带电粒子在复合场中的运动典型例题汇编
物理试卷分类汇编物理带电粒子在复合场中的运动(及答案)含解析
一、带电粒子在复合场中的运动专项训练1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。
极板间存在方向向上的匀强电场,两极板间电压为U 。
质量为m 、带电量为q 的正离子从O 点由静止开始加速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。
两虚线之间的区域无电场和磁场存在,离子可匀速穿过。
忽略相对论效应和离子所受的重力。
求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。
【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =(2)22nqUmB =,2(1,2,3,,1)n k =-(3)2222(1)t qum k -磁,22(1)=k m t h qU-电 【解析】 【分析】带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。
【详解】(1)离子经电场加速,由动能定理:212qU mv =可得2qUv m=磁场中做匀速圆周运动:2v qvB m r=刚好打在P 点,轨迹为半圆,由几何关系可知:2kd r =联立解得B =; (2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。
设共加速了n 次,有:212n nqU mv =2nn nv qv B m r =且:2n kd r =解得:B =,要求离子第一次加速后不能打在板上,有12d r >且:2112qU mv =2111v qv B m r =解得:2n k <,故加速次数n 为正整数最大取21n k =- 即:B =2(1,2,3,,1)n k =-;(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。
带电粒子在复合场中的运动习题全集(含答案).
图11-4-1例1.如图11-4-1绝缘直棒上的小球,其质量为m 、带电荷量是+q ,小球可在棒上滑动.将此棒竖直放在互相垂直且在水平方向的匀强电场和匀强磁场中,电场强度是E ,磁感应强度是B ,小球与棒间的动摩擦因数为 ,求小球由静止沿棒下滑的最大加速度和最大速度(小球带电荷量不变)例2.如图11-4-3所示,水平放置的平行金属板,长为l =140cm ,两板之间的距离d =30cm ,板间有图示方向的匀强磁场,磁感应强度的大小为B =1.3×10-3T .两板之间的电压按图所示的规律随时间变化(上板电势高为正).在t =0时,粒子以速度v =4×103m/s 从两板(左端)正中央平行于金属板射入,已知粒子质量m =6.64×10-27kg ,带电量q =3.2×10-19C .试通过分析计算,看粒子能否穿越两块金属板间的空间,如不能穿越,粒子将打在金属板上什么地方?如能穿越,则共花多少时间?【益智演练】1.一个质量为m ,电量为q 的负电荷在磁感应强度为B 的匀强磁场中绕固定的正电荷做匀速圆周运动,磁场方向垂直于它的运动平面,作用在负电荷上的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是:( )A .4qBmB .3qBmC .2qBmD .qB m2.如图11-4-5所示,足够长的光滑三角形绝缘槽,与水平面的夹角分别为α和β(α<β),加垂直于纸面向里的磁场.分别将质量相等、带等量正、负电荷的小球 a 、b 依次从两斜面的顶端由静止释放,关于两球在槽上运动的说法正确的是( ) A .在槽上,a 、b 两球都做匀加速直线运动,且a a >a b B .在槽上,a 、b 两球都做变加速运动,但总有a a >a bC .a 、b 两球沿直线运动的最大位移是s a <s bD .a 、b 两球沿槽运动的时间为t a 和t b ,则t a <t b3.一带正电的小球沿光滑水平桌面向右运动,飞离桌面后进入匀强磁场,如图11-4-6所示,若飞行时间t 1后落在地板上,水平射程为s 1,着地速度大小为v 1,撤去磁场,其他条件不变,小球飞行时间t 2,水平射程s 2,着地速度大小为v 2,则( ) A .s 2>s 1 B .t 1>t 2 C .v 1>v 2 D .v 1=v4.用绝缘细线悬挂一个质量为m 、带电量为+q 的小球,让它处于右图11-4-7所示的磁感应强度为B 的匀强磁场中.由于磁场的运动,小球静止在如图位置,这时悬线与竖直方向夹角为α,并被拉直,则磁场运动的速度和方向是( )A .v =mg /Bq ,水平向右B .v =mg /Bq ,水平向左C .v =mg tan α/Bq ,竖直向上D .v =mg tan α/Bq ,竖直向下5.如图11-4-8所示,有一电量为q ,质量为m 的小球,从两竖直的带等量 异种电荷的平行板上方高h 处自由下落,两板间有匀强磁场,磁场方向垂直纸面向里,那么带电小球在通过正交电磁场时( )图11-4-6图11-4-5B 图11-4-7t/10s3 54 1.图11-4-3C .可能做匀速直线运动D .可能做匀加速直线运动 6.如图11-4-9所示,带电平行板间匀强电场竖直向上,匀强磁场方向垂直纸面向里,某带电小球从光滑轨道上的a 点自由下落,经轨道端点P 进入板间后恰好沿水平方向做直线运动.现使小球从稍低些的b 点开始自由滑下,在经过P 点进入板间后的运动过程中,以下分析中正确的是( )A .其动能将会增大B .其电势能将会增大C .小球所受的洛伦兹力将会逐渐增大D .小球受到的电场力将会增大7.如图11-4-4-10所示,在长方形abcd 区域内有正交的电磁场,ab =bc /2=L ,一带电粒子从ad 的中点垂直于电场和磁场方向射入,恰沿直线从b c 边的中点P 射出,若撤去磁场,则粒子从C点射出;若撤去电场,则粒子将(重力不计)( ) A .从b 点射出 B .从b 、P 间某点射出 C .从a 点射出 D .从a 、b 间某点射出8.如图11-4-11所示,在真空中,匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里,三个油滴a 、b 、c 带有等量同种电荷,已知a 静止,b向右匀速运动,c 向左匀速运动,比较它们的质量应有( )A .a 油滴质量最大B .b 油滴质量最大C .c 油滴质量最大D .a 、b 、c 质量一样9.如图11-4-12中所示虚线所围的区域内,存在电场强度为E 的匀强电场和磁感应强度为B的匀强磁场,已知从左侧水平射入的电子,穿过这一区域时未发生偏转,设重力忽略不计,则在这个区域中的E 和B 的方向可能是( ) A .E 和B 都沿水平方向,并与电子运动方向相同 B .E 和B 都沿水平方向,并与电子运动方向相反C .E 竖直向上,B 垂直于纸面向外D .E 竖直向上,B 垂直于纸面向里10.设空间存在竖直向下的匀强电场和垂直纸面向内的匀强磁场,如图11-4-13所示.已知一离子在电场力和洛仑兹力的作用下,从静止开始自A 点沿曲线ACB 运动,到达B 时速度为零.C 是曲线的最低点,不计重力.以下说法正确的是( )A .离子一定带正电B .A 、B 两点位于同一高度C .离子在C 点速度最大D .离子到达B 点后将沿曲线返回A 点11.如图11-4-14所示,在真空中一个光滑的绝缘的水平面上,有直径相同的两个金属球A 、C .质量m A =0.01 kg ,m C =0.005 kg .静止在磁感应强度B =0.5 T 的匀强磁场中的C 球带正电,电量q C =1×10-2 C .在磁场外的不带电的A 球以速度v 0=20 m/s 进入磁场中与C 球发生正碰后,C 球对水平面压力恰好为零,则碰后A 球的速度为 ( )A .10 m/sB .5 m/sC .15 m/sD .-20 m/s12.三种粒子(均不计重力):质子、氘核和 粒子由静止开始在同一匀强电场中加速后,从同一位置沿水平方向射入图11-4-15中虚线框内区域,虚线框内区域加有匀强电场或匀强磁场,以下对带电粒子进入框内区域后运动情况分析正确的是:( )A .区域内加竖直向下方向的匀强电场时,三种带电粒子均可分离B .区域内加竖直向上方向的匀强电场时,三种带电粒子不能分离 A B 图11-4-13图图11-4-8图11-4-12d 图11-4-10v 图11-4-11图11-4-15aD .区域内加垂直纸面向里的匀强磁场时,三种带电粒子均不可以分离13.在光滑绝缘水平面上,一轻绳拉着一个带电小球绕竖直方向的轴O 在匀强磁场中做逆时针方向的水平匀速圆周运动,磁场方向竖直向下,其俯视图如图11-4-16所示,若小球运动到A 点时,由于某种原因,绳子突然断开,关于小球在绳断开后可能的运动情况,以下说法正确的是( )A .小球仍做逆时针匀速圆周运动,半径不变B .小球仍做逆时针匀速圆周运动,但半径减小C .小球做顺时针匀速圆周运动,半径不变D .小球做顺时针匀速圆周运动,半径减小14.质量为m ,带正电为q 的小物块放在斜面上,斜面倾角为α,物块与斜面间动摩擦因数为μ,整个斜面处在磁感应强度为B 的匀强磁场中,如图11-4-17所示,物块由静止开始沿斜面下滑,设斜面足够长,物块在斜面上滑动能达到的最大速度为多大?若物块带负电量为q ,则物块在斜面上滑动能达到的最大速度又为多大?15.如图11-4-18所示,套在很长的绝缘直棒上的小圆环,其质量为m ,带电量是+q ,小圆环可在棒上滑动,将此棒竖直放在互相垂直,且沿水平方向的匀强电场和匀强磁场中,电场强度是E ,磁感应强度是B ,小圆环与棒的动摩擦因数为μ,求小圆环由静止沿棒下落的最大加速度和最大速度.E 图11-4-18图11-4-1716.如图11-4-19所示,一带电液滴在相互垂直的匀强电场和匀强磁场中运动,已知电场强度的大小为E ,方向竖直向下,磁感应强度为B ,方向垂直纸面向里.若此液滴在垂直于磁感应强度的平面内做半径为R 的匀速圆周运动,设液滴的质量为m ,求:(1)液滴的速度大小和绕行方向;(2)若液滴运行到轨迹最低点A 时,分裂成大小相同的两滴,其中一个液滴仍在原来的平面内做半径为3R 的圆周运动,绕行方向不变,且此圆周的最低点也是A ,另一滴将如何运动?17.质量为m ,带电量为q 的液滴以速度v 沿与水平成45 角斜向上进入正交的匀强电场和匀强磁场叠加区域,电场强度方向水平向右,磁场方向垂直纸面向里,如图11-4-20所示.液滴带正电荷,在重力、电场力及磁场力共同作用下在场区做匀速直线运动.试求:(1)电场强度E 和磁感应强度B 各多大?(2)当液滴运动到某一点A 时,电场方向突然变为竖直向上,大小不改变,不考虑因电场变化而产生的磁场的影响,此时液滴加速度多少?说明此后液滴的运动情况.18.如图11-4-21所示,匀强磁场垂直纸面向里,磁感应强度B =1T ,匀强电场水平向右,电场强度E =103N/C ,有一带正电的微粒m =2×10-6kg ,电量q =2×10-6C ,在纸面内做匀速直线运动.g 取10m/s 2,问: (1)微粒的运动方向和速率如何?(2)若微粒运动到P 电时突然撤去磁场,经过时间t 后运动到Q 点,P 、Q 连线与电场线平行,那么t 为多少?图11-4-19 P图11-4-2019.如图11-4-22所示,一质量为m ,带电量为+q 的粒子以速度v 0从O 点沿y 轴正方向射入磁感应强度为B 的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从点b 处穿过x 轴,速度方向与x 轴正方向的夹角为30°,同时进入场强为E 、方向沿与x 轴负方向成60°角斜向下的匀强电场中,通过了b 点正下方的c 点,如图15-76所示.粒子的重力不计,试求: (1)圆形匀强磁场区域的最小面积;(2)c 点到b 点的距离s .20.如图11-4-23所示,置于光滑水平面上的绝缘小车A 、B 质量分别为m A =3kg 、m B =0.5kg ,质量为m C =0.1kg 、带电量为q =+1/75 C 、可视为质点的绝缘物体C 位于光滑小车B 的左端.在A 、B 、C 所在的空间有一垂直纸面向里的匀强磁场,磁感强度B =10T ,现小车B 静止,小车A 以速度v 0=10m/s 向右运动和小车B 碰撞,碰后物体C 在A 上滑动.已知碰后小车B 的速度为9m/s ,物体C 与小车A 之间有摩擦,其他摩擦均不计,小车A 足够长,全过程中C 的带电量保持不变,求:(1)物体C 在小车A 上运动的最大速率和小车A 运动的最小速度.(g 取10m/s 2) (2)全过程产生的热量.21.如图11-4-24所示,在空间有水平方向的匀强磁场,磁感应强度为B ,方向垂直于纸面向里,在磁场中有一长为L 、内壁光滑且绝缘的细筒MN 竖直放置,筒的底部有一质量为m 、带电荷量为+q 的小球,现使细筒MN 沿垂直磁场的方向水平向右匀速运动,设小球带电荷量不变.(1)若使小球能沿筒壁上升,则细筒运动速度v 应满足什么条件?(2)当细筒运动速度为v 0(v 0>v )时,试求小球在沿细筒上升高度h 时小球的速度大小.v 图11-4-22图11-4-2322.如图11-4-25所示,一质量为0.4kg 的足够长且粗细均匀的绝缘的细管置于水平地面上,细管内表面粗糙,外表面光滑;有一质量为0.1kg ,电量为0.1C 的带正电小球沿管的水平向右的速度进入管内,细管内径略大于小球直径,已知细管所在处有沿水平方向且与细管相垂直的匀强磁场,磁感应强度为1T ,g 取10m/s 2. (1)当细管被固定时,小球在管内运动的末速度的可能值为多少?(2)若细管未被固定时,带电小球以20m/s 的初速度进入管内,且整个运动过程中细管没有离开水平地面,则系统最终产生的内能是多少?23.如图11-4-26所示,水平方向的匀强电场的场强为E (场区宽度为L ,竖直方向足够长),紧挨着电场的是垂直纸面向外的两个匀强磁场区,其磁感应强度分别为B 和2B .一个质量为m 、电量为q 的带正电粒子(不计重力),从电场的边界MN 上的a 点由静止释放,经电场加速后进入磁场,经过t=qBm6π时间穿过中间磁场,进入右边磁场后能按某一路径再返回到电场的边界MN上的某一点b (虚线为场区的分界面).求: (1)中间磁场的宽度d ;(2)粒子从a 点到b 点共经历的时间t ab ;(3)当粒子第n 次到达电场的边界MN时与出发点a 之间的距离S n .24.汤姆生用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图11-4-27所示.真空管内的阴极K 发出的电子(不计初速、重力和电子间的相互作用)经加速电压加速后,穿过A '中心的小孔沿中心轴O 1O 的方向进入到两块水平正对放置的平行金属极板P 和P '间的区域.当极板间不加偏转电压时,电子束打在荧光屏的中心O 点处,形成了一个亮点;加上偏转电压U 后,亮点偏离到O '点,O '与O 点的竖直间距为d ,水平间距可以忽略不计.此时,在P 点和P '间的区域,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B 时,亮点重新回到O 点.已知极板水平方向的长度为L 1,极板间距为b ,极板右端到荧光屏的距离为L 2(如图所示).(1)求打在荧光屏O 点的电子速度的大小.(2)推导出电子比荷的表达式.2B图11-4-26图11-4-2525.如图11-4-28所示,在直角坐标xoy 的第一象限中分布着指向-y 轴方向的匀强电场,在第四象限中分布着垂直纸面向里方向的匀强磁场,一个质量为m 、带电+q 的粒子(不计重力)在A 点(0,3)以初速v 0=120m/s 平行x 轴射入电场区域,然后从电场区域进入磁场,又从磁场进入电场,并且只通过x 轴上的P 点(6,0)和Q 点(8,0)各一次,已知该粒子的荷质比为q/m =108C/kg .(1)画出带电粒子在电场和磁场中的运动轨迹.(2)求磁感强度B 的大小.26.如图11-4-29所示,oxyz 坐标系的y 轴竖直向上,在坐标系所在的空间存在匀强电场和匀强磁场,电场方向与x 轴平行.从y 轴上的M 点(0,H ,0)无初速释放一个质量为m 、电荷量为q 的带负电的小球,它落在xz 平面上的N (c ,0,b )点(c >0,b >0).若撤去磁场则小球落在xy 平面的P (l ,0,0)点(l >0).已知重力加速度为g. (1)已知匀强磁场方向与某个坐标轴平行,试判断其可能的具体方向;(2)求电场强度E 的大小;(3)求小球落至N 点时的速率v .图11-4-29f图11-4-21.分析与解:在带电小球下滑的过程中,小球受重力、电场力、支持力、摩擦力和f 洛,受力分析如图11-4-2所示. 在y 方向 ma =f mg 摩擦力N μ=f ,压力Eq +Bqv =N 解得:m )qE +qvB (μmg =a随着小球速度v 增加时,小球加速度减小.所以,小球向下做加速度逐渐减小的加速运动,最后加速度减小到零,小球做匀速直线运动.开始时0=v 时,此时加速度最大,mqEμg=a m ; 匀速时,0=a 时,速度最大,m mg (qv B qE)0-m += 所以BE qB μmg=v m . 2分析与解:根据题意可知,两金属板间的匀强电场是间断存在的.有电场时,电场方向由上板指向下板,场强大小为E =U /d =1.56V/0.3m=5.2V/m .粒子进入板间在0~1.0×104s 内受向下的电场力Eq 和向下的磁场力Bqv 作用,由于电场力与磁场力之比1=10×4×10×3.12.5=Bqv qE 33 粒子作匀速直线运动,它的位移34s vt 410110m 0.4m -==创?在接着的1.0×104s ~2.0×10-4s 时间内,电场撤消,α粒子只受磁场力作用,将作匀速圆周运动,轨道半径为273319mv 6.6410410R cm 6.38cm Bq 1.310 3.210---创?===创? 轨道直径d ′=2R =12.76cm<d /2, 可见,粒子在作圆周运动时不会打到金属板上,粒子作匀速圆周运动的周期为2432r 2 3.14 6.3810T s 1.010s v 410--p 创?¢===?´由于粒子作匀速圆周运动的周期恰好等于板间匀强电场撤消的时间,所以粒子的运动将是匀速直线运动与匀速圆周运动交替进行,其运动轨迹如图11-4-4所示,经过时间443l 3s 1.430.4t 3T 3210 6.510s v 410----?=+=创+=?´从两板的正中央射离. 【参考答案】1.AC 2.ACD 3.BD 4.BC 5.A 6.ABC 7.C 8.C 9.ABC 10.ABC 11.A 12.B 13.ACD 14.qB μ)αcos μα(sin mg ,qB αcos mg . 15.g ;qB μEq μ+mg . 16.(1)ERB,顺时针方向;(2)顺时针方向,R ′=R17.(1)qvmg 2=B ,q /mg =E ;(2)a ,2v R a ==,gvπ2=v R π2=T 18.(1)v =20m/s ,θ=60°;(2)t =23s 19.(1)22202q B 4v m π3;(2)Eqmv 2034 20.(1)7.5m/s 和8.25m/s ;(2)24.84J 21.v >Bq m g;v ′=20v +m )mg B qv (h 2 22.(1)v 0≥10m/s 时,v =10m/s , v 0<10m/s 时,v =0;(2)Q =13.75J 23.d =qmEL B 21,t ab =2qE L m2+qB 3m π2,s n =q 2mEL B n )34( 24.Bb U ,m e =)2/L +L (bL B Ud 1212 25.(1)略;(2)1.2×1010T 26.(1)图11-4-4mgl=E;(3)v=磁场方向为-x方向或-y方向;(2)qH。
高考物理带电粒子在复合场中的运动题20套(带答案)及解析
一、带电粒子在复合场中的运动专项训练1.如图甲所示,空间存在一范围足够大的垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .让质量为m ,电荷量为q (q >0)的粒子从坐标原点O 沿xOy 平面以不同的初速度大小和方向入射到磁场中.不计重力和粒子间的影响.(1)若粒子以初速度v 1沿y 轴正向入射,恰好能经过x 轴上的A (a ,0)点,求v 1的大小;(2)已知一粒子的初速度大小为v (v >v 1),为使该粒子能经过A (a ,0)点,其入射角θ(粒子初速度与x 轴正向的夹角)有几个?并求出对应的sin θ值;(3)如图乙,若在此空间再加入沿y 轴正向、大小为E 的匀强电场,一粒子从O 点以初速度v 0沿y 轴正向发射.研究表明:粒子在xOy 平面内做周期性运动,且在任一时刻,粒子速度的x 分量v x 与其所在位置的y 坐标成正比,比例系数与场强大小E 无关.求该粒子运动过程中的最大速度值v m .【来源】2013年全国普通高等学校招生统一考试理科综合能力测试物理(福建卷带解析) 【答案】⑴;⑵两个 sin θ=;⑶+.【解析】试题分析:(1)当粒子沿y 轴正向入射,转过半个圆周至A 点,半径R 1=a/2由运动定律有2111v Bqv m R =解得12Bqav m=(2)如右图所示,O 、A 两点处于同一圆周上,且圆心在x =2a的直线上,半径为R ,当给定一个初速率v 时, 有2个入射角,分别在第1、2象限.即 sinθ′=sinθ=2a R另有2v Bqv m R=解得 sinθ′=sinθ=2aqBmv(3)粒子在运动过程中仅电场力做功,因而在轨道的最高点处速率最大,用y m 表示其y 坐标,由动能定理有 qEy m=12 mv2m-12mv2由题知 v m=ky m若E=0时,粒子以初速度v0沿y轴正向入射,有 qv0B=m2vR在最高处有 v0=kR0联立解得22()mE Ev vB B=++考点:带电粒子在符合场中的运动;动能定理.2.在平面直角坐标系xOy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m、电荷量为q的带正电的粒子从y轴正半轴上的M点以速度v0垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示.不计粒子重力,求(1)M、N两点间的电势差U MN ;(2)粒子在磁场中运动的轨道半径r;(3)粒子从M点运动到P点的总时间t.【来源】带电粒子在电场、磁场中的运动【答案】1)U MN=(2)r=(3)t=【解析】【分析】【详解】(1)设粒子过N点时的速度为v,有:解得:粒子从M点运动到N点的过程,有:解得:(2)粒子在磁场中以O′为圆心做匀速圆周运动,半径为r,有:解得:(3)由几何关系得:设粒子在电场中运动的时间为t1,有:粒子在磁场中做匀速圆周运动的周期:设粒子在磁场中运动的时间为t2,有:3.如图所示,x轴正方向水平向右,y轴正方向竖直向上.在xOy平面内有与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒.发射时,这束带电微粒分布在0<y<2R的区间内.已知重力加速度大小为g.(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小与方向.(2)请指出这束带电微粒与x轴相交的区域,并说明理由.(3)若这束带电微粒初速度变为2v,那么它们与x轴相交的区域又在哪里?并说明理由.【来源】带电粒子在电场中运动压轴大题【答案】(1)mgEq=,方向沿y轴正方向;mvBqR=,方向垂直xOy平面向外(2)通过坐标原点后离开;理由见解析(3)范围是x>0;理由见解析【解析】【详解】(1)带电微粒平行于x轴从C点进入磁场,说明带电微粒所受重力和电场力的大小相等,方向相反.设电场强度大小为E,由:mg qE=可得电场强度大小:mgqE=方向沿y轴正方向;带电微粒进入磁场后受到重力、电场力和洛伦兹力的作用.由于电场力和重力相互抵消,它将做匀速圆周运动.如图(a)所示:考虑到带电微粒是从C 点水平进入磁场,过O 点后沿y 轴负方向离开磁场,可得圆周运动半径r R =;设磁感应强度大小为B ,由:2v qvB m R=可得磁感应强度大小:mv B qR=根据左手定则可知方向垂直xOy 平面向外;(2)从任一点P 水平进入磁场的带电微粒在磁场中做半径为R 的匀速圆周运动,如图(b )所示,设P 点与O '点的连线与y 轴的夹角为θ,其圆周运动的圆心Q 的坐标为(sin ,cos )R R θθ-,圆周运动轨迹方程为:222(sin )(cos )x R y R R θθ++-=而磁场边界是圆心坐标为(0,R )的圆周,其方程为:22()x y R R +-=解上述两式,可得带电微粒做圆周运动的轨迹与磁场边界的交点为0x y =⎧⎨=⎩或:sin {(1cos )x R y R θθ=-=+坐标为[sin ,(1cos )]R R θθ-+的点就是P 点,须舍去.由此可见,这束带电微粒都是通过坐标原点后离开磁场的;(3)带电微粒初速度大小变为2v ,则从任一点P 水平进入磁场的带电微粒在磁场中做匀速圆周运动的半径r '为:(2)2m v r R qB'== 带电微粒在磁场中经过一段半径为r '的圆弧运动后,将在y 轴的右方(x >0区域)离开磁场并做匀速直线运动,如图(c )所示.靠近M 点发射出来的带电微粒在穿出磁场后会射向x 轴正方向的无穷远处;靠近N 点发射出来的带电微粒会在靠近原点之处穿出磁场 所以,这束带电微粒与x 轴相交的区域范围是x >0.答:(1)电场强度mg qE = ,方向沿y 轴正方向和磁感应强度mvB qR=,方向垂直xOy 平面向外.(2)这束带电微粒都是通过坐标原点后离开磁场的;(3)若这束带电微粒初速度变为2v ,这束带电微粒与x 轴相交的区域范围是x >0。
带电粒子在复合场中的运动大题专题(详细解答)
专题二:带电粒子在复合场中的运动(1)姓名______________1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M点.如果把此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B=5.0×10-3T的匀强磁场,方向分别垂直纸面向外和向里.质量为m=6.64×10-27㎏、电荷量为q=+3.2×10-19C的α粒子(不计α粒子重力),由静止开始经加速电压为U=1205V的电场(图中未画出)加速后,从坐标点M(-4,2)处平行于x轴向右运动,并先后通过两个匀强磁场区域.(1)请你求出α粒子在磁场中的运动半径;(2)你在图中画出α粒子从直线x=-4到直线x=4之间的运动轨迹,并在图中标明轨迹与直线x=4交点的坐标;(3)求出α粒子在两个磁场区域偏转所用的总时间.专题二:带电粒子在复合场中的运动(4)姓名______________1.如图所示,竖直平面xOy 内存在水平向右的匀强电场,场强大小E=10N/c ,在y ≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T 一带电量0.2C q =+、质量0.4kg m =的小球由长0.4m l =的细线悬挂于P 点小球可视为质点,现将小球拉至水平位置A 无初速释放,小球运动到悬点P 正下方的坐标原点O 时,悬线突然断裂,此后小球又恰好能通过O 点正下方的N 点.(g=10m /s 2),求: (1)小球运动到O 点时的速度大小;(2)悬线断裂前瞬间拉力的大小; (3)ON 间的距离2.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB ,并垂直AC 边射出(不计粒子的重力).求: (1)两极板间电压;(2)三角形区域内磁感应强度; (3)若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.专题二:带电粒子在复合场中的运动——参考答案(1)1、解析:由于此带电粒子是从静止开始释放的,要能经过M点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y轴上,受电场力作用而加速,以速度v进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x轴偏转.回转半周期过x轴重新进入电场,在电场中经减速、加速后仍以原速率从距O点2R处再次超过x轴,在磁场回转半周后又从距O点4R处飞越x轴如图所示(图中电场与磁场均未画出)故有L=2R,L=2×2R,L=3×2R即 R=L/2n,(n=1、2、3……)……………①设粒子静止于y轴正半轴上,和原点距离为h,由能量守恒得mv2/2=qEh……②对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R=mv/qB………③解①②③式得:h=B2qL2/8n2mE (n=l、2、3……)2、解析:粒子在电场中运行的时间t= l/v;加速度 a=qE/m;它作类平抛的运动.有tgθ=at/v=qEl/mv2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv2/r,所以r=mv/qB 又:sinθ=l/r=lqB/mv………②由①②两式得:B=Ecosθ/v 3、解析:(1)粒子在电场中被加速,由动能定理得221mvqU=α粒子在磁场中偏转,则牛顿第二定律得rvmqvB2=联立解得2102.312051064.62005.01211927=⨯⨯⨯⨯==--qmUBr(m)(2)由几何关系可得,α粒子恰好垂直穿过分界线,故正确图象为(3)带电粒子在磁场中的运动周期qBmvrTππ22==α粒子在两个磁场中分别偏转的弧度为4π,在磁场中的运动总时间631927105.6105102.321064.614.3241----⨯=⨯⨯⨯⨯⨯⨯===qBmTtπ(s)OM2-22-4 4 x/my/m-2vBB (4,2-)(4) 1、解:(1)小球从A 运到O 的过程中,根据动能定理:212mv mgl qEl =- ① 则得小球在O 点速度为:2/s v m == ② (2)小球运到O 点绳子断裂前瞬间,对小球应用牛顿第二定律:2v F T mg f m l=-==向洛 ③f Bvq =洛 ④由③、④得:28.2mv T mg Bvq N l=++= ⑤ (3)绳断后,小球水平方向加速度25/s x F Eq a m m===电 ⑥ 小球从O 点运动至N 点所用时间0.8t s aυ∆== ⑦ON 间距离21 3.2m 2h gt == ⑧2、 解:⑴垂直AB 边进入磁场,由几何知识得:粒子离开电场时偏转角为30°∵0.v lmd qu v y =0v v tg y=θ ∴qlmdv u 332= 由几何关系得:030cos dl AB =在磁场中运动半径d l r AB 23431==∴ 121r mv qv B = ︒=30cos 0v v∴qdmv B 3401= 方向垂直纸面向里⑶当粒子刚好与BC 边相切时,磁感应强度最小,由几何知识知粒子的运动半径r 2为:42d r = ………( 2分 ) 2202r mv qv B = ∴qd mv B 024=即:磁感应强度的最小值为qdmv 0422(12分)如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向。
带电粒子在复合场中地运动典型例题总汇编
专题八带电粒子在复合场中的运动考纲解读 1.能分析计算带电粒子在复合场中的运动.2.能够解决速度选择器、磁流体发电机、质谱仪等磁场的实际应用问题1. [带电粒子在复合场中的直线运动]某空间存在水平方向的匀强电场(图中未画出),带电小球沿如图1所示的直线斜向下由A点沿直线向B点运动,此空间同时存在由A指向B的匀强磁场,则下列说法正确的是( ) A.小球一定带正电图1 B.小球可能做匀速直线运动C.带电小球一定做匀加速直线运动D.运动过程中,小球的机械能增大答案CD解析由于重力方向竖直向下,空间存在磁场,且直线运动方向斜向下,与磁场方向相同,故不受洛伦兹力作用,电场力必水平向右,但电场具体方向未知,故不能判断带电小球的电性,选项A错误;重力和电场力的合力不为零,故不可能做匀速直线运动,所以选项B错误;因为重力与电场力的合力方向与运动方向相同,故小球一定做匀加速直线运动,选项C正确;运动过程中由于电场力做正功,故机械能增大,选项D正确.2. [带电粒子在复合场中的匀速圆周运动]如图2所示,一带电小球在一正交电场、磁场区域里做匀速圆周运动,电场方向竖直向下,磁场方向垂直纸面向里,则下列说法正确的是 ( )A.小球一定带正电图2 B.小球一定带负电C.小球的绕行方向为顺时针D.改变小球的速度大小,小球将不做圆周运动答案BC解析小球做匀速圆周运动,重力必与电场力平衡,则电场力方向竖直向上,结合电场方向可知小球一定带负电,A错误,B正确;洛伦兹力充当向心力,由曲线运动轨迹的弯曲方向结合左手定则可得绕行方向为顺时针方向,C正确,D错误.考点梳理一、复合场1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠或相邻或在同一区域,电场、磁场交替出现.项目名称力的特点功和能的特点重力场大小:G=mg方向:竖直向下重力做功与路径无关重力做功改变物体的重力势能静电场大小:F=qE方向:a.正电荷受力方向与场强方向相同b.负电荷受力方向与场强方向相反电场力做功与路径无关W=qU电场力做功改变电势能磁场洛伦兹力F=qvB方向可用左手定则判断洛伦兹力不做功,不改变带电粒子的动能二、带电粒子在复合场中的运动形式1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.2.匀速圆周运动当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.3.较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.4.分阶段运动带电粒子可能依次通过几个情况不同的组合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.3. [质谱仪原理的理解]如图3所示是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E.平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2.平板S下方有磁感应强度为B0的匀强磁场.下列表述正确的是 ( )A.质谱仪是分析同位素的重要工具图3B.速度选择器中的磁场方向垂直纸面向外C.能通过狭缝P的带电粒子的速率等于E/BD.粒子打在胶片上的位置越靠近狭缝P,粒子的比荷越小答案ABC解析 粒子在题图中的电场中加速,说明粒子带正电,其通过速度选择器时,电场力与洛伦兹力平衡,则洛伦兹力方向应水平向左,由左手定则知,磁场的方向应垂直纸面向外,选项B 正确;由Eq =Bqv 可知,v =E /B ,选项C 正确;粒子打在胶片上的位置到狭缝的距离即为其做匀速圆周运动的直径D =2mvBq,可见D 越小,则粒子的比荷越大,D 不同,则粒子的比荷不同,因此利用该装置可以分析同位素,A 正确,D 错误.4. [回旋加速器原理的理解]劳伦斯和利文斯设计出回旋加速器,工作原理示意图如图4所示.置于高真空中的D 形金属盒半径为R ,两 盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B 的 匀强磁场与盒面垂直,高频交流电频率为f ,加速电压为U .若A 处 粒子源产生的质子质量为m 、电荷量为+q ,在加速器中被加速, 且加速过程中不考虑相对论效应和重力的影响.则下列说法正确的是 ( ) 图4 A .质子被加速后的最大速度不可能超过2πRfB .质子离开回旋加速器时的最大动能与加速电压U 成正比C .质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为2∶1 D .不改变磁感应强度B 和交流电频率f ,该回旋加速器的最大动能不变 答案 AC解析 粒子被加速后的最大速度受到D 形盒半径R 的制约,因v =2πRT=2πRf ,故A 正确;粒子离开回旋加速器的最大动能E km =12mv 2=12m ×4π2R 2f 2=2m π2R 2f 2,与加速电压U 无关,B 错误;根据R =mv Bq ,Uq =12mv 21,2Uq =12mv 22,得质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为2∶1,C 正确;因回旋加速器的最大动能E km =2m π2R 2f2与m 、R 、f 均有关,D 错误.规律总结带电粒子在复合场中运动的应用实例 1. 质谱仪(1)构造:如图5所示,由粒子源、加速电场、偏转磁场和照相底片等构成.图5(2)原理:粒子由静止被加速电场加速,根据动能定理可得关系式qU =12mv 2.粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式qvB=m v 2r.由两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷. r =1B 2mU q ,m =qr 2B 22U ,q m =2U B 2r 2. 2. 回旋加速器(1)构造:如图6所示,D 1、D 2是半圆形金属盒,D 形盒的缝隙处接交流电源,D 形盒处于匀强磁场中.(2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子在圆周运动的过程中一次一次地经过D 形盒缝隙,两盒间的电势差一次一次地反向,粒子就会被一次一次地加速.由qvB =mv 2r,得E km =q 2B 2r 22m,可见粒子获得的最大动能由磁感应强度B 和D 形盒 图6半径r 决定,与加速电压无关.特别提醒 这两个实例都应用了带电粒子在电场中加速、在磁场中偏转(匀速圆周运动) 的原理.3. 速度选择器(如图7所示)(1)平行板中电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度 选择器.(2)带电粒子能够沿直线匀速通过速度选择器的条件是qE =qvB ,即v =EB. 图74. 磁流体发电机(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能. (2)根据左手定则,如图8中的B 是发电机正极.(3)磁流体发电机两极板间的距离为L ,等离子体速度为v ,磁场的磁感应强度为B ,则由qE =q U L=qvB 得两极板间能达到的最大电势 图8 差U =BLv .5. 电磁流量计工作原理:如图9所示,圆形导管直径为d ,用非磁性材料制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负 离子),在洛伦兹力的作用下横向偏转,a 、b 间出现电势差,形成电场,当自由电荷所受的电场力和洛伦兹力平衡时,a 、b 间的电势差就 图9 保持稳定,即:qvB =qE =q U d ,所以v =U Bd,因此液体流量Q =Sv = πd 24·U Bd =πdU4B.考点一 带电粒子在叠加场中的运动1. 带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题. (3)电场力、磁场力、重力并存 ①若三力平衡,一定做匀速直线运动. ②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题. 2. 带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.例1 如图10所示,带电平行金属板相距为2R ,在两板间有垂直纸面向里、磁感应强度为B 的圆形匀强磁场区域 ,与两板及左侧边缘线相切.一个带正电的粒子(不计重力)沿两板间中心线O 1O 2从左侧边缘O 1点以某一速度射入,恰沿直线通过圆形磁场区域,并从极板边缘飞出,在极板间运动时间为t 0.若撤去磁场,质子仍从O 1点以相同速度射入,则经t 02时间打到极板上.图10(1)求两极板间电压U ;(2)若两极板不带电,保持磁场不变,该粒子仍沿中心线O 1O 2从O 1点射入,欲使粒子从两板左侧间飞出,射入的速度应满足什么条件?解析 (1)设粒子从左侧O 1点射入的速度为v 0,极板长为L ,粒子在初速度方向上做匀速直线运动L ∶(L -2R )=t 0∶t 02,解得L =4R粒子在电场中做类平抛运动:L -2R =v 0·t 02a =qE mR =12a (t 02)2 在复合场中做匀速运动:q U2R =qv 0B联立各式解得v 0=4R t 0,U =8R 2Bt 0(2)设粒子在磁场中做圆周运动的轨迹如图所示,设其轨道半径为r ,粒子恰好从上极板左边缘飞出时速度的偏转角为α,由几何关系可知:β=π-α=45°,r +2r =R因为R =12qE m (t 02)2,所以qE m =qv 0B m =8R t20根据牛顿第二定律有qvB =m v 2r,解得v =22-1Rt 0所以,粒子在两板左侧间飞出的条件为0<v <22-1Rt 0答案 (1)8R 2B t 0 (2)0<v <22-1Rt 0技巧点拨带电粒子(带电体)在叠加场中运动的分析方法1.弄清叠加场的组成. 2.进行受力分析.3.确定带电粒子的运动状态,注意运动情况和受力情况的结合. 4.画出粒子运动轨迹,灵活选择不同的运动规律.(1)当带电粒子在叠加场中做匀速直线运动时,根据受力平衡列方程求解. (2)当带电粒子在叠加场中做匀速圆周运动时,应用牛顿定律结合圆周运动规律求解. (3)当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解. (4)对于临界问题,注意挖掘隐含条件. 5.记住三点:(1)受力分析是基础; (2)运动过程分析是关键;(3)根据不同的运动过程及物理模型,选择合适的定理列方程求解.突破训练1 如图11所示,空间存在着垂直纸面向外的水平匀强磁场,磁感应强度为B ,在y 轴两侧分别有方向相反的匀强电场,电场强度均为E ,在两个电场的交界处左侧,有一带正电的液滴a 在电场 力和重力作用下静止,现从场中某点由静止释放一个带负电的液滴b ,当它的运动方向变为水平方向时恰与a 相撞,撞后两液滴合为一体,速度减小到原来的一半,并沿x 轴正方向做匀速直线运动,已 图11 知液滴b 与a 的质量相等,b 所带电荷量是a 所带电荷量的2倍,且相撞前a 、b 间的静 电力忽略不计.(1)求两液滴相撞后共同运动的速度大小; (2)求液滴b 开始下落时距液滴a 的高度h .答案 (1)E B (2)2E23gB2解析 液滴在匀强磁场、匀强电场中运动,同时受到洛伦兹力、电场力和重力作用. (1)设液滴a 质量为m 、电荷量为q ,则液滴b 质量为m 、电荷量为-2q , 液滴a 平衡时有qE =mg ①a 、b 相撞合为一体时,质量为2m ,电荷量为-q ,速度为v ,由题意知处于平衡状态,重力为2mg ,方向竖直向下,电场力为qE ,方向竖直向上,洛伦兹力方向也竖直向上, 因此满足qvB +qE =2mg ② 由①、②两式,可得相撞后速度v =E B(2)对b ,从开始运动至与a 相撞之前,由动能定理有W E +W G =ΔE k ,即(2qE +mg )h =12mv 20 ③a 、b 碰撞后速度减半,即v =v 02,则v 0=2v =2EB再代入③式得h =mv 204qE +2mg =v 206g =2E23gB 2考点二 带电粒子在组合场中的运动1. 近几年各省市的高考题在这里的命题情景大都是组合场模型,或是一个电场与一个磁场相邻,或是两个或多个磁场相邻.2. 解题时要弄清楚场的性质、场的方向、强弱、范围等. 3. 要进行正确的受力分析,确定带电粒子的运动状态. 4. 分析带电粒子的运动过程,画出运动轨迹是解题的关键.例2 (2012·山东理综·23)如图12甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L 的平行金属极板MN 和PQ ,两极 板中心各有一小孔S 1、S 2,两极板间电压的变化规律如图乙所示,正反向电压的大小均 为U 0,周期为T 0.在t =0时刻将一个质量为m 、电荷量为-q (q >0)的粒子由S 1静止释放, 粒子在电场力的作用下向右运动,在t =T 02时刻通过S 2垂直于边界进入右侧磁场区.(不计粒子重力,不考虑极板外的电场)图12(1)求粒子到达S 2时的速度大小v 和极板间距d .(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件.(3)若已保证了粒子未与极板相撞,为使粒子在t =3T 0时刻再次到达S 2,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感应强度的大小. 审题指导 1.粒子的运动过程是什么?2.要在t =3T 0时使粒子再次到达S 2,且速度为零,需要满足什么条件? 解析 (1)粒子由S 1至S 2的过程,根据动能定理得qU 0=12mv 2 ①由①式得v =2qU 0m②设粒子的加速度大小为a ,由牛顿第二定律得q U 0d=ma ③ 由运动学公式得d =12a (T 02)2④联立③④式得d =T 042qU 0m⑤(2)设磁感应强度的大小为B ,粒子在磁场中做匀速圆周运动的半径为R ,由牛顿第二定律得qvB =m v 2R⑥要使粒子在磁场中运动时不与极板相撞,需满足2R >L2⑦联立②⑥⑦式得B <4L2mU 0q(3)设粒子在两边界之间无场区向左匀速运动的过程所用时间为t 1,有d =vt 1 ⑧ 联立②⑤⑧式得t 1=T 04 ⑨若粒子再次到达S 2时速度恰好为零,粒子回到极板间应做匀减速运动,设匀减速运动的时间为t 2,根据运动学公式得d =v2t 2 ⑩联立⑧⑨⑩式得t 2=T 02 ⑪设粒子在磁场中运动的时间为tt =3T 0-T 02-t 1-t 2 ⑫联立⑨⑪⑫式得t =7T 04⑬设粒子在匀强磁场中做匀速圆周运动的周期为T ,由⑥式结合运动学公式得T =2πmqB⑭由题意可知T =t ⑮联立⑬⑭⑮式得B =8πm7qT 0.答案 (1) 2qU 0m T 042qU 0m(2)B <4L2mU 0q(3)7T 04 8πm 7qT 0方法点拨解决带电粒子在组合场中运动问题的思路方法突破训练2 如图13所示装置中,区域Ⅰ和Ⅲ中分别有竖直向上和水平向右的匀强电场,电场强度分别为E 和E2;区域Ⅱ内有垂直向外的水平匀强磁场,磁感应强度为B .一质量为m 、带电荷量为q 的带负电粒子(不计重力)从左边界O 点正上方的M 点以速度v 0水平射入电场,经水平分界线OP 上的A 点与OP 成60°角射入区域Ⅱ的磁场,并垂直竖直边界 图13CD 进入Ⅲ区域的匀强电场中.求:(1)粒子在区域Ⅱ匀强磁场中运动的轨迹半径; (2)O 、M 间的距离;(3)粒子从M 点出发到第二次通过CD 边界所经历的时间.答案 (1)2mv 0qB (2) 3mv 022qE (3)8+3mv 0qE +πm3qB审题指导 1.粒子的运动过程是怎样的? 2.尝试画出粒子的运动轨迹.3.注意进入磁场时的速度的大小与方向.解析 (1)粒子的运动轨迹如图所示,其在区域Ⅰ的匀强电场中做类平抛运动,设粒子过A 点时速度为v ,由类平抛运动规律知v =v 0cos 60°粒子在匀强磁场中做匀速圆周运动,由牛顿第二定律得Bqv =m v 2R ,所以R =2mv 0qB(2)设粒子在区域Ⅰ的电场中运动时间为t 1,加速度为a .则有qE =ma ,v 0tan 60°=at 1,即t 1=3mv 0qEO 、M 两点间的距离为L =12at 21=3mv 022qE(3)设粒子在Ⅱ区域磁场中运动时间为t 2 则由几何关系知t 2=T 16=πm3qB设粒子在Ⅲ区域电场中运动时间为t 3,a ′=qE2m =qE2m则t 3=2×2v 0a ′=8mv 0qE粒子从M 点出发到第二次通过CD 边界所用时间为t =t 1+t 2+t 3=3mv 0qE +πm 3qB +8mv 0qE =8+3mv 0qE +πm3qB42.带电粒子在交变电场和交变磁场中的运动模型问题的分析解析 (1)粒子在磁场中运动时qvB =mv 2R(2分)T =2πRv(1分)解得T =2πm qB=4×10-3s (1分)(2)粒子的运动轨迹如图所示,t =20×10-3s 时粒子在坐标系内做了两个 圆周运动和三段类平抛运动,水平位移x =3v 0T =9.6×10-2m (1分)竖直位移y =12a (3T )2(1分)Eq =ma (1分)解得y =3.6×10-2m故t =20×10-3s 时粒子的位置坐标为:(9.6×10-2m ,-3.6×10-2m) (1分) (3)t =24×10-3s 时粒子的速度大小、方向与t =20×10-3s 时相同,设与水平方向夹角为α (1分)则v =v 20+v 2y (1分)v y =3aT (1分)tan α=v yv 0(1分)解得v =10 m/s (1分)与x 轴正向夹角α为37°(或arctan 34)斜向右下方 (1分)答案 (1)4×10-3s (2)(9.6×10-2m ,-3.6×10-2m) (3)10 m/s 方向与x 轴正向夹角α为37°(或arctan 34)突破训练3 如图15甲所示,与纸面垂直的竖直面MN 的左侧空间中存在竖直向上的场强大小为E =2.5×102N/C 的匀强电场(上、下及左侧无界).一个质量为m =0.5 kg 、电荷量为q =2.0×10-2C 的可视为质点的带正电小球,在t =0时刻以大小为v 0的水平初速度向右通过电场中的一点P ,当t =t 1时刻在电场所在空间中加上一如图乙所示随时间周期 性变化的磁场,使得小球能竖直向下通过D 点,D 为电场中小球初速度方向上的一点,PD 间距为L ,D 到竖直面MN 的距离DQ 为L /π.设磁感应强度垂直纸面向里为正.(g =10 m/s 2)图15(1)如果磁感应强度B 0为已知量,使得小球能竖直向下通过D 点,求磁场每一次作用时 间t 0的最小值(用题中所给物理量的符号表示);(2)如果磁感应强度B 0为已知量,试推出满足条件的时刻t 1的表达式(用题中所给物理量 的符号表示);(3)若小球能始终在电磁场所在空间做周期性运动,则当小球运动的周期最大时,求出磁感应强度B 0及运动的最大周期T 的大小(用题中所给物理量的符号表示).答案 (1)3πm 2qB 0 (2)L v 0+m qB 0 (3)2πmv 0qL 6Lv 0解析 (1)当小球仅有电场作用时:mg =Eq ,小球将做匀速直线运 动.在t 1时刻加入磁场,小球在时间t 0内将做匀速圆周运动,圆周 运动周期为T 0,若竖直向下通过D 点,由图甲分析可知: t 0=3T 04=3πm 2qB 0(2)PF -PD =R ,即: 甲v 0t 1-L =Rqv 0B 0=mv 20/R所以v 0t 1-L =mv 0qB 0,t 1=L v 0+mqB 0(3)小球运动的速率始终不变,当R 变大时,T0也增加,小球在电 磁场中的运动的周期T 增加,在小球不飞出电磁场的情况下,当T 最大时有:DQ =2R =L π=2mv 0qB 0B 0=2πmv 0qL ,T 0=2πR v 0=Lv 0乙由图分析可知小球在电磁场中运动的最大周期: T =8×3T 04=6Lv 0,小球运动轨迹如图乙所示.高考题组1. (2012·课标全国·25)如图16,一半径为R 的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m 、 电荷量为q 的粒子沿图中直线从圆上的a 点射入柱形区域,从圆上的b点离开该区域,离开时速度方向与直线垂直.圆心O 到直线的距离为35R .现将磁场换为平行于纸面且垂直于直线的匀强电场,同一粒子以同样 图16 速度沿直线从a 点射入柱形区域,也从b 点离开该区域.若磁感应强度大小为B ,不计重力,求电场强度的大小.答案 14qRB 25m解析 粒子在磁场中做圆周运动.设圆周的半径为r ,由牛顿第二定律和洛伦兹力公式得qvB =m v 2r①式中v 为粒子在a 点的速度.过b 点和O 点作直线的垂线,分别与直线交于c 点和d 点.由几何关系知,线段ac 、bc 和过a 、b 两点的圆弧轨迹的两条半径(未画出)围成一正方形.因此ac =bc =r ②设cd =x ,由几何关系得ac =45R +x ③bc =35R +R 2-x 2 ④联立②③④式得r =75R ⑤再考虑粒子在电场中的运动.设电场强度的大小为E ,粒子在电场中做类平抛运动.设 其加速度大小为a ,由牛顿第二定律和带电粒子在电场中的受力公式得qE =ma ⑥粒子在电场方向和直线方向运动的距离均为r ,由运动学公式得r =12at 2⑦r =vt ⑧ 式中t 是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得E =14qRB 25m.2. (2012·浙江理综·24)如图17所示,两块水平放置、相距为d的长金属板接在电压可调的电源上.两板之间的右侧区域存在方向 垂直纸面向里的匀强磁场.将喷墨打印机的喷口靠近上板下表面,从喷口连续不断喷出质量均为m 、水平速度均为v 0、带相等电荷 图17 量的墨滴.调节电源电压至U ,墨滴在电场区域恰能沿水平向右做匀速直线运动;进入 电场、磁场共存区域后,最终垂直打在下板的M 点. (1)判断墨滴所带电荷的种类,并求其电荷量; (2)求磁感应强度B 的值;(3)现保持喷口方向不变,使其竖直下移到两板中间的位置.为了使墨滴仍能到达下板M 点,应将磁感应强度调至B ′,则B ′的大小为多少?答案 (1)负电荷 mgd U (2)v 0U gd 2 (3)4v 0U5gd 2解析 (1)墨滴在电场区域做匀速直线运动,有q Ud=mg ① 由①式得:q =mgdU②由于电场方向向下,电荷所受电场力向上,可知:墨滴带负电荷.(2)墨滴垂直进入电场、磁场共存区域后,重力仍与电场力平衡,合力等于洛伦兹力, 墨滴做匀速圆周运动,有qv 0B =m v 02R③考虑墨滴进入电场、磁场共存区域和下板的几何关系,可知墨滴在该区域恰完成四分之 一圆周运动,则半径R =d ④由②③④式得B =v 0Ugd2(3)根据题设,墨滴运动轨迹如图所示,设墨滴做圆周运动的半径为R ′,有qv 0B ′=m v 02R ′⑤由图可得:R ′2=d 2+(R ′-d2)2 ⑥由⑥式得:R ′=54d ⑦联立②⑤⑦式可得:B ′=4v 0U 5gd2.3. (2012·重庆理综·24)有人设计了一种带电颗粒的速率分选装置,其原理如图18所示,两带电金属板间有 匀强电场,方向竖直向上,其中PQNM 矩形区域内 还有方向垂直纸面向外的匀强磁场.一束比荷(电荷量与质量之比)均为1k的带正电颗粒,以不同的速率沿着磁场区域的水平中心线O ′O 进入两金属板之间, 图18其中速率为v 0的颗粒刚好从Q 点处离开磁场,然后做匀速直线运动到达收集板,重力加 速度为g ,PQ =3d , NQ =2d ,收集板与NQ 的距离为l ,不计颗粒间的相互作用.求: (1)电场强度E 的大小; (2)磁感应强度B 的大小;(3)速率为λv 0(λ>1)的颗粒打在收集板上的位置到O 点的距离. 答案 见解析解析 (1)设带电颗粒的电荷量为q ,质量为m .由于粒子从Q 点离开磁场后做匀速直线运 动,则有Eq =mg 将q m =1k代入,得E =kg .(2)如图所示,粒子在磁场区域内由洛伦兹力提供其做圆周运动的向心力,则有qv 0B =m v20R①而由几何知识有R 2=(3d )2+(R -d )2 ②联立①②解得B =kv 05d. ③(3)设速度为λv 0的颗粒在磁场区域运动时竖直方向的位移为y 1, 离开磁场后做匀速直线运动时竖直方向的位移为y 2,偏转角为θ,如图所示,有qλv 0B =mλv 02R 1④将q m =1k 及③式代入④式,得 R 1=5d λtan θ=221)3(3d R d -y 1=R 1-)3(221d R -y 2=l tan θ则速率为λv 0(λ>1)的颗粒打在收集板上的位置到O 点的距离为y =y 1+y 2解得y =d (5λ-25λ2-9)+3l25λ2-9. 模拟题组4. 如图19所示,坐标平面第Ⅰ象限内存在大小为E=4×105N/C 、方向水平向左的匀强电场,在第Ⅱ象限内存在方向垂直纸面向 里的匀强磁场.质荷比为m q=4×10-10N/C 的带正电粒子从x轴上的A 点以初速度v 0=2×107m/s 垂直x 轴射入电场,OA =0.2 m ,不计重力.求: 图19 (1)粒子经过y 轴时的位置到原点O 的距离;(2)若要求粒子不能进入第三象限,求磁感应强度B 的取值范围(不考虑粒子第二次进入 电场后的运动情况.)答案 (1)0.4 m (2)B ≥(22+2)×10-2T解析 (1)设粒子在电场中运动的时间为t ,粒子经过y 轴时的位置与原点O 的距离为y ,则:s OA =12at 2a =F m E =F q y =v 0t联立解得a =1.0×1015m/s 2t =2.0×10-8s y =0.4 m (2)粒子经过y 轴时在电场方向的分速度为:v x =at =2×107 m/s粒子经过y 轴时的速度大小为: v =v x 2+v 02=22×107 m/s与y 轴正方向的夹角为θ,θ=arctan v x v 0=45°要使粒子不进入第三象限,如图所示,此时粒子做匀速圆周 运动的轨道半径为R ,则:R +22R ≤yqvB =m v 2R联立解得B ≥(22+2)×10-2T.5. 如图20甲所示,在以O 为坐标原点的xOy 平面内,存在着范围足够大的电场和磁场,一个带正电小球在t =0时刻以v 0=3gt 0的初速度从O 点沿+x 方向(水平向右)射入该空 间,在t 0时刻该空间同时加上如图乙所示的电场和磁场,其中电场方向竖直向上,场强大小E 0=mg q ,磁场垂直于xOy 平面向外,磁感应强度大小B 0=πmqt 0,已知小球的质量为m ,带电荷量为q ,时间单位为t 0,当地重力加速度为g ,空气阻力不计.试求:图20(1)t 0末小球速度的大小;。
带电粒子在复合场中的运动(经典题例)
带电粒子在复合场中的运动一、带电粒子在复合场中运动的轨迹欣赏例1、如图所示,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c和d,外筒的外半径为r,在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B。
在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场。
一质量为m、带电量为+q的粒子,从紧靠内筒且正对狭缝a的S点出发,初速为零。
如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中)例2、如图所示,在x轴上方有垂直于xy平面的匀强磁场,磁感应强度为B,在x 轴下方有沿y轴负方向的匀强电场,场强为E,一质量为m,电量为-q的粒子从坐标原点O沿着y轴正方向射出,射出之后,第三次到达x轴时,它与O点的距离为L,求此时粒子射出时的速度和运动的总路程(重力不记)例3、据有关资料介绍,受控热核聚变反应装置中有极高的温度,因而带电粒子将没有通常意义上的容器可装,而是由磁场约束带电粒子运动将其束缚在某个区域内,现按下面的简化条件来讨论这个问题,如图所示,有一个环形区域,其截面内半径为R1=√33m,外半径为R2=1.0m,区域内有垂直纸面向外的匀强磁场,已知磁感应强度B=1.0 T,被束缚粒子的比荷qm=4×107C/kg。
(1)若中空区域中的带电粒子沿环的半径方向射入磁场,求带电粒子不能穿越磁场外边界的最大速度V0.(2)若中空区域中的带电粒子以(1)中的最大速度V0沿圆环半径方向射入磁场,求带电粒子从进入磁场开始到第一次回到该点所需要的时间t。
例4、据有关资料介绍,受控热核聚变反应装置中有极高的温度,因而带电粒子将没有通常意义上的容器可装,托卡马克装置是一种利用磁约束来实现受控核聚变的环形容器,由磁场将高温、高密等离子体约束在有限的范围内,现按下面的简化条件来讨论这个问题,如图所示,有一个环形区域,其截面内半径为R1=a,外半径为R2=(2√2−1)a,环形区域内有垂直纸面向外的匀强磁场,磁感应强度为B。
高中物理带电粒子在复合场中的运动题20套(带答案)及解析
一、带电粒子在复合场中的运动专项训练1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。
极板间存在方向向上的匀强电场,两极板间电压为U 。
质量为m 、带电量为q 的正离子从O 点由静止开始加速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。
两虚线之间的区域无电场和磁场存在,离子可匀速穿过。
忽略相对论效应和离子所受的重力。
求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。
【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =(2)22nqUm B =,2(1,2,3,,1)n k =-L (3)2222(1)t qum k -磁,22(1)=k m t h qU-电 【解析】 【分析】带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。
【详解】(1)离子经电场加速,由动能定理:212qU mv =可得2qUv m=磁场中做匀速圆周运动:2v qvB m r=刚好打在P 点,轨迹为半圆,由几何关系可知:2kd r =联立解得B =; (2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。
设共加速了n 次,有:212n nqU mv =2nn nv qv B m r =且:2n kd r =解得:B =,要求离子第一次加速后不能打在板上,有12d r >且:2112qU mv =2111v qv B m r =解得:2n k <,故加速次数n 为正整数最大取21n k =- 即:B =2(1,2,3,,1)n k =-L ;(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。
带电粒子在复合场中运动的17个经典例题
经典习题1、(15分)如图所示,MN 、PQ 是平行金属板,板长为L ,两板间距离为d ,在PQ 板的上方有垂直纸面向里的匀强磁场。
一个电荷量为q 、质量为m 的带负电粒子以速度v 0从MN 板边缘沿平行于板的方向射入两板间,结果粒子恰好从PQ 板左边缘飞进磁场,然后又恰好从PQ 板的右边缘飞进电场。
不计粒子重力。
试求: (1)两金属板间所加电压U 的大小; (2)匀强磁场的磁感应强度B 的大小;(3)在图中画出粒子再次进入电场的运动轨迹,并标出粒子再次从电场中飞出的位置与速度方向。
2.(16分)如图,在x oy 平面内,MN 和x 轴之间有平行于y 轴的匀强电场和垂直于x oy 平面的匀强磁场,y 轴上离坐标原点4 L 的A 点处有一电子枪,可以沿+x 方向射出速度为v 0的电子(质量为m ,电量为e )。
如果电场和磁场同时存在,电子将做匀速直线运动.如果撤去电场,只保留磁场,电子将从x 轴上距坐标原点3L 的C 点离开磁场.不计重力的影响,求:(1)磁感应强度B 和电场强度E 的大小和方向;(2)如果撤去磁场,只保留电场,电子将从D 点(图中未标出)离开电场,求D 点的坐标; (3)电子通过D 点时的动能。
3.(12分)如图所示,在y >0的空间中,存在沿y 轴正方向的匀强电场E ;在y <0的空间中,存在沿y 轴负方向的匀强电场,场强大小也为E ,一电子(电量为-e ,质量为m )在y 轴上的P (0,d )点以沿x 轴正方向的初速度v 0开始运动,不计电子重力,求: (1)电子第一次经过x 轴的坐标值 (2)电子在y 方向上运动的周期(3)电子运动的轨迹与x 轴的各个交点中,任意两个相邻交点间的距离 (4)在图上画出电子在一个周期内的大致运动轨迹B4.(16分)如图所示,一个质量为m =2.0×10-11kg ,电荷量q =+1.0×10-5C 的带电微粒(重力忽略不计),从静止开始经U =100V 电压加速后,水平进入两平行金属板间的偏转电场中。
带电粒子在复合场中的运动例题
带电粒子在复合场中的运动例题摘要:I.带电粒子在复合场中的运动概述A.复合场的概念B.带电粒子在复合场中的运动类型II.例题解析A.例题一:带电粒子在电场和磁场中的运动1.问题描述2.受力分析3.运动方程4.结论B.例题二:带电粒子在复合场中的匀速圆周运动1.问题描述2.受力分析3.运动方程4.结论C.例题三:带电粒子在复合场中的匀速直线运动1.问题描述2.受力分析3.运动方程4.结论III.结论A.带电粒子在复合场中的运动规律B.解决类似问题的方法正文:带电粒子在复合场中的运动例题在物理学中,带电粒子在复合场中的运动是一个复杂的问题。
复合场是由电场和磁场组成的,带电粒子在其中受到多种力的作用。
为了更好地理解带电粒子在复合场中的运动规律,我们可以通过一些例题来加深理解。
例题一:带电粒子在电场和磁场中的运动问题描述:设一带电粒子在电场E 和磁场B 中运动,粒子质量为m,电荷为q,运动速度为v。
受力分析:带电粒子在电场中受到电场力Fe = qE,在磁场中受到磁场力Fm = qvB。
运动方程:由于粒子在复合场中运动,所以需要分别考虑在电场和磁场中的运动方程。
在电场中,粒子受到的电场力使其加速,运动方程为:Fe = qE = ma1;在磁场中,粒子受到的磁场力使其偏转,运动方程为:Fm = qvB = 0。
结论:由于粒子在磁场中受到的力为零,所以粒子的运动轨迹将呈直线。
例题二:带电粒子在复合场中的匀速圆周运动问题描述:设一带电粒子在复合场中作匀速圆周运动,运动半径为R,运动速度为v。
受力分析:带电粒子在复合场中受到的力有电场力和磁场力。
由于粒子作匀速圆周运动,所以电场力和磁场力必须平衡。
运动方程:电场力为Fe = qE,磁场力为Fm = qvB。
由于粒子作匀速圆周运动,所以有:Fe = Fm;即:qE = qvB。
结论:带电粒子在复合场中作匀速圆周运动时,其运动速度v 与电场E 和磁场B 的关系为v = E/B。
(物理)物理带电粒子在复合场中的运动练习题20篇含解析
一、带电粒子在复合场中的运动专项训练1.对铀235的进一步研究在核能的开发和利用中具有重要意义.如图所示,质量为m、电荷量为q的铀235离子,从容器A下方的小孔S1不断飘入加速电场,其初速度可视为零,然后经过小孔S2垂直于磁场方向进入磁感应强度为B的匀强磁场中,做半径为R的匀速圆周运动.离子行进半个圆周后离开磁场并被收集,离开磁场时离子束的等效电流为I.不考虑离子重力及离子间的相互作用.(1)求加速电场的电压U;(2)求出在离子被收集的过程中任意时间t内收集到离子的质量M;(3)实际上加速电压的大小会在U+ΔU范围内微小变化.若容器A中有电荷量相同的铀235和铀238两种离子,如前述情况它们经电场加速后进入磁场中会发生分离,为使这两种离子在磁场中运动的轨迹不发生交叠,应小于多少?(结果用百分数表示,保留两位有效数字)【来源】2012年普通高等学校招生全国统一考试理综物理(天津卷)【答案】(1)(2)(3)0.63%【解析】解:(1)设离子经电场加速后进入磁场时的速度为v,由动能定理得:qU =mv2离子在磁场中做匀速圆周运动,由牛顿第二定律得:qvB=解得:U =(2)设在t时间内收集到的离子个数为N,总电荷量Q = ItQ = NqM =" Nm" =(3)由以上分析可得:R =设m/为铀238离子质量,由于电压在U±ΔU之间有微小变化,铀235离子在磁场中最大半径为:R max=铀238离子在磁场中最小半径为:R min=这两种离子在磁场中运动的轨迹不发生交叠的条件为:R max<R min即:<得:<<其中铀235离子的质量m = 235u(u为原子质量单位),铀238离子的质量m,= 238u则:<解得:<0.63%2.利用电场和磁场,可以将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要的应用.如图所示的矩形区域ACDG(AC边足够长)中存在垂直于纸面的匀强磁场,A处有一狭缝.离子源产生的离子,经静电场加速后穿过狭缝沿垂直于GA边且垂直于磁场的方向射入磁场,运动到GA边,被相应的收集器收集.整个装置内部为真空.已知被加速的两种正离子的质量分别是m1和m2(m1>m2),电荷量均为q.加速电场的电势差为U,离子进入电场时的初速度可以忽略.不计重力,也不考虑离子间的相互作用.(1)求质量为m1的离子进入磁场时的速率v1;(2)当磁感应强度的大小为B时,求两种离子在GA边落点的间距s;(3)在前面的讨论中忽略了狭缝宽度的影响,实际装置中狭缝具有一定宽度.若狭缝过宽,可能使两束离子在GA边上的落点区域交叠,导致两种离子无法完全分离.设磁感应强度大小可调,GA边长为定值L,狭缝宽度为d,狭缝右边缘在A处.离子可以从狭缝各处射入磁场,入射方向仍垂直于GA 边且垂直于磁场.为保证上述两种离子能落在GA 边上并被完全分离,求狭缝的最大宽度.【来源】2011年普通高等学校招生全国统一考试物理卷(北京) 【答案】(1)12qU m (2)()1228Um m qB - (3)d m =12122m m m m --L【解析】(1)动能定理 Uq =12m 1v 12 得:v 1=12qUm …① (2)由牛顿第二定律和轨道半径有:qvB =2mv R,R = mv qB 利用①式得离子在磁场中的轨道半径为别为(如图一所示):R 1=122mU qB ,R 2=222 m U qB …② 两种离子在GA 上落点的间距s =2(R 1−R 2)=1228()Um m qB- …③ (3)质量为m 1的离子,在GA 边上的落点都在其入射点左侧2R 1处,由于狭缝的宽度为d ,因此落点区域的宽度也是d (如图二中的粗线所示).同理,质量为m 2的离子在GA 边上落点区域的宽度也是d (如图二中的细线所示).为保证两种离子能完全分离,两个区域应无交叠,条件为2(R 1-R 2)>d…④ 利用②式,代入④式得:2R 1(1−21m m >d R 1的最大值满足:2R 1m =L-d得:(L −d )(1−21m m )>d 求得最大值:d m =12122m m m m --L3.如图,M 、N 是电压U =10V 的平行板电容器两极板,与绝缘水平轨道CF 相接,其中CD 段光滑,DF 段粗糙、长度x =1.0m .F 点紧邻半径为R 的绝缘圆筒(图示为圆筒的横截面),圆筒上开一小孔与圆心O 在同一水平面上,圆筒内存在磁感应强度B =0.5T 、方向垂直纸面向里的匀强磁场和方向竖直向下的匀强电场E .一质量m =0.01kg 、电荷量q =-0.02C 的小球a 从C 点静止释放,运动到F 点时与质量为2m 、不带电的静止小球b 发生碰撞,碰撞后a 球恰好返回D 点,b 球进入圆筒后在竖直面内做圆周运动.不计空气阻力,小球a 、b 均视为质点,碰时两球电量平分,小球a 在DF 段与轨道的动摩因数μ=0.2,重力加速度大小g=10m/s 2.求(1)圆筒内电场强度的大小; (2)两球碰撞时损失的能量;(3)若b 球进入圆筒后,与筒壁发生弹性碰撞,并从N 点射出,则圆筒的半径.【来源】福建省宁德市2019届普通高中毕业班质量检查理科综合物理试题 【答案】(1)20N/C ;(2)0J ;(3) 16tanR nπ=(n≥3的整数)【解析】 【详解】(1)小球b 要在圆筒内做圆周运动,应满足:12Eq =2mg 解得:E =20 N/C(2)小球a 到达F 点的速度为v 1,根据动能定理得:Uq -μmgx =12mv 12 小球a 从F 点的返回的速度为v 2,根据功能关系得:μmgx =12mv 22 两球碰撞后,b 球的速度为v ,根据动量守恒定律得:mv 1=-mv 2+2mv 则两球碰撞损失的能量为:ΔE =12mv 12-12mv 22-12mv 2 联立解得:ΔE =0(3)小球b 进入圆筒后,与筒壁发生n -1次碰撞后从N 点射出,轨迹图如图所示:每段圆弧对应圆筒的圆心角为2nπ,则在磁场中做圆周运动的轨迹半径:r1=Rtannπ粒子在磁场中做圆周运动:21122vqvB mr=联立解得:16tanRnπ=(n≥3的整数)4.如图甲所示,正方形导线框abcd用导线与水平放置的平行板电容器相连,线框边长与电容器两极板间的距离均为L.O点为电容器间靠近上极板的一点,与电容器右端的距离为72Lπ,与水平线MN的距离为等1(1)4Lπ+).线框abcd内和电容器两极板间都存在周期性变化的磁场,导线框内匀强磁场的磁感应强度随时间的变化规律如图乙所示,电容器间匀强磁场的磁感应强度随时间的变化规律如图丙所示,选垂直纸面向里为正方向.现有一带正电微粒在0时刻自O点由静止释放,在时间去12L Lg g:内恰好做匀速圆周运动.已知重力加速度为g,求:(1)此带电微粒的比荷qm;(2)自032Lg时微粒距O点的距离;(3)自0时刻起经多长时间微粒经过水平线MN.【来源】山东省德州市2019届高三第二次模拟考试理科综合物理试题【答案】(114gB L(2)Lπ(3)()()71120,1,2,320,1,21212L L n n n n g g ⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭和 【解析】 【详解】解:(1)电容器两极电势差大小等于线框产生的电动势:204L B U B L gL t∆==∆电容器两极间电场强度:04UE B gL L== 时间12LLg g:内:mg qE = 解得比荷:14q g m B L= (2)微粒运动的轨迹如图所示时间102Lg:内:mg qE ma += 1v at =,112Lt g=解得:v gL =12L L gg :208mv qv B rπ•= 可得:2L r π= 又2rT vπ=解得:L T g=32Lg时微粒距O 点的距离:2L x r π==(3) 时间102Lg:内,微粒竖直向下的位移:124v L h t ==设粒子转过角度α时与O 点间的竖直距离为:1(1)4L π+ 1(1)4sin Lhrπα+-= 解得:6πα=和56πα=每次微粒进入磁场后运动至水平线MN 所需时间:22t T απ= 解得:2112L t g =和2512Lt g= 自开始至水平线MN 的时间:122t t n T t =+•+,0,1,2,3(,)n =⋯⋯ 即:7(2)12L t n g =+和11(2)12Lt n g=+ ,0,1,2,3(,)n =⋯⋯ 又722L rn π=解得: 3.5n =微粒离开电容器后不再经过水平线MN ,分析得自开始至水平线MN 的时间:7(2)12L t n g =+,(0,1,2,3)n =和11(2)12Lt n g=+ ,0,1,2,3(,)n =⋯⋯5.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L ,L<y<2L 的区域内,有沿y 轴正方向的匀强电场.现有一质量为四电荷量为q 的带负电粒子从坐标(L ,3L/2)处以初速度0v 沿x 轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E ;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L,0)点,求匀强磁场的磁感应强度大小B;(3)求第(2)问中粒子从进入磁场到坐标(-L,0)点所用的时间.【来源】四川省2018届高三春季诊断性测试理综物理试题【答案】(1)2mvEqL=(2)04nmvBqL=n=1、2、3 (3)2Ltvπ=【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有:0L v t=,2122Lat=,qE ma=联立解得:2mvEqL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyvvθ==l速度大小02sinvv vθ==设x为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L,0 )点,应满足L=2nx,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R,圆弧对应的圆心角为2π.则有2R,此时满足L=2nx联立可得:22Rn=由牛顿第二定律,洛伦兹力提供向心力,则有:2vqvB mR=得:04nmvBqL=,n=1、2、3....轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为2π.则有22x ,此时满足()221L n x =+联立可得:2R =由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()02221n mv B qL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==6.如图所示,在xOy 坐标平面内,虚线PQ 与x 轴正方向的夹角为60°,其右侧有沿y 轴正方向的匀强电场;左侧有垂直于纸面向里的匀强磁场,磁感应强度大小为B .一质量为m ,带电量为q 的带负电的粒子自坐标原点O 射入匀强磁场中,经过一段时间后恰好自虚线PQ 上的M 点沿x 轴正方向进入匀强电场,粒子在电场中的运动轨迹与x 轴的交点为N .已知O 、M ;O、N )L ,粒子重力不计.求:(1)带电粒子自坐标原点O 射入匀强磁场的速度大小; (2)匀强电场的电场强度大小;(3)若自O 点射入磁场的粒子带正电,粒子的质量、带电量、初速度等都不变,则在粒子离开O 点后的运动中第二次与虚线PQ 相交的交点坐标. 【来源】2019年山东省德州市高三一模物理试卷【答案】(1)qBL m ;(2)23qB L m ;(3)(36L ,12L ).【解析】 【详解】(1)粒子在磁场中运动时qvB =2mv r3=2r sin60°解得粒子自坐标原点O 射入匀强磁场的速度大小v =qBLm(2)粒子自M 到N 做类平抛运动 3sin60°=212qE t m垂直电场方向;(312+)L 360Lcos ︒=vt 1 得电场强度E =23qB Lm(3)若自O 点射人磁场的粒子带正电,粒子在磁场中逆时针转过240°后自R 点垂直于电 场方向离开磁场,如图所示.离开磁场时x 坐标;330R x rcos L =-︒= y 坐标:3302R y r rsin L =-+︒=() 粒子进入电场后自R 到S 做类平抛运动 垂直电场方向;2Rs x vt = 沿电场方向:222Rs qE y t m= tan60°=RSRSy x 解得:2t =23m ,RS x =23L ,2RS y L = 第二次与虚线PQ 的交点S 的x 坐标:RS R x x x =+=36L y 坐标:12RS R y y y L =+=则第二次与虚线PQ 的交点S 的坐标为(36L ,12L )7.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B 和B (B 的大小未知),第二象限和第三象限内存在沿﹣y 方向的匀强电场,x 轴上有一点P ,其坐标为(L ,0)。
带电粒子在复合场中运动的17个经典例题分析
经典习题1、(15分)如图所示,MN 、PQ 是平行金属板,板长为L ,两板间距离为d ,在PQ 板的上方有垂直纸面向里的匀强磁场。
一个电荷量为q 、质量为m 的带负电粒子以速度v 0从MN 板边缘沿平行于板的方向射入两板间,结果粒子恰好从PQ 板左边缘飞进磁场,然后又恰好从PQ 板的右边缘飞进电场。
不计粒子重力。
试求: (1)两金属板间所加电压U 的大小; (2)匀强磁场的磁感应强度B 的大小;(3)在图中画出粒子再次进入电场的运动轨迹,并标出粒子再次从电场中飞出的位置与速度方向。
2.(16分)如图,在x oy 平面内,MN 和x 轴之间有平行于y 轴的匀强电场和垂直于x oy 平面的匀强磁场,y 轴上离坐标原点4 L 的A 点处有一电子枪,可以沿+x 方向射出速度为v 0的电子(质量为m ,电量为e )。
如果电场和磁场同时存在,电子将做匀速直线运动.如果撤去电场,只保留磁场,电子将从x 轴上距坐标原点3L 的C 点离开磁场.不计重力的影响,求:(1)磁感应强度B 和电场强度E 的大小和方向;(2)如果撤去磁场,只保留电场,电子将从D 点(图中未标出)离开电场,求D 点的坐标; (3)电子通过D 点时的动能。
3.(12分)如图所示,在y >0的空间中,存在沿y 轴正方向的匀强电场E ;在y <0的空间中,存在沿y 轴负方向的匀强电场,场强大小也为E ,一电子(电量为-e ,质量为m )在y 轴上的P (0,d )点以沿x 轴正方向的初速度v 0开始运动,不计电子重力,求: (1)电子第一次经过x 轴的坐标值v 0 BM NP Q m,-qLd(2)电子在y 方向上运动的周期(3)电子运动的轨迹与x 轴的各个交点中,任意两个相邻交点间的距离 (4)在图上画出电子在一个周期内的大致运动轨迹4.(16分)如图所示,一个质量为m =2.0×10-11kg ,电荷量q =+1.0×10-5C 的带电微粒(重力忽略不计),从静止开始经U =100V 电压加速后,水平进入两平行金属板间的偏转电场中。
带电粒子在复合场中的运动练习题含答案及解析
一、带电粒子在复合场中的运动专项训练1.如图,ABD 为竖直平面内的光滑绝缘轨道,其中AB 段是水平的,BD 段为半径R =0.25m 的半圆,两段轨道相切于B 点,整个轨道处在竖直向下的匀强电场中,场强大小E =5.0×103V/m 。
一不带电的绝缘小球甲,以速度v 0沿水平轨道向右运动,与静止在B 点带正电的小球乙发生弹性碰撞。
已知甲、乙两球的质量均为m =1.0×10-2kg ,乙所带电荷量q =2.0×10-5C ,g 取10m/s 2。
(水平轨道足够长,甲、乙两球可视为质点,整个运动过程无电荷转移)(1)甲乙两球碰撞后,乙恰能通过轨道的最高点D ,求乙球在B 点被碰后的瞬时速度大小;(2)在满足1的条件下,求甲的速度v 0;(3)甲仍以中的速度v 0向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的首次落点到B 点的距离范围。
【来源】四川省资阳市高中(2018届)2015级高三课改实验班12月月考理综物理试题 【答案】(1)5m/s ;(2)5m/s ;(3)32m 3m 2x '≤<。
【解析】 【分析】 【详解】(1)对球乙从B 运动到D 的过程运用动能定理可得22112222D B mg R qE R mv mv --=- 乙恰能通过轨道的最高点D ,根据牛顿第二定律可得2Dv mg qE mR+=联立并代入题给数据可得B v =5m/s(2)设向右为正方向,对两球发生弹性碰撞的过程运用动量守恒定律可得00B mv mv mv '=+ 根据机械能守恒可得22200111222B mv mv mv '=+联立解得0v '=,05v =m/s (3)设甲的质量为M ,碰撞后甲、乙的速度分别为M v 、m v ,根据动量守恒和机械能守恒定律有0M m Mv Mv mv =+2220111222M m Mv Mv mv =+ 联立得2m Mv v M m=+ 分析可知:当M =m 时,v m 取最小值v 0;当M ≫m 时,v m 取最大值2v 0 可得B 球被撞后的速度范围为002m v v v <<设乙球过D 点的速度为Dv ',由动能定理得 22112222D m mg R qE R mv mv --='- 联立以上两个方程可得/s</s Dv '> 设乙在水平轨道上的落点到B 点的距离为x ',则有2122D x v t R gt ''==, 所以可得首次落点到B 点的距离范围2x '≤<2.对铀235的进一步研究在核能的开发和利用中具有重要意义.如图所示,质量为m 、电荷量为q 的铀235离子,从容器A 下方的小孔S 1不断飘入加速电场,其初速度可视为零,然后经过小孔S 2垂直于磁场方向进入磁感应强度为B 的匀强磁场中,做半径为R 的匀速圆周运动.离子行进半个圆周后离开磁场并被收集,离开磁场时离子束的等效电流为I .不考虑离子重力及离子间的相互作用.(1)求加速电场的电压U;(2)求出在离子被收集的过程中任意时间t内收集到离子的质量M;(3)实际上加速电压的大小会在U+ΔU范围内微小变化.若容器A中有电荷量相同的铀235和铀238两种离子,如前述情况它们经电场加速后进入磁场中会发生分离,为使这两种离子在磁场中运动的轨迹不发生交叠,应小于多少?(结果用百分数表示,保留两位有效数字)【来源】2012年普通高等学校招生全国统一考试理综物理(天津卷)【答案】(1)(2)(3)0.63%【解析】解:(1)设离子经电场加速后进入磁场时的速度为v,由动能定理得:qU =mv2离子在磁场中做匀速圆周运动,由牛顿第二定律得:qvB=解得:U =(2)设在t时间内收集到的离子个数为N,总电荷量Q = ItQ = NqM =" Nm" =(3)由以上分析可得:R =设m/为铀238离子质量,由于电压在U±ΔU之间有微小变化,铀235离子在磁场中最大半径为:R max=铀238离子在磁场中最小半径为:R min=这两种离子在磁场中运动的轨迹不发生交叠的条件为:R max<R min即:<得:<<其中铀235离子的质量m = 235u (u 为原子质量单位),铀238离子的质量m ,= 238u则:<解得:<0.63%3.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P (x =0,y =h )点以一定的速度平行于x 轴正向入射.这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点.不计重力.求: (1)粒子到达x =R 0平面时速度方向与x 轴的夹角以及粒子到x 轴的距离; (2)M 点的横坐标x M .【来源】磁场 【答案】(1)20122R H h at h =+=+;(2)22000724M x R R R h h =++- 【解析】 【详解】(1)做直线运动有,根据平衡条件有:0qE qB =v ①做圆周运动有:200qB m R =v v ②只有电场时,粒子做类平抛,有:qE ma =③00R t =v ④ y v at =⑤解得:0y v v =⑥ 粒子速度大小为:22002y v v v v =+=⑦速度方向与x 轴夹角为:π4θ=⑧ 粒子与x 轴的距离为:20122R H h at h =+=+⑨(2)撤电场加上磁场后,有:2v qBv m R=⑩解得:02R R =⑾. 粒子运动轨迹如图所示圆心C 位于与速度v 方向垂直的直线上,该直线与x 轴和y 轴的夹角均为4π,有几何关系得C 点坐标为:02C x R =⑿02C R y H R h =-=-⒀ 过C 作x 轴的垂线,在ΔCDM 中:02CM R R ==⒁2C R CD y h ==-⒂) 解得:22220074DM CM CD R R h h =-=+- M 点横坐标为:22000724M x R R R h h =+-4.如图1所示,宽度为d 的竖直狭长区域内(边界为12L L 、),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为0E ,0E >表示电场方向竖直向上。
历年高考物理重点——带电粒子在复合场中运动经典题型汇总(DOC)
高二物理讲义带电粒子在复合场中的运动经典题型一、选择题1.如图所示,真空中有两个等量异种点电荷A 、B , M 、N 、O 是AB 连线的垂线上的点,且AO >OB .一带负电的试探电荷仅受电场力作用,运动轨迹如图中实线所示,设M 、N 两点的场强大小分别E M 、E N ,电势分别为φM 、φN .下列判断中正确的是 ( ) A .B 点电荷一定带正电 B .E M 小于E N C .φM 大于φND .此试探电荷在M 处的电势能小于N 处的电势能2. 如图2所示,某点O 处固定点电荷+Q ,一个带电为-q 1的点电荷以O 点为圆心做匀速圆周运动,另一带电为-q 2的点电荷以O 为焦点做椭圆轨道运动,两个轨道相切于P 点,两个电荷的质量相等且q 1 > q 2,它们之间的静电引力和万有引力均可忽略,设-q 1、-q 2先后经过P 点时速度大小分别为V 1、V 2,加速度大小分别为a 1、a 2,下述关系式正确的是 ( )A .a 1=a 2B .a 1<a 2C .V 1>V 2D .V 1=V 23. 如图所示,两个等量同种点电荷分别固定于光滑绝缘水平面上A 、B 两点。
一个带电粒子由静止释放,仅受电场力作用,沿着AB 中垂线从C 点运动到D 点(C 、D 是关于AB 对称的两点)。
下列关于粒子运动的v-t 图像中可能正确的是 ( )4.如图所示,A 、B 带等量异种电荷,MN 为A 、B 连线的中垂线,现有一带电粒子从M 点以一定的初速度V 射入,开始一段时间内的轨迹如图中实线所示,不考虑粒子所受的重力。
则:( ) A .该粒子带负电B .该粒子的速率先增大后减小C .该粒子的电势能先增大后减小D .该粒子做的是匀变速运动5.我国第21次南极科考队在南极观看到了美丽的极光,极光是由来自太阳的高能量带电粒子流高速冲进高空稀薄大气层时,被地球磁场俘获,从而改变原有运动方向,向两极做螺旋运动,如图所示.这些高能粒子在运动过程中与大气分子或原子剧烈碰撞或摩擦从而激发大气分子或原子,使其发出有一定特征的各种颜色的光.地磁场的存在,使多数宇宙粒子不能达到地面而向人烟稀少的两极偏移,为地球生命的诞生和维持提供了天然的屏障,科学家发现并证实,向两极做螺旋运动的这些高能粒子的旋转半径是不断减小的,这主要与下列哪些因素有关( )A .洛伦兹力对粒子做负功,使其动能减小B .空气阻力做负功,使其动能减小C .南北两极的磁感应强度增强D .太阳对粒子的引力做负功二、计算题6..真空中有一匀强电场,方向沿Ox 正方向,若一带电粒子质量为m ,电荷量为q ,从O 点以初速度v 0沿Oy 方向进入电场,经Δt 时间到达A 点.此时速度大小也为v 0,方向为Ox 轴正方向,如图所示,试求: (1)从O 到A 的时间Δt 及OA 连线与Ox 轴的夹角θ; (2)该匀强电场的电场强度E ;(3)若设O 点为零电势,则A 点电势为多少?(已知当地的重力加速度为g)7. 如图(a )所示, 水平放置的平行金属板AB 间的距离d =0.1m ,板长L =0.3m,在金属板的左端竖直放置一带有小孔的挡板,小孔恰好位于AB 板的正中间.距金属板右端x =0.5m 处竖直放置一足够大的荧光屏.现在AB 板间加如图(b )所示的方波形电压,已AB CD第8题图图知U 0=1.0×102V .在挡板的左侧,有大量带正电的相同粒子以平行于金属板方向的速度持续射向挡板,粒子的质量m =1.0×10-7kg ,电荷量q =1.0×10-2C ,速度大小均为v 0=1.0×104m/s .带电粒子的重力不计.求:(1)在t =0时刻进入的粒子射出电场时竖直方向的速度;(2)荧光屏上出现的光带长度;(3)若撤去挡板,同时将粒子的速度均变为v =2.0×104m/s ,则荧光屏上出现的光带又为多长?8.如图甲所示的平面坐标系xoy ,整个区域度B 随时间t 的内存在匀强磁场,磁感应强变化关系如图乙所示,开始时刻磁场的方向垂直于纸面向内,t =0时刻,有一个带正电的粒子(不计重力)从坐标原点0沿x 轴正方向进入磁场,初速度为30 2.010/v m s =⨯,已知带电粒子的比荷为41.010/c kg ⨯,试求:(1)44103ts π-=⨯时刻,粒子的位置坐标; (2)粒子从开始时刻起经过多长时间到达y 轴;(3)粒子能否返回坐标原点?若可以则经过多长时间返回坐标原点?9. 如图所示,K 与虚线MN 之间是加速电场。
带电粒子在复合场中地运动典型例题总汇编
专题八 带电粒子在复合场中的运动考纲解读 1.能分析计算带电粒子在复合场中的运动.2.能够解决速度选择器、磁流体发电机、质谱仪等磁场的实际应用问题1. [带电粒子在复合场中的直线运动]某空间存在水平方向的匀强电场(图中未画出),带电小球沿如图1所示的直线斜向下由A 点沿直线向B 点运动,此空间同时存在由A 指向B 的匀强磁场,则下列说法正确的是( )A .小球一定带正电B .小球可能做匀速直线运动C .带电小球一定做匀加速直线运动;D .运动过程中,小球的机械能增大 ; 图1 2. [带电粒子在复合场中的匀速圆周运动]如图2所示,一带电小球在一正交电场、磁场区域里做匀速圆周运动,电场方向竖直向下,磁场方向垂直纸面向里,则下列说法正确的是 ( )A .小球一定带正电B .小球一定带负电;C .小球的绕行方向为顺时针 ;D .改变小球的速度大小,小球将不做圆周运动 图2 考点梳理 一、复合场 1. 复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠或相邻或在同一区域,电场、磁场交替出现. 2.二、带电粒子在复合场中的运动形式 1. 静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动. 2. 匀速圆周运动当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动. 3. 较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.4. 分阶段运动带电粒子可能依次通过几个情况不同的组合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.3. [质谱仪原理的理解]如图3所示是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E .平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A 1A 2.平板S 下方有磁感应强度为B 0的匀强磁场.下列表述正确的是 ( )A .质谱仪是分析同位素的重要工具 ;B .速度选择器中的磁场方向垂直纸面向外;C .能通过狭缝P 的带电粒子的速率等于E /BD .粒子打在胶片上的位置越靠近狭缝P ,粒子的比荷越小 ; 图3 4. [回旋加速器原理的理解]劳伦斯和利文斯设计出回旋加速器,工作原理示意图如图4所示.置于高真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B 的匀强磁场与盒面垂直,高频交流电频率为f ,加速电压为U .若A 处粒子源产生的质子质量为m 、电荷量为+q ,在加速器中被加速, 且加速过程中不考虑相对论效应和重力的影响.则下列说法正确的是 ( )A .质子被加速后的最大速度不可能超过2πRf ;B .质子离开回旋加速器时的最大动能与加速电压U 成正比C .质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为2∶1 ;D .不改变磁感应强度B 和交流电频率f ,该回旋加速器的最大动能不变 图4 规律总结带电粒子在复合场中运动的应用实例 1. 质谱仪(1)构造:如图5所示,由粒子源、加速电场、偏转磁场和照相底片等构成.图5(2)原理:粒子由静止被加速电场加速,根据动能定理可得关系式qU =12m v 2.粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式q v B =m v 2r .由两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷. r =1B 2mU q ,m =qr 2B 22U ,q m =2U B 2r 2. 2. 回旋加速器(1)构造:如图6所示,D 1、D 2是半圆形金属盒,D 形盒的缝隙处接交流电源,D 形盒处于匀强磁场中.(2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子在圆周运动的过程中一次一次地经过D 形盒缝隙,两盒间的电势差一次一次地反向,粒子就会被一次一次地加速.由q v B =m v 2r ,得 E km =q 2B 2r 22m ,可见粒子获得的最大动能由磁感应强度B 和D 形盒 图6 半径r 决定,与加速电压无关.(特别提醒 这两个实例都应用了带电粒子在电场中加速、在磁场中偏转(匀速圆周运动) 的原理.)3. 速度选择器(如图7所示)(1)平行板中电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器.(2)带电粒子能够沿直线匀速通过速度选择器的条件是qE =q v B ,即v =EB . 图74. 磁流体发电机(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能. (2)根据左手定则,如图8中的B 是发电机正极.(3)磁流体发电机两极板间的距离为L ,等离子体速度为v ,磁场的磁感应强度为B ,则由qE =q UL =q v B 得两极板间能达到的最大电势差U =BL v . 图85. 电磁流量计工作原理:如图9所示,圆形导管直径为d ,用非磁性材料制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负 离子),在洛伦兹力的作用下横向偏转,a 、b间出现电势差,形成电场,当自由电荷所受的电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定,即:q v B =qE =q U d ,所以v =U Bd ,因此液体流量Q =S v =πd 24·U Bd =πdU4B . 图9考点一 带电粒子在叠加场中的运动1. 带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题. (3)电场力、磁场力、重力并存 ①若三力平衡,一定做匀速直线运动. ②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.2. 带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.例1 如图10所示,带电平行金属板相距为2R ,在两板间有垂直纸面向里、磁感应强度为B 的圆形匀强磁场区域 ,与两板及左侧边缘线相切.一个带正电的粒子(不计重力)沿两板间中心线O 1O 2从左侧边缘O 1点以某一速度射入,恰沿直线通过圆形磁场区域,并从极板边缘飞出,在极板间运动时间为t 0.若撤去磁场,质子仍从O 1点以相同速度射入,则经t 02时间打到极板上. 图10(1)求两极板间电压U ;(2)若两极板不带电,保持磁场不变,该粒子仍沿中心线O 1O 2从O 1点射入,欲使粒子从两板左侧间飞出,射入的速度应满足什么条件?解析 (1)设粒子从左侧O 1点射入的速度为v 0,极板长为L ,粒子在初速度方向上做匀速直线运动L ∶(L -2R )=t 0∶t 02,解得L =4R粒子在电场中做类平抛运动:L -2R =v 0·t 02a =qE mR =12a (t 02)2在复合场中做匀速运动:q U2R=q v 0B联立各式解得v 0=4R t 0,U =8R 2Bt 0(2)设粒子在磁场中做圆周运动的轨迹如图所示,设其轨道半径为r ,粒子恰好从上极板左边缘飞出时速度的偏转角为α,由几何关系可知:β=π-α=45°,r +2r =R因为R =12qE m (t 02)2,所以qE m =q v 0B m =8R t20根据牛顿第二定律有q v B =m v 2r,解得v =2(2-1)Rt 0所以,粒子在两板左侧间飞出的条件为0<v <2(2-1)Rt 0答案 (1)8R 2Bt 0 (2)0<v <2(2-1)R t 0技巧点拨带电粒子(带电体)在叠加场中运动的分析方法1.弄清叠加场的组成. 2.进行受力分析.3.确定带电粒子的运动状态,注意运动情况和受力情况的结合. 4.画出粒子运动轨迹,灵活选择不同的运动规律.(1)当带电粒子在叠加场中做匀速直线运动时,根据受力平衡列方程求解.(2)当带电粒子在叠加场中做匀速圆周运动时,应用牛顿定律结合圆周运动规律求解. (3)当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解.(4)对于临界问题,注意挖掘隐含条件. 5.记住三点:(1)受力分析是基础; (2)运动过程分析是关键;(3)根据不同的运动过程及物理模型,选择合适的定理列方程求解.方法点拨解决带电粒子在组合场中运动问题的思路方法突破训练1 如图11所示,空间存在着垂直纸面向外的水平匀强磁场,磁感应强度为B ,在y 轴两侧分别有方向相反的匀强电场,电场强度均为E ,在两个电场的交界处左侧,有一带正电的液滴a 在电场力和重力作用下静止,现从场中某点由静止释放一个带负电的液滴b ,当它的运动方向变为水平方向时恰与a 相撞,撞后两液滴合为一体,速度减小到原来的一半,并沿x 轴正方向做匀速直线运动,已知液滴b 与a 的质量相等,b 所带电荷量是a 所带电荷量的2倍,且相撞前a 、b 间的静电力忽略不计.(1)求两液滴相撞后共同运动的速度大小;(2)求液滴b 开始下落时距液滴a 的高度h . 图11答案 (1)E B (2)2E 23gB 2解析 液滴在匀强磁场、匀强电场中运动,同时受到洛伦兹力、电场力和重力作用. (1)设液滴a 质量为m 、电荷量为q ,则液滴b 质量为m 、电荷量为-2q , 液滴a 平衡时有qE =mg ① a 、b 相撞合为一体时,质量为2m ,电荷量为-q ,速度为v ,由题意知处于平衡状态, 重力为2mg ,方向竖直向下,电场力为qE ,方向竖直向上,洛伦兹力方向也竖直向上, 因此满足q v B +qE =2mg ②由①、②两式,可得相撞后速度v =EB(2)对b ,从开始运动至与a 相撞之前,由动能定理有W E +W G =ΔE k ,即(2qE +mg )h =12m v 20 ③ a 、b 碰撞后速度减半,即v =v 02,则v 0=2v =2EB再代入③式得h =m v 204qE +2mg =v 206g =2E 23gB 2考点二 带电粒子在组合场中的运动1. 近几年各省市的高考题在这里的命题情景大都是组合场模型,或是一个电场与一个磁场相邻,或是两个或多个磁场相邻.2. 解题时要弄清楚场的性质、场的方向、强弱、范围等. 3. 要进行正确的受力分析,确定带电粒子的运动状态. 4. 分析带电粒子的运动过程,画出运动轨迹是解题的关键.例2 (2012·山东理综·23)如图12甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L 的平行金属极板MN 和PQ ,两极板中心各有一小孔S 1、S 2,两极板间电压的变化规律如图乙所示,正反向电压的大小均为U 0,周期为T 0.在t =0时刻将一个质量为m 、电荷量为-q (q >0)的粒子由S 1静止释放,粒子在电场力的作用下向右运动,在t =T 02时刻通过S 2垂直于边界进入右侧磁场区.(不计粒子重力,不考虑极板外的电场)(1)求粒子到达S 2时的速度大小v 和极板间距d .(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件.(3)若已保证了粒子未与极板相撞,为使粒子在t =3T 0时刻再次到达S 2,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感应强度的大小. 审题指导 1.粒子的运动过程是什么?2.要在t =3T 0时使粒子再次到达S 2,且速度为零,需要满足什么条件?解析 (1)粒子由S 1至S 2的过程,根据动能定理得qU 0=12m v 2 ①由①式得v = 2qU 0m②设粒子的加速度大小为a ,由牛顿第二定律得q U 0d=ma ③由运动学公式得d =12a (T 02)2 ④联立③④式得d =T 04 2qU 0m⑤(2)设磁感应强度的大小为B ,粒子在磁场中做匀速圆周运动的半径为R ,由牛顿第二定律得q v B =m v 2R⑥要使粒子在磁场中运动时不与极板相撞,需满足2R >L2⑦联立②⑥⑦式得B <4L 2mU 0q(3)设粒子在两边界之间无场区向左匀速运动的过程所用时间为t 1,有d =v t 1 ⑧ 联立②⑤⑧式得t 1=T 04⑨若粒子再次到达S 2时速度恰好为零,粒子回到极板间应做匀减速运动,设匀减速运动的时间为t 2,根据运动学公式得d =v2t 2 ⑩联立⑧⑨⑩式得t 2=T 02 ⑪设粒子在磁场中运动的时间为tt =3T 0-T 02-t 1-t 2 ⑫联立⑨⑪⑫式得t =7T 04⑬设粒子在匀强磁场中做匀速圆周运动的周期为T ,由⑥式结合运动学公式得T =2πmqB⑭由题意可知T =t ⑮联立⑬⑭⑮式得B =8πm7qT 0.答案 (1) 2qU 0m T 04 2qU 0m (2)B <4L 2mU 0q(3)7T 04 8πm 7qT 0突破训练2 如图13所示装置中,区域Ⅰ和Ⅲ中分别有竖直向上和水平向右的匀强电场,电场强度分别为E 和E/2;区域Ⅱ内有垂直向外的水平匀强磁场,磁感应强度为B .一质量为m 、带电荷量为q 的带负电粒子(不计重力)从左边界O 点正上方的M 点以速度v 0水平射入电场,经水平分界线OP 上的A 点与OP 成60°角射入区域Ⅱ的磁场,并垂直竖直边界CD 进入Ⅲ区域的匀强电场中.求:(1)粒子在区域Ⅱ匀强磁场中运动的轨迹半径; (2)O 、M 间的距离;(3)粒子从M 点出发到第二次通过CD 边界所经历的时间. 图13答案 (1)2m v 0qB (2) 3m v 022qE (3)(8+3)m v 0qE +πm3qB审题指导 1.粒子的运动过程是怎样的? 2.尝试画出粒子的运动轨迹.3.注意进入磁场时的速度的大小与方向.解析 (1)粒子的运动轨迹如图所示,其在区域Ⅰ的匀强电场中做类平抛运动,设粒子过A 点时速度为v ,由类平抛运动规律知v =v 0cos 60°粒子在匀强磁场中做匀速圆周运动,由牛顿第二定律得Bq v =m v 2R ,所以R =2m v 0qB(2)设粒子在区域Ⅰ的电场中运动时间为t 1,加速度为a .则有qE =ma ,v 0tan 60°=at 1,即t 1=3m v 0qEO 、M 两点间的距离为L =12at 21=3m v 022qE(3)设粒子在Ⅱ区域磁场中运动时间为t 2 则由几何关系知t 2=T 16=πm3qB设粒子在Ⅲ区域电场中运动时间为t 3,a ′=qE 2m =qE2m则t 3=2×2v 0a ′=8m v 0qE粒子从M 点出发到第二次通过CD 边界所用时间为t =t 1+t 2+t 3=3m v 0qE +πm 3qB +8m v 0qE =(8+3)m v 0qE +πm3qB42.带电粒子在交变电场和交变磁场中的运动模型问题的分析解析 (1)粒子在磁场中运动时q v B =m v 2R(2分)T =2πRv (1分)解得T =2πm qB =4×10-3 s (1分)(2)粒子的运动轨迹如图所示,t =20×10-3 s 时粒子在坐标系内做了两个圆周运动和三段类平抛运动,水平位移x =3v 0T =9.6×10-2 m (1分)竖直位移y =12a (3T )2 (1分)Eq =ma (1分) 解得y =3.6×10-2 m故t =20×10-3 s 时粒子的位置坐标为:(9.6×10-2 m ,-3.6×10-2 m) (1分)(3)t =24×10-3 s 时粒子的速度大小、方向与t =20×10-3 s 时相同,设与水平方向夹角为α (1分)则v =v 20+v 2y (1分)v y =3aT (1分)tan α=v yv 0 (1分)解得v =10 m/s (1分)与x 轴正向夹角α为37°(或arctan 34)斜向右下方 (1分)答案 (1)4×10-3 s (2)(9.6×10-2 m ,-3.6×10-2 m) (3)10 m/s 方向与x 轴正向夹角α为37°(或arctan 34)突破训练3 如图15甲所示,与纸面垂直的竖直面MN 的左侧空间中存在竖直向上的场强大小为E =2.5×102 N/C 的匀强电场(上、下及左侧无界).一个质量为m =0.5 kg 、电荷 量为q =2.0×10-2 C 的可视为质点的带正电小球,在t =0时刻以大小为v 0的水平初速度向右通过电场中的一点P ,当t =t 1时刻在电场所在空间中加上一如图乙所示随时间周期 性变化的磁场,使得小球能竖直向下通过D 点,D 为电场中小球初速度方向上的一点, PD 间距为L ,D 到竖直面MN 的距离DQ 为L /π.设磁感应强度垂直纸面向里为正.(g = 10 m/s 2)图15(1)如果磁感应强度B 0为已知量,使得小球能竖直向下通过D 点,求磁场每一次作用时 间t 0的最小值(用题中所给物理量的符号表示);(2)如果磁感应强度B 0为已知量,试推出满足条件的时刻t 1的表达式(用题中所给物理量 的符号表示);(3)若小球能始终在电磁场所在空间做周期性运动,则当小球运动的周期最大时,求出磁感应强度B 0及运动的最大周期T 的大小(用题中所给物理量的符号表示).答案 (1)3πm 2qB 0 (2)L v 0+mqB 0 (3)2πm v 0qL 6L v 0解析 (1)当小球仅有电场作用时:mg =Eq ,小球将做匀速直线运 动.在t 1时刻加入磁场,小球在时间t 0内将做匀速圆周运动,圆周 运动周期为T 0,若竖直向下通过D 点,由图甲分析可知: t 0=3T 04=3πm 2qB 0(2)PF -PD =R ,即: 甲 v 0t 1-L =Rq v 0B 0=m v 20/R所以v 0t 1-L =m v 0qB 0,t 1=L v 0+mqB 0(3)小球运动的速率始终不变,当R 变大时,T 0也增加,小球在电 磁场中的运动的周期T 增加,在小球不飞出电磁场的情况下,当T 最大时有:DQ =2R =L π=2m v 0qB 0 B 0=2πm v 0qL ,T 0=2πR v 0=Lv 0 乙由图分析可知小球在电磁场中运动的最大周期: T =8×3T 04=6Lv 0,小球运动轨迹如图乙所示.高考题组1. (2012·课标全国·25)如图16,一半径为R 的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m 、电荷量为q 的粒子沿图中直线从圆上的a 点射入柱形区域,从圆上的b 点离开该区域,离开时速度方向与直线垂直.圆心O 到直线的距离为3/5R .现将磁场换为平行于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线从a 点射入柱形区域,也从b 点离开该区域.若磁感应强度大小为B ,不计重力,求电场强度的大小.答案 14qRB 25m解析 粒子在磁场中做圆周运动.设圆周的半径为r ,由牛顿第二定律和洛伦兹力公式得q v B =m v 2r ①式中v 为粒子在a 点的速度.过b 点和O 点作直线的垂线,分别与直线交于c 点和d 点.由几何关系知,线段ac 、bc 和过a 、b 两点的圆弧轨迹的两条半径(未画出)围成一正方形.因此ac =bc =r ②设cd =x ,由几何关系得ac =45R +x ③bc =35R +R 2-x 2 ④联立②③④式得r =75R ⑤再考虑粒子在电场中的运动.设电场强度的大小为E ,粒子在电场中做类平抛运动.设 其加速度大小为a ,由牛顿第二定律和带电粒子在电场中的受力公式得qE =ma ⑥粒子在电场方向和直线方向运动的距离均为r ,由运动学公式得r =12at 2 ⑦r =v t ⑧ 式中t 是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得E =14qRB 25m.2. (2012·浙江理综·24)如图17所示,两块水平放置、相距为d 的长金属板接在电压可调的电源上.两板之间的右侧区域存在方向垂直纸面向里的匀强磁场.将喷墨打印机的喷口靠近上板下表面,从喷口连续不断喷出质量均为m 、水平速度均为v 0、带相等电荷量的墨滴.调节电源电压至U ,墨滴在电场区域恰能沿水平向右做匀速直线运动;进入电场、磁场共存区域后,最终垂直打在下板的M 点.(1)判断墨滴所带电荷的种类,并求其电荷量;(2)求磁感应强度B 的值; 图17 (3)现保持喷口方向不变,使其竖直下移到两板中间的位置.为了使墨滴仍能到达下板M 点,应将磁感应强度调至B ′,则B ′的大小为多少?答案 (1)负电荷 mgdU (2)v 0U gd 2 (3)4v 0U 5gd 2解析 (1)墨滴在电场区域做匀速直线运动,有q Ud=mg ① 由①式得:q =mgdU ②由于电场方向向下,电荷所受电场力向上,可知:墨滴带负电荷.(2)墨滴垂直进入电场、磁场共存区域后,重力仍与电场力平衡,合力等于洛伦兹力, 墨滴做匀速圆周运动,有q v 0B =m v 02R ③考虑墨滴进入电场、磁场共存区域和下板的几何关系,可知墨滴在该区域恰完成四分之一圆周运动,则半径R =d ④由②③④式得B =v 0Ugd 2(3)根据题设,墨滴运动轨迹如图所示,设墨滴做圆周运动的半径为R ′,有q v 0B ′=m v 02R ′ ⑤由图可得:R ′2=d 2+(R ′-d2)2 ⑥由⑥式得:R ′=54d ⑦联立②⑤⑦式可得:B ′=4v 0U 5gd 2.3. (2012·重庆理综·24)有人设计了一种带电颗粒的速率分选装置,其原理如图18所示,两带电金属板间有匀强电场,方向竖直向上,其中PQNM 矩形区域内还有方向垂直纸面向外的匀强磁场.一束比荷(电荷量与质量之比)均为1k的带正电颗粒,以不同的速率沿着磁场区域的水平中心线O ′O 进入两金属板之间,其中速率为v 0的颗粒刚好从Q 点处离开磁场,然后做匀速直线运动到达收集板,重力加速度为g ,PQ =3d , NQ =2d ,收集板与NQ 的距离为l ,不计颗粒间的相互作用.求:(1)电场强度E 的大小; (2)磁感应强度B 的大小;(3)速率为λv 0(λ>1)的颗粒打在收集板上的位置到O 点的距离. 图18 答案 见解析解析 (1)设带电颗粒的电荷量为q ,质量为m .由于粒子从Q 点离开磁场后做匀速直线运 动,则有Eq =mg将q m =1k 代入,得 E =kg .(2)如图所示,粒子在磁场区域内由洛伦兹力提供其做圆周运动的向心力,则有q v 0B =m v 20R ①而由几何知识有R 2=(3d )2+(R -d )2 ②联立①②解得B =k v 05d . ③(3)设速度为λv 0的颗粒在磁场区域运动时竖直方向的位移为y 1, 离开磁场后做匀速直线运动时竖直方向的位移为y 2,偏转角为θ,如图所示,有qλv 0B =m (λv 0)2R 1④将q m =1k 及③式代入④式,得 R 1=5d λtan θ=221)3(3d R d -y 1=R 1-)3(221d R - y 2=l tan θ则速率为λv 0(λ>1)的颗粒打在收集板上的位置到O 点的距离为 y =y 1+y 2解得y =d (5λ-25λ2-9)+3l25λ2-9.模拟题组4. 如图19所示,坐标平面第Ⅰ象限内存在大小为E =4×105 N/C 、方向水平向左的匀强电场,在第Ⅱ象限内存在方向垂直纸面向里的匀强磁场.质荷比为m q =4×10-10 N/C 的带正电粒子从x轴上的A 点以初速度v 0=2×107 m/s 垂直x 轴射入电场,OA =0.2 m ,不计重力.求: 图19 (1)粒子经过y 轴时的位置到原点O 的距离;(2)若要求粒子不能进入第三象限,求磁感应强度B 的取值范围(不考虑粒子第二次进入 电场后的运动情况.)答案 (1)0.4 m (2)B ≥(22+2)×10-2 T解析 (1)设粒子在电场中运动的时间为t ,粒子经过y 轴时的位置与原点O 的距离为y ,则:s OA =12at 2a =F m E =F qy =v 0t联立解得a =1.0×1015 m/s 2 t =2.0×10-8 s y =0.4 m(2)粒子经过y 轴时在电场方向的分速度为: v x =at =2×107 m/s粒子经过y 轴时的速度大小为: v =v x 2+v 02=22×107 m/s 与y 轴正方向的夹角为θ,θ=arctanv xv 0=45° 要使粒子不进入第三象限,如图所示,此时粒子做匀速圆周 运动的轨道半径为R ,则:R +22R ≤yq v B =m v 2R联立解得B ≥(22+2)×10-2 T.5. 如图20甲所示,在以O 为坐标原点的xOy 平面内,存在着范围足够大的电场和磁场,一个带正电小球在t =0时刻以v 0=3gt 0的初速度从O 点沿+x 方向(水平向右)射入该空 间,在t 0时刻该空间同时加上如图乙所示的电场和磁场,其中电场方向竖直向上,场强大小E 0=mg q ,磁场垂直于xOy 平面向外,磁感应强度大小B 0=πmqt 0,已知小球的质量为m ,带电荷量为q ,时间单位为t 0,当地重力加速度为g ,空气阻力不计.试求:图20(1)t 0末小球速度的大小;(2)小球做圆周运动的周期T 和12t 0末小球速度的大小;(3)在给定的xOy 坐标系中,大体画出小球在0到24t 0内运动轨迹的示意图; (4)30t 0内小球距x 轴的最大距离. 答案 (1)10gt 0 (2)2t 0 13gt 0 (3)见解析图(4)⎝ ⎛⎭⎪⎫92+3+32πgt 20 解析 (1)由题图乙知,0~t 0内,小球只受重力作用,做平抛运动,在t 0末: v =v 0x 2+v 0y 2=(3gt 0)2+(gt 0)2=10gt 0(2)当同时加上电场和磁场时,电场力F 1=qE 0=mg ,方向向上因为重力和电场力恰好平衡,所以小球只受洛伦兹力而做匀速圆周运动,有q v B 0=m v 2r运动周期T =2πrv ,联立解得T =2t 0由题图乙知,电场、磁场同时存在的时间正好是小球做匀速圆周运动周期的5倍,即在 这10t 0内,小球恰好做了5个完整的匀速圆周运动.所以小球在t 1=12t 0时刻的速度相 当于小球做平抛运动t =2t 0时的末速度. v y 1=g ·2t 0=2gt 0,v x 1=v 0x =3gt 0 所以12t 0末v 1=v x 12+v y 12=13gt 0(3)24t 0内运动轨迹的示意图如图所示.(4)分析可知,小球在30t 0时与24t 0时的位置相同,在24t 0内小球相当于做了t 2=3t 0的平 抛运动和半个圆周运动.23t 0末小球平抛运动的竖直分位移大小为y 2=12g (3t 0)2=92gt 20竖直分速度v y 2=3gt 0=v 0,所以小球与竖直方向的夹角为θ=45°,速度大小为 v 2=32gt 0此后小球做匀速圆周运动的半径r 2=m v 2qB 0=32gt 20π30t 0内小球距x 轴的最大距离:y 3=y 2+(1+cos 45°)r 2=⎝ ⎛⎭⎪⎫92+3+32πgt 20专题突破练 带电粒子在复合场中的运动(限时:60分钟)►题组1 对带电粒子在叠加场中运动的考查1. 如图1所示,在水平匀强电场和垂直纸面向里的匀强磁场中,有一竖直足够长固定绝缘杆MN ,小球P 套在杆上,已知P 的质量为m , 电荷量为+q ,电场强度为E ,磁感应强度为B ,P 与杆间的动摩擦 因数为μ,重力加速度为g .小球由静止开始下滑直到稳定的过程中( )A .小球的加速度一直减小B .小球的机械能和电势能的总和保持不变 图1C .下滑加速度为最大加速度一半时的速度可能是v =2μqE -mg2μqBD .下滑加速度为最大加速度一半时的速度可能是v =2μqE +mg2μqB答案 CD解析 对小球受力分析如图所示,则mg -μ(Eq -q v B )=ma ,随着v 的增加,小球加速度先增加,当Eq =q v B 时加速度达到最大值a max =g ,继续运动,mg -μ(q v B -Eq )=ma ,随着v 的增加,a 逐渐减 小,所以A 错误.因为有摩擦力做功,机械能与电势能总和在减小,B 错误.若在前半段达到最大加速度的一半,则mg -μ(Eq -q v B )=m g2,得v =2μqE -mg 2μqB,若在后半段达到最大加速度的一半,则mg -μ(q v B -Eq )=m g2,得v =2μqE +mg 2μqB ,故C 、D 正确.2. 如图2所示,已知一带电小球在光滑绝缘的水平面上从静止开始经电压U 加速后,水平进入互相垂直的匀强电场E 和匀强磁场B 的复合场中(E 和B 已知),小球在此空间的竖直面内做匀速圆周运动,则 ( ) 图2 A .小球可能带正电B .小球做匀速圆周运动的半径为r =1B 2UE gC .小球做匀速圆周运动的周期为T =2πEBgD .若电压U 增大,则小球做匀速圆周运动的周期增加 答案 BC解析 小球在复合场中做匀速圆周运动,则小球受到的电场力和重力满足mg =Eq ,则小球带负电,A 错误;因为小球做圆周运动的向心力为洛伦兹力,由牛顿第二定律和动能定理可得:Bq v =m v 2r ,Uq =12m v 2,联立两式可得:小球做匀速圆周运动的半径r =1B 2UE g ,由T =2πr v 可以得出T =2πE Bg ,与电压U 无关,所以B 、C 正确,D 错误. 3. 如图3所示,空间的某个复合场区域内存在着方向相互垂直的匀强电场和匀强磁场.质子由静止开始经一加速电场加速后,垂直于 复合场的界面进入并沿直线穿过场区,质子从复合场区穿出时的 动能为E k .那么氘核同样由静止开始经同一加速电场加速后穿过同 一复合场后的动能E k ′的大小是 ( )A .E k ′=E k 图3。
带电粒子在复合场中运动专题训练 附参考答案汇编.doc
带电粒子在复合场中运动专题训练附参考答案汇编带电粒子在复合场中运动专题训练 1.如图所示,两导体板水平放置,两板间电势差为 U , 带电粒子以某一初速度 v 0 沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场,则粒子射入磁场和射出磁场的 M 、 N 两点间的距离 d 随着 U 和 v 0 的变化情况为() A、 d 随 v 0 增大而增大, d 与 U 无关 B、 d 随 v 0 增大而增大, d 随 U 增大而增大 C、 d 随 U 增大而增大, d 与 v 0 无关 D、 d 随v 0 增大而增大, d 随 U 增大而减小 2.在如图所示的直角坐标系中,在 y0 的区域内有一垂直于 xOy 平面的匀强磁场,在第四象限内有一平行于 x 轴方向的匀强电场。
现使一个质量为 m 的带电粒子,从坐标原点 O 以速度 V 沿 y 轴正方向射入匀强磁场,带电粒子从点 P(a,0)射出磁场,最后再从 Q 点射出匀强电场,射出电场时粒子速度跟 y 轴的夹角为 120 0 。
(粒子重力不计)求:(1)带电粒子从 O 点射入磁场,到达 P 点经历的时间。
(2)匀强电场的场强与匀强磁场的磁感应强度大小的比值 3.在如图所示的空间区域里, y 轴左方有一匀强电场,场强方向跟 y 轴负方向成 30角,大小为E = 4.0105 N/C, y 轴右方有一垂直纸面的匀强磁场,有一质子以速度 0 = 2.0106 m/s 由x 轴上 A 点( OA = 10cm)第一次沿轴正方向射入磁场,第二次沿 x 轴负方向射入磁场,回旋后都垂直射入电场,最后又进入磁场,已知质子质量 m 为 1.610-27 kg,求:(1)匀强磁场的磁感应强度;(2)质子两次在磁场中运动的时间之比;(3)质子两次在电场中运动的时间各为多少. 4.如图所示,在直角坐标系的第一、二象限内有垂直于纸面的匀强磁场,第三象限有沿 y 轴负方向的匀强电场;第四象限无电场和磁场。
【物理】 物理带电粒子在复合场中的运动专题练习(及答案)及解析
一、带电粒子在复合场中的运动专项训练1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。
极板间存在方向向上的匀强电场,两极板间电压为U 。
质量为m 、带电量为q 的正离子从O 点由静止开始加速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。
两虚线之间的区域无电场和磁场存在,离子可匀速穿过。
忽略相对论效应和离子所受的重力。
求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。
【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =(2)22nqUm B =,2(1,2,3,,1)n k =-L (3)2222(1)t qum k -磁,22(1)=k m t h qU-电 【解析】 【分析】带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。
【详解】(1)离子经电场加速,由动能定理:212qU mv =可得2qUv m=磁场中做匀速圆周运动:2v qvB m r=刚好打在P 点,轨迹为半圆,由几何关系可知:2kd r =联立解得B =; (2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。
设共加速了n 次,有:212n nqU mv =2nn nv qv B m r =且:2n kd r =解得:B =,要求离子第一次加速后不能打在板上,有12d r >且:2112qU mv =2111v qv B m r =解得:2n k <,故加速次数n 为正整数最大取21n k =- 即:B =2(1,2,3,,1)n k =-L ;(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。
带电粒子在复合场中的运动典型例题汇编
专题八带电粒子在复合场中的运动考纲解读 1.能分析计算带电粒子在复合场中的运动.2.能够解决速度选择器、磁流体发电机、质谱仪等磁场的实际应用问题1.[带电粒子在复合场中的直线运动]某空间存在水平方向的匀强电场(图中未画出),带电小球沿如图1所示的直线斜向下由A点沿直线向B点运动,此空间同时存在由A指向B的匀强磁场,则下列说法正确的是()A.小球一定带正电B.小球可能做匀速直线运动C.带电小球一定做匀加速直线运动;D.运动过程中,小球的机械能增大;图1 2.[带电粒子在复合场中的匀速圆周运动]如图2所示,一带电小球在一正交电场、磁场区域里做匀速圆周运动,电场方向竖直向下,磁场方向垂直纸面向里,则下列说法正确的是() A.小球一定带正电B.小球一定带负电;C.小球的绕行方向为顺时针;D.改变小球的速度大小,小球将不做圆周运动图2考点梳理一、复合场}1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠或相邻或在同一区域,电场、磁场交替出现.2.三种场的比较项目名称力的特点功和能的特点重力场,大小:G=mg方向:竖直向下重力做功与路径无关重力做功改变物体的重力势能静电场大小:F=qE方向:a.正电荷受力方向与场强方向相同b.负电荷受力方向与场强方向相反电场力做功与路径无关W=qU[电场力做功改变电势能磁场洛伦兹力F=qvB方向可用左手定则判断洛伦兹力不做功,不改变带电粒子的动能二、带电粒子在复合场中的运动形式1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.2.匀速圆周运动当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.,3.较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线. 4. 分阶段运动带电粒子可能依次通过几个情况不同的组合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.3. [质谱仪原理的理解]如图3所示是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E .平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A 1A 2.平板S 下方有磁感应强度为B 0的匀强磁场.下列表述正确的是 ( )A .质谱仪是分析同位素的重要工具 ;B .速度选择器中的磁场方向垂直纸面向外;C .能通过狭缝P 的带电粒子的速率等于E /BD .粒子打在胶片上的位置越靠近狭缝P ,粒子的比荷越小 ; 图3-4. [回旋加速器原理的理解]劳伦斯和利文斯设计出回旋加速器,工作原理示意图如图4所示.置于高真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B 的匀强磁场与盒面垂直,高频交流电频率为f ,加速电压为U .若A 处粒子源产生的质子质量为m 、电荷量为+q ,在加速器中被加速, 且加速过程中不考虑相对论效应和重力的影响.则下列说法正确的是 ( )A .质子被加速后的最大速度不可能超过2πRf ;B .质子离开回旋加速器时的最大动能与加速电压U 成正比C .质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为2∶1 ;D .不改变磁感应强度B 和交流电频率f ,该回旋加速器的最大动能不变 图4 规律总结带电粒子在复合场中运动的应用实例 1. 质谱仪(1)构造:如图5所示,由粒子源、加速电场、偏转磁场和照相底片等构成.]图5(2)原理:粒子由静止被加速电场加速,根据动能定理可得关系式qU =12mv 2.粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式qvB =m v 2r . 由两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷. r =1B 2mU q ,m =qr 2B 22U ,q m =2U B 2r 2. 2. 回旋加速器(1)构造:如图6所示,D 1、D 2是半圆形金属盒,D 形盒的缝隙处接交流电源,D 形盒处于匀强磁场中.(2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子在圆周运动的过程中一次一次地经过D 形盒缝隙,两盒间的电势差一次一次地反向,粒子就会被一次一次地加速.由qvB =mv 2r ,得 E km =q 2B 2r 22m ,可见粒子获得的最大动能由磁感应强度B 和D 形盒 图6 半径r 决定,与加速电压无关.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题八带电粒子在复合场中的运动考纲解读 1.能分析计算带电粒子在复合场中的运动.2.能够解决速度选择器、磁流体发电机、质谱仪等磁场的实际应用问题1.[带电粒子在复合场中的直线运动]某空间存在水平方向的匀强电场(图中未画出),带电小球沿如图1所示的直线斜向下由A点沿直线向B点运动,此空间同时存在由A指向B的匀强磁场,则下列说法正确的是() A.小球一定带正电图1B.小球可能做匀速直线运动C.带电小球一定做匀加速直线运动D.运动过程中,小球的机械能增大答案CD解析由于重力方向竖直向下,空间存在磁场,且直线运动方向斜向下,与磁场方向相同,故不受洛伦兹力作用,电场力必水平向右,但电场具体方向未知,故不能判断带电小球的电性,选项A错误;重力和电场力的合力不为零,故不可能做匀速直线运动,所以选项B错误;因为重力与电场力的合力方向与运动方向相同,故小球一定做匀加速直线运动,选项C正确;运动过程中由于电场力做正功,故机械能增大,选项D正确.2.[带电粒子在复合场中的匀速圆周运动]如图2所示,一带电小球在一正交电场、磁场区域里做匀速圆周运动,电场方向竖直向下,磁场方向垂直纸面向里,则下列说法正确的是()A.小球一定带正电图2 B.小球一定带负电C.小球的绕行方向为顺时针D.改变小球的速度大小,小球将不做圆周运动答案BC解析小球做匀速圆周运动,重力必与电场力平衡,则电场力方向竖直向上,结合电场方向可知小球一定带负电,A错误,B正确;洛伦兹力充当向心力,由曲线运动轨迹的弯曲方向结合左手定则可得绕行方向为顺时针方向,C正确,D错误.考点梳理一、复合场1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠或相邻或在同一区域,电场、磁场交替出现.2.三种场的比较项目名称力的特点功和能的特点重力场大小:G=mg方向:竖直向下重力做功与路径无关重力做功改变物体的重力势能静电场大小:F=qE方向:a.正电荷受力方向与场强方向相同b.负电荷受力方向与场强方向相反电场力做功与路径无关W=qU电场力做功改变电势能磁场洛伦兹力F=q v B方向可用左手定则判断洛伦兹力不做功,不改变带电粒子的动能二、带电粒子在复合场中的运动形式1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.2.匀速圆周运动当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.3.较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.4.分阶段运动带电粒子可能依次通过几个情况不同的组合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.3.[质谱仪原理的理解]如图3所示是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E.平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2.平板S下方有磁感应强度为B0的匀强磁场.下列表述正确的是()A.质谱仪是分析同位素的重要工具图3B.速度选择器中的磁场方向垂直纸面向外C.能通过狭缝P的带电粒子的速率等于E/BD.粒子打在胶片上的位置越靠近狭缝P,粒子的比荷越小答案ABC解析粒子在题图中的电场中加速,说明粒子带正电,其通过速度选择器时,电场力与洛伦兹力平衡,则洛伦兹力方向应水平向左,由左手定则知,磁场的方向应垂直纸面向外,选项B 正确;由Eq =Bq v 可知,v =E /B ,选项C 正确;粒子打在胶片上的位置到狭缝的距离即为其做匀速圆周运动的直径D =2m v Bq ,可见D 越小,则粒子的比荷越大,D 不同,则粒子的比荷不同,因此利用该装置可以分析同位素,A 正确,D 错误. 4. [回旋加速器原理的理解]劳伦斯和利文斯设计出回旋加速器,工作原理示意图如图4所示.置于高真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B 的匀强磁场与盒面垂直,高频交流电频率为f ,加速电压为U .若A 处粒子源产生的质子质量为m 、电荷量为+q ,在加速器中被加速,且加速过程中不考虑相对论效应和重力的影响.则下列说法正确的是 ( ) 图4A .质子被加速后的最大速度不可能超过2πRfB .质子离开回旋加速器时的最大动能与加速电压U 成正比C .质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为2∶1D .不改变磁感应强度B 和交流电频率f ,该回旋加速器的最大动能不变答案 AC解析 粒子被加速后的最大速度受到D 形盒半径R 的制约,因v =2πR T=2πRf ,故A 正 确;粒子离开回旋加速器的最大动能E km =12m v 2=12m ×4π2R 2f 2=2m π2R 2f 2,与加速电压U 无关,B 错误;根据R =m v Bq ,Uq =12m v 21,2Uq =12m v 22,得质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为2∶1,C 正确;因回旋加速器的最大动能E km =2m π2R 2f 2与m 、R 、f 均有关,D 错误.规律总结带电粒子在复合场中运动的应用实例1. 质谱仪(1)构造:如图5所示,由粒子源、加速电场、偏转磁场和照相底片等构成.图5(2)原理:粒子由静止被加速电场加速,根据动能定理可得关系式qU =12m v 2. 粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式q v B=m v 2r. 由两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷.r =1B 2mU q ,m =qr 2B 22U ,q m =2U B 2r 2.2. 回旋加速器(1)构造:如图6所示,D 1、D 2是半圆形金属盒,D 形盒的缝隙处接交流电源,D 形盒处于匀强磁场中.(2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子在圆周运动的过程中一次一次地经过D 形盒缝隙,两盒间的电势差一次一次地反向,粒子就会被一次一次地加速.由q v B =m v 2r ,得 E km =q 2B 2r 22m ,可见粒子获得的最大动能由磁感应强度B 和D 形盒 图6 半径r 决定,与加速电压无关.特别提醒 这两个实例都应用了带电粒子在电场中加速、在磁场中偏转(匀速圆周运动) 的原理.3. 速度选择器(如图7所示)(1)平行板中电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器.(2)带电粒子能够沿直线匀速通过速度选择器的条件是qE =q v B ,即v =E B. 图7 4. 磁流体发电机(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能.(2)根据左手定则,如图8中的B 是发电机正极.(3)磁流体发电机两极板间的距离为L ,等离子体速度为v ,磁场的磁感应强度为B ,则由qE =q U L=q v B 得两极板间能达到的最大电势 图8 差U =BL v .5. 电磁流量计工作原理:如图9所示,圆形导管直径为d ,用非磁性材料制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负离子),在洛伦兹力的作用下横向偏转,a 、b 间出现电势差,形成电场,当自由电荷所受的电场力和洛伦兹力平衡时,a 、b 间的电势差就 图9保持稳定,即:q v B =qE =q U d ,所以v =U Bd,因此液体流量Q =S v = πd 24·U Bd =πdU 4B.考点一 带电粒子在叠加场中的运动1. 带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.(3)电场力、磁场力、重力并存①若三力平衡,一定做匀速直线运动.②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.2. 带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.例1 如图10所示,带电平行金属板相距为2R ,在两板间有垂直纸面向里、磁感应强度为B 的圆形匀强磁场区域 ,与两板及左侧边缘线相切.一个带正电的粒子(不计重力)沿两板间中心线O 1O 2从左侧边缘O 1点以某一速度射入,恰沿直线通过圆形磁场区域,并从极板边缘飞出,在极板间运动时间为t 0.若撤去磁场,质子仍从O 1点以相同速度射入,则经t 02时间打到极板上.图10(1)求两极板间电压U ;(2)若两极板不带电,保持磁场不变,该粒子仍沿中心线O 1O 2从O 1点射入,欲使粒子从两板左侧间飞出,射入的速度应满足什么条件?解析 (1)设粒子从左侧O 1点射入的速度为v 0,极板长为L ,粒子在初速度方向上做匀速直线运动L ∶(L -2R )=t 0∶t 02,解得L =4R 粒子在电场中做类平抛运动:L -2R =v 0·t 02a =qE mR =12a (t 02)2 在复合场中做匀速运动:q U 2R=q v 0B 联立各式解得v 0=4R t 0,U =8R 2B t 0(2)设粒子在磁场中做圆周运动的轨迹如图所示,设其轨道半径为r ,粒子恰好从上极板左边缘飞出时速度的偏转角为α,由几何关系可知:β=π-α=45°,r +2r =R 因为R =12qE m (t 02)2, 所以qE m =q v 0B m =8R t20 根据牛顿第二定律有q v B =m v 2r, 解得v =2(2-1)R t 0所以,粒子在两板左侧间飞出的条件为0<v <2(2-1)R t 0答案 (1)8R 2Bt 0 (2)0<v <2(2-1)R t 0技巧点拨带电粒子(带电体)在叠加场中运动的分析方法1.弄清叠加场的组成.2.进行受力分析.3.确定带电粒子的运动状态,注意运动情况和受力情况的结合.4.画出粒子运动轨迹,灵活选择不同的运动规律.(1)当带电粒子在叠加场中做匀速直线运动时,根据受力平衡列方程求解.(2)当带电粒子在叠加场中做匀速圆周运动时,应用牛顿定律结合圆周运动规律求解.(3)当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解.(4)对于临界问题,注意挖掘隐含条件.5.记住三点:(1)受力分析是基础;(2)运动过程分析是关键;(3)根据不同的运动过程及物理模型,选择合适的定理列方程求解.突破训练1 如图11所示,空间存在着垂直纸面向外的水平匀强磁场,磁感应强度为B ,在y 轴两侧分别有方向相反的匀强电场,电场强度均为E ,在两个电场的交界处左侧,有一带正电的液滴a 在电场力和重力作用下静止,现从场中某点由静止释放一个带负电的液滴b ,当它的运动方向变为水平方向时恰与a 相撞,撞后两液滴合为一体,速度减小到原来的一半,并沿x 轴正方向做匀速直线运动,已 图11知液滴b 与a 的质量相等,b 所带电荷量是a 所带电荷量的2倍,且相撞前a 、b 间的静 电力忽略不计.(1)求两液滴相撞后共同运动的速度大小;(2)求液滴b 开始下落时距液滴a 的高度h .答案 (1)E B (2)2E 23gB 2解析 液滴在匀强磁场、匀强电场中运动,同时受到洛伦兹力、电场力和重力作用.(1)设液滴a 质量为m 、电荷量为q ,则液滴b 质量为m 、电荷量为-2q ,液滴a 平衡时有qE =mg ①a 、b 相撞合为一体时,质量为2m ,电荷量为-q ,速度为v ,由题意知处于平衡状态, 重力为2mg ,方向竖直向下,电场力为qE ,方向竖直向上,洛伦兹力方向也竖直向上, 因此满足q v B +qE =2mg ②由①、②两式,可得相撞后速度v =E B(2)对b ,从开始运动至与a 相撞之前,由动能定理有W E +W G =ΔE k ,即(2qE +mg )h =12m v 20 ③ a 、b 碰撞后速度减半,即v =v 02,则v 0=2v =2E B再代入③式得h =m v 204qE +2mg =v 206g =2E 23gB2 考点二 带电粒子在组合场中的运动1. 近几年各省市的高考题在这里的命题情景大都是组合场模型,或是一个电场与一个磁场相邻,或是两个或多个磁场相邻.2. 解题时要弄清楚场的性质、场的方向、强弱、范围等.3. 要进行正确的受力分析,确定带电粒子的运动状态.4. 分析带电粒子的运动过程,画出运动轨迹是解题的关键.例2 (2012·山东理综·23)如图12甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L 的平行金属极板MN 和PQ ,两极 板中心各有一小孔S 1、S 2,两极板间电压的变化规律如图乙所示,正反向电压的大小均 为U 0,周期为T 0.在t =0时刻将一个质量为m 、电荷量为-q (q >0)的粒子由S 1静止释放,粒子在电场力的作用下向右运动,在t =T 02时刻通过S 2垂直于边界进入右侧磁场区.(不 计粒子重力,不考虑极板外的电场)图12(1)求粒子到达S 2时的速度大小v 和极板间距d .(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件.(3)若已保证了粒子未与极板相撞,为使粒子在t =3T 0时刻再次到达S 2,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感应强度的大小.审题指导 1.粒子的运动过程是什么?2.要在t =3T 0时使粒子再次到达S 2,且速度为零,需要满足什么条件?解析 (1)粒子由S 1至S 2的过程,根据动能定理得qU 0=12m v 2 ① 由①式得v = 2qU 0m② 设粒子的加速度大小为a ,由牛顿第二定律得q U 0d=ma ③ 由运动学公式得d =12a (T 02)2 ④ 联立③④式得d =T 04 2qU 0m⑤ (2)设磁感应强度的大小为B ,粒子在磁场中做匀速圆周运动的半径为R ,由牛顿第二定律得q v B =m v 2R⑥ 要使粒子在磁场中运动时不与极板相撞,需满足2R >L 2⑦ 联立②⑥⑦式得B <4L 2mU 0q(3)设粒子在两边界之间无场区向左匀速运动的过程所用时间为t 1,有d =v t 1 ⑧联立②⑤⑧式得t 1=T 04⑨ 若粒子再次到达S 2时速度恰好为零,粒子回到极板间应做匀减速运动,设匀减速运动的时间为t 2,根据运动学公式得d =v 2t 2 ⑩ 联立⑧⑨⑩式得t 2=T 02⑪ 设粒子在磁场中运动的时间为tt =3T 0-T 02-t 1-t 2 ⑫ 联立⑨⑪⑫式得t =7T 04⑬ 设粒子在匀强磁场中做匀速圆周运动的周期为T ,由⑥式结合运动学公式得T =2πm qB⑭由题意可知T =t ⑮联立⑬⑭⑮式得B =8πm 7qT 0. 答案 (1) 2qU 0m T 04 2qU 0m (2)B <4L 2mU 0q(3)7T 04 8πm 7qT 0方法点拨解决带电粒子在组合场中运动问题的思路方法突破训练2 如图13所示装置中,区域Ⅰ和Ⅲ中分别有竖直向上和水平向右的匀强电场,电场强度分别为E 和E 2;区域Ⅱ 内有垂直向外的水平匀强磁场,磁感应强度为B .一质量为 m 、带电荷量为q 的带负电粒子(不计重力)从左边界O 点正上方的M 点以速度v 0水平射入电场,经水平分界线OP 上的A 点与OP 成60°角射入区域Ⅱ的磁场,并垂直竖直边界 图13 CD 进入Ⅲ区域的匀强电场中.求:(1)粒子在区域Ⅱ匀强磁场中运动的轨迹半径;(2)O 、M 间的距离;(3)粒子从M 点出发到第二次通过CD 边界所经历的时间.答案 (1)2m v 0qB (2) 3m v 022qE (3)(8+3)m v 0qE +πm 3qB审题指导 1.粒子的运动过程是怎样的?2.尝试画出粒子的运动轨迹.3.注意进入磁场时的速度的大小与方向.解析 (1)粒子的运动轨迹如图所示,其在区域Ⅰ的匀强电场中做类平抛运动,设粒子过A 点时速度为v ,由类平抛运动规律知v =v 0cos 60°粒子在匀强磁场中做匀速圆周运动,由牛顿第二定律得Bq v =m v 2R ,所以R =2m v 0qB(2)设粒子在区域Ⅰ的电场中运动时间为t 1,加速度为a .则有qE =ma ,v 0tan 60°=at 1,即t 1=3m v 0qEO 、M 两点间的距离为L =12at 21=3m v 022qE(3)设粒子在Ⅱ区域磁场中运动时间为t 2则由几何关系知t 2=T 16=πm 3qB 设粒子在Ⅲ区域电场中运动时间为t 3,a ′=q E 2m =qE 2m则t 3=2×2v 0a ′=8m v 0qE粒子从M 点出发到第二次通过CD 边界所用时间为t =t 1+t 2+t 3=3m v 0qE +πm 3qB +8m v 0qE =(8+3)m v 0qE +πm 3qB42.带电粒子在交变电场和交变磁场中的运动模型问题的分析解析 (1)粒子在磁场中运动时q v B =m v 2R(2分) T =2πR v (1分)解得T =2πm qB=4×10-3 s (1分) (2)粒子的运动轨迹如图所示,t =20×10-3 s 时粒子在坐标系内做了两个圆周运动和三段类平抛运动,水平位移x =3v 0T =9.6×10-2 m (1分)竖直位移y =12a (3T )2 (1分) Eq =ma (1分)解得y =3.6×10-2 m故t =20×10-3 s 时粒子的位置坐标为:(9.6×10-2 m ,-3.6×10-2 m) (1分)(3)t =24×10-3 s 时粒子的速度大小、方向与t =20×10-3 s 时相同,设与水平方向夹角为α (1分) 则v =v 20+v 2y (1分)v y =3aT (1分) tan α=v yv 0 (1分)解得v =10 m/s (1分)与x 轴正向夹角α为37°(或arctan 34)斜向右下方 (1分)答案 (1)4×10-3 s (2)(9.6×10-2 m ,-3.6×10-2 m) (3)10 m/s 方向与x 轴正向夹角α为37°(或arctan 34)突破训练3 如图15甲所示,与纸面垂直的竖直面MN 的左侧空间中存在竖直向上的场强大小为E =2.5×102 N/C 的匀强电场(上、下及左侧无界).一个质量为m =0.5 kg 、电荷 量为q =2.0×10-2 C 的可视为质点的带正电小球,在t =0时刻以大小为v 0的水平初速度 向右通过电场中的一点P ,当t =t 1时刻在电场所在空间中加上一如图乙所示随时间周期 性变化的磁场,使得小球能竖直向下通过D 点,D 为电场中小球初速度方向上的一点, PD 间距为L ,D 到竖直面MN 的距离DQ 为L /π.设磁感应强度垂直纸面向里为正.(g = 10 m/s 2)图15(1)如果磁感应强度B 0为已知量,使得小球能竖直向下通过D 点,求磁场每一次作用时 间t 0的最小值(用题中所给物理量的符号表示);(2)如果磁感应强度B 0为已知量,试推出满足条件的时刻t 1的表达式(用题中所给物理量 的符号表示);(3)若小球能始终在电磁场所在空间做周期性运动,则当小球运动的周期最大时,求出磁感应强度B 0及运动的最大周期T 的大小(用题中所给物理量的符号表示).答案 (1)3πm 2qB 0 (2)L v 0+mqB 0 (3)2πm v 0qL 6L v 0解析 (1)当小球仅有电场作用时:mg =Eq ,小球将做匀速直线运 动.在t 1时刻加入磁场,小球在时间t 0内将做匀速圆周运动,圆周 运动周期为T 0,若竖直向下通过D 点,由图甲分析可知: t 0=3T 04=3πm 2qB 0(2)PF -PD =R ,即: 甲 v 0t 1-L =Rq v 0B 0=m v 20/R所以v 0t 1-L =m v 0qB 0,t 1=L v 0+mqB 0(3)小球运动的速率始终不变,当R 变大时,T 0也增加,小球在电 磁场中的运动的周期T 增加,在小球不飞出电磁场的情况下,当T 最大时有:DQ =2R =L π=2m v 0qB 0B 0=2πm v 0qL ,T 0=2πR v 0=L v 0 乙由图分析可知小球在电磁场中运动的最大周期: T =8×3T 04=6Lv 0,小球运动轨迹如图乙所示.高考题组1. (2012·课标全国·25)如图16,一半径为R 的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m 、 电荷量为q 的粒子沿图中直线从圆上的a 点射入柱形区域,从圆上的b点离开该区域,离开时速度方向与直线垂直.圆心O 到直线的距离为35R .现将磁场换为平行于纸面且垂直于直线的匀强电场,同一粒子以同样 图16 速度沿直线从a 点射入柱形区域,也从b 点离开该区域.若磁感应强度大小为B ,不计 重力,求电场强度的大小.答案 14qRB 25m解析 粒子在磁场中做圆周运动.设圆周的半径为r ,由牛顿第二定律和洛伦兹力公式得q v B =m v 2r ①式中v 为粒子在a 点的速度.过b 点和O 点作直线的垂线,分别与直线交于c 点和d 点.由几何关系知,线段ac 、bc 和过a 、b 两点的圆弧轨迹的两条半径(未画出)围成一正方形.因此 ac =bc =r ②设cd =x ,由几何关系得ac =45R +x ③bc =35R +R 2-x 2 ④联立②③④式得r =75R ⑤再考虑粒子在电场中的运动.设电场强度的大小为E ,粒子在电场中做类平抛运动.设 其加速度大小为a ,由牛顿第二定律和带电粒子在电场中的受力公式得qE =ma ⑥粒子在电场方向和直线方向运动的距离均为r ,由运动学公式得r =12at 2 ⑦r =v t ⑧ 式中t 是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得E =14qRB 25m .2. (2012·浙江理综·24)如图17所示,两块水平放置、相距为d 的长金属板接在电压可调的电源上.两板之间的右侧区域存在方向 垂直纸面向里的匀强磁场.将喷墨打印机的喷口靠近上板下表面,从喷口连续不断喷出质量均为m 、水平速度均为v 0、带相等电荷 图17 量的墨滴.调节电源电压至U ,墨滴在电场区域恰能沿水平向右做匀速直线运动;进入 电场、磁场共存区域后,最终垂直打在下板的M 点. (1)判断墨滴所带电荷的种类,并求其电荷量; (2)求磁感应强度B 的值;(3)现保持喷口方向不变,使其竖直下移到两板中间的位置.为了使墨滴仍能到达下板M 点,应将磁感应强度调至B ′,则B ′的大小为多少?答案 (1)负电荷 mgdU (2)v 0U gd 2 (3)4v 0U 5gd 2解析 (1)墨滴在电场区域做匀速直线运动,有q Ud=mg ① 由①式得:q =mgdU ②由于电场方向向下,电荷所受电场力向上,可知:墨滴带负电荷.(2)墨滴垂直进入电场、磁场共存区域后,重力仍与电场力平衡,合力等于洛伦兹力, 墨滴做匀速圆周运动,有q v 0B =m v 02R ③考虑墨滴进入电场、磁场共存区域和下板的几何关系,可知墨滴在该区域恰完成四分之 一圆周运动,则半径R =d ④由②③④式得B =v 0Ugd 2(3)根据题设,墨滴运动轨迹如图所示,设墨滴做圆周运动的半径为R ′,有q v 0B ′=m v 02R ′ ⑤由图可得:R ′2=d 2+(R ′-d2)2 ⑥由⑥式得:R ′=54d ⑦联立②⑤⑦式可得:B ′=4v 0U 5gd 2.3. (2012·重庆理综·24)有人设计了一种带电颗粒的速率分选装置,其原理如图18所示,两带电金属板间有 匀强电场,方向竖直向上,其中PQNM 矩形区域内 还有方向垂直纸面向外的匀强磁场.一束比荷(电荷量与质量之比)均为1k的带正电颗粒,以不同的速率沿着磁场区域的水平中心线O ′O 进入两金属板之间, 图18其中速率为v 0的颗粒刚好从Q 点处离开磁场,然后做匀速直线运动到达收集板,重力加 速度为g ,PQ =3d , NQ =2d ,收集板与NQ 的距离为l ,不计颗粒间的相互作用.求: (1)电场强度E 的大小; (2)磁感应强度B 的大小;(3)速率为λv 0(λ>1)的颗粒打在收集板上的位置到O 点的距离. 答案 见解析解析 (1)设带电颗粒的电荷量为q ,质量为m .由于粒子从Q 点离开磁场后做匀速直线运 动,则有Eq =mg 将q m =1k 代入,得 E =kg .(2)如图所示,粒子在磁场区域内由洛伦兹力提供其做圆周运动的向心力,则有q v 0B =m v 20R ①而由几何知识有R 2=(3d )2+(R -d )2 ②联立①②解得B =k v 05d . ③(3)设速度为λv 0的颗粒在磁场区域运动时竖直方向的位移为y 1, 离开磁场后做匀速直线运动时竖直方向的位移为y 2,偏转角为θ,如图所示,有qλv 0B =m (λv 0)2R 1④将q m =1k 及③式代入④式,得 R 1=5d λ tan θ=221)3(3d R d -y 1=R 1-)3(221d R - y 2=l tan θ则速率为λv 0(λ>1)的颗粒打在收集板上的位置到O 点的距离为 y =y 1+y 2 解得y =d (5λ-25λ2-9)+3l 25λ2-9.模拟题组4. 如图19所示,坐标平面第Ⅰ象限内存在大小为E =4×105 N/C 、方向水平向左的匀强电场,在第Ⅱ象限内存在方向垂直纸面向里的匀强磁场.质荷比为m q =4×10-10 N/C 的带正电粒子从x轴上的A 点以初速度v 0=2×107 m/s 垂直x 轴射入电场,OA =0.2 m ,不计重力.求: 图19 (1)粒子经过y 轴时的位置到原点O 的距离;(2)若要求粒子不能进入第三象限,求磁感应强度B 的取值范围(不考虑粒子第二次进入 电场后的运动情况.)答案 (1)0.4 m (2)B ≥(22+2)×10-2 T解析 (1)设粒子在电场中运动的时间为t ,粒子经过y 轴时的位置与原点O 的距离为y ,则:s OA =12at 2a =F m E =F qy =v 0t联立解得a =1.0×1015 m/s 2 t =2.0×10-8 s y =0.4 m (2)粒子经过y 轴时在电场方向的分速度为: v x =at =2×107 m/s粒子经过y 轴时的速度大小为: v =v x 2+v 02=22×107 m/s 与y 轴正方向的夹角为θ,θ=arctanv xv 0=45° 要使粒子不进入第三象限,如图所示,此时粒子做匀速圆周 运动的轨道半径为R ,则: R +22R ≤y q v B =m v 2R联立解得B ≥(22+2)×10-2 T.5. 如图20甲所示,在以O 为坐标原点的xOy 平面内,存在着范围足够大的电场和磁场,一个带正电小球在t =0时刻以v 0=3gt 0的初速度从O 点沿+x 方向(水平向右)射入该空 间,在t 0时刻该空间同时加上如图乙所示的电场和磁场,其中电场方向竖直向上,场强大小E 0=mg q ,磁场垂直于xOy 平面向外,磁感应强度大小B 0=πmqt 0,已知小球的质量为m ,带电荷量为q ,时间单位为t 0,当地重力加速度为g ,空气阻力不计.试求:图20(1)t 0末小球速度的大小;(2)小球做圆周运动的周期T 和12t 0末小球速度的大小;。