整式的乘法的复习
整式的乘法复习课件
04
整式乘法的常见错误与纠正
运算顺序的错误
总结词
详细描述
纠正方法
运算顺序错误是整式乘法中常见的问 题之一,主要表现在运算的先后顺序 不正确。
在进行整式乘法时,运算的顺序应该 是先乘方、再乘除、最后加减。如果 运算顺序不正确,会导致计算结果出 现偏差。例如,在进行(a+b)(a-b)的 计算时,应该先进行括号内的加减运 算,再进行乘法运算,得到的结果是 a^2 - b^2。如果先进行乘法运算, 得到的结果将是a^2 + ab - ab b^2,这是错误的。
整式的乘法复习ppt课 件
contents
目录
• 整式乘法的基本概念 • 整式乘法的运算技巧 • 整式乘法的应用实例 • 整式乘法的常见错误与纠正 • 整式乘法的练习题与解析
01
整式乘法的基本概念
整式的定义与表示
整式是由常数、变量、加法、减法、 乘法和乘方等运算构成的代数式。
整式中的字母表示变量,可以是实数 或复数。
在进行整式乘法时,要严格按照先乘 方、再乘除、最后加减的顺序进行运 算,避免因为运算顺序的错误导致结 果不正确。
符号处理的错误
总结词
符号处理错误是整式乘法中常见的问题之一,主要表现在对负号的处理不正确。
详细描述
在进行整式乘法时,负号的处理非常重要。如果对负号处理不当,会导致计算结果出现偏 差。例如,在进行(-a)(-b)的计算时,应该将两个负号相乘得到正号,得到的结果是ab。 如果对负号处理不当,得到的结果将是-ab,这是错误的。
纠正方法
在进行整式乘法时,要特别注意 同类项的合并,严格按照运算法 则进行计算,避免因为合并同类 项错误导致结果不正确。
05
整式乘法的练习题与解析
整式的乘法综合复习讲义(按知识点)
1.同底数幂的乘法
(1)法则:同底数幂相乘,底数不变,指数相加.
(2)符号表示:am·an=am+n(m,n都是正整数).
(3)拓展:①当三个或三个以上同底数幂相乘时,也具有同样的性 质,即am·an·…·ar=am+n+…+r(m,n,…,r都是正整数).
②法则可逆用,即am+n=am·an(m,n都是正整数).
(4)[(y-x)4]2=(y-x)4×2=(y-x)8.
3.积的乘方
(1)法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.
(2)符号表示:(ab) n=anbn(n为正整数).
(3)拓 展:①三个或三个以上的数的乘积,也适用这一法则,如:(abc)n=anbncn.a,b,c可以是任意数,也可以是幂的形式.
(3)拓展:①法则可推广为[(am)n]p=amnp(m,n,p都是正整数)
②法则可 逆用:
amn=(am)n=(an)m(m,n都是正整数)
警误区幂的乘方的理解不要把幂的乘方与同底数幂的乘法混淆.幂的乘方运算是转化为指数的乘法运算(底数不变);同底数幂的乘法,是转化为指数的加法运算(底数不变).
【例2】计算:
谈重点单项式乘以单项式要注意的三点运用单项式与单项式相乘时要注意:(1)在计算时,应先确定积的符号;(2)注意按运算顺序进行;(3)不要丢掉只有一个单项式里含有的字母.
【例4】下列计算正确的是().
A.3x3·2x2y=6x5B.2a2·3a3=6a5
C.(2x)3·(-5x2y)=-10x5yD.(-2xy)·(-3x2y)=6x3y
=a3+a2-a2-a+a+1
=a3+1.
7.同底数幂的除法
整式乘法法则知识点总结
整式乘法法则知识点总结一、整式乘法法则的定义整式乘法法则是指在代数中,两个整式相乘得到的结果仍为整式。
简单来说,整式乘法就是指对两个整式进行乘法运算,得到的结果仍然是整式。
整式乘法的结果可以表示为一个新的整式,它由被乘数和乘数的各项的乘积相加得到。
整式乘法法则的定义包括以下几点:1. 整式乘法的定义:两个整式相乘得到的结果仍为整式。
2. 整式的乘法形式:当两个整式相乘时,可以将它们的各项进行对应的乘法运算,然后将乘积相加得到结果。
3. 乘法的交换律:在整式的乘法中,乘法的交换律成立,即乘数的顺序可以交换,结果不变。
整式乘法法则的定义是整式乘法的基础,理解了这个定义,我们就能够正确地进行整式的乘法。
接下来,我们将介绍整式乘法法则的性质,以及整式乘法的具体运算规则。
二、整式乘法法则的性质整式乘法法则有许多重要的性质,这些性质包括了整式乘法的基本规律和运算法则。
了解整式乘法法则的性质,可以帮助我们更好地理解整式乘法的运算规则。
下面是整式乘法法则的性质:1. 分配律:整式乘法满足分配律,即加法和乘法的结合性。
对于任意的整式a、b、c,有a*(b+c) = a*b + a*c。
2. 乘法的交换律:整式乘法满足交换律,即乘数的顺序可以交换,结果不变。
对于任意的整式a、b,有a*b = b*a。
3. 乘法的结合律:整式乘法满足结合律,即乘法的顺序可以变换,结果不变。
对于任意的整式a、b、c,有(a*b)*c = a*(b*c)。
4. 零乘法则:任何整式与0相乘,结果都为0。
即0*a = 0。
5. 单位元素法则:任何整式与1相乘,结果都为它本身。
即1*a = a。
整式乘法法则的性质是整式乘法的基本规律,它们对于整式乘法的具体运算具有重要的指导作用。
了解了整式乘法法则的性质,我们就能够更好地运用整式乘法进行代数运算。
接下来,我们将介绍整式乘法的具体运算规则,以及整式乘法法则在具体应用中的运用。
三、整式乘法法则的运算规则整式乘法法则的具体运算规则是在整式乘法的基础上,根据乘法法则的性质进行整式的具体运算。
整式的乘法复习课 PPT课件
较复杂时, 可以竖式对 齐,方便合 并同类项.
10x2 30x 10n
x4 3 mx3 n 3m 10x2 mn 30x 10n
4.解答题:
*(6)已知 xm 2,xn 3 (m、n为正整数),求
1 x3m2n 的值. 9
构造 xm、xn
7 a12 7 a6 2 99
构造a6
7 92 63. 9
4.解答题:
(5)已知二次三项式 x2 mx 10 和 x2 3x n 的乘积
中不含 x2 项和 x3 项.求 m、n 的值.
分析: 不含 x2 项和 x3 项,指含 x2 项和含 x3项的
系数为零.
先乘除,后加减
( ) 解 原式 12 x4 12 x4 8x2 y 3x2 y 2y2
必须添加括号
12 x4 12 x4 5x2 y + 2 y2
去括号,注意符号
5x2 y 2 y2
再合并同类项
3.计算下列各题:
(5) 1.5 2011 2 2012
解 原式 ( 6a2b2 3abc 2abc c2) 添加括号
6a2b2 abc c2
_6a2b2 + abc+ c2
合并同类项 去括号 注意符号
3.计算下列各题:
(4)12 x4 4x2 y 3x2 2 y
解
2x x2 x3 x3 x2 3x+15
移项,合并
2x 3x 15 5x 15
x3
注意符号, 不要漏乘.
所以,原方程的解是 x 3.
写出结论
4.解答题:
整式的乘法和因式分解知识点汇总
整式乘除与因式分解一.知识点 (重点) 1.幂的运算性质:a m ·a n =a m +n (m 、n 为正整数) 同底数幂相乘,底数不变,指数相加. 例:(-2a )2(-3a 2)3 2.()nm a = a mn (m 、n 为正整数)幂的乘方,底数不变,指数相乘. 例: (-a 5)53.()n n nb a ab = (n 为正整数) 积的乘方等于各因式乘方的积. 例:(-a 2b )3 练习:(1)y x x 2325⋅ (2))4(32b ab -⋅- (3)a ab 23⋅(4)222z y yz ⋅ (5))4()2(232xy y x -⋅ (6)22253)(631ac c b a b a -⋅⋅4.nm a a ÷= a m -n (a ≠0,m 、n 都是正整数,且m >n )同底数幂相除,底数不变,指数相减. 例:(1)x 8÷x 2 (2)a 4÷a (3)(a b )5÷(a b )2(4)(-a )7÷(-a )5 (5) (-b ) 5÷(-b )25.零指数幂的概念: a 0=1 (a ≠0)任何一个不等于零的数的零指数幂都等于l . 例:若1)32(0=-b a 成立,则b a ,满足什么条件?6.负指数幂的概念:a -p =pa 1 (a ≠0,p 是正整数)任何一个不等于零的数的-p (p 是正整数)指数幂,等于这个数的p 指数幂的倒数.也可表示为:ppn m m n ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-(m ≠0,n ≠0,p 为正整数)7.单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.例:(1)223123abc abc b a ⋅⋅ (2)4233)2()21(n m n m -⋅-8.单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.例:(1))35(222b a ab ab + (2)ab ab ab 21)232(2⋅-(3))32()5(-22n m n n m -+⋅ (4)xyz z xy z y x ⋅++)(23229.多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.例:(1))6.0(1x x --)( (2)))(2(y x y x -+ (3)2)2n m +-( 练习:1.计算2x 3·(-2xy)(-12xy) 3的结果是2.(3×10 8)×(-4×10 4)=3.若n 为正整数,且x 2n =3,则(3x 3n ) 2的值为 4.如果(a n b ·ab m ) 3=a 9b 15,那么mn 的值是5.-[-a 2(2a 3-a)]=6.(-4x 2+6x -8)·(-12x 2)= 7.2n(-1+3mn 2)=8.若k(2k -5)+2k(1-k)=32,则k = 9.(-3x 2)+(2x -3y)(2x -5y)-3y(4x -5y)=10.在(ax 2+bx -3)(x 2-12x +8)的结果中不含x 3和x 项,则a = ,b =11.一个长方体的长为(a +4)cm ,宽为(a -3)cm ,高为(a +5)cm ,则它的表面积为,体积为。
人教版八年级数学上册14.整式的乘除与因式分解--复习课件
例2 把下列各式分解因式. (1)(a+b)2-4a2 ; (2)1-10x+25x2; (3)(m+n)2-6(m+n)+9
解:(1)(a+b)2-4a2=(a+b)2-(2a)2 =(a+b+2a)(a+b-2a) =(3a+b)(b-a)
(2)1-10x+25x2 =1-10x+(5x)2 =(1-5x)2 (3)(m+n)2-6(m+n)+9=(m+n-3)2.
5, 求(a
1 )2的值. a
(2)若x y2 2, x2 y2 1, 求xy的值.
(3)如果(m n)2 z m2 2mn n2 ,
则z应为多少?
(4)(x 3y 2z)(x 3y 2z)
(5)19992, (6)20012 19992
练习:计算下列各题。
(1)( 1 a6b4c) ((2a3c) 4
1、 205×195 2、 (3x+2) (3x-2) 3、(-x+2y) (-x-2y) 4 、 (x+y+z)(x+y-z)
(2)、完全平方公式
一般的,我们有:
(a b)2 a2 2ab b2;
(a b)2 a2 2ab b2 其中a, b既可以是数, 也可以是代数式.
即: (a b)2 a2 2ab b2
探索与创新题 例4 若9x2+kxy+36y2是完全平方式,则k= —
分析:完全平方式是形如:a2±2ab+b2即两数 的平方和与这两个数乘积的2倍的和(或差).
∵9x2+kxy+36y2=(3x)2+kxy+(6y)2 ∴±kxy=2·3x·6y=36xy ∴k=±36
整式的乘除知识点及题型复习
举例说明:如单项 式x^2除以多项式 2x-1,结果为 (x^2)/(2x1)=x+1
除法运算顺序:按照从左到 右的顺序进行除法运算,注 意先处理括号内的内容
除法法则:类似于多项式乘 法,将除法转化为乘法,然 后利用乘法法则进行计算
除法结果的化简:将除法结 果化简到最简形式,注意约
分和合并同类项
除法运算的注意事项:注意 处理符号和运算优先级的问
添加标题
解析:根据速度、时间和距离的关系,速度=距离/时间,所以时间=距离/速度。将已知数值代入公式,得到时间=100千米 /80千米/小时=1.25小时。
添加标题
题目:一架飞机以每小时800千米的速度从甲地飞往乙地,飞行了3小时后,发现方向有误,于是立即改变航向,并以每小时 1000千米的速度飞行了4小时,求飞机到达乙地所需的总时间。
项式。
整式除法的结 果仍为一个多 项式,其各项 系数和次数与 被除式相同。
整式除法的一 般形式为:被 除式=除式×商
式+余式。
在整式除法中, 需要注意除数 不能为0,且各 项系数和次数 必须符合数学
规则。
定义:将一个单项式除以另一个单项式的商称为单项式除以单项式。
运算法则:与单项式乘法类似,按照系数、字母因子的指数分别相除,对于只在被除式 中出现的字母因子,连同其指数一起作为商的一个字母因子。
定义:两个多项式相乘,将一个多项式的每一项与另一个多项式的每一项 相乘,再将所得积相加。 举例:$(x+1)(x+2) = x^2 + 3x + 2$
公式:$(x+a)(x+b) = x^2 + (a+b)x + ab$
注意事项:注意乘法分配律的应用,以及合并同类项时的符号问题。
整式的乘除(重点、难点、考点复习总结)
整式的乘除(重点、难点、考点复习总结)1.知识系统总结2.重点难点易错点归纳(1)几种幂的运算法则的推广及逆用例1:(1)已知52x=4,5y=3,求(53x)2; 54x+2y-2练习:1. 已知a x=2,a y=3, a z=4求a3x+2y-z(2)46×0.256= (-8)2013×0.1252014 =(2)同底数幂的乘除法:底数互为相反数时如何换底能使计算简便判断是否同底:判断底数是否互为相反数:看成省略加号的和,每一项都相反结果就互为相反数换底常用的两种变形:例2:(1)-x7÷(-x)5·(-x)2 (2)(2a-b)7·(-b+2a)5÷(b-2a)8(3)区分积的乘方与幂的乘方例3:计算(1)(x3)2 (2) (-x3)2 (3)(-2x3)2(4)-(2x3)2(4)比较法:逆用幂的乘方的运算性质求字母的值(或者解复杂的、字母含指数的方程)例4:(1)如果2×8n×16n=28n ,求n的值(2)如果(9n)2=316,求n的值(3)3x=,求x的值(4)(-2)x= -,求x的值(5)利用乘方比较数的大小指数比较法:833,1625, 3219底数比较法:355,444,533乘方比较法:a2=5,b3=12,a>0,b>0,比较a,b的大小比较840与6320的大小(6)分类讨论思想例6:是否存在有理数a,使(│a│-3)a =1成立,若存在,求出a的值,若不存在,请说明理由整式的乘法(1)计算法则明确单项式乘以单项式、单项式乘以多项式、多项式乘以多项式的计算法则,尤其注意符号的问题,结果一定要是最简形式。
单项式乘以多项式、多项式乘以多项式最终都是要转化为单项式乘以单项式,通过省略加号的和巧妙简化符号问题。
【例1】计算:(1)(-3x2y)(-xz4)(-2y3zt) (2)-5x n y n+2(3x n+2y-2x n y n-1+y n) (3)(-x+2)(x3-x2)练一练:先化简再求值:[xy(x2-3y)+3xy2](-2xy)+x3y2(2x-y),其中x=-0.25,y=4(2)利用整式的乘法求字母的值①指数类问题:②系数类问题:【例2】已知-2x3m+1y2n与7x m-6y-3-n的积与x4y是同【例3】在x2+ax+b与2x2-3x-1的积中,x3项项,求m与n的值的系数为—5,x2项的系数为-6,求a,b的值(3)新定义题【例4】现规定一种新运算:a*b=ab+a-b,其中a,b为有理数,则(a*b)+[(b-a)*b]=练一练:现规定一种新运算:a※b=ab+a-b,其中a,b为有理数,计算:[(m+n)※n]+[(n-m)※n] 课后提升:1.(-0.7×104)×(0.4×103)×(-10)=2.若(2x-3)(5-2x)=ax2+bx+c,则a= ,b=3.若(-2x+a)(x-1)的结果不含x的一次项,则a=4.计算:(1)(-5x-6y+z)(3x-6y) (2)-2xy(x2-3y2)- 4xy(2x2+y2)平方差公式(1)公式:(a+b)(a-b)=a2-b2注意:公式中的a,b既可以是具体的数字,也可以是单项式或多项式,只要不是单独的数字或字母,写成平方的差时都要加括号公式的验证:根据面积的不同表达方式是验证整式乘法公式常用的方法(2)平方差公式的不同变化形式【例1】计算下列各式:(1)(-5x+2y)(-2y-5x)= (2)(2a-1)(2a+1)(4a2+1)=(3)20132-2012×2014 =练一练:1、(2y-x-3z)(-x-2y-3z)=2、99×101×10001=3、 3×(22+1)×(24+1)×(28+1)×…×(232+1)+1=(3)平方差公式的逆用【例2】∣x+y-3∣+(x-y+5)2=0,求3x2-3y2的值练一练:已知实数a,b满足a+b=2,a-b=5,求(a+b)3(a-b)3的值.课后提升:1.已知下列式子:①(x-y)(-x-y);②(-x+y)(x-y);③(-x-y)(x+y);④(x-y)(y-x).其中能利用平方差公式计算的是2.(-a-3)( )=9-a23.如果a2-2k=(a-0.5)(a+0.5),那么k=4.为了美化城市,经统一规划,将一正方形的南北方向增加3米,东西方向缩短3米,将改造后的长方形草坪面积与原来的正方形草坪面积相比()A.增加6平方米B.增加9平方米C.减少9平方米D.保持不变5.解方程:(3x+4)(3x-4)=9(x-2)26.计算:(2+1)×(22+1)×(24+1)×…×(22014+1)完全平方公式(1)公式:(a±b)2=a2±2ab +b2首平方,尾平方,2倍乘积放中央,同号加,异号减注意:公式中的a,b既可以是具体的数字,也可以是单项式或多项式【例1】计算下列各式:(2x-5y)2 = (-mn+1)2 =(-t2-2)2=(2)完全平方公式的推广应用①直接推广②间接推广【例2】计算(a-2b+3c)2【例3】已知x+y+z=10,xy+xz+yz=8,求x2+y2+z2的值(3)利用完全平方公式求字母的值【例4】两数和的平方的结果是x2+(a-1)x+25,则a的值是()A.-9B.1C.9或-11D.-9或11(4)利用完全平方公式进行简化计算【例5】计算:(1)1992 (2)3.012(5)完全平方公式的变形应用【例6】(1)已知m+n=7,mn=10,求8m2+8n2的值(2)已知(x+y)2=16,(x-y)2=4,求xy的值课后提升:1.下列展开结果是2mn-m2-n2的式子是()A.(m+n)2B.(-m+n)2C.-(m-n)2D.-(m+n)22.(x+2y-z)2=3.若∣x+y-7∣+(xy-6)2=0,则3x2+3y2=4.若代数式x2+3x+2可以表示为 (x-1)2+a(x-1)+b的形式,则a+b的值是5.计算:(2x-y)2(2x+y)2整式的除法(1)计算法则整式乘法的逆运算,可以互相验证。
整式的乘除知识点及题型复习.docx
整式运算考点 1、幂的有关运算①a m a n② ( am )n③ ( ab) n④a m a n⑤a 0⑥ ap(m 、 n 都是正整数) (m 、 n 都是正整数) (n 是正整数)( a ≠ 0, m 、n 都是正整数,且 m>n )(a ≠0)(a ≠0,p 是正整数)幂的乘方法则:幂的乘方,底数不变,指数相乘。
积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。
同底数幂相除,底数不变,指数相减。
例:在下列运算中,计算正确的是( )(A ) a 3 a 2 a 6( B ) ( a 2 )3 a 5(C ) a 8 a 2 a 4( D ) (ab 2 ) 2a 2b 4练习:10x 3________.1、x2、a 10 310 a 32。
aa 6 =123、3 3 =。
24、23(3)2=。
5、下列运算中正确的是()A . x 3y3x 6; B . (m 2 ) 3m 5 ; C . 2x21; . ( a)6( a)3a 32x 2D6、计算 amanpa 8的结果是()A 、 amnp8B 、 amn p 8C 、 a mp np 8D 、 a mn p 87、下列计算中,正确的有( )① a 3 a 2 a 5 ② ab 422③ a 3a 2 a a 2 7a 2 。
ab abab 2 ④ aa 5 A 、①②B 、①③C 、②③D 、②④8、在① x x 5② x 7 y xy ③x 2 3④ x 2 y 3y 3 中结果为 x 6 的有()A 、①B 、①②C 、①②③④D 、①②④提高点 1:巧妙变化幂的底数、指数例:已知: 2a3 , 32b 6 ,求 23 a 10 b 的值;1、 已知 xa2 , xb3 ,求 x2 a 3b的值。
2、 已知 3m 6 , 9n 2 ,求 32m 4n 1的值。
3、 若 am4 , an8 ,则 a 3m 2n__________。
整式的乘法复习课件
典型例题解析
例题3
01
(3x 1)^2
• 分析
02
本题考查的是一元一次整式的平方运算。按照完全平方公式展
开即可。
• 解法
03
(3x - 1)^2 = 9x^2 - 6x + 1(利用完全平方公式)
03 二元一次整式乘法
二元一次整式概念
定义
含有两个未知数,且未知数的最高次 数为1的整式称为二元一次整式。
针对不同题型进行专项训练,提高解题能力
选择题和填空题
通过大量练习,提高对基础概念 和运算规则的掌握程度,培养快
速准确解题的能力。
计算题
针对不同类型的计算题,如单项 式与单项式相乘、单项式与多项 式相乘、多项式与多项式相乘等, 进行专项训练,提高运算速度和
准确性。
证明题
通过分析和证明乘法公式的过程, 培养逻辑推理能力和数学表达能
• 解法
(2x + 3)(x - 1) = 2x^2 - 2x + 3x - 3 = 2x^2 + x-3
典型例题解析
例题2
(x + 2)(x - 2)
• 分析
本题同样考查一元一次整式与多项式的乘法运算。注意到(x + 2)和 (x - 2)是平方差的形式,可以利用平方差公式进行简化。
• 解法
(x + 2)(x - 2) = x^2 - 4(利用平方差公式)
06 整式乘法复习策略与建议
系统梳理知识点,形成知识网络图
整式乘法的基本法则
回顾并掌握单项式与单项式、单项式与多项式、多项式与多项式 相乘的法则。
乘法公式
熟练掌握平方差公式和完全平方公式,理解其推导过程和应用场景。
《整式的乘法复习》课件
学习建议与展望
深入理解概念
建议学生深入理解整式乘法的 概念和性质,掌握其本质,以
便更好地应用所学知识。
提高运算能力
强调学生应通过多做练习题提 高整式乘法的运算能力,掌握 常用的运算技巧。
拓展应用领域
建议学生将整式乘法的应用拓 展到其他学科领域,如物理、 化学等,以增强跨学科应用能 力。
展望未来发展
$(x+y)(x^2+y^2) = (x^2+y^2)(x+y)$,可用于交换多项式相乘的顺序。
整式乘法的综合练
04
习
基础练习题
总结词
掌握基本概念和规则
详细描述
包括单项式与单项式相乘、单项式与多项式相乘、多项式与 多项式相乘等基础题型,旨在帮助学生掌握整式乘法的基本 概念和规则。
提高练习题
总结词
学习方法总结
主动参与
强调在学习整式乘法过程中,学 生应积极参与课堂讨论,主动思
考问题,提高自主学习能力。
实践应用
建议学生在课后多做练习题,通过 实践应用加深对整式乘法的理解, 提高运算能力和解决问题的能力。
归纳总结
鼓励学生对所学知识进行归纳总结 ,形成知识体系,以便更好地掌握 整式乘法的核心概念和运算规则。
小。
整式乘法的技巧与
03
注意事项
乘法公式的运用
01
02
03
平方差公式
$(a+b)(a-b) = a^2 b^2$,可用于简化整式 乘法。
完全平方公式
$(a+b)^2 = a^2 + 2ab + b^2$,可用于展开整 式和简化整式乘法。
平方差公式
$(a-b)^2 = a^2 - 2ab + b^2$,可用于展开整式 和简化整式乘法。
七(下)第1章整式的乘除(全章复习与巩固)知识讲解与专项讲练
2023七(下)第1章整式的乘除知识讲解与专项讲练2023.06.12~6.15【学习目标】1.掌握正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2.会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3.掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算。
【知识要点】要点一、幂的运算1.同底数幂的乘法:a m ·a n =a m +n (m 、n 为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方:(a m )n =a mn =a nm =(a n )m (m 、n 为正整数);幂的乘方,底数不变,指数相乘.3.积的乘方:(ab )n =a n b n ,(a x b y )n =a nx b ny (n 、x 、y 为正整数);积的乘方,等于各因数乘方的积.4.同底数幂的除法:a m ÷a n =a m -n (a ≠0,m 、n 为正整数,并且m >n ).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即:任何不等于零的数的零次方等于1.6.负整数次幂:p p a a 1=-(a ≠0,p 为正整数),a n 与a -n 互为倒数,n m m n pp a b b a ,a b b a =⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---即:任何一个不等于零的数的-p (p 是正整数)次幂,等于这个数的p 次幂的倒数.特别说明:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.要点二、整式的乘除1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.特别说明:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++.4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数的和与这两个数的差的积,等于这两个数的平方差.特别说明:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2.完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.特别说明:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.【典型例题】类型一、整式的乘除➽➼幂的运算✭✭幂的逆运算1.计算:(1)()3201113823π-⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()2331233282a a a a -⋅-÷举一反三:【变式1】计算:101|2|(2023667)3π-⎛⎫---+ ⎪⎝⎭(2)()()223234(6)x y xy ⋅-÷【变式2】计算:(1)22012()272--+-(2)2642135(2)5x x x x x⋅--+÷(1)253()()[()]a b b a a b -⋅-÷--;(2)先化简,再求值:426223225(3)()(2)a a a a a ⎡⎤⋅-÷÷-⎣⎦,其中5a =-.2.(2022春·福建泉州·八年级福建省永春第三中学校联考期中)阅读:已知正整数a 、b 、c ,显然,当同底数时,指数大的幂也大,若对于同指数,不同底数的两个幂b a 和b c ,当a c >时,则有b b a c >,根据上述材料,回答下列问题(1)比较大小:205______204(填写>、<或=)(2)比较332与223的大小(写出具体过程)(3)已知23a =,86b =求()322a b +的值【答案】(1)>(2)332223<,见分析(3)972【分析】(1)根据同指数,不同底数的两个幂b a 和b c ,当a c >时,则有b b a c >,即可进行解答;(2)将根据幂的乘方的逆运算,将332与223转化为同指数的幂,再比较大小即可;(3)根据同底数幂乘法的逆运算,将()322a b +转化为()3222a b ⨯,再根据积的乘方的逆运算,整理为含有2a 和8b 的性质,进行计算即可.(1)解:∵54>,∴202054>,故答案为:>.(2)∵()1133311228==,()1122211339==,89<,∴332223<.(3)原式()3222a b =⨯()()33222a b =⨯()()32322ba =⨯()2338b =⨯3236=⨯=972.【点拨】本题主要考查了幂的乘方与积的乘方的运算法则和逆运算,解题的关键是熟练掌握幂的乘方和积的乘方的运算法则及其逆运算法则.举一反三:【变式1】已知,若实数a 、b 、c 满足等式54a =,56b =,59c =.(1)求25a b +的值;(2)求25b c -的值;(3)求出a 、b 、c 之间的数量关系.【变式2】(2022春·全国·八年级专题练习)按要求解答下列各小题.(1)已知1012m =,103n =,求10m n -的值;(2)如果33a b +=,求327a b ⨯的值;(3)已知682162m m ⨯÷=,求m 的值.类型二、整式的乘除➽➼整式的乘法3.计算:(1)()()()2332ab a a b --- ;(2)()()221a a -+;(3)()()212x x +-.【答案】(1)446a b -(2)3222a a --(3)2232x x --【分析】(1)按照单项式乘以单项式的法则进行运算即可;(2)按照单项式乘以多项式的法则进行运算即可;(3)按照多项式乘以多项式的法则进行运算即可;(1)解:()()()2332ab a a b --- ()2236a b a b =- 44a b =-.(2)()()221a a -+3222a a =--;(3)()()212x x +-2242x x x =-+-2232x x =--.【点拨】本题考查的是单项式乘以单项式,单项式乘以多项式,多项式乘以多项式,掌握“整式的乘法运算的运算法则”是解本题的关键.举一反三:【变式1】计算:(1)()()202024311202323π-⎛⎫-+-+-- ⎪⎝⎭(2)()()()222x y x y x x y -++--【变式2】(2022春·河南周口·七年级校联考期中)如图,把8张长为a ,宽为b 的小长方形纸片摆放在一个大长方形纸盒内,空白部分分别用A ,B 表示,两个摆放小纸片的长方形(阴影)公共的部分边长为m ,(用a ,b ,m 分别表示周长和面积)(1)填空:①空白部分A 的周长A P =__________,面积A S =_____________,②空白部分B 的周长B P =______________,面积B S =________________;(2)若5a b =,求A B P P -,A B S S -的代数式.类型三、整式的乘除➽➼平方差公式✭✭完全平方公式4.(2022春·山西大同·八年级大同一中校考阶段练习)化简下列多项式:(1)()()()214121x x x +---;(2)()()223223a b a b +--+.【答案】(1)72x -(2)2244129a b b -+-【分析】(1)先计算乘法,再合并同类项,即可求解;(2)利用平方差公式计算,即可求解.(1)解:()()()214121x x x +---22441441x x x x x =-+--+-72x =-(2)解:()()223223a b a b +--+()()223223a b a b =+---⎡⎤⎣⎦()()22223a b =--2244129a b b =-+-【点拨】本题主要考查了整式的混合运算,灵活利用乘法公式计算是解题的关键.举一反三:【变式1】(2022春·重庆·八年级重庆市育才中学校考阶段练习)计算:(1)()()()y x y x y x y +--+;(2)()()224x x x ++-【变式2】运用公式进行简便计算:(1)210.210.2 2.4 1.44-⨯+;(2)2222111111112342022⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.5.(2022春·四川内江·八年级校考阶段练习)(1)已知实数x ,y 满足2296x y -=,8x y -=,求x y +的值.(2)已知实数a 、b 满足()23a b +=,()227a b -=,求22a b ab ++的值.【答案】(1)12x y +=;(2)229a b ab ++=.【分析】(1)利用平方差公式,化简求解即可;(2)利用完全平方公式进行化简,分别求得22a b +和ab 的值,即可求解.解:(1)∵2296x y -=,∴()()96x y x y +-=,∵8x y -=,∴12x y +=;(2)∵()23a b +=,()227a b -=,∴2223a ab b ++=,22227a ab b -+=,∴222a 2b 30+=,424ab =-,∴22a b 15+=,6ab =-,∴()221569a b ab ++=+-=.【点拨】此题考查了完全平方公式和平方差公式,解题的关键是熟练掌握相关基础性质.举一反三:【变式1】已知5a b +=,3ab =.求下列各式的值:(1)22a b +;(2)()2a b -;(3)()()()()1111a b a b ++--.【变式2】已知:221x x +=,将()()()()2(1)3331x x x x x --+----先化简,再求它的值.类型四、整式的乘除➽➼整体的除法6.(2022春·八年级课时练习)计算下列各题:(1)()()322432714x y xy x y ⋅-÷;(2)()()222x y x y y x ⎡⎤+-+÷.【变式1】先化简,再求值:()()()21242x y x y x y y ⎡⎤+--+÷⎣⎦,其中1x =,2y =.【变式2】已知24750a a -+=,求代数式()2232(21)a a a a -÷--的值.类型五、整式的乘除➽➼图形问题7.(2021春·陕西延安·八年级陕西延安中学校考阶段练习)如图所示,两个长方形用不同形式拼成图1和图2两个图形.(1)若图1中的阴影部分面积为22a b -;则图2中的阴影部分面积为_________.(用含字母a ,b 的式子且不同于图1的方式表示)(2)由(1)你可以得到乘法公式____________.(3)根据你所得到的乘法公式解决下面的问题:计算:①10397⨯;②()()22a b c a b c +---.【变式1】图a 是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图b 的形状拼成一个正方形.(1)你认为图b 中的阴影部分的正方形的边长等于多少?(2)请用两种不同的方法求图中阴影部分的面积.方法1:方法2:(3)观察图b 你能写出下列三个代数式之间的等量关系吗?代数式:()()22,,m n m n mn+-(4)根据(3)题中的等量关系,解决如下问题:若75a b ab +==,,则2()a b -=.(请直接写出计算结果)【变式2】(2022春·八年级课时练习)如图,在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >),把余下的部分剪拼成一个矩形.(1)通过计算两个图形的面积(阴影部分的面积),可以验证的等式是:_________A .()2222a ab b a b -+=-B .()()22a b a b a b -=+-C .()2a ab a a b +=+D .()222a b a b -=-(2)应用你从(1)选出的等式,完成下列各题:①已知:3a b -=,2221a b -=,求a b +的值;②计算:22222111111111123420202021⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.【中考真题专练】【1】(2022·江苏常州)计算:(1)201(3)3---+π;(2)2(1)(1)(1)+--+x x x .【2】(2022·广西·统考)先化简,再求值()()()22x y x y xy xy x +-+-÷,其中11,2x y ==.【3】(2022·河北·统考)发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证:如,()()22212110++-=为偶数,请把10的一半表示为两个正整数的平方和.探究:设“发现”中的两个已知正整数为m ,n ,请论证“发现”中的结论正确.a+,宽为2a的矩形分割成四个全等的直角三角形,拼成“赵【4】(2022·浙江金华)如图1,将长为23爽弦图”(如图2),得到大小两个正方形.(1)用关于a的代数式表示图2中小正方形的边长.(2)当3a=时,该小正方形的面积是多少?2023七(下)第1章整式的乘除知识讲解与专项讲练2023.06.12~6.15【学习目标】1.掌握正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2.会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3.掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算。
整式的乘法知识点汇总
整式的乘法知识点汇总&练习1. 同底数幂相乘,底数不变,指数相加。
a n.a m =a m+n (m,n 是正整数).底数可以是数字或字母,可以是单项式,也可以是多项式,若是多项式,应该把多项式看做一个整体。
幂之间是乘法关系,指数之间是相加关系。
2. 幂的乘方,底数不变,指数相乘。
(a n )m =a mn (m,n 是正整数)。
注意负数的奇数次幂为负,负数的偶数次幂为正。
3. 积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
(ab)n =a n b n (n 是正整数)。
底数必须是积的形式,当底数中有多个因式时,切勿漏掉系数因式的乘方。
当底数中有“-”时,应将视为-1,作为系数因式进行乘方。
4. 单项式与单项式相乘,把它们的系数、同底数幂分别相乘。
积的系数等于各单项式系数的积,应先确定积的符号,在计算积的绝对值。
相同字母的指数相加。
有乘方的先算乘方,再算乘法。
5. 单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加。
a (m+n )=am+an 。
单项式乘以多项式的每一项,注意符号变化,能合并同类项的要合并同类项。
6. 多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加。
(a+b )(m+n )=am+an+bm+bn 。
7. 平方差公式,即两个数的和与这两个数的差的积等于这两个数的平方差。
(a+b )(a -b )=a 2-b 2有一组符号相同,有一组符号相反,用相同数的平方减去相反数的平方。
每一组数的绝对值都相同。
8. 完全平方公式,即两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍。
(a+b )2=a 2+2ab+b 2,(a -b )2=a 2-2ab+b 2首平方,尾平方,积的两倍在中央。
9. 公式的灵活变形:(a+b )2+(a -b )2=2a 2+2b 2,(a+b )2-(a -b )2=4ab ,a 2+b 2=(a+b )2-2ab ,a 2+b 2=(a -b )2+2ab ,(a+b )2=(a -b )2+4ab,(a -b )2=(a+b )2-4ab=====-=-=+-+-=--+-=+•=-•=++=+=-+=++=÷===••-+n m n m n m a a a a a a x y y x x y y x b a a bc a ab x x y x b a b a a a b b b a a a a a ,,8,2)()2())(())((2)2(3)4)(5()3()2)(2()2)(32()2()(85222584233253求已知)(因式分解知识点&练习1.把一个多项式表示成若干个多项式的乘积的形式,称为把这个多项式因式分解。
整式的乘除知识点及题型复习
整式运算考点1、幂的有关运算①=⋅nm a a (m 、n 都是正整数)②=n m a )( (m 、n 都是正整数)③=n ab )( (n 是正整数) ④=÷nm a a (a ≠0,m 、n 都是正整数,且m>n ) ⑤=0a (a ≠0)⑥=-p a (a ≠0,p 是正整数) 幂的乘方法则:幂的乘方,底数不变,指数相乘。
积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。
同底数幂相除,底数不变,指数相减。
例:在下列运算中,计算正确的是( )(A )326a a a ⋅= (B )235()a a =(C )824a a a ÷=(D )2224()ab a b =练习:1、()()103x x -⨯-=________.2、()()()32101036a a a a -÷-÷-÷ = 。
3、23132--⎛⎫-+ ⎪⎝⎭= 。
4、322(3)---⨯- = 。
5、下列运算中正确的是( )A .336x y x =;B .235()m m =;C .22122x x-=; D .633()()a a a -÷-=- 6、计算()8pm n a aa ⋅÷的结果是( )A 、8mnp a - B 、()8m n p a ++ C 、8mp np a+- D 、8mn p a+-7、下列计算中,正确的有( )①325a a a ⋅= ②()()()4222ab ab ab ab ÷= ③()322a a a a ÷÷= ④()752a a a -÷=。
A 、①②B 、①③C 、②③D 、②④ 8、在①5x x ⋅ ②7x y xy ÷ ③()32x - ④()233x y y ÷中结果为6x 的有( )A 、①B 、①②C 、①②③④D 、①②④ 提高点1:巧妙变化幂的底数、指数 例:已知:23a =,326b =,求3102a b+的值;1、 已知2a x =,3bx =,求23a bx-的值。
专题15 整式的乘法-重难点题型(举一反三)(学生版)
专题整式的乘法-重难点题型【【例1】(2021•开平区一模)已知等式(x+p)(x+q)=x2+mx+36(p,q为正整数),则m的值不可能是()A.37B.13C.20D.36【变式1-1】(2021春•潍坊期末)若(x+a)(x﹣5)=x2+bx﹣10,则ab﹣a+b的值是()A.﹣11B.﹣7C.﹣6D.﹣55【变式1-2】(2020秋•播州区期末)若x+y=2,xy=﹣1,则(1﹣2x)(1﹣2y)的值是.【变式1-3】(2021春•江都区期中)在计算(2x+a)(x+b)时,甲错把b看成了6,得到结果是:2x2+8x﹣24;乙错把a看成了﹣a,得到结果:2x2+14x+20.(1)求出a,b的值;(2)在(1)的条件下,计算(2x+a)(x+b)的结果.【题型2 整式乘法中的不含某项问题】【例2】(2021春•蜀山区校级期中)关于x的代数式(mx﹣2)(2x+1)+x2+n化简后不含有x2项和常数项.(1)分别求m,n的值.(2)求m2020n2021的值.【变式2-1】(2021春•通川区校级月考)若多项式x2+mx﹣8和x2﹣3x+n的的乘积中不含x2和x3的项,求m+n的值.【变式2-2】(2021春•金牛区校级月考)已知(x3+mx+n)(x2﹣3x+4)展开式中不含x3和x2项.(1)求m、n的值;(2)当m、n取第(1)小题的值时,求(m+n)(m2﹣mn+n2)的值.【变式2-3】(2021春•太湖县期末)【知识回顾】七年级学习代数式求值时,遇到这样一类题“代数式ax﹣y+6+3x﹣5y﹣1的值与x的取值无关,求a的值”,通常的解题方法是:把x、y看作字母,a看作系数合并同类项,因为代数式的值与x的取值无关,所以含x项的系数为0,即原式=(a+3)x﹣6y+5,所以a+3=0,则a=﹣3.【理解应用】(1)若关于x的多项式(2x﹣3)m+2m2﹣3x的值与x的取值无关,求m值;(2)已知A=(2x+1)(x﹣1)﹣x(1﹣3y),B=﹣x2+xy﹣1,且3A+6B的值与x无关,求y的值;【能力提升】(3)7张如图1的小长方形,长为a,宽为b,按照图2方式不重叠地放在大长方形ABCD内,大长方形中未被覆盖的两个部分(图中阴影部分),设右上角的面积为S1,左下角的面积为S2,当AB的长变化时,S1﹣S2的值始终保持不变,求a与b的等量关系.【题型3 整式乘法的计算】【例3】(2020秋•河北区期末)计算:(1)−12x2y⋅(13x3y2−34x2y+16)(2)(x﹣1)(2x+1)﹣2(x﹣5)(x+2)【变式3-1】(2021春•九龙坡区校级期中)计算:(1)2x2y(x−12y+1);(2)(x﹣2y)(y﹣x).【变式3-2】(2021春•海陵区校级月考)计算:(1)﹣3x2(2x﹣4y)+2x(x2﹣xy).(2)(3x+2y)(2x﹣3y)﹣3x(3x﹣2y).【变式3-3】(2021春•未央区月考)小奇计算一道整式的混合运算的题:(x﹣a)(4x+3)﹣2x,由于小奇将第一个多项式中的“﹣a”抄成“+a”,得到的结果为4x2+13x+9.(1)求a的值.(2)请计算出这道题的正确结果.【题型4 整式乘法的应用】【例4】(2021春•铁西区期中)有一电脑程序:每按一次按键,屏幕的A区就会自动减去a,同时B区就会自动加上3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16(如图所示).例如:第一次按键后,A,B两区分别显示:25﹣a,﹣16+3a.(1)那么第二次按键后,A区显示的结果为,B区显示的结果为.(2)计算(1)中A、B两区显示的代数式的乘积,并求当a=2时,代数式乘积的值.【变式4-1】(2021春•碑林区校级期中)为迎接十四运,某小区修建一个长为(3a﹣b)米,宽为(a+2b)米的长方形休闲场所ABCD.长方形内筑一个正方形活动区EFGH和连接活动区到矩形四边的四条笔直小路(如图),正方形活动区的边长为(a﹣b)米,小路的宽均为2米.活动区与小路铺设鹅卵石,其它地方铺设草坪.(1)求铺设草坪的面积是多少平方米;(2)当a=10,b=4时,需要铺设草坪的面积是多少?【变式4-2】(2021春•成都期末)(1)如图是小颖家新房的户型图,小颖的爸爸打算把两个卧室以外的部分都铺上地砖,至少需要多少平方米的地砖?如果某种地砖的价格为每平方米a元,那么购买地砖至少需要多少元?(2)如果房屋的高度是h米,现在需要在客厅和两个卧室四周的墙上贴墙纸,那么至少需要多少平方米的墙纸?如果某种墙纸的价格为每平方米b元,那么购买所需的墙纸至少要多少元?(计算时不扣除门、窗所占的面积,忽略墙的厚度)【变式4-3】(2021春•莲湖区期末)已知有甲、乙两个长方形,它们的边长如图所示,面积分别为S1,S2.(1)S1与S2的大小关系为:S1S2.(2)若一个正方形的周长与甲的周长相等.①求该正方形的边长(用含m的代数式表示).②若该正方形的面积为S3,试探究:S3与S2的差(即S3﹣S2)是否为常数?若为常数,求出这个常数,如果不是,请说明理由.【知识点2 整式的除法】【例5】(2021春•上城区期末)一个长方形的面积是15x3y5﹣10x4y4+20x3y2,一边长是5x3y2,则它的另一边长是()A.2y3﹣3xy2+4B.3y3﹣2xy2+4C.3y3+2xy2+4D.2xy2﹣3y3+4【变式5-1】(2020•台湾)计算2x2﹣3除以x+1后,得商式和余式分别为何?()A.商式为2,余式为﹣5B.商式为2x﹣5,余式为5C.商式为2x+2,余式为﹣1D.商式为2x﹣2,余式为﹣1【变式5-2】(2020秋•袁州区校级期中)已知一个长方形的面积是6a2﹣4ab+2a,且它的一条边长为2a,则长方形的周长为.【变式5-3】(2021春•潍坊期末)若多项式A除以2x2﹣3,得到的商式为3x﹣4,余式为5x+2,则A=.【题型6 整式乘法中的规律探究】【例6】(2020秋•邹城市期末)观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…(1)分解因式:x5﹣1=;(2)根据规律可得(x﹣1)(x n﹣1+…+x+1)=(其中n为正整数);(3)计算:(3﹣1)(350+349+348+…+32+3+1).【变式6-1】(2021春•包河区期末)探究规律,解决问题:(1)化简:(m﹣1)(m+1)=,(m﹣1)(m2+m+1)=.(2)化简:(m﹣1)(m3+m2+m+1),写出化简过程.(3)化简:(m﹣1)(m n+m n﹣1+m n﹣2+…+1)=.(n为正整数,m n+m n﹣1+m n﹣2+…+1为n+1项多项式)(4)利用以上结果,计算1+3+32+33+…+3100的值.【变式6-2】(2021春•合肥期中)观察以下等式:(x+1)(x2﹣x+1)=x3+1(x+3)(x2﹣3x+9)=x3+27(x+6)(x2﹣6x+36)=x3+216…(1)按以上等式的规律,填空:(a+b)()=a3+b3(2)利用多项式的乘法法则,证明(1)中的等式成立.【变式6-3】(2020秋•石狮市校级月考)探究应用:(1)计算:(x﹣1)(x2+x+1)=;(2x﹣y)(4x2+2xy+y2)=.(2)上面的乘法计算结果很简洁,你发现了什么规律(公式)?用含字母a、b的等式表示该公式为:.(3)下列各式能用第(2)题的公式计算的是.A.(m+2)(m2+2m+4)B.(m﹣2n)(m2+2mn+2n2)C.(3﹣n)(9+3n+n2)D.(m﹣n)(m2+2mn+n2)(4)设A=109﹣1,利用上述规律,说明A能被37整除.。
整式的乘法复习
整式的乘法练习题(一)填空1.a8=(-a5)______.2.a15=()5.3.3m2·2m3=______.4.(x+a)(x+a)=______.5.a3·(-a)5·(-3a)2·(-7ab3)=______.6.(-a2b)3·(-ab2)=______.7.(2x)2·x4=()2.8.24a2b3=6a2·______.9.[(a m)n]p=______.10.(-mn)2(-m2n)3=______.11.多项式的积(3x4-2x3+x2-8x+7)(2x3+5x2+6x-3)中x3项的系数是______.12.m是x的六次多项式,n是x的四次多项式,则2m-n是x的______次多项式.14.(3x2)3-7x3[x3-x(4x2+1)]=______.15.{[(-1)4]m}n=______.16.-{-[-(-a2)3]4}2=______.17.一长方体的高是(a+2)厘米,底面积是(a2+a-6)厘米2,则它的体积是______.18.若10m=a,10n=b,那么10m+n=______.19.3(a-b)2[9(a-b)n+2](b-a)5=______(a-b)n+9.20.已知3x·(x n+5)=3x n+1-8,那么x=______.21.若a2n-1·a2n+1=a12,则n=______.22.(8a3)m÷[(4a2)n·2a]=______.23.若a<0,n为奇数,则(a n)5______0.24.(x-x2-1)(x2-x+1)n(x-x2-1)2n=______.25.(4+2x-3y2)·(5x+y2-4xy)·(xy-3x2+2y4)的最高次项是______.26.已知有理数x,y,z满足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,则x3n+1y3n+1z4n-1的值(n为自然数)等于______.(二)选择27.下列计算最后一步的依据是[]5a2x4·(-4a3x)=[5×(-4)]·a2·a3·x4·x(乘法交换律)=-20(a2a3)·(x4x)(乘法结合律)=-20a5x5.()A.乘法意义;B.乘方定义;C.同底数幂相乘法则;D.幂的乘方法则.28.下列计算正确的是[]A.9a3·2a2=18a5;B.2x5·3x4=5x9;C.3x3·4x3=12x3;D.3y3·5y3=15y9.29.(y m)3·y n的运算结果是[]B.y3m+n;C.y3(m+n);D.y3mn.30.下列计算错误的是[]A.(x+1)(x+4)=x2+5x+4;B.(m-2)(m+3)=m2+m-6;C.(y+4)(y-5)=y2+9y-20;D.(x-3)(x-6)=x2-9x+18.31.计算-a2b2·(-ab3)2所得的结果是[]A.a4b8;B.-a4b8;C.a4b7;D.-a3b8.32.下列计算中错误的是[]A.[(a+b)2]3=(a+b)6;B.[(x+y)2n]5=(x+y)2n+5;C.[(x+y)m]n=(x+y)mn;D.[(x+y)m+1]n=(x+y)mn+n.33.(-2x3y4)3的值是[]A.-6x6y7;B.-8x27y64;C.-8x9y12;D.-6xy10.34.下列计算正确的是[]A.(a3)n+1=a3n+1;B.(-a2)3a6=a12;C.a8m·a8m=2a16m;D.(-m)(-m)4=-m5.35.(a-b)2n·(b-a)·(a-b)m-1的结果是[]A.(a-b)2n+m;B.-(a-b)2n+m;C.(b-a)2n+m;D.以上都不对.36.若0<y<1,那么代数式y(1-y)(1+y)的值一定是[]A.正的;B.非负;C.负的;D.正、负不能唯一确定.37.(-2.5m3)2·(-4m)3的计算结果是[]A.40m9;B.-40m9;C.400m9;D.-400m9.38.如果b2m<b m(m为自然数),那么b的值是[]A.b>0;B.b<0;C.0<b<1;D.b≠1.39.下列计算中正确的是[]A.a m+1·a2=a m+2;D.[-(-a)2]2=-a4.40.下列运算中错误的是[]A.-(-3a n b)4=-81a4n b4;B.(a n+1b n)4=a4n+4b4n;C.(-2a n)2·(3a2)3=-54a2n+6;D.(3x n+1-2x n)·5x=15x n+2-10x n+1.41.下列计算中,[](1)b(x-y)=bx-by,(2)b(xy)=bxby,(3)b x-y=b x-b y,(4)2164=(64)3,(5)x2n-1y2n-1=xy2n-2.A.只有(1)与(2)正确;B.只有(1)与(3)正确;C.只有(1)与(4)正确;D.只有(2)与(3)正确.42.(-6x n y)2·3x n-1y的计算结果是[]A.18x3n-1y2;B.-36x2n-1y3;C.-108x3n-1y;D.108x3n-1y3.[]44.下列计算正确的是[]A.(6xy2-4x2y)·3xy=18xy2-12x2y;B.(-x)(2x+x2-1)=-x3-2x2+1;C.(-3x2y)(-2xy+3yz-1)=6x3y2-9x2y2z2-3x2y;45.下列计算正确的是[]A.(a+b)2=a2+b2;B.a m·a n=a mn;C.(-a2)3=(-a3)2;D.(a-b)3(b-a)2=(a-b)5.[]47.把下列各题的计算结果写成10的幂的形式,正确的是[]A.100×103=106;B.1000×10100=103000;C.1002n×1000=104n+3;D.1005×10=10005=1015.48.t2-(t+1)(t-5)的计算结果正确的是[]A.-4t-5;B.4t+5;C.t2-4t+5;D.t2+4t-5.49.使(x2+px+8)(x2-3x+q)的积中不含x2和x3的p,q的值分别是[]A.p=0,q=0;B.p=-3,q=-9;C.p=3,q=1;D.p=-3,q=1.50.设xy<0,要使x n y m·x n y m>0,那么[]A.m,n都应是偶数;B.m,n都应是奇数;C.不论m,n为奇数或偶数都可以;D.不论m,n为奇数或偶数都不行.51.若n为正整数,且x2n=7,则(3x3n)2-4(x2)2n的值为[]A.833;B.2891;C.3283;D.1225.(三)计算52.(6×108)(7×109)(4×104).53.(-5x n+1y)·(-2x).54.(-3ab)·(-a2c)·6ab2.55.(-4a)·(2a2+3a-1).58.(3m-n)(m-2n).59.(x+2y)(5a+3b).60.(-ab)3·(-a2b)·(-a2b4c)2.61.[(-a)2m]3·a3m+[(-a)5m]2.62.x n+1(x n-x n-1+x).63.(x+y)(x2-xy+y2).65.5x(x2+2x+1)-(2x+3)(x-5).67.(2x-3)(x+4).70.(-2a m b n)(-a2b n)(-3ab2).74.(m-n)(m5+m4n+m3n2+m2n3+mn4+n5).75.(2a2-1)(a-4)(a2+3)(2a-5).76.2[(x+2)(x+1)-3]+(x-1)(x-2)-3x(x+3).77.(0.3a3b4)2·(-0.2a4b3)3.78.(-4xy3)·(-xy)+(-3xy2)2.80.(5a3+2a-a2-3)(2-a+4a2).81.(3x4-2x2+x-3)(4x3-x2+5).83.(3a m+2b n+2)(2a m+2a m-2b n-2+3b n).86.[(-a2b)3]3·(-ab2).87.(-2ab2)3·(3a2b-2ab-4b2).91.(-2x m y n)3·(-x2y n)·(-3xy2)2.92.(0.2a-1.5b+1)(0.4a-4b-0.5).93.-8(a-b)3·3(b-a).94.(x+3y+4)(2x-y).96.y[y-3(x-z)]+y[3z-(y-3x)].97.计算[(-a)2m]3·a3m+[(-a)3m]3(m为自然数).(四)化简(五)求值104.先化简y n(y n+9y-12)-3(3y n+1-4y n),再求其值,其中y=-3,n=2.105.先化简(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),再求其值,其中x=106.光的速度每秒约3×105千米,太阳光射到地球上需要的时间约是5×102秒.问地球与太阳的距离约是多少千米?(用科学记数法写出来)107.已知ab2=-6,求-ab(a2b5-ab3-b)的值.108.已知a+b=1,a(a2+2b)+b(-3a+b2)=0.5,求ab的值.110.已知(x-1)(x+1)(x-2)(x-4)≡(x2-3x)2+a(x2-3x)+b,求a,b的值.111.多项式x4+mx2+3x+4中含有一个因式x2-x+4,试求m的值,并求另一个因式.112.若x3-6x2+11x-6≡(x-1)(x2+mx+n),求m,n的值.113.已知一个两位数的十位数字比个位数字小1,若把十位数字与个位数字互换,所得的新两位数与原数的乘积比原数的平方多405,求原数.114.试求(2-1)(2+1)(22+1)(24+1)…(232+1)+1的个位数字.115.比较2100与375的大小.116.解方程3x(x+2)+(x+1)(x-1)=4(x2+8).118.求不等式(3x+4)(3x-4)>9(x-2)(x+3)的正整数解.119.已知2a=3b=6c(a,b,c均为自然数),求证:ab-cb=ac.120.求证:对于任意自然数n,n(n+5)-(n-3)×(n+2)的值都能被6整除.121.已知有理数x,y,z满足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,求证:x3n y3n-1z3n+1-x=0.122.已知x=b+c,y=c+a,z=a+b,求证:(x-y)(y-z)(z-x)+(a-b)(b-c)(c-a)=0.123.证明(a-1)(a2-3)+a2(a+1)-2(a3-2a-4)-a的值与a无关.124.试证代数式(2x+3)(3x+2)-6x(x+3)+5x+16的值与x的值无关.125.求证:(m+1)(m-1)(m-2)(m-4)=(m2-3m)2-2(m2-3m)-8.1、2、若2x + 5y-3 = 0 则=3、已知a = 355 ,b = 444 ,c = 533则有( )A.a < b < c B.c < b < a C.a < c < b D.c < a < b4、已知,则x =5、21990×31991的个位数字是多少6、计算下列各题(1)(2)(3)(4)7、计算(-2x-5)(2x-5)8、计算9、计算,当a6 = 64时, 该式的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10a
11
5 2
( (-5) ·-5) =5 -5 (7) (-3) · = (-3) 3 3
3
11
5
5
2013-8-27
(x-y) (y-x) = (x-y)
2
5
7
-(x-y) (y-x)
7
7
口答练习
(1)
x x· = x 7 2 3 (3) -x (x ) = -x ·
7
(6) (-abc
2+ (a+b) 2 (a-b)
+b
2
2013-8-27
= (a+b)2 - (a-b)2 = 4ab
2+b2) 2(a
想 一 想 (1) a2+ a3 = a5
(3) a · a
2
3
3
=2a
3
3
a
6
6
a a 6 2 3 5 x (4) ( x ) = x
(2) a· a
2
=
2
3
(5) 5a ·a =10a 2 (6) (8)
1 2
D
x y z ) (- x y ) = x y
5 3 2
2
2
4 7
2
3
3
( (B) (-2 10 ) ·-10 ) ·3 10 ) = -6 10 (
(C) (-
10
ab )= - a b
2 3n
2 3 3
1 6
8
27
( (D) (a ) · b ) = (ab)
2013-8-27
3n 2
6n
2
2
2
2013-8-27
(5)计算
2 2
(a-2b+3)(a+2b-3)的结果是( D)
2 2
a2 2 (A)a +4b +12b-9 (B) -4b -12b-9 2 2 a (C) +4b -12b-9 (D) -4b +12b-9 a
解: (a-2b+3)(a+2b-3)
=[a-(2b-3)][a+(2b-3)] =a -(2b-3) =a -(4b -12b+9)
2013-8-27
本章我所学过的!
幂的运算
整 式 的 乘 法
整式的乘法
乘法公式
2013-8-27
同底数幂的乘法
a
m
·a
n
=a
m+n
幂 的 幂的乘方 ( am )n = a mn 运 算 n 积的乘方 ( ab ) = an b n
2013-8-27
整 式 5 7 =-12a bx 的 乘 单项式与多项式相乘 法
口 答 练 习
(1)
2
2
2
2013-8-27
①
2-(3x+1)(3x-1)+2(x-1)2 (2x-1)
②(x+4y-6z)(x-4y+6z)
③
2 (x-2y+3z)
2013-8-27
(5) 化简求值 : ( y 2 x)(2 x y) (2 x y) 2 y ,
2 2其中x 1, y 2.多项式的乘法2013-8-27
单项式的乘法 4a x 2 3 5 2 = [4 ( -3)] (a a ) ( x x )
2
5
(-3 · a3b x2)
b
m(a+b)= ma+mb
(a+b)(m+n)= am+an+bm+bn
平方差公式 乘 法 公 式 (a+b)(a-b) =
a -b
2
2
完全平方公式 2 2 (a+b) = a + 2ab
2013-8-27
-4xy; -8
大显身手 已知a+b=3,ab=-12,求: (1)
2+b2 a
(2) a2 -ab+b2 (3) (a-b)2 练习:已知x+y=1,
2013-8-27
求4x2+8xy+4y2的值。
4、 观察下列等式,你会发现什么
规律:1×3+1=22;2×4+1=32; 3×5+1=42;4×6+1=52;……请 你将发现的规律用仅含字母n(n为 正整数)的等式表示出来:
(2) 5x(x2+2x +1) - 3(2x + 3)(x - 5)
(3) (2m2 – 1)(m – 4) -2 ( m2 + 3)(2m – 5)
2)-(1-x2)2 (4)(1-x)(1+x)(1+x
2013-8-27
2+9)2-(x+3)2(x-3)2 (5)(x
计算题:
试题:T19(1)、(2)、(3) T20、 T21、 T25
2013-8-27
1、若10x=5,10y=4,求102x+3y+1 的值. 2、计算:0.251000×(-2)2001
3.(9)
1004
注意点: (1)指数:相加
1 670 ( ) 27
转化 转化
底数相乘 幂的乘方 同底数幂
(2)指数:乘法
转化 (3)底数:不同底数幂
2013-8-27
(1)
2013-8-27
2
=(-1) -(2xy) =1-4x y
2
2
2 2
a+b -ab + 3ab = (a+b) 2 2 2 (2) a + b -ab + -ab) = (a-b) ( 2 2 (3) (a+b) - (a-b) = 4ab 二 2 2 2 2 (4) (a+b) +(a-b) = 2a +2b 2 2 2 2 (5) a + b = (a+b) + -2ab) (a-b) + 2ab ( =
作业分析:
幂的运算:
试题:T1、T2、T3
T11、T12、T16、T17
T24
2013-8-27
整式的乘法:
试题:T4、T22、T26
2013-8-27
乘法公式:
试题:T5、T6、T7、 T8、T9、T10 T13、T14、T15、
T18、T23
2013-8-27
计算:
(1) (-2a 2 +3a + 1) •(- 2a)3
想一想 下列计算是否正确?如不正确,应
如何改正?
(-x+6)(-x-6) = -x - 6 2 2 2 = (-x) - 6 =x - 36 2 (2) (-x-1)(x+1) = -x- 1 2 = -(x+1)(x+1) = -(x+1) 2 2 =- ( x + 2x + 1) = -x - 2x -1 2 (3) (-2xy-1)(2xy-1) =1-2xy
n(n+2) +1=(n+1)2
2013-8-27
2+mx+n)(x-3)的乘积中 5、若(x
不含x2和x的项,求m、n的值
2013-8-27
(3)如果
a+ a =3,则a + a2 =( A)
2
1
1
(A) 7 (B) 9 (C) 10
(D) 11
解: 因为
所以
所以
a+ a =3
(a+ a ) =9
2013-8-27
2
2013-8-27
小
结
a ·a = a ( am )n = amn 幂的乘方 n 积的乘方 ( ab ) = an b n 2 2 平方差公式 (a+b)(a-b) = a - b 2 2 2 完全平方公式 (a+b) = a + 2ab +b
同底数幂的乘法
m+n
m
n
二次三项型乘法公式
(x+a)(x+b)= x +(a+b)x+ab
2
3
2
5
(2)
(a ) + ( a ) = 2a
6 2
4 3
12
(4)
x
2002
=
x
1999
x ·
3
1 1997 1998 (5) ( ) 7 · = 7
(-ab) = -a b c )·
2
3 3 2 3 2 3
(7) (
2013-8-27
abc ) ·-ac) = - a b c (
找一找 -7 (A) ( 4
1 2
1
a + 2 + a2 =9 a + a2 =7
2
2
1
故
2013-8-27
1
(4) 若2
a -2ab +b -2a+1=0, 则a b
、
2
2
分别为(
(A)1,-1(B)1,1(C)-1,1 (D)0,0
B)
2
解:因为 2a -2ab +b -2a+1=0
2
所以
a-2ab + b + a -2a+1=0 2 2 (a -b) +(a-1) =0 2 2 (a -b) =0 且 (a-1) =0 所以 a=1,b=1
2
2 2 2
= a -4b +12b-9
2013-8-27
2
2
动手做
(1) 已知x=a+2b,y=a-2b,