常见几类应用题及其基本数量关系
三种常见数量关系的应用题
6×3=18(元) 答:买3枝要18元。
工作效率×工作时间=工作总量
工作总量×工作时间=工作效率 工作总量×工作效率=工作时间
一台印刷机每小时能印报纸4400张, 2小时能印报纸多少张?
4400×2=8800(张) 答:2小时能印报纸8800张。
一个建筑队每天平整地基80平方米,3 天能平整多少平方米?
80×3=240(平方米) 答:3天能平整240平方米。
拖拉机每分钟行驶300米,( 行驶了多少米?
),一共
妈妈买来3千克鸡蛋,( 多少元?
),一共用了
一个木工小组,平均每天做书架35个,工作了10天,
(Βιβλιοθήκη Baidu
)?
速度×时间=路程
路程÷时间=速度
路程÷速度=时间
序言
本编为大家提供各种类型的PPT课件,如数学课件、语文课件、英语 课件、地理课件、历史课件、政治课件、化学课件、物理课件等等,想了 解不同课件格式和写法,敬请下载!
Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!
六年级上册数学常考应用题分类、数量关系习题+答案!
六年级上册数学常考应用题分类、数量关系习题+答案!
一、行船问题
【数量关系】
(顺水速度+逆水速度)÷2=船速
(顺水速度-逆水速度)÷2=水速
顺水速=船速×2-逆水速=逆水速+水速×2
逆水速=船速×2-顺水速=顺水速-水速×2
1、一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?
解:由条件知,顺水速=船速+水速=320÷8,而水速为每小时15千米,所以,船速为每小时320÷8-15=25(千米)
船的逆水速为25-15=10(千米)
船逆水行这段路程的时间为320÷10=32(小时)
答:这只船逆水行这段路程需用32小时。
2、甲船逆水行360千米需18小时,返回原地需10小时;乙船逆水行同样一段距离需15小时,返回原地需多少时间?
解:由题意得甲船速+水速=360÷10=36
甲船速-水速=360÷18=20
可见(36-20)相当于水速的2倍,
所以,水速为每小时(36-20)÷2=8(千米)
又因为,乙船速-水速=360÷15,
所以,乙船速为360÷15+8=32(千米)
乙船顺水速为32+8=40(千米)
所以,乙船顺水航行360千米需要
360÷40=9(小时)
答:乙船返回原地需要9小时。
3、一架飞机飞行在两个城市之间,飞机的速度是每小时576千米,风速为每小时24千米,飞机逆风飞行3小时到达,顺风飞回需要几小时?
解:这道题可以按照流水问题来解答。
(1)两城相距多少千米?
(576-24)×3=1656(千米)
(2)顺风飞回需要多少小时?
1656÷(576+24)=2.76(小时)
小学应用题:类型归纳+解题思路+例题整理
小学应用题宝典!类型归纳+解题思路+例题整理
1、归一问题
【含义】
在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。
【数量关系】
总量÷份数=1份数量
1份数量×所占份数=所求几份的数量
另一总量÷(总量÷份数)=所求份数
【解题思路和方法】
先求出单一量,以单一量为标准,求出所要求的数量。
例1
买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?
解
(1)买1支铅笔多少钱?0.6÷5=0.12(元)
(2)买16支铅笔需要多少钱?0.12×16=1.92(元)
列成综合算式0.6÷5×16=0.12×16=1.92(元)
答:需要1.92元。
例2
3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?
解
(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)
(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)
列成综合算式90÷3÷3×5×6=10×30=300(公顷)
答:5台拖拉机6天耕地300公顷。
例3
5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?
解
(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)
(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)
(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)
列成综合算式105÷(100÷5÷4×7)=3(次)
答:需要运3次。
2、归总问题
【含义】
解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
小学数学基本应用题数量关系的种类
小学数学基本应用题数量关系的种类
在小学数学教学中,教好解答应用题的正确解法,将是重要一环.在教学中,从一年级开始,把应用题的数量关系讲明白,把类型分清楚,使学生清晰理解和掌握各种类型中的数量关系,将是关键的一环。也是为今后解答复合应用题打好基础的重要一步。
在小学教学基本类型应用题的数量关系中,可分为十一种:加法2种;减法3种;乘法2种;除法4种。现分述如下:
一、加法的种类:(2种)
1.已知一部分数和另一部分数,求总数。(求和用加法)
例:小明家养灰兔8只,养白兔4只。一共养兔多少只?
想:已知一部分数(灰兔8只)和另一部分数(白兔4只)。求总数。
也就是求8与4的和。
列式:8+4=12(只)答:(略)
2.已知小数和相差数,求大数。(求比一个数多几的数用加法)
例:小利家养白兔4只,灰兔比白兔多3只。灰兔有多少只?
想:已知小数(白兔4只)和相差数(灰兔比白兔多3只),求大数(灰兔的只数)。也就是求比4多3的数。
列式:4+3=7(只)答:(略)
二、减法有3种:
1.已知总数和其中一部分数,求另一部分数。(求剩余用减法)
例:小丽家养兔12只,其中有白兔8只,其余的是灰兔,灰兔有多少只?
想:已知总数(12只),和其中一部分数(白兔8只),求另一部分数(灰兔有多少只?)也就是求剩余部分。
列式:12—8=4(只)
2.已知大数和相差数,求小数。(即求比一个数少几的数)
例:小强家养白兔8只,养的白兔比灰兔多3只(或养的灰兔比白兔少3只)。养灰兔多少只?
想:已知大数(白兔8只)和相差数(白兔比灰兔多3只),求小数(灰兔有多少只?)(即求比8少的数)
六年级下册数学-小学数学基本应用题数量关系共10种(附例题)
小学数学基本应用题数量关系共10种(附例题)
1加法的种类:(2种)
“
1.已知一部分数和另一部分数,求总数。
例:小明家养灰兔8只,养白兔4只。一共养兔多少只?
想:已知一部分数(灰兔8只)和另一部分数(白兔4只)。求总数。
列式:8+4=12(只)
答:(略)
2.已知小数和相差数,求大数。
例:小利家养白兔4只,灰兔比白兔多3只。灰兔有多少只?
想:已知小数(白兔4只)和相差和(灰兔比白兔多3只),求大数。(灰兔的只数。)列式:4+3=7(只)
答:(略)
2减法的种类:(3种)
“
1.已知总数和其中一部分数,求另一部分数。
例:小丽家养兔12只,其中有白兔8只,其余的是灰兔,灰兔有多少只?
想:已知总数(12只),和其中一部分数(白兔8只),求另一部分数(灰兔有多少只?)列式:12—8=4(只)
2.已知大数和相差数,求小数。
例:小强家养白兔8只,养的白兔比灰兔多3只。养灰兔多少只?
想:已知大数(白兔8只)和相差数(白兔比灰兔多3只),求小数(灰兔有多少只?)列式:8-3=5(只)
3.已知大数和小数,求相差数。
例:小勇家养白兔8只,灰兔5只。白兔比灰兔多多少只?
想:已知大数(白兔8只)和小数(灰兔5只),求相差数。(白兔比灰兔多多少只?)列式:8-5=3(只)
3乘法的种类:(2种)
“
1.已知每份数和份数。求总数。
例:小利家养了6笼兔子,每笼4只。一共养兔多少只?
想:已知每份数(4只)和份数(6笼),求总数(一共养兔多少只?)也就是求6个4是多少。用乘法计算。
列式:4×6=24(只)
本类应用题值得一提的是,一定要学生分清份数与每份数两者关系,计算时一定不要列反题。不得改变两者关系。即:每份数×份数=总数。决不可以列式:份数×每份数=总数。
应用题中常见的数量关系
应用题中常见的数量关系
一、基本应用题
1.基本的数量关系
(1)部分数与总数的关系:
部分数+部分数=总数总数-部分数=部分数
(2)大数、小数与相差的关系:
大数-小数=相差数小数+相差数=大数大数-相差数=小数
(3)每份数、份数与总数的关系:
每份数×份数=总数总数÷份数=每份数总数÷每份数=份数
(4)倍数关系:
几倍数÷一倍数=倍数一倍数×几倍=几倍数几倍数÷倍数=一倍数2.常见的数量关系
(1)单价、数量与总价的关系:
单价×数量=总价总价÷数量=单价总价÷单价=数量
(2)速度、时间与路程的关系:
速度×时间=路程路程÷时间=速度路程÷速度=时间
(3)单产量、数量与总产量的关系:
单产量×数量=总产量总产量÷数量=单产量总产量÷单产量=数量
(4)工作效率、工作时间与工作总量的关系:
工作效率×工作时间=工作总量工作总量÷工作时间=工作效率
工作总量÷工作效率=工作时间
二、典型应用题
1.求平均数应用题
总数量÷总份数=平均数
2.归一问题的数量关系
(1)正归一:
总量÷数量=单一量单一量×新的数量=新的总量
(2)反归一:
总量÷数量=单一量新的总量÷单一量=新的数量
(小学奥数之归一问题解析及公式:为什么把有的问题叫归一问题?我国珠算除法中有一种方法,称为归除法.除数是几,就称几归;除数是8,就称为8归.而归一的意思,就是用除法求出单一量,这大概就是归一说法的来历吧!
归一问题有两种基本类型.一种是正归一,也称为直进归一.如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?另一种是反归一,也称为返回归一.如:修路队6小时修路180千米,照这样,修路240千米需几小时?
应用题中常见的数量关系
应用题中常见的数量关系
姓名:时间:
产量问题:单产量×数量=总产量
单产量=总产量÷数量数量=总产量÷单产量
工程问题:工作总量 = 工作效率×工作时间
工作时间=工作总量÷工作效率工作效率=工作总量÷工作时间单价问题:总价=单价×数量
数量=总价÷单价数量单价=总价÷数量
路程问题:速度×时间=路程
速度=路程÷时间时间=路程÷速度
1、去年生产队有土地20亩,每亩产粮400千克,一共产粮多少千克?
2、学校买了18个篮球和20个足球,共付了490元,每个篮球14元,每个足球多少元?
3、一个筑路队要筑1680米长的路。已经筑了15天,平均每天筑60米。其余的12天筑完,余下的平均每天筑多少米?
4、两工程队分别修同样长的一段路,甲队每天修680米,18天竣工;乙队每天比甲队多修136米,多少天竣工?
5、锅炉房运进一批煤,方案每天烧250公斤,可烧90天;实际每天节约25公斤,实际烧了多少天?
6、某工程队修路,36人8天可以完成1440米,照这样进度,45人修路1350米,需要多少天?
7、要修一条长3000米的公路,甲队每天修300米,乙队每天修200米,两队合修多少天完成?
8、学校买来6张桌子和12把椅子,共付2154元,每把椅子75元。每张桌子多少元?
9、少先队员参加环保活动,8人3 小时拾垃圾1680克,照这样计算,15个人4小时可以拾垃圾多少克?
10、修一条长3000米的公路,甲队独修10天可以完成,乙队独修15天可以完成。两队合修多少天可以完成
11、一个蓄水池,蓄水500立方米,第一根水管每分钟出水45立方米,第二根出水管比第一根每分钟多出水35立方米,两管合开,几分钟能把满池水放完?
小学数学应用题的11种基本数量关系及练习进步题
小学数学应用题的11种基本数量关系加法的种类:(2种)
1.已知一部分数和另一部分数,求总数。例:小明家养灰兔8只,养白兔4只。一共养兔多少只?想:已知一部分数(灰兔8只)和另一部分数(白兔4只)。求总数。列式:8+4=12(只)
2.已知较小数和相差数,求较大数。例:小利家养白兔4只,灰兔比白兔多3只。灰兔有多少只?想:已知较小数(白兔4只)和相差数(灰兔比白兔多3只),求较大数(灰兔的只数)。列式:4+3=7(只)
减法的种类:(3种)
1.已知总数和其中一部分数,求另一部分数。例:小丽家养兔12只,其中有白兔8只,其余的是灰兔,灰兔有多少只?想:已知总数(12只),和其中一部分数(白兔8只),求另一部分数(灰兔的只数)。列式:12-8=4(只)
2.已知较大数和相差数,求较小数。例:小强家养白兔8只,养的白
兔比灰兔多3只。养灰兔多少只?想:已知较大数(白兔8只)和相差数(白兔比灰兔多3只),求小数(灰兔的只数)。列式:8-3=5(只)
3.已知较大数和较小数,求相差数。例:小勇家养白兔8只,灰兔5只。白兔比灰兔多多少只?想:已知较大数(白兔8只)和较小数(灰兔5只),求相差数(白兔比灰兔多的只数)。列式:8-5=3(只)
乘法的种类:(2种)
1.已知每份数和份数,求总数。例:小利家养了6笼兔子,每笼4只。一共养兔多少只?想:已知每份数(4只)和份数(6笼),求总数(一共养兔的只数),也就是求6个4是多少。用乘法计算。列式:4×6=24(只)本类应用题值得一提的是,一定要分清份数与每份数两者的关系,计算时一定不要列反,不得改变两者关系。即“每份数×份数=总数”。不可以列式“份数×每份数=总数”。
小学数学应用题的11种基本数量关系及练习题
小学数学应用题的11种基本数量关系
加法的种类:(2种)
1.已知一部分数和另一部分数,求总数。例:小明家养灰兔8只,养白兔4只。一共养兔多少只?想:已知一部分数(灰兔8只)和另一部分数(白兔4只)。求总数。列式:8+4=12(只)
2.已知较小数和相差数,求较大数。例:小利家养白兔4只,灰兔比白兔多3只。灰兔有多少只?想:已知较小数(白兔4只)和相差数(灰兔比白兔多3只),求较大数(灰兔的只数)。列式:4+3=7(只)
减法的种类:(3种)
1.已知总数和其中一部分数,求另一部分数。例:小丽家养兔12只,其中有白兔8只,其余的是灰兔,灰兔有多少只?想:已知总数(12只),和其中一部分数(白兔8只),求另一部分数(灰兔的只数)。列式:12-8=4(只)
2.已知较大数和相差数,求较小数。例:小强家养白兔8只,养的白兔比灰兔多3只。养灰兔多少只?想:已知较大数(白兔8只)和相
差数(白兔比灰兔多3只),求小数(灰兔的只数)。列式:8-3=5(只)
3.已知较大数和较小数,求相差数。例:小勇家养白兔8只,灰兔5只。白兔比灰兔多多少只?想:已知较大数(白兔8只)和较小数(灰兔5只),求相差数(白兔比灰兔多的只数)。列式:8-5=3(只)
乘法的种类:(2种)
1.已知每份数和份数,求总数。例:小利家养了6笼兔子,每笼4只。一共养兔多少只?想:已知每份数(4只)和份数(6笼),求总数(一共养兔的只数),也就是求6个4是多少。用乘法计算。列式:4×6=24(只)本类应用题值得一提的是,一定要分清份数与每份数两者的关系,计算时一定不要列反,不得改变两者关系。即“每份数×份数=总数”。不可以列式“份数×每份数=总数”。
小学数学应用题的21种类型
1
【含义】
在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。
【数量关系】
总量÷份数=1份数量
1份数量×所占份数=所求几份的数量
另一总量÷(总量÷份数)=所求份数
【解题思路和方法】
先求出单一量,以单一量为标准,求出所要求的数量。
例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?
解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
2
【含义】
解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。【数量关系】
1份数量×份数=总量
总量÷1份数量=份数
总量÷另一份数=另一每份数量【解题思路和方法】
先求出总数量,再根据题意得出所求的数量。
例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?
解(1)这批布总共有多少米?3.2×791=2531.2(米)
(2)现在可以做多少套?2531.2÷2.8=904(套)列成综合算式3.2×791÷2.8=904(套)
答:现在可以做904套。
3
【含义】
已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
【数量关系】
大数=(和+差)÷2
小数=(和-差)÷2
【解题思路和方法】
小学数学最典型的30道应用题:定义+数量关系+例题详解
小学数学最典型的30道应用题:定义+数量关系
+例题详解
典型的30道应用题
归一问题
【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量;1份数量×所占份数=所求几份的数量;另一总量÷(总量÷份数)=所求份数
【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1. 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?
解:买1支铅笔多少钱?
0.6÷5=0.12(元)
买16支铅笔需要多少钱?
0.12×16=1.92(元)
列成综合算式
0.6÷5×16=0.12×16=1.92(元)
答:需要1.92元。
例2. 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?
解:1台拖拉机1天耕地多少公顷?
90÷3÷3=10(公顷)
5台拖拉机6天耕地多少公顷?
10×5×6=300(公顷)
列成综合算式
90÷3÷3×5×6=10×30=300(公顷)
答:5台拖拉机6天耕地300公顷。
例3. 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?
解:1辆汽车1次能运多少吨钢材?
100÷5÷4=5(吨)
7辆汽车1次能运多少吨钢材?
5×7=35(吨)
105吨钢材7辆汽车需要运几次?
105÷35=3(次)
列成综合算式
105÷(100÷5÷4×7)=3(次)
答:需要运3次。
归总问题
【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
三、四年级最典型的30道应用题:定义+数量关系+例题详解
三、四年级最典型的30道应用题:
定义+数量关系+例题详解
归一问题
【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量;1份数量×所占份数=所求几份的数量;另一总量÷(总量÷份数)=所求份数
【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1. 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?
解:买1支铅笔多少钱?
0.6÷5=0.12(元)
买16支铅笔需要多少钱?
0.12×16=1.92(元)
列成综合算式
0.6÷5×16=0.12×16=1.92(元)
答:需要1.92元。
例2. 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?
解:1台拖拉机1天耕地多少公顷?
90÷3÷3=10(公顷)
5台拖拉机6天耕地多少公顷?
10×5×6=300(公顷)
列成综合算式
90÷3÷3×5×6=10×30=300(公顷)
答:5台拖拉机6天耕地300公顷。
例3. 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?
解:1辆汽车1次能运多少吨钢材?
100÷5÷4=5(吨)
7辆汽车1次能运多少吨钢材?
5×7=35(吨)
105吨钢材7辆汽车需要运几次?
105÷35=3(次)
列成综合算式
105÷(100÷5÷4×7)=3(次)
答:需要运3次。
归总问题
【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
小学数学常考应用题21种类型总结(附例题、解题思路)
小学数学常考应用题21种类型总结
归一问题
【含义】
在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。
【数量关系】
总量÷份数=1份数量
1份数量×所占份数=所求几份的数量
另一总量÷(总量÷份数)=所求份数
【解题思路和方法】
先求出单一量,以单一量为标准,求出所要求的数量。
例1
买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?
解
(1)买1支铅笔多少钱?0.6÷5=0.12(元)
(2)买16支铅笔需要多少钱?0.12×16=1.92(元)
列成综合算式0.6÷5×16=0.12×16=1.92(元)
答:需要1.92元。
例2
3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?
解
(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)
列成综合算式90÷3÷3×5×6=10×30=300(公顷)
答:5台拖拉机6天耕地300公顷。
例3
5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?
解
(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)
(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)
列成综合算式105÷(100÷5÷4×7)=3(次)
答:需要运3次。
归总问题
【含义】
解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
小学数学常考应用题21种类型汇总(附例题解题思路)
归一问题
【含义】
在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。
【数量关系】
总量÷份数=1份数量
1份数量×所占份数=所求几份的数量
另一总量÷(总量÷份数)=所求份数
【解题思路和方法】
先求出单一量,以单一量为标准,求出所要求的数量。
例1
买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?
解
(1)买1支铅笔多少钱?0.6÷5=0.12(元)
(2)买16支铅笔需要多少钱?0.12×16=1.92(元)
列成综合算式0.6÷5×16=0.12×16=1.92(元)
答:需要1.92元。
例2
3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?
解
(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)
(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)
列成综合算式90÷3÷3×5×6=10×30=300(公顷)
答:5台拖拉机6天耕地300公顷。
例3
5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?
解
(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)
(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)
(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)
列成综合算式105÷(100÷5÷4×7)=3(次)
答:需要运3次。
归总问题
【含义】
解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
小学数学基本应用题数量关系共10种(附例题)
加法的种类:(2种)
1.已知一部分数和另一部分数,求总数。
例:小明家养灰兔8只,养白兔4只。一共养兔多少只?
想:已知一部分数(灰兔8只)和另一部分数(白兔4只)。求总数。
列式:8+4=12(只)
答:(略)
2.已知小数和相差数,求大数。
例:小利家养白兔4只,灰兔比白兔多3只。灰兔有多少只?
想:已知小数(白兔4只)和相差和(灰兔比白兔多3只),求大数。(灰兔的只数。)
列式:4+3=7(只)
答:(略)
减法的种类:(3种)
1.已知总数和其中一部分数,求另一部分数。
例:小丽家养兔12只,其中有白兔8只,其余的是灰兔,灰兔有多少只?
想:已知总数(12只),和其中一部分数(白兔8只),求另一部分数(灰兔有多少只?)
列式:12—8=4(只)
2.已知大数和相差数,求小数。
例:小强家养白兔8只,养的白兔比灰兔多3只。养灰兔多少只?
想:已知大数(白兔8只)和相差数(白兔比灰兔多3只),求小数(灰兔有多少只?)
列式:8-3=5(只)
3.已知大数和小数,求相差数。
例:小勇家养白兔8只,灰兔5只。白兔比灰兔多多少只?
想:已知大数(白兔8只)和小数(灰兔5只),求相差数。(白兔比灰兔多多少只?)
列式:8-5=3(只)
乘法的种类:(2种)
1.已知每份数和份数。求总数。
例:小利家养了6笼兔子,每笼4只。一共养兔多少只?
想:已知每份数(4只)和份数(6笼),求总数(一共养兔多少只?)也就是求6
个4是多少。用乘法计算。
列式:4×6=24(只)
本类应用题值得一提的是,一定要学生分清份数与每份数两者关系,计算时一定不要列反题。不得改变两者关系。即:每份数×份数=总数。决不可以列式:份数×每份数=总数。
小学数学应用题21种类型总结(附例题、解题思路)
小学数学应用题21种类型总结(附例题、
解题思路)
小学数学应用题21种类型总结(附例题、解题思路)小学数学应用题21种类型总结(附例题、解题思路)
1、归一问题
【含义】
在解题时,先求出一份是多少(即单一量),然后以单一量为标准,计算出来所要求的数量。这类应用题叫做归一问题。
【数量关系】
总量÷份数=1份数量
1份数量×所占份数=所求几份的数量
另一总量÷(总量÷份数)=所求份数
【解题思路和方法】
先求出单一量,以单一量为标准,求出所要求的数量。
例1
买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?
解
(1)买1支铅笔多少钱?0.6÷5=0.12(元)
(2)买16支铅笔能够多少钱?0.12×16=1.92(元)
列成综合算式0.6÷5×16=0.12×16=1.92(元)
答:需要1.92元。
例2
3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?
解
(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)
(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)
列成综合算式90÷3÷3×5×6=10×30=300(公顷)
答:5台拖拉机6天耕地300公顷。
例3
5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?
解
(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)
(2)7辆汽车1次能运多少每吨钢材?5×7=35(吨)
(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)
列成综合算式105÷(100÷5÷4×7)=3(次)
答:需要运3次。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见几类应用题及其基本数量关系
明确各类应用题中的基本数量关系,是正确列出方程的关键.常遇到的几类应用题及其基本关系如下:
1.行程问题:基本关系式为
速度×时间=距离
2.工程问题:基本关系式为
工作效率×工作时间=工作总量
计划数量×超额百分数=超额数量
计划数量×实际完成百分数=实际数量
3.百分比浓度问题:基本关系式为
溶液×百分比浓度=溶质
4.混合物问题:基本关系式为
各种混合物数量之和=混合后的总量
混合前纯物之和=混合后纯物重量
混合物重量×含纯物的百分数=纯物的重量
5.航行问题:基本关系式为
静水速度+水速=顺水速度
静水速度-水速=逆水速度
6.数字问题要注意各数位上的数字与数位的关系.
7.倍比问题,要注意一些基本关系术语,如:倍、分、大、小等.