必修4第一章第1-2节任意角、弧度制和任意角的三角函数-12
2019-2020人教B版数学必修4第1章 1.1 1.1.2 弧度制和弧度制与角度制的换算课件PPT
栏目导航
D [根据角度和弧度的定义,可知无论是角度制还是弧度制,角 的大小与圆的半径长短无关,而是与弧长与半径的比值有关,所以 D 项是假命题,A、B、C 项均为真命题.]
栏目导航
弧度制与角度制的区别与联系 ①单位不同,弧度制以“弧度”为度量单位,角度制以
[提示] 这种表示不正确,同一个式子中,角度、弧度不能混用,
否则产生混乱,正确的表示方法应为αα=2kπ+π6,k∈Z
或{α|α=
k·360°+30°,k∈Z}.
栏目导航
5.扇形的弧长与面积公式
设扇形的半径为 r,弧长为 l,α 为其圆心角,则
α 为度数
α 为弧度数
扇形的弧长
απr l=__1_8_0_°_
的弧长与面积的计算,培养学生的 和面积公式.(难点)
数学运算核心素养.
栏目导航
自主预习 探新知
栏目导航
1.角度制与弧度制的定义 (1)角度制:用度作单位来度量角的制度叫做 角度制 .角度制 规定 60 分等于 1 度,60 秒等于 1 分. (2)弧度制:长度等于 半径长 的圆弧所对的 圆心角 叫做 1 弧度 的角,记作__1__ra_d__.以 弧度 为单位来度量角的制度叫做弧度制.
栏目导航
[解] (1)要确定角 α 所在的象限,只要把 α 表示为 α=2kπ+ α0(k∈Z,0≤α0<2π)的形式,由 α0 所在象限即可判定出 α 所在的象限.
α1=-570°=-169π=-4π+56π, α2=750°=265π=4π+π6. ∴α1 在第二象限,α2 在第一象限.
人教A版高中数学必修四课件:第一章 1.2.1(一) 任意角的三角函数 (共46张PPT)
人教版高中数学B版目录
人教版高中数学B版目录第一篇:人教版高中数学B版目录人教版高中数学B版必修第一章1.1 集合集合与集合的表示方法必修一必修二必修三必修四第二章第三章第一章第二章第一章第二章第三章第一章第二章1.2 集合之间的关系与运算函数2.1 函数2.2 一次函数和二次函数 2.3 函数的应用(Ⅰ)2.4 函数与方程基本初等函数(Ⅰ)3.1 指数与指数函数 3.2 对数与对数函数 3.3 幂函数3.4 函数的应用(Ⅱ)立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系平面解析几何初步2.1平面真角坐标系中的基本公式2.2 直线方程 2.3 圆的方程2.4 空间直角坐标系算法初步1.1 算法与程序框图 1.2 基本算法语句1.3 中国古代数学中的算法案例统计2.1 随机抽样2.2 用样本估计总体 2.3 变量的相关性概率3.1 随机现象 3.2 古典概型3.3 随机数的含义与应用 3.4 概率的应用基本初等函(Ⅱ)1.1 任意角的概念与弧度制 1.2 任意角的三角函数 1.3三角函数的图象与性质平面向量2.1 向量的线性运算必修五第三章第一章第二章第三章2.2 向量的分解与向量的坐标运算 2.3平面向量的数量积 2.4 向量的应用三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积解直角三角形1.1 正弦定理和余弦定理 1.2 应用举例数列2.1 数列 2.2 等差数列 2.3 等比数列不等式3.1 不等关系与不等式 3.2 均值不等式3.3 一元二次不等式及其解法 3.4 不等式的实际应用3.5二元一次不等式(组)与简单线性规划问题人教版高中数学B版选修常用逻辑用语命题与量词第一章1.1 选修1-1 选修1-2 选修4-5 第二章第三章第一章第二章第三章第四章第一章第二章第三章1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式圆锥曲线与方程2.1 椭圆 2.2 双曲线 2.3 抛物线导数及其应用3.1 导数3.2 导数的运算 3.3导数的应用统计案例推理与证明数系的扩充与复数的引入框图不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法 1.4 绝对值的三角不等式 1.5 不等式证明的基本方法柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型数学归纳法与贝努利不等式 3.1 数学归纳法原理3.2用数学归纳法证明不等式,贝努利不等式第二篇:高中数学目录必修1第一章集合与函数概念1.1 集合阅读与思考集合中元素的个数1.2 函数及其表示阅读与思考函数概念的发展历程1.3 函数的基本性质信息技术应用用计算机绘制函数图象第二章基本初等函数(Ⅰ)2.1 指数函数信息技术应用借助信息技术探究指数函数的性质2.2 对数函数阅读与思考对数的发明探究也发现互为反函数的两个函数图象之间的关系2.3 幂函数第三章函数的应用3.1 函数与方程阅读与思考中外历史上的方程求解信息技术应用借助信息技术方程的近似解3.2 函数模型及其应用信息技术应用收集数据并建立函数模型必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图阅读与思考画法几何与蒙日1.3 空间几何体的表面积与体积探究与发现祖暅原理与柱体、椎体、球体的体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质阅读与思考欧几里得《原本》与公理化方法第三章直线与方程3.1 直线的倾斜角与斜率探究与发现魔术师的地毯3.2 直线的方程3.3 直线的交点坐标与距离公式阅读与思考笛卡儿与解析几何第四章圆与方程4.1 圆的方程阅读与思考坐标法与机器证明4.2 直线、圆的位置关系4.3 空间直角坐标系信息技术应用用《几何画板》探究点的轨迹:圆必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数阅读与思考三角学与天文学1.3 三角函数的诱导公式1.4 三角函数的图像与性质探究与发现函数y=Asin(ωx+φ)及函数y=Acos(ωx+φ)探究与发现利用单位圆中的三角函数线研究正弦函数、余弦函数的性质信息技术应用1.5 函数y=Asin(ωx+φ)的图像阅读与思考振幅、周期、频率、相位1.6 三角函数模型的简单应用第二章平面向量2.1平面向量的实际背景及基本概念阅读与思考向量及向量符号的由来2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例阅读与思考向量的运算(运算律)与图形性质第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式信息技术应用利用信息技术制作三角函数表3.2 简单的三角恒等变换必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列信息技术应用2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列的前n项和阅读与思考九连环探究与发现购房中的数学第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词阅读与思考“且”“或”“非”与“交”“并”“补”1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线探究与发现2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第四章框图4.1 流程图4.2 结构图信息技术应用用word2002绘制流程图选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线2.4 抛物线第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法选修2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身选修3-3第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性第二讲球面上的距离和角一球面上的距离二球面上的角第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证明三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换三平面图形的对称群第二讲代数学中的对称与抽象群的概念一 n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积第三讲对称与群的故事一带饰和面饰思考题二化学分子的对称群三晶体的分类四伽罗瓦理论选修4-1几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线选修4-2第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探索与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用选修4-4坐标系与参数方程第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线选修4-5不等式选讲第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲讲明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式选修4-6初等数论初步第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数伦在密码中的应用一信息的加密与去密二大数分解和公开密钥选修4-7优选法与试验设计初步第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用选修4-9风险与决策第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例第三篇:高中数学目录【人教版】高中数学教材总目录必修一第一章集合与函数概念1.1 集合阅读与思考集合中元素的个数1.2 函数及其表示阅读与思考函数概念的发展历程1.3 函数的基本性质信息技术应用用计算机绘制函数图象实习作业小结第二章基本初等函数(Ⅰ)2.1 指数函数信息技术应用借助信息技术探究指数函数的性质2.2 对数函数阅读与思考对数的发明探究也发现互为反函数的两个函数图象之间的关系2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程阅读与思考中外历史上的方程求解信息技术应用借助信息技术方程的近似解3.2 函数模型及其应用信息技术应用收集数据并建立函数模型实习作业小结复习参考题必修二第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图阅读与思考画法几何与蒙日1.3 空间几何体的表面积与体积探究与发现祖暅原理与柱体、椎体、球体的体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质阅读与思考欧几里得《原本》与公理化方法小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率探究与发现魔术师的地毯3.2 直线的方程3.3 直线的交点坐标与距离公式阅读与思考笛卡儿与解析几何小结复习参考题第四章圆与方程4.1 圆的方程阅读与思考坐标法与机器证明4.2 直线、圆的位置关系4.3 空间直角坐标系信息技术应用用《几何画板》探究点的轨迹:圆必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修四第一章三角函数.1 任意角和弧度制1.2 任意角的三角函数阅读与思考三角学与天文学1.3 三角函数的诱导公式1.4 三角函数的图像与性质探究与发现函数y=Asin(ωx+φ)及函数y=Acos(ωx+φ)探究与发现利用单位圆中的三角函数线研究正弦函数、余弦函数的性质信息技术应用1.5 函数y=Asin(ωx+φ)的图像阅读与思考振幅、周期、频率、相位1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1平面向量的实际背景及基本概念阅读与思考向量及向量符号的由来2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例阅读与思考向量的运算(运算律)与图形性质小结复习参考题第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式信息技术应用利用信息技术制作三角函数表3.2 简单的三角恒等变换必修五第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列信息技术应用2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列的前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式选修1-1 第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词阅读与思考“且”“或”“非”与“交”“并”“补”1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线探究与发现2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分选修1-2 第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图选修2—1 第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用 3.2 立体几何中的向量方法选修2—2 第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修2-3 第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合。
高中数学人教A版必修4课件:1.1.2弧度制
思路点拨:
解:(1)①∵1°=1π80 rad, ∴112°30′=1π80×112.5 rad=58π rad. ②-315°=-315×1π80=-74π. (2)①∵1 rad=1π80°, ∴-51π2 rad=-51π2×1π80°=-75°. ②139π=139π×1π80°=1 140°.
(2) 的面积.
思路点拨:(1) 设出圆心角为θ → 建方程组 → 解方程组得解 (2) 化度为弧度 → 求弧长 → 求扇形面积
解:(1)设扇形圆心角的弧度数为 θ(0<θ<2π),弧长为 l, 半径为 r,
依题意有
l+2r=10,
①
12lr=4.
进行角度制与弧度制的互化的策略以及注意点 (1)原则:牢记 180°=π rad,充分利用 1°=1π80 rad 和 1 rad =1π80°进行换算. (2)方法:设一个角的弧度数为 α,角度数为 n,则 α rad=α·1π80°;n°=n·1π80.
(3)注意点 ①用“弧度”为单位度量角时,“弧度”二字或“rad” 可以省略不写. ②用“弧度”为单位度量角时,常常把弧度数写成多少π 的形式,如无特别要求,不必把π写成小数. ③度化弧度时,应先将分、秒化成度,再化成弧度.
3.解析弧度制下弧长公式、扇形的面积公式 在弧度制下,弧长公式和扇形的面积公式分别为: l=|α|R,S=12lR=12|α|R2(其中 α 为圆心角的弧度数,R 为扇 形的半径). 要把握好上述公式,需注意以下三个方面: (1)由上述公式可知,由 α、l、R、S 中的两个量可以求出 另外的两个量,即“知二求二”.
【即时演练】
-247π 是第________象限的角. 解析:∵-247π=-6π-34π,而-34π 是第三象限的角, ∴-247π 是第三象限的角. 答案:三
高一必修4第一章第一节任意角与弧度制(学生)
高一必修4第一章第一节任意角与弧度制(学生)1.1任意角与弧度制知识梳理:一、任意角和弧度制 1、角的概念的推广定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角,记作:角或 可以简记成。
2、角的分类:由于用“旋转”定义角之后,角的范围大大地扩大了。
可以将角分为正角、零角和负角。
正角:按照逆时针方向转定的角。
零角:没有发生任何旋转的角。
负角:按照顺时针方向旋转的角。
3、 “象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于轴的正半轴。
角的终边落在第几象限,我们就说这个角是第几象限的角角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。
例1、(1)A={小于90°的角},B={第一象限的角},则A∩B= (填序号). ①{小于90°的角}②{0°~90°的角}③ {第一象限的角}④以上都不对(2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、 C 关系是( )A .B=A∩CB .B∪C=CC .A ⊂CD .A=B=C4、常用的角的集合表示方法 1、终边相同的角:(1)终边相同的角都可以表示成一个0︒到360︒的角与个周角的和。
(2)所有与α终边相同的角连同α在内可以构成一个集合即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和 注意:1、Z ∈k2、α是任意角3、终边相同的角不一定相等,但相等的角的终边一定相同。
终边相同的角有无数个,它们相差ααα∠αx )(Z k k ∈{}Z k k S ∈⋅+==,360| αββ360°的整数倍。
4、一般的,终边相同的角的表达形式不唯一。
例1、(1)若角的终边与58π角的终边相同,则在[]π2,0上终边与4θ的角终边相同的角为 。
(2)若βα和是终边相同的角。
必修4 数学最全 知识点梳理(完整版)
高中数学必修4 知识点总结第一章:三角函数§1.1.1、任意角1、 正角、负角、零角、象限角的概念.2、 与角α终边相同的角的集合:{}Z k k ∈+=,2παββ.§1.1.2、弧度制1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、 rl =α. 3、弧长公式:R Rn l απ==180. 4、扇形面积公式:lR R n S 213602==π.§1.2.1、任意角的三角函数1、 设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么:xyx y ===αααtan ,cos ,sin 2、 设点(),A x y为角α终边上任意一点,那么:(设r =sin y r α=,cos x r α=,tan y xα= 3、 αsin ,αcos ,αtan 在四个象限的符号和三角函数线的画法.正弦线:MP; 余弦线:OM; 正切线:AT 4、 特殊角0°,30°,45°,60°,§1.2.2、同角三角函数的基本关系式 1、 平方关系:1cos sin 22=+αα. 2、 商数关系:αααcos sin tan =. §1.3、三角函数的诱导公式(概括为“奇变偶不变,符号看象限”Z k ∈)1、 诱导公式一: ()()().tan 2tan ,cos 2cos ,sin 2sin απααπααπα=+=+=+k k k (其中:Z k ∈) 2、 诱导公式二: ()()().tan tan ,cos cos ,sin sin ααπααπααπ=+-=+-=+3、诱导公式三: ()()().tan tan ,cos cos ,sin sin αααααα-=-=--=- 4、诱导公式四: ()()().tan tan ,cos cos ,sin sin ααπααπααπ-=--=-=-5、诱导公式五: .sin 2cos ,cos 2sin ααπααπ=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛- 6、诱导公式六: .sin 2cos ,cos 2sin ααπααπ-=⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+§1.4.1、正弦、余弦函数的图象和性质 1、记住正弦、余弦函数图象:2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性. 3、会用五点法作图.sin y x =在[0,2]x π∈上的五个关键点为: 30010-12022ππππ(,)(,,)(,,)(,,)(,,).§1.4.3、正切函数的图象与性质12、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性.周期函数定义:对于函数()x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()(),那么函数()x f 就叫做周期函数,非零常数T 叫做这个函数的周期.图表归纳:正弦、余弦、正切函数的图像及其性质§1.5、函数()ϕω+=x A y sin 的图象 1、对于函数:()()sin 0,0y A x B A ωφω=++>>有:振幅A ,周期2T πω=,初相ϕ,相位ϕω+x ,频率πω21==Tf .2、能够讲出函数x y sin =的图象与()sin y A x B ωϕ=++的图象之间的平移伸缩变换关系.① 先平移后伸缩:sin y x = 平移||ϕ个单位 ()sin y x ϕ=+(左加右减) 横坐标不变 ()sin y A x ϕ=+纵坐标变为原来的A 倍纵坐标不变 ()sin y A x ωϕ=+横坐标变为原来的1||ω倍平移||B 个单位 ()sin y A x B ωϕ=++(上加下减)② 先伸缩后平移:sin y x = 横坐标不变 sin y A x =纵坐标变为原来的A 倍 纵坐标不变 sin y A x ω=横坐标变为原来的1||ω倍()sin y A x ωϕ=+平移||B 个单位()sin y A x B ωϕ=++(上加下减)3、三角函数的周期,对称轴和对称中心函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0)的周期2||T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0)的周期||T πω=. 对于sin()y A x ωϕ=+和cos()y A x ωϕ=+来说,对称中心与零点相联系,对称轴与最值点联系. 求函数sin()y A x ωϕ=+图像的对称轴与对称中心,只需令()2x k k Z πωϕπ+=+∈与()x k k Z ωϕπ+=∈解出x 即可.余弦函数可与正弦函数类比可得.4、由图像确定三角函数的解析式 利用图像特征:max min 2A =,max min2y y B +=. ω要根据周期来求,ϕ要用图像的关键点来求.§1.6、三角函数模型的简单应用 1、 要求熟悉课本例题.第三章、三角恒等变换§3.1.1、两角差的余弦公式记住15°的三角函数值:§3.1.2、两角和与差的正弦、余弦、正切公式 1、()βαβαβαsin cos cos sin sin +=+ 2、()βαβαβαsin cos cos sin sin -=- 3、()βαβαβαsin sin cos cos cos -=+ 4、()βαβαβαsin sin cos cos cos +=-5、()tan tan 1tan tan tan αβαβαβ+-+=. 6、()tan tan 1tan tan tan αβαβαβ-+-=.§3.1.3、二倍角的正弦、余弦、正切公式 1、αααcos sin 22sin =, 变形: 12sin cos sin 2ααα=. 2、ααα22sin cos 2cos -=1cos 22-=α α2sin 21-=. 变形如下:升幂公式:221cos 22cos 1cos 22sin αααα⎧+=⎪⎨-=⎪⎩ 降幂公式:221cos (1cos 2)21sin (1cos 2)2αααα=+=-⎧⎪⎨⎪⎩ 3、ααα2tan 1tan 22tan -=.4、sin 21cos 2tan 1cos 2sin 2ααααα-==+ §3.2、简单的三角恒等变换1、 注意正切化弦、平方降次.2、辅助角公式)sin(cos sin 22ϕ++=+=x b a x b x a y(其中辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).第二章:平面向量§2.1.1、向量的物理背景与概念1、 了解四种常见向量:力、位移、速度、加速度.2、 既有大小又有方向的量叫做向量. §2.1.2、向量的几何表示1、 带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.2、 向量的大小,也就是向量的长度(或称模),记作AB ;长度为零的向量叫做零向量;长度等于1个单位的向量叫做单位向量.3、 方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行. §2.1.3、相等向量与共线向量1、 长度相等且方向相同的向量叫做相等向量. §2.2.1、向量加法运算及其几何意义1、 三角形加法法则和平行四边形加法法则.2++.§2.2.2、向量减法运算及其几何意义1、 与a 长度相等方向相反的向量叫做a 的相反向量.2、 三角形减法法则和平行四边形减法法则.§2.2.3、向量数乘运算及其几何意义1、 规定:实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘.记作:a λ,它的长度和方向规定如下:⑴= ⑵当0>λ时, a λ的方向与a 的方向相同;当0<λ时, a λ的方向与a 的方向相反. 2、 平面向量共线定理:向量()≠与 共线,当且仅当有唯一一个实数λ,使λ=. §2.3.1、平面向量基本定理1、 平面向量基本定理:如果21,e e 是同一平面内的两个不共线向量,那么对于这一平面内任一向量,有且只有一对实数21,λλ,使2211e e a λλ+=. §2.3.2、平面向量的正交分解及坐标表示 1、 ()y x y x ,=+=. §2.3.3、平面向量的坐标运算1、 设()()2211,,,y x b y x a ==,则: ⑴()2121,y y x x b a ++=+,⑵()2121,y y x x --=-, ⑶()11,y x λλλ=, ⑷1221//y x y x =⇔. 2、 设()()2211,,,y x B y x A ,则: ()1212,y y x x AB --=. §2.3.4、平面向量共线的坐标表示 1、设()()()332211,,,,,y x C y x B y x A ,则⑴线段AB 中点坐标为()222121,y y x x ++, ⑵△ABC 的重心坐标为()33321321,y y y x x x ++++.§2.4.1、平面向量数量积的物理背景及其含义1、 θ=⋅.2、 在θcos .3、 2=.4、=.5、 0=⋅⇔⊥.§2.4.2、平面向量数量积的坐标表示、模、夹角 1、 设()()2211,,,y x y x ==,则:⑴2121y y x x b a +=⋅2121y x +=⑶121200a b a b x x y y ⊥⇔⋅=⇔+= ⑷1221//0a b a b x y x y λ⇔=⇔-= 2、 设()()2211,,,y x B y x A ,则:()()212212y y x x -+-=.3、 两向量的夹角公式 2cos a b a bx θ⋅==+4、点的平移公式平移前的点为(,)P x y (原坐标),平移后的对应点为(,)P x y '''(新坐标),平移向量为(,)PP h k '=,则.x x hy y k '=+⎧⎨'=+⎩函数()y f x =的图像按向量(,)a h k =平移后的图像的解析式为().y k f x h -=-§2.5.1、平面几何中的向量方法 §2.5.2、向量在物理中的应用举例知识链接:空间向量空间向量的许多知识可由平面向量的知识类比而得.下面对空间向量在立体几何中证明,求值的应用进行总结归纳.1、直线的方向向量和平面的法向量 ⑴.直线的方向向量:若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量. ⑵.平面的法向量:若向量n 所在直线垂直于平面α,则称这个向量垂直于平面α,记作n α⊥,如果n α⊥,那么向量n 叫做平面α的法向量.⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系.②设平面α的法向量为(,,)n x y z =.③求出平面内两个不共线向量的坐标123123(,,),(,,)a a a a b b b b ==. ④根据法向量定义建立方程组00n a n b ⎧⋅=⎪⎨⋅=⎪⎩.⑤解方程组,取其中一组解,即得平面α的法向量. (如图)2 用向量方法判定空间中的平行关系设直线12,l l 的方向向量分别是a b 、,则要证明1l ∥2l ,只需证明a ∥b ,即()a kb k R =∈. 即:两直线平行或重合两直线的方向向量共线.⑵线面平行①(法一)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥α,只需证明a u ⊥,即0a u ⋅=. 即:直线与平面平行直线的方向向量与该平面的法向量垂直且直线在平面外②(法二)要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可. ⑶面面平行若平面α的法向量为u ,平面β的法向量为v ,要证α∥β,只需证u ∥v ,即证u v λ=. 即:两平面平行或重合两平面的法向量共线. 3、用向量方法判定空间的垂直关系 ⑴线线垂直设直线12,l l 的方向向量分别是a b 、,则要证明12l l ⊥,只需证明a b ⊥,即0a b ⋅=. 即:两直线垂直两直线的方向向量垂直.⑵线面垂直①(法一)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l α⊥,只需证明a ∥u ,即a u λ=.②(法二)设直线l 的方向向量是a ,平面α内的两个相交向量分别为m n 、,若0,.0a m l a n α⎧⋅=⎪⊥⎨⋅=⎪⎩则 即:直线与平面垂直直线的方向向量与平面的法向量共线直线的方向向量与平面内两条不共线直线的方向向量都垂直. ⑶面面垂直若平面α的法向量为u ,平面β的法向量为v ,要证αβ⊥,只需证u v ⊥,即证0u v ⋅=. 即:两平面垂直两平面的法向量垂直. 4、利用向量求空间角 ⑴求异面直线所成的角A ,C 与B ,D 分别是,a b 上的任意两点,,a b 所成的角为θ,则cos .AC BD AC BDθ⋅=⑵求直线和平面所成的角①定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角②求法:设直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为ϕ, 则θ为ϕ的余角或ϕ的补角 的余角.即有:cos s .ina ua uϕθ⋅==①定义:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角.如图:②求法:设二面角l αβ--的两个半平面的法向量分别为m n 、,再设m n 、的夹角为ϕ,二面角l αβ--的平面角为θ,则二面角θ为m n 、的夹角ϕ或其补角.πϕ- 根据具体图形确定θ是锐角或是钝角: ◆如果θ是锐角,则cos cos m n m nθϕ⋅==;◆ 如果θ是钝角,则cos cos m n m nθϕ⋅=-=-.5、利用法向量求空间距离⑴点Q 到直线l 距离若Q 为直线l 外的一点,P 在直线l 上,a 为直线l 的方向向量,b =PQ ,则点Q 到直线l 距离为1(||||h a b a =⑵点A 到平面α的距离若点P 为平面α外一点,点M 为平面α内任一点,平面α的法向量为n ,则P 到平面α的距离就等于MP 在法向量n 方向上的投影的绝对值.即cos ,d MP n MP =n MP MP n MP⋅=⋅n MP n⋅=⑶直线a 与平面α之间的距离当一条直线和一个平面平行时,直线上的各点到平面的距离相等.由此可知,直线到平面的距离可转化为求直线上任一点到平面的距离,即转化为点面距离.即.n MP d n⋅=⑷两平行平面,αβ之间的距离利用两平行平面间的距离处处相等,可将两平行平面间的距离转化为求点面距离.即.n MP d n⋅=⑸异面直线间的距离高中数学必修四 知识梳理 10设向量n 与两异面直线,a b 都垂直,,,M a P b ∈∈则两异面直线,a b 间的距离d 就是MP 在向量n 方向上投影的绝对值.即.n MP d n⋅=6、三垂线定理及其逆定理⑴三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直推理模式:,,PO O PA A a PA a a OA αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭概括为:垂直于射影就垂直于斜线.⑵三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直推理模式:,,PO O PA A a AO a a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭概括为:垂直于斜线就垂直于射影.7、三余弦定理设AC 是平面α内的任一条直线,AD 是α的一条斜线AB 在α内的射影,且BD ⊥AD ,垂足为D.设AB 与α (AD)所成的角为1θ, AD 与AC 所成的角为2θ, AB 与AC 所成的角为θ.则12cos cos cos θθθ=.8、 面积射影定理已知平面β内一个多边形的面积为()S S 原,它在平面α内的射影图形的面积为()S S '射,平面α与平面β所成的二面角的大小为锐二面角θ,则'cos =.S S S S θ=射原9、一个结论长度为的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++= 222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例).。
任意角和弧度制及任意角的三角函数考点及例题讲解
任意角和弧度制及任意角的三角函数考纲解读 1.通过角的变换,判断角所在象限;2.常见的角度与弧度之间的转化;3.已知角的终边求正弦、余弦、正切值;4.利用三角函数线求角的大小或角的范围;5.利用扇形面积公式和弧长公式进行相关计算.[基础梳理]1.任意角的概念(1)我们把角的概念推广到任意角,任意角包括正角、负角、零角. ①正角:按逆时针方向旋转形成的角; ②负角:按顺时针方向旋转形成的角;③零角:如果一条射线没有作任何旋转,我们称它形成了一个零角. (2)终边相同角:与α终边相同的角可表示为:{β|β=α+2k π,k ∈Z }. 2.弧度与角度的互化(1)1弧度的角:长度等于半径长的弧所对的圆心角. (2)角α的弧度数公式:|α|=lr .(3)角度与弧度的换算:360°=2π rad,1°=π180 rad,1 rad =(180π)°≈57°18′.(4)扇形的弧长及面积公式: 弧长公式:l =α·r . 面积公式:S =12l ·r =12α·r 2.3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx(x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫作角α的正弦线、余弦线和正切线.4.终边相同的角的三角函数 sin(α+k ·2π)=sin α, cos(α+k ·2π)=cos α,tan(α+k ·2π)=tan α(其中k ∈Z ),即终边相同的角的同一三角函数的值相等.[三基自测]1.单位圆中,200°的圆心角所对的弧长为( ) A .10π B .9π C.9π10 D.10π9答案:D2.若角θ满足tan θ>0,sin θ<0,则角θ所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:C3.弧长为3π、圆心角为34π的扇形半径为________.答案:44.(必修4·4.1例题改编)α终边上一点P (-3,4).则sin α=________,cos α=________,tan α=________.答案:45 -35 -435.(2017·高考全国卷Ⅰ改编)若α的终边过点(3,4),则cos ⎝⎛⎭⎫α-π4=__________. 答案:7210[考点例题]考点一 终边相同的角及象限角|易错突破高考总复习·数学(理)第三章 三角函数、解三角形[例1] (1)若角α满足α=2k π3+π6(k∈Z ),则α的终边一定在( )A .第一象限或第二象限或第三象限B .第一象限或第二象限或第四象限C .第一象限或第二象限或x 轴非正半轴上D .第一象限或第二象限或y 轴非正半轴上(2)已知sin α>0,cos α<0,则12α所在的象限是( )A .第一象限B .第三象限C .第一或第三象限D .第二或第四象限(3)下列与9π4的终边相同的角的表达式中正确的是( )A .2k π+45°(k ∈Z )B .k ·360°+94π(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )[解析] (1)由α=2k π3+π6,k ∈Z ,当k =0时,α=π6,终边在第一象限.当k =1时,α=2π3+π6=5π6,终边在第二象限.当k =-1时,α=-2π3+π6=-π2,终边在y 轴的非正半轴上,故选D.(2)因为sin α>0,cos α<0,所以α为第二象限角,即π2+2k π<α<π+2k π,k ∈Z ,则π4+k π<12α<π2+k π,k ∈Z .当k 为偶数时,12α为第一象限角;当k 为奇数时,12α为第三象限角,故选C.(3)由定义知终边相同的角中不能同时出现角度和弧度,应为π4+2k π或k ·360°+45°(k ∈Z ).[答案] (1)D (2)C (3)C [易错提醒][纠错训练]1.在-720°~0°范围内所有与45°终边相同的角为________. 解析:所有与45°有相同终边的角可表示为:β=45°+k ×360°(k ∈Z ), 则令-720°<45°+k ×360°<0°, 得-765°<k ×360°<-45°, 解得-765360<k <-45360,从而k =-2或k =-1,代入得β=-675°或β=-315°. 答案:-675°或-315°2.终边在直线y =3x 上的角的集合为__________. 解析:在坐标系中画出直线y =3x , 可以发现它与x 轴正半轴的夹角是π3,终边在直线y =3x 上的角的集合为 ⎩⎨⎧⎭⎬⎫α|α=k π+π3,k ∈Z .答案:⎩⎨⎧⎭⎬⎫α|α=k π+π3,k ∈Z考点二 扇形弧长、面积公式的应用|方法突破[例2] (1)(2018·合肥模拟)《九章算术》是我国古代内容极为丰富的数学名著,卷一《方田》[三三]:“今有宛田,下周三十步,径十六步.问为田几何?”译成现代汉语其意思为:有一块扇形的田,弧长30步,其所在圆的直径是16步,问这块田的面积是多少(平方步)?( )A .120B .240C .360D .480(2)(2018·太原模拟)已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( )A .2B .sin 2 C.2sin 1D .2 sin 1[解析] (1)由题意可得:S =12×8×30=120(平方步).(2)如图:∠AOB =2弧度,过O 点作OC ⊥AB 于C ,并延长OC 交弧AB 于D .则∠AOD =∠BOD =1弧度,且AC =12AB =1,在Rt △AOC 中,AO =AC sin ∠AOC =1sin 1,即r =1sin 1,从而弧AB 的长为l =α·r =2sin 1.[答案] (1)A (2)C [方法提升][母题变式]将本例(1)改为已知扇形的半径是2,面积为8,则此扇形的圆心角的弧度数是( ) A .4 B .2 C .8D .1解析:设半径为r ,圆心角的弧度数为θ, 由S =12θr 2,得8=12×θ×4,∴θ=4.答案:A考点三 三角函数的定义|模型突破角度1 用三角函数的定义求值[例3] (1)(2018·大同模拟)已知角α的终边经过点P (-x ,-6),且cos α=-513,则x的值为________.(2)已知角α的终边在直线y =-3x 上,则10sin α+3cos α的值为________. [解析] (1)∵cos α=-x(-x )2+(-6)2=-x x 2+36=-513,∴⎩⎪⎨⎪⎧x >0,x 2x 2+36=25169,解得x =52.(2)设α终边上任一点为P (k ,-3k ), 则r =k 2+(-3k )2=10|k |. 当k >0时,r =10k , ∴sin α=-3k 10k =-310,1cos α=10kk=10, ∴10sin α+3cos α=-310+310=0;当k <0时,r =-10k , ∴sin α=-3k -10k =310,1cos α=-10k k=-10, ∴10sin α+3cos α=310-310=0.[答案] (1)52 (2)0[模型解法]角度2 三角函数值符号的判断[例4] (1)(2018·怀化模拟)sin 2·cos 3·tan 4的值( ) A .小于0 B .大于0 C .等于0D .不存在(2)已知点P (cos α,tan α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限[解析] (1)∵π2<2<3<π<4<32π.∴sin 2>0,cos 3<0,tan 4>0. ∴sin 2·cos 3·tan 4<0.(2)由题意可得⎩⎪⎨⎪⎧ cos α<0,tan α<0,则⎩⎪⎨⎪⎧sin α>0,cos α<0,所以角α的终边在第二象限,故选B.[答案] (1)A (2)B [模型解法]角度3 利用三角函数线比较大小,解不等式[例5] (1)(2018·石家庄模拟)若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小是( )A .sin α<tan α<cos αB .cos α<sin α<tan αC .sin α<cos α<tan αD .tan α<sin α<cos α[解析] 如图所示,作出角α的正弦线MP ,余弦线OM ,正切线AT ,观察可得,AT >OM >MP ,故有sin α<cos α<tan α.[答案] C (2)y =sin x -32的定义域为________. [解析] ∵sin x ≥32,作直线y =32交单位圆于A 、B 两点,连接OA 、OB ,则OA 与OB 围成的区域(图中阴影部分)即为角x 的终边的范围,故满足条件的角x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π3≤x ≤2k π+2π3,k ∈Z .[答案] ⎩⎨⎧⎭⎬⎫x |2k π+π3≤x ≤2k π+2π3,k ∈Z[模型解法]形如sin α≥a 或sin α≤a ()a ∈[-1,1]的解,其关键点为: (1)作出sin α=a 的函数线;(2)根据不等式,确定α的转动方向; (3)写出α的区域.[高考类题](2014·高考大纲全国卷)设a =sin 33°,b =cos 55°,c =tan 35°,则( ) A .a >b >c B .b >c >a C .c >b >aD .c >a >b解析:∵b =cos 55°=sin 35°>sin 33°=a ,∴b >a . 又∵c =tan 35°=sin 35°cos 35°>sin 35°=cos 55°=b ,∴c >b .∴c >b >a .故选C. 答案:C[真题感悟]1.[考点一、二] (2014·高考新课标全国卷Ⅰ)如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]的图象大致为( )答案:C2.[考点二、三](2017·高考北京卷)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β=__________.解析:由已知可得,sin β=sin(2k π+π-α)=sin(π-α)=sin α=13(k ∈Z ).1答案:3。
人教A版高中数学必修四课件:第一章 1.1.2 任意角和弧度制(共52张PPT)
高中数学 必修四 1.1.1任意角和弧度制
又k∈Z,故所求的最大负角为β=-50°. (2)由360°≤10 030°+k·360°<720°, 得-9670°≤k·360°<-9310°,又k∈Z,解得k=-26. 故所求的角为β=670°.
【方法技巧】 1.在0°到360°范围内找与给定角终边相同的角的方法 (1)一般地,可以将所给的角α 化成k·360°+β 的形式(其中 0°≤β <360°,k∈Z),其中的β 就是所求的角. (2)如果所给的角的绝对值不是很大,可以通过如下方法完成:当所 给角是负角时,采用连续加360°的方式;当所给角是正角时,采用 连续减360°的方式,直到所得结果达到要求为止.
4.将35°角的终边按顺时针方向旋转60°所得的角度数为_______, 将35°角的终边按逆时针方向旋转两周后的角度数________. 【解析】将35°角的终边按顺时针方向旋转60°所得的角为35°60°=-25°,将35°角的终边按逆时针方向旋转两周后的角为 35°+2×360°=755°. 答案:-25° 755°
【解析】(1)错误.终边与始边重合的角是k·360°(k∈Z),不一定 是零角. (2)错误.如-10°与350°终边相同,但是不相等. (3)错误.如-330°角是第一象限角,但它是负角. (4)错误.终边在x轴上的角不属于任何象限. 答案:(1)× (2)× (3)× (4)×
2.下列各组角中,终边不相同的是( )
2.判断角的概念问题的关键与技巧 (1)关键:正确理解象限角与锐角、直角、钝角、平角、周角等概念. (2)技巧:判断一种说法正确需要证明,而判断一种说法错误只要举 出反例即可.
【变式训练】射线OA绕端点O顺时针旋转80°到OB位置,接着逆时针 旋转250°到OC位置,然后再顺时针旋转270°到OD位置,则 ∠AOD=________.
高中数学必修四 第一章三角函数 1.1.2 弧度制
= =
2������π������π +
2π 2
,������∈Z ,������∈Z
������
������
=
������π 2
,������∈Z
2.弧度制与角度制的区别和联系
剖析:主要从定义、意义、换算、写法等方面考虑.
(1)从定义上,弧度制是以“弧度”为单位度量角的单位制,角度制
是以“度”为单位度量角的单位制,因此弧度制和角度制一样,都是度
������ 2
,������∈Z
+ π,������∈Z
������
2������π
+
π
<
������
<
2������π
+
3π 2
,������∈Z
3π ������ 2������π + 2 < ������ < 2������π + 2π,������∈Z
(2)终边在坐标轴上的角的表示:
角 α 终边所在的坐标轴 x 轴非负半轴 x 轴非正半轴 x轴 y 轴非负半轴
高中数学必修四
第一章 三角函数
1.1.2 弧度制
教学目标
1.了解弧度制,明确1弧度的含义. 2.能进行弧度与角度的互化. 3.掌握用弧度制表示扇形的弧长公式和面积公式.
知识梳理
1.弧度制
(1)定义:以弧度为单位度量角的单位制叫做弧度制. (2)度量方法:长度等于半径长的弧所对的圆心角叫做1弧度的角. 如图,若圆O的半径为r , ������������ 的长等于������,∠AOB 就是 1 弧度的角. 名师点拨一定大小的圆心角α的弧度数是所对弧长与半径的比 值,是唯一确定的,与半径大小无关. (3)记法:弧度单位用符号rad表示,或用“弧度”两个字表示.在用弧 度制表示角时,单位通常省略不写.
人教版数学必修4第一章1.2.1《任意角的三角函数》课件
转化为求 0 到 2 或 0 到 角3 的三 6 角函0数值 .
例3 求下列三角函数值:
(1) cos9
4
(2) tan( 11)
6
解:(1)co 9 4 sco 4 s 2 ( ) co 4 s2 2
(2)ta 1 n )1 ( ta n 2 ) (ta n ta n 3
A.4 3
B.4 3
C.4 3
D. 3
例2、已知角 的终边经过点P0(3,4),求角
的正弦、余弦和正切值 .
解:由已知可得:
rx2y2 3 2 ( 4 )2 5
于是,sin y 4 r5
cosx 3 r5
tan y 4 x3
合作 演练
变式1、已知角 的终边过点 P1,2 5 ,
求 的三个三角函数值.
规律: “一全正、二正弦正、三正切正、四余弦正”
“一全二正弦,三切四余弦”
例1 确定下列三角函数值的符号:
(1)co2s50(2)tan(67)2(3)sin
4
解:(1)因为 250是第三象限角,所以co 2s5 0 0;
(2)因为 tan(67)2= ta 2 n 3 ( 6 4 ) 0 8 ta 4 ,n 8
r
第 二 象 限 : x 0 ,r 0 ,故 r x 为 负 值 ; o
x
第 三 象 限 : x 0 ,r 0 ,故 x 为 负 值 ; r
第 四 象 限 : x 0 ,r 0 ,故 x 为 正 值 ; r
三角函数在各象限内的符号:
交叉正负
第 3一 、 象 正 限 切 : 函 x 数 0 ,值 y t0 a,n 故 y 为 x y 正 值 ; y x
必修四第一章 三角函数解题技巧
必修四第一章 三角函数解题技巧1 例说弧度制中的扇形问题与扇形有关的问题是弧度制中的难点,我们可以应用弧长公式l =|α|r 和扇形面积公式S =12|α|r 2解决一些实际问题,这类问题既充分体现了弧度制在运算上的优越性,又能帮助我们加深对弧度制概念的理解.下面通过几例帮助同学们分析、归纳弧度制下的扇形问题. 例1 已知扇形的圆心为60°,所在圆的半径为10,求扇形的弧长及扇形中该弧所在的弓形面积.例2 扇形的半径为R ,其圆心角α(0<α≤π)为多大时,扇形内切圆面积最大,其最大值是多少?例3 已知扇形的周长为30 cm ,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?针对练习:1.扇形的周长C 一定时,它的圆心角θ取何值才能使扇形面积S 最大?最大值是多少?2.在扇形AOB 中,∠AOB =90°,弧AB 的长为l ,求此扇形内切圆的面积.3.已知扇形AOB 的周长是6 cm ,该扇形的中心角是1弧度,求该扇形的面积.2 任意角三角函数问题错解辨析任意角三角函数是三角函数的基础,在学习这部分内容时,有的同学经常因为概念不清、考虑不周、观察代替推理等原因而错解题目,下面就解题中容易出现的错误进行分类讲解,供同学们参考.一、概念不清例1 已知角α的终边在直线y =2x 上,求sin α+cos α的值.二、观察代替推理例2 当α∈(0,π2)时,求证:sin α<tan α.三、估算能力差例3 若θ∈⎝⎛⎭⎫0,π2,则sin θ+cos θ的一个可能的值是( ) A.23B.27πC.4-22 D .13 同角三角函数关系巧应用同角三角函数的用途主要体现在三角函数的求值和恒等变形中各函数间的相互转化,下面结合常见的应用类型举例分析,体会其转化作用,展现同角三角函数关系巧应用.一、知一求二型例1 已知sin α=255,π2≤α≤π,则tan α=_________________________________.二、妙用“1”例2 证明:1-sin 6x -cos 6x 1-sin 4x -cos 4x =32.三、齐次式型求值例3 已知tan α=2,求值:(1)2sin α-3cos α4sin α-9cos α=________; (2)2sin 2α-3cos 2α=________.4 单调不“单调”,应用很“奇妙”三角函数的单调性是三角函数的重要性质之一,也是高考常考的内容.利用其可以方便地进行比较值的大小、求单调区间、求解最值和解不等式等.下面举例归纳该性质在解题中的具体应用,希望能对同学们的学习有所帮助.一、信心体验——比较大小例1 比较cos5π14,sin 2π7,-cos 8π7的大小.二、重拳出击——求解最值例2 已知f (x )=2sin(2x -π4),x ∈R .求函数f (x )在区间[π8,3π4]上的最小值和最大值.三、触类旁通——解不等式例3 若0≤α<2π,sin α>33cos α,求α的取值范围.5 善用数学思想——巧解题一、数形结合思想例1 在(0,2π)内,使sin x >cos x 成立的x 的取值范围是________.二、分类讨论思想例2 已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值.三、函数与方程的思想例3 函数f (x )=3cos x -sin 2x (π6≤x ≤π3)的最大值是________.四、转化与化归思想例4 比较下列每组数的大小.(1)tan 1,tan 2,tan 3;(2)tan(-13 π4)与tan(-17 π5).6 三角函数的性质总盘点三角函数的性质是高考考查的重点和热点内容之一,应用“巧而活”.要能够灵活地运用性质,必须在脑海中能及时地浮现出三角函数的图象.下面通过典型例题对三角函数的性质进行盘点,请同学们用心体会.一、定义域例1 函数y = cos x -12的定义域为________.二、值域与最值例2 函数y =cos(x +π3),x ∈(0,π3]的值域是________.三、单调性例3 已知函数f (x )=sin(π3-2x ),求:(1)函数f (x )的单调递减区间;(2)函数f (x )在[-π,0]上的单调递减区间.四、周期性与对称性例4 已知函数f (x )=sin(2ωx -π3)(ω>0)的最小正周期为π,则函数f (x )的图象的一条对称轴方程是( )A .x =π12B .x =π6C .x =5π12D .x =π3五、奇偶性例5 若函数f (x )=sin x +φ3(φ∈[0,2π))是偶函数,则φ等于( ) A.π2 B.2π3 C.3π2 D.5π37 数形结合百般好,形象直观烦琐少——构建正弦、余弦函数图象解题正弦、余弦函数的图象是本章的重点,也是高考的一个热点,它不仅能直观反映三角函数的性质,而且它还有着广泛的应用,若能根据问题的题设特点灵活构造图象,往往能直观、准确、快速解题.一、确定函数的值域例1 定义运算a ※b 为a ※b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,例如,1※2=1,则函数f (x )=sin x ※cos x 的值域为( )A .[-1,1]B.⎣⎡⎦⎤-22,1C.⎣⎡⎦⎤-1,22D.⎣⎡⎦⎤-1,-22二、确定零点个数例2 函数f (x )=⎝⎛⎭⎫12x -sin x 在区间[0,2π]上的零点个数为________.三、确定参数的值例3 已知f (x )=sin(ωx +π3)(ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=_________________________________________________.四、判断函数单调性例4 设函数f (x )=⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π3(x ∈R ),则f (x )( ) A .在区间⎣⎡⎦⎤2π3,4π3上是增函数 B .在区间⎣⎡⎦⎤3π4,13π12上是增函数 C .在区间⎣⎡⎦⎤-π8,π4上是减函数 D .在区间⎣⎡⎦⎤π3,5π6上是减函数五、确定参数范围例5 当0≤x ≤1时,不等式sinπx 2≥kx 恒成立,则实数k 的取值范围是________.六、研究方程的实根例6 已知方程2sin(2x +π3)-1=a ,x ∈[-π6,13π12]有两解,求a 的取值范围.8 三角函数学习中的“小技巧、大突破”从近几年高考数学试卷统计情况看,三角函数是高考的六大板块之一,每年考一道大题和一道小题,而一道大题里面往往又隐含了若干个小问题.所以,高中生应该注意三角函数知识里面的容易被忽略的一些小问题、小技巧.一、“已知三角函数值求角”问题在学习过程中学生们通常存在这么几个困惑:1、给出一个三角函数值可能对应着多个或无数个角,不知道该先求哪个角?2、不能准确的写出已知要求的那个范围的角.下面以四个例题说明:例1 已知sin x =22且x ∈[-π2,π2],求x 的取值集合. 例2 已知sin x =-22且x ∈[-π2,π2],求x 的取值集合. 例3 已知sin x =-22且x ∈[0,2π],求x 的取值集合. 例4 已知sin x =-22,求x 的取值集合.二、“利用三角函数的单调性比较大小”问题在教学中通常要求学生把三角函数化成同名且自变量落在一个单调区间内即可,但是学生在实际操作过程中容易混淆单调区间,不如我们把此问题中的自变量利用诱导公式负角化为正角,正角统一都化为锐角,这样就更简洁、明朗了,因为正弦、余弦、正切函数都在区间(0,π2)内的单调性依次为:单调递增、单调递减、单调递增。
苏教版高中数学必修4第1章 三角函数任意角、弧度
正角
负角 零角
按 逆时针 方向旋转形成的角
按 顺时针 方向旋转形成的角 零角 一条射线没有作任何旋转,称它形成了一个_____
知识点二
象限角
思考
把角的顶点放在平面直角坐标系的原点,角的始边与x轴的非
负半轴重合,旋转该角,则其终边 ( 除端点外 ) 可能落在什么
位置? 答案 终边可能落在坐标轴上或四个象限内.
D.{α|α=k· 360°-263°,k∈Z}
解析 -457°=-2×360°+263°,故选C.
1
2
3
4
5
解析
答案
3.2 017°是第 三 象限角.
解析 因为2 017°=5×360°+217°,故2 017°是第三象限角.
1
2
3
4
5
解析
答案
4.与-1 692°终边相同的最大负角是 -252°.
跟踪训练 2
下列各角分别是第几象限角?请写出与下列各角终边相同
的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来. (1)60°; 解 60°角是第一象限角,所有与60°角终边相同的角的集合S={β|β=
60°+k· 360°,k∈Z},
S中适合-360°≤β<720°的元素是60°+(-1)×360°=-300°,
当k=4时,β=4×360°-1 910°=-470°; 当k=5时,β=5×360°-1 910°=-110°; 当k=6时,β=6×360°-1 910°=250°.
解答
命题角度2 求终边在给定直线上的角的集合
- 3x 上的角的集合. 例4 写出终边在直线y=
解
终边在 y=- 3x(x<0)上的角的集合是 S1={α|α=120° +k· 360° , k∈Z};
高一下册数学必修四第一章 三角函数.知识点及同步练习
巩固练习
1、 在直角坐标系中,若角α与角β的终边关于x轴对称,则α与β的
关系一定是 ( )
A.α=-β B.α+β=k·360°(k∈Z) C.α-β=k·360°(k∈Z)
D.以上答案都不对
2、圆内一条弦的长等于半径,这条弦所对的圆心角是
()
A.等于1弧度 B.大于1弧度 C.小于1弧度
D.无法
判断
(2) 角α + k·720 °与角α终边相同,但不能表示与角
α终边相同的所有角. 例4.写出终边在y轴上的角的集合(用0°到360°的角表示) . 例5.写出终边在上的角的集合S,并把S中适合不等式- 360°≤β<720°的元素β写出来. 思考题:已知α角是第三象限角,则α/2,α/3,α/4各是第 几象限角?
D.{α∣-270°+k·360°<α<-180°+k·360°,k∈Z}
11、下列命题是真命题的是( )
Α.三角形的内角必是一、二象限内的角 B.第一象限的角必是
锐角
C.不相等的角终边一定不同
D.=
12、已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、
C关系是( )
A.B=A∩C B.B∪C=C
度记做1rad.在实际运算中,常常将rad单位省略.
3.思考:
(1)一定大小的圆心角所对应的弧长与半径的比值是否是确
定的?与圆的半径大小有关吗?
弧度制的性质:
①半圆所对的圆心角为
②整圆所对的圆心角为
③正角的弧度数是一个正数.
④负角的弧度数是一
个负数.
⑤零角的弧度数是零.
⑥角α的弧度数的绝
对值|α|=
始边 终边 顶点 A O B
高一必修4第一章三角函数(预习)讲解
§1.1.1 任意角※ 学习探究1.角的定义:一条射线绕着______,从__位置OA 旋转到__位置OB ,形成一个角α,点O 是角的顶点,射线,OA OB 分别是角α的______。
说明:在不引起混淆的前提下,“角α”或“α∠”可以简记为α. 2.角的分类:正角:按___方向旋转形成的角叫做正角; 负角:按____方向旋转形成的角叫做负角;零角:如果一条射线_____旋转,我们称它为零角。
说明:零角的始边和终边重合。
3.象限角:在直角坐标系中,使角的___与坐标原点重合,角的___与x 轴的非负轴重合,则 ;(1)象限角:若角的___(端点除外)在第几象限,我们就说这个角是第几象限角。
例如:30,390,330-都是第__象限角;300,60-是第__象限角。
(2)非象限角(也称象限间角、轴线角):如果角的终边在___上,就认为这个角不属于任何象限。
例如:90,180,270等等。
4.终边相同的角所有与30角终边相同的角,连同30角自身在内,都可以写成______的形式;反之,所有形如30360k +⋅()k Z ∈的角都与30角的__相同。
从而得出一般规律:。
新知:终边相同的角的集合:所有与角α终边相同的角,连同角α在内,可构成一个集合{}|360,S k k Z ββα==+⋅∈, 小结:1、任一与角α终边相同的角,都可以表示成角α与整数个周角的和。
2、终边相同的角不一定相等,相等的角终边一定相同。
※ 典型例题例1.在0与360范围内,找出与下列各角终边相同的角,并判断它们是第几象限角? (1)120- (2)640 (3)95012'-变式:写出与下列终边相同的角的集合,并写出-720°~360°间角. (1)120°;(2)-270°;(3)1020°. 例 2. 写出终边在下列位置上的角的集合: (1)y 轴; (2)直线y=x.变式:(1)终边落在x 轴正半轴上的角的集合如何表示?如终边落在x 轴上呢?(2)终边落在坐标轴上的角的集合如何表示?小结:0°~360°是指 ;注意区分终边相同的角、象限角、区间角的表示.例3.若3601575,k k Z α=⋅-∈,试判断角α所在象限。
必修4第一章任意角的概念与弧度制,三角函数定义
角的概念的推广一、考点突破1. 掌握用“旋转”定义角的概念,理解并掌握“正角”“负角”“象限角”“终边相同的角”的含义;2. 掌握所有与α角终边相同的角(包括α角)的表示方法;3. 体会运动变化观点,深刻理解推广后的角的概念。
二、重难点提示重点:掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。
难点:终边相同的角、第几象限角的表示。
1. 角的概念的推广:一条射线由原来位置OA,绕着它的端点O 点,可以向两个方向旋转:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,未作任何旋转时,也看作一个角,叫零角。
这样就形成了任意大小的角。
2. 记法与运算: (1)记法:射线OA 绕O 点旋转到OB 所成的角记作∠AOB ; 射线OB 绕O 点旋转到OA 所成的角记作∠BOA ; (2)运算:各角和的旋转量等于各角旋转量的和:射线OA 绕点O 旋转到OB ,又从OB 旋转到OC ,得到∠AOC ,这个过程可表示成角的运算:∠AOC=∠AOB+∠BOC 。
3. 终边相同的角:与α终边相同的角的集合:},360|{Z k k ∈︒⨯+=αββ。
4. 象限角:角的顶点与坐标原点重合,始边与x 轴正半轴重合,此时终边在第几象限,则称这个角是第几象限角。
例题1 射线OA 绕点A 顺时针旋转80°到OB ,再逆时针旋转300°到OC ,再顺时针旋转100°到OD 位置,求AOD ∠的大小。
思路分析:利用正负角的概念结合角的运算求解。
答案:解:AOD ∠=AOB ∠+BOC ∠+COD ∠=︒=︒-+︒+︒-120)100(300)80(。
例题2 在 0~360之间,找出下列终边相同的角,并判定它们是第几象限角: (1)︒-150;(2)︒650;(3)'︒-15950。
思路分析:把负角逆时针旋转一周或者几周,即可得到 0~ 360之间的角,把超过 360 的角顺时针旋转一周或者几周,即可得到 0~ 360之间的角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年 级 高一 学 科 数学版 本人教新课标A 版课程标题 必修4第一章第1-2节任意角、弧度制和任意角的三角函数编稿老师 王志国 一校 黄楠二校李秀卿审核吴华斌一、学习目标:1、了解任意角的概念和弧度制,能进行弧度与角度的互化。
2、能够借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义。
3、理解同角三角函数的基本关系。
二、重点、难点:重点:1、了解弧度制,能进行弧度与角度的互化。
2、任意角三角函数(正弦、余弦、正切)的定义,同角三角函数的基本关系 难点:1、弧度的概念,用集合表示终边相同的角。
2、用角的终边上的点的坐标来刻画三角函数,三角函数符号,三角函数线。
三、考点分析:1、了解任意角的概念和弧度制。
2、理解弧度与角度的互化。
3、掌握任意角的正弦、余弦、正切的定义,用单位圆中的三角函数线表示正弦、余弦和正切以及同角三角函数的基本关系式。
一、任意角1、任意角是由角的终边按照一定方向旋转而定义的,由于旋转有逆时针和顺时针两种方向,因此旋转所得到的角也有正负之分. 如果角的终边没有做任何旋转,则称该角为零角。
注意:一般情况下,角的始边与x 轴的正半轴重合,顶点在坐标原点。
2、正确理解直角坐标系中的角 象限角:是指始边与x 轴的正半轴重合,顶点在坐标原点,而终边落在某个象限内的角。
注意:终边落在坐标轴上的角叫轴线角,它不属于任何象限角。
3、终边相同的角:具有同一终边的角的集合。
与角α终边相同的角可用集合表示为{β∣360,k k Z βα=+⋅︒∈}或{β∣2,k k Z βαπ=+∈}。
二、弧度制1、等于半径长的圆弧所对的圆心角叫1弧度的角。
2、如果半径为r 的圆心角α所对的弧长为l ,那么,角α的弧度数的绝对值是rl =α。
3、弧度制和角度制可以相互转化: π=︒180rad/1801()5718rad π=︒≈︒,10.01745180rad rad π︒=≈。
三、任意角的三角函数1、三角函数的定义:设α是一个任意角,点()P x y ,是角α的终边与单位圆的交点,那么:y 叫做α的正弦,记作sin α,即sin y α=;x 叫做α的余弦,记作cos α,即cos x α=; y x 叫做α的正切,记作tan α,即tan (0)yx xα=≠。
正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数。
推广:设点()P x y ,是角α终边上的任意一点,它到坐标原点的距离OP r =,于是sin P P y r α==点的纵坐标点到原点的距离;P P xr α==点的横坐标点到原点的距离cos ;tan (0)P P yx x α==≠点的纵坐标点的横坐标。
2、三角函数值的符号与角所在的象限有关,它可根据三角函数的定义和各象限内的点的坐标符号推出。
3、正弦线、余弦线、正切线分别是正弦、余弦、正切函数的几何表示,这三种线段都是与单位圆有关的有向线段,这些特定的有向线段的数值可以用来表示三角函数值,因此称它们为三角函数线。
下图是各象限内三角函数线的情况:MP OM AT 、、分别叫做角α的正弦线、余弦线、正切线。
四、同角三角函数的基本关系根据三角函数的定义,可以推导出同角三角函数的一些基本关系式: 22sin cos 1αα+=;sin tan cos ααα=(当ππ2k α≠+,k ∈Z 时)。
知识点一:任意角和弧度制例1:设A ={小于︒90的角},B ={第一象限的角},则A B = ( )A. {锐角}B. {小于︒90的角}C. {第一象限的角}D. 以上都不对解题过程:小于︒90的角由锐角、零角、负角组成,而第一象限的角包含有锐角及其他终边在第一象限的角,所以A B 由锐角和终边在第一象限的负角组成,故上述A 、B 、C 都不对。
故选D 。
解题后的思考:小于︒90的角不都是锐角,它还包含有零角、负角,只有小于︒90的正角才是锐角。
例2:将下列各角化成()Z k k ∈+απ2,且π<α≤20的形式,并指出它们是第几象限角:(1)-1725°;(2)π364。
思路分析:先把 化成()Z k k ∈+⋅α360的形式,再用弧度制表示。
解答过程:(1)∵ ,∴ 与125π角的终边相同。
又∵125π是第一象限角,∴ 是第一象限角。
(2)∵πππ3420364+=,∴π364与π34角的终边相同。
又∵π34是第三象限角,∴π364是第三象限角。
()Z k k ∈+απ2πk 2而不是整数倍. 同时,α为弧度,不能写成() +πk 2的形式。
例3:若α是第一象限角,求3α是第几象限角。
思路分析:由于α是第一象限角,仅想到090α︒<<︒,从而得到0303α︒<<︒,得到3α为第一象限角是错误的。
解答过程:∵α是第一象限角,∴36036090,k k k Z α⋅︒<<⋅︒+︒∈, ∴36036030,333k kn Z α⋅︒<<⋅︒+︒∈。
当3k n =时,有36036030,3n n k Z α⋅︒<<⋅︒+︒∈,∴3α为第一象限角。
当31k n =+时,360120360150,3n n n Z α⋅︒+︒<<⋅︒+︒∈,∴3α为第二象限角。
当32k n =+时,360240360270,3n n n Z α⋅︒+︒<<⋅︒+︒∈,∴ 3α为第三象限角。
综上可知,3α为第一、二、三象限角。
解题后的思考:由α所在象限,确定nα所在象限的其他方法:可先将各个象限n 等分,从第一象限离x 轴最近的区域开始逆时针方向依次重复标注数码1,2,3,4,直到将所有区域标完为止。
如果α在第几象限,则nα就在图中标号为几的区域内,如图所示,若α在第一象限,则3α就在图中标号为1的区域内,即第一、二、三象限。
例4:已知角α、β的终边相同,那么αβ-的终边在( ) A. x 轴的非负半轴上 B. y 轴的非负半轴上 C. x 轴的非正半轴上 D. y 轴的非正半轴上思路分析:将角α、β按终边相同角的公式写出,然后作差α-β,对其研究即可作出判断。
解答过程:∵角α、β的终边相同,∴360,k k Z αβ=⋅︒+∈。
作差360360,k k k Z αβββ-=⋅︒+-=⋅︒∈, ∴α-β的终边在x 轴的非负半轴上。
故选A 。
解题后的思考:对于终边为x 轴的角的集合,终边为y 轴的角的集合,终边为坐标轴的角的集合,要记熟记牢。
例5:解答下列各题(1)已知扇形的周长为10cm ,面积为24cm ,求扇形圆心角的弧度数; (2)已知一扇形的圆心角为72°,半径等于20cm ,求扇形的面积。
思路分析:记准、记熟弧长公式、扇形面积公式是解题的关键。
解答过程:(1)设扇形圆心角的弧度数为θ()02θπ<<,弧长为l ,半径为r ,则210l r +=,①142lr =。
② 将①代入②得2540r r -+=,解得11r =,24r =。
当1r =时,()8l cm =,此时82rad rad θπ=>,舍去; 当4r =时,()2l cm =,此时2142rad rad θ==。
(2)设扇形的弧长为lcm , ∵272721805ππ︒=⨯=, ∴22085l R παπ==⨯=()cm ,∴()2118208022S lR cm ππ==⨯⨯=。
解题后的思考:以上两个题是对弧度制下弧长公式和扇形面积公式的应用,公式简明,运算非常简便。
知识点二:任意角的三角函数例6:已知sin m α=()0,1m m ≠≠±,试用m 表示α的其他三角函数值。
思路分析:所给α的正弦值为字母m ,必须对m 进行讨论,以确定三角函数值的符号。
解答过程:由于0,1m m ≠≠±,∴所求三角函数均有意义。
∴22cos 1sin 1m αα=±-=±-(当α在第一、四象限时取正号,α在第二、三象限时取负号)。
22sin 1tan cos 1m m mααα-==±-。
(当α在第一、四象限时取正号,α在第二、三象限时取负号)。
解题后的思考:符号的正负与数值的正负不是一个概念,m -未必是负值,而在算术根前面,二者就统一起来了。
例7:已知1sin cos 52πθθθπ⎛⎫+=<< ⎪⎝⎭,求tan θ。
思路分析:本题考查三角函数式之间的转化能力,应熟练掌握三角函数的基本关系式。
解答过程:∵221sin cos ,sin cos 15θθθθ+=+=,∴=2111212525⎡⎤⎛⎫-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 由韦达定理可知,sin ,cos θθ是方程21120525x x --=的两个根,则该方程的两根为,55-。
∵2πθπ<<,∴sin 0,cos 0θθ><。
于是43sin ,cos 55θθ==-,进而有sin 4tan cos 3θθθ==-。
解题后的思考:sin cos ,sin cos ,sin cos αααααα+-三者之间的关系:()2sin cos 12sin cos ,αααα+=+()2sin cos 12sin cos αααα-=-,三者知一,即可求其余两个。
例8:设22111sin sin sin sin sin sin 422αβαβαβ++=⋅++,求锐角α,β的值。
思路分析:经过适当的配方,将式子化为若干个平方和等于零,然后求出α与β的值来。
解答过程:式子两边同乘以2,再移项,得:()222211sin sin sin sin sin 2sin sin sin 044ααββααββ⎛⎫⎛⎫-++-++-+= ⎪ ⎪⎝⎭⎝⎭,即()22211sin sin sin sin 022αβαβ⎛⎫⎛⎫-+-+-= ⎪ ⎪⎝⎭⎝⎭。
∴1sin ,21sin ,2sin sin .αβαβ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩∵α,β为锐角,∴6παβ==。
解题后的思考:由一个等式要确定两个变量的值一般是不可能的,若能确定,必定有隐含的条件可以利用,这就需要同学们仔细地去挖掘,该例是利用了非负数的和为零,则这些数都为零的性质进行求解的。
学好弧度制的关键在于理解好什么叫1弧度,掌握好角度与弧度的互化也可以帮助我们理解弧度制。
学好任意角的三角函数这一节的关键是掌握定义,三角函数符号、三角函数值以及同角的基本关系都是在定义的基础上推导出来的。
刚开始学时,同学们如果忘了三角函数符号、三角函数值以及同角的基本关系,建议大家由定义进行推导,这样比只看书记忆效果更好。
一、预习新知我们利用单位圆定义了三角函数,而圆具有很好的对称性。