⎢⎥=+-=+-⎢⎥⎣⎦2223535321cos cos cos 222228ααααα⎛⎫⎛=--+=-++=-++ ⎪ ⎪ ⎝⎭⎝⎭,当且仅当cos 6α=-,cos 8β=时取最大值218;综上,sin 3ADC ∠=,2212S S +的最大值是218.【题型4与边有关的最值与范围问题】【例4】(2023·江西南昌·统考一模)在锐角ABC 中,角,,A B C 所对的边分别为,,a b c ,若1,60a B == ,则b 的取值范围为______.【答案】2⎛ ⎝【解析】在ABC 中,由正弦定理得sin sin sin a b cA B C ==,所以1sin sin 60b A = ,即2sin b A=,因为锐角ABC ,所以090,090A C <<<< ,即090,012090A A <<<-<,解得3090A <<,所以1sin 12A <<,所以112sin A<<,<2b ⎛∈ ⎝.【变式4-1】(2023春·湖南·高三校联考阶段练习)已知ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,()()cos sin cos a B C B a A -=-.(1)求角A ;(2)若ABC22b a b+的取值范围.【答案】(1)3π;(2)⎡⎣【解析】(1)因为()()cos sin cos a B C B a A -=-,可得()cos cos sin cos a B C a A B A -+=,则()()cos cos sin cos a B C a B C B A --+=,所以()cos cos sin sin cos cos sin sin 2cos a B C a B C a B C B C B A +--=,即sin sin sin cos a B C B A =,由正弦定理得sin sin sin sin sin cos A B C C B A =,显然sin 0C >,sin 0B >,所以sin A A ,所以tan A =()0,πA ∈,所以π3A =.(2)因为sin sin a b A B==πsin sin 3a bB ==所以3a =,b B =,所以2223sin 2sin 4sin b a a b B B b b B B +⎫=+=++⎭,因为ABC 为锐角三角形且2π3B C +=,所以π022ππ032B B ⎧<<⎪⎪⎨⎪<-<⎪⎩,所以ππ62B <<,即1sin ,12B ⎛⎫∈ ⎪⎝⎭,令()34f x x x =+,1,12x ⎛⎫∈ ⎪⎝⎭,由对勾函数性质知函数()34f x x x =+在122⎛ ⎝⎭上单调递减,在,12⎫⎪⎪⎝⎭上单调递增,且122f ⎛⎫= ⎪⎝⎭,f =⎝⎭()714f =,所以())2f x ∈,即)3sin 24sin B B +∈,所以3sin 6,4sin B B ⎫⎡+∈⎪⎣⎭,即22b a b+的取值范围为⎡⎣.【变式4-2】(2023·广东江门·统考一模)在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,且1tan B ,1sin A ,1tan C依次组成等差数列.(1)求2a bc的值;(2)若b c >,求222b c a+的取值范围.【答案】(1)2;(2)(【解析】(1)由条件得:211sin tan tan A B C =+cos cos sin sin B C B C =+sin cos cos sin sin sin C B C B B C +=()sin sin sin C B B C+=sin sin sin A B C =,所以2sin 2sin sin A B C =,由正弦定理得:22a bc =,所以22a bc=.(2)b c >及22a bc =,则B C >,角C 一定为锐角,又ABC 为锐角三角形,所以cos 0cos 0A B >⎧⎨>⎩由余弦定理得:2222222222222220020222020022b c a b c bcb c bc bc bc bc c b a c b bc c b ac ac ⎧⎧+-+->>⎪⎪⎧+->⎪⎪⇒⇒⎨⎨⎨+->+-+-⎩⎪⎪>>⎪⎪⎩⎩,所以2220bc c b +->,即212b b c c ⎛⎫⎛⎫<+ ⎪ ⎝⎭⎝⎭,解得:11b c <<又1bc >,所以(1,1b c∈+.又22222122b c b c b c a bc c b ++⎛⎫==+ ⎪⎝⎭,令(1,1b x c =∈+,则()222112b c f x x a x +⎛⎫==+ ⎪⎝⎭,()()()2211111022x x f x xx +-⎛⎫'=-=> ⎪⎝⎭,所以()f x在(1,1上递增,又()11f =,(1f =所以222b c a+的取值范围是(.【变式4-3】(2023·江苏南通·统考模拟预测)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =4,且1cos 2b Cc a +=.(1)求B ;(2)若D 在AC 上,且BD ⊥AC ,求BD 的最大值.【答案】(1)π3;(2)【解析】(1)方法一:()11cos ,sin cos sin sin sin 22b Cc a B C C A B C +=∴+==+ ,所以1sin cos sin sin cos cos sin 2B C C B C B C +=+,所以()11sin sin cos ,0,π,sin 0,cos ,22C C B C C B =∈∴>∴= ()π0,π,3B B ∈∴=.方法二:在ABC 中,由正弦定理得:()1sin cos sin sin 2B C C A B C +==+,所以1sin cos sin sin cos cos sin 2B C C B C B C +=+,所以1sin cos sin 2C B C =.因为()0,πC ∈,所以sin 0C ≠,所以1cos 2B =,因为()π0,π,3B B ∈=.(2)方法一:222222cos 2b a c ac B a c ac ac ac ac =+-=+-≥-=,16ac ∴≤当且仅当4a c ==时取“”=,1sin 112sin ,22228ac Bac B BD b BD ac =⋅=≤max BD ∴=方法二:在ABC 中,由余弦定理得:222222cos 162(b a c ac B a c ac ac ac =+-⇒=+-≥-当且仅当a c =取“=”)所以16ac ≤,所以ABC 的面积1sin24ABC S ac B ac ==≤ 122ABC S b BD BD BD =⨯=≤⇒≤ 【变式4-4】(2023·新疆·统考一模)在ABC 中,,,a b c 分别为内角,,A B C 的对边,22sin c ab C =.(1)若sin cos sin sin 2C B B A +=,求tan C 的值;(2)求ab的最大值.【答案】(1)1;(21【解析】(1)由sin cos sin2C B B A +=cos sin C B A B =-,cos )sin C B B C B =+-,)cos sin cos cos sin sin C B B C B C B =+-cos sin B C B =,因为sin 0B ≠,1C =,即cos2C =,由()0,πC ∈得π4C =,故tan 1C =.(2)由22sin ab C c =结合余弦定理得2222cos 2sin a ab C ab b C c =+-=,则()22π2sin cos sin 4a b ab C C C ⎛⎫+=+=+ ⎪⎝⎭,于是221sin 4a a a C b b b π⎛⎫+=⨯+≤ ⎪⎝⎭,即2210a ab b -+≤.11ab≤≤,故当π4C =时,ab1.(建议用时:60分钟)1.(2023·甘肃武威·统考一模)在ABC 中,32,,AB AC BC ==>,则cos A 的范围是()A .51,6⎛⎫- ⎪⎝⎭B .111,12⎛⎫- ⎪⎝⎭C .5,16⎛⎫ ⎪⎝⎭D .11,112⎛⎫ ⎪⎝⎭【答案】B【解析】222213cos212AB AC BC BC A AB AC +--==⋅,因为BC >11cos 12A <.又()0,πA ∈,所以cos A 的范围是111,12⎛⎫- ⎪⎝⎭.故选:B 2.(2023秋·浙江宁波·高三期末)在ABC 中,内角A ,B ,C 的对应边分别为a ,b ,c ,已知sin()sin2A Cb B C a ++=,且ABC 的面积为,则ABC 周长的最小值为()A .B .C .D .6+【答案】C【解析】因为πsin sin2Bb A a -=,根据正弦定理及诱导公式得sin sin sin cos2B B A A ⋅=⋅,()0,πA ∈ ,sin 0A ∴≠,sin cos2B B ∴=,即2sin cos cos 222BB B=,()0,πB ∈ ,则π0,22B ⎛⎫∈ ⎪⎝⎭,则cos 02B ≠解得1sin22B =,所以ππ263B B =⇒=,所以1sin 24S ac B ===,所以8,ac a c =+≥,当且仅当a c ==时等号成立,根据余弦定理得b =,即b =,设ABC 的周长为C ,所以()ABC C a c a c =++=+ ,设,a c t t +=≥,则()f t t =根据复合函数单调性及增函数加增函数为增函数的结论得:()f t 在)⎡+∞⎣上为单调增函数,故()(minf t f ==,故()min ABC C = ,当且仅当a b c ===时取等.故选:C.3.(2023·江西赣州·统考一模)已知锐角ABC 的内角A B C 、、的对应边依次记为a b c、、,且满足2cos c b b A -=,则()()2sin 2cos C B A B ++-的取值范围为__________.【答案】32,2⎛⎫ ⎪ ⎪⎝⎭【解析】因为2cos c b b A -=,所以sin sin 2sin cos C B B A -=,即()sin sin 2sin cos A B B B A +-=,展开整理得()sin sin A B B -=,因为锐角ABC 中,ππππ,0,,,,2222A B A B A B ⎛⎫⎛⎫∈+>-∈- ⎪ ⎪⎝⎭⎝⎭,所以A B B -=,即2A B =,由π02π022π0π32B A B C B ⎧<<⎪⎪⎪<=<⎨⎪⎪<=-<⎪⎩,得π6π4B <<,()()22πsin cos sin 2cos sin2cos21214C B A B A B B B B ⎛⎫++-=+=++=++ ⎪⎝⎭,因为π6π4B <<,所以7ππ3π21244B <+<,π<sin 224B ⎛⎫+ ⎪⎝⎭,所以()()2sin 2cos C B A B ++-的范围为32⎛⎫ ⎪ ⎪⎝⎭.4.(2023·陕西西安·统考一模)已知在ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,满足2cos 2b A a c +=,且b =,则ABC 周长的取值范围为______________.【答案】【解析】在ABC 中,由2cos 2b A a c +=及正弦定理得:2sin cos sin 2sin B A A C +=,而π()C A B =-+,于是2sin cos sin 2sin()2sin cos 2cos sin B A A A B A B A B +=+=+,有sin 2sin cos A A B =,而0πA <<,sin 0A >,因此1cos 2B =,由余弦定理得2222cos b a c ac B =+-,即有222222112()3()3()()24a c a c ac a c ac a c a c +=+-=+-≥+-=+,当且仅当a c =时取等号,从而a c +≤,而a c b +>=,则a b c <++≤所以ABC周长的取值范围为.5.(2023·全国·校联考一模)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,22c ac b +=.(1)证明:2B C =;(2)求a bc+的取值范围.【答案】(1)证明见解析;(2)(1,5).【解析】(1)∵22c ac b +=,∴22c b ac -=-,∴由余弦定理得:2222cos 222a c b a ac a cB ac ac c+---===,即:2cos c B a c ⋅=-,由正弦定理得:2sin cos sin sin C B A C ⋅=-,∴2sin cos sin()sin sin cos sin cos sin C B B C C B C C B C ⋅=+-=+-,整理得:sin cos sin cos sin 0B C C B C --=,即:sin()sin B C C -=,又∵(0,π)B C ∈、,∴B C C -=,即:2B C =.(2)∵2B C =,∴π3A C =-,又∵sin22sin cos C C C =⋅,2sin 3sin(2)sin cos 2cos sin 2sin cos 22sin cos C C C C C C C C C C C=+=⋅+⋅=⋅+⋅,sin 0C ≠,∴由正弦定理得:sin sin sin(π3)sin2sin3sin2sin sin sin a b A B C C C Cc C C C++-++===22sin cos22sin cos 2sin cos cos22cos 2cos sin C C C C C CC C CC⋅+⋅+⋅==++2222cos 12cos 2cos 4cos 2cos 1C C C C C =-++=+-,又∵0π0π3ππ0π02π 030π0π A C B C C C C <<<-<⎧⎧⎪⎪<<⇒<<⇒<<⎨⎨⎪⎪<<<<⎩⎩,∴1cos 12C <<,令cos t C =,则2421a bt t c+=+-,112t <<,∵2421y t t =+-对称轴为14t =-,∴2421y t t =+-在1(,1)2上单调递增,当12t =时,11421142y =⨯+⨯-=;当1t =时,4215y =+-=,∴15a bc+<<,即:a b c +的范围为(1,5).6.(2023春·湖南长沙·高三雅礼中学校考阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2sin sin tan cos C B A B -=.(1)求A ;(2)若2a =,求2c b -的取值范围.【答案】(1)π3A =;(2)()2,4-【解析】(1)由题意知,sin 2sin sin cos cos AC B B A-=⨯,所以2cos sin cos sin sin cos A C A B A B -=,则()2cos sin sin cos cos sin sin sin A C A B A B A B C =+=+=,又()0,πC ∈,所以sin 0C ≠,所以1cos 2A =,又()0,πA ∈,所以π3A =.(2)由(1)得sin 2sin sin cos cos AC B B A-=⨯,由正弦定理得cos 2cos a B c b A -=,又2a =,π3A =,所以24cos c b B -=.因为2π0,3B ⎛⎫∈ ⎪⎝⎭,所以1cos ,12B ⎛⎫∈- ⎪⎝⎭,所以()4cos 2,4B ∈-,故()22,4c b -∈-,即2c b -的取值范围为()2,4-.7.(2023·河南·校联考模拟预测)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c 是2a 与πsin6C ⎛⎫+⎪⎝⎭的等比中项.(1)求A ﹔(2)若ABC 是锐角三角形,且2c =,求sin a B 的取值范围.【答案】(1)π3;(2)⎝【解析】(1是2a 与πsin 6C ⎛⎫+ ⎪⎝⎭的等比中项,所以2π2sin 6a C b c ⎛⎫+==+ ⎪⎝⎭,由正弦定理及两角和的正弦公式,得12sin cos sin sin 2A C C B C ⎫⋅+=+⎪⎪⎝⎭.因为πA B C ++=,所以()sin sin cos sin sin sin cos cos sin sin A C A C A C C A C A C C +=++=++,()sin cos 1sin A C A C =+.因为()0,πC ∈,所以sin 0C ≠,cos 1A A -=,即π1sin 62A ⎛⎫-= ⎪⎝⎭.又()0,πA ∈,所以ππ5π,666A ⎛⎫-∈- ⎪⎝⎭,所以ππ66A -=,即π3A =.(2)由正弦定理,得2πsin sin sin 3ab B C ==,所以2π3sin sin C a B b C⎛⎫- ⎪⎝⎭==132tan C⎛=+ ⎝.因为ABC 是锐角三角形,所以2ππ0,32π0,2C C ⎧<-<⎪⎪⎨⎪<<⎪⎩所以ππ62C <<,所以tan 3C >,所以sin a B的取值范围是⎝.8.(2023·全国·高三专题练习)在①)cos sin a b C c B -=,②22cos a c b C -=,③()()()a b a b a c c -+=-这三个条件中任选一个,补充在下面的问题中,并解答该问题.在ABC 中,内角A B C ,,的对边分别是a b c ,,,且满足_______,b =(1)若4a c +=,求ABC 的面积;(2)求ABC 周长l 的取值范围.【答案】(1(2)(【解析】(1)若选条件①)cos sin a b C c B -=及正弦定理,)sin sin cos sin sin A B C C B-=()sin sin cos sin sin B C B C C B +-=⎤⎦,化简得sin sin sin B C C B =,因为0πC <<,所以sin 0C ≠,所以tan B =,因为0πB <<,所以π3B =.若选条件②,由22cos a c b C -=及正弦定理,得2sin sin 2sin cos A C B C -=,即()2sin sin 2sin cos B C C B C +-=,化简得2cos sin sin B C C =,因为0πC <<,所以sin 0C ≠,所以1cos 2B =,因为0πB <<,所以π3B =.若选条件③,由)()()a b a b a c c +-=-化简得,222a c b ac +-=,由余弦定理得222cos 2a c b B ac+-=,即1cos 2B =,因为0πB <<,所以π3B =,所以三个条件,都能得到π3B =.由余弦定理得()22222cos 22cos b a c ac B a c ac ac B =+-=+--,即21124222ac ac =--⨯,解得43ac =,所以ABC的面积114πsin sin 22333S ac B ==⨯⨯=.(2)因为π3b B ==,由正弦定理得4sin sin sin a c b A C B ===,因为2ππ3A C B +=-=,所以()2π1π4sin sin 4sin sin cos 3226a c A C A A A A A ⎫⎡⎤⎛⎫⎛⎫+=+=+-=+=+⎪ ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎭,因为2π03A <<,所以ππ5ππ1sin 166662A A ⎛⎫⎛⎤<+<+∈ ⎪ ⎥⎝⎭⎝⎦,,,所以(a c +∈,即(a b c ++∈,所以ABC 周长l 的取值范围为(.9.(2023春·山西·高三校联考阶段练习)求△ABC ,角A ,B ,C 所对的边分别为a ,b ,c ,已知3A π=,且△ABC 的周长为6.(1)证明:()124bc b c +=+;(2)求△ABC 面积的最大值.【答案】(1)证明见解析;(2【解析】(1)在△ABC 中,由余弦定理可得:2222cos a b c bc A =+-,即2222()3a b c bc b c bc =+-=+-,又因为6a b c ++=,所以22[6()]()3b c b c bc -+=+-,整理可得:124()b c bc -+=-,所以()124bc b c +=+得证.(2)由(1)可知:()124bc b c +=+,所以124bc +≥⨯,当且仅当b c =时取等号,6≥2≤,因为6b c +<2≤,则4bc ≤,所以1sin 424ABC S bc A =≤= ,故△ABC.10.(2023·四川凉山·统考一模)在锐角ABC 中,角A ,B ,C 所对的边分别为,,,sin cos a b c b c A a C -=.(1)求A ;(2)若2b =,求ABC 面积的取值范围.【答案】(1)π4A =;(2)()1,2【解析】(1)因为sin cos b c A a C -=,由正弦定理得sin sin sin sin cos B C A A C -=,。
高考数学一轮复习三角函数与解三角形中的最值(范围)问题
,∵函数f(x)=cos(2x+φ)(0<φ<π)在区间
π π
− ,
6 6
上单调递
π
− ≥ 0,
π
π
π
2π
减,∴ − + , + ⊆[0,π],即ቐ 3π
解得 ≤φ≤ .令f(x)=cos
3
3
3
3
+ ≤ π,
3
π
π π
(2x+φ)=0,则2x+φ= +kπ(k∈Z),即x= - + (k∈Z),又函数f
4
解:(2)f(x)=-
1 2 5
sin−
+ +a.
2
4
17
, 5
4 ⇒൝4
()max ≤
由题意得ቐ
()min ≥ 1
17
,
4 ⇒2≤a≤3,
+ ≤
−1 ≥ 1
即实数a的取值范围是[2,3].
三角形中的最值(范围)问题
考向1 利用三角函数的性质求最值(范围)
【例4】 △ABC中,sin2A-sin2B-sin2C=sin Bsin C.
重难专攻(四)
三角函数与解
三角形中的最值(范围)问题
三角函数与解三角形中的最值(范围)问题是高考的热点,主要涉及:
(1)三角函数式的最值(范围)问题;(2)利用三角函数性质求某些量的最
值(范围);(3)三角形中的最值(范围)(周长、面积等),其求解方法多
样,一般常用方法有:(1)利用三角函数的单调性(正、余弦函数的有界性)
3
3
答案
3
3
-
3
3
2
1+ 2
,
|解题技法|
sin+
利用正余弦定理的巧妙解决三角形中的最值问题
利用正余弦定理的巧妙解决三角形中的最值问题已知一边和其对角,求三角函数一些表达式的最值问题,三角形中的范围问题是一类重要的问题,在高考中经常出现,通常解决有两种思路,一是正弦定理与辅助角相结合,二是余弦定理与基本不等式相结合。
本文进行从题型上归纳总结, 注重方法的引领的提高。
题目的基本设问题方式是:已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,3π=A ,3=a ,求c b +,bc ,c b 32+,2232c b +的范围题型一 求周长的范围或最值 变式: c b +的取值范围⇔C B sin sin +的取值范围,已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,cos sin 0a C C b c --=.(1)求A 的大小;(2)若a =7,求ABC ∆的周长的取值范围. 试题解析:(1)由正弦定理得:cos sin 0sin cos sin sin sin a C C b c A C A C B C --=⇔=+sin cos sin sin(A )sin 1cos 1sin(30)2303060A C A C C C A A A A A ︒︒︒︒⇔+=++⇔-=⇔-=⇔-=⇔=(2)由已知:0,0b c >>,7=>+a c b 由余弦定理()()()()22222231492cos 3344b c bc b c bc b c b c b c π=+-=+-≥+-+=+ (当且仅当b c =时等号成立)∴()2449b c +≤⨯,又7,714b c b c +>∴<+≤.从而ABC ∆的周长的取值范围是(14,21]2若)0(cos sin cos 3)(2>-=ωωωωx x x x f 的图像与直线)0(>=m m y 相切,并且切点横坐标依次成公差为π的等差数列. (Ⅰ)求ω和m 的值;(Ⅱ)ABC ∆中a 、b 、c 分别是∠A 、∠B 、∠C 的对边。
(完整版)正弦定理和余弦定理专题总结,推荐文档
正弦定理和余弦定理正弦定理和余弦定理是解决三角形问题的主要工具,一、解三角形(一)已知三边例1、在ΔABC 中,,,,则B=_________。
1a =7b =3c =方法小结:已知三边用余弦定理。
(二)已知两边(一角)1例2、在⑴a = ⑵a = ⑶a = ⑷a = ⑸a =⑵,即时,有唯一解B=90°;1B sin =b A sin a = ⑶,即时,1B sin <b A sin a < ①若,则,有两解;a b >A B > ②若,则,有一解;a b <A B < ③若,则,有一解。
a b =A B =综上:⑴无解:;⑵两解:;⑶一解:或。
1B sin >⎩⎨⎧><a b 1B sin 1B sin =⎩⎨⎧≤<a b 1B sin例3、在ΔABC 中,,,B=45°,若这个三角形有两解,则x 的取值范围是_____________。
x a =2b =例4、在方法小结:2例5、在方法小结:例6、在方法小结:(四)综合1、如图,在ΔABC 中,D 是边AC 上的点,且AB=AD ,2AB=BD ,3BC=2BD ,则的值为()C sin A .B .C .D .33633666ABC题12、在△ABC 中,D 为BC 边上一点,BC =3BD ,AD =,2∠ADB =135°,若AC =AB ,则BD =_______。
2方法小结:求角或求边必须先找到一个适当的三角形:①包含所求角或边;②条件尽可能充足(三个或以上)。
练:1、在2、在3、在DC=6,求二、边角转换,只留一类。
三角形中有些问题会需要转换边角类型来解决,一般情况下(少数问题除外),转换后的表达式最好只保留边或角的一种类型。
例7、在ΔABC 中,若,则ΔABC 的形状一定是( )C sin A sin B cos 2=A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形ABDC题2例8、在ΔABC 中,已知,则ΔABC 的形状为()()C cos a b C sin B cos a c B sin -=-_______________________。
考点17 正余弦定理(讲解)(解析版)
考点17 正余弦定理【思维导图】【常见考法】考法一:正余弦定理选择1.ABC ∆中,角,,A B C 所对的边分别为,,a b c.若3,60a b A ===︒,则边c = 。
【答案】4【解析】2222cos a c b cb A =+-213923cos60c c ⇒=+-⨯⨯︒,即2340c c --=,解得4c =或1c =-(舍去).2.在ABC中,2c =,75A =︒,45B =︒,则ABC 的外接圆面积为 。
【答案】4π 【解析】因为在ABC 中,75A =︒,45B =︒,所以60C =︒,又c =r,则21sin c r C ===,因此ABC 的外接圆面积为214S r ππ==.3.在△ABC 中,A =60°,asin sin sin a b cA B C++++等于 。
【解析】由正弦定理a b c sinA sinB sinC ==,a sinA=3∴sinA ,sinB ,sinC 则a b c sinA sinB sinC ++++=)3sinA sinB sinC sinA sinB sinC ++++=34.在△ABC 中,cos C2=55,BC =1,AC =5,则AB = 。
【答案】4 2【解析】因为cos C =2cos 2C2-1=2×⎝ ⎛⎭⎪⎫552-1=-35,所以c 2=a 2+b 2-2ab cos C =1+25-2×1×5×⎝ ⎛⎭⎪⎫-35=32,∴c =AB =42。
5.在△ABC 中,BC =2,AB =4,cos C =-14,则AC 的值为( ) 【答案】3【解析】△ABC 中,a =BC =2,c =AB =4,cos C =-14,∴c 2=a 2+b 2-2ab cos C ,即16=4+b 2-4b ×⎝ ⎛⎭⎪⎫-14,化简得b 2+b -12=0,解得b =3或b =-4(不合题意,舍去),∴b =AC =3.考法二:边角互换1.在△ABC 中,若a =2bsinA ,则角B 等于 。
公开课解三角形中的最值及取值范围问题
谢谢!
4
4
2 cos A 2 cos A 2 sin A
B , A C 3
4
4
2
2
A(0, 3 )
A
(
,
)
2 cos A 2 sin A
4
44
2
2ቤተ መጻሕፍቲ ባይዱ
当A ,即A 时,取得最大值为1.
42
4
sin(A )
4
例2:在ABC中,角A,B,C所对的边分别为a,b,c,
已知:3b 2a sin B ,角A为锐角. (1)求角A的大小. (2)若a 6, 求b c的取值范围.
例1.(2016年北京卷) ABC中,角A,B,C所对的边分别是a,b,c, 已知a2 c2 b2 2ac, (1)求B的大小. (2)求 2 cos A cos C的最大值.
(2) 2 cos A cosC 2 cos A cos(3 A)
4
2 cos A cos3 cos A sin 3 sin A
例2:在ABC中,角A,B,C所对的边分别为a,b,c,
已知:3b 2a sin B ,角A为锐角. (1)求角A的大小. (2)若a 6, 求b c的取值范围.
解:(1) 3b 2a sin B
3 sin B 2sin Asin B
3 2sin A
sin A 3
2
A为锐角 A
3
微专题 解三角形中取值范围(最值)问题
学习目标
1.能利用正弦、余弦定理来解三角形; 2.掌握解决解三角形问题中的取值范围问题 的常规解法:函数法,不等式法等.
知识要点归纳
(1)正弦定理: (2)余弦定理:
a b c 2R sinA sinB sinC
正弦定理与余弦定理各地高考练习题
一、选择题1.已知在△ ABC 中,sinA:sinB:sinC=3:2:4,那么cosC 的值为1_ 1 2 2A.- 4B. 4C.- 3D. _>2.在△ ABC中,a=入b=,隹入,A=45° ,则满足此条件的三角形的个数是A.0B.1C.2D.无数个3.在△ ABC中,bcosA=acosB,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形4.已知三角形的三边长分别为x2+x+1,x2-1和2x+1(x>1),则最大角为A.150 °B.120°C.60°D.75°5.在4ABC中,出=1 , BC=2,(须+切)・(项+加)=5+2、5则边|4C|等于A-5 …而杼苕+增A. B .5-2 C. D.6.在△ ABC中,已知B=30° ,b=50,》,c=150,那么这个三角形是A.等边三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形7.在△ ABC 中,若b2sin2C+c2sin2B=2bccosBcosC,则此三角形为A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形8.正弦定理适应的范围是 A.RtA B.锐角△ C.钝角△ D.任意△9.已知△ ABC 中,a=10,B=60° ,C=45° ,贝U c=A.10+ 万B.10(Q-1)C.(而+1)D.10万10.在4ABC中,bsinAvav b,则此三角形有A.一解B.两解C.无解D.不确定11.三角形的两边分别为5和3,它们夹角的余弦是方程5x2-7 x-6=0的根,则三角形的另一边长为A.52B.2 L~C.16D.412.在4ABC 中,a2=b2+c2+bc,则A 等于A.60 °B.45°C.120D.30°= 7c=-13.在△ ABC中, 2 4,则△ ABC是A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形14.在△ ABC 中,a=2, A=30° ,C=45° ,则^ ABC 的面积S”BC等于18. 4ABC 中,sin 2A=sin 2B+sin 2C,则△ ABC 为19. 4ABC 中,A=60° ,b=1,这个三角形的面积为 』’3 ,则^AB C 外接圆的直径为15.已知三角形ABC 的三边A.cos 2BB.1-cos 2B16 .在△ ABC 中, A.充分不必要条件条件17 .在△ ABC 中, A.直角三角形C. + +11D ; ( +1)a 、b 、c 成等比数列,它们的对角分别是A 、B 、C,则 sinAsinC 等C.1+cos 2BD.1+sin 2BsinA > sinB 是 A > B 的 B.必要不充分条件 C.充要条件 D.既不充分也不必要bCosA=acosB,贝U 三角形为 B.锐角三角形 C.等腰三角形D.等边三角形A.直角三角形B.等腰直角三角形C.等边三角形D.等腰三角形26^3A.yB. 2届岳C.二D.-20.在△ ABC 中, ——k:C ,则k 为A.2RB.RC.4R-RD. 2(R 为△ ABC 外接圆半径)二、填空题1.在△ ABC 中, A=60° , C=45° , b=2,则此三角形的最小边长为2.在△ ABC 中, dbc口‘十/十白’3 .在△ ABC 中,a : b :c=(0+1):痴:2,则^ ABC 的最小角的度数为 4 .在△ ABC 中,已知 sinA : sinB : sinC=6 : 5 : 4,贝U secA=5 . 4ABC 中,匕1ns 2m 方,则三角形为6 .在△ ABC 中,角 A 、B 均为锐角且 cosA>sinB,则△ ABC 是7 .在△ ABC 中,若此三角形有一解,则 a 、b 、A 满足的条件为8 .已知在△ ABC 中,a=10,b=5v6,A=45° JU B= 9 .已知△ ABC 中,a=181,b=209,A=121° 14',此三角形解.10.在△ ABC 中,a=1,b=1,C=120° 贝U c=.11.在△ ABC 中,若a2>b2+c2,则△ ABC 为;若a2=b2+c2,则△ ABC 为;若a2 v b2+c2且b2v a2+c2且c2< a2+b2,则^ ABC 为.12.在△ ABC 中,sinA=2cosBsinC,则三角形为.sn C 2 yr 外—=—6 +1)13.在△ ABC 中,BC=3, AB=2,且41 8 5 , A=.14.在△ ABC 中,B= V3,C=3,B=30° ,贝(J A=.15.在△ ABC 中,a+b=12,A=60° , B=45° ,贝U a=,b=.16.若2,3,x为三边组成一个锐角三角形,则x的范围为.17.在△ ABC 中,化简bcosC+ccosB=.18.钝角三角形的边长是三个连续自然数,则三边长为.三、解答题1.已知在^ ABC 中,c=10, A=45° , C=30° ,求a、b 和B.2.已知△ ABC的三边长a=3, b=4, c= 437 ,求三角形的最大内角.3.已知在△ ABC中,/ A=45° , a=2, c=^ ,解此三角形.4.在四边形ABCD中,BC=a, DC=2a,四个角A、B、C、D度数的比为3 : 7 : 4 : 10,求AB.5.在△ ABC中,A最大,C最小,且A=2C, A+C=2B,求此三角形三边之比.7.在△ ABC中,最大角A为最小角C的2倍,且三边a、b、c为三个连续整数,求a、b、c的值.8.如下图所示,半圆O的直径MN=2, OA=2, B为半圆上任意一点,以AB为一边作正三角形ABC,问B在什么位置时,四边形OACB面积最大?最大面积是多少?9.在△ ABC 中,若sinA : sinB : sinC=m : n : l,且a+b+c=S,求a.10.根据所给条件,判断△ ABC的形状(1) acosA=bcosB值_ b _ 白oosA. 8s R oosC(2)11.△ABC中,a+b=10,而cosC是方程2x2—3x— 2=0的一个根,求^ ABC周长的最小值.12.在△ ABC中,a、b、c分别是角A、B、C的对边,设a+c=2b,A—C= 3 ,求sinB的值.13.已知△ ABC 中,a=1,b= J^,A=30°,求B、C 和c.14.在△ ABC中,c=242, tanA=3,tanB=2,试求a、b及此三角形的面积.15.已知S AABC=10,》,一个角为60° ,这个角的两边之比为5 : 2,求三角形内切圆的半径.* ”------ - 二二口,且7cosm =bcosA16.已知△ ABC中,a-\-b-c,试判断^ ABC的形状.l7tanC=-217.已知△ ABC的面积为1, tanB=2 ,求4ABC的各边长.18.求值:an cos2 800+ j5an20o<xK80c19.已知△ ABC勺面积S=底口 = = 2解此三角形.20.在△ ABC 中,a="G,b=2,c=^^+1 ,求A、B、C 及&.21.已知(a2+bc) x2+2 V* * + 1=0是关于x的二次方程,其中a、b、c是4ABC的三边,⑴若/ A为钝角,试判断方程根的情况.(2)若方程有两相等实根,求/ A的度数.22.在4ABC 中,(a2+b2) sin(A-B)=(a2-b2)sin(A+B),判断△ ABC 的形状.元23.在△ ABC中,u = 2J",a>b,C= 4 ,且有tanA • tanB=6,试求a、b以及此三角形的面积.24.已知:k是整数,钝角△ ABC的三内角A、B、C所对的边分别为a、b、c二+ A = 7/ < 3(1)若方程组国+D有实数解,求k的值.向-7^ ,, N T 2 (2)对于(1)中的k值,若“且有关系式- 上,试求A、B、C的度数.试题本一地区:四川文科卷年份:2012分值:5.0 难度:31. 如图,正方形&C0的边长为1 ,延长至1T ,使= l ,连接因.即snZ.<^D=()4.在△山C 中,角凡及U 对应的边分别是 值力£.已知他门乂-3期(8+0-1 . (I )求角X 的大小;(n )若 MBC 的面积& =5邛,匕=5 ,求sm £sinC 的值.地区:浙江理科卷 年份:2013 分值:4.0 难度:3血NBA 财'=—5. △ABC 中,IZC = 90。
正弦定理和余弦定理知识点与题型归纳
●高考明方向掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.★备考知考情1.利用正、余弦定理求三角形中的边、角问题是高考考查的热点.2.常与三角恒等变换、平面向量相结合出现在解答题中,综合考查三角形中的边角关系、三角形形状的判断等问题.3.三种题型都有可能出现,属中低档题. 一、知识梳理《名师一号》P62知识点一 正弦定理(其中R 为△ABC 外接圆的半径)变形1:2sin ,2sin ,2sin ,===a R A b R B c R C 变形2:sin ,sin ,sin ,222===a b c A B C R R R变形3:∶∶∶∶sinA sinB sinC=a b c 注意:(补充)关于边的齐次式或关于角的正弦的齐次式均可利用正弦定理进行边角互化。
知识点二 余弦定理222222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2⎧+-=⎪⎧=+-⎪+-⎪⎪=+-⇔=⎨⎨=+-⎪⎪⎩+-⎪=⎪⎩b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab 注意:(补充)(1)关于边的二次式或关于角的余弦均可考虑利用余弦定理进行边角互化。
(2)勾股定理是余弦定理的特例(3)在∆ABC 中,222090︒︒<+⇔<<a b c A用于判断三角形形状《名师一号》P63问题探究 问题3判断三角形形状有什么办法判断三角形形状的两种途径:一是化边为角;二是化角为边, 并常用正弦(余弦)定理实施边、角转换.知识点三 三角形中常见的结论△ABC 的面积公式有:①S =12a ·h (h 表示a 边上的高); ②S =12ab sin C =12ac sin B =12bc sin A =abc 4R ;--知两边(或两边的积)及其夹角可求面积③S =12r (a +b +c )(r 为内切圆半径). (补充)(1)++=A B C π(2)在三角形中大边对大角,大角对大边.(3)任意两边之和大于第三边,任意两边之差小于第三边.(4)有关三角形内角的常用三角函数关系式sin()sin ,cos()cos ,tan()tan sin cos ,cos sin 2222+=+=-+=-++==B C A B C A B C A B C A B C A 利用++=A B C π及诱导公式可得之(5)在△ABC 中的几个充要条件:《名师一号》P63问题探究 问题4sin A >sin B a 2R >b 2Ra >b A >B . (补充) cos cos A B A B >⇔< 若R ∈、αβ或2k απβπ=-+(k Z ∈)或2k αβπ=-+(k Z ∈)《45套》之7--19(6)锐角△ABC 中的常用结论∆ABC 为锐角三角形⇔02<<、、A B C π4.解斜三角形的类型《名师一号》P63问题探究问题1利用正、余弦定理可解决哪几类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、二解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角或两边及一边对角的问题;(2)已知三边问题.a b A)(补充)已知两边和其中一边的对角(如,,用正弦定理或余弦定理均可《名师一号》P63问题探究问题2选用正、余弦定理的原则是什么若式子中含有角的余弦或边的二次式,要考虑用余弦定理;若遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.补充:一、正弦定理推导必修5证明思路:转化到特殊情形----直角三角形中二、余弦定理推导必修52011年陕西高考考查余弦定理的证明18.(本小题满分12分)叙述并证明余弦定理。
解三角形中的最值与范围问题(解析版)
专题5解三角形中的最值与范围问题一、三角形中的最值范围问题处理方法1、利用基本不等式或常用不等式求最值:化角为边余弦定理公式里有“平方和”和“积”这样的整体,一般可先由余弦定理得到等式,再由基本不等式求最值或范围,但是要注意“一正二定三相等”,尤其是取得最值的条件。
2、转为三角函数求最值:化边为角如果所求整体结构不对称,或者角度有更细致的要求,用余弦定理和基本不等式难以解决,这时候可以转化为角的关系,消元后使得式子里只有一个角,变为三角函数最值问题进行解决。
要注意三角形隐含角的范围、三角形两边之和大于第三边。
二、边化角与角化边的变换原则在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三三个自由角)时,要用到三角形的内角和定理.【分析】设220CDBD m ==>,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解. 【详解】[方法一]:余弦定理 设220CDBD m ==>, 则在ABD △中,2222cos 42AB BD AD BD AD ADB m m =+⋅∠=++,在ACD 中,22222cos 444AC CD AD CD AD ADC m m =+−⋅∠=+−, 所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++−++−===−+++++++44≥=−当且仅当311m m +=+即1m =−时,等号成立,所以当ACAB取最小值时,1m =−.1.[方法二]:建系法令 BD=t ,以D 为原点,OC 为x 轴,建立平面直角坐标系. 则C (2t,0),A (1,B (-t,0)()()()2222222134441244324131111t AC t t AB t t t t t t BD −+−+∴===−≥−++++++++==当且仅当即时等号成立。
三角形中的最值与范围问题解析版
三角形中的最值、范围问题一、知识与方法1、正弦定理可将边用角的正弦值表示:2sin sin sin a b cR A B C===, 2sin a R A =,2sin b R B =,2sin c R C =2、在三角形ABC ∆中,若 222c a b =+,则C 为直角;若 222c a b >+,则C 为钝角;若 222c a b <+, 则C 为锐角;3、在锐角三角形中,已知角C ,求B 的范围,可由下列限制条件求出:02022B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩ 4、三角形有关最值和范围求解(1)利用余弦定理和基本不等式进行解答; (2)利用正弦定理和三角函数值域进行解答; 例如:已知角C ,求解 sin sin m A n B +的范围 :解题方法:()()sin sin =sin +sin sin +sin m A n B m A n A C m A n A C π+--=+,再利用三角函数和差角公式和辅助角公式进行化简,求出三角函数的值域;注意:若三角形为锐角三角形,已知角C ,则需满足02022B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,从而进一步限制B 的范围.(3)利用三角形三边关系进行解答; 若为锐角三角形,则222222222c a b b a c a b c ⎧<+⎪<+⎨⎪<+⎩,若为钝角三角形,如角C 为钝角,则222c a b a b c ⎧>+⎨+>⎩二、题型训练题型一 利用余弦定理和基本不等式求面积与周长最值问题例1.(2021•丙卷模拟)在ABC ∆中角A ,B ,C 的对边分别为a ,b ,c ,若()(sin sin )sin ()a b A B C b c -+=+,2b c +=,则ABC ∆的面积的最大值为( )A .14B C .12D 【解答】解:因为()(sin sin )sin ()a b A B C b c -+=+, 由正弦定理得()()()a b a b c b c -+=+, 所以222a b bc c -=+,由余弦定理得2221cos 22b c a A bc +-==-,由A 为三角形内角得23A π=, 因为2b c +=, 所以2()12b c bc +=,所以113sin 1222ABC S bc A ∆=⨯⨯=1b c ==时取等号, 故选:B . 方法点拨:本题考查正弦定理的边角互化、余弦定理和基本不等式求最值,熟练利用正余弦定理和基本不等式是解题的关键. 巩固训练:1.(2021•河南模拟)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,2cos cos cos a A b C c B =+,当ABC ∆的外接圆半径2R =时,ABC ∆面积的最大值为( )A B .C .D .【解答】解:2cos cos cos a A b C c B =+,∴由正弦定理可得2sin cos sin cos sin cos A A B C C B =+,即2sin cos sin()sin A A B C A =+=,(0,)A π∈, 1cos 2A ∴=,即3A π=,由余弦定理,2221222b c bc bc bc =+-⨯⨯-, 则12bc ,(当且仅当b c =时等号成立),ABC ∴∆的面积11sin 1222S bc A=⨯=b c =时,等号成立, 故选:C .2.在ABC ∆中,A ,B ,C 的对边分别为a ,b ,c ,若1(sin )cos sin cos 2b C A A C -=,且a =ABC ∆面积的最大值为( )A .B .C .D .【解答】解:已知等式整理得:1cos sin cos cos sin sin()sin 2b A A C A C A C B =+=+=,即2sin cos b B A=,由正弦定理sin sin a b A B =2cos A =,即sin tan cos AA A==60A ∴=︒,由余弦定理得:2222cos a b c bc A =+-,即22122b c bc bc bc bc =+--=,则1sin 332ABC S bc A ∆=,即ABC ∆面积的最大值为故选:B .3.(2021春•鼓楼区校级期末)在ABC ∆中,1cos 2a c Bb =+.(1)若7a b +=,ABC ∆的面积为c ; (2)若4c =,求ABC ∆周长的最大值. 【解答】解:(1)由正弦定理知,sin sin sin a b cA B C==, 1cos2a c Bb =+,∴1sin sin cos sin 2A C B B =+,即1sin()sin cos sin 2B C C B B +=+,1sin cos cos sin sin cos sin 2B C B C C B B ∴+=+,∴1sin cos sin 2B C B =,sin 0B ≠,∴1cos 2C =, (0,)C π∈,∴3C π=,11sin 22S ab C ab ===12ab ∴=,由余弦定理知,22222cos ()3493613c a b ab A a b ab =+-=+-=-=,∴c =(2)由余弦定理知,2222cos c a b ab A =+-,2222()()16()3()344a b a b a b ab a b ++∴=+-+-⋅=, 8a b ∴+,当且仅当4a b ==时,取等,ABC ∴∆周长的最大值为4812+=.4.(2021•一模拟)已知ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,且()(sin sin )sin ()0a c A C B a b -+--=.(1)求C ;(2)若ABC S ∆=,2c =,求ABC ∆周长的最小值.【解答】解:(1)ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且()(sin sin )()sin 0a c A C b a B -++-=.利用正弦定理得:()()()0a c a c b a b -++-=,整理得:2220a c b ab -+-=,即2221cos 22a b c C ab +-==,由于0C π<<, 所以:3C π=.(2)因为11sin sin 223ABC S ab C ab π∆====,所以解得8ab =,所以周长22a b c ab c +++=,当且仅当a b ==所以ABC ∆周长的最小值为2.5.(2021•永州模拟)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c (sin )b A A =. (1)求B ;(2)若3b =,求ABC ∆周长最大时,ABC ∆的面积.【解答】解:(1)(sin )b A A =,∴sin (sin )C B A A =,∴)sin sin cos A B B A B A +=+,∴cos cos sin sin cos A B B A B A B A =+,∴sin B B =,∴tan B ,0B π<<,∴3B π=.(2)222cos 2a c b B ac+-=, 据(1)可得3B π=,∴222122a c b ac +-=,222b ac ac ∴=+-,29()3a c ac ∴=+-,∴222()9()3()24a c a c a c +++-=, 当且仅当3a c ==时等号成立,即当3a c ==时,a c +取得最大值,即周长取得最大值,此时133sin 23ABC S π∆=⨯⨯⨯=6.(2021•巴中模拟)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c.已知sin sin(),3b A a B b π=+=. (1)求ABC ∆的外接圆直径; (2)求ABC ∆周长的取值范围. 【解答】解:(1)sin sin()3b A a B π=+,∴由正弦定理,可得sin sin sin sin()3B A A B π=+,(0,)A π∈,sin 0A >,∴sin sin()3B B π=+,化简可得,1sin 2B B =,∴tan B =,(0,)B π∈,∴3B π=,由正弦定理可得,ABC ∆的外接圆直径21sin bR B ===. (2)由(1)可知,3B π=,由余弦定理可得,222b a c ac =+-, 222221()3()3()()24a cb ac ac a c a c +∴=+-+-=+, 当且仅当a c =时,等号成立,b , 2()3ac ∴+,即3a c +,又a cb +>=,∴3a c <+,∴332a b c++,ABC ∴∆的取值范围为.题型二 利用正弦定理和三角函数值域求三角形角度有关的最值、范围问题 例2.在△ABC 中,a 2+c 2=b 2+ac .(Ⅰ)求∠B 的大小; (Ⅱ)求cos A +cos C 的最大值.【解答】解:(Ⅰ)∵在△ABC 中,a 2+c 2=b 2+ac .∴a 2+c 2﹣b 2=ac .∴cos B ===,∴B =(Ⅱ)由(I )得:C =﹣A ,∴cos A +cos C =cos A +cos (﹣A )=cos A ﹣cos A +sin A=cos A +sin A =sin (A +). ∵A ∈(0,), ∴A +∈(,π),故当A +=时,sin (A +)取最大值1,即cos A +cos C 的最大值为1.方法点拨:本题考查了余弦定理、三角形内角和、三角函数和差角公式、辅助角公式以及三角函数值域,熟练掌握余弦定理、三角函数辅助角公式、三角函数值域求解的方法是解题的关键. 巩固训练:1.(2021•沈阳四模)在①2cos cos c b Ba A-=,②2cos 2a C c b +=,③1sin cos sin 2cos 2a A C c A A +=这三个条件中任选一个,补充在下面问题中,并解答该问题.问题:锐角ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且______. (1)求A ;(2)求cos cos B C +的取值范围. 【解答】解:(1)选① 因为2cos cos c b Ba A -=, 所以2sin sin cos sin cos C B BA A-=, 所以2sin cos sin cos sin cos C A B A A B -=,整理得2sin cos sin cos sin cos sin()sin C A B A A B A B C =+=+=. 因为sin 0C ≠,所以1cos 2A =. 因为(0,)2A π∈,所以3A π=.选②因为2cos 2a C c b +=,所以2sin cos sin 2sin 2sin()A C C B A C +==+, 所以2sin cos sin 2sin cos 2cos sin A C C A C A C +=+, 整理得sin 2cos sin C A C =. 因为sin 0C ≠,所以1cos 2A =. 因为(0,)2A π∈,所以3A π=.选③因为1sin cos sin 2cos 2a A C c A A +,所以sin sin cos sin sin cos cos A A C C A A B A +=,所以sin (sin cos sin cos )cos A A C C A B A +=,整理得sin sin cos A B B A =.因为sin 0B ≠,所以sin A A =.因为(0,)2A π∈,所以tan 3A A π=.(2)因为3A π=,所以1cos cos cos cos()cos sin()26B C B B A B B B π+=-+=+=+.因为2(0,),(0,)232B C B πππ∈=-∈,所以(,)62B ππ∈,所以2(,)633B πππ+∈,所以sin()6B π+∈,故cos cos B C +∈.2.(2021•下城区校级模拟)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin sin b B a A c A -=.(1)求证:2B A =;(2)若ABC ∆是锐角三角形,求sin sin AC的取值范围. 【解答】解:(1)由sin sin sin b B a A c A -=得22b a ac -=, 由余弦定理2222cos b a c ac B =+-, 代入22b a ac -=得22cos ac c ac B =-, 则2cos a c a B =-,由正弦定理得sin sin 2sin cos A C A B =-,所以sin sin()2sin cos A A B A B =+-,得sin sin()A B A =-, 由220b a ac -=>知b a >,故B A >, 所以A B A =-或()A B A π+-=(舍去) 所以2B A ⋯=,(2)3C A π=-,由0,02,03222A A A ππππ<<<<<-<得64A ππ<<,sin sin sin sin sin sin3sin(2)sin cos2cos sin 2A A A AC A A A A A A A===++,32sin 11(,1)3sin 4sin 34sin 2A A A A ==∈--.题型三 利用正弦定理和三角函数值域求三角形边长有关的最值、范围问题例3.(2021•汕头三模)在①22(sin sin )sin 3sin sin B C A B C +=+,②22cos c a B b =+,③cos cos 2cos 0b C c B a A +-=这三个条件中任选一个,补充到下面问题中,并解答问题.在ABC ∆中,内角A ,B ,C 的对边长分别为a ,b ,c ,且____.(1)求角A 的大小;(2)若ABC ∆是锐角三角形,且2b =,求边长c 的取值范围. 【解答】解:(1)选条件①.因为22(sin sin )sin 3sin sin B C A B C +=+, 所以222sin sin sin sin sin B C A B C +-=, 根据正弦定理得,222b c a bc +-=, 由余弦定理得,1cos 2A =, 因为A 是ABC ∆的内角, 所以3A π=选条件②,因为1cos 2c a B b =+,由余弦定理222122a c b c a b ac +-=⨯+,整理得222b c a bc +-=, 由余弦定理得,1cos 2A =, 因为A 是ABC ∆的内角, 所以3A π=.选条件③,因为cos cos 2cos 0b C c B a A +-=, sin cos sin cos 2sin cos 0B C C B A A ∴+-=.sin()2sin cos B C A A ∴+=,即sin 2sin cos A A A =因为0A π<<,sin 0A ≠.∴1cos 2A =, ∴3A π=;(2)因为3A π=,ABC ∆为锐角三角形,所以022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62B ππ<<在ABC ∆中,2sin sin c C B=,所以212sin()sin )322sin sin B B B c B B π-+===,即1c . 由62B ππ<<可得,tan B >,所以10tan B<<,所以14c <<. 方法点拨:本题第一问考查正余弦定理的变形及应用,第二问边长范围问题考查正弦定理的边角互化,结合锐角三角形角度的范围和三角函数值域求解出角度的范围.巩固训练:1.在锐角ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且220c a ab --=. (1)求证:2C A =;(2)若2a =,求c 的取值范围.【解答】解:(1)证明:因为220c a ab --=, 结合余弦定理,得2222cos c a b ab C =+-, 所以22cos ab b ab C =-,即2cos a b a C =-,由正弦定理,得sin sin 2sin cos sin()2sin cos A B A C A C A C =-=+- sin cos sin cos sin()C A A C C A =-=-,因为ABC ∆为锐角三角形, 所以A C A =-,即2C A =; (2)由(1)2C A =, 由正弦定理,得sin sin a cA C=,所以2cos 4cos c a A A ==,由题意,得02032022A A A ππππ⎧<<⎪⎪⎪<-<⎨⎪⎪<<⎪⎩,解得64A ππ<<,所以4cos c A =∈.2.(2021春•慈溪市期末)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知向量m 、n 满足:(2,6)m a =,(,2sin )n b B =,且//m n . (Ⅰ)求角A ;(Ⅱ)若ABC ∆是锐角三角形,且2a =,求b c +的取值范围. 【解答】解:(Ⅰ)因为//mn ,所以2a Bb =,2sin a B=, 由正弦定理得:2sin sin A B B =, 因为sin 0B≠, 所以sin A , 所以3A π=或23π. (Ⅱ)因为2a =,所以由正弦定理得sin sin sin a b c A B C ====,得:b B ,c C =,所以21sin )sin()]sin ]4sin()326b c B C B B B B B B ππ++=+-=++=+,因为ABC ∆是锐角三角形, 所以02B π<<,且2032B ππ<-<,可得62B ππ<<, 所以2363B πππ<+<sin()16B π<+,所以4b c <+.3.(2021春•青山湖区校级期中)在ABC ∆中,3B π=,AC ,则2AB BC +的最大值为( )A.B.C .3 D .4【解答】解:因为3B π=,AC由正弦定理得2sin sin sin a c bA C B===,所以2sin a A =,22sin 2sin()3c C A π==-,由则222sin()4sin 5sin )3AB BC A A A A A πϕ+=-++=+,其中ϕ为辅助角,根据正弦函数的性质得)A ϕ+的最大值 故选:B .4.(2021•B 卷模拟)在锐角ABC ∆中,a ,b ,c 分别为内角A ,B ,C 的对边,且有2b =. 在下列条件中选择一个条件完成该题目:①cos (cos )cos 0C B B A +-=;②2sin (2)sin (2)sin a A b c B c b C =-+-. (1)求A 的大小; (2)求2a c +的取值范围.【解答】解:(1)若选择①,因为cos (cos )cos 0C B B A +-=, 所以cos()cos cos cos 0A B B A B A -++=,即cos cos sin sin cos cos cos 0A B A B B A B A -++=,所以sin sin cos A B B A =, 因为sin 0B ≠,可得sin A A =,所以tan A =,可得3A π=;若选择②,因为2sin (2)sin (2)sin a A b c B c b C =-+-. 所以222222a b bc c bc =-+-,所以222bc b c a =+-,可得2221cos 22b c a A bc +-==,可得3A π=.(2)设ABC ∆外接圆半径为R ,则有22sin sin b R B B==, 可得222122(2sin sin )sin )sin())sin )1sin sin sin 2a c R A C C A B B B B B B +=+==+=+=,因为ABC ∆为锐角三角形,可得022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,可得62B ππ<<,所以sin B 在(6π,)2π单调递增,cos B 在(6π,)2π(6π,)2π单调递减,所以21a c +∈,4).5.(2021•肥城市模拟)已知锐角ABC ∆的外接圆半径为1,内角A ,B ,C 的对边分别为a ,b ,c ,ABC ∆的面积为S2224)S c b =+-.(1)求C ; (2)求bca的取值范围. 【解答】解:(1)2224)S c b =+-,∴222)4a b c S +-=,∴1cos 4sin 2C ab C =⨯sin C C =,cos 0C ∴≠,tan C又(0,)C π∈∴3C π=,(2)ABC ∆的外接圆半径为1,∴2sin cC=, 又正弦定理sin sin sin a b cA B C==, 2sin a A ∴=,2sin b B =,∴21sin()sin)3322sin sin2tanA A Abca A A Aπ-+======+,又因为ABC∆是锐角三角形,∴22ABππ⎧<<⎪⎪⎨⎪<<⎪⎩,即2232AAπππ⎧<<⎪⎪⎨⎪<-<⎪⎩,∴62Aππ<<,∴tan A>,1tan A<<,32tan A<<∴bca<<6.(2021春•庐阳区校级期末)在ABC∆中,内角A,B,C所对的边分别为a,b,c,(1cos)cosa b C c B++=.(1)求角C的大小;(2)若c=,求ABC∆周长的取值范围.【解答】解:(1)因为(1cos)cosa b C c B++=,所以由正弦定理得sin sin(1cos)sin cosA B C C B++=,又sin()sin()sinB C A Aπ+=-=,所以sin()sin sin cos sin cos0B C B B C C B+++-=,所以2sin cos sin0B C B+=,因为(0,)Bπ∈,所以sin0B≠,所以1cos2C=-,又(0,)Cπ∈,所以23Cπ=.(2)因为c=,23Cπ=,所以由正弦定理得2sin sin sin3b aB A===,则2sinb B=,2sina A=,故ABC∆的周长2sin2sin2sin2sin()3L B A B Bπ+=+-2sin2(sin cos cos sin)33B B Bππ=+-sin B B=+2sin()3B π=++,因为03B π<<,所以(33B ππ+∈,2)3π,sin()3B π+∈1],2sin()3B π+∈2+,故ABC ∆周长的取值范围为2.7.(2021春•淮安期末)从①(2)cos cos 0b c A a B -+=;②222b c a +-=;③(tan tan )2tan b A B c B +=这三个条件中选一个,补充到下面问题中,并完成解答.已知ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且____. (1)求角A 的大小;(2)若ABC ∆为锐角三角形,b =ABC ∆的周长的取值范围.【解答】解:(1)若选①,在ABC ∆中,由正弦定理得:sin cos 2sin cos sin cos 0B A C A A B -+=, 因为A B C π++=,A ,B ,(0,)C π∈, 所以sin 2sin cos 0C C A -=, 且sin 0C ≠, 因此1cos 2A =,(0,)A π∈, 可得3A π=;若选②,在ABC ∆中,由余弦定理得12cos sin 2bc A bc A ,所以sin A A , 因为sin 0A ≠,因此tan A =,且(0,)A π∈, 故3A π=;若选③,在ABC ∆中,2tan sin cos cos sin sin 1tan cos sin cos sin c A A B A B Cb B A B A B+=+==,且sin 0C ≠, 由正弦定理得:22sin sin sin cos sin c C Cb B A B==, 故1cos 2A =,可得3A π=;(2)因为ABC ∆为锐角三角形, 所以(0,)2B π∈,(0,)2C π∈,因此(,)62B ππ∈,sin sin c a C ==,可得c =3sin a B=, 所以ABC∆的周长为)31cos 333sin sin tan 2B B a c b B B B π+++++=+++,由于(,)62B ππ∈,可得(212B π∈,)4π,可得tan (22B∈,所以ABC ∆的周长取值范围为(3++.8.(2021•烟台模拟)在条件①222sin sin sin sin A B C B C --=,②1cos 2b a Cc =+,③(cos )cos cos 0C C A B +=中,任选一个补充在下面问题中并求解. 问题:在锐角ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,1c =,____. (1)求A ;(2)求ABC ∆面积的取值范围.【解答】解:(1)若选①222sin sin sin sin A B C B C --=,由正弦定理得222a b c --=,由余弦定理得222cos 2b c a A bc +-=, 由A 为三角形内角得6A π=;(2)14ABC S b ∆=,由正弦定理得51sin()cos sin 1622sin sin sin 2tan C C Cc Bb CC C C π-====,由题意得02506C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得32C ππ<<,所以tan Cb <ABC S ∆<<故ABC ∆面积的取值范围; (1)若选②1cos 2b a Cc =+,由正弦定理得1sin sin cos sin 2B AC C =+,所以1sin()sin cos sin 2A C A C C +=++,所以1sin cos sin cos sin cos sin 2A C C A A C C +=+,化简得1sin cos sin 2C A C =,因为sin 0C >, 所以1cos 2A =, 由A 为三角形内角得3A π=;(2)ABC S ∆,,由正弦定理得21sin()sin sin 1322sin sin sin 2C C Cc Bb CC C π-+====由题意得022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<,所以tan C , 故122b <<,ABC S ∆<<故ABC ∆面积的取值范围; (1)若选③(cos )cos cos 0C C A B +=,所以(cos )cos cos()0C C A A C -+=,化简得sin sin cos A C C A =, 因为sin 0C >,所以tan A =, 由A 为三角形内角得3A π=;(2)ABC S ∆,由正弦定理得21sin()sin sin 1322sin sin sin 2C C Cc Bb CC C π-+====由题意得022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<,所以tan C , 故122b <<,ABC S ∆<<故ABC ∆面积的取值范围.题型四 利用三角形三边关系求解范围问题例4.(2019•新课标Ⅲ)ABC ∆的内角A 、B 、C 的对边分别为a ,b ,c .已知sinsin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 【解答】解:(1)sin sin 2A C a b A +=,即为sin cos sin 22B Ba ab A π-==, 可得sin cossin sin 2sin cos sin 222B B BA B A A ==, sin 0A >, cos2sin cos 222B B B ∴=, 若cos 02B=,可得(21)B k π=+,k Z ∈不成立, 1sin22B ∴=, 由0B π<<,可得3B π=;(2)若ABC ∆为锐角三角形,且1c =,由余弦定理可得1cos3b a π=,由三角形ABC 为锐角三角形,可得2211a a a +-+>且2211a a a +-+>, 解得122a <<,可得ABC ∆面积13sin 234S a π==∈.方法点拨:本题求解三角形面积的取值范围,由于一边和角度已知,可转化为求边长的范围,利用锐角三角形三边关系列出不等关系,从而求解出面积范围. 巩固训练:1.(2021•新高考Ⅱ)在ABC ∆中,角A ,B ,C 所对的边长为a ,b ,c ,1b a =+,2c a =+.(Ⅰ)若2sin 3sin C A =,求ABC ∆的面积;(Ⅱ)是否存在正整数a ,使得ABC ∆为钝角三角形?若存在,求出a 的值;若不存在,说明理由. 【解答】解:()2sin 3sin I C A =,∴根据正弦定理可得23c a =,1b a =+,2c a =+, 4a ∴=,5b =,6c =,在ABC ∆中,运用余弦定理可得2222224561cos 22458a b c C ab +-+-===⨯⨯,22sin cos 1C C +=,sin C ∴===∴11sin 4522ABC S ab C ∆==⨯⨯=()II c b a >>,ABC ∴∆为钝角三角形时,必角C 为钝角, 222222(1)(2)cos 022(1)a b c a a a C ab a a +-++-+==<+,2230a a ∴--<, 0a >, 03a ∴<<,三角形的任意两边之和大于第三边, a b c ∴+>,即12a a a ++>+,即1a >, 13a ∴<<,a 为正整数,2a ∴=.。
高中数学正余弦定理大题题型总结
高中数学正余弦定理大题题型总结正弦定理和余弦定理是高中数学中常见的重要定理,用于解决与三角形相关的问题。
以下是对高中数学正余弦定理大题题型的总结。
1. 解决三角形边长题目描述:已知三角形的一个角和两个边的长度,求第三边的长度。
解决方法:可以利用正弦定理或余弦定理来解决这类问题。
根据已知信息,可以列出对应的定理公式,代入已知量,并解方程得到未知边长的值。
2. 解决三角形内角题目描述:已知三角形的三个边长,求其中一个角的大小。
解决方法:可以利用余弦定理来解决这类问题。
根据已知信息,可以列出定理公式,代入已知量,并解方程得到角的大小。
3. 解决三角形面积题目描述:已知三角形的两边和夹角,求三角形的面积。
解决方法:可以利用正弦定理来解决这类问题。
根据已知信息,求出夹角的正弦值,然后代入三角形面积公式,计算得到面积。
4. 判断三角形形状题目描述:已知三角形的三个角度,判断其形状。
解决方法:可以利用余弦定理来解决这类问题。
根据已知信息,计算出三个边的长度,然后通过边长间的关系来判断三角形的形状,如等边三角形、等腰三角形或一般三角形。
5. 解决三角形的外接圆和内切圆问题题目描述:已知三角形的三个边长或三个角度,求其外接圆和内切圆的半径。
解决方法:可以利用数学性质和公式来解决这类问题。
对于外接圆,可以利用正弦定理或余弦定理计算三角形的边长,然后利用三角形外接圆半径公式求解。
对于内切圆,可以利用三角形的面积公式和海伦公式来求解。
总结来说,高中数学的正余弦定理大题题型主要涉及解决三角形边长、内外角度、面积以及形状等问题。
熟悉并掌握正余弦定理的应用方法,能够帮助解决这类问题,并提高数学解题的能力。
正弦定理和余弦定理习题及答案
正弦定理和余弦定理习题及答案正弦定理和余弦定理 测试题一、选择题:1.在△ABC 中,a =15,b =10,A =60°,则cos B =( )A .-223 B.223 C .-63D.632.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2=3bc ,sin C =23sin B ,则A =( )A .30°B .60°C .120°D .150°3.E ,F 是等腰直角△ABC 斜边AB 上的三等分点,则tan ∠ECF =( )A.1627B.23C.33D.344.△ABC 中,若lg a -lg c =lgsin B =-lg 2且B ∈⎝ ⎛⎭⎪⎫0,π2,则△ABC的形状是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形5.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列,∠B =30°,△ABC 的面积为0.5,那么b 为( )A .1+ 3B .3+ 3 C.3+33D .2+ 36.已知锐角A 是△ABC 的一个内角,a 、b 、c 是三角形中各内角的对应边,若sin 2A -cos 2A =12,则( )A .b +c =2aB .b +c <2ªC .b +c ≤2aD .b +c ≥2a7、若ABC ∆的内角A 满足2sin 23A =,则sin cos A A +=15.15.53 D .53-8、如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则A .111ABC ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形9、ABC 的三内角,,A B C 所对边的长分别为,,a b c 设向量(,)p a c b =+,(,)q b a c a =--,若//p q ,则角C 的大小为(A)6π (B)3π (C) 2π (D) 23π10、已知等腰ABC △的腰为底的2倍,则顶角A 的正切值是( ) A.323 C.158D.15720、已知ABC △21,且sin sin 2A B C +=.(I )求边AB 的长;(II )若ABC △的面积为1sin 6C ,求角C 的度数.21、△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a ,b ,c 成等比数列,.43cos =B(Ⅰ)求cot A +cot C 的值; (Ⅱ)设32BA BC ⋅=,求a +c 的值.22、 某海轮以30海里/小时的速度航行,在A 点测得海面上油井P 在南偏东︒60,向北航行40分钟后到达B 点,测得油井P 在南偏东︒30,海轮改为北偏东︒60的航向再行驶80分钟到达C 点,求P 、C 间的距离.答案1.解析:依题意得0°<B <60°,由正弦定理得a sin A =bsin B得sin B =b sin A a =33,cos B =1-sin 2B =63,选D. 2.解析:由sin C =23sin B 可得c =23b ,由余弦定理得cos A =b 2+c 2-a 22bc =-3bc +c 22bc =32,于是A =30°,故选A. 3.解析:设AC =1,则AE =EF =FB =13AB =23,由余弦定理得CE =CF =AE 2+AC 2-2AC ·AE cos45°=53,所以cos ∠ECF =CE 2+CF 2-EF 22CE ·CF =45,所以tan ∠ECF =sin ∠ECF cos ∠ECF=1-⎝ ⎛⎭⎪⎫45245=34. 答案:D 4.解析:∵lg a -lg c =lgsin B =-lg 2,∴lg a c =lgsin B =lg 22.∴a c =sin B =22. ∵B ∈⎝⎛⎭⎪⎫0,π2,∴B =π4,由c =2a , 得cos B =a 2+c 2-b 22ac=3a 2-b 222a2=22. ∴a 2=b 2,∴a =b . 答案:D5.解析:2b =a +c ,12ac ·12=12⇒ac =2,a 2+c 2=4b 2-4,b 2=a 2+c 2-2ac ·32⇒b 2=4+233⇒b =3+33. 答案:C6.解析:由sin 2A -cos 2A =12,得cos2A =-12, 又A 是锐角,所以A =60°,于是B +C =120°. 所以b +c 2a =sin B +sin C2sin A=2sinB +C2cosB -C23=cosB -C2≤1,b +c ≤2a . 答案:c7.解:由sin2A =2sinAcosA >0,可知A 这锐角,所以sinA +cosA >0, 又25(sin cos )1sin 23A A A +=+=,故选A8.解:111A B C ∆的三个内角的余弦值均大于0,则111A B C ∆是锐角三角形,若222A B C ∆是锐角三角形,由211211211sin cos sin()2sin cos sin()2sin cos sin()2A A A B B B C C C πππ⎧==-⎪⎪⎪==-⎨⎪⎪==-⎪⎩,得212121222A A B B C C πππ⎧=-⎪⎪⎪=-⎨⎪⎪=-⎪⎩,那么,2222A B C π++=,所以222A B C ∆是钝角三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正余弦定理中的范围(含最值)问题(编者:李成伦)
范围问题,是正余弦定理中较困难的问题,也是考试比较头疼的问题。
下面通过以下几个例题来谈谈怎样解决这类问题。
一,利用角的范围,和三角函数的“有界性”相结合
例:设锐角三角形ABC ,内角A,B,C 的所对的边为c b a ,,,且A b a sin 2⋅=
(1)求角B 的大小
(2)求 的求值范围c A cos cos +
例:在三角形ABC 中,的范围求b a C c +=+=,30,62
例:三角形ABC 的三个内角A,B,C 一次成等差数列
(1)若C A B sin sin sin 2=,试判断∆ABC 的形状
(2)若∆ABC 为钝角三角形,且c a >,试求代数式2
12cos 2sin 32sin 2-+A A C 的值的范围
例:ABC ∆中,角A ,B ,C 的对边是c b a ,,,已知
c b a B A 2cos cos +-= (1)求角A 的大小
(2)求C B sin sin 的最大值
二,挖掘三角形中的隐含条件
例:在三角形ABC 中,角A ,B ,C 的对边是c b a ,,,且222,c b a c b a +<>>,则角A 的取值范围是 A,⎪⎭⎫
⎝⎛ππ,2 B,⎪⎭⎫ ⎝⎛24ππ, C,⎪⎭⎫ ⎝⎛23ππ, D,⎪⎭
⎫ ⎝⎛20π,
例:(2011年浙江高考)在∆ABC 中,角ABC 的对边是c b a ,,已知B p C A sin sin sin =+,且24
1b ac =
(1)1,4
5==b p 时,求c a ,的值 (2)若角B 为锐角,求p 的取值范围
三:利用“基本不等式”求范围
例:(12年陕西)在三角形ABC 中,角A,B,C 的对边是c b a ,,若,2222c b a =+则C cos 的最小值为:_——
例:(2014年新课标)已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,2a =,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .
例: (2014年陕西理)
ABC ∆的内角C B A ,,
所对的边分别为c b a ,,. (I )若c b a ,,
成等差数列,证明:()C A C A +=+sin 2sin sin ; (II )若c b a ,,
成等比数列,求B cos 的最小值.
例:在三角形ABC 中,角A,B,C 的对边是c b a ,,,且ac b c a 56222=
-+ (1)求B C A 2sin 2
sin 22++的值 (2)若的面积的最大值求三角形ABC b ,2=
例,(1年全国新课标)
在三角形ABC 中,角A,B,C 的对边是c b a ,,,B c C b a sin cos +=已知,
(1)求角B
(2)若的面积的最大值求三角形ABC b ,2=
例:在三角形ABC 中,角A,B,C 的对边是c b a ,,,c a C b -=2cos 2
(1)求角B
(2)若ABC ∆的面积为3,求b 的取值范围
例:已知ABC ∆是半径为R 的圆内接三角形,且B b a C A R sin )2()sin (sin 222-=-⋅
(1)求角C
面积的最大值(2)试求ABC。