近世代数知识点教学文稿
近世代数-文档资料
06.09.2020
11:21
数学上的确切描述
设由m颗珠子做成一个项链,可用一个正m边形 来代表它,它的每个顶点代表一颗珠子。
沿逆时针方向给珠子标号,
2
由于每一颗珠子的颜色有n种选
ห้องสมุดไป่ตู้
择,因而用乘法原理,这些有标 3
号的项链共有nm种。
图。 问题:n个点的图中互不同构的图有多少个?
06.09.2020
11:21
5.开关线路的构造与计数问题 一个有两种状态的电子元件称为一个开关,
例如普通的电灯开关,二极管等。由一些开关 组成的二端网络称为开关线路。一个开关线路 的两端也只有两种状态:通与不通。
问题:用n个开关可以构造出多少种不同的 开关线路?
了几十年。
06.09.2020
11:21
伽利略死后,直到19世纪末期,他的理 论才由别的数学家加以进一步的发展和系统 的阐述。
这样一门具有悠久历史、充满许多有趣 问题和故事的数学分支,在近代又得到了蓬 勃发展和广发应用,出现了许多应用与某一 领域的专著,正吸引越来越多的科技人员和 学生来学习和掌握它。
利用近世代数的方法可得到更高效的检 错码与纠错码。
06.09.2020
11:21
7. 几何作图问题
古代数学家们曾提出一个有趣的作图问题:用 圆规和直尺能做出哪些图形?
而且规定所用的直尺不能有刻度和不能在其上 做记号。为什么会提出这样的问题呢?
一方面是由于生产发展的需要,圆规、直尺是 丈量土地的基本工具,且最初的直尺是没有刻度 的;另一方面,从几何学观点看,古人认为直线与 圆弧是构成一切平面图形的要素。据说,古人还认 为只有使用圆规与直尺作图才能确保其严密性。且 整个平面几何学是以圆规与直尺作为基本工具。
《近世代数》教案1
《近世代数》教案1《近世代数》教案1教案一:近世代数概述一、教学目标1.了解近世代数的起源和发展历程;2.理解近世代数的基本概念和基本运算;3.掌握近世代数的基本定理和性质;4.培养学生的逻辑推理和证明能力。
二、教学内容1.近世代数的起源和发展历程;2.近世代数的基本概念和基本运算;3.近世代数的基本定理和性质。
三、教学重点和难点1.理解近世代数的基本概念;2.掌握近世代数的基本运算;3.理解和运用近世代数的基本定理和性质。
四、教学方法1.前置知识导入:利用历史故事或问题引入近世代数的起源;2.概念解释与讨论:通过引导学生,共同探讨近世代数的基本概念;3.理解和运用:通过实际问题,让学生理解和运用近世代数的基本定理和性质;4.案例分析和练习:通过案例分析和练习,巩固学生对近世代数的理解和应用能力;5.归纳总结:通过归纳总结,整理和进一步理解所学的知识。
五、教学过程1.前置知识导入(10分钟)-引入:《近世代数》是一门重要的数学学科,它是现代数学的基石之一、那么,你们以为近世代数是从什么时候开始出现的呢?我们来听听关于近世代数起源的故事吧。
-故事:公元16世纪,意大利的一位数学家卡尔达诺被人请到一个庄园解决一个心理障碍的问题,他最终发现了它的根源与代数方程式求解有关。
这个故事揭示了近世代数起源的一部分,下面我们一起来探索更多关于近世代数的知识。
2.概念解释与讨论(20分钟)-定义:近世代数是一门研究代数结构及其性质的学科,它主要研究了代数系统的运算规则和代数方程式的求解方法。
-基本概念:群、环、域是近世代数中的基本概念。
群是指一个非空集合和一个在这个集合上的运算,满足封闭性、结合律、单位元和逆元的性质;环是指一个非空集合和两个在这个集合上的运算,满足加法封闭性、结合律、单位元和可逆性,以及乘法封闭性和结合律;域是指一个非空集合和两个在这个集合上的运算,满足加法封闭性、结合律、单位元和可逆性,以及乘法封闭性、结合律、单位元和可逆性。
近世代数教学大纲
混凝土加气块标准
1、砌块砌筑时,应上下错缝,搭接长度不宜小于砌块长度的1/3。
2、砌块内外墙墙体应同时咬槎砌筑,临时间断时可留成斜槎,不得留“马牙槎”。
灰缝应横平竖直,水平缝砂浆饱满度不应小于90%。
垂直缝砂浆饱满度不应小于80%。
如砌块表面太干,砌筑前可适量浇水。
3、地震区砌块应采用专用砂浆砌筑,其水平缝和垂直缝的厚度均不宜大于15mm。
非地震区如采用普通砂浆砌筑,应采取有效措施,使砌块之间粘结良好,灰缝饱满。
当采用精确砌块和专用砂浆薄层砌筑方法时,其灰缝不宜大于3mm。
4、后砌填充砌块墙,当砌筑到梁(板)底面位置时,应留出缝隙,并应等待7d后,方可对该缝隙做柔性处理。
5、切锯砌块应采用专用工具,不得用斧子或瓦刀任意砍劈。
洞口两侧,应选用规格整齐的砌块砌筑。
6、砌筑外墙时,不得在墙上留脚手眼,可采用里脚手或双排外脚手。
7、砌体结构尺寸和位置允许偏差。
近世代数文档
近世代数引言近世代数是数学中一个重要的分支,研究代数结构及其性质的理论体系。
通常包括群论、环论、域论等内容。
近世代数的发展对于数学的各个领域产生了深远的影响,也在应用数学和计算机科学中起着重要作用。
群论群论是近世代数的一个基础概念和重要分支。
群由三个基本要素组成:集合、运算和满足一定性质(结合律、封闭性、单位元、逆元)的公理。
群论研究集合中的元素如何进行运算,并研究这些运算的性质。
•子群:给定一个群,若一个集合中的元素满足群的性质和封闭性,则称其为一个子群。
•循环群:由一个元素生成的群称为循环群,循环群的结构相对简单。
•群的同态:将一个群的元素映射到另一个群中,并保持运算结构,称为群的同态。
同态的研究对于理解群之间的关系和性质非常重要。
环论环论是近世代数的另一个重要分支,研究满足特定性质的运算集合和运算规则。
环由两个基本要素组成:集合和满足一定性质(结合律、封闭性、零元、乘法交换律、分配律)的公理。
环论的研究主要关注集合中的元素之间的加法和乘法运算。
•子环:给定一个环,若一个集合中的元素满足环的定义和封闭性,则称其为一个子环。
•理想:一个环中的子集,满足特定运算性质(左右理想、乘法吸收律)的集合。
•商环:对于一个环和其中的一个理想,可以通过模运算构建一个新的环,称为商环。
商环中的元素相当于原环中的一个等价类。
域论域论是近世代数中的一个重要分支,研究满足一定性质的运算集合和运算规则。
域是一个满足加法和乘法交换律、分配律以及存在加法和乘法的单位元和乘法的逆元的环。
域是一种结构相对简单但非常重要的代数结构。
•子域:给定一个域,若一个集合中的元素满足域的定义和封闭性,则称其为一个子域。
•拓展域:给定一个域F,在F中添加一个新的元素,并扩展运算规则,得到的新的集合和运算称为拓展域。
•有限域:域中的元素个数是有限的,则称该域为有限域。
有限域具有特殊的性质和应用。
应用领域近世代数的研究对于数学的各个领域产生了深远的影响,也在应用数学和计算机科学中起着重要作用。
近世代数 教案
近世代数教案教案标题:近世代数教学目标:1. 了解近世代数的概念和发展历程。
2. 掌握近世代数的基本概念和运算规则。
3. 能够应用近世代数解决实际问题。
教学内容:1. 近世代数的概念介绍a. 代数的发展历程b. 近世代数的定义和特点2. 近世代数的基本概念a. 群的定义和性质b. 环的定义和性质c. 域的定义和性质3. 近世代数的运算规则a. 群的运算规则b. 环的运算规则c. 域的运算规则4. 近世代数的应用a. 代数方程的解法b. 密码学中的应用c. 数论中的应用第一课时:1. 引入近世代数的概念和发展历程,激发学生对代数的兴趣。
2. 介绍近世代数的定义和特点,帮助学生理解其重要性和应用领域。
第二课时:1. 讲解群的定义和性质,引导学生理解群的基本概念。
2. 通过例题和练习,巩固学生对群的运算规则的理解。
第三课时:1. 介绍环的定义和性质,与学生讨论环的实际应用。
2. 给学生提供环的运算规则的例题和练习,帮助他们掌握环的运算规则。
第四课时:1. 讲解域的定义和性质,与学生分享域在密码学和数论中的应用。
2. 引导学生应用域的运算规则解决实际问题。
第五课时:1. 综合运用近世代数的概念和运算规则,讲解代数方程的解法。
2. 给学生提供代数方程的例题和练习,帮助他们熟练运用近世代数解决方程问题。
教学评估:1. 课堂练习:在每节课结束时进行小组或个人练习,检查学生对概念和运算规则的理解程度。
2. 作业:布置与课堂内容相关的作业,检验学生对近世代数的掌握情况。
3. 期末考试:设计综合性的考试题目,考察学生对近世代数的理解和应用能力。
1. 教科书:提供近世代数的相关知识和例题。
2. 计算工具:使用计算器或电脑软件辅助计算和验证结果。
3. 网络资源:引导学生查找近世代数的实际应用案例和相关研究资料。
教学延伸:1. 鼓励学生参与数学竞赛和研究项目,拓宽对近世代数的应用领域的认识。
2. 鼓励学生自主学习和探索,深入了解近世代数的发展和前沿研究。
(完整版)近世代数讲义(电子教案)(1)
《近世代数》课程教案第一章基本概念教学目的与教学要求:掌握集合元素、子集、真子集。
集合的交、并、积概念;掌握映射的定义及应注意的几点问题,象,原象的定义;理解映射的相同的定义;掌握代数运算的应用;掌握代数运算的一般结合运算,理解几个元素作代数运算的特点;理解代数运算的结合律;掌握并能应用分配律与结合律的综合应用;掌握满射,单射,一一映射及逆映射的定义。
理解满射,单射,一一映射及逆映射的定义;掌握同态映射、同态满射的定义及应用;掌握同构映射与自同构的定义;掌握等价关系的定义,理解模n的剩余类。
教学重点:映射的定义及象与原象的定义,映射相同的定义;代数运算的应用,对代数运算的理解;代数运算的结合律;对定理的理解与证明;同态映射,同态映射的定义;同构映射的定义以及在比较集合时的效果;等价关系,模n的剩余类。
教学难点:元素与集合的关系(属于),集合与集合的关系(包含);映射定义,应用该定义应注意几点;代数运算符号与映射合成运算符号的区别;结合率的推广及满足结合律的代数运算的定义;两种分配律与⊕的结合律的综合应用;满射,单射,一一映射及逆映射的定义;同态映射在比较两个集合时的结果;模n的剩余类.教学措施:网络远程。
教学时数:8学时.教学过程:§1 集合定义:若干个(有限或无限多个)固定事物的全体叫做一个集合(简称集)。
集合中的每个事物叫做这个集合的元素(简称元)。
定义:一个没有元素的集合叫做空集,记为∅,且∅是任一集合的子集。
(1)集合的要素:确定性、相异性、无序性。
(2)集合表示:习惯上用大写拉丁字母A ,B ,C …表示集合,习惯上用小写拉丁字母a ,b ,c …表示集合中的元素. 若a 是集合A 中的元素,则记为A a A a ∉∈否则记为,. 表示集合通常有三种方法: 1、枚举法(列举法):例:A ={1,2,3,4},B ={1,2,3,…,100}. 2、描述法:{})(,)(x p x p x A =—元素x 具有的性质。
近世代数教学大纲近世代数课程是高等学校数学专业的必修课程
近世代数教学大纲近世代数课程是高等学校数学专业的必修课程《近世代数》教学大纲《近世代数》课程是高等学校数学专业的必修课程,是大学数学的重要基础课程之一。
它是现代数学的一个重要分支,其主要研究对象不是代数机构中的元素特性,而是各种代数结构本身和不同代数结构之间的相互联系。
《近世代数》已成为进入现代数学的阶梯和基础,不仅在知识方面,而且在思想方法上对于学习和研究近代数学都起着明显而有力的作用,它的理论结果也已经应用到诸多相关的科学领域,如计算机科学、理论物理、理论化学等。
设置本课程的目的:向学生介绍近世代数的最基本的概念、理论和方法,介绍现代数学的基础知识,培养学生的抽象思维能力和逻辑推理能力。
从而满足学生对代数学进一步学习和研究的要求,满足其他数学领域及数学应用对代数的基本要求。
学习本课程的要求:学生应了解近世代数的基本的概念和理论,掌握代数学研究代数结构的一般方法,注意培养抽象思维能力和逻辑推理能力,能为以后的代数学习或其他数学领域的学习打下良好的代数学基础。
先修课程要求:集合论初步,线性代数,高等代数本课程学时:54学时选用教材:刘绍学、章璞编著,近世代数导引,高等教育出版社(2011)教学手段:课堂讲授为主,讨论、课外辅导为辅考核方法:考试注:1、注意章节之间的相互联系,每章内容在全教材中所处的地位及作用。
2、在概念的讲授中,应注意由特殊到一般,由具体到抽象。
教学的初始阶段,宜慢不宜快。
3、不拘泥于教材,同时编写课程讲义。
4、时刻把握学生的接受能力。
5、教材中打“*”的内容根据实际情况选择讲解。
主要教学内容与重难点:第一章集合与运算一、学习目的通过本章的学习,能够熟练掌握近世代数中常见的一些基本概念和符号,初步了解近世代数课程研究的对象和一般的研究方法。
二、课程内容§1.1 集合§1.2 运算映射的定义,单射,满射,双射(一一映射);变换的定义,单射变换,满射变换,双射变换。
近世代数教学大纲
近世代数教学大纲一、课程基本信息课程名称:近世代数课程类别:数学专业基础课课程学分:_____课程总学时:_____授课对象:数学专业本科生二、课程教学目标1、使学生掌握近世代数的基本概念、理论和方法,包括群、环、域等代数结构。
2、培养学生的抽象思维能力和逻辑推理能力,提高学生的数学素养。
3、引导学生运用近世代数的方法解决实际问题,培养学生的创新能力和应用能力。
三、课程教学内容与要求(一)群论1、群的定义和基本性质理解群的定义,包括群的运算满足的四个条件(封闭性、结合律、单位元、逆元)。
掌握群的例子,如整数加法群、对称群等。
熟悉群的基本性质,如消去律、元素的阶等。
2、子群、陪集和拉格朗日定理子群的定义和判定方法。
理解陪集的概念和性质。
掌握拉格朗日定理及其应用。
3、群的同态和同构群同态和同构的定义及性质。
了解同态基本定理。
4、循环群和置换群循环群的结构和性质。
掌握置换群的表示和运算。
(二)环论1、环的定义和基本性质理解环的定义,包括环的运算满足的条件。
熟悉环的基本性质,如零因子、单位元等。
2、子环、理想和商环子环的定义和判定方法。
理想的概念和性质。
掌握商环的构造和性质。
3、环的同态和同构环同态和同构的定义及性质。
4、整环、域和分式域整环和域的定义和性质。
了解分式域的构造。
(三)域论1、域的扩张理解域扩张的概念。
掌握域扩张的次数。
2、有限域有限域的结构和性质。
四、课程教学方法1、课堂讲授:通过讲解基本概念、定理和例题,使学生掌握近世代数的核心内容。
2、课堂讨论:组织学生对一些疑难问题进行讨论,培养学生的思维能力和表达能力。
3、课后作业:布置适量的作业,帮助学生巩固所学知识,提高解题能力。
4、课外辅导:对学生在学习过程中遇到的问题进行个别辅导。
五、课程考核方式1、平时成绩(包括作业、考勤、课堂表现等):占总成绩的_____。
2、期中考试:占总成绩的_____。
3、期末考试:占总成绩的_____。
六、教材及参考资料1、教材:《近世代数》,_____著,_____出版社。
《近世代数》教案1(含绪论)
韶关学院课程教学设计( 2 学时)教学过程、内容(含教与学的方法)绪论一、抽象代数发展简史1、代数的组成代数〔Algebra〕是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分.初等代数学是指19世纪上半叶以前发展的方程理论,主要研究某一方程(组)是否可解,如何求出方程所有的根(包括近似根),以及方程的根有何性质等问题.抽象代数又称近世代数,它产生于十九世纪.抽象代数是研究各种抽象的公理化代数系统的数学学科.由于代数可处理实数与复数以外的集合,例如向量、矩阵超数、变换等,这些集合分别是依它们各有的演算定律而定,而数学家将个别的演算经由抽象手法把共有的内容升华出来,并因此而达到更高层次,这就诞生了抽象代数.抽象代数,包含有群论、环论、域论、模论、伽罗瓦理论、格论、线性代数等许多分支,并与数学其它分支相结合产生了代数几何、代数数论、代数拓扑、拓扑群等新的数学学科.抽象代数已经成了当代大部分数学的通用语言.2、高次方程的根式解问题什么叫代数?代数的基本问题是什么呢?代数就是字母运算学,这是法国数学家韦达的观点,也是关于代数的第一种观点.到了15-16世纪,代数学的中心问题开始转移到代数方程理论上来了,(关于代数的观点发生了变化,将代数定义为代数方程理论).我们知道,一次、二次的方程有根式解,三次和三次以上的方程是否有根式解呢?经过数学家们的努力,1542年意大利数学家卡当给出了三次方程的求根公式.这个公式实际上是泰塔格利亚发现的,卡当恳切要求泰塔格利亚把求解公式告诉他,并发誓对他保密.但卡当不顾自己的誓言,把这个方法的叙述发表在他的《重要的艺术》里.所以这个公式不应该叫卡当公式,而应叫泰塔格利亚公式.在三次方程成功地解出之后,接着卡当的学生费拉里成功的解出了四次方程.三次、四次方程有求根公式,那么五次和五次以上的方程是否有公式解呢?世界上许多数学家试图找出五次和五次以上的方程的公式解,经过了三百年没有成功.在这期间,德国数学家高斯在1799年他的博士论文中作出了代数基本定理的证明.“每个次数 1的复系数多项式在复数域中有一个根.”探求四次以上的方程的求解问题,多少数学家作了努力,但都失败了.直到1824年轻的数学家阿贝尔证明了“高于四次的一般方程用根式求解的不可能性”.这样,代数的这个问题才告一个段落.阿贝尔(1802-1829)是一个挪威的数学家,出生(1802.8.5)于一个穷牧师家里,兄弟姐妹七个,他排行第二,小学教育基本上是由父亲完成的.中学时是一个比阿贝尔大七岁的数学教师,名叫洪波义.此人学过一些纯粹数学,对中学数学很熟,他采取让学生发挥独立的工作能力的教学方法,给一些适合他们的数学问题鼓励学生们去解决.第一学年来,洪波义在学生的报告书上对阿贝尔的评语是:“一个优秀的数学天才”.他私人教阿贝尔高等数学.在中学读书的最后一年,他开始考虑当时著名的难题:五次方程的一般解问题.他按高斯对二次方程的处理方法,起初,阿贝尔以为他已经解决了用根式解一般的五次方程的问题.他的方法洪波义看不懂,也不知道有什么地方错,因此便拿去找教授看,结果也没有人了解他的东西.一位叫达根的教授劝告阿贝尔研究一些椭圆积分.后来阿贝尔用实际例子来验证,证明他的发现是错误的.当阿贝尔18岁时父亲去世了,大哥精神不正常,家庭生活十分贫困.阿贝尔上大学是由洪波义出面,希望几个教授帮忙,结果教授们和朋友们都把薪水分出一点,凑起来给阿贝尔作为学习和生活的经济来源.阿贝尔自己还写信给当局提出要求,幸运地获得了免费的宿舍.1824年,阿贝尔重新考虑了一元五次方程的根式解问题.他试图证明这个解答是不可能的.首先他成功的证明了下述定理:“可用根式求解的方程的根能以这样的形式给出,出现在根的表达式中的每个根式都可表示成方程的根和某些单位根的有理函数.”然后阿贝尔用这个定理证明了高于四次的一般方程用根式求解的不可能性.阿贝尔的家境贫困,大学毕业后,他靠为一些学生补习功课而生活,好心的朋友克勤为了替阿贝尔谋求一个职业而尽力奔走,终于在1828.10.8写信告诉阿贝尔“职业是肯定有了”.但克勤不知道,我们的阿贝尔在三月肺结核病病情恶化了,4月6日,这世上少有的天才就这样怀着沉重的心情,在他未婚妻旁离开了人间.克勤的消息来迟了.“阿贝尔留下的工作,可以使以后的数学家足够忙碌150年!”法国数学家厄米特说:这话并不夸张.在和阿贝尔同时代的一个法国青年伽罗华读到了阿贝尔的著作,不到20岁,就在代数方程论上作出了卓越的贡献,创立了“伽罗华理论”.他使阿贝尔的思想得到了更好的发展.3、伽罗华和他的理论的兴起法国数学家伽罗瓦〔1811-1832〕在1832年运用“群”的思想彻底解决了用根式求解代数方程的可能性问题.他是第一个提出“群”的思想的数学家,一般称他为近世代数的创始人.伽罗瓦使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期.伽罗瓦是巴黎附近一个小镇镇长的儿子,他积极参加学生运动.伽罗华在中学时遇到了一位叫里沙的好老师(数学家),在里沙的指导下开始学习阿贝尔的著作,给出5次及5次以上方程有根式解的充要条件.他的论文三次交到法兰西科学院评审(柯西、付里叶、波松).最后是波松“完全不能理解!”.伽罗瓦是1832年5月31日死于爱情决斗.伽罗瓦提出的“伽罗瓦域”、“伽罗瓦群”和“伽罗瓦理论”都是近世代数所研究的最重要的课题.伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一.他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题.伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的.最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响.同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响.抽象代数在上一个世纪已经有了良好的开端,伽罗瓦在方程求根中就蕴蓄了群的概念.后来凯莱对群作了抽象定义(Cayley,1821-1895).他在1849年的一项工作里提出抽象群的概念,可惜没有引起反响.“过早的抽象落到了聋子的耳朵里”.直到1878年,凯莱又写了抽象群的四篇文章才引起注意.1874年,挪威数学家索甫斯·李(Sophus Lie, 1842-1899)在研究微分方程时,发现某些微分方程解对一些连续变换群是不变的,一下子接触到连续群.1882年,英国的冯·戴克(von Dyck,1856-1934)把群论的三个主要来源—方程式论,数论和无限变换群—纳入统一的概念之中,并提出“生成元”概念.1870年,克隆尼克给出了有限阿贝尔群的抽象定义;狄德金开始使用“体”的说法,并研究了代数体;1893年,韦伯定义了抽象的体.20世纪初给出了群的抽象公理系统.群论的研究在20世纪沿着各个不同方向展开.例如,找出给定阶的有限群的全体.群分解为单群、可解群等问题一直被研究着.有限单群的分类问题在20世纪七、八十年代才获得可能是最终的解决.伯恩赛德(Burnside,1852-1927年)曾提出过许多问题和猜想.如1902年问道一个群G是有限生成且每个元素都是有限阶,G是不是有限群?并猜想每一个非交换的单群是偶数阶的.前者至今尚未解决,后者于1963年解决.舒尔(Schur,1875-1941)于1901年提出有限群表示的问题.群特征标的研究由弗罗贝尼乌斯首先提出.庞加莱对群论抱有特殊的热情,他说:“群论就是那摒弃其内容而化为纯粹形式的整个数学.”这当然是过分夸大了.1843年,哈密顿(Hamilton, W. R. )发明了一种乘法交换律不成立的代数——四元数代数.第二年,Grassmann推演出更有一般性的几类代数.1857年,Cayley设计出另一种不可交换的代数——矩阵代数.1870年,克隆尼克(Kronecker)给出了有限阿贝尔群的抽象定义.4、诺特和抽象代数学的兴起有一位杰出女数学家被公认为抽象代数奠基人之一,被誉为代数女皇,她就是爱米·诺特(1882-1935), 1882年3月23日生于德国埃尔朗根,其父亲麦克斯是一位大数学家,1900年入埃朗根大学(上千名学生中只有两位女生),1907年在数学家哥尔丹指导下获博士学位.诺特的工作在代数拓扑学、代数数论、代数几何的发展中有重要影响.1907-1919年,她主要研究代数不变式及微分不变式.她在博士论文中给出三元四次型的不变式的完全组.还解决了有理函数域的有限有理基的存在问题.对有限群的不变式具有有限基给出一个构造性证明.她不用消去法而用直接微分法生成微分不变式,在格丁根大学的就职论文中,讨论连续群(李群)下不变式问题,给出诺特定理,把对称性、不变性和物理的守恒律联系在一起. 1922年,诺特终于被聘为教授,但政府不承认.1920-1927年间她主要研究交换代数与“交换算术”.1916年后,她开始由古典代数学向抽象代数学过渡.1920年,她已引入“左模”、“右模”的概念.1921年写出的《整环的理想理论》是交换代数发展的里程碑.建立了交换诺特环理论,证明了准素分解定理.1926年发表《代数数域及代数函数域的理想理论的抽象构造》,给戴德金环一个公理刻画,指出素理想因子唯一分解定理的充分必要条件.诺特的这套理论也就是现代数学中的“环”和“理想”的系统理论,一般认为抽象代数形式的时间就是1926年,从此代数学研究对象从研究代数方程根的计算与分布,进入到研究数字、文字和更一般元素的代数运算规律和各种代数结构,完成了古典代数到抽象代数的本质的转变.诺特当之无愧地被人们誉为抽象代数的奠基人之一.1927-1935年,诺特研究非交换代数与“非交换算术”.她把表示理论、理想理论及模理论统一在所谓“超复系”即代数的基础上.后又引进交叉积的概念并用决定有限维伽罗瓦扩张的布饶尔群.最后导致代数的主定理的证明,代数数域上的中心可除代数是循环代数.诺特的学生范.德.瓦尔登根据诺特和阿廷的讲稿,写成《近世代数学》一书,其研究对象从研究代数方程根的计算与分布进到研究数字、文字和更一般元素的代数运算规律和各种代数结构.这就发生了质变.由于抽象代数的一般性,它的方法和结果带有基本的性质,因而渗入到各个不同的数学分支.人们从抽象代数奠基人——诺特、阿廷等人灿烂的成果中吸取到了营养,从那以后,代数研究有了长足进展.诺特的思想通过《近世代数学》得到广泛的传播.她的主要论文收在《诺特全集》(1982年)中. 1955年范.德.瓦尔登的《近世代数学》改版为《代数学》(一、二册)(瓦尔登后来研究数学史).抽象代数的另一部分是域论.1910年施泰尼茨(Steinitz,1871-1928)发表《域的代数理论》,成为抽象代数的重要里程碑.他提出素域的概念,定义了特征数为P的域,证明了每个域可由其素域经添加而得.环论是抽象代数中较晚成熟的.尽管环和理想的构造在19世纪就可以找到,但抽象理论却完全是20世纪的产物.韦德伯恩(Wedderburn,1882-1948)《论超复数》一文中,研究了线形结合代数,这种代数实际上就是环.环和理想的系统理论由诺特给出.她开始工作时,环和理想的许多结果都已经有了,但当她将这些结果给予适当的确切表述时,就得到了抽象理论.诺特把多项式环的理想论包括在一般理想论之中,为代数整数的理想论和代数整函数的理想论建立了共同的基础.诺特对环和理想作了十分深刻的研究.人们认为这一总结性的工作在1926年臻于完成,因此,可以认为抽象代数形成的时间为1926年.1930年,毕尔霍夫建立格论,它源于1847年的布尔代数;第二次世界大战后,出现了各种代数系统的理论和布尔巴基学派;1955年,嘉当、格洛辛狄克和爱伦伯克建立了同调代数理论.到现在为止,数学家们已经研究过200多种这样的代数结构,其中最主要德若当代数和李代数是不服从结合律的代数的例子.这些工作的绝大部分属于20世纪,它们使一般化和抽象化的思想在现代数学中得到了充分的反映.到了20世纪60年代,美国代数学家贾柯勃逊编著的《抽象代数学》(一、二、三册)代替了瓦尔登的《代数学》,到了20世纪70-80年代贾柯勃逊改版为《基础代数学》(一、二册)分别于1974年和1980年出版.5、代数是研究代数系统的科学抽象代数学对于全部现代数学和一些其它科学领域都有重要的影响.抽象代数学随着数学中各分支理论的发展和应用需要而得到不断的发展.经过伯克霍夫、冯.诺伊曼、坎托罗维奇和斯通等人在1933-1938年所做的工作,格论确定了在代数学的地位.而自20世纪40年代中叶起,作为线性代数的推广的模论得到进一步的发展并产生深刻的影响.泛代数、同调代数、范畴等新领域也被建立和发展起来.中国数学家在抽象代数学的研究始于30年代.当中已在许多方面取得了有意义和重要的成果,其中尤以曾炯之、华罗庚和周炜良的工作更为显著.现在,可以笼统地把代数学解释为关于字母计算的学说,但字母的含义是在不断地拓广的.在初等代数中,字母表示数;而在高等代数和抽象代数中,字母则表示向量(或n元有序数组)、矩阵、张量、旋量、超复数等各种形式的量.可以说,代数已经发展成为一门关于形式运算的一般学说了.一个带有形式运算的集合称为代数系统,因此,代数是研究一般代数系统的一门科学.现代数学的基础课程正在更新.50年代数学系的教学计划,以“高等微积分”、“高等代数”、“高等几何”为主体.时至今日,人们认为光靠这“老三高”已不够用了,应该发展“新三高”,即抽象代数、拓扑学和泛函分析.现代数学理论是由这三根支柱撑着的.现在,我们来追寻它们形成和发展的历史足迹,并从这一侧面窥视21世纪数学的特征.参考文献:[1] 乐秀成, 刘宁. 青年数学家、战士和人:E.伽罗瓦[J]. 自然辩证法通讯, 1980,(06)[2] 胡作玄. 爱米·诺特与抽象代数学的兴起[J]. 自然辩证法通讯, 1983,(02)二、近世代数的特点、意义与学习方法1、近世代数的特点代数学经历了两个转变,它有三种观点:第一种观点:代数是字母运算学(这是韦达的观点);第二种观点:代数是代数方程理论;第三种观点:代数是研究各种代数系统(即研究群、环、域等的结构与性质).第一、第二是具体的,第三是抽象的,它的对象不一定是数,如向量、矩阵、线性变换等.由于它理论的抽象,对象的广泛,因而就带来应用的广泛性.近世代数的大多数概念是采取公理化定义,这就使它的理论更严谨,许多学科都用到近世代数的思想和方法.近世代数具有以下特点:概念的抽象性、理论的严谨性、应用的广泛性.2、学习近世代数的意义一是数学类专业的基础课程,后继课程学习的需要,更高一级学校学习的准备;二是指导中学教学与实践,处理好中学数学的有关教材内容,能在高观点下看清中学数学的来龙去脉;三是培养同学的科学思维、逻辑推理和运算的能力,以及辩证唯物论观点.3、学习方法与要求学习的四步曲:预习、听课(笔记)、复习、练习;①预习:认真看书,做好预习工作,带着问题来听课,做到有的放矢;②听课(笔记):认真听课,做好笔记,笔记的形式可以多样,与书上不同的;③复习:认真做好复习工作,多思考、多提问题.问题可以自问自答;有问题要自己先想想,再问老师.要扣概念,找模型;④练习:复习后再练习、作业,作业要独立完成,不要抄题解、不要抄别人的.请记住:预习、听课(笔记)、复习、练习,再预习等,这就是学习上的良性循环.我们一定要做到学习上的良性循环,克服恶性循环,牢牢掌握学习的主动权,努力做到:概念准、理论熟、思路活、计算快.教材:张禾瑞著的《近世代数基础》.参考书:吴品三的《近世代数》;熊全淹的《近世代数》;谢帮杰的《抽象代数学》;范.德.瓦尔登的《代数学》(一、二册);贾柯勃逊的《基础代数学》(一、二册);[美]G.伯克霍夫、S.麦克莱恩 著,王连祥、徐广善译 《近世代数概论》.三、近世代数的教学安排51课时,讲四章内容,共135页,每次课约7页.教学安排如下:第一章 基本概念 10课时(含绪论),含习题2课时;第二章 群 论 18课时,含习题4课时;第三章 环与域 16课时,含习题4课时;第四章 整环里的因子分解(2节) 5课时,含习题1课时;复习 2课时.教学内容及各章课时(见教学进度表)并参考“《近世代数》课程标准”.第一章 基本概念在普通代数里,我们计算的对象是数,计算的方法是加、减、乘、除.数学渐渐进步,我们发现,可以对于若干不是数的事物,用类似普通计算的方法加以计算.这种例子我们在高等代数里已经看到很多,例如对于向量、矩阵、线性变换等就都可以进行运算.近世代数(抽象代数)的主要内容就是研究各种代数系统,即带有运算的集合.因此我们的讨论就从最基本的概念——集合、映射开始.§1.1 集 合一、集合及其表示集合是一个不加定义的基本概念,它描述性的定义为:作为整体看的一堆东西若干个(有限或无限多个)固定事物的全体组成一个集合的事物叫做这个集合的元素.注意:1.强调“全体”,2.确定集合的表示法:1.列举法;2.性质法;3.图象法集合用大写拉丁字母A ,B ,C ,…来表示.元素用小写拉丁字母a ,b ,c ,…来表示.集合的属于与不属于的表示:a A∉∈,a A二、若干记号1.数集:N,Z,Q,R,C,*Z,*Q2.逻辑:全称号:∀(对于任意)特称号:∃(存在),|∃(存在唯一)若A则B:A B⇒A等价于B:A B⇔或者:∨,而且:∧三、空集合、子集与集合的相等空集合:一个没有元素的集合,记为∅子集:设A,B是两个集合,若x B x A⊆.∀∈⇒∈,则称B是A的子集,记为B A 空集合是任何集合的子集,即∀集合A,均有A∅⊆.为此需证明命题“x x A∀∈∅⇒∈”,但这个前提不成立.任一命题,只要前提不真,那么,无论结论如何,整个命题被认为成立,故有A∅⊆.真子集:若集合B是集合A的子集,而且至少有一个A的元不属于B,则称B是A的真子集,记为B A⊂.集合的相等:若集合A和集合B所包含的元素完全一样,则称集合A等于集合B,记为A B=⇔⊆∧⊆.=.充要条件:A B A B B A四、集合的运算、幂集合、卡氏积设A,B是全集U的两个子集,则A,B的交、并、差为:⋂=∈∧∈{|}A B x x A x B第 11 页 {|}A B x x A x B ⋃=∈∨∈\{|}A B x x A x B =∈∉但性质:交换律,结合律,分配律幂集合:设A 是给定的两个集合,A 的所有子集所组成的的集合叫做A 的幂集合,用A 2表示.例如:设{a b c}A =,,,则A 2={{a}{b}{c}{a b}{b c}{a c}{a b c}}∅,,,,,,,,,,,,. 卡氏积:设1A ,2A ,…,n A 是n 个集合集合12n 12={|(,,,),,1,2,,}n i i A A A x x a a a a A i n ⨯⨯⨯=∈= 称作集合1A ,2A ,…,n A 的积,这也是一个集合.当12n A A A === 时,记为n A .。
近世代数文档
近世代数引言近世代数是数学中的一个分支,是研究代数结构的一种方法。
它主要研究了群、环、域等代数结构,以及它们之间的关系和性质。
本文将介绍近世代数的基本概念和一些重要的定理。
群群是近世代数的基础概念之一,它是一个集合和一个二元运算的组合。
这个二元运算满足封闭性、结合律、单位元存在性和逆元存在性等性质。
封闭性对于群中的任意两个元素a和b,它们的运算结果ab也必须属于群中的元素。
结合律群中的运算满足结合律,即对于群中的任意三个元素a、b 和c,满足(a·b)·c = a·(b·c)。
单位元存在性群中存在一个元素e,称为单位元,对于群中的任意元素a,满足a·e = e·a = a。
逆元存在性对于群中的任意元素a,存在一个元素a’,称为逆元,满足a·a’ = a’·a = e,其中e是单位元。
环环是一种比群更一般的代数结构,它是一个集合和两个运算的组合。
这两个运算分别是加法和乘法,并且满足封闭性、结合律、分配律和单位元存在性等性质。
封闭性对于环中的任意两个元素a和b,它们的加法和乘法结果a+b和a·b也必须属于环中的元素。
结合律环中的加法和乘法满足结合律,即对于环中的任意三个元素a、b和c,满足(a+b)+c = a+(b+c)和(a·b)·c = a·(b·c)。
分配律环中的加法和乘法满足分配律,即对于环中的任意三个元素a、b和c,满足a·(b+c) = a·b + a·c和(b+c)·a = b·a + c·a。
单位元存在性环中存在一个元素0,称为加法的单位元,对于环中的任意元素a,满足a+0 = 0+a = a。
同时,环中存在一个元素1,称为乘法的单位元,对于环中的任意元素a,满足a·1 = 1·a = a。
(完整版)近世代数教学大纲
《近世代数》教学大纲课程名称:近世代数英文名称:Abstract Algebra课程编号:0641008 学分:3 学时:54先修课程:高等代数、初等数论替代课程:无适用对象:数学与应用数学专业(4年制普通本科)(一)课程目的要求本课程的目的是引导学生掌握近世代数的基本概念和基本理论,从而达到对近世代数的语言与理论有所了解的目的,帮助学生为进一步的学习和研究打好代数学方面的知识基础.主要是群、环、域的基本概念以及基本理论。
在学习本课程中,要求学生掌握近世代数的基本概念、基本理论和方法,提高数学修养与技巧,以便能深入理解中学代数的内容和方法,为进一步学习其它学科创造条件。
(二)课程简介近世代数是数学与应用数学专业必修课程,是现代数学的一个重要分支,是研究多种代数结构的一门学科。
它的内容对中学代数教学有指导意义,它的思想方法已经渗透到数学的多个分支,它的结果已应用到众多学科领域,现在本课程已作为师范院校数学专业学生的必修课。
本课程的学习分为三个部分,第一部分学习近世代数的预备知识,包括集合、映射、代数运算及等价关系等基本概念。
第二部分学习群的基本理论,主要包括群的定义和基本性质, 子群和商群理论, 群同态和同构定理, 置换群的基本理论,有限群的Lagrange定理。
第三部分学习环论的基础内容, 主要包括环, 子环, 商环的定义和基本性质, 环同态和同构定理, 素理想与极大理想,环上的多项式环的构造,扩域和有限域。
(三)教学方式教学方式是以教师讲授为主,注重知识点之间的比较,运用类比方法;根据课堂教学情况,适当补充一些例题,以帮助学生课后巩固所学知识;适时给出思考题,培养学生的独立思考能力;对一章进行总结时,适当配备一些典型习题讲解, 以帮助学生理解和掌握抽象的概念和性质定理。
(四)教材和主要教学参考书教材:《近世代数》(第二版),朱平天,李伯洪,邹园编,科学出版社, 2009年出版主要教学参考书:1.张禾瑞编:《近世代数基础》,人民教育出版社, 1984年版。
近世代数电子教案
近世代数电子教案第一章基本概念在普通代数里,我们计算的对象是数,计算的方法是加、减、乘、除。
数学渐渐进步,我们发现,可以对于若干不是数的事物,用类似普通计算的方法加以计算。
这种例子我们在高等代数里已经看到很多,例如对于向量、矩阵、线性变换等就都可以进行运算。
近世代数(抽象代数)的主要内容就是研究所谓代数系统,即带有运算的集合。
近世代数在数学的其它分支和自然科学的许多部门里都有重要的应用。
近二十多年来,它的一些成果更被直接应用于某些新兴的技术。
我们在高等代数里已经初步接融到的群、环、域是三个最基本的代数系统。
在本书里我们要对这三个代数系统做略进一步的介绍。
在这一章里,我们先把常要用到的基本概念介绍一下。
这些基本概念中的某一些,例如集合和影射,在高等代数里已经出现过。
但是为了完整起见,我们不得不有所重复。
§1.1 集合●课时安排约1课时●教学内容(《近世代数基础》张禾瑞著,《近世代数》徐德余、唐再良等编著)集合的概念,元素,空集合,集合与集合之间的包含、交、并、积,子集的概念例题:例1 A={1.2.3} B={2.5.6} 那么A∩B={2}A={1.2.3} B={4.5.6} 那么A∩B=空集合例2 A={1.2.3} B={2.4.6} 那么A∪B={1.2.3.4.6}A={1.2.3} B={4.5.6} 那么A∪B={1.2.3.4.5.6}习题选讲P4 1●教学难点元素与集合的关系(属于)集合与集合的关系(包含)●教学要求掌握集合元素、子集、真子集。
集合的交、并、积概念●布置作业P4 2●教学辅导精选习题:(侧重概念性、技巧性的基本问题)1.B A,但B不是A的真子集,这个情况什么时候才能出现?§1.2 映射●课时安排约1课时●教学内容(《近世代数基础》张禾瑞著,《近世代数》徐德余、唐再良等编著)映射,象,原象,映射相同的定义及映射的表示方法例 1:A1=A2=....=AN=D=所有实数作成的集合φ:(a1,a2,……,a n)→ a12+a22+……+a n2=φ(a1,a2,…,a n)是一个A 1×A 2×…×A N 到D 的映射例 2 :A 1={东西},A 2={南},D={高低}φ1:(西南)→高=φ1(西南)不是一个A 1×A 2到D 的映射φ2(西南)→高,(东南)→低,则φ2是一个A 1×A 2到D 的映射例 3:A 1=D=所有实数所成的集合φ:a →a 若a ≠1→b 这里b 2=1不是一个A 1到D 的映射例 4:A 1=D=所有实数所成的集合φ:a →a-1不是一个A 1到D 的映射例 5:A=D=所有正整数的集合φ1:a →1=φ1(a )φ2: a →a 0=φ2(a ) 则φ1与φ2是相同的● 教学重点映射的定义及象与原象的定义,映射相同的定义。
近世代数第一章
(减法分配律)
设 S 是任意一个集, {Ai | i I } 是 S 中的一组子集,则有 (11) (12)
S S
iI
Ai Ai
iI
( S Ai ) ( S Ai )
iI
(1.1) (1.2)
iI
iI
证明. 记 S
iI
Ai 为 P ,记 ( S Ai ) 为 Q 。我们下面证明 P Q 。
(one one corespondence)) 。 (4) 如果 A=B ,双射 f 称为是一一变换;如果 A=B 是有限集合,双射 f 称为是置换 (Permutation) 。 例如,上面的例 1 的映射 f 是一个单射,也是满射,从而使一个双射。例 3 的映射 h 是 一个满射,但不是单射。对于映射 : A B ,其中 A {1, 2, 3} , B {1,2,3,4} ,而 。则 是单射,但不是满射。 (i ) i 1, i 1, 2, 3 设 f 是集合 A 到 B 的一个映射, S 是 A 的一个子集,记 f ( S ) { f ( x) | x S} ,它是
A 或 2 。例如,若 (A )
A={1,2,3} ,则 ( A ) ={, {1}, {2}, {3}, {1, 2}, {1, 3} , {2 , 3} ,A }。当 |A|< 时, | (A)| 即
| A| k 中元素个数正好是 2 。事实上,设 |A|= n ,则 A 的含有 k 个元素的子集共有个 Cn , (A )
a, b, c
等表示。
对于集合 A 来说, 某一事物 x 或是集合 A 的元素, 这时我们就说 x 属于 A , 记为 x A ; 或者 x 不是 A 的元素,即 x 不属于 A ,记为 x A ;二者必居其一。 集合的表示方法通常有两种:一种是直接列出所有的元素,如 A={1,2,3} ;另一种是规 定元素所具有的性质 P 来表示。例如, A={x | x 具有性质 P} 。 一个集合 A 的元素个数用 |A| 表示。当 A 中的元素个数有限时,称 A 为有限集(Finite set) ,否则,就称 A 为无限集(Infinite set) 。用 |A|= 表示 A 为无限集,用 |A|< 表示 A 为 有限集。 如果集合 A 中的元素都是集合 B 中的元素,则称 A 为 B 的子集(Subset),记为 A B , 读作 A 包含在 B 中,或记作 B A ,读作 B 含有 A 。显然, A A 。不含有任何元素的集 合称为空集(Empty set 或 Null set),记为 。例如, A={x | x 为有实数, x 2 1 0} 是一个 空集。如果 A B ,且 B 中有一个元素不属于 A ,称 A 是 B 的真子集(Proper set) 。 集合 A 与集合 B 称为相等的,记为 A=B ,如果它们含有相同的元素。所以, A=B 当且 仅当 A B 且 B A 。 由集合 A 的所有子集构成的集合称为 A 的幂集(Power set),记作
近世代数讲义教学设计
近世代数讲义教学设计一、教学目标本课程的主要目标是让学生熟悉经典近世代数理论和运用现代数学工具解决代数问题的方法和技巧。
具体目标如下:•熟悉近世代数理论的核心概念和基本性质•掌握群、环、域等代数结构的定义、性质以及常见例子•能够运用现代数学工具解决矩阵方程、线性代数问题等•能够阅读和理解相关学术文献,掌握学术写作的基本规范二、教学内容与安排1. 群论•群的定义及基本性质•群的例子(如循环群、对称群等)•子群和正规子群•拓扑群2. 环论•环的定义及基本性质•环的例子(如整数环、多项式环等)•Z n环的结构•环的同态和理想3. 域论•域的定义及基本性质•域的例子(如有理数域、实数域、复数域等)•代数元和超越元•域的扩张4. 线性代数•线性空间与线性变换•矩阵的运算与初等矩阵•矩阵的特征值和特征向量•线性方程组、矩阵方程和行列式5. 近世代数理论的应用•量子力学中的代数结构•编码理论中的有限域•密码学中的应用三、教学方法1. 理论讲授本课程的主要教学方法是理论讲授。
教师将通过板书演示、PPT讲解等方式,向学生讲授代数概念、定理等理论知识。
在讲授时,教师将注重几何意义、应用背景等方面的介绍,以便帮助学生更好地理解、消化所学内容。
2. 讨论与互动在课程的某些环节中,教师还将与学生进行讨论、互动,以便深入探讨一些概念、结论在实际中的应用。
讨论的资料包括理论应用文献、学术会议论文等。
3. 上机实践在课程的结尾阶段,教师还将安排一些上机实践环节,让学生通过举例、练习等方式深度理解所学的代数概念、定理。
在上机实践过程中,教师将根据实际情况进行答疑解惑、引导讨论等活动。
四、教学评估本课程的教学评估主要是通过考试、作业等方式进行。
教师将根据学生的学习情况进行定期的考试和作业,以检验学生对所学知识的掌握程度。
同时,教师还将对学生参与讨论、上机实践等方面进行评估,以检验学生的综合素质。
在评估过程中,教师应注重引导学生主动参与、探索、思考,鼓励他们发挥自己的创意和创造性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近世代数知识点
近世代数知识点
第一章基本概念
1.1集合
●A的全体子集所组成的集合称为A的幂集,记作2A.
1.2映射
●证明映射:
●单射:元不同,像不同;或者像相同,元相同。
●满射:像集合中每个元素都有原像。
Remark:映射满足结合律!
1.3卡氏积与代数运算
●{(a,b)∣a∈A,b∈B }此集合称为卡氏积,其中(a,b)为有序元素对,所以一般
A*B不等于B*A.
●集合到自身的代数运算称为此集合上的代数运算。
1.4等价关系与集合的分类
★等价关系:1 自反性:∀a∈A,a a;
2 对称性:∀a,b∈R, a b=>b a∈R;
3 传递性:∀a,b,c∈R,a b,b c =>a c∈R.
Remark:对称+传递≠自反
★一个等价关系决定一个分类,反之,一个分类决定一个等价关系
★不同的等价类互不相交,一般等价类用[a]表示。
第二章群
2.1 半群
1.半群=代数运算+结合律,记作(S,)
Remark: i.证明代数运算:任意选取集合中的两个元素,让两元素间做此运算,观察运算后的结果是否还在定义的集合中。
ii.若半群中的元素可交换,即a b=b a,则称为交换半群。
2.单位元
i.半群中左右单位元不一定都存在,即使存在也可能不唯一,甚至可能都
不存在;若都存在,则左单位元=右单位元=单位元。
ii.单位元具有唯一性,且在交换半群中:左单位元=右单位元=单位元。
iii.在有单位元的半群中,规定a0=e.
3.逆元
i.在有单位元e的半群中,存在b,使得ab=ba=e,则a为可逆元。
ii.逆元具有唯一性,记作a-1且在交换半群中,左逆元=右逆元=可逆元。
iii.若一个元素a既有左逆元a1,又有右逆元a2,则a1=a2,且为a的逆元。
4.子半群
i.设S是半群,≠T S,若T对S的运算做成半群,则T为S的一个
子半群
ii.T是S的子半群a,b T,有ab T
2.2 群
1.群=半群+单位元+逆元=代数运算+结合律+单位元+逆元
Remark:i. 若代数运算满足交换律,则称为交换群或Abel群.
ii. 加群=代数运算为加法+交换群
iii.单位根群Um={m=1},数域P上全体n阶可逆(满秩)矩
阵集合GL(n,P),数域P上全体n阶的行列式为1的矩阵集合
SL(n,p).
2. 群=代数运算+结合律+左(右)单位元+左(右)逆元
=代数运算+结合律+单位元+逆元
=代数运算+结合律+∀a,b G,ax=b,ya=b有解
3. 群的性质
i. 群满足左右消去律
ii.设G是群,则∀a,b G,ax=b,ya=b在G中有唯一解
iii.e是G单位元⇔ e2=e
iv.若G是有限半群,满足左右消去律,则G是一个群
4. 群的阶
群G的阶,即群G中的元素个数,用表示。
若为无限群,则=。
Remark:i.克莱因四元群是一个Abel群
ii.四阶群只有克莱因四元群和模4的剩余类群
2.3元素的阶
1. 定义:设G是一个群,a G,使得am=e成立的最小正整数m称为元素a
的阶,记作=m;若m不存在,则
2. 阶的性质
①G是一个群,a G,=m,
i.a n=e m n;
ii.a h=a k m;
iii.e=a0,a1,a2,……a m-1两两不同;
iv.★∀r Z,a r=
Remark:i. ∀r Z,a r=m(m,r)=1;
ii.若m=st,s,t N,则a s=t.
②,
i.a n=e n=0;
ii.a h=a k;
iii.……a-2,a-1,a0,a1,a2……两两不等
iv.∀r Z\{0},a r=.
Remark:a<,b<,ab<?……
●定理:有限群中的元素的阶均有限。
Remark:定理的逆不成立,即群中所有的元素的阶都有限,但群不一定是有限群,例如n次单位根群。
单位根群是一个无限交换群。
3. ★★循环群
定义:设G是群,若在G中存在一个元素a,使得G中的任意元素都是a
的幂,则称该群为循环群,a为该循环群的生成元。
记G=(a). Remark:生成元不一定唯一,例如(Z,+),1,-1都是生成元。
●定理:设G=(a)是一个循环群,
(1)若,则G是含m个元素的有限群,且G={a0,a1,a2……a m-
1};
(2)若,则G是无限群,且G={……a-2,a-1,a0,a1,a2……}.
●定理:设G=(a)是一个循环群,
(1)若,则G有(m)个生成元:a r ,(r,m)=1
(2)若,则G有两个生成元:a,a-1
(3)若,ar是G的生成元a r=m;
(4)设p是素数,则P阶循环群G=(a)有p-1个生成元:a,a2……a p-1 Remark:(m)表示小于m,且与m互素的非负整数的个数
素数阶群一定是循环群。
●★定理:设G是m阶群,则 G是循环群G有m阶元
2.4 子群
定义:设G是半群,≠H G,若H对G的运算构成群,则称H是G的子群,记为H G.
1.子群的性质
(1)传递性:H K,K G,则H G;
(2)保单位元:设H G,a H,则e
H =e
G;
(3)保逆元:设H G,a H,则a-1
H =a-1
G
.
★定理:设G是半群,≠H G, H G∀a,b H,有ab,a-1H∀a,b H,ab-1H。