二次函数单元测验题4

合集下载

二次函数单元测试题及答案

二次函数单元测试题及答案

二次函数单元测试题及答案一、选择题(每题3分,共30分)1. 若二次函数y=ax^2+bx+c的图像开口向上,则a的取值范围是()A. a > 0B. a < 0C. a = 0D. a ≠ 0答案:A2. 二次函数y=-3x^2+6x-2的对称轴是()A. x = -1B. x = 1C. x = 2D. x = 0答案:B3. 二次函数y=x^2-4x+c的顶点坐标是()A. (2, c-4)B. (2, c+4)C. (-2, c-4)D. (-2, c+4)答案:A4. 若二次函数y=x^2-6x+c的图像与x轴有两个交点,则c的取值范围是()A. c > 9B. c < 9C. c = 9D. c ≠ 9答案:B5. 二次函数y=2x^2-4x+3的最小值是()A. 1B. 2C. 3D. 4答案:C6. 二次函数y=-2x^2+4x+1的图像与y轴的交点坐标是()A. (0, -1)B. (0, 1)C. (0, 3)D. (0, 5)答案:B7. 若二次函数y=ax^2+bx+c的图像与x轴没有交点,则a和b的取值关系是()A. a > 0, b^2 > 4acB. a < 0, b^2 > 4acC. a > 0, b^2 < 4acD. a < 0, b^2 < 4ac8. 二次函数y=x^2-2x+1的图像的顶点坐标是()A. (1, 0)B. (1, 1)C. (0, 1)D. (2, 1)答案:B9. 二次函数y=x^2-6x+5的图像开口方向是()A. 向上B. 向下C. 向左D. 向右答案:A10. 若二次函数y=2x^2-4x+1的图像与x轴有一个交点,则该交点的坐标是()A. (1, 0)B. (2, 0)C. (-1, 0)D. (0, 0)答案:A二、填空题(每题3分,共15分)1. 二次函数y=x^2-2x+1的对称轴方程是______。

二次函数 单元检测试卷(含答案)

二次函数 单元检测试卷(含答案)

二次函数单元检测试卷(含答案)二次函数复套卷时间:120分钟满分:150分班级:__________ 姓名:__________ 得分:__________一、选择题(本题共12小题,每小题3分,共36分)1.下列各式中,y是x的二次函数的是()A。

y = 1/2xB。

y = 2x + 1C。

y = x^2 + x - 2D。

y^2 = x^2 + 3x / x2.抛物线y = 2x^2 + 1的顶点坐标是()A。

(2.1)B。

(0.1)C。

(1.0)D。

(1.2)3.二次函数y = ax^2 + bx - 1 (a ≠ 0)的图像经过点(1.1),则a +b + 1的值是()A。

-3B。

-1C。

2D。

34.抛物线y = x^2 - 2x - 3与x轴的交点个数是()A。

0个B。

1个C。

2个D。

3个5.下列函数中,当x。

0时,y随x值的增大而先增大后减小的是()A。

y = x^2 + 1B。

y = x^2 - 1C。

y = (x + 1)^2D。

y = -(x - 1)^26.二次函数y = ax^2 + bx + c的部分对应值如下表:x。

y2.51.-31.-42.-33.…二次函数图像的对称轴是()A。

直线x = 1B。

y轴C。

直线x = -1D。

直线x = -27.如图,二次函数y = ax^2 + bx + c的图像与x轴相交于(-2.0)和(4.0)两点,当函数值y。

0时,自变量x的取值范围是()A。

x < -2B。

-2 < x < 4C。

x。

0D。

x。

48.二次函数y = ax^2 + bx + c的图像如图所示,那么一次函数y = ax + b的图像大致是()9.某种品牌的服装进价为每件150元,当售价为每件210元时,每天可卖出20件,现需降价处理,且经市场调查:每件服装每降价2元,每天可多卖出1件。

在确保盈利的前提下,若设每件服装降价x元,每天售出服装的利润为y元,则y与x的函数关系式为()A。

(常考题)北师大版初中数学九年级数学下册第二单元《二次函数》检测卷(有答案解析)(4)

(常考题)北师大版初中数学九年级数学下册第二单元《二次函数》检测卷(有答案解析)(4)

一、选择题1.二次函数2y ax bx c =++的图象如图所示,则函数值y 0>时,x 的取值范围是( )A .x 2<-B .x 5>C .2x 5-<<D .x 2<-或x 5>2.已知二次函数()()12y a x x x x =--与x 轴的交点是(1,0)和(3,0),关于x 的方程()()12a x x x x m --=(其中0m >)的两个解分别是1-和5,关于x 的方程()()12a x x x x n --=(其中0n m <<)也有两个整数解,这两个整数解分别是( ) A .1和4B .2和5C .0和4D .0和53.抛物线221y x =--的顶点坐标是( ) A .(2,1)--B .(2,1)C .(0,1)-D .(0,1)4.抛物线()2212y x =+-的对称轴是( ) A .直线1x =B .直线1x =-C .直线2x =D .直线2x =-5.如图,已知ABC 中,,120,3AC BC ACB AB =∠=︒=,点D 为边AB 上一点,过点D 作//DE AC ,交BC 于点E ,过点E 作EF DE ⊥,交AB 于点F .设,AD x DEF =的面积为y ,则能大致反映y 与x 函数关系的图象是( )A .B .C .D .6.已知二次函数y =ax 2+bx +c 的图象开口向上(如图),它与x 轴的两个交点分别为(﹣1,0)、(3,0).对于下列结论:①c <0;②b <0;③4a ﹣2b +c >0.其中正确的有( )A .3个B .2个C .1个D .0个7.如图,二次函数2y ax bx c =++的图象经过点(1,0),则下列结论正确的是( )A .0c >B .0ab >C .0a b c ++>D .0a b +>8.已知二次函数2y ax bx c =++的部分图象如图所示,下列关于此函数图象的描述中,正确的个数是( )①对称轴是直线1x =;②当0x <时,函数值y 随x 的增大而增大;③方程20ax bx c ++=的解为11x =-,23x =;④当1x <-或3x >时,20ax bx c ++<.A .1B .2C .3D .49.对于抛物线22()1y x =-+,下列说法错误的是( ) A .抛物线的开口向上 B .抛物线与x 轴有两个交点 C .抛物线的对称轴是2x =D .抛物线的顶点坐标是(2,1)10.如图1,在等腰直角BAC 中,90BAC ∠=︒,AB AC =,点P 为AB 的中点,点M 为BC 边上一动点,作45PMN ∠=︒,射线MN 交AC 边于点N .设BM x =,CN y =,y 与x 的函数图象如图2,其顶点为(),m n ,则m n +的值为( )A .4B .332C .222+D .25+11.已知二次函数2y ax bx c =++的图象如图所示,则下列结论正确的个数有( ) ①0c >;②240b ac -<;③0a b c -+>;④当1x >时,y 随x 的增大而减小A .4个B .3个C .2个D .1个12.如图,二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴负半轴交于点C ,它的对称轴为直线12x =,则下列选项中正确的是( )A .0abc <B .0a b -=C .40a c ->D .当2(1x n n =+为实数)时,y c ≤二、填空题13.如图,在平面直角坐标系中,抛物线()2230y ax ax a =-+>与y 轴交于点A ,过点A 作x 轴的平行线交抛物线于点M ,P 为抛物线的顶点,若直线OP 交直线AM 于点B ,且M 为线段AB 的中点,则a 的值为____________.14.如图,在平面直角坐标系中,点A 从点(0,5)M 出发向原点O 匀速运动,与此同时点B 从点(3,0)N 出发,在x 轴正半轴上以相同的速度向右运动,当点A 到达终点O 时,两点同时停止运动.连接AB ,以线段AB 为边在第一象限内作正方形ABCD ,则正方形ABCD 面积的最小值为____________.15.计算机可以帮助我们又快又准地画出函数的图像.用“几何画板”软件画出的函数2(3)y x x =-和3y x =-的图像如图所示.若m ,n 分别满足方程2(3)1x x -=和31x -=根据图像可知m ,n 的大小关系是___________.16.已知二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠),函数值y 与自变量x 的部分对应值如下表: x… 1-0 1 2 3 4 … y …101y2125…当1时,自变量的取值范围是______.17.已知二次函数()20y ax bx c a =++≠的图象如图,有下列5个结论:①0abc <;②30a c +>;③420a b c ++>;④20a b +=;⑤24b ac >.其中正确的结论的有__________________(填正确的序号)18.二次函数y=ax 2+c 的图象与y=3x 2的图象形状相同,开口方向相反,且经过点(1,1),则该二次函数的解析式为________________ .19.如图,在正方形ABCD 中,点E 是BC 边上的动点,过点E 作AE 的垂线交CD 边于点F ,设BE x =,FD y =,y 关于x 的函数关系图像如图所示,则m =________.20.教练对小明推铅球的录像进行技术分析,如图,发现铅球行进高度()ym 与水平距离()x m 之间的关系为()21184105y x =--+ ,由此可知铅球推出的距离_____ m .三、解答题21.如图,直线y x m =+和抛物线2y x bx c =++都经过点A (1,0),B (3,2). (1)求m 的值;(2)求不等式2x bx c x m ++>+的解集(直接写出答案).22.如图,在矩形ABCD 中,AB =6cm ,BC =12cm ,点P 从点A 出发沿着AB 以每秒1cm 的速度向点B 移动;同时点Q 从点B 出发沿着BC 以每秒2cm 的速度向点C 运动.设△DPQ 的面积为S ,运动时间为t 秒.(1)用含t 的代数式表示出BP 的长为 cm ,CQ 的长为 cm ; (2)写出S 与t 之问的函数关系式;(3)当△DPQ 的面积最小时,请判断线段PQ 与对角线AC 的关系,并说明理由.23.2020年12月12日零时,某电商平台“双十二”购物狂欢节预售付尾款活动正式开启,如图是织里童装某产品每小时的成交量y (万件)与时间x (时)的函数图象,y 与x 的关系正好可用两段二次函数12,y y 的图象来表示,点A 是两段函数的顶点,其中01x 时,图象的解析式为213y x mx =-+;17x 时,图象的解析式为2y .(1)根据函数图象,求几时成交量达到最大值?最大值为多少?(2)系统平台显示,当成交量达到2.25万件以上时(包括2.25万件),需要专门安排后台技术人员做维护,请问:需要维护多少时间才能保证系统全程正常运行?24.如图,抛物线y =﹣x 2+bx +c 与x 轴相交于A (﹣3,0),D (1,0)两点,其中顶点为B .(1)求该抛物线的解析式;(2)若该抛物线与y 轴的交点为C ,求△ABC 的面积.25.如图,有四张背面完全相同的卡片A ,B ,C ,D ,其中正面分别写着四个不同的函数表达式,将四张卡片洗匀正面朝下随机放在桌面上.(1)从四张卡片中随机摸出一张,摸出的卡片上的函数y 随x 的增大而减小的概率是______;(2)小亮和小强用这四张卡片做游戏,规则如下:两人同时从四张卡片中各随机抽出一张,若抽出的两张卡片上的函数增减性相同,则小亮胜;若抽出的两张卡片上的函数增减性不同,则小强胜.这个游戏公平吗?请说明理由.26.如图,已知某二次函数的顶点坐标是(1,4)-,且经过点(4,5)A(1)求该二次函数的表达式;(2)点(,)P m n 是该二次函数图象上一点,若点P 到y 轴的距离不大于4,请根据图象直接写出n 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据函数图象求出与x 轴的交点坐标,再由图象得出答案. 【详解】解:有函数图象观察可知,当25x -<<时,函数值0y >. 故选:C . 【点睛】本题考查二次函数与不等式.掌握数形结合思想是解题关键.2.C解析:C 【分析】先根据二次函数y=a(x-x 1)(x-x 2)与x 轴的交点是(1,0)和(3,0)判断二次函数的对称轴方程,再根据关于x 的方程a(x-x 1)(x-x 2)=m(其中m>0)的两个解分别是-1和5判断开口方向,最后根据二次函数图象的性质即可得到答案; 【详解】∵二次函数y=a(x-x 1)(x-x 2)与x 轴的交点是(1,0)和(3,0), ∴得到二次函数的对称轴方程为:x=2,又∵关于x 的方程a(x-x 1)(x-x 2)=m(其中m>0)的两个解分别是-1和5, ∴二次函数y=a(x-x 1)(x-x 2)开口向上(远离对称轴的点纵坐标变大), 又∵x 的方程a(x-x 1)(x-x 2)=n 也有两个整数解,根据0<n<m得到解在-1和5之间,∵解为正数且关于x=2对称,故选:C.【点睛】本题主要考查了二次函数图象的性质,根据图象的性质求解二次函数的整数解,熟练掌握二次函数的图象的性质是解题的关键3.C解析:C【分析】根据题目中的函数解析式可以直接写出该抛物线的顶点坐标.【详解】解:∵y=-2x2-1,∴该抛物线的顶点坐标为(0,-1),故选:C.【点睛】本题考查了二次函数的性质,解答本题的关键是明确题意,利用二次和函数的性质解答.4.B解析:B【分析】根据二次函数的顶点式的性质求对称轴即可;【详解】∵()2212y x=+-,∴对称轴为:x=-1,故选:B.【点睛】本题考查了二次函数顶点式的性质,正确掌握知识点是解题的关键.5.B解析:B【分析】过点C作CG⊥AB,求出CG、AC,证明△ACB∽△DEB,求出DE,再根据直角三角形的性质求出EF,根据三角形面积公式得到y关于x的函数表达式,从而判断图像.【详解】解:∵AC=BC,∠ACB=120°,∴∠A=∠B=30°,过点C作CG⊥AB,则AG=BG=12AB=32,AC=2CG,则CG=3=32,AC=3, ∵DE ∥AC , ∴△ACB ∽△DEB , ∴AC AB DE BD =,即333x=-, 解得:DE=()333x -,∵∠DEF=90°,∠EDF=∠A=30°, ∴EF=3=33x-,∴y=S △DEF =12DE EF ⨯⨯=()3313233x x --⨯⨯=()23318x -, 可得:当0<x <3时,图像为抛物线,y 随x 的增大而减小, 选项B 中的图像最合适, 故选B .【点睛】本题考查了相似三角形的判定和性质,以及直角三角形的性质,二次函数,解题的关键是通过相似三角形的性质得到线段的长,从而得到二次函数表达式.6.A解析:A 【分析】根据抛物线与y 轴的交点位置可对①进行判断;根据抛物线的对称性得到x =2ba-=1,则b =﹣2a <0,于是可对②进行判断;利用x =﹣2,y >0可对③进行判断. 【详解】解:∵抛物线与y 轴的交点坐标在x 轴下方, ∴c <0,所以①正确; ∵抛物线开口向上, ∴a >0,∵抛物线与x 轴的两个交点分别为(﹣1,0),(3,0), ∴抛物线的对称轴为直线x =1,即2ba-=1, ∴b =﹣2a <0,所以②正确;∵由图象可知,当x =﹣2时,y >0,∴4a ﹣2b +c >0,所以③正确.故选:A .【点睛】本题考查了二次函数图象与系数的关系,解题关键是树立数形结合思想,准确读取图象信息,认真推理判断.7.A解析:A【分析】根据二次函数的图象与解析式中字母系数之间关系解答即可.【详解】解:A 、图像与y 轴交于正半轴,则0c >,A 正确;B 、图象的开口向下,则0a <;对称轴在y 轴右边且0a <,根据对称轴=0b a->,得 0b >; a 、b 异号,B 错误;C 、将(1,0)代入函数表达式,得0a b c ++=,C 错误;D 、A 中结论0c >,C 中结论0a b c ++=,所以 0a b +<,D 错误;故选A .【点睛】本题考查二次函数的图象与各项系数间的关系,熟知二次函数的图象与各项字母系数之间关系是解答的关键. 8.D解析:D【分析】利用拋物线的顶点的横坐标为1可对①进行判断;根据二次函数的性质对②进行判断;利用对称性得到拋物线与x 轴的另一个交点坐标为(3、0),则可对③进行判断;观察函数图象,当抛物线在x 轴下方时,得出其x 的取值范围,则可对④进行判断.【详解】根据函数图像可知,抛物线的对称轴为直线1x =,故①的说法正确;当1x <时,函数y 随x 的增大而增大,故②的说法正确;点(1-、0)关于1x =的对称点为(3、0),则抛物线与x 轴的另一个交点坐标为(3、0),所以方程20ax bx c ++=的解为121,3x x =-=,故③说法正确; 由函数图像可知,当1x <-或3x >时,抛物线在x 的下方,即20ax bx c ++<,所以④的说法正确综上所述①②③④的说法都正确故选:D .【点睛】本题考查了拋物线与x 轴的交点:把求二次函数y=ax2+bx+c(a,b,c 是常数,a≠0)与x 轴的交点坐标问题转化解关于x 的一元二次方程即可求得交点横坐标.也考查了二次函数的性质. 9.B解析:B【分析】根据抛物线的性质逐条判断即可.【详解】解:抛物线22()1y x =-+是二次函数的顶点式,由此可知,抛物线开口向上,对称轴是2x =,顶点坐标是(2,1),故A 、C 、D 正确,不符合题意;∵抛物线顶点在第一象限,开口向上,∴抛物线与x 轴没有交点,故B 错误,符合题意;故选:B .【点睛】本题考查了二次函数图象的性质,解题关键是熟知抛物线顶点式的意义,根据顶点位置和开口确定与x 轴是否有交点.10.C解析:C【分析】首先由函数图象可直接得出4BC =,然后当M 运动至BC 中点时,y 的值最大,此时即为AC 的长,从而在等腰直角三角形中分别计算即可.【详解】根据函数图象知,当4x =时,0y =,即:4BC =,当M 运动至BC 中点时,y 的值最大,此时y 的值即为AC 的长,∵△ABC 为等腰直角三角形,M 为BC 的中点,∴△AMC 为等腰直角三角形,且122AM MC BC ===, ∴222AC AM ==,即:函数图象中,222,m n ==,∴222m n +=+,故选:C .【点睛】本题考查二次函数的实际应用之动态几何问题,理解二次函数的基本性质以及等腰直角三角形的性质是解题关键.11.B解析:B【分析】根据二次函数的图象与y 轴的交点判断c 的正负;根据二次函数的图象与x 轴交点个数,判断②的正确性;根据1x =-时,y 取值的正负,判断③的正确性;根据图象中函数的增减性判断④的正确性.【详解】解:∵二次函数的图象与y 轴的交点在正半轴,∴0c >,故①正确;∵二次函数的图象与x 轴有两个交点,∴方程20ax bx c ++=有两个不相同的实数根,∴240b ac ->,故②错误;当1x =-时,0y >,即0a b c -+>,故③正确;根据图象,当1x >时,y 随x 的增大而减小,故④正确.故选:B .【点睛】本题考查二次函数,解题的关键是根据二次函数的图象分析解析式中系数的关系.12.D解析:D【分析】根据二次函数的图像和性质,分别对每个选项进行判断,即可得到答案.【详解】解:由图象开口向上,可知a<0,与y 轴的交点在x 轴的下方,可知c<0, 又对称轴方程为12x =,所以122ba -=>0,所以b >0,∴abc >0,故A 错误; ∵122b a -=∴=-a b ,∴0a b +=,故B 错误; 当12x =时,则11042y a b c =++>,∵=-a b , ∴11042a a c -+>,∴104a c -+>, ∴40a c -<,故C 错误;当21x n =+时,222(1)(1)y a n b n c =++++4222an an a an a c =++--+42an an c =++22(1)an n c =++;∵n 为实数,∴20an ≤,211n +≥,∴22(1)an n c c ++≤,即y c ≤,故D 正确;故选:D .【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】求出A 点坐标和对称轴根据对称性求出M 点坐标利用中点求出B 点坐标进而求出P 点坐标代入求a 即可【详解】解:由题意得:对称轴为直线P 点横坐标为1当x=0时y=3∴A 点坐标为:根据对称性可知M 点坐标 解析:94【分析】求出A 点坐标和对称轴,根据对称性求出M 点坐标,利用中点,求出B 点坐标,进而求出P 点坐标,代入求 a 即可.【详解】 解:由题意得:对称轴为直线212a x a-=-=,P 点横坐标为1, 当x=0时,y=3,∴A 点坐标为:()0,3,根据对称性可知,M 点坐标为()2,3 ,∵M 为AB 中点,∴B 点坐标为:()4,3设OB 解析式为y=kx ,把B ()4,3代入得,3=4k解得,k=34, ∴直线OB 解析式为34y x =, 把1x =代入34y x =得,34y =, ∴P 点坐标为31,4⎛⎫ ⎪⎝⎭, 代入抛物线得:3234a a -+=, 解得,94a =, 故答案为:94. 【点睛】本题考查了一次函数和二次函数的综合,解题关键是根据二次函数的性质求出B 点坐标,求出一次函数解析式.14.32【分析】根据题意可以得到OA+OB 的关系再根据勾股定理和二次函数的性质即可得到正方形ABCD 面积的最小值【详解】解:由题意可得NB=MA 则AO+OB=8设AO=x 则OB=8-x ∵S 正方形ABCD解析:32【分析】根据题意,可以得到OA+OB 的关系,再根据勾股定理和二次函数的性质,即可得到正方形ABCD 面积的最小值.【详解】解:由题意可得,NB=MA ,则AO+OB=8,设AO=x ,则OB=8-x ,∵S 正方形ABCD =AB 2=AO 2+OB 2=x 2+(8-x )2=2(x-4)2+32,∴当x=4时,正方形ABCD 的面积取得最小值32,故答案为:32.【点睛】本题考查了正方形的性质、坐标与图形的性质、二次函数的性质,解答本题的关键是明确题意,利用数形结合的思想解答.15.【分析】利用函数图象通过确定函数和的图象与直线的交点位置可得到m 与n 的大小【详解】解:方程的解为函数的图象与直线的交点的横坐标的解为一次函数与直线的交点的横坐标如图由图象得故答案为:【点睛】本题考查解析:m n <【分析】利用函数图象,通过确定函数2(3)y x x =-和3y x =-的图象与直线1y =的交点位置可得到m 与n 的大小.【详解】解:方程2(3)1x x -=的解为函数2(3)y x x =-的图象与直线1y =的交点的横坐标,31x -=的解为一次函数3y x =-与直线1y =的交点的横坐标,如图,由图象得m n <.故答案为:m n <.【点睛】本题考查了函数图象的应用,会利用图象的交点的坐标表示方程或方程组的解是解题的关键.16.【分析】根据表格中的数据可知抛物线的开口方向对称轴及顶点坐标结合表格及抛物线特征可得当时自变量的取值范围【详解】解:由表格知:抛物线开口向上顶尖坐标为(21)故当x=0时与x=4时函数值相同∴=5当 解析:04x <<.【分析】根据表格中的数据可知抛物线的开口方向,对称轴及顶点坐标,结合表格及抛物线特征可得当1y y <时,自变量x 的取值范围.【详解】解:由表格知:抛物线开口向上,顶尖坐标为(2,1),故当x=0时与x=4时函数值相同,∴1y =5,当1y y <时,即当y <5时,由表格得04x <<.故答案为:04x <<.【点睛】本题考查了二次函数数的特征,解题关键是根据表格得出抛物线的开口方向,对称轴及顶点坐标.17.①③④⑤【分析】根据函数图象开口向下可以得a <0顶点在y 轴右侧得到b >0与y 轴交于正半轴得c >0从而可以判断①是否正确再根据二次函数图象具有对称性和二次函数的性质可以判断其他各小题是否正确本题得以解 解析:①③④⑤【分析】根据函数图象开口向下可以得a <0,顶点在y 轴右侧得到b >0,与y 轴交于正半轴得c >0,从而可以判断①是否正确,再根据二次函数图象具有对称性和二次函数的性质可以判断其他各小题是否正确,本题得以解决.【详解】解:由图象可得,a <0,b >0,c >0,∴abc <0,故①正确;∵抛物线的对称轴为1x =,即12b a-=, ∴2b a =-,∴20a b +=,故④正确;当1x =-时,0y a b c =-+<,则30a c +<,故②错误;∵抛物线的对称轴为1x =,则2x =和0x =时的函数值相等,故2x =时,420y a b c =++>,故③正确;∵此抛物线与x 轴有两个交点,∴240b ac ->,∴24b ac >,故⑤正确,故答案为:①③④⑤.【点睛】本题考查了二次函数图象与系数的关系,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质和数形结合的思想解答. 18.y=-3x2+4【分析】根据二次函数的性质利用待定系数法求解【详解】解:由题意可设所求函数为:∵所求函数经过点(11)∴∴c=4∴所求函数为:故答案为【点睛】本题考查二次函数的应用熟练掌握利用待定系解析:y=-3x 2+4【分析】根据二次函数的性质,利用待定系数法求解.【详解】解:由题意可设所求函数为:23y x c =-+,∵所求函数经过点(1,1),∴2131c =-⨯+,∴c=4,∴所求函数为:234y x =-+,故答案为234y x =-+.【点睛】本题考查二次函数的应用,熟练掌握利用待定系数法求二次函数解析式是解题关键. 19.2【分析】设正方形的边长为a 则CFEC 均可用a 表示证明△ABE ∽△ECF 写出比例式找到y 与x 之间的函数式根据二次函数的最值求法结合所给函数图象求出a 值而后可求m 值【详解】设正方形的边长为a 则CF=a解析:2【分析】设正方形的边长为a ,则CF 、EC 均可用a 表示,证明△ABE ∽△ECF ,写出比例式找到y 与x 之间的函数式,根据二次函数的最值求法,结合所给函数图象,求出a 值,而后可求m 值.【详解】设正方形的边长为a ,则CF=a-y .∵∠BAE+∠AEB=90°,∠FEC+∠AEB=90°,∴∠BAE=∠CEF .又∠B=∠C ,∴△ABE ∽ECF , ∴BE FC AB EC =,x a y a a x-=-, 整理得:21y x x a a =-+, 当2a x =时,y 有最小值34a , 从所给函数图象上看,当x m =时,y 有最小值3, ∴334a =, 解得:4a =, ∴22a x m ===. 故答案为:2.【点睛】 本题主要考查了动点问题产生的函数图象、相似三角形的判定和性质,解题的关键是动中找静,会阅读图象信息.20.10【分析】根据铅球落地时高度y=0实际问题可理解为当y=0时求x 的值即可【详解】解:令函数式中y=00=解得x1=10x2=-2(舍去)即铅球推出的距离是10m 故答案为:10【点睛】本题考查了二次解析:10根据铅球落地时,高度y=0,实际问题可理解为当y=0时,求x 的值即可.【详解】 解:令函数式()21184105y y x ==--+中,y=0, 0=()21184105x --+, 解得x 1=10,x 2=-2(舍去),即铅球推出的距离是10m .故答案为:10.【点睛】本题考查了二次函数的应用,取函数或自变量的特殊值列方程求解是解题的关键.三、解答题21.(1)1m =-;(2)x <1或x >3【分析】(1)将点A 坐标代入y=x+m 可得m 的值;(2)由函数图象中双曲线在直线上方时x 的范围可得.【详解】解:(1)将点A(1,0)代入y=x+m 可得1+m=0,解得:m=-1;(2)由函数图象可知不等式的解集为x <1或x >3.【点睛】本题主要考查了待定系数法求一次函数解析式,二次函数与一元二次不等式的关系,解题的关键是熟练掌握待定系数法求函数解析式.22.(1)(6-t),(12-2t);(2)S=t 2-6t+36;(3)PQ ∥AC ,理由见解析【分析】(1)由题意可得出答案;(2)根据△PQD 的面积=矩形ABCD 的面积-△APD 的面积-△PBQ 的面积-△CDQ 的面积可得出答案;(3)由二次函数的性质及中位线定理可得出答案.【详解】解:(1)根据题意得:AP=t(cm),BQ=2t(cm),则BP=(6-t)cm ,CQ=(12-2t)cm ,故答案为:(6-t),(12-2t);(2)∵BP=6-t(cm),CQ=12-2t(cm),∴△PQD 的面积=矩形ABCD 的面积-△APD 的面积-△PBQ 的面积-△CDQ 的面积 =12×6-12×12t-12×2t×(6-t)-12×6(12-2t)∴S=t 2-6t+36;(3)∵S=t 2-6t+36=(t-3)2+27,且1>0,∴当t=3时,S 最小;即经过3s 时,△PQD 的面积最小,此时,PQ ∥AC .理由:∵t=3,∴AP=PB=3(cm),CQ=BQ=6(cm),∴PQ ∥AC ..【点睛】本题考查了矩形的性质,二次函数的最值,中位线定理,熟练掌握二次函数的性质是解题的关键.23.(1)当x=1时,y 1有最大值,最大值为3;(2)需要维护3.5小时才能保证系统全程正常运行.【分析】(1)根据函数图象,点A 是两段函数的顶点,其中01x 时,图象的解析式为213y x mx =-+,可知对称轴,从而根据122(3)b m x a =-=-=⨯-,可求得m 的值,则可得1y 的解析式,根据二次函数的性质可得答案.(2)由(1)可知,顶点(1,3)A ,设22(1)3y n x =-+,把(7,0)代入,求得n 的值,则可知2y 的解析式,分别令1 2.25y =,2 2.25y =,得到关于x 的方程,求得方程的解,再结合相应的取值范围即可得出答案.【详解】解:(1)122(3)b m x a =-=-=⨯-, 6m ∴=,2136y x x ∴=-+,∴当1x =时,1y 有最大值,最大值为:363-+=.(2)由(1)可知,顶点(1,3)A ,设22(1)3y n x =-+, 把(7,0)代入得:20(71)3n =-+,解得:112n =-,221(1)312y x ∴=--+, 当1 2.25y =时,22.2536x x =-+,解得:1 1.5x =(舍),20.5x =;当2 2.25y =时,212.25(1)312x =--+, 解得:32x =-(舍),44x =.40.5 3.5-=(小时).∴需要维护3.5小时才能保证系统全程正常运行.【点睛】本题考查了二次函数在实际问题中的应用,数形结合并熟练掌握二次函数的性质是解题的关键.24.(1)y =﹣x 2﹣2x +3;(2)3【分析】(1)利用待定系数法确定函数关系式;(2)根据抛物线解析式求得点B 、C 的坐标,过点B 作BE ⊥x 轴于点E ,交直线AC 于F ,由直线AC 的解析式和一次函数图象上点的坐标特征求得点F 的坐标,然后根据三角形面积公式求解.【详解】解:(1)∵抛物线y =﹣x 2+bx +c 与x 轴相交于A (﹣3,0),D (1,0)两点, ∴9301+=0b c b c --+=⎧⎨-+⎩, 解得:2=3b c =-⎧⎨⎩. 故该抛物线解析式为y =﹣x 2﹣2x +3;(2)由抛物线解析式y =﹣x 2﹣2x +3,可得B (﹣1,4),C (0,3).如图,过点B 作BE ⊥x 轴于点E ,交直线AC 于F ,则点F 的横坐标是﹣1.∵直线AC 经过点A (﹣3,0),C (0,3),∴直线AC 的解析式是y =x +3.把x =﹣1代入y =x +3,得y =2.则F (﹣1,2).∴BF =2.∵AO =3∴S △ABC =S △ABF +S △BCF =12BF •(AE+OE )=12BF •AO =1232⨯⨯=3.【点睛】本题考查了待定系数法求二次函数的解析式和求坐标系中三角形的面积问题,难度不大,属于基础题型,熟练掌握待定系数法求二次函数的解析式是关键.25.(1)12;(2)不公平,见解析 【分析】(1)先判断出A 、B 、C 、D 四个卡片上的函数增减性,在结合概率的定义即可求解(2)根据题意用列表法分别求出小亮和小强同时抽到函数增减性相同的概率,和增减性不同的概率,二者进行比较即可【详解】(1)卡片A 上的函数为12y x =-,为减函数,y 随x 的增大而减小; 卡片B 上的函数为()10y x x=-<,为增函数,y 随x 的增大而增大; 卡片C 上的函数为()230y x x =->,为增函数,y 随x 的增大而增大; 卡片D 上的函数为5y x =-,为减函数,y 随x 的增大而减小;所以从四张卡片中随机摸出一张,摸出的卡片上的函数y 随x 的增大而减小的概率为2142= (2)不公平.理由如下,根据题意列表得: 卡片A 卡片B 卡片C 卡片D 卡片AAB AC AD 卡片BAB BC BD 卡片CAC BC CD 卡片D AD BD CD 卡片由表可知总共有12中等可能的结果,抽出的两张卡片上的函数增减性相同的概率为41123=;抽出的两张卡片上的函数增减性不同的概率是82123=, 2133>, ∴不公平.【点睛】本题考查了函数的性质,概率和游戏的公平性,掌握列表或树状图法展示等可能的结果是解题关键.26.(1)223y x x =--;(2)421n -.【分析】(1)设二次函数的解析式是y=a (x-h )2+k ,先代入顶点A 的坐标,再把B 的坐标代入,即可求出a ,即可得出解析式;(2)由点P 到y 轴的距离不大于4,得出 ,结合二次函数的图象可知,请根据图象直接写出n 的取值范围.【详解】解:(1)某二次函数的顶点坐标是(1,4)-,且经过点(4,5)A ,设二次函数的解析式为2(1)4y a x =--,把(4,5)A 代入得:25(41)4a =--解得:1a =,所以函数表达式为:223y x x =--.(2)点P 到y 轴的距离为||m ,∴||m ≤4,∴44m -,∵2223(1)4y x x x =--=--,在44m -时,当m=1时,有最小值n=-4;当m=-4时,有最大值n=21,∴421n -.【点睛】本题考查了待定系数法求二次函数的表达式,二次函数求最值,二次函数图象和性质的应用,求二次函数的取值范围,掌握二次函数的图象和性质的应用是解题的关键.。

二次函数单元测试题及答案

二次函数单元测试题及答案

二次函数单元测试题及答案1. 选择题(每题2分)1. 下列函数中,属于二次函数的是:A. y = 3x + 2B. y = x^2 + 3x - 2C. y = √xD. y = |x|答案:B2. 二次函数y = 2x^2 + 3x - 4的图像开口方向是:A. 向上开口B. 向下开口答案:A3. 函数y = -x^2 + 5x + 3的顶点坐标是:A. (3, 8)B. (-3, 2)C. (5, 8)D. (-5, 3)答案:A4. 函数y = x^2 - 4x + 4的轴对称线方程为:A. x = 2B. x = 4C. x = -2D. x = -4答案:A5. 函数y = x^2 + 6x + 9的值域是:A. (-∞, 9)B. [9, +∞)C. (-∞, 0)D. [0, +∞)答案:B2. 填空题(每题3分)1. 二次函数y = -2x^2 + 4x - 1的判别式为_______。

答案:402. 函数y = x^2 + bx + c的顶点坐标是(-2, 1),则b和c的值分别为_______。

答案:b = 4,c = -33. 函数y = 3x^2 - 6x + k的图像与x轴有两个交点,则k的值为_______。

答案:k > 04. 函数y = -x^2 - 4x + m的轴对称线方程为x = 2,则m的值为_______。

答案:m = 35. 函数y = ax^2 + bx + 2的值域是(-∞, 1],则a和b的关系是_______。

答案:a < 0,b > 03. 计算题(每题5分)1. 求二次函数y = -3x^2 + 6x + 9的顶点坐标和对称轴方程。

解答:首先,二次函数的顶点坐标可以通过公式 h = -b/2a 和 k = f(h) 来求得。

其中,h 表示对称轴的横坐标,k 表示顶点的纵坐标。

对于给定的函数 y = -3x^2 + 6x + 9,我们可以得到 a = -3,b = 6,c = 9。

(常考题)北师大版初中数学九年级数学下册第二单元《二次函数》测试(答案解析)(4)

(常考题)北师大版初中数学九年级数学下册第二单元《二次函数》测试(答案解析)(4)

一、选择题1.如图,抛物线y =ax 2+bx +c 的顶点坐标为(1,﹣4a ),点A (4,y 1)是该抛物线上一点,若点B (x 2,y 2)是该抛物线上任意一点,有下列结论:①4a ﹣2b +c >0;②抛物线y =ax 2+bx +c 与x 轴交于点(﹣1,0),(3,0);③若y 2>y 1,则x 2>4;④若0≤x 2≤4,则﹣3a ≤y 2≤5a .其中,正确结论的个数是( )A .0B .1C .2D .32.二次函数2y x bx c =++的图象经过坐标原点O 和点()7,0A ,直线AB 交y 轴于点()0,7B -,动点(),C x y 在直线AB 上,且17x <<,过点C 作x 轴的垂线交抛物线于点D ,则CD 的最值情况是( )A .有最小值9B .有最大值9C .有最小值8D .有最大值8 3.抛物线221y x =--的顶点坐标是( )A .(2,1)--B .(2,1)C .(0,1)-D .(0,1) 4.已知二次函数y=(m+2)23mx -,当x<0时,y 随x 的增大而增大,则m 的值为( ) A .5- B .5C .5±D .2 5.抛物线y =ax 2+bx +c 的顶点坐标(﹣2,3),抛物线与x 轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,其部分图象如图所示,有下列说法:①4a ﹣b =0;②a ﹣b +c =0; ③若(﹣4,y 1),(1,y 2)是抛物线上的两点,则y 1>y 2; ④b 2+3b =4ac .其中正确的个数有( )A .4B .3C .2D .16.已知二次函数2(2)1y mx m x =+--(m 为常数,且0m ≠),( )A .若0m >,则1x <,y 随x 的增大而增大B .若0m >,则1x >,y 随x 的增大而减小C .若0m <,则1x <,y 随x 的增大而增大D .若0m <,则1x >,y 随x 的增大而减小 7.如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①a >0;②b >0; ③方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3;④当y >0时,x 的取值范围是﹣1<x <3;其中结论正确的个数是( )A .4个B .3个C .2个D .1个8.如图,已知二次函数()20y ax bx c a =++≠的图象与x 轴交于点()1,0A -,对称轴为直线1x =,下列结论:①0abc <;②930a b c ++=;③20a b +=;④2am bm a b +<+(m 是任意实数),其中正确的是( )A .①②B .②③C .①②③D .②③④ 9.如图,抛物线22y x x m =-+交x 轴于点(),0A a ,(),0Bb ,交y 轴于点C ,抛物线的顶点为D ,下列四个结论:①无论m 取何值,2CD =恒成立;②当0m =时,ABD △是等腰直角三角形;③若2a =-,则6b =;④()11,P x y ,()22,Q x y 是抛物线上的两点,若121x x ,且122x x +>,则12y y <.正确的有( )A .①②③④B .①②④C .①②D .②③④10.如图,在平面直角坐标系中,反比例函数和二次函数的图象大致如图所示,它们的表达式可能分别为( )A .2,k y y kx x x =-=-+B .2,k y y kx x x =-=--C .2,k y y kx x x ==--D .2,k y y kx x x==-+ 11.在同一直角坐标系中,一次函数y ax c =+和二次函数2y ax c =--的图象可能为( )A .B .C .D . 12.函数k y x=与()20y kx k k =-≠在同一直角坐标系中的图象大致是下图中的( ) A . B . C . D .二、填空题13.如图,正方形ABCD 中,AD =4,AE =3DE ,点P 在AB 上运动(不与A 、B 重合),过点P 作PQ ⊥EP ,交CB 于点Q ,则BQ 的最大值是______.14.将抛物线2112y x =+绕原点O 旋转180︒,得到的抛物线解析式为__________. 15.计算机可以帮助我们又快又准地画出函数的图像.用“几何画板”软件画出的函数2(3)y x x =-和3y x =-的图像如图所示.若m ,n 分别满足方程2(3)1x x -=和31x -=根据图像可知m ,n 的大小关系是___________.16.如图,点P 是双曲线()4:0C y x x=>上的一点,过点P 作x 轴的垂线交直线1:22AB y x =-于点Q ,连结,OP OQ 当点P 在曲线C 上运动,且点P 在Q 的上方时,POQ △面积的最大值是________.17.把函数y =x 2+3的图像向下平移1个单位长度得到的图像对应的函数关系式为________.18.在平面直角坐标系中,已知()1,A m -和()5,B m 是抛物线21y x bx =++上的两点,则抛物线21y x bx =++的顶点坐标为_________.19.将抛物线243y x x =-+沿x 轴向左平移2个单位,则平移后抛物线的解析式是__. 20.已知A (0,y 1),B (1,y 2),C (4,y 3)是抛物线y =x 2﹣3x 上的三点,则y 1,y 2,y 3的大小关系为____.(用“<”符号连接)三、解答题21.如图,抛物线y =x 2+bx +c 经过点(1,﹣4)和(﹣2,5),请解答下列问题:(1)求抛物线的解析式,并求出对称轴及顶点坐标;(2)若与x 轴的两个交点为A 、B ,与y 轴交于点C .在该抛物线上找一点D ,使得△ABC 与△ABD 全等,求出D 点的坐标.22.定义:对于已知的两个函数,任取自变量x 的一个值,当0x ≥时,它们对应的函数值互为相反数;当0x <时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:正比例函数y x =,它的相关函数为(0)(0)x x y x x -≥⎧=⎨<⎩. (1)已知点(1,3)A -在一次函数2y ax =-的相关函数的图象上,求a 的值;(2)已知二次函数2283y x x =-+-.①当点(,4)B m -在这个函数的相关函数的图象上时,求m 的值;②当23x -≤≤时,求函数2283y x x =-+-的相关函数的最大值和最小值. 23.已知:抛物线y 1=﹣x 2﹣2x +3的图象交x 轴于点A ,B (点A 在点B 的左侧). (1)请在平面直角坐标系内画出二次函数y 1=﹣x 2﹣2x +3的草图,并标出点A 的位置; (2)点C 是直线y 2=﹣x +1与抛物线y 1=﹣x 2﹣2x +3异于B 的另一交点,则点C 的坐标为 ;当y 1≥y 2时x 的取值范围是 .24.如图,在平面直角坐标系中,(0,1)A ,(2,0)B ,将线段AB 绕原点O 逆时针旋转90°,得到线段A B '',且点A ',B ',B 均在抛物线上.(1)求该抛物线的函数表达式.(2)该抛物线的对称轴上有一点Q ,使ABQ △是以AB 为直角边的直角三角形,求Q 点的坐标.25.已知二次函数22y x x m =++的图象与x 轴有且只有一个公共点.(1)求该二次函数的图象的顶点坐标;(2)若()1,Pn y ,()22,Q n y +是该二次函数的图象上的两点,且12y y >,求实数n 的取值范围.26.如图,一农户要建一矩形猪舍,猪舍的一边利用长为12m 的住房墙,另外三边用27m 长的建筑材料围成,为了方便进出,在垂直于住房墙的一边留一个1m 宽的门.所围成矩形猪舍的长、宽分别为多少时,猪舍的面积最大,最大面积是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用对称轴公式和顶点坐标得出﹣4a =a +b +c ,b =﹣2a ,c =﹣3a ,则可对①进行判断;抛物线解析式为y =ax 2﹣2ax ﹣3a ,配成交点式得y =a (x ﹣3)(x +1),可对②进行判断;根据二次函数对称性和二次函数的性质可对③进行判断;计算x =4时,y =5a ,则根据二次函数的性质可对④进行判断.【详解】解:①∵二次函数y =ax 2+bx +c (a ≠0)的顶点坐标为(1,﹣4a ),∴x =﹣2b a=1,且﹣4a =a +b +c , ∴b =﹣2a ,c =﹣3a ,∵抛物线开口向上,则a >0, ∴4a ﹣2b +c =4a +4a ﹣3a =5a >0,故结论①正确;②∵b =﹣2a ,c =﹣3a ,∴y =ax 2﹣2ax ﹣3a =a (x ﹣3)(x +1),∴抛物线y =ax 2+bx +c 与x 轴交于点(﹣1,0),(3,0),故结论②正确;③∵点A (4,y 1)关于直线x =1的对称点为(﹣2,y 1),∴当y 2>y 1,则x 2>4或x 2<﹣2,故结论③错误;④当x =4时,y 1=16a +4b +c =16a ﹣8a ﹣3c =5a ,∴当0≤x 2≤4,则﹣4a ≤y 2≤5a ,故结论④错误.故选:C .【点睛】本题考查了二次函数的图象与性质,掌握二次函数图象与性质的相关知识并能灵活运用所学知识求解是解题的关键.2.B解析:B【分析】根据待定系数法求得抛物线的解析式和AB 的解析式,设(,7)C x x -,则2(,7)D x x x -,根据图象的位置即可得出2(4)9CD x =--+,根据二次函数的性质即可求得.【详解】 解:二次函数2y x bx c =++的图象经过坐标原点O 和点(7,0)A , ∴04970c b c =⎧⎨++=⎩,解得70b c =-⎧⎨=⎩, ∴二次函数为27y x x =-,(7,0)A ,(0,7)B -,∴直线AB 为:7y x =-,令277x x x -=-,解得:11x =,27x =,∴点E 的横坐标为1,则点C 始终在点D 上方,设(,7)C x x -,则2(,7)D x x x -,2227(7)87(4)9CD x x x x x x ∴=---=-+-=--+,17x ∴<<范围内,有最大值9,故选:B .【点睛】本题考查了二次函数的性质,待定系数法求一次函数的解析式,求二次函数的解析式,表示出CD 的关系式是解题的关键.3.C解析:C【分析】根据题目中的函数解析式可以直接写出该抛物线的顶点坐标.【详解】解:∵y=-2x 2-1,∴该抛物线的顶点坐标为(0,-1),故选:C .【点睛】本题考查了二次函数的性质,解答本题的关键是明确题意,利用二次和函数的性质解答. 4.A解析:A【分析】根据次数为2可列方程,再根据函数增减性确定m 值.【详解】解:根据题意可知,232m -=, 解得,5m =∵二次函数y=(m+2)23mx -,当x<0时,y 随x 的增大而增大,∴m+2<0,解得m <-2,综上,m=5-故选:A .【点睛】本题考查了二次函数的定义和增减性,解题关键是根据二次函数的定义列方程,依据增减性确定二次项系数的符号.5.B解析:B【分析】根据抛物线的对称轴可判断①;由抛物线与x 轴的交点及抛物线的对称性以及由x =﹣1时y >0可判断②,由抛物线对称性和增减性,即可判断③;利用抛物线的顶点的纵坐标为3得到244ac b a-=3,即可判断④. 【详解】解:∵抛物线的对称轴为直线x 2b a =-=-2, ∴4a ﹣b =0,所以①正确;∵与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间,∴x =﹣1时y >0,即a ﹣b +c >0,∴所以②错误;由抛物线的对称性知(﹣4,y 1)与(0,y 1)关于对称轴对称,∵抛物线开口向下,对称轴为直线x 2b a=-=-2 ∴当x >-2时,y 随x 的增大而减小,∵-2<0<1∴y 1>y 2∴所以③正确;∵抛物线的顶点坐标为(﹣2,3), ∴244ac b a-=3, ∴b 2+12a =4ac ,∵4a ﹣b =0,∴b =4a ,∴b 2+3b =4ac ,所以④正确;故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ):抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.6.D解析:D【分析】先求出二次函数图象的对称轴,然后根据m 的符号分类讨论,结合图象的特征即可得出结论.【详解】 该二次函数图象的对称轴为直线21122m x m m -=-=-+, 若0m >,对于22m x m -=-无法判断其符号,故A 、B 选项不一定正确; 若0m <,则202m x m -=-<,即22m m--<1,且抛物线的开口向下, ∴当1x >时,y 随x 的增大而减小,故选:D .【点睛】此题考查的是二次函数的图象及性质,解决此题的关键是分类讨论确定对称轴的位置,再结合开口方向进行综合分析.7.B解析:B【分析】根据抛物线与系数的关系判断即可.【详解】解:抛物线开口向下,a<0,故①错误;对称轴在y 轴右侧,a 、b 异号,b >0,故②正确;抛物线与x 轴交点为(﹣1,0),对称轴为直线x =1,根据对称性,另一个交点为(3,0),故③正确;根据图象可知,x 的取值范围是﹣1<x <3时;抛物线在x 轴上方,故④正确; 故选:B .【点睛】本题考查二次函数图象与系数的关系,解题的关键是熟练正确理解二次函数图象与系数的关系,本题属于中等题型.8.B解析:B【分析】①抛物线开口向上,对称轴为直线x =1,即可得出a >0、b <0、c <0,进而可得出abc >0,结论①错误;②由抛物线的对称轴以及与x 轴的一个交点坐标,可得出另一交点坐标为(3,0),进而可得出9a +3b +c =0,结论②正确;③由对称轴直线x=1,可得结论③正确;④2()()0am bm a b +-+≥,可得结论④错误.综上即可得出结论.【详解】解:①∵抛物线开口向上,对称轴为直线x =1,∴a >0,12b a-=,c <0, ∴b =−2a <0,∴abc >0,结论①错误; ②∵二次函数y =ax 2+bx +c (a≠0)的图象与x 轴交于点A (−1,0),对称轴为直线x =1,∴二次函数y =ax 2+bx +c (a≠0)的图象与x 轴的另一个交点为(3,0),∴9a +3b +c =0,结论②正确;③∵对称轴为直线x =1, ∴12b a-=,即:b =−2a , ∴20a b +=,结论③正确;④∵222()()(2)(2)2am bm a b am am a a am am a +-+=---=-+22(21)(1)a m m a m =-+=-≥0,∴2am bm a b +≥+,结论④错误.综上所述,正确的结论有:②③.故选:B .【点睛】本题考查了抛物线与x 轴的交点、二次函数图象与系数的关系、二次函数的性质以及二次函数图象上点的坐标特征,逐一分析四条结论的正误是解题的关键.9.B解析:B【分析】①先求出C 、D 的坐标,再根据两点距离公式求得CD ,便可判断;②当m=0时,可得抛物线与x 轴的两个交点坐标和顶点坐标即可判断;③根据抛物线与x 轴的一个交点坐标和对称轴即可得另一个交点坐标即可判断; ④根据二次函数图象当x 1<1<x 2,且x 1+x 2>2,根据离对称越远的点的纵坐标就越大得出结论.【详解】解:①∵y=x 2-2x+m=(x-1)2+m-1,∴C (0,m ),D (1,m-1),∴,故①正确;②当m=0时,抛物线与x 轴的两个交点坐标分别为A (0,0)、B (2,0),顶点D (1,-1),∴,∴△ABD是等腰直角三角形,故②正确;③当a=-2时,抛物线与x轴的一个交点坐标为(-2,0),∵对称轴x=1,∴另一个交点坐标为(4,0),∴b=4,故③错误;④观察二次函数图象可知:当x1<1<x2,且x1+x2>2,则1-x1<x2-1∴y1<y2.故④正确.故选:B.【点睛】本题考查了二次函数图象与系数的关系、二次函数图象上点的坐标特征、抛物线与x轴的交点、等腰直角三角形,解决本题的关键是综合利用以上知识.10.D解析:D【分析】根据反比例函数图像的位置判断k的符号,再结合二次函数的图像和性质,逐项判断即可【详解】A、由反比例函数kyx=-的图像可知,0k>,则二次函数2y kx x=-+的图像开口应向下,与图像不符,故选项错误;B、由反比例函数kyx=-的图像可知,0k>,则二次函数2y kx x=--的图像开口应向下,与图像不符,故选项错误;C、由反比例函数kyx=的图像可知,0k<,则二次函数2y kx x=--的图像开口向上,对称轴11222bxa k k-=-=-=->-应位于y轴的右侧,与图像不符,故选项错误;D、由反比例函数kyx=的图像可知,0k<,则二次函数2y kx x=-+的图像开口向上,对称轴11222bxa k k=-=-=<-应位于y轴的左侧,与图像相符,故选项正确;故选:D.【点睛】本题考查了反比例函数,二次函数图像的性质,解题关键是熟练掌握反比例函数和二次函数的图像和性质.11.D解析:D【分析】根据二次函数的开口方向,与y轴的交点;一次函数经过的象限,与y轴的交点可得相关图象.【详解】解:∵一次函数经过y轴上的(0,c),二次函数经过y轴上的(0,-c),∴两个函数图象交于y轴上的不同点,故A,C选项错误;当a<0,c<0时,二次函数开口向上,一次函数经过二、三、四象限,故B选项错误;当a<0,c>0时,二次函数开口向上,一次函数经过一、二、四象限,故D选项正确;故选:D.【点睛】本题考查二次函数及一次函数的图象的性质;用到的知识点为:二次函数和一次函数的常数项是图象与y轴交点的纵坐标;一次函数的一次项系数大于0,图象经过一、三象限;小于0,经过二、四象限;二次函数的二次项系数大于0,图象开口向上;二次项系数小于0,图象开口向下.12.B解析:B【分析】根据k>0,k<0,结合反比例函数及二次函数图象及其性质分类讨论.【详解】解:分两种情况讨论:①当k>0时,反比例函数kyx=在一、三象限,而二次函数()20y kx k k=-≠开口向上,与y轴交点在原点下方,故C选项错误,B选项正确;②当k<0时,反比例函数kyx=在二、四象限,而二次函数()20y kx k k=-≠开口向下,与y轴交点在原点上方,故A选项与D选项错误.故选B.【点睛】本题考查了反比例函数图象性质和二次函数图象性质.关键是根据k>0,k<0,结合反比例函数及二次函数图象及其性质分类讨论.二、填空题13.【分析】先由正方形的性质及PQ⊥EP得出∠AEP=∠BPQ∠A=∠B=90°从而可判定△APE∽△BQP根据相似三角形的性质得出比例等式;再根据AD=4AE=3DE 得出AE 和DE 的长然后设BQ=yA 解析:43【分析】先由正方形的性质及PQ ⊥EP ,得出∠AEP=∠BPQ ,∠A=∠B=90°,从而可判定△APE ∽△BQP ,根据相似三角形的性质得出比例等式;再根据AD=4,AE=3DE ,得出AE 和DE 的长,然后设BQ=y ,AP=x ,则BP=4-x ,将相关数据代入比例等式,变形得出y 关于x 的二次函数,配方,即可得出答案.【详解】解:在正方形ABCD 中,∠A=∠B=90°,且PQ ⊥EP∴∠AEP+∠APE=90°, ∠QPB+∠APE=90°∴∠AEP=∠BPQ又∠A=∠B=90°∴△APE ∽△BQP ∴AE AP BP BQ=, 又AD=4,AE=3DE ,∴AE=334AD =,DE=4-3=1, 设BQ=y ,AP=x ,则BP=4-x , ∴34x x y=- 化简得:21433y x x =-+, 整理得:()214233y x =--+, ∴当x=2时,y 有最大值为43,即BQ 的最大值是43, 故答案为:43. 【点睛】 本题考查了正方形的性质、相似三角形的判定与性质及二次函数的性质,熟练掌握相关性质及定理是解题的关键.14.【分析】先确定抛物线线的顶点坐标为(01)再利用关于原点对称的点的坐标特征得到点(01)变换后所得对应点的坐标为(0-1)然后利用顶点式写出旋转后抛物线【详解】解:抛物线的顶点坐标为(01)点关于原 解析:2112y x =--【分析】 先确定抛物线线2112y x =+的顶点坐标为(0,1),再利用关于原点对称的点的坐标特征得到点(0,1)变换后所得对应点的坐标为(0,-1),然后利用顶点式写出旋转后抛物线.【详解】解:抛物线2112y x =+的顶点坐标为(0,1),点关于原点O 的对称点的坐标为(0,-1),此时旋转后抛物线的开口方向相反,所以旋转后的抛物线的解析式为2112y x =--. 故答案为:2112y x =--. 【点睛】本题考查了二次函数图象与几何变换:抛物线绕某点旋转180°得到旋转后的抛物线开口相反,抛物线的开口大小不变. 15.【分析】利用函数图象通过确定函数和的图象与直线的交点位置可得到m 与n 的大小【详解】解:方程的解为函数的图象与直线的交点的横坐标的解为一次函数与直线的交点的横坐标如图由图象得故答案为:【点睛】本题考查 解析:m n <【分析】利用函数图象,通过确定函数2(3)y x x =-和3y x =-的图象与直线1y =的交点位置可得到m 与n 的大小.【详解】解:方程2(3)1x x -=的解为函数2(3)y x x =-的图象与直线1y =的交点的横坐标,31x -=的解为一次函数3y x =-与直线1y =的交点的横坐标,如图,由图象得m n <.故答案为:m n.【点睛】本题考查了函数图象的应用,会利用图象的交点的坐标表示方程或方程组的解是解题的关键.16.3【分析】设P(x)则Q(xx−2)得到PQ=−x+2根据三角形面积公式得到S△POQ=−(x−2)2+3根据二次函数的性质即可求得最大值【详解】解:∵PQ⊥x轴∴设P(x)则Q(xx−2)∴PQ=解析:3【分析】设P(x,4x),则Q(x,12x−2),得到PQ=4x−12x+2,根据三角形面积公式得到S△POQ=−14(x−2)2+3,根据二次函数的性质即可求得最大值.【详解】解:∵PQ⊥x轴,∴设P(x,4x ),则Q(x,12x−2),∴PQ=4x −12x+2,∴S△POQ=12(4x−12x+2)•x=−14(x−2)2+3,∵−14<0,∴△POQ面积有最大值,最大值是3,故答案为:3.【点睛】本题考查了一次函数图象上点的坐标特征,二次函数的性质,反比例函数y=kx(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.17.y=x2+2【分析】根据向下平移纵坐标减求出平移后函数的顶点坐标再利用顶点式写出解析式即可【详解】解:函数y=x2+3的顶点坐标为(03)∵函数图象向下平移1个单位长度∴得到的函数图象顶点坐标为(0解析:y=x2+2.【分析】根据向下平移纵坐标减求出平移后函数的顶点坐标,再利用顶点式写出解析式即可.【详解】解:函数y =x 2+3的顶点坐标为(0,3),∵函数图象向下平移1个单位长度,∴得到的函数图象顶点坐标为(0,2),∴得到函数解析式为y =x 2+2.故答案为:y =x 2+2.【点睛】本题考查了二次函数的平移变换,通过平移求出新图象顶点坐标是关键.18.(2-3)【分析】根据坐标特点判定AB 两点是一对对称点从而得到抛物线的对称轴根据对称轴x=确定b 的值从而确定顶点坐标【详解】∵和是抛物线上的两点∴抛物线对称轴为x==2∴顶点坐标的横坐标为2;∵∴b解析:(2,-3).【分析】根据坐标特点,判定A ,B 两点是一对对称点,从而得到抛物线的对称轴,根据对称轴x=2b a-,确定b 的值,从而确定顶点坐标. 【详解】 ∵()1,A m -和()5,B m 是抛物线21y x bx =++上的两点,∴抛物线对称轴为x=152-+=2, ∴顶点坐标的横坐标为2; ∵22b -=, ∴b= -4, ∴241y x x =-+,当x=2时,22421y =-⨯+= -3,∴抛物线的顶点坐标为(2,-3),故应填(2,-3).【点睛】本题考查了利用抛物线的对称点确定顶点坐标,熟练掌握抛物线对称轴与对称点的关系,抛物线顶点坐标的计算公式是解题的关键.19.y=x2-1【分析】先把抛物线写成顶点式再写出平移后的顶点根据顶点式可求平移后抛物线的解析式【详解】解:∴原抛物线顶点坐标为(2-1)向左平移2个单位平移后抛物线顶点坐标为(0-1)∴平移后抛物线解解析:y=x 2-1【分析】先把抛物线写成顶点式,再写出平移后的顶点,根据顶点式可求平移后抛物线的解析式.【详解】解:()22-4+3-2-1y x x x ==,∴原抛物线顶点坐标为(2,-1),向左平移2个单位,平移后抛物线顶点坐标为(0,-1), ∴平移后抛物线解析式为:21y x =-,故答案为:21y x =-.【点睛】本题考查了抛物线的平移与抛物线解析式的关系,关键是把抛物线的平移转化为顶点的平移,运用顶点式求抛物线的解析式. 20.y2<y1<y3【分析】根据二次函数的解析式得出图象的开口向上对称轴是直线x=根据x >时y 随x 的增大而增大即可得出答案【详解】解:∵y=x2﹣3x ∴图象的开口向上对称轴是直线x=∵A (0y1)B (1解析:y 2<y 1<y 3【分析】根据二次函数的解析式得出图象的开口向上,对称轴是直线x=32,根据x >32时,y 随x 的增大而增大,即可得出答案.【详解】解:∵y=x 2﹣3x ,∴图象的开口向上,对称轴是直线x=32. ∵A (0,y 1),B (1,y 2),C (4,y 3)是抛物线y=x 2﹣3x 上的三点,且0<1<32<4, ∴y 2<y 1<y 3.故答案为:y 2<y 1<y 3.【点睛】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能熟练地运用二次函数的性质进行推理是解此题的关键.三、解答题21.(1)y =x 2﹣2x ﹣3,对称轴为:x =1,顶点(1,-4);(2)D (2,﹣3)【分析】(1)把(1,﹣4)和(﹣2,5)代入,解方程即可;根据解析式可求对称轴和顶点坐标; (2)根据对称性确定D 点位置,求出坐标.【详解】解:(1)由题意,得14425b c b c ++=-⎧⎨-+=⎩, 解得,23b c =-⎧⎨=-⎩,所以,该抛物线的解析式为:y =x 2﹣2x ﹣3;抛物线y =x 2﹣2x ﹣3的对称轴为:2121x -=-=⨯, 把x =1代入y =x 2﹣2x ﹣3得,y =-4,∴抛物线的顶点坐标为(1,-4) (2)根据轴对称的性质,点C 关于x =1的对称点D 即为所求,此时,AC =BD ,BC =AD ,在△ABC 和△BAD 中, ∵AB BA AC BD BC AD =⎧⎪=⎨⎪=⎩,∴△ABC ≌△BAD (SSS ).在y =x 2﹣2x ﹣3中,令x =0,得y =﹣3,则C (0,﹣3),根据C 点、D 点关于x =1对称,则D 点坐标为(2,-3).【点睛】本题考查了待定系数法求二次函数解析式和全等三角形的判定,解题关键是熟练运用待定系数法求解析式,根据二次函数的对称性解决问题.22.(1)-5;(2)①m =322-,m =222+,m =22-②最大值为3,最小值为-27【分析】(1)先得到2y ax =-的相关函数,再将点A 代入计算即可;(2)①写出二次函数2283y x x =-+-的相关函数,再代入计算; ②根据二次函数的最大值和最小值的求法解答.【详解】解:(1)2y ax =-的相关函数为2(0)2(0)ax x y ax x -+≥⎧=⎨-<⎩, 将(1,3)A -代入2y ax =-,得5a =-; (2)①二次函数2283y x x =-+-的相关函数为22283(0)283(0)x x x y x x x ⎧-+≥=⎨-+-<⎩,当0m <时,将(,4)B m -代入2283y x x =-+-,得:m =22+(舍去)或m =22-, 当0m ≥时,将(,4)B m -代入2283y x x =-+,得:m =22+m =22-,∴m =22-或m =22+或m =22- ②当20x -≤<时,2283y x x =-+-,抛物线的对称轴为2x =,此时y 随x 的增大而增大,∴此时273y -≤<-,当03x ≤≤时,函数2283y x x =-+,抛物线的对称轴为2x =,当2x =有最小值,最小值为-5,当0x =时,有最大值,最大值3y =,∴当23x -≤≤时,函数2283y x x =-+-的相关函数的最大值为3,最小值为-27.【点睛】本题考查的是互为相关函数的定义,掌握二次函数的性质、二次函数与一元二次方程的关系是解题的关键.23.(1)见解析;(2)()2,3-,21x -≤≤【分析】(1)利用五点法作出二次函数的图像,然后令x=0求出A 点坐标即可;(2)将两个函数联立形成新的一元二次方程,然后求解C 点坐标,最后利用图像判断x 的取值范围即可.【详解】(1)由题意得:1由上图得A 点坐标为()3,0-;(2)由题意得:2123x x x -+=--+,解得12x =-,21x =,当2x =-时,()213y =--+=,∴C 点坐标为()2,3-,由上图得,当y 1≥y 2时,21x -≤≤.【点睛】本题考查了二次函数的图像和性质,重点是根据五点法作出二次函数的图像,然后利用数形结合思想进行判断.24.(1)22y x x =-++;(2)(12,-3)或(12,2) 【分析】(1)利用旋转的性质得出A′(-1,0),B′(0,2),再利用待定系数法求二次函数解析式即可;(2)分AQ 是斜边、BQ 是斜边两种情况,利用勾股定理分别求解即可.【详解】解:(1)线段AB 绕原点O 逆时针旋转90°,得到线段A B '',又A (0,1),B (2,0),∴A′(-1,0),B′(0,2),∵A′(-1,0),B′(0,2),B (2,0),设抛物线的解析式为:y=a (x+1)(x-2)将B′(0,2)代入得出:2=a (0+1)(0-2),解得:a=-1,故满足条件的抛物线的解析式为y=-(x+1)(x-2)=-x 2+x+2;(2)由抛物线的表达式知,函数的对称轴为x=12,故设点Q (12,m ),则()222112AQ m ⎛⎫=+- ⎪⎝⎭,222122BQ m ⎛⎫=-+ ⎪⎝⎭,AB 2=22+1=5, 当AQ 是斜边时, 则()22221112522m m ⎛⎫⎛⎫+-=-++ ⎪ ⎪⎝⎭⎝⎭, 解得m=-3,当BQ 是斜边时,()22221115222m m ⎛⎫⎛⎫+-+=-+ ⎪ ⎪⎝⎭⎝⎭, 解得m=2,故点Q 的坐标为(12,-3)或(12,2). 【点睛】本题主要考查了待定系数法求二次函数的解析式,二次函数的性质,坐标和图形的变换-旋转,其中(2),利用勾股定理得出方程求出m 是解题关键.25.(1)顶点坐标为()1,0-;(2)2n <-【分析】(1)利用配方法将二次函数解析式变形为顶点式,再利用图象与x 轴有且只有一个公共点,则顶点的纵坐标为0,故函数图象的顶点坐标为(-1,0),(2)将n ,n+2代入二次函数解析式即可得出n 的取值范围.【详解】解:(1)()22211y x x m x m =++=++-,对称轴1x =-∵与x 轴有且只有一个公共点,∴顶点的纵坐标为0.∴函数图象的顶点坐标为()1,0-(2)∵()1,P n y ,()22,Q n y +是该二次函数的图象上的两点,且12y y >,()()22212221n n n n ++>++++,化简整理得,480n +<,∴2n <-,∴实数n 的取值范围是2n <-.【点睛】本题考查了二次函数的性质及解不等式,利用数形结合思想解题是关键.26.矩形猪舍的长、宽分别为12米、8米时,猪舍的面积最大,最大面积是96平方米.【分析】设猪舍的宽为m x ,则长为(2721)m x -+,由题意可得2(2721)2(7)98y x x x =-+=--+,然后再根据二次函数的性质进行求最大值即可;【详解】设猪舍的宽为m x ,则长为(2721)m x -+,由题意得2(2721)2(7)98y x x x =-+=--+,对称轴为7x =, 272112x -+≤,27210x -+>,814x ∴≤<,在22(7)98y x =--+中,∵20-<,∴在对称轴右侧y 随着x 的增大而减小,所以当8x =米时,即矩形猪舍的长、宽分别为12米、8米时,猪舍的面积最大,最大面积是96平方米.【点睛】本题考查了二次函数的应用,矩形的面积公式的运用及二次函数的性质,解答时寻找题目的等量关系是关键;。

二次函数单元自测三,四

二次函数单元自测三,四

二次函数单元测试三一、填空题:1.抛物线()2311y x =--+开口 ,顶点坐标是 ,对称轴是 ,当x = 时,y 有最 值为 。

2.抛物线()221y x =+-开口 ,顶点坐标是 ,对称轴是 ,当x = 时,y 有最 值为 。

3.抛物线()21653y x =--+开口 ,顶点坐标是 ,对称轴是 ,当x = 时,y 有最 值为 。

4.函数()2532y x =--的图象可由函数25y x =的图象沿x 轴向 平移 个单位,再沿y 轴向 平移 个单位得到。

5.若把函数()2522y x =--的图象分别向下、向左移动2个单位,则得到的函数解析式为 。

6.二次函数当x =5时有最大值4,图象形状与23y x =的图象相同,则该二次函数的解析式为 。

7.把二次函数y =x 2-4x +5化成y =(x —h )2+k 的形式: y = 。

8.抛物线y =x 2+8x +14的开口 ,顶点坐标是,对称轴是 ,当x = 时,y 有最 值为 。

9.抛物线y =2x 2+4x +5的开口 ,顶点坐标是,对称轴是 ,当x = 时,y 有最 值为 。

10.抛物线6422++-=x x y 的开口 ,顶点坐标是 ,对称轴是 ,当x = 时,y 有最 值为 。

11.二次函数223y x x =--的最小值是 。

二、选择题:12.二次函数y =x 2-2x +1的顶点在( )A .第一象限 B.x 轴上 C.y 轴上 D.第四象限 13.下列关于抛物线y =x 2+2x +1的说法中,正确的是 ( )A .开口向下 B.对称轴是直线x =1 C.与x 轴有两个交点 D.顶点坐标是(-1,0)14.二次函数y =1-6x -3x 2的顶点坐标和对称轴分别是 ( )A.顶点(1,4) 对称轴x =1B.顶点(-1,4) 对称轴x =-1C.顶点(1,4) 对称轴x =4D.顶点(-1,4) 对称轴x =4 15.(2007广州市)二次函数221y x x =-+与x 轴的交点个数是( )A .0B .1C .2D .316.若抛物线y=x2-2mx+m2+m+1的顶点在第二象限,则常数m 的取值范围是( )A.m<-1或m>2B.-1<m<2C.-1<m<0D.m>1 17. (2007南充)如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出四个结论:①b 2>4ac ;②2a +b =0;③a -b +c =0;④5a <b .其中正确结论是( )(A )②④ (B )①④ (C )②③ (D )①③18.如图,观察二次函数y=ax 2+bx+c 的图象可知点(b ,c )一定在第( )象限. A.一 B.二 C.三 D.四三、解答题:19.写出下列抛物线的开口方向、对称轴及顶点坐标: ⑴()2235y x =++; ⑵()2312y x =---;⑶()2437y x =-+; ⑷()2526y x =-+-.20.通过配方,写出下列抛物线的开口方向、对称轴及顶点坐标:⑴22y x x =+; ⑵22y x x =--;⑶223y x x =--; ⑷2288y x x =-+-; ⑸21432y x x =-+; ⑹2144y x x =-+-.21.已知一个二次函数的图象经过(-1,-1),(0,-2),(1,1)三点,求这个函数的解析式.第17题图二次函数单元测试四一、填空题:1.已知二次函数223y x x =--的图象如图所示,则方程2230x x --=的解是 ,不等式 2230x x -->的解集是 ,不等式 2230x x --<的解集是 .2.已知方程22350x x --=的两根是52和-1,则二次函数2235y x x =--与x 轴的两个交点间的距离为 . 3.求当x =-1时有最大值2,且与x 轴两个交点间的距离为2的抛物线的解析式为 . 4.若二次函数y =x 2-4x +c 的图象与x 轴没有交点,其中c 为整数,则c =___________________(只要求写一个). 5.已知二次函数)0(2≠++=a c bx ax y 的顶点坐标(1-,2.3-)及部分图象如图,由图象可知关于x 的方程02=++c bx ax 的两个根分别是3.11=x 和_______2=x .6.抛物线5232--=x x y 与y 轴的交点坐标为 ,与x 轴的交点坐标为 .7.已知抛物线c x ax y ++=2与x 轴交点的横坐标为 –1,则c a += . 二、选择题:8.二次函数y =x 2-3x 的图象与x 轴两个交点的坐标分别为( )A.(0,0),(0,3)B.(0,0),(3,0)C.(0,0),(-3,0)D.(0,0),(0,-3)9.y =14x 2-7x -5与 y 轴的交点坐标为( )A .(0,-3) B.(0,-5) C.( -5,0) D.(0,-20)10.抛物线y =x 2 +2x -3与x 轴的交点的个数有( ) A .0个 B .1个 C .2个 D .3个 11.抛物线22n mx x y --=)0(≠mn 的图象与x 轴交点为( )A .二个交点B .一个交点C . 无交点D .不能确定 12.函数m x mx y 22-+=(m 是常数)的图象与x 轴的交点有( )A .0个B .1个C .2个D .1个或2个 13.若抛物线c bx ax y ++=2的所有点都在x 轴下方,则必有( )A.04,02>-<ac b aB.04,02>->ac b aC.04,02<-<ac b aD.04,02<->ac b a三、解答题: 14.函数132++-=x ax ax y 的图象与x 轴有且只有一个交点,求a 的值及交点坐标.15.(2006广东省)求二次函数y=x 2-2x -1的顶点坐标及它与x 轴的交点坐标.16.已知二次函数y =2x 2-4x -6,求:⑴求此函数图象的开口方向,对称轴、顶点坐标、最大(或最小)值;⑵设此函数图象与x 轴交点分别为A 、B ,求线段AB 的长.17.已知抛物线c bx ax y ++=2经过(0,1),(2,-3) 和 (-1,9) ,⑴求抛物线的解析式;⑵求此函数图象的开口方向,对称轴、顶点坐标、最大(或最小)值.18.已知二次函数1)2(2++-+-=m x m x y,试说明:不论m 取任何实数,这个二次函数的图象必与x 轴有两个交点.第1题图第5题图。

二次函数测试卷四181-206

二次函数测试卷四181-206

二次函数测试卷四181-206一.选择题2182.(2011•宿迁)已知二次函数y=ax+bx+c(a≠0)的图象如图,则下列结论中正确的是()183.(2008•鄂州)小明从图所示的二次函数y=ax+bx+c的图象中,观察得出了下面五条信息:①c<0;②abc>0;③a﹣b+c>0;④2a﹣3b=0;⑤c﹣4b>0,你认为其中正确信息的个数有()186.(2012•乐山)二次函数y=ax+bx+1(a≠0)的图象的顶点在第一象限,且过点(﹣1,0).设t=a+b+1,则t187.(2012•菏泽)已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+c和反比例函数y=在同一平面直角坐标系中的图象大致是().C D.192.已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2),试比较y1和y2的大小:y1_________y2.(填“>”,“<”或“=”)193.(2011•日照)如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是_________.(只要求填写正确命题的序号)194.(2013•鹤壁二模)如图,已知二次函数y=x2+bx+c的图象经过点(﹣1,0),(1,﹣2),该图象与x轴的另一个交点为C,则AC长为_________.2y的对应值如下表:从上表可知,下列说法中正确的是_________.①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线;④在对称轴左侧,y随x增大而增大.196.抛物线y=﹣x2+bx+c的图象如图,若将其向左平移2个单位,再向下平移3个单位,则平移后的解析式为_________.197.(2012•上海)将抛物线y=x2+x向下平移2个单位,所得抛物线的表达式是_________.198.(2012•枣庄)二次函数y=x2﹣2x﹣3的图象如图所示.当y<0时,自变量x的取值范围是_________.三、解答题199.如图,四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线y=ax2+bx+c恰好经过x轴上A,B两点.(1)求A,B,C三点的坐标;(2)求经过A,B,C三点的抛物线的解析式.200.已知抛物线y=﹣x2+(6﹣)x+m﹣3与x轴有A,B两个交点,且A,B两点关于y轴对称.(1)求m的值;(2)写出抛物线的关系式及顶点坐标.201.(2011•随州)我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x万元,可获得利润P=(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元,可获利润(万元).(1)若不进行开发,求5年所获利润的最大值是多少?(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?(3)根据(1)、(2),该方案是否具有实施价值?202.(2011•沈阳)一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤11).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为_________元,今年生产的这种玩具每件的出厂价为_________元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.203.(2012•珠海)如图,二次函数y=(x﹣2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x﹣2)2+m的x的取值范围.204.(2012•益阳)已知:如图,抛物线y=a(x﹣1)2+c与x轴交于点A(,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P′(1,3)处.(1)求原抛物线的解析式;(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P′作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W ”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W ”图案的高与宽(CD )的比非常接近黄金分割比(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:,,结果可保留根号)205.(2011•荆门)2011年长江中下游地区发生了特大旱情.为抗旱保丰收,某地政府制定了农户投资购买抗旱设12(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.206.(2012•南昌)如图,已知二次函数L 1:y=x 2﹣4x+3与x 轴交于A 、B 两点(点A 在点B 左边),与y 轴交于点C .(1)写出二次函数L 1的开口方向、对称轴和顶点坐标;(2)研究二次函数L 2:y=kx 2﹣4kx+3k (k ≠0). ①写出二次函数L 2与二次函数L 1有关图象的两条相同的性质; ②若直线y=8k 与抛物线L 2交于E 、F 两点,问线段EF 的长度是否发生变化?如果不会,请求出EF 的长度;如果会,请说明理由.2014年江苏省盐城市射阳县特庸中学中考数学培优讲练:第12讲二次函数参考答案与试题解析2﹣182.(2011•宿迁)已知二次函数y=ax+bx+c(a≠0)的图象如图,则下列结论中正确的是()183.(2008•鄂州)小明从图所示的二次函数y=ax+bx+c的图象中,观察得出了下面五条信息:①c<0;②abc>0;③a﹣b+c>0;④2a﹣3b=0;⑤c﹣4b>0,你认为其中正确信息的个数有()﹣=186.(2012•乐山)二次函数y=ax+bx+1(a≠0)的图象的顶点在第一象限,且过点(﹣1,0).设t=a+b+1,则t187.(2012•菏泽)已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+c和反比例函数y=在同一平面直角坐标系中的图象大致是()D <y=192.已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2),试比较y1和y2的大193.(2011•日照)如图,是二次函数y=ax+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是①③.(只要求填写正确命题的序号)194.(2013•鹤壁二模)如图,已知二次函数y=x+bx+c的图象经过点(﹣1,0),(1,﹣2),该图象与x轴的另一个交点为C,则AC长为3.∴,从上表可知,下列说法中正确的是①③④.①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线;④在对称轴左侧,y随x增大而增大.﹣=时,函数有最大值,而不是的左侧,则平移后的解析式为y=﹣x2﹣2x.=1198.(2012•枣庄)二次函数y=x﹣2x﹣3的图象如图所示.当y<0时,自变量x的取值范围是﹣1<x<3.199.如图,四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线y=ax2+bx+c恰好经过x轴上A,B两点.(1)求A,B,C三点的坐标;(2)求经过A,B,C三点的抛物线的解析式.().(+,解这个方程组,得x200.已知抛物线y=﹣x2+(6﹣)x+m﹣3与x轴有A,B两个交点,且A,B两点关于y轴对称.(1)求m的值;﹣x为:每投入x万元,可获得利润P=(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元,可获利润(万元).(1)若不进行开发,求5年所获利润的最大值是多少?(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?(﹣﹣[100+(﹣a+160划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤11).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为(10+7x)元,今年生产的这种玩具每件的出厂价为(12+6x)元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?203.(2012•珠海)如图,二次函数y=(x﹣2)+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x﹣2)2+m的x的取值范围.得,解得204.(2012•益阳)已知:如图,抛物线y=a (x ﹣1)+c与x 轴交于点A (,0)和点B ,将抛物线沿x 轴向上翻折,顶点P 落在点P ′(1,3)处.(1)求原抛物线的解析式;(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P ′作x 轴的平行线交抛物线于C 、D 两点,将翻折后得到的新图象在直线CD 以上的部分去掉,设计成一个“W ”型的班徽,“5”的拼音开头字母为W ,“W ”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W ”图案的高与宽(CD )的比非常接近黄金分割比(约等于0.618).请你计算这个“W ”图案的高与宽的比到底是多少?(参考数据:,,结果可保留根号) ∴;,CD=(或约等于(1)分别求y1和y2的函数解析式;(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按=71点C.(1)写出二次函数L1的开口方向、对称轴和顶点坐标;(2)研究二次函数L2:y=kx2﹣4kx+3k(k≠0).①写出二次函数L2与二次函数L1有关图象的两条相同的性质;②若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否发生变化?如果不会,请求出EF的长度;如果会,请说明理由.﹣﹣=。

2024年九年级数学上册《二次函数》单元测试及答案解析

2024年九年级数学上册《二次函数》单元测试及答案解析

第二十二章二次函数(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米:当x=3时,y=18,那么当成本为3.2×105元时,边长为()A.1.6×103厘米B.4×102厘米C.0.4×103厘米D.2×103厘米2.如表中列出的是一个二次函数的自变量x与函数y的几组对应值,则下列关于这个二次函数的结论中,正确的是()x....-1034....y....0-5-8-5....A.图象的开口向下B.有最小值-8C.图象与x轴的一个交点是5,0D.图象的对称轴是x=3 23.一次函数y=ax+b和二次函数y=ax2+bx在同一平面直角坐标系中的大致图象可能是()A. B.C. D.4.坐标平面上有两个二次函数的图像,其顶点M、N皆在x轴上,且有一水平线与两图像相交于A、B、C、D四点,各点位置如图所示,若AB=12,BC=4,CD=6,则MN的长度是()A.8B.9C.10D.115.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为1,n,且与x轴的一个交点在点3,0和4,0之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a c-n;④一元二次方程ax2+bx+c =n -1有两个不相等的实数根;⑤若方程ax 2+bx +c =0的两根分别为x 1,x 2,则x 1+x 2=2.其中正确结论的个数有()A.5个B.4个C.3个D.2个6.如图,在正方形ABCD 中,点B ,C 的坐标分别是(-2,1),(2,0),点D 在抛物线y =13x 2+bx 的图像上,则b 的值是()A.23B.13C.73D.437.如图,排球运动员站在点O 处练习发球,球从点O 正上方2m 的A 处发出,其运行的高度y (m )与水平距离x (m )满足关系式y =-160x -6 2+2.6.已知球网与点O 的水平距离为9m ,高度为2.43m ,球场的边界距点O 的水平距离为18m .下列判断正确的是()A.球运行的最大高度是2.43mB.球不会过球网C.球会过球网且不会出界D.球会过球网且会出界8.如图,抛物线G :y 1=a (x +1)2+2与抛物线H :y 2=-(x -2)2-1交于点B (1,-2),且分别与y 轴交于点D ,E .过点B 作x 轴的平行线,交抛物线于点A ,C .则以下结论:①抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;②无论x取何值,y2总是负数;③当-3<x<1时,随着x的增大,y1-y2的值先增大后减小;④四边形AECD为正方形.其中正确的个数是()A.1B.2C.3D.49.设二次函数y=a x+mx+m-k(a<0,m,k是实数),则()A.当k=2时,函数y的最大值为-4aB.当k=2时,函数y的最大值为-2aC.当k=4时,函数y的最大值为-4aD.当k=4时,函数y的最大值为-2a10.如图,已知点A-1,0,点B2,3.若抛物线y=ax2-x+2(a为常数,a≠0)与线段AB有两个不同的公共点,则a的取值范围是()A.a≥3B.a≤-3或34≤a<1C.-3<a<1或a≥3D.34≤a<1二、填空题(本大题共6小题,每小题3分,共18分)11.标准大气压下,质量一定的水的体积V cm3与温度t°C之间的关系满足二次函数V=18t2+104t>0,则当温度为4°C时,水的体积为cm3.12.已知二次函数y=x2-2x+1的图象向左平移两个单位得到抛物线C,点P2,y1,Q3,y2在抛物线C 上,则y1y2(填“>”或“<”);13.在单位为1的正方形网格中,存在一平面直角坐标系.二次函数y1=a1x2+b1x+c1,y2=a2x2+b2x+c2的图象位于如图位置上,若它们的图象位置关系具有对称性,请描述它们的对称关系:,求出y2与直线y=32x+7的交点坐标为.14.如图,将抛物线y =x 2-2x -3在x 轴下方部分沿x 轴翻折,其余部分保持不变,得到图像C 1,当直线y =x +b 与图像C 1恰有两个公共点时,b 的取值范围是.15.九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB ⊥CD 于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得AE =6.6m ,OE =1.4m ,OB =6m ,OC =5m ,OD =3m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是cm 2.16.如图,二次函数y =33x 2-433x +3的图象交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C .现有一长为3的线段DE 在直线y =32上移动,且在移动过程中,线段DE 上始终存在点P ,使得三条线段P A ,PB ,PC 能与某个等腰三角形的三条边对应相等.若线段DE 左端点D 的橫坐标为t ,则t 的取值范围是.三、(本大题共4小题,每小题6分,共24分)17.已知二次函数的图像以A-1,4.为顶点,且过点B2,-5(1)求该函数图像与坐标轴的交点坐标;(2)将函数图像向左平移几个单位,该函数图像恰好经过原点.18.飞机降落后滑行的距离S(单位:m)关于滑行时间t(单位:s)的函数解析式是S=at²+bt,当t=5时,S=262.5;当t=10时,S=450.(1)求该函数的解析式;(2)请结合平面直角坐标系中给出的点,画出符合题意的函数图象,并写出飞机降落后滑行到停下来前进了多远?19.已知一次函数y=ax+b的图像上有两点A、B,它们的横坐标分别是2、-1,若二次函数y=x 2的图像经过A、B两点.(1)求一次函数解析式并在平面直角坐标系内画出两个函数的图像;(2)若P m,y1两点都在二次函数y=x 2的图像上,试比较y1与y2的大小. ,Q m+1,y220.在平面直角坐标系中,抛物线y=x2+bx+c交x轴于A-1,0两点,交y轴于点C,点P m,n,B3,0在抛物线上.(1)求抛物线的表达式及顶点坐标;(2)若此抛物线点P右侧的部分(不含点P)上恰好有三个点到x轴的距离均为2,请直接写出m的取值范围.四、(本大题共3小题,每小题8分,共24分)21.如图,在平面直角坐标系xOy中,已知抛物线的解析式是y1=x2,直线l的解析式是y2=-14,点F0,1 4,点P是在该抛物线上的动点,连接PF,过P作PN⊥l.(1)求证:PF=PN;(2)设点E-2,6,求PE+PF的最小值及此时点P的坐标.22.甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出,如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车,另外,公司为每辆租出的汽车支付月维护费200元.乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.说明:①汽车数量为整数;②月利润=月租车费-月维护费;在两公司租出的汽车数量相等且都为x(单位:辆,0<x≤50)的条件下,甲的利润用y1表示(单位:元),乙的利润用y2(单位:元)表示,根据上述信息,解决下列问题:(1)分别表示出甲、乙的利润,什么情况下甲、乙的利润相同?(2)甲公司最多比乙公司利润多多少元?(3)甲公司热心公益事业,每租出1辆汽车捐出a元(a>0)给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且仅当两公司租出的汽车均为16辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.23.为了测量抛物线的开口大小,某数学兴趣小组将两把含有刻度的直尺垂直放置,并分别以水平放置的直尺和竖直放置的直尺为x,y轴建立如图所示平面直角坐标系,该数学小组选择不同位置测量数据如下表所示,设BD的读数为x,CD读数为y,抛物线的顶点为C.(1)(Ⅰ)列表:①②③④⑤⑥x023456y01 2.254 6.259(Ⅱ)描点:请将表格中的x,y描在图2中;(Ⅲ)连线:请用平滑的曲线在图2将上述点连接,并求出y与x的关系式;(2)如图3所示,在平面直角坐标系中,抛物线y=a x-h2+k的顶点为C,该数学兴趣小组用水平和竖直直尺测量其水平跨度为AB,竖直跨度为CD,且AB=m,CD=n,为了求出该抛物线的开口大小,该数学兴趣小组有如下两种方案,请选择其中一种方案,并完善过程:方案一:将二次函数y=a x-h2+k平移,使得顶点C与原点O重合,此时抛物线解析式为y=ax2.①此时点B 的坐标为;②将点B 坐标代入y=ax2中,解得a=;(用含m,n的式子表示)方案二:设C点坐标为h,k①此时点B的坐标为;②将点B坐标代入y=a x-h2+k中解得a=;(用含m,n的式子表示)(3)【应用】如图4,已知平面直角坐标系xOy中有A,B两点,AB=4,且AB∥x轴,二次函数C1:y1=2x+h2+k和C2:y2=a x+h2+b都经过A,B两点,且C1和C2的顶点P,Q距线段AB的距离之和为10,求a的值.五、(本大题共2小题,每小题12分,共24分)24.中新社上海3月21日电(记者缪璐)21日在上海举行的2023年全国跳水冠军赛女子单人10米跳台决赛中,陈芋汐以416.25分的总分夺得冠军,全红婵位列第二,掌敏洁获得铜牌.在精彩的比赛过程中,全红婵选择了一个极具难度的270C(向后翻腾三周半抱膝).如图2所示,建立平面直角坐标系xOy.如果她从点A3,10起跳后的运动路线可以看作抛物线的一部分,从起跳到入水的过程中,她的竖直高度y(单位:米)与水平距离x(单位:米)近似满足函数关系式y=a x-h.2+k a<0(1)在平时训练完成一次跳水动作时,全红蝉的水平距离x与竖直高度y的几组数据如下:水平距离x/m03 3.54 4.5竖直高度y/m1010k10 6.25根据上述数据,直接写出k的值为,直接写出满足的函数关系式:;(2)比赛当天的某一次跳水中,全红婵的竖直高度y与水平距离x近似满足函数关系y=-5x2+40x-68,记她训练的入水点的水平距离为d1,比赛当天入水点的水平距离为d2,请通过计算比较d1与d2的大小;(3)在(2)的情况下,全红婵起跳后到达最高点B开始计时,若点B到水平面的距离为c,则她到水面的距离y与时间t之间近似满足y=-5t2+c,如果全红婵在达到最高点后需要1.6秒的时间才能完成极具难度的270C动作,请通过计算说明,她当天的比赛能否成功完成此动作?25.综合与实践问题提出某兴趣小组开展综合实践活动,如图1,在正方形ABCD中,E,F分别是AB,AD上一点,且AF=2AE.点M从点E出发,沿正方形ABCD的边顺时针运动;点N同时从点F出发,沿正方形ABCD的边逆时针运动.若两动点的运动速度相同,都为每秒1个单位长度,相遇时M,N两点都停止运动,设点M运动的时间为t秒,△AMN的面积为S,探究S与t的关系.初步感知根据运动的变化,绘制了如图2所示的图象,按不同的函数解析式,图象可分为四段,还有最后一段未画出.(1)AE的长为,AB的长为.(2)a的值为,S的最大值为.延伸探究(3)请求出图2中未画出的最后一段图象对应的函数解析式,并将图象补充完整.(4)求b的值,并求出当S>3时,t的取值范围.第二十二章二次函数(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米:当x=3时,y=18,那么当成本为3.2×105元时,边长为()A.1.6×103厘米B.4×102厘米C.0.4×103厘米D.2×103厘米【答案】B【分析】本题考查了待定系数法求函数解析式的运用,求出函数的解析式是解答本题的关键.设y=kx2,由待定系数法就可以求出解析式,把y=3.2×105代入函数解析式就可以求出结论.【详解】解:设y=kx2,∵当x=3时,y=18,∴9k=18,k=2,∴y=2x2,当成本为3.2×105元时,有2x2=3.2×105,x2=1.6×105,x=4×102.故选:B.2.如表中列出的是一个二次函数的自变量x与函数y的几组对应值,则下列关于这个二次函数的结论中,正确的是()x....-1034....y....0-5-8-5....A.图象的开口向下B.有最小值-8C.图象与x轴的一个交点是5,0D.图象的对称轴是x=3 2【答案】C【分析】本题考查了待定系数法求二次函数解析式,二次函数的图象和性质等知识点,学会根据表格中的信息求得函数的解析式是解题的关键.由表格中的几组数求得二次函数的解析式,然后通过函数的性质即可得出结果.【详解】解:设二次函数的解析式为y=ax2+bx+c(a、b、c为常数,a≠0),由题意可知a-b+c=0c=-59a+3b+c=-8 ,解得a=1b=-4 c=-5 ,∴二次函数的解析式为y=x2-4x-5 =x-5x+1=x -2 2-9,∴函数的图象开口向上,顶点为2,-9 ,图象与x 轴的交点分别为-1,0 和5,0 ,∴图象的对称轴是x =2,函数有最小值-9,∴选项A 、B 、D 不符合题意,选项C 符合题意.故选:C .3.一次函数y =ax +b 和二次函数y =ax 2+bx 在同一平面直角坐标系中的大致图象可能是()A. B.C. D.【答案】B 【分析】本题考查抛物线和直线的性质,本题可先由一次函数y =ax +b 图象得到字母系数的正负,再与二次函数y =ax 2+bx 的图象相比是否一致.【详解】解:A 、由抛物线可知,a <0,x =-b 2a<0,得b <0,由直线可知,a >0,b >0,故本选项不符合题意;B 、由抛物线可知,a >0,x =-b 2a <0,得b >0,由直线可知,a >0,b >0,故本选项符合题意;C 、由抛物线可知,a <0,x =-b 2a <0,得b <0,由直线可知,a <0,b >0,故本选项不符合题意;D 、由抛物线可知,a >0,x =-b 2a>0,得b <0,由直线可知,a <0,b >0,故本选项不符合题意.故选:B4.坐标平面上有两个二次函数的图像,其顶点M 、N 皆在x 轴上,且有一水平线与两图像相交于A 、B 、C 、D 四点,各点位置如图所示,若AB =12,BC =4,CD =6,则MN 的长度是()A.8B.9C.10D.11【答案】B 【分析】本题考查了二次函数的图像与性质,线段长度的相关计算,熟练掌握以上知识点是解题的关键.由AB ,BC ,CD 的长度以及根据二次函数的对称性可以知道,M 和C ,N 和B ,C 和B 横坐标的差,从而推出M 和N 的横坐标之差,得到MN 的长度.【详解】由A、B、C、D四点在同一水平线,可以知道四点纵坐标相同∵AB=12,BC=4,CD=6,∴AC=AB+BC=16,BD=4+6=10∴x C-x M=AC2=8,x N-x B=BD2=5又∵x C-x B=BC=4∴MN=x N-x M=(x N-x B)+(x C-x M)-(x C-x B)=5+8-4=9.故选:B.5.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为1,n,且与x轴的一个交点在点3,0和4,0之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a c-n;④一元二次方程ax2+bx+ c=n-1有两个不相等的实数根;⑤若方程ax2+bx+c=0的两根分别为x1,x2,则x1+x2=2.其中正确结论的个数有()A.5个B.4个C.3个D.2个【答案】B【分析】本题主要考查了二次函数图象与其系数的关系,二次函数的性质等等,根据开口向下得到a<0,再根据顶点坐标结合对称轴公式得到b=-2a>0,即b+2a=0,则可判断②;由对称性可得当x=-1时,y=a-b+c>0,则可判断②;根据函数图象可知抛物线与直线y=n-1有两个交点,则可判断④;根据二次函数与一元二次方程之间的关系可判断④.【详解】解:∵抛物线开口向下,∴a<0,∵顶点坐标为1,n,∴抛物线对称轴为直线x=-b2a=1,∴b=-2a>0,即b+2a=0,∴3a+b=2a+b+a=a<0,②错误;∵当x=3时y>0,抛物线对称轴为直线x=1,∴当x=-1时,y=a-b+c>0,①正确;∵抛物线顶点纵坐标为n,∴4ac-b24a=n,∴b2=4ac-4an=4a c-n,③正确;由图象可得抛物线与直线y=n-1有两个交点,∴ax2+bx+c=n-1有两个不相等的实数根,④正确;∵抛物线对称轴为直线x=1,方程ax2+bx+c=0的两根分别为x1,x2,,∴x1+x22=1,∴x1+x2=2,⑤正确.故选:B .6.如图,在正方形ABCD 中,点B ,C 的坐标分别是(-2,1),(2,0),点D 在抛物线y =13x 2+bx 的图像上,则b 的值是()A.23B.13C.73D.43【答案】B【分析】本题考查二次函数与几何的综合应用,作BE ⊥x 轴,DF ⊥x 轴,证明△BEC ≌△CFD ,进而求出D 点坐标,代入解析式进行求解即可.【详解】解:如图所示,作BE ⊥x 轴,DF ⊥x 轴,则:∠BEO =∠CFD =90°,∵四边形ABCD 是正方形,∴BC =CD ,∠BCD =90°,∴∠BCE =∠CDF =90°-∠DCF ,∴△BEC ≌△CFD ,∴CF =BE ,DF =CE ,∵点B ,C 的坐标分别是(-2,1),(2,0),∴BE =CF =1,OC =2,DF =CE =2+2=4,∴OF =3,∴D 3,4 ,∵点D 在抛物线y =13x 2+bx 的图像上,∴4=13×32+3b ,∴b =13;故选B .7.如图,排球运动员站在点O 处练习发球,球从点O 正上方2m 的A 处发出,其运行的高度y (m )与水平距离x (m )满足关系式y =-160x -6 2+2.6.已知球网与点O 的水平距离为9m ,高度为2.43m ,球场的边界距点O 的水平距离为18m .下列判断正确的是()A.球运行的最大高度是2.43mB.球不会过球网C.球会过球网且不会出界D.球会过球网且会出界【答案】D【分析】本题主要考查了二次函数的实际应用.根据顶点式的特点可知球运行的最大高度为2.6m,由此即可判断A;求出当x=9时,y的值,再与2.43m进行比较即可判断B;求出当x=18时,y的值,再与0比较即可判断C、D.【详解】解:∵抛物线解析式为y=-160x-62+2.6,∴球运行的最大高度为2.6m,故A说法错误,不符合题意;在y=-160x-62+2.6中,当x=9时,y=-1609-62+2.6=2.45>2.43,∴球会过球网,故B说法错误,不符合题意;在y=-160x-62+2.6中,当x=18时,则y=-16018-62+2.6=0.2>0,∴球会过球网且会出界,故C说法错误,不符合题意,D说法正确,符合题意;故选D.8.如图,抛物线G:y1=a(x+1)2+2与抛物线H:y2=-(x-2)2-1交于点B(1,-2),且分别与y轴交于点D,E.过点B作x轴的平行线,交抛物线于点A,C.则以下结论:①抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;②无论x取何值,y2总是负数;③当-3<x<1时,随着x的增大,y1-y2的值先增大后减小;④四边形AECD为正方形.其中正确的个数是()A.1B.2C.3D.4【答案】C【分析】①先求抛物线G的解析式,再根据抛物线G,H的顶点坐标,判断平移方向和平移距离即可判断②;②根据非负数的相反数或者直接由图像判断即可;③先根据题意得出-3<x<1时,观察图像可知y1 >y2,然后计算y1-y2,进而根据一次函数的性质即可判断;④分别计算出A,E,C,D的坐标,根据正方形的判定定理进行判断即可.【详解】①∵抛物线G:y1=a(x+1)2+2与抛物线H:y2=-(x-2)2-1交于点B1,-2,∴x=1,y=-2,即-2=a(1+1)2+2,解得a=-1,∴抛物线G:y1=-x+12+2,∴抛物线G的顶点(-1,2),抛物线H的顶点为(2,-1),将(-1,2)向右平移3个单位,再向下平移3个单位即为(2,-1),即抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到,故①正确;②∵(x-2)2≥0,∴-(x-2)2≤0,∴y2=-x-22-1≤-1,∴无论x取何值,y2总是负数,故②正确;③∵B1,-2,∵将y=-2代入抛物线G:y1=-x+12+2,解得x1=-3,x2=1,∴A(-3,-2),将y=-2代入抛物线H:y2=-x-22-1,解得x1=3,x2=1,∴C(3,-2),∵-3<x<1,从图像可知抛物线G的图像在抛物线H图像的上方,∴y1>y2∵y1-y2=-(x+1)2+2-[-(x-2)2-1]=-6x+6∴当-3<x<1,随着x的增大,y1-y2的值减小,故③不正确;④设AC与y轴交于点F,∵B1,-2,∴F(0,-2),由③可知∴A(-3,-2),C(3,-2),∴AF=CF,AC=6,当x=0时,y1=1,y2=-5,即D(0,1),E(0,-5),∴DE=6,DF=EF=3,∴四边形AECD是平行四边形,∵AC=DE,AC⊥DE,∴四边形AECD是正方形,故④正确,综上所述,正确的有①②④,故选:C .【点睛】本题考查了二次函数图像与性质,一次函数的性质,平移,正方形的判定定理,解题的关键是综合运用以上知识.9.设二次函数y =a x +m x +m -k (a <0,m ,k 是实数),则()A.当k =2时,函数y 的最大值为-4aB.当k =2时,函数y 的最大值为-2aC.当k =4时,函数y 的最大值为-4aD.当k =4时,函数y 的最大值为-2a【答案】C【分析】此题考查了二次函数的图象和性质、求二次函数的最值,求出二次函数y =a x +m (x +m -k )与x 轴的交点坐标是-m ,0 ,-m +k ,0 .得到二次函数的对称轴是直线x =-m -m +k 2=-2m +k 2.根据开口方向进一步求出最值即可.【详解】解:由题意,令y =0,∴a x +m (x +m -k )=0,∴x 1=-m ,x 2=-m +k .∴二次函数y =a x +m (x +m -k )与x 轴的交点坐标是-m ,0 ,-m +k ,0 .∴二次函数的对称轴是:直线x =-m -m +k 2=-2m +k 2.∵a <0,∴y 有最大值.当x =-2m +k 2,y 最大,即y =a -2m +k 2+m -2m +k 2+m -k =-k 24a 当k =4时,函数y 的最大值为-4a ;当k =2时,函数y 的最大值为-a .综上,C 选项正确.故选:C .10.如图,已知点A -1,0 ,点B 2,3 .若抛物线y =ax 2-x +2(a 为常数,a ≠0)与线段AB 有两个不同的公共点,则a 的取值范围是()A.a ≥3B.a ≤-3或34≤a <1C.-3<a <1或a ≥3D.34≤a <1【答案】B【分析】本题考查了二次函数和一次函数的综合问题,先求出直线AB 的解析式,令x +1=ax 2-x +2,根据有两个交点求出a 的取值范围,再分a >0和a <0两种情况讨论即可得到答案;【详解】解:设AB 所在直线为y =kx +b ,∵A -1,0 ,B 2,3 ,∴-k +b =02k +b =3,解得:k =1b =1 ,∴y =x +1,当x +1=ax 2-x +2时,∵二次函数与线段AB 有两个不同的公共点,∴(-2)2-4a ×1>0,解得:a <1,①当0<a <1时,此时函数的开口向上,∴a ×(-1)2-(-1)+2≥0,a ×22-2+2≥3,解得:34≤a <1,②当a <0时此时函数的开口向下,∴a ×(-1)2-(-1)+2≤0,a ×22-2+2≤3,解得:a ≤-3,综上所述得:34≤a <1,a ≤-3,故选:B .二、填空题(本大题共6小题,每小题3分,共18分)11.标准大气压下,质量一定的水的体积V cm 3 与温度t °C 之间的关系满足二次函数V =18t 2+104t >0 ,则当温度为4°C 时,水的体积为cm 3.【答案】106【分析】本题考查二次函数的应用,细心计算是解题的关键.将t =4代入解析式求值即可.【详解】解:∵V =18t 2+104t >0 ,当t =4°C 时,V =18×42+104=106cm 3 ,∴水的体积为106cm 3.故答案为:106.12.已知二次函数y =x 2-2x +1的图象向左平移两个单位得到抛物线C ,点P 2,y 1 ,Q 3,y 2 在抛物线C 上,则y 1y 2(填“>”或“<”);【答案】<【分析】本题主要考查了二次函数图象的平移以及二次函数的性质,由平移的规律可得出抛物线C 的解析式为y =x +1 2,再利用二次函数图象的性质可得出答案.【详解】解:y =x 2-2x +1=x -1 2,∵二次函数y =x 2-2x +1的图象向左平移两个单位得到抛物线C ,∴抛物线C 的解析式为y =x +1 2,∴抛物线开口向上,对称轴为x =-1,∴当x >-1时,y 随x 的增大而增大,∵2<3,∴y 1<y 2,故答案为:<.13.在单位为1的正方形网格中,存在一平面直角坐标系.二次函数y 1=a 1x 2+b 1x +c 1,y 2=a 2x 2+b 2x +c 2的图象位于如图位置上,若它们的图象位置关系具有对称性,请描述它们的对称关系:,求出y 2与直线y =32x +7的交点坐标为.【答案】关于点-32,0 成中心对称-1,112 ,8,19 【分析】本题主要考查了二次函数的图像和性质,以及二次函数与一次函数的交点等知识.(1)根据抛物线图像可求出y 1顶点坐标为-5,-1 ,开口向下;抛物线y 2顶点坐标为2,1 ,开口向上,根据点坐标与二次函数的图像可得出答案.(2)用待定系数法求出抛物线y 2的函数解析式,再令32x +7=12x -2 2+1,进一步求解即可求出y 2与直线y =32x +7的交点坐标.【详解】解:由图象可得抛物线y 1顶点坐标为-5,-1 ,开口向下;抛物线y 2顶点坐标为2,1 ,开口向上,∵点-5,-1 与点2,1 关于点-32,0对称,∴抛物线y 1与抛物线y 2关于点-32,0成中心对称.设抛物线y 2解析式为y 2=a x -2 2+1,由图象可得抛物线经过(4,3),将(4,3)代入y 2=a x -2 2+1得3=4a +1,解得a =12,∴y 2=12x -2 2+1,令32x +7=12x -2 2+1,解得x 1=-1,x 2=8,将x 1=-1代入y =32x +7得y =112,把x 2=8代入y =32x +7得y =19,∴y 2与直线y =32x +7的交点坐标为-1,112 ,8,19 ,故答案为:-1,112 ,8,19 .14.如图,将抛物线y =x 2-2x -3在x 轴下方部分沿x 轴翻折,其余部分保持不变,得到图像C 1,当直线y =x +b 与图像C 1恰有两个公共点时,b 的取值范围是.【答案】b >134或-3<b <1【分析】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程,也考查了抛物线与直线的交点问题.解决本题的关键是利用数形结合的思想的运用.通过解方程x 2-2x -3=0得到A 、B 的坐标,利用二次函数的性质得到顶点的坐标,可写出图象y =x -1 2-4-1<x <3 沿x 轴翻折所得图象的解析式为y =-x -1 2+4=-x 2+2x +3-1<x <3 ,然后求出直线y =x +b 与y =-x 2+2x +3-1<x <3 相切b 的值,直线y =x +b 过A 和过B 点所对应的b 的值,再利用图象可判断直线y =x +b 与此图象有且只有两个公共点时b 的取值范围.【详解】解:当y =0时,x 2-2x -3=0,解得x 1=-1,x 2=3,则A -1,0 ,B 3,0 ,y =x 2-2x -3=x -1 2-4,则顶点坐标为1,-4 ,把图象y =x -1 2-4-1<x <3 沿x 轴翻折所得图象的解析式为y =-x -1 2+4=-x 2+2x +3-1<x <3 ,如图,当直线y =x +b 与y =-x 2+2x +3-1<x <3 相切时,直线与新函数图象有三个交点,此时x +b =-x 2+2x +3有两个相等的实数解,方程整理得x 2-x +b -3=0,Δ=(-1)2-4(b -3)=0,解得b =134,∴当b >134时,直线y =x +b 与图像C 1恰有两个公共点,当直线y =x +b 过A -1,0 时,-1+b =0,解得b =1,当直线y =x +b 过B 3,0 时,3+b =0,解得b =-3,所以,当-3<b <1时,直线y =x +b 与此图象有且只有两个公共点.综上可知,当直线y =x +b 与图像C 1恰有两个公共点时,b 的取值范围是b >134或-3<b <1.故答案为:b >134或-3<b <1.15.九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB ⊥CD 于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得AE =6.6m ,OE =1.4m ,OB =6m ,OC =5m ,OD =3m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是cm 2.【答案】46.4【分析】本题考查了二次函数的应用.要利用围墙和围栏围成一个面积最大的封闭的矩形菜地,那就必须尽量使用原来的围墙,观察图形,利用AO 和OC 才能使该矩形菜地面积最大,分情况,利用矩形的面积公式列出二次函数,利用二次函数的性质求解即可.【详解】解:要使该矩形菜地面积最大,则要利用AO 和OC 构成矩形,设矩形在射线OA 上的一段长为xm ,矩形菜地面积为S ,当x ≤8时,如图,则在射线OC 上的长为16-x -1.4+52=19.6-x 2则S =x ⋅19.6-x 2=-12x 2+9.8x =-12x -9.8 2+48.02,∵-12<0,∴当x ≤9.8时,S 随x 的增大而增大,∴当x =8时,S 的最大值为46.4;当x >8时,如图,则矩形菜园的总长为16+6.6+5 =27.6m ,则在射线OC 上的长为27.6-2x 2则S =x ⋅13.8-x =-x 2+13.8x =-x -6.9 2+47.61,∵-1<0,∴当x <6.9时,S 随x 的增大而减少,∴当x >8时,S 的值均小于46.4;综上,矩形菜地的最大面积是46.4cm 2;故答案为:46.4.16.如图,二次函数y =33x 2-433x +3的图象交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C .现有一长为3的线段DE 在直线y =32上移动,且在移动过程中,线段DE 上始终存在点P ,使得三条线段P A ,PB ,PC 能与某个等腰三角形的三条边对应相等.若线段DE 左端点D 的橫坐标为t ,则t 的取值范围是.【答案】-32≤t ≤2【分析】本题考查了二次函数的性质,两点距离公式,轴对称的性质,三角形三边关系,先求出点A ,点B ,点C 坐标,分三种情况讨论,由两点间距离公式和三角形三边关系可求解.【详解】解:∵二次函数y =33x 2-433x +3的图象交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C 当x =0时,y =3,当y =0时,33x 2-433x +3=0,解得:x 1=1,x 2=3∴A 1,0 ,B 3,0 ,C 0,3 ,对称轴为直线x =2如图所示,∵线段DE 上始终存在点P ,使得三条线段P A ,PB ,PC 能与某个等腰三角形的三条边对应相等∴P A =PB 或PB =PC 或PC =P A ,∵段DE 在直线y =32上移动,∴点P 的纵坐标为32,设P x ,32①若PC =P A ,∴x 2+3-322=x -1 2+32 2解得:x =12∴P 12,32∴P A =PC =1,PC =7∵P A +PB =2<7∴不能构成三角形,舍去;②若PB =PC ,∴x 2+3-322=x -3 2+32 2解得:x =32∴P 32,32∵PB =PC =3,P A =1∴能构成三角形,③若P A =PB∴x-12+322=x-32+322解得:x=2∴P A=PB=72,PC=194∵P A+PB>PC,∴P A,PB,PC能组成三角形;∵点P在长为3的线段DE上,∴线段DE左端点D的横坐标为t的取值范围为32-3≤t≤2,即-32≤t≤2故答案为:-32≤t≤2.三、(本大题共4小题,每小题6分,共24分)17.已知二次函数的图像以A-1,4为顶点,且过点B2,-5.(1)求该函数图像与坐标轴的交点坐标;(2)将函数图像向左平移几个单位,该函数图像恰好经过原点.【答案】(1)与y轴的交点坐标为(0,3);与x轴的交点坐标为(-3,0),(1,0)(2)向左平移1个单位,该函数图象恰好经过原点【分析】本题考查了二次函数的图象和性质,待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.(1)设顶点式y=a(x+1)2+4,然后把(2,-5)代入求出a的值即可得出二次函数解析式;通过解方程-(x+1)2+4=0可得抛物线与x轴的交点坐标,通过计算自变量为0时的函数值可得到抛物线与y轴的交点坐标;(2)由于抛物线与x轴的交点坐标为(-3,0),(1,0),把点(1,0)向左平移1个单位到原点,所以把抛物线解析式y=-(x+1)2+4向左平移1个单位,该函数图象恰好经过原点.【详解】(1)解:设抛物线解析式为y=a(x+1)2+4,把(2,-5)代入得9a+4=-5,解得a=-1,所以抛物线解析式为y=-(x+1)2+4;当x=0时,y=-(x+1)2+4=-1+4=3,则抛物线与y轴的交点坐标为(0,3);当y=0时,-(x+1)2+4=0,解得x1=1,x2=-3,则抛物线与x轴的交点坐标为(-3,0),(1,0);(2)解:因为抛物线与x轴的交点坐标为(-3,0),(1,0),所以把抛物线解析式y=-(x+1)2+4向左平移1个单位,该函数图象恰好经过原点.18.飞机降落后滑行的距离S(单位:m)关于滑行时间t(单位:s)的函数解析式是S=at²+bt,当t=5时,S=262.5;当t=10时,S=450.。

九年级数学下册《二次函数》单元测试4 含答案

九年级数学下册《二次函数》单元测试4  含答案

第二章 二次函数一. 选择题1. 下列各式:y=2x 2-3xz+5;y=3-2x+5x 2; y=21x+2x -3; y=ax 2+bx+c ; y=(2x -3)(3x -2)-6x 2; y=(m 2+1)x 2+3x -4;(7)y=m 2x 2+4x -3。

是二次函数的有( )A. 1个B. 2个C. 3个D. 4个2. 如图,函数y=ax 2和y=-ax+b 在同一坐标系中的图象可能为( )3. 下列抛物线中,开口向上且开口最小的抛物线为( )A. y=x 2+1B. y=43x 2-2x+3C. y=2x 2D. y=-3x 2-4x+74. 已知二次函数y=kx 2-7x -7的图象与x 轴没有交点,则k 的取值范围为( )A. k ﹥-47B. k≥-47且k≠0C. k ﹤-47D. k ﹥-47且k≠0 5. 二次函数图象y=2x 2向上平移1个单位,再向右平移3个单位,所得抛物线的关系式为( )A. y=2(x+3)2+1B. y=2(x -3)2+1C. y=2(x+3)2-1D. y=2(x -3)2-16. 二次函数y=2(x -1)2-5的图象的开口方向,对称轴和顶点坐标为( )A. 开口向上,对称轴为直线x=-1,顶点(-1,-5)B. 开口向上,对称轴为直线x=1,顶点(1,5)C. 开口向下,对称轴为直线x=1,顶点(1,-5)D. 开口向上,对称轴为直线x=1,顶点(1,-5)7. 如图是二次函数y=ax 2+bx+c 的图象,点P (a+b ,ac )是坐标平面内的点,则点P 在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限8. 二次函数y=-x 2+bx+c 图象的最高点是(-1,-3),则b 、c 的值为( )A. b=2,c=4B. b=2,c=-4C. b=-2,c=4D. b=-2,c=-49. 如果二次函数y=ax 2+bx+c 中,a :b :c=2:3:4,且这个函数的最小值为423,则这个二次函数为( )A. y=2x 2+3x+4B. y=4x 2+6x+8C. y=4x 2+3x+2D. y=8x 2+6x+410. 抛物线的顶点坐标为P (1,3),且开口向下,则函数y 随自变量x 的增大而减小的x 的取值范围为( )A. x ﹥3B. x ﹤3C. x ﹥1D. x ﹤1二. 填空题11. 请你任写一个顶点在x 轴上(不在原点)的抛物线的关系式 .12. 已知二次函数y=x 2-4x -3,若-1≤x≤6,则y 的取值范围为 .13. 抛物线y=ax 2+2x+c 的顶点坐标为(2,3),则a= ,c= .14. 二次函数y=2x 2-4x -1的图象是由y=2x 2+bx+c 的图象向左平移1个单位,再向下平移2个单位得到的,则b= ,c= .15. 不论x 取何值,二次函数y=-x 2+6x+c 的函数值总为负数,则c 的取值范围为 .16. 抛物线y=2x 2+bx+8的顶点在x 轴上,则b= .17. 直线y=2x+2与抛物线y=x 2+3x 的交点坐标为 .18. 开口向上的抛物线y=a (x+2)(x -8)与x 轴交于A 、B ,与y 轴交于点C ,且∠ACB=90°,则a= .19. 若二次函数y=(m+8)x 2+2x+m 2-64的图象经过原点,则m= .20. 将抛物y=2x 2+16x -1绕顶点旋转180°后所得抛物线为 .三. 解答题21. 已知抛物线y=ax 2+bx+c 与y=2x 2开口方向相反,形状相同,顶点坐标为(3,5).(1)求抛物线的关系式;(2)求抛物线与x轴、y轴交点.22. 用图象法求一元二次方程x2+x-1=0的解(两种方法).23. 如图所示,二次函数y=ax2+bx+c的图象与x轴交于A、B,与y轴交于点C,且∠ACB=90°,AC=12,BC=16,求这个二次函数的关系式.24. 直线y=x-2与抛物线y=ax2+bx+c相交于(2,m),(n,3)两点,抛物线的对称轴是直线x=3,求抛物线的关系式.25. 某广告公司设计一幅周长为12m的矩形广告牌,广告设计费为每平方米1000元,设矩形的一边为xm,面积为Sm2.(1)求出S与x之间的函数关系式,并确定自变量x的取值范围;(2)请你设计一个方案,使获得的设计费最多,并求出这个费用;(3)为使广告牌美观、大方,要求做成黄金矩形,请你按要求设计,并计算出可获得的设计费是多少?(精确到元)参考资料:①当矩形的长是宽与(长+宽)的比例中项时,这样的矩形叫做黄金矩形;②5≈2. 236.参考答案一. 选择题1. B2. D3. C4. C5. B6. D7. D8. D9. B 10. C二. 填空题11. y=x 2-2x+1 12. -7≤y≤9 13. -21 1 14. -8;7 15. c ﹤-9 16. ±8 17 .(-2,-2)和(1,4) 18. 41 19. 8 20. y=-2x 2-16x -65 三. 解答题21. 解:(1)∵抛物线y=ax 2+bx+c 与y=2x 2形状相同,开口方向相反, ∴a=-2.又∵抛物线顶点为(3,5),∴y=-2(x -3)2+5=-2x 2+12x -13.(2)当x=0时,y=-13,即抛物线与y 轴交点为(0,-13);当y=0时,有x 1=3+210,x 2=3-210, 即抛物线与x 轴交点坐标为(3+210,0),(3-210,0). 22. 解法一:画函数y=x 2+x -1的图象与x 轴交于(-1. 6,0)(0. 6,0), 即方程x 2+x -1=0的两根x 1≈-1. 6,x 2≈0. 6.解法二:画出函数y=x 2和y=-x+1的图象,交点的横坐标即为方程x 2+x -1=0的根.23. 解:∵∠ACB=90°,∴AB=400161222=+=20.∵AC ⊥BC ,OC ⊥AB ,∴AC 2=AO·AB.∴144=OA·20. ∴OA=7. 2. ∴OB=12. 8.∴OC 2=OB·OA.∴OC=9. 6,即A (-7. 2,0),B (12. 8,0),C (0,9. 6).设y=a (x+7. 2)(x -12. 8).把(0,9. 6)代入,得9. 6=-92. 16a. ∴a=-485.∴y=-485(x+7. 2)(x -12. 8)=-485(x 2-5. 6x -92. 16)=-x x 1274852 +9. 6. 24. 解:把(2,m )代入y=x -2,得m=2-2=0.把(n ,3)代入y=x -2,得3=n -2.∴n=5,即直线与抛物线交于(2,0),(5,3)两点且对称轴为x=3.∴与x 轴另一个交点为(4,0).设y=a (x -2)(x -4).把(5,3)代入,得3=a (5-2)(5-4),∴a=1. ∴y=(x -2)(x -4)=x 2-6x+8.25. 解:(1)矩形一边为xm ,则另一边为(6-x )m ,则S=x (6-x )=-x 2+6x (0﹤x ﹤6).(2)设设计费为y 元,则y=1000S=1000(-x 2+6x )=-1000(x 2-6x+9-9)=-1000(x -3)2+9000. 当x=3时,S 取最大值为9,此时可获得最多设计费为9×1000=9000元.(3)设此黄金矩形的长为xm ,宽为(6-x )m ,则x 2=(6-x )·6.∴x 2+6x -36=0,x=35-3. 6-x=9-35(∵x ﹥0,∴另一根舍去).即当此矩形的长设计为(35-3)(9-35)=36(5-2),可获得设计费为36(5-2)×1000≈8498(元).。

二次函数单元测试题

二次函数单元测试题

二次函数单元测试题一、选择题1. 二次函数y = ax^2 + bx + c的顶点坐标是:A. (0, 0)B. (-b/2a, -Δ/4a)C. (-b/a, -c/a)D. (b/a, c/a)2. 抛物线y = x^2 + 4x + 3的对称轴方程是:A. x = -1B. x = -2C. x = 2D. x = 13. 若二次函数y = -2x^2 + 5x - 3的图像与x轴交于两点A和B,则这两点的距离是:A. 2B. 3C. 4D. 54. 二次函数y = 3x^2 - 6x + 5的最小值是:A. 2B. 3C. 4D. 55. 已知二次函数y = 2x^2 - 4x + k的最大值为6,则k的值是:A. 1B. 2C. 3D. 4二、填空题6. 若二次函数y = -x^2 + 4x - 3的图像与y轴交于点P,则点P的坐标是 ______ 。

7. 二次函数y = x^2 + 2x - 3的顶点坐标是 ______ ,对称轴是______ 。

8. 已知抛物线y = -2x^2 + 4x + 5与x轴的一个交点坐标为(1, 0),则另一个交点坐标是 ______ 。

9. 若二次函数y = 3x^2 - 6x + 9的最大值为0,则其图像的开口方向是 ______ 。

三、解答题10. 已知二次函数y = 2x^2 - 4x + k,其图像在x轴上有两个交点,求k的取值范围。

11. 某公司生产的产品的年利润L(单位:万元)与年销售量x(单位:千件)之间的关系可以用二次函数L = -x^2 + 6x + 5来描述。

求年销售量为多少时,该公司的年利润最大?12. 一个抛物线形状的拱桥,其最高点距水面2米,跨度为6米。

若拱桥的方程为y = ax^2 + bx + c,请确定其方程。

13. 一个二次函数y = -x^2 + 2x + 3的图像与x轴相交于点A和点B,与y轴相交于点C。

求点A、B、C的坐标。

《第22章 二次函数》单元检测试卷及答案(共6套)

《第22章 二次函数》单元检测试卷及答案(共6套)

《第22章二次函数》单元检测试卷(一)一、选择题:1.若(2,5),(4,5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是( )A.x=1B.x=2C.x=3D.x=42.抛物线y=2(x+3)2+1的顶点坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)3.下列函数中,是二次函数的有( )①y=1-x2;②y=;③y=x(1-x);④y=(1-2x)(1+2x).A.1个B.2个C.3个D.4个4.二次函数y=a(x+k)2+k(a≠0),无论k取何值,其图象的顶点都在( )A.直线y=x上B.直线y=-x上C.x轴上D.y轴上5.把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到抛物线是( )A.y=(x+2)2+2B.y=(x+2)2-2C.y=x2+2D.y=x2-26.在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则当t=4时,该物体所经过的路程为( )A.88米B.68米C.48米D.28米7.二次函数y=x2+2x-3的开口方向、顶点坐标分别是()A.开口向上,顶点坐标为(-1,-4)B.开口向下,顶点坐标为(1,4)C.开口向上,顶点坐标为(1,4)D.开口向下,顶点坐标为(-1,﹣4)8.在同一坐标系中,一次函数y=ax+b与二次函数y=ax2﹣b的图象可能是()9.将进货单价为40元的商品按50元出售时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个,为了赚得8000元的利润,商品售价应为()A.60元B.80元C.60元或80元D.30元10.如图是一个横断面为抛物线形状的拱桥,当水面宽4m时,拱顶(拱桥洞的最高点)离水面2m,当水面下降1m时,水面的宽度为()A.3 B.2 C.3 D.211.向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是()A.第8秒B.第10秒C.第12秒D.第15秒12.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大二、填空题:13若把二次函数y=x2+6x+2化为y=(x-h)2+k的形式,其中h,k为常数,则h+k= .14.抛物线y=(x-1)2+2的顶点坐标是 .15.已知点A(x1,y1)、B(x2,y2)都在二次函数y=﹣2(x﹣2)2+1的图象上,且x1<x2<2,则1,y1、y2的大小关系是.16a、b、c是实数,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,则b、c的大小关系是b c(用“>”或“<”号填空)17.将抛物线y=3(x﹣4)2+2向右平移1个单位长度,再向下平移3个单位长度,平移后抛物线的解析式是.18.二次函数y=x2的图象如图,点O为坐标原点,点A在y轴的正半轴上,点B、C在二次函数y=x2的图象上,四边形OBAC为菱形,且∠OBA=120°,则菱形OBAC的面积为.19.如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC的三个顶点A、B、C,则ac的值是_______.三、解答题:20.已知抛物线y=ax2+bx+3的对称轴是直线x=1.(1)求证:2a+b=0;(2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.21.已知二次函数y=x 2+bx+c 的图象经过点(0,2)和(1,﹣1),求图象的顶点坐标和对称轴.22. 如图,一次函数y 1=kx +1与二次函数y 2=ax 2+bx -2交于A ,B 两点,且A(1,0),抛物线的对称轴是x =-32.(1)求k 和a ,b 的值;(2)求不等式kx +1>ax 2+bx -2的解集.23.在平面直角坐标系xOy 中,抛物线y =ax 2+bx +2过B(-2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D ,求∠BCD 的面积;(3)若直线y =-12x 向上平移b 个单位所得的直线与抛物线BDC(包括端点B ,C)部分有两个交点,求b 的取值范围.24.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线的一部分,如图。

二次函数单元测试题及答案

二次函数单元测试题及答案

二次函数单元测试题及答案一、选择题1. 二次函数y = ax^2 + bx + c中,当a的值变为原来的2倍时,函数图像如何变化?A. 向上平移B. 向下平移C. 向左平移D. 向右平移答案:B2. 下列哪个选项是二次函数的标准形式?A. y = x^2 + 2x + 1B. y = 2x^2 - 3x + 4C. y = 3x + 4D. y = x - 2答案:B3. 若二次函数y = -2x^2 + 3x + 1的顶点坐标为(1, 2),则下列哪个选项是正确的?A. a = -2, b = 3, c = 1B. a = 2, b = -3, c = -1C. a = -2, b = -3, c = -1D. a = 2, b = 3, c = 1答案:A4. 二次函数y = 3x^2 - 6x + 9的最小值是多少?A. 0B. 3C. 9D. 无法确定答案:C5. 如果二次函数y = x^2 + 4x + 4的图像与x轴相交于两点A和B,那么线段AB的长度是多少?A. 2B. 4C. 6D. 8答案:C二、填空题6. 已知二次函数y = 2x^2 - 5x + 3,其顶点坐标为__________。

答案:(1, -1)7. 函数y = -x^2 + 4x - 3的最大值是__________。

答案:18. 若二次函数y = 3x^2 - 2x - 5的图像关于y轴对称,则新的函数表达式为y = __________。

答案:y = 3x^2 + 2x - 5三、解答题9. 已知二次函数y = -2x^2 + 6x + 3,求该函数在x = -1时的函数值。

答案:当x = -1时,y = -2*(-1)^2 + 6*(-1) + 3 = -2 - 6 + 3 =-5。

10. 给定二次函数y = x^2 - 6x + 9,求该函数的对称轴方程。

答案:对称轴为x = -b/(2a) = -(-6)/(2*1) = 3。

二次函数单元测试卷及答案

二次函数单元测试卷及答案

二次函数单元测试卷及答案第一部分:选择题(共10题,每题2分)1. 若 $f(x)=2x^2+6x+1$,则该函数的抛物线开口向上()。

A. 对B. 错2. 对于函数 $f(x)=ax^2+bx+c$,若 $a>0$,则抛物线开口()。

A. 向上B. 向下3. 已知 $f(x)=x^2+bx+c$,若 $b^2-4c>0$,则该函数()。

A. 有两个实根B. 无实根C. 有一个实根4. 若 $f(x)=\frac{1}{2}x^2+ax+b$ 的导函数为 $f'(x)=x+1$,则 $f(x)$ 的解析式为()。

A. $\frac{1}{2}x^2+x+1$B. $\frac{1}{2}x^2+2x+1$C.$\frac{1}{2}x^2+x+2$5. 设 $f(x)=2x^2-10x+8$,$g(x)=x^2-3x+7$,则 $f(x)-g(x)$ 的值域为()。

A. $(0,+\infty)$B. $(-\infty,0)$C. $[0,+\infty)$6. 函数 $f(x)=x^2-2mx+1$ 与 $y=0$ 交点的横坐标为 $4$,则 $m$ 的值为()。

A. $1$B. $2$C. $-1$7. 若 $f(x)=x^2+1$,则 $f(2x+1)$ 的最小值为()。

A. $2$B. $5$C. $6$8. 已知函数 $f(x)=ax^2+bx+c$ 在 $x=1$ 处有极值 $0$,则 $a+b+c$ 等于()。

A. $-1$B. $0$C. $1$9. 函数 $f(x)=x^2-2x+5$ 与 $g(x)=2x-1$ 的交点横坐标之和为()。

A. $0$B. $1$C. $2$10. 若 $f(x)=x^2-2x-15$,则 $f(x)$ 的零点为()。

A. $-3,5$B. $-5,3$C. $-3,-5$答案:1.A 2.A 3.A 4.B 5.A 6.C 7.C 8.B 9.C 10.A第二部分:填空题(共5题,每题4分)1. 函数 $f(x)=x^2+2x+1$ 的零点是 _____________。

初三二次函数综合测试题及答案

初三二次函数综合测试题及答案

二次函数单元测评一、选择题(每题3分,共30分)1.下列关系式中,属于二次函数的是(x为自变量)( )A. B. C. D.2. 函数y=x2-2x+3的图象的顶点坐标是( )A. (1,-4)B.(-1,2)C. (1,2)D.(0,3)3. 抛物线y=2(x-3)2的顶点在( )A. 第一象限B. 第二象限C. x轴上D. y轴上二、4. 抛物线的对称轴是( )A. x=-2B.x=2C. x=-4D. x=45. 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是(A. ab>0,c>0B. ab>0,c<0C. ab<0,c>0D. ab<0,c<06.二次函数y=ax2+bx+c的图象如图所示,则点在第___象限( ) A. 一B. 二C. 三 D. 四7. 如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是( )A. 4+mB. mC. 2m-8D. 8-2m8. 若一次函数y=ax+b 的图象经过第二、三、四象限,则二次函数y=ax 2+bx 的图象只可能是( )9. 已知抛物线和直线 在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P 1(x 1,y 1),P 2(x 2,y 2)是抛物线上的点,P 3(x 3,y 3)是直线 上的点,且-1<x 1<x 2,x 3<-1,则y 1,y 2,y 3的大小关系是( )A. y 1<y 2<y 3 B. y 2<y 3<y 1 C. y 3<y 1<y 2 D. y 2<y 1<y 3 10.把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是( ) A. B. C. D.二、填空题(每题4分,共32分)11. 二次函数y=x 2-2x+1的对称轴方程是______________.12. 若将二次函数y=x 2-2x+3配方为y=(x-h)2+k 的形式,则13. 若抛物线y=x2-2x-3与x轴分别交于A、B两点,则AB的长为_________.14. 抛物线y=x2+bx+c,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________.15. 已知二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于C点,且△ABC是直角三角形,请写出一个符合要求的二次函数解析式________________.(m/s)竖直向上抛物16. 在距离地面2m高的某处把一物体以初速度v出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:=10m/s,则该物体在运(其中g是常数,通常取10m/s2).若v动过程中最高点距地面_________m.17. 试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为______________.的值是18. 已知抛物线y=x2+x+b2经过点,则y1三、解答下列各题(19、20每题9分,21、22每题10分,共38分)19. 若二次函数的图象的对称轴方程是,并且图象过A(0,-4)和B(4,0) (1)求此二次函数图象上点A关于对称轴对称的点A′的坐标(2)求此二次函数的解析式;20.在直角坐标平面内,点 O为坐标原点,二次函数 y=x2+(k-5)x-(k+4)的图象交 x轴于点A(x1,0)、B(x2,0),且(x1+1)(x2+1)=-8.(1)求二次函数解析式;(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.21.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;.(2)求△MCB的面积S△MCB1.考点:二次函数概念.选A.2.考点:求二次函数的顶点坐标.解析:法一,直接用二次函数顶点坐标公式求.法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k的形式,顶点坐标即为(h,k),y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2),答案选C.3. 考点:二次函数的图象特点,顶点坐标.解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0),所以顶点在x轴上,答案选C.4. 考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为.解析:抛物线,直接利用公式,其对称轴所在直线为答案选B.5.考点:二次函数的图象特征.解析:由图象,抛物线开口方向向下,抛物线对称轴在y轴右侧,抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方,答案选C.6.考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征.解析:由图象,抛物线开口方向向下,抛物线对称轴在y轴右侧,抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方在第四象限,答案选D.7.考点:二次函数的图象特征.解析:因为二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,所以抛物线对称轴所在直线为x=4,交x轴于点D,所以A、B两点关于对称轴对称,因为点A(m,0),且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C.8.考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状.解析:因为一次函数y=ax+b的图象经过第二、三、四象限,所以二次函数y=ax2+bx的图象开口方向向下,对称轴在y轴左侧,交坐标轴于(0,0)点.答案选C.9. 考点:一次函数、二次函数概念图象与性质.解析:因为抛物线的对称轴为直线x=-1,且-1<x1<x2,当x>-1时,由图象知,y随x的增大而减小,所以y2<y1;又因为x3<-1,此时点P3(x3,y3)在二次函数图象上方,所以y2<y1<y3.答案选D.10.考点:二次函数图象的变化.抛物线的图象向左平移2个单位得到,再向上平移3个单位得到.答案选C.考点:二次函数性质.解析:二次函数y=x2-2x+1,所以对称轴所在直线方程.答案x=1.12.考点:利用配方法变形二次函数解析式.解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2.答案y=(x-1)2+2.13. 考点:二次函数与一元二次方程关系.解析:二次函数y=x2-2x-3与x轴交点A、B的横坐标为一元二次方程x2-2x-3=0的两个根,求得x1=-1,x2=3,则AB=|x2-x1|=4.答案为4.14.考点:求二次函数解析式.解析:因为抛物线经过A(-1,0),B(3,0)两点,解得b=-2,c=-3,答案为y=x2-2x-3.15.考点:此题是一道开放题,求解满足条件的二次函数解析式,.解析:需满足抛物线与x轴交于两点,与y轴有交点,与△ABC是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-1.16.考点:二次函数的性质,求最大值.解析:直接代入公式,答案:7.考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一.解析:如:y=x2-4x+3.18.考点:二次函数的概念性质,求值.答案:.19. 考点:二次函数的概念、性质、图象,求解析式.解析:(1)A′(3,-4)(2)由题设知:∴y=x2-3x-4为所求(3)20.考点:二次函数的概念、性质、图象,求解析式. 解析:(1)由已知x 1,x 2是x 2+(k-5)x-(k+4)=0的两根又∵(x 1+1)(x 2+1)=-8 ∴x 1x 2+(x 1+x 2)+9=0 ∴-(k+4)-(k-5)+9=0 ∴k=5∴y=x 2-9为所求(2)由已知平移后的函数解析式为: y=(x-2)2-9 且x=0时y=-5 ∴C(0,-5),P(2,-9).21. 解:(1)依题意:。

人教版(2024年)九年级上册第22章 二次函数 单元检测卷 (含详解)

人教版(2024年)九年级上册第22章 二次函数 单元检测卷  (含详解)

人教版(2024年)九年级(上)单元检测卷第22章《二次函数》时间:100分钟满分:120分题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.下列函数中,y是x的二次函数的是( )A.y=3x+1B.xy=8C.D.y=x2﹣x﹣52.二次函数y=(x﹣1)2+2的顶点坐标是( )A.(﹣2,1)B.(1,2)C.(﹣1,2)D.(1,﹣2)3.二次函数y=x2﹣4x+7的图象的顶点所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限4.要得到二次函数y=﹣(x﹣2)2+1的图象,需将y=﹣x2的图象( )A.向左平移2个单位,再向下平移1个单位B.向右平移2个单位,再向上平移1个单位C.向左平移1个单位,再向上平移2个单位D.向右平移1个单位,再向下平移2个单位5.二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限6.在平面直角坐标系xOy中,抛物线y=ax2+bx+c如图所示,则关于x的方程ax2+bx+c=0根的情况为( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法准确判断7.在二次函数y=﹣x2+2x+3中,当0<x<3时,y的取值范围是( )A.0<y<3B.1<y<4C.0<y≤4D.﹣4≤y<08.某厂今年一月份新产品的研发资金为10万元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年一季度新产品的研发资金y(元)关于x的函数关系式为( )A.y=10(1+x)3B.y=10+10(1+x)+10(1+x)2C.y=10+10x+x2D.y=10(1+x)29.某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为( )元.A.50B.90C.80D.7010.如图;二次函数y=ax2+bx+c(a<0)的图象与x轴分别交于,两点,与y 轴正半轴交于点C,下列判断:①abc<0;②4ac﹣b2>0;③c﹣a<0;④2a+b=0;⑤若,(3,y2)是抛物线上的两个点,则y1>y2.其中正确的是( )A.①②③B.①②④C.③④⑤D.①④⑤二.填空题(共6小题,满分18分,每小题3分)11.抛物线y=﹣3x2的开口 .(填“向上”或“向下”)12.若y=(1﹣m)是二次函数,则m= .13.抛物线y=(x﹣1)2﹣1与y轴交点的纵坐标是 .14.已知二次函数y=ax2+bx+c(a>0)的图象上有四点A(﹣1,y1),B(3,y1),C(2,y2),D (﹣2,y3),则y1,y2,y3的大小关系是 .(从小到大排列)15.某段公路上汽车紧急刹车后前行的距离s(单位:m)关于行驶时间t(单位:s)的函数解析式是s=30t﹣5t2,遇到刹车时,汽车从刹车后到停下来前进了 m.16.已知二次函数y=ax2+bx+c的y与x的部分对应值如表:下列结论:x﹣1013y﹣3131①抛物线的开口向下;②其图象的对称轴为直线x=1;③当x<1时,函数值y随x的增大而增大;④方程ax2+bx+c=0有一个根大于4,其中正确的结论有 .三.解答题(共8小题,满分72分)17.(6分)已知抛物线y=x2﹣kx﹣3k与x轴的一个交点为(﹣2,0)(1)求k的值;(2)求抛物线与x轴的另一个交点坐标.18.(6分)已知二次函数y=x2+px+q的图象经过A(0,1),B(2,﹣1)两点.(1)求p,q的值.(2)试判断点P(﹣1,2)是否在此函数的图象上.19.(8分)已知一个二次函数图象上部分点的横坐标x与纵坐标y的对应值如表所示:x…﹣3﹣2﹣101…y…0﹣3﹣4﹣30…(1)这个二次函数的解析式是 ;(2)在给定的平面直角坐标系中画出这个二次函数的图象;(3)当﹣4<x<0时,y的取值范围为 .20.(8分)用100米长的篱笆在地上围成一个长方形,当长方形的宽由小到大变化时,长方形的面积也随之发生变化.设长方形的宽为x(米),长方形的面积为y(平方米).(1)求长方形的面积y(平方米)与长方形的宽x(米)之间的关系式;(2)当长方形的宽由1米变化到20米时,长方形面积由y1(平方米)变化到y2(平方米),求y1和y2的值.21.(10分)“动若脱兔”是一个汉语成语,这个成语的含义是在行动时变得敏捷迅速,就像脱逃的兔子一样.野兔跳跃时的空中运动路线可以看作是抛物线的一部分.(1)野兔一次跳跃的最远水平距离为2.8m,最大竖直高度为0.98m,以其起跳点为原点,建立平面直角坐标系,求满足条件的抛物线的解析式;(无需写出取值范围)(2)若在野兔起跳点2米处有一个高度为0.65米的树桩,请问野兔是否能成功越过木桩,避免守株待兔的故事再次上演?22.(10分)如图,抛物线y=﹣x2+2x+c经过坐标原点O和点A,点A在x轴上.(1)求此抛物线的解析式,并求出顶点B的坐标;(2)连接OB,AB,求S△OAB;(3)若点C在抛物线上,且S△OAC=8,求点C的坐标.23.(10分)如图,抛物线与x轴交于A(﹣2,0),B(4,0),与y轴交于点C(0,4).(1)求抛物线的解析式;(2)P是抛物线在第一象限的一个动点,点Q在线段BC上,且点Q始终在点P正下方,求线段PQ的最大值.24.(14分)综合与探究如图,抛物线y=ax2+bx﹣2与x轴交于A(﹣2,0),B(4,0),与y轴交于点C,作直线BC,P 是抛物线上的一个动点.(1)求抛物线的函数表达式并直接写出直线BC的函数表达式.(2)当点P在直线BC下方时,连接CP,BP,OP.当时,求点P的坐标.(3)在抛物线的对称轴上是否存在点Q,使以P,Q,B,C为顶点的四边形是平行四边形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、y是x的一次函数,故此选项不合题意;B、y是x的反比例函数,故此选项不合题意;C、y是x2的反比例函数,故此选项不合题意;D、y是x的二次函数,故此选项符合题意;故选:D.2.解:二次函数y=(x﹣1)2+2的顶点坐标是(1,2).故选:B.3.解:∵y=x2﹣4x+7=(x﹣2)2+3,∴顶点坐标为(2,3),∴顶点在第一象限.故选:A.4.解:二次函数y=﹣x2的图象向右平移2个单位,再向上平移1个单位即可得到二次函数y=﹣(x﹣2)2+1的图象.故选:B.5.解:根据二次函数y=ax2+bx的图象可知,a<0,﹣>0,∴b>0,∴一次函数y=ax+b的图象经过第一、二、四象限,不经过第三象限.故选:C.6.解:∵y=ax2+bx+c的图象与x轴没有交点,且方程ax2+bx+c=0的根就是抛物线y=ax2+bx+c(a ≠0)的图象与x轴的交点的横坐标,∴关于x的方程ax2+bx+c=0的根的情况是没有实数根.故选:C.7.解:y=﹣x2+2x+3=﹣(x﹣1)2+4,∵﹣1<0,对称轴为直线x=1,∴当x=1时,y有最大值,最大值为4,∵3﹣1>1﹣0,∴当x=3时,y有最小值0,∴当0<x<3时,y的取值范围是0<y≤4,故选:C.8.解:∵该厂今年一月份新产品的研发资金为10万元,以后每月新产品的研发资金与上月相比增长率都是x,∴该厂今年二月份新产品的研发资金为10(1+x)万元,三月份新产品的研发资金为10(1+x)2万元.根据题意得:y=10+10(1+x)+10(1+x)2.故选:B.9.解:设利润为w元,每顶头盔的售价为x元,由题意可得:w=(x﹣50)[200+(80﹣x)×20]=﹣20(x﹣70)2+8000,∴当x=70时,w取得最大值,故选:D.10.解:由图象可得,a<0,c>0,∵二次函数y=ax2+bx+c(a<0)的图象与x轴分别交于,两点,∴对称轴为直线,∴b=﹣2a,∴2a+b=0,b>0,∴abc<0,∴故①④正确;∴二次函数y=ax2+bx+c(a<0)的图象与x轴有两个不同的交点,∴b2﹣4ac>0,∴4ac﹣b2<0,故②错误;∵a<0,c>0,∴c﹣a>0,故③错误;由图象可得,y1>0,y2<0,∴y1>y2,故⑤正确;∴①④⑤正确,故选:D.二.填空题(共6小题,满分18分,每小题3分)11.解:∵抛物线y=﹣3x2,a=﹣3<0,∴抛物线y=﹣3x2的开口向下,故答案为:向下.12.解:∵y=(1﹣m)是二次函数,∴1﹣m≠0且m2+1=2,解得:m=﹣1.故答案为:﹣1.13.解:将x=0代入y=(x﹣1)2﹣1,得y=0,所以抛物线与y轴的交点坐标是(0,0).故答案为:0.14.解:依题意,A(﹣1,y1),B(3,y1),在二次函数y=ax2+bx+c(a为常数,且a>0)的图象上,∴对称轴为直线x==1,抛物线开口向上,∵2﹣1=1,1﹣(﹣2)=3,∴点C(2,y2)到对称轴的距离为1,点D(﹣2,y3)到对称轴的距离为3,点B(3,y1)到对称轴的距离为2,∴y2<y1<y3,故答案为:y2<y1<y3.15.解:∵s=﹣5t2+30t=﹣5(t﹣3)2+45,∴汽车刹车后到停下来前进了45m,故答案为:45.16.解:∵抛物线经过点(0,1),(3,1),∴抛物线的对称轴为直线,所以②错误;而x=﹣1时,y=﹣3,∴抛物线开口向下,所以①正确;当x<1时,函数值y随x的增大而增大,所以③正确;∵抛物线经过(﹣1,﹣3)和(0,1),∴抛物线与x轴的一个交点在(﹣1,0)和(0,0)之间,∴抛物线与x轴的一个交点在(3,0)和(4,0)之间,∴方程ax2+bx+c=0的根小于4.所以④错误.故答案为:①③.三.解答题(共8小题,满分72分)17.解:(1)根据题意得,4+2k﹣3k=0,所以k=4;得抛物线的解析式为y=x2﹣4x﹣12;(2)∵x2﹣4x﹣12=0,解得x1=﹣2,x2=6,∴抛物线与x轴的另一个交点坐标(6,0).18.解:(1)把A(0,1),B(2,﹣1)代入y=x2+px+q,得,解得,∴p,q的值分别为﹣3,1;(2)把x=﹣1代入y=x2﹣3x+1,得y=5,∴点P(﹣1,2)不在此函数的图象上.19.解:(1)由题意可得二次函数的顶点坐标为(﹣1,﹣4),设二次函数的解析式为:y=a(x+1)2﹣4,把点(0,﹣3)代入y=a(x+1)2﹣4,得a=1,故抛物线解析式为y=(x+1)2﹣4,即y=x2+2x﹣3;(2)如图所示:(3)∵y=(x+1)2﹣4,∴当x=﹣4时,y=(﹣4+1)2﹣4=5,当x=﹣0时,y=﹣3,又对称轴为x=﹣1,∴当﹣4<x<0时,y的取值范围是﹣4≤y<5.20.解:(1)由题意得:y=x(50﹣x)=﹣x2+50x,∴长方形的面积y(平方米)与长方形的宽x(米)之间的关系式为y=﹣x2+50x.(2)当x=1时,;当x=20时,.21.解:(1)依题意,由x=0,y=0和x=2.8,y=0可知,对称轴为直线.∴当x=1.4时,y有最大值0.98.即顶点坐标为(1.4,0.98).∴设抛物线的解析式为y=a(x﹣1.4)2+0.98.由题知函数图象过原点(0,0),把x=0,y=0代入y=a(x﹣1.4)2+0.98,得a(0﹣1.4)2+0.98=0,解得.∴抛物线的解析式为.(2)依题意,将x=2代入,得.∵0.8>0.65,∴野兔能成功越过木桩.22.解:(1)把(0,0)代入y=﹣x2+2x+c得c=0,∴抛物线解析式为y=﹣x2+2x,∵y=﹣x2+2x=﹣(x﹣1)2+1,∴顶点B的坐标为(1,1);(2)当y=0时,﹣x2+2x=0,解x1=0,x2=2,∴A(2,0),∴S△OAB=×2×1=1;(3)设C点坐标为(t,﹣t2+2t),∵S△OAC=8,∴×2×|﹣t2+2t|=8,即t2﹣2t=8或t2﹣2t=﹣8,解方程t2﹣2t=8得t1=﹣2,t2=4,∴C点坐标为(﹣2,﹣8),或(4,﹣8),方程t2﹣2t=﹣8无实数解,综上所述,C点坐标为(﹣2,﹣8),或(4,﹣8).23.解:(1)∵抛物线经过点C(0,4),∴可设抛物线解析式为y=ax2+bx+4,将点A(﹣2,0),B(4,0)代入,得,解得,∴抛物线解析式为:.(2)设经过点B、C的直线解析式为y=mx+n,将点B(4,0),C(0,4)代入,得,解得,∴经过点B、C的直线解析式为y=﹣x+4,设点,点Q(x,﹣x+4),∴,∴当x=2时,PQ有最大值2.24.解:(1)由题意得:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8)=ax2+bx﹣2,则﹣8a=﹣2,解得:a=,则抛物线的表达式为:y=x2﹣x﹣2;由抛物线的表达式知,点C(0,﹣2),由点B、C的坐标得,直线BC的表达式为:y=x﹣2;(2)设点P(t,x2﹣t﹣2),过点P作直线PN∥BC交y轴于点N,由点P、B的坐标得,直线PB的表达式为:y=(t+2)(x﹣4),则点N(0,﹣t﹣2),当时,则CN:ON=2:5,即CN=CO=,则点N(0,﹣),即﹣t﹣2=﹣,解得:t=,则点P(,﹣);(3)存在,理由:由抛物线的表达式知,其对称轴为直线x=1,设点Q(1,m),点P(t,t2﹣t﹣2),当BC为对角线时,由中点公式得:,解得:,则点Q(1,﹣);当BQ或BP为对角线时,则或,解得:m=或,则点Q(1,)或(1,),综上,Q(1,﹣)或(1,)或(1,).。

二次函数单元测试题及答案

二次函数单元测试题及答案

二次函数单元测试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项不是二次函数的一般形式?A. y = ax^2 + bx + cB. y = (x - h)^2 + kC. y = ax^2 + bx + c + dD. y = ax^2 + bx答案:C2. 若二次函数y = ax^2 + bx + c的图像开口向上,则a的值是:A. 正数B. 负数C. 零D. 任意实数答案:A3. 二次函数y = ax^2 + bx + c的顶点坐标是:A. (-b, c)B. (-b/2a, c)C. (-b/a, c)D. (-b/2a, 4ac - b^2 / 4a)答案:D4. 二次函数y = ax^2 + bx + c的对称轴是:A. x = -bB. x = -b/2aC. x = b/2aD. x = b/a答案:B5. 若二次函数y = ax^2 + bx + c与x轴有两个交点,则判别式Δ的值是:A. Δ > 0B. Δ < 0C. Δ = 0D. Δ ≤ 0答案:A二、填空题(每题2分,共10分)6. 二次函数y = 2x^2 - 4x + 3的顶点坐标是________。

答案:(1, 1)7. 若二次函数y = ax^2 + bx + c的图像与y轴交于(0, k),则k等于________。

答案:c8. 当a > 0时,二次函数y = ax^2 + bx + c的图像开口________。

答案:向上9. 二次函数y = -3x^2 + 6x + 5的对称轴方程是________。

答案:x = 110. 若二次函数y = ax^2 + bx + c与x轴相交于两点,则判别式Δ必须________。

答案:大于0三、解答题(每题5分,共20分)11. 已知二次函数y = ax^2 + bx + c的图像经过点(1, 2)和(-1, 0),求a和b的值。

解答:将点(1, 2)代入函数得:a + b + c = 2将点(-1, 0)代入函数得:a - b + c = 0两式相减得:2b = 2,即b = 1将b代入任一式得:a + c = 1由于题目条件不足,无法唯一确定a和c的值。

九年数学下第26章二次函数单元测试卷4及答案

九年数学下第26章二次函数单元测试卷4及答案

九年数学下第26章《二次函数》单元测试卷4及答案(时间90分钟, 满分100)一、精心选一选(每题4分,共16分)1.抛物线y=21x 2的图像向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为( )A .y=21x 2+2x -2 B. y=21x 2+2x+1C. y=21x 2-2x -1 D .y=21x 2-2x+12.已知二次函数y=ax 2+bx+c 的图像如右图所示,则一次函数y=ax+bc 的图像不经过( ) A .第一象限 B.第二象限 C.第三象限 D.第四象限3.直线y=ax+b 与抛物线y=ax 2+bx+c 中,a 、b 异号 ,b c<0, 那么它们在同一坐标系中的图像大致为( )4、略。

二、耐心填一填(每题4分,共40分) 5.函数y=(m+3)42-+m mx ,当m= 时,它的图像是抛物线.6.抛物线y=21(x -3)2-1开口向 ,顶点坐标是 ,对称轴是 .7.已知以x 为自变量的二次函数y=(m -2)x 2+m 2-m -2的图像经过原点,则m= ,当x 时y随x 增大而减小.8.函数y=2x 2-7x+3顶点坐标为 .9.抛物线y=x 2+bx+c ,经过A (-1,0)、B (3,0)两点,则这条抛物线的解析式为 ,它的对称轴为 .10.抛物线y=x 2+bx+c 的顶点为(2,3),则b= ,c= .11.如果抛物线y=ax 2+bx+c 的对称轴是x=—2,且开口方向,形状与抛物线y=—23x 2相同,且过原点,那么a= ,b= ,c= .12.直线y=-3x+2与抛物线y=x 2-x+3的交点有 个,交点坐标为13.抛物线的顶点是C(2,3),它与x 轴交于A 、B 两点,它们的横坐标是方程x 2-4x+3=0的两个根,14.抛物线y=x 2+bx+4与x 轴只有一个交点则b= ;当x 时y>0.三、细心解一解(第20题9分,其余每题7分,共44分)15.如图二次函数y=ax 2+bx+c 的图像经过A 、B 、C 三点, (1)观察图像,求出抛物线解析式; (2)求此抛物线的顶点坐标和对称轴(3)观察图像,当x 取何值时,y<0?y=0?y>0?16.函数y=ax 2+bx+c(其中a 、b 、c 为常数,a≠0),图像如图所示,x=31为该函数图像的对称轴,根据17.某市近年来经济发展速度很快,根据统计:该市国内生产总值1990年为8.6亿元人民币,1995年为10.4亿元人民币,2000年为12.9亿元人民币.经论证:上述数据适合一个二次函数关系,请你根据这个函数关系,预测2005年该市国内生产总值将达到多少?18.已知二次函数y=(m 2-2)x 2-4mx+n 的图像关于直线x=2对称,且它的最高点在直线y=21x+1上. (1)求此二次函数的解析式;(2)若此抛物线的开口方向不变,顶点在直线y=21x+1上移动到点M 时,图像与x 轴交于A 、B 两点,且S △ABM =8,求此时的二次函数的解析式.19.如图(1)是棱长为a 的小正方体,图(2),图(3)由这样的小正方体摆放而成,按照这样的方法继续摆放,自上而下,分别叫做第一层、第二层、第三层、… 、第n 层,第n 层的小正方体的个数记为s ,解答下列问题:(1)按照要求填表:(2)写出当n=10时,S= ;(3)根据上表中的数据,把S 作为纵坐标,n 作为横坐标,在平面直角坐标系中,描出相应的各点; (4)请你猜一猜上述各点会在某一个函数图像上吗?如果在某一函数的图像上,求出该函数的解析式.20.在平面直角坐标系中,给定以下五点A(-2,0),B(1,0),C(4,0),D(-2,29),E(0,6),从这五点中选取三点,使经过这三点的抛物线满足以平行于y 轴的直线为对称轴.我们约定:把经过三点A 、E 、B 的抛物线表示为抛物线AEB (如图所示)(1)问符合条件的抛物线还有哪几条?不求解析式请用约定的方法表示出来;(2)在(1)中是否存在这样的一条抛物线,它与余下的两点所确定的直线不相交?如果存在,试求抛物线及直线的解析式:如果不存在,请说明理由.参考答案1.B. 2.B. 3.C. 4.A.5.2. 6.上,(3,-1),直线x=3. 7.-1,>0. 8. (47,825). 9.y=x 2-2x -3,对称轴x=1. 10.b=-4,c=7. 11.-23,-6,0 12.1,(-1,5). 13.2,3. 14.±4,≠±4.15.(1)y=x 2-2x -3; (2)顶点坐标(1,-4),对称轴是直线x=1;(3)当x<-1或x>4时y>0:当x=-1或x=4时y=0:当-1<x<4时y<0.16.(1)顶点在第四象限; (2)与x 轴有两个交点; (3)与y 轴交于负半轴; (4)-1<c ,0;(5)当x<31时,y 随x 的增大而减小;(6)当x>31时,y 随x 的增大而增大; (7)a>0; (8)抛物线开口向上等.17.依题意,可以把三组数据看成三个点:A (0,8.6),B (5,10.4),C (10,12.9),设解析式为y=ax 2+bx+c.把A ,B ,C 三点坐标代入一般式,可得二次函数解析式为y=0.014x 2+0.29x+8.6,令x=15,代入二次函数,得y=16.1.所以2005年该市生产总值将达到16.1亿元人民币. 18.(1)y=-x 2+4x -2 ; (2)y=-x 2+12x -32. 19.(1)(2)S=55; (3)描点(略);(4)经观察所描各点,它们在一条抛物线上.S=21n 2+21n. 20.(1)符合条件的抛物线还有5条,分别如下:①抛物线AEC ;②抛物线CBE ;③抛物线DEB ;④抛物线DEC ;⑤抛物线DBC.(2)在(1)中存在的抛物线DBC ,它与直线AE 不相交.抛物线解析式为y=41x 2-45x+1; 直线解析式为y=-3x -6.。

二次函数单元测试题及答案

二次函数单元测试题及答案

二次函数单元测试题及答案一、选择题(每题3分,共30分)1. 二次函数y=ax^2+bx+c(a≠0)的图象开口向上,则a的取值范围是()。

A. a>0B. a<0C. a=0D. a≠0答案:A2. 抛物线y=x^2-4x+3的顶点坐标是()。

A. (1,0)B. (2,1)C. (2,-1)D. (4,3)答案:C3. 若抛物线y=-2x^2+4x-1与x轴有两个交点,则这两个交点的坐标是()。

A. (1/2,0) 和 (3/2,0)B. (1,0) 和 (3,0)C. (1,0) 和 (-3,0)D. (-1,0) 和 (3,0)答案:B4. 二次函数y=ax^2+bx+c(a≠0)的对称轴是直线x=1,则b的值是()。

A. -2aB. 2aC. -aD. a答案:B5. 抛物线y=x^2-6x+8与x轴的交点个数是()。

A. 0B. 1C. 2D. 3答案:C6. 二次函数y=-x^2+2x+3的图象与y轴的交点坐标是()。

A. (0,3)B. (0,-3)C. (0,2)D. (0,-2)答案:A7. 二次函数y=x^2-2x-3与x轴的交点个数是()。

A. 0B. 1C. 2D. 3答案:C8. 抛物线y=-2x^2+4x+1的顶点坐标是()。

A. (1,3)B. (2,5)C. (-1,3)D. (-2,5)答案:A9. 二次函数y=x^2-4x+c的图象经过点(2,0),则c的值是()。

A. 0B. 4C. 8D. 16答案:C10. 抛物线y=x^2-6x+8与直线y=2x-4的交点坐标是()。

A. (2,0) 和 (4,4)B. (2,0) 和 (4,0)C. (2,4) 和 (4,0)D. (0,2) 和 (4,4)答案:A二、填空题(每题3分,共15分)11. 二次函数y=2x^2-4x+1的顶点坐标是()。

答案:(1,-1)12. 二次函数y=-3x^2+6x-3与x轴的交点坐标是()。

二次函数单元测试题及答案

二次函数单元测试题及答案

二次函数单元测试题及答案一、选择题1. 已知二次函数\( y = ax^2 + bx + c \),当\( a < 0 \)时,抛物线的开口方向是:A. 向上B. 向下C. 向左D. 向右答案:B2. 对于二次函数\( y = -2x^2 + 3x + 1 \),其顶点的横坐标是:A. \( -\frac{1}{2} \)B. \( -\frac{3}{2} \)C. \( \frac{3}{4} \)D. \( \frac{1}{4} \)答案:C3. 若二次函数\( y = x^2 + 2x + 1 \)与x轴有交点,则交点的个数是:A. 0B. 1C. 2D. 3答案:B二、填空题4. 二次函数\( y = 3x^2 - 6x + 5 \)的对称轴方程是\_\_\_\_\_\_\_\_\_\_\_\_。

答案:\( x = 1 \)5. 当\( x = 2 \)时,二次函数\( y = x^2 - 4x + 3 \)的值为\_\_\_\_\_\_\_\_\_\_\_\_。

答案:-1三、解答题6. 已知二次函数\( y = -x^2 + 2x + 3 \),求其与x轴的交点坐标。

解:令\( y = 0 \),得\( -x^2 + 2x + 3 = 0 \)。

解此方程,我们可以使用求根公式:\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]代入\( a = -1, b = 2, c = 3 \),得:\[ x = \frac{-2 \pm \sqrt{4 + 12}}{-2} = \frac{-2 \pm\sqrt{16}}{-2} = 1 \pm 2 \]因此,与x轴的交点坐标为\( (-1, 0) \)和\( (3, 0) \)。

7. 已知抛物线\( y = 2x^2 - 4x + 1 \),求其顶点坐标。

解:顶点的横坐标可以通过公式\( x = -\frac{b}{2a} \)求得,代入\( a = 2, b = -4 \),得:\[ x = -\frac{-4}{2 \times 2} = 1 \]将\( x = 1 \)代入原方程求得\( y \)值:\[ y = 2(1)^2 - 4(1) + 1 = 2 - 4 + 1 = -1 \]因此,顶点坐标为\( (1, -1) \)。

二次函数单元测试(课题4)

二次函数单元测试(课题4)

《二次函数》单元测试卷一、选择题:1、下列各式中,y 是x 的二次函数的是 ( )A . 21x y = B .12+=x y C . 22-+=x x y D . x x y 322+=2.若二次函数)2(2-++=m m x x y 的图象经过原点,则m 的值必为( ) A . 0或2 B . 0 C . 2 D . 无法确定 3.二次函数y=x 2+4x +a 的最小值是2,则a 的值是( ) A 、4 B 、5 C 、6 D 、74.对于2)3(22+-=x y 的图象下列叙述正确的是( ) A 顶点坐标为(-3,2) B 对称轴为直线x=3 C 当x=3时,y 有最大值2 D 当3≥x 时y 随x 增大而减小 5.抛物线2x y -=向右平移1个单位,再向上平移2个单位得到( ) A ()212+--=x y B ()212++-=x yC ()212---=x y D ()212-+-=x y6. 抛物线y=x 2-2x-3与x 轴两交点间的距离是( );A .4B .3C .2D .17.二次函数c bx ax y ++=2的图象如图所示,则下列结论中正确的是:( )A a>0 b<0 c>0B a<0 b<0 c>0C a<0 b>0 c<0D a<0 b>0 c>0 8.已知反比例函数)0(≠=a x ay ,当x <0时,y 随x 的增大而减小,则函数a ax y +=2的图象经过的象限是 ( )A 、三、四B 、一、二C 、二、三、四D 、一、二、三9、在同一直角坐标系中,函数y=ax 2-b 与y=ax+b 的图象大致是( )10. 二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c这四个代数式中,值为正数的有( ) A .4个 B .3个 C .2个 D .1个 选择题答案:11、若22)2(--=m x m y 是二次函数,则m= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数单元测验试卷 4
一、选择题(每小题3分) 1. 对于2
)3(22+-=x y 的图象下列叙述正确的是
---------------------------( )A 、顶点坐标为(-3,2) B 、对称轴为 y=3
C 、当3≥x 时y 随x 增大而减小
D 、当3≥x 时y 随x 增大而增大 2.下列函数中,y 随x 的增大而增大的是---------------------( )
(A )x
y 1
-= (B )52+-=x y (C ))0(42≥-=x x y (D )1322-+=x x y 1.
3. 抛物线y=x 2+6x+8与y 轴交点坐标---------------------( ) (A )(0,8) (B )(0,-8)(C )(0,6) (D )(-2,0)(-4,0) 4.某人乘雪橇沿斜坡笔直滑下,滑下的距离S (米)与时间t (秒)间的关系式为S =10t +t 2,若滑到坡底的时间为2秒,则此人下滑的高度为---------------------( )
A .24米
B .
D D .11米
5.抛物线y=ax 2+bx+c ---------------------( )
(A ) ac+1=b; (B ) ab+1=c; (C )bc+1=a; (D )以上都不是 6.不论x 为何值,函数y=ax 2+bx+c(a ≠0)的值恒大于0的条件是--------( ) A.a>0,△>0;
B.a>0, △<0;
C.a<0, △<0;
D.a<0, △<0
7.如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面四条信息:(1)240b ac ->;(2)c >1;(3)2a -b <0;(4)a +b +c <0。

你认为
其中错误..的有--------( ) A .2个
B .3个
C .4个
D .1个
8.函数y =bx +1(b ≠0)与y =ax 2+bx +1(a ≠0)的图象可能是
二、填空题(每空3分) 9.若函数
4
32)1(+++=m m x
m y 是二次函数,则m 的值为
10.二次函数34
12+--=x x y 的顶点坐标是 ,x 时,y 随
x 的增大而增大.
11.已知(-2,y 1),(-1,y 2),(3,y 3)是二次函数y=x 2
-4x+m 上的点,则y 1,y 2,y 3从小到大用 “<”排列是 .
12.关于x 的二次函数322--=x x y 的函数值y<0,x 的取值范围
为 。

13.二次函数362+-=x kx y 的图象与x 轴有两个交点,k 的取值范围是____
14.二次函数2y x bx c =++的图象如图2所示,则其对称轴是 ,
A B C
D
15已知二次函数y 1=ax 2+bx +c (a ≠0)与一次函数y 2=kx +m (k ≠0)的图象相交于点A (-2,4),B (8,2),如图4所示,能使y 1>y 2成立的x 取值范围是___.
五、解答题(8,8,8,9,9,9,12,12分) 16. 已知抛物线212
y x x c =++与x 轴有两个不同的交点. (1)求c 的取值范围;
(2)抛物线212
y x x c =++与x 轴两交点的距离为2,求c 的值.
17某幢建筑物,从10米高的窗口A 用水管和向外喷水,喷的水流呈抛物线 抛物线所在平面与墙面垂直,(如图)如果抛物线的最高点M 离墙1米,离地面
40
3
米,求水流下落点B 离墙距离OB 是多少 18.如果抛物线y=x 2-6x+ c- 2的顶点到x 轴的距离是3,求c 的值
19.已知二次函数y=x 2
-2x-3的图象与x 轴交于A 、B 两点,在x 轴上方的抛物线上有一点C,且△ABC 的面积等于10,点C 的坐标为___________ 20.某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元. ⑴当每辆车的月租金定为3600元时,能租出多少辆车?
⑵当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
21抛物线2y x bx c =-++的图象如图所示,求此抛物线的解析式.
22. 如图,抛物线y =2
1x 2
+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,
且A (一1,0).
⑴求抛物线的解析式及顶点D 的坐标; ⑵判断△ABC 的形状,证明你的结论;
⑶点M (m ,0)是x 轴上的一个动点,当CM+DM的值最小时,求m 的值.
23.如图,抛物线223
y x x
=--与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.
(1)求A、B 两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样
的四个点为顶点的四边形是平行四边形?如果存在,。

相关文档
最新文档