山东省17市2013年中考数学试题分类解析汇编_专题03_方程(组)和不等式(组)
山东省17市2013年中考数学试题分类解析汇编 专题09 三角形
某某17市2013年中考数学试题分类解析汇编专题09 三角形一、选择题1.(2013年某某东营3分)如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x,那么x的值【】A. 只有1个B. 可以有2个C. 可以有3个D. 有无数个2. (2013年某某莱芜3分)如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y 关于x的函数图象大致为【】【答案】B。
【考点】动点问题的函数图象, 等边三角形的性质。
【分析】分析y随x的变化而变化的趋势,应用排它法求解,而不一定要通过求解析式来解决:3. (2013年某某聊城3分)河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:3,则AB的长为【】A.12米B.43米 C.53米 D.63米4. (2013年某某聊城3分)如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为【】A.a B.1a2C.1a3D.2a3【答案】C。
【考点】相似三角形的判定和性质。
【分析】∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA。
5. (2013年某某某某3分)如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是【】A.AB=AD B.AC平分∠BCD C.AB=BD D,△BEC≌△DEC6. (2013年某某某某3分)如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′,A′、B′均在图中格点上,若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为【】A、mn2⎛⎫⎪⎝⎭, B、(m,n) C、nm2⎛⎫⎪⎝⎭, D、m n22⎛⎫⎪⎝⎭,7. (2013年某某日照3分)四个命题:①三角形的一条中线能将三角形分成面积相等的两部分;②有两边和其中一边的对角对应相等的两个三角形全等;③点P(1,2)关于原点的对称点坐标为(-1,-2);④两圆的半径分别是3和4,圆心距为d,若两圆有公共点,则1<d<7其中正确的是【】A. ①②B.①③C.②③D.③④8. (2013年某某威海3分)如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是【】A. ∠C=2∠AB. BD平分∠ABCC. S△BCD=S△BODD. 点D为线段AC 的黄金分割点∴BD是∠ABC的角平分线,正确,故本选项错误。
山东各市2013年中考数学试题分类解析汇编
山东各市2012年中考数学试题分类解析汇编专题12:押轴题一、选择题1. (2012山东滨州3分)求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S ﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52012的值为【 】A .52012﹣1B .52013﹣1 C .2013514- D .2012514-2. (2012山东德州3分)如图,两个反比例函数1y=x 和2y=x-的图象分别是l 1和l 2.设点P 在l 1上,PC ⊥x 轴,垂足为C ,交l 2于点A ,PD ⊥y 轴,垂足为D ,交l 2于点B ,则三角形PAB 的面积为【 】 A .3 B .4 C .92D .5 3. (2012山东东营3分)如图,一次函数y=x+3的图象与x 轴,y 轴交于A ,B 两点,与反比例函数4y=x的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE .有下列四个结论:①△CEF 与△DEF 的面积相等;②△AOB ∽△FOE ;③△DCE ≌△CDF ;④AC=BD .其中正确的结论是【 】A .①②B . ①②③C .①②③④D . ②③④6. (2012山东济宁3分)如图,将矩形ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH ,EH=12厘米,EF=16厘米,则边AD 的长是【 】 A .12厘米 B .16厘米 C .20厘米 D .28厘米7. (2012山东莱芜3分)如图,在梯形ABCD 中,AD ∥BC ,∠BCD =90º,BC =2AD ,F 、E 分别是BA 、 BC 的中点,则下列结论不正确...的是【 】 A .△ABC 是等腰三角形 B .四边形EFAM 是菱形C .S △BEF =12S △ACD D .DE 平分∠CDF8. (2012山东聊城3分)如图,在直角坐标系中,以原点O 为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x 和y=﹣x 分别交于A 1,A 2,A 3,A 4…,则点A 30的坐标是【 】A .(30,30)B .(﹣,)C .(﹣,)D .(,﹣) 10. (2012山东青岛3分)点A(x 1,y 1)、B(x 2,y 2)、C(x 3,y 3)都在反比例函数3y=x-的图象上,且 x 1<x 2<0<x 3,则y 1、y 2、y 3的大小关系是【 】A .y 3<y 1<y 2B .y 1<y 2<y 3C .y 3<y 2<y 1D .y 2<y 1<y 311. (2012山东日照4分)如图,在斜边长为1的等腰直角三角形OAB 中,作内接正方形A 1B 1C 1D 1;在等腰直角三角形OA 1B 1中,作内接正方形A 2B 2C 2D 2;在等腰直角三角形OA 2B 2中,作内接正方形A 3B 3C 3D 3;……;依次作下去,则第n 个正方形A n B n C n D n 的边长是【 】(A )n 113- (B )n13(C )n 113+ (D )n 213+13. (2012山东威海3分)向一个图案如下图所示的正六边形靶子上随意抛一枚飞镖,则飞镖插在阴影区域的概率为【 】1- B. 16 C. 1- D. 1514. (2012山东潍坊3分)下图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,l3,14,l5,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为【 】.A .32B .126C .135D .14415. (2012山东烟台3分)如图,矩形ABCD中,P为CD中点,点Q为AB上的动点(不与A,B重合).过Q作QM⊥PA于M,QN⊥PB于N.设AQ的长度为x,QM与QN的长度和为y.则能表示y与x之间的函数关系的图象大致是【】A.B.C.D.16. (2012山东枣庄3分)如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为【】A、14B、16C、20D、28填空题2. (2012山东德州4分)如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2012的坐标为▲ .3. (2012山东东营4分) 在平面直角坐标系xOy 中,点A 1,A 2,A 3,···和B 1,B 2,B 3,···分别在直线y=kx+b和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形,如果A 1(1,1),A 27322⎛⎫ ⎪⎝⎭,,那么点n A 的纵坐标是 .4. (山东菏泽4分)一个自然数的立方,可以分裂成若干个连续奇数的和.例如:32,33和34分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即3235=+;337911=++;3413151719=+++;……;若36也按照此规律来进行“分裂”,则36“分裂”出的奇数中,最大的奇数是 ▲ .7. (2012山东莱芜4分)将正方形ABCD 的各边按如图所示延长,从射线AB开始,分别在各射线上标记点A 1、A 2、A 3、…,按此规律,点A 2012在射线 ▲ 上.8. (2012山东聊城3分)如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,点P (3a ,a )是反比例函数ky x=(k >0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为 ▲ .9. (2012山东临沂3分)读一读:式子“1+2+3+4+···+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为1001n n =∑,这里“∑”是求和符号通过对以上材料的阅读,计算()2012111n n n =+∑= ▲ .10. (2012山东青岛3分)如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为 cm .12. (2012山东泰安3分)如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为 ▲ .13. (2012山东威海3分)如图,在平面直角坐标系中,线段OA 1=1,OA 1与x 轴的夹角为300。
山东省17市2013年中考数学试题分类解析汇编 专题07 统计与概率
山东17市2013年中考数学试题分类解析汇编专题07 统计与概率一、选择题1. (2013年山东滨州3分)若从长度分别为3、5、6、9的四条线段中任取三条,则能组成三角形的概率为【】A.12B.34C.13D.142. (2013年山东东营3分)2013年“五·一”期间,小明与小亮两家准备从东营港、黄河入海口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家抽到同一景点的概率是【】A. 13B.16C.19D.14湖、龙悦湖),其中抽到同一景点的有三种,∴两家抽到同一景点的概率是3193。
故选A。
3. (2013年山东菏泽3分)在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是【】A.1.70,1.65 B.1.70,1.70 C.1.65,1.70 D.3,44. (2013年山东济南、德州3分)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于54n2,则算过关;否则不算过关,则能过第二关的概率是【】A.1318B.518C.14D.19【答案】A。
【考点】列表法或树状图法,概率。
【分析】∵在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,n次抛掷所出现的点数之和大于54n2,则算过关,∴能过第二关的抛掷所出现的点数之和需要大于5。
,列表得:6 7 8 9 10 11 12 5 6 7 8 9 10 11 4 5 6 7 8 9 10 3 4 5 6 7 8 9 2 3 4 5 6 7 8 1 2 3 4 5 6 71 2 3 4 5 65. (2013年山东济宁3分)下列说法正确的是【 】 A .中位数就是一组数据中最中间的一个数 B .8,9,9,10,10,11这组数据的众数是9C .如果x 1,x 2,x 3,…,x n 的平均数是x ,那么()()()12n x x x x x x 0-+-+⋅⋅⋅+-= D .一组数据的方差是这组数据的极差的平方6. (2013年山东莱芜3分)一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是【 】A .10,10B .10,12.5C .11,12.5D .11,107. (2013年山东聊城3分)下列事件:①在足球赛中,弱队战胜强队.②抛掷1枚硬币,硬币落地时正面朝上.③任取两个正整数,其和大于1④长为3cm,5cm,9cm的三条线段能围成一个三角形.其中确定事件有【】A.1个B.2个 C.3个 D.4个8. (2013年山东聊城3分)某校七年级共320名学生参加数学测试,随机抽取50名学生的成绩进行统计,其中15名学生成绩达到优秀,估计该校七年级学生在这次数学测试中达到优秀的人数大约有【】A.50人B.64人 C.90人 D.96人【答案】D。
中考数学试题分类分析汇编专题3:方程(组)和不定式(组)
中考数学试题分类分析汇编(12专题) 专题3:方程(组)和不定式(组)一.选择题1. (2001年福建福州4分)随着计算机技术的迅猛发展,电脑价格不断降低。
某品牌电脑按原售价降低m 元后,又降价20%,现售价为n 元,那么该电脑的原售价为【 】 A. 4(n m )5+元B. 5(n m )4+元 C. (5m n)+元D. (5n m)+元【答案】B 。
【考点】一元一次方程的应用。
【分析】设电脑的原售价为x 元,则()()x m 120%n --=,∴x=5n m 4+。
故选B 。
2. (2003年福建福州4分)不等式组2x 4x 30≥⎧⎨+>⎩的解集是【 】(A ) x>-3 (B )x≥2 (C )-3<x≤2 (D ) x<-3 【答案】B 。
【考点】解一元一次不等式组。
【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。
因此,2x 4x 2x 2x 30x 2≥≥⎧⎧⇒⇒≥⎨⎨+>>-⎩⎩。
故选B 。
3.(2003年福建福州4分)已知α、β满足α+β=5,且αβ=6,则以α、β为两根的一元二次方程是【 】(A )2x 5x 60++= (B )2x 5x 60-+= (C )2x 5x 60--= (D )2x 5x 60+-=【答案】B 。
【考点】一元二次方程根与系数的关系。
【分析】∵所求一元二次方程的两根是α、β,且α、β满足α+β=5、αβ=6,∴这个方程的系数应满足两根之和是b 5a-=,两根之积是c 6a =。
当二次项系数a=1时,一次项系数b=-5,常数项c=6。
故选B 。
4. (2005年福建福州大纲卷3分)如图,射线OC 的端点O 在直线AB 上,∠AOC 的度数比∠BOC 的2倍多10度.设∠AOC 和∠BOC 的度数分别为x ,y ,则下列正确的方程组为【 】A 、x+y=180x=y+10⎧⎨⎩错误!未找到引用源。
浙江省各市2013年中考数学分类解析 专题3 方程(组)和不等式(组)
浙江省各市2013年中考数学分类解析 专题3 方程(组)和不等式(组)一、选择题1. (2013年浙江金华、丽水3分)若关于x 的不等式组的解在数轴上如图所示,则这个不等式组的解是【 】A .x 2≤B .x 1>C .1x 2<≤D .1x 2<≤2. (2013年浙江金华、丽水3分)一元二次方程()2x 616+=可转化为两个一元一次方程,其中一个一元一次方程是x 64+=,则另一个一元一次方程是【 】 A .x 64-=- B .x 64-= C .x 64+= D .x 64+=-二、填空题1. (2013年浙江舟山4分)杭州到北京的铁路长1487千米.火车的原平均速度为x 千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为 ▲ .2. (2013年浙江金华、丽水4分)分式方程120x-=的解为▲ 。
3. (2013年浙江衢州4分)不等式组x203x1>x-≥⎧⎨+⎩的解集是▲.4. (2013年浙江绍兴5分)分式方程2x3x1=-的解是▲ .5. (2013年浙江绍兴5分)我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是:鸡有▲ 只,兔有▲ 只.6. (2013年浙江嘉兴4分)杭州到北京的铁路长1487千米.火车的原平均速度为x 千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为 ▲ .7. (2013年浙江温州5分)方程2x 2x 10--=的根是 ▲.三、解答题1. (2013年浙江杭州8分)当x 满足条件()()x 1<3x 311x 4<x 423+-⎧⎪⎨--⎪⎩时,求出方程2x 2x 40--= 的根.2. (2013年浙江杭州12分)(1)先求解下列两题:①如图①,点B ,D 在射线AM 上,点C ,E 在射线AN 上,且AB =BC =CD =DE ,已知∠EDM =84°,求∠A 的度数;②如图②,在直角坐标系中,点A 在y 轴正半轴上,AC ∥x 轴,点B ,C 的横坐标都是3,且BC =2,点D 在AC 上,且横坐标为1,若反比例函数()ky x>0x=的图象经过点B ,D ,求k 的值.(2)解题后,你发现以上两小题有什么共同点?请简单地写出.3. (2013年浙江舟山10分)某镇水库的可用水量为12000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只能够维持居民15年的用水量.(1)问:年降水量为多少万m3?每人年平均用水量多少m3?(2)政府号召节约用水,希望将水库的使用年限提高到25年.则该镇居民人均每年需节约多少m3水才能实现目标?(3)某企业投入1000万元设备,每天能淡化5000m3海水,淡化率为70%.每淡化1m3海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/m3的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本(结果精确到个位)?4. (2013年浙江金华、丽水8分)如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m。
人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理
第二单元《方程(组)与不等式(组)》中考知识点梳理第5讲一次方程(组)第6讲一元二次方程第7讲分式方程三、知识清单梳理第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.。
山东省17市2011年中考数学试题分类解析汇编 专题3 方程(组)和不等式(组)
山东17市2011年中考数学试题分类解析汇编专题3:方程(组)和不等式(组)一、选择题1. (日照3分)某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有A、54盏B、55盏C、56盏D、57盏【答案】 B。
【考点】一元一次方程的应用(优选方案问题)。
【分析】设需更换的新型节能灯有x盏,根据等量关系:两种安装路灯方式的道路总长相等,列出方程求解:70(x+1)=36×(106+1),解得x≈55,则需更换的新型节能灯有55盏。
注意根据实际问题采取进1的近似数。
故选B。
2. (日照3分)若不等式2x<4的解都能使关于x的一次不等式(a-1)x<a+5成立,则a的取值范围是A、1<a≤7B、a≤7C、a<1或a≥7D、a=7【答案】 A。
【考点】解一元一次不等式组,不等式的性质。
【分析】先求出不等式2x<4的解,求出不等式(a-1)x<a+5中的x的范围,即x<2。
由(a-1)x<a+5得:当a﹣1>0时,51ax<a+-,∴521aa+≥-,即17<a≤。
故选A。
3.(滨州3分)某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x,则下面所列方程正确的是A、289(1-x)2=256B、256(1-x)2=289C、289(1-2x)2=256D、256(1-2x)2=289【答案】A。
【考点】列一元二次方程(增长率问题)。
【分析】增长率问题的等量关系为:增长后的量=增长前的量×(1+增长率),本题是负增长,与正增长同样考虑。
根据已知条件,第一次降价后售价为289(1-x),第二次降价后售价为289(1-x)(1-x)=289(1-x)2。
故选A。
4.(烟台4分)不等式4-3x≥2x-6的非负整数解有A.1 个B. 2 个C. 3个D. 4个【答案】C【考点】解一元一次不等式,非负整数概念。
山东省各市2013年中考数学试题分类汇编(解析版)[1] 3-推荐下载
C.3
D.4
解答:解:由图可知,第 1、2 两个图形的对称轴为 y 轴,所以 x=﹣ =0,
解得 b=0, 与 b<0 相矛盾; 第 3 个图,抛物线开口向上,a>0,
经过坐标原点,a2﹣1=0,
解得 a1=1,a2=﹣1(舍去),
对称轴 x=﹣ =﹣ >0, 所以 b<0,符合题意, 故 a=1, 第 4 个图,抛物线开口向下,a<0, 经过坐标原点,a2﹣1=0,
考点:二次函数的性质;一次函数的性质;反比例函数的性质. 分析:根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断. 解答:解:A、y=﹣x+1,一次函数,k<0,故 y 随着 x 增大而减小,错误;
B、y=x2﹣1(x>0),故当图象在对称轴右侧,y 随着 x 的增大而增大;而在对称轴左侧 (x<0),y 随着 x 的增大而减小,正确. C、y=,k=1>0,在每个象限里,y 随 x 的增大而减小,错误; D、y=﹣x2+1(x>0),故当图象在对称轴右侧,y 随着 x 的增大而减小;而在对称轴左侧 (x<0),y 随着 x 的增大而增大,错误; 故选 B. 点评:本题综合考查二次函数、一次函数、反比例函数的增减性(单调性),是一道难度中等的题 目.
①2a+b=0;②4a﹣2b+c<0;③ac>0;④当 y<0 时,x<﹣1 或 x>2. 其中正确的个数是( )
A 1 .
B2 .
考点:二次函数图象与系数的关系. 分析:
根据对称轴为 x=1 可判断出 2a+b=0 正确,当 x=﹣2 时,4a﹣2b+c<0,根据开口方向,以及与
y 轴交点可得 ac<0,再求出 A 点坐标,可得当 y<0 时,x<﹣1 或 x>3. 解答:解:∵对称轴为 x=1,
中考数学专题03方程(组)和不等式(组)(第01期)-2017年中考数学试题分项版解析汇编(原卷版)
专题3 方程(组)和不等式(组)一、选择题目1. (2017浙江衢州第6题)二元一次方程组的解是A. B. C. D. 2.(2017山东德州第8题)不等式组的解集为( )学科网A .x≥3B .-3≤x<4 C.-3≤x<2 D.x> 43.(2017山东德州第10题)某美术社团为练习素描,他们第一次用120元买了买了若干本资料,第二次用240元在同一家商店买同一样的资料,这次商家每本优惠4元,结果比上次多买了20本。
求第一次买了多少本资料?若设第一次买了x 本资料,列方程正确的是( )A. B.C. D.4.(2017重庆A 卷第12题)若数a 使关于x 的分式方程2411y ax x ++=--的解为正数,且使关于y的不等式组12()y 2320y a y⎧+->-≤⎪⎨⎪⎩的解集为y <﹣2,则符合条件的所有整数a 的和为( )A .10B .12C .14D .165.(2017甘肃庆阳第9题)如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是⎩⎨⎧-=-=+236y x y x ⎩⎨⎧==15y x ⎩⎨⎧==24y x ⎩⎨⎧-=-=15y x ⎩⎨⎧-=-=24y x 31+2-132+9x xx ⎧≥>⎪⎨⎪⎩240120-=4-20x x 240120-=4+20x x 120240-=4-20xx 120240-=4+20x x( )A .(32-2x )(20-x )=570B .32x+2×20x=32×20-570C .(32-x )(20-x )=32×20-570D .32x+2×20x -2x 2=5706.(2017贵州安顺第8题)若关于x 的方程x 2+mx+1=0有两个不相等的实数根,则m 的值可以是( ) A .0B .﹣1C .2D .﹣37.(2017湖南怀化第7题)若12,x x 是一元二次方程2230x x 的两个根,则12x x 的值是( )A.2B.2C.4D.38. (2017江苏无锡第7题)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是( ) A .20% B .25% C .50% D .62.5%9.(2017甘肃兰州第6题)如果一元二次方程2230x x m 有两个相等的实数根,那么是实数m 的取值为( ) A.98mB.89mC.98mD.89m10. (2017甘肃兰州第10题)王叔叔从市场上买一块长80cm ,宽70cm 的矩形铁皮,准备制作一个工具箱,如图,他将矩形铁皮的四个角各剪掉一个边长cm x 的正方形后,剩余的部分刚好能围成一个底面积为23000cm 的无盖长方形工具箱,根据题意列方程为( )A.80703000x xB.2807043000xC.8027023000x xD.28070470803000x x11.(2017贵州黔东南州第6题)已知一元二次方程x 2﹣2x ﹣1=0的两根分别为x 1,x 2,则1211x x +的值为( ) A .2B .﹣1C .-12D .﹣2 12.(2017贵州黔东南州第7题)分式方程331x (1)1x x =-++的根为( )A .﹣1或3B .﹣1C .3D .1或﹣313.(2017山东烟台第10题)若是方程的两个根,且,则的值为( )A .或2B .1或 C. D .114.(2017四川宜宾第4题)一元二次方程4x 2﹣2x+=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断15.(2017四川自贡第4题)不等式组23-42+1x x >≤⎧⎨⎩的解集表示在数轴上正确的是( )16.(2017新疆建设兵团第7题)已知关于x 的方程x 2+x ﹣a=0的一个根为2,则另一个根是( ) A .﹣3 B .﹣2 C .3D .617. (2017新疆建设兵团第8题)某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,下面列出的方程正确的是( )A .60048040x x =- B .600480+40x x =C .600480+40xx =D .600480-40xx =18. (2017浙江嘉兴第6题)若二元一次方程组3,354x y x y +=⎧⎨-=⎩的解为,,x a y b =⎧⎨=⎩则a b -=( )21,x x 01222=--+-m m mx x 21211x x x x -=+m 1-2-2-14A .1B .3C .14-D .7419.(2017浙江嘉兴第8题)用配方法解方程2210x x +-=时,配方结果正确的是( )A .2(2)2x += B .2(1)2x += C .2(2)3x += D .2(1)3x += 二、填空题目1.(2017山东德州第15题)方程3x(x-1)=2(x-1)的根是2.(2017浙江宁波第14题)分式方程21332x x的解是 .3.(2017甘肃庆阳第15题)若关于x 的一元二次方程(k-1)x 2+4x+1=0有实数根,则k 的取值范围是 4.(2017江苏盐城第13题)若方程x 2-4x+1=0的两根是x 1,x 2,则x 1(1+x 2)+x 2的值为 5.(2017山东烟台第15题)运行程序如图所示,从“输入实数”到“结果是否”为一次程序操作,若输入后程序操作仅进行了一次就停止,则的取值范围是 .6.(2017四川泸州第15题)若关于x 的分式方程x 2322m mx x ++=--的解为正实数,则实数m 的取值范围是 .7.(2017四川宜宾第13题)若关于x 、y 的二元一次方程组的解满足x+y >0,则m 的取值范围是 .8.(2017四川宜宾第14题)经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是 .9.(2017四川自贡第15题)我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题: “一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x ,y 人,则可以列方程组 .10. (2017新疆建设兵团第13题)一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是元.x 18<x x 2m 133x y x y ⎧-=+⎨+=⎩三、解答题1.(2017浙江衢州第18题)解下列一元一次不等式组:2.(2017浙江衢州第20题)根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,2016年国民生产总值中第一产业、第二产业、第三产业所占比例如图2所示。
山东省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类③
山东省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类③一.一元二次方程的应用(共1小题)1.(2023•东营)如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.二.解一元一次不等式组(共1小题)2.(2023•菏泽)解不等式组.三.反比例函数与一次函数的交点问题(共1小题)3.(2023•菏泽)如图,已知坐标轴上两点A(0,4),B(2,0),连接AB,过点B作BC⊥AB,交反比例函数y=在第一象限的图象于点C(a,1).(1)求反比例函数y=和直线OC的表达式;(2)将直线OC向上平移个单位,得到直线l,求直线l与反比例函数图象的交点坐标.四.二次函数综合题(共1小题)4.(2023•菏泽)已知抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C(0,4),其对称轴为x=﹣.(1)求抛物线的表达式;(2)如图1,点D是线段OC上的一动点,连接AD,BD,将△ABD沿直线AD翻折,得到△AB′D,当点B'恰好落在抛物线的对称轴上时,求点D的坐标;(3)如图2,动点P在直线AC上方的抛物线上,过点P作直线AC的垂线,分别交直线AC,线段BC于点E,F,过点F作FG⊥x轴,垂足为G,求FG+FP的最大值.五.平行四边形的性质(共1小题)5.(2023•菏泽)如图,在▱ABCD中,AE平分∠BAD,交BC于点E,CF平分∠BCD,交AD于点F.求证:AE=CF.六.切线的判定与性质(共1小题)6.(2023•东营)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,DE⊥AC,垂足为E.(1)求证:DE是⊙O的切线;(2)若∠C=30°,CD=2,求的长.七.圆的综合题(共1小题)7.(2023•菏泽)如图,AB为⊙O的直径,C是圆上一点,D是的中点,弦DE⊥AB,垂足为点F.(1)求证:BC=DE;(2)P是上一点,AC=6,BF=2,求tan∠BPC;(3)在(2)的条件下,当CP是∠ACB的平分线时,求CP的长.八.作图—基本作图(共1小题)8.(2023•济宁)如图,BD是矩形ABCD的对角线.(1)作线段BD的垂直平分线(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)设BD的垂直平分线交AD于点E,交BC于点F,连接BE,DF.①判断四边形BEDF的形状,并说明理由;②若AB=5,BC=10,求四边形BEDF的周长.九.解直角三角形的应用-仰角俯角问题(共1小题)9.(2023•菏泽)无人机在实际生活中的应用越来越广泛.如图所示,某人利用无人机测量大楼的高度BC,无人机在空中点P处,测得点P距地面上A点80米,点A处的俯角为60°,楼顶C点处的俯角为30°,已知点A与大楼的距离AB为70米(点A,B,C,P在同一平面内),求大楼的高度BC(结果保留根号).一十.频数(率)分布直方图(共1小题)10.(2023•菏泽)某班学生以跨学科主题学习为载体,综合运用体育、数学、生物学等知识,研究体育课的运动负荷.在体育课基本部分运动后,测量统计了部分学生的心率情况,按心率次数x(次/分钟),分为如下五组:A组:50≤x<75,B组:75≤x<100,C组100≤x<125,D组:125≤x<150,E组:150≤x<175.其中A组数据为:73,65,74,68,74,70,66,56.根据统计数据绘制了不完整的统计图(如图所示),请结合统计图解答下列问题:(1)A组数据的中位数是 ,众数是 ;在统计图中B组所对应的扇形圆心角是 度;(2)补全学生心率频数分布直方图;(3)一般运动的适宜心率为100≤x<150(次/分钟),学校共有2300名学生,请你依据此次跨学科研究结果,估计大约有多少名学生达到适宜心率?一十一.列表法与树状图法(共2小题)11.(2023•东营)随着新课程标准的颁布,为落实立德树人根本任务,东营市各学校组织了丰富多彩的研学活动,得到家长、社会的一致好评.某中学为进一步提高研学质量,着力培养学生的核心素养,选取了A.“青少年科技馆”,B.“黄河入海口湿地公园”,C.“孙子文化园”,D.“白鹭湖营地”四个研学基地进行研学.为了解学生对以上研学基地的喜欢情况,随机抽取部分学生进行调查统计(每名学生只能选择一个研学基地),并将调查结果绘制成了两幅不完整的统计图(如图所示).请根据统计图中的信息解答下列问题:(1)在本次调查中,一共抽取了 名学生,在扇形统计图中A所对应圆心角的度数为 ;(2)将上面的条形统计图补充完整;(3)若该校共有480名学生,请你估计选择研学基地C的学生人数;(4)学校想从选择研学基地D的学生中选取两名学生了解他们对研学活动的看法,已知选择研学基地D的学生中恰有两名女生,请用列表法或画树状图的方法求出所选2人都是男生的概率.12.(2023•济宁)某学校为扎实推进劳动教育,把学生参与劳动教育情况纳人积分考核.学校抽取了部分学生的劳动积分(积分用x表示)进行调查,整理得到如下不完整的统计表和扇形统计图.等级劳动积分人数A x≥904B80≤x<90mC70≤x<8020D60≤x<708E x<603请根据图表信息,解答下列问题:(1)统计表中m= ,C等级对应扇形的圆心角的度数为 ;(2)学校规定劳动积分大于等于80的学生为“劳动之星”.若该学校共有学生2000人,请估计该学校“劳动之星”大约有多少人;(3)A等级中有两名男同学和两名女同学,学校从A等级中随机选取2人进行经验分享,请用列表法或画树状图法,求恰好抽取一名男同学和一名女同学的概率.山东省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类③参考答案与试题解析一.一元二次方程的应用(共1小题)1.(2023•东营)如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.【答案】(1)当羊圈的长为40m,宽为16m或长为32m,宽为20m时,能围成一个面积为640m2的羊圈;(2)不能,理由见解答.【解答】解:(1)设矩形ABCD的边AB=xm,则边BC=70﹣2x+2=(72﹣2x)m.根据题意,得x(72﹣2x)=640,化简,得x2﹣36x+320=0,解得x1=16,x2=20,当x=16时,72﹣2x=72﹣32=40;当x=20时,72﹣2x=72﹣40=32.答:当羊圈的长为40m,宽为16m或长为32m,宽为20m时,能围成一个面积为640m2的羊圈;(2)答:不能,理由:由题意,得x(72﹣2x)=650,化简,得x2﹣36x+325=0,Δ=(﹣36)2﹣4×325=﹣4<0,∴一元二次方程没有实数根.∴羊圈的面积不能达到650m2.二.解一元一次不等式组(共1小题)2.(2023•菏泽)解不等式组.【答案】x≤.【解答】解:,解不等式①,得:x<2.5,解不等式②,得:x≤,∴该不等式组的解集是x≤.三.反比例函数与一次函数的交点问题(共1小题)3.(2023•菏泽)如图,已知坐标轴上两点A(0,4),B(2,0),连接AB,过点B作BC⊥AB,交反比例函数y=在第一象限的图象于点C(a,1).(1)求反比例函数y=和直线OC的表达式;(2)将直线OC向上平移个单位,得到直线l,求直线l与反比例函数图象的交点坐标.【答案】(1);;(2)或(2,2).【解答】解:(1)如图,过点C作CD⊥x轴于点D,∴∠BDC=90°,∵∠AOB=90°,∴∠BDC=∠AOB,∵BC⊥AB,∴∠ABC=90°,∴∠ABO+∠CBD=90°,∵∠AOB=90°,∴∠ABO+∠BAO=90°,∴∠CBD=∠BAO,∴△CBD∽△BAO,∴,∵A(0,4),B(2,0),C(a,1),∴AO=4,BO=2,CD=1,∴,∴BD=2,∴OD=BO+BD=4,∴a=4,∴点C的坐标是(4,1),∵反比例函数过点C,∴k=4×1=4,∴反比例函数的解析式为;设直线OC的解析式为y=mx,∵其图象经过点C(4,1),∴4m=1,解得,∴直线OC的解析式为;(2)将直线OC向上平移个单位,得到直线l,∴直线l的解析式为,由题意得,,解得,,∴直线l与反比例函数图象的交点坐标为或(2,2).四.二次函数综合题(共1小题)4.(2023•菏泽)已知抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C(0,4),其对称轴为x=﹣.(1)求抛物线的表达式;(2)如图1,点D是线段OC上的一动点,连接AD,BD,将△ABD沿直线AD翻折,得到△AB′D,当点B'恰好落在抛物线的对称轴上时,求点D的坐标;(3)如图2,动点P在直线AC上方的抛物线上,过点P作直线AC的垂线,分别交直线AC,线段BC于点E,F,过点F作FG⊥x轴,垂足为G,求FG+FP的最大值.【答案】(1)y=﹣x2﹣3x+4;(2)D(0,);(3).【解答】解:(1)抛物线与y轴交于点C(0,4),∴c=4,∵对称轴为,∴,b=﹣3,∴抛物线的解析式为y=﹣x2﹣3x+4;(2)如图,过B'作x轴的垂线,垂足为H,令﹣x2﹣3x+4=0,解得:x1=1,x2=﹣4,∴A(﹣4,0),B(1,0),∴AB=1﹣(﹣4)=5,由翻折可得AB′=AB=5,∵对称轴为x=﹣,∴AH=﹣﹣(﹣4)=,∴AB'=AB=5=2AH,∴∠AB'H=30°,∠B'AB=60°,∴∠DAB=∠B'AB=30°,在Rt△AOD中,,∴D(0,);(3)如图2,PF交x轴于Q,设BC所在直线的解析式为y1=k1x+b1,把B、C坐标代入得:,解得:,∴y1=﹣4x+4,∵OA=OC,∴∠CAO=45°,∵∠AEF=90°,∴直线PE与x轴所成夹角为45°,即∠PQO=45°,设P(m,﹣m2﹣3m+4),设PE所在直线的解析式为:y2=﹣x+b2,把点P代入得b2=﹣m2﹣2m+4,∴y2=﹣x﹣m2﹣2m+4,令y1=y2,则﹣4x+4=﹣x﹣m2﹣2m+4,解得:x=,∴FG=y F=+4,PF==••(x F﹣x P)=,∴FG+FP=+4+=+,∵点P在直线AC上方,∴﹣4<m<0,∴当m=时,FG+FP的最大值为.五.平行四边形的性质(共1小题)5.(2023•菏泽)如图,在▱ABCD中,AE平分∠BAD,交BC于点E,CF平分∠BCD,交AD于点F.求证:AE=CF.【答案】证明见解析.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,∠BAD=∠BCD,∵AE平分∠BAD,交BC于点E,CF平分∠BCD,交AD于点F,∴∠BAE=∠FCD,在△ABE与△CDF中,,∴△ABE≌△CDF(ASA),∴AE=CF.六.切线的判定与性质(共1小题)6.(2023•东营)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,DE⊥AC,垂足为E.(1)求证:DE是⊙O的切线;(2)若∠C=30°,CD=2,求的长.【答案】(1)证明见解答;(2)的长是.【解答】(1)证明:连接OD,则OD=OB,∴∠ODB=∠B,∵AB=AC,∴∠C=∠B,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC于点E,∴∠ODE=∠CED=90°,∵OD是⊙O的半径,DE⊥OD,∴DE是⊙O的切线.(2)解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,CD=2,∴BD=CD=2,∵∠B=∠C=30°,∴AD=BD•tan30°=2×=2,∵OD=OA,∠AOD=2∠B=60°,∴△AOD是等边三角形,∴OD=AD=2,∵∠BOD=180°﹣∠AOD=120°,∴==,∴的长是.七.圆的综合题(共1小题)7.(2023•菏泽)如图,AB为⊙O的直径,C是圆上一点,D是的中点,弦DE⊥AB,垂足为点F.(1)求证:BC=DE;(2)P是上一点,AC=6,BF=2,求tan∠BPC;(3)在(2)的条件下,当CP是∠ACB的平分线时,求CP的长.【答案】(1)见解答;(2)tan∠BPC=;(3)7.【解答】(1)证明:∵D是的中点,∴,∵DE⊥AB且AB为⊙O的直径,∴,∴,∴BC=DE;(2)解:连接OD,∵,∴∠CAB=∠DOB,∵AB为⊙O的直径,∴∠ACB=90°,∵DE⊥AB,∴∠DFO=90°,∴△ACB∽△OFD,∴,设⊙O的半径为r,则,解得r=5,经检验,r=5是方程的根,∴AB=2r=10,∴,∴,∵∠BPC=∠CAB,∴;(3)解:如图,过点B作BG⊥CP交CP于点G,∴∠BGC=∠BGP=90°,∵∠ACB=90°,CP是∠ACB的平分线,∴∠ACP=∠BCP=45°,∴∠CBG=45°,∴,∴,∴,∴.八.作图—基本作图(共1小题)8.(2023•济宁)如图,BD是矩形ABCD的对角线.(1)作线段BD的垂直平分线(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)设BD的垂直平分线交AD于点E,交BC于点F,连接BE,DF.①判断四边形BEDF的形状,并说明理由;②若AB=5,BC=10,求四边形BEDF的周长.【答案】(1)见解答;(2)①四边形BEDF是菱形,理由见解答;②25.【解答】解:(1)如图,直线MN就是线段BD的垂直平分线,(2)①四边形BEDF是菱形,理由如下:∵EF垂直平分BD,∴BE=DE,∠DEF=∠BEF,∵AD∥BC,∴∠DEF=∠BFE,∵∠BEF=∠BFE,∴BE=BF,∴BF=DF,∴BE=ED=DF=BF,∴四边形BEDF是菱形;②∵四边形ABCD是矩形,BC=10,∴∠A=90°,AD=BC=10,由①可设BE=ED=x,则AE=10﹣x,∵AB=5,∴AB2+AE2=BE2,即25+(10﹣x)2=x2,解得x=6.25,∴四边形BEDF的周长为:6.25×4=25.九.解直角三角形的应用-仰角俯角问题(共1小题)9.(2023•菏泽)无人机在实际生活中的应用越来越广泛.如图所示,某人利用无人机测量大楼的高度BC,无人机在空中点P处,测得点P距地面上A点80米,点A处的俯角为60°,楼顶C点处的俯角为30°,已知点A与大楼的距离AB为70米(点A,B,C,P 在同一平面内),求大楼的高度BC(结果保留根号).【答案】30m.【解答】解:如图所示:过P作PH⊥AB于H,过C作CG⊥PH于Q,而CB⊥AB,则四边形CQHB是矩形,∴QH=BC,BH=CQ,由题意可得:AP=80,∠PAH=60°,∠PCQ=30°,AB=70,∴PH=AP sin60°=80×=40,AH=AP cos60°=40,∴CQ=BH=70﹣40=30,∴PQ=CQ•tan30°=10,∴BC=QH=40﹣10=30,∴大楼的高度BC为30m.一十.频数(率)分布直方图(共1小题)10.(2023•菏泽)某班学生以跨学科主题学习为载体,综合运用体育、数学、生物学等知识,研究体育课的运动负荷.在体育课基本部分运动后,测量统计了部分学生的心率情况,按心率次数x(次/分钟),分为如下五组:A组:50≤x<75,B组:75≤x<100,C组100≤x<125,D组:125≤x<150,E组:150≤x<175.其中A组数据为:73,65,74,68,74,70,66,56.根据统计数据绘制了不完整的统计图(如图所示),请结合统计图解答下列问题:(1)A组数据的中位数是 69 ,众数是 74 ;在统计图中B组所对应的扇形圆心角是 54 度;(2)补全学生心率频数分布直方图;(3)一般运动的适宜心率为100≤x<150(次/分钟),学校共有2300名学生,请你依据此次跨学科研究结果,估计大约有多少名学生达到适宜心率?【答案】(1)69,74,54;(2)见解答;(3)1725名.【解答】解:(1)把A组数据从小到大排列为:56,65,66,68,70,73,74,74,故A组数据的中位数是:=69,众数是74;由题意得,样本容量为:8÷8%=100,在统计图中B组所对应的扇形圆心角是:360°×=54°.故答案为:69,74,54;(2)C组频数为:100﹣8﹣15﹣45﹣2=30,补全学生心率频数分布直方图如下:(3)2300×(30%+)=1725(名),答:估计大约有1725名学生达到适宜心率.一十一.列表法与树状图法(共2小题)11.(2023•东营)随着新课程标准的颁布,为落实立德树人根本任务,东营市各学校组织了丰富多彩的研学活动,得到家长、社会的一致好评.某中学为进一步提高研学质量,着力培养学生的核心素养,选取了A.“青少年科技馆”,B.“黄河入海口湿地公园”,C.“孙子文化园”,D.“白鹭湖营地”四个研学基地进行研学.为了解学生对以上研学基地的喜欢情况,随机抽取部分学生进行调查统计(每名学生只能选择一个研学基地),并将调查结果绘制成了两幅不完整的统计图(如图所示).请根据统计图中的信息解答下列问题:(1)在本次调查中,一共抽取了 24 名学生,在扇形统计图中A所对应圆心角的度数为 30° ;(2)将上面的条形统计图补充完整;(3)若该校共有480名学生,请你估计选择研学基地C的学生人数;(4)学校想从选择研学基地D的学生中选取两名学生了解他们对研学活动的看法,已知选择研学基地D的学生中恰有两名女生,请用列表法或画树状图的方法求出所选2人都是男生的概率.【答案】(1)24,30°;(2)图形见解析;(3)估计选择研学基地C的学生人数约为120名;(4).【解答】解:(1)在本次调查中,一共抽取的学生人数为:12÷50%=24(名),在扇形统计图中A所对应圆心角的度数为:360°×=30°,故答案为:24,30°;(2)C的人数为:24×25%=6(名),∴D的人数为:24﹣12﹣6﹣2=4(名),将条形统计图补充完整如下:(3)480×25%=120(名),答:估计选择研学基地C的学生人数约为120名;(4)学基地D的学生中恰有两名女生,则有2名男生,画树状图如下:共有12种等可能的结果,其中所选2人都是男生的结果有2种,∴所选2人都是男生的概率为=.12.(2023•济宁)某学校为扎实推进劳动教育,把学生参与劳动教育情况纳人积分考核.学校抽取了部分学生的劳动积分(积分用x表示)进行调查,整理得到如下不完整的统计表和扇形统计图.等级劳动积分人数A x≥904B80≤x<90mC70≤x<8020D60≤x<708E x<603请根据图表信息,解答下列问题:(1)统计表中m= 15 ,C等级对应扇形的圆心角的度数为 144° ;(2)学校规定劳动积分大于等于80的学生为“劳动之星”.若该学校共有学生2000人,请估计该学校“劳动之星”大约有多少人;(3)A等级中有两名男同学和两名女同学,学校从A等级中随机选取2人进行经验分享,请用列表法或画树状图法,求恰好抽取一名男同学和一名女同学的概率.【答案】(1)15,144°;(2)估计该学校“劳动之星”大约有760人;(3).【解答】解:(1)抽取的学生人数为:8÷16%=50(人),∴m=50﹣4﹣20﹣8﹣3=15,C等级对应扇形的圆心角的度数为:360°×=144°,故答案为:15,144°;(2)2000×=760(人),答:估计该学校“劳动之星”大约有760人;(3)画树状图如下:共有12种等可能的结果,其中恰好抽取一名男同学和一名女同学的结果有8种,∴恰好抽取一名男同学和一名女同学的概率为=.。
2019年全国中考数学真题汇编——专题03不等式(组)及其应用
选 B.
16.(2019•绥化)小明去商店购买 A、B 两种玩具,共用了 10 元钱,A 种玩具每件 1 元,B 种玩具每件 2
元.若每种玩具至少买一件,且 A 种玩具的数量多于 B 种玩具的数量.则小明的购买方案有
A.5 种
B.4 种
C.3 种
D.2 种
【答案】C
【解析】设小明购买了 A 种玩具 x 件,则购买的 B 种玩具为
专题 03 不等式(组)及其应用
1.(2019•河北)语句“x 的 与 x 的和不超过 5”可以表示为
A. +x≤5
B. +x≥5
C.
≤5
D. +x=5
【答案】A
【解析】“x 的 与 x 的和不超过 5”用不等式表示为 x+x≤5.故选 A.
2.(2019·广安)若
,下列不等式不一定成立的是
A.
B.
+5>5x+2(m+x)成立,则 m 的取值范围是
A.m>-
B.m<-
C.m<-
D.m>-
【答案】C
【解析】解不等式
-1≤2-x 得:x≤ ,
∵不等式
-1≤2-x 的解集中 x 的每一个值,都能使关于 x 的不等式 3(x-1)+5>5x+2(m+x)成立,
∴x<
,∴
> ,解得:m<- ,故选 C.
关于原点对称的点在第四象限,则 的取值范围在数轴上表示正 B.
C.
D.
【答案】C
【解析】∵点
关于原点对称的点在第四象限,∴点
∴
,解得:
.则 的取值范围在数轴上表示正确的是:
山东省17市2013年中考数学试题分类解析汇编 专题04 图形的变换
山东17市2013年中考数学试题分类解析汇编专题04 图形的变换一、选择题1. (2013年山东滨州3分)如图所示的几何体是由若干个大小相同的小正方体组成的.若从正上方看这个几何体,则所看到的平面图形是【】2. (2013年山东滨州3分)如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是【】A.0 B.1 C.2 D.3由①可得AD=AC=CE=DE,故四边形ACED是菱形,即③正确。
综上可得①②③正确,共3个。
故选D。
3. (2013年山东菏泽3分)如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120° 的菱形,剪口与第二次折痕所成角的度数应为【】A.15°或30° B.30°或45° C.45°或60° D.30°或60°4. (2013年山东菏泽3分)下列图形中,能通过折叠围成一个三棱柱的是【】【答案】C。
【考点】展开图折叠成几何体。
【分析】根据三棱柱及其表面展开图的特点对各选项分析判断即可得解:A.两底面一个直角三角形,一个是等边三角形,两底面的三角形不全等,故本选项错误;B.折叠后两侧面重叠,不能围成三棱柱,故本选项错误;C.折叠后能围成三棱柱,故本选项正确;D.折叠后两侧面重叠,不能围成三棱柱,故本选项错误。
故选C。
5. (2013年山东济南、德州3分)图中三视图所对应的直观图是【】6. (2013年山东济宁3分)如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO 为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为【】A.54cm2 B.58cm2 C.516cm2 D.532cm27. (2013年山东莱芜3分)下面四个几何体中,左视图是四边形的几何体共有【】A.1个 B.2个 C.3个 D.4个8. (2013年山东莱芜3分)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为【】A. D.3 2∴弧AB的长为12032 180ππ⋅⋅=。
山东省17市2013年中考数学试题分类解析汇编 专题08 平面几何基础
山东17市2013年中考数学试题分类解析汇编 专题08 平面几何基础一、选择题1. (2013年山东滨州3分)若从长度分别为3、5、6、9的四条线段中任取三条,则能组成三角形的概率为【 】 A .12 B .34 C .13D .142. (2013年山东东营3分)如图,已知AB∥CD,AD 和BC 相交于点O,∠A=050,∠AOB=0105,则∠C 等于【 】A. 020B. 025C. 035D. 0453. (2013年山东济南、德州3分)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是【 】4. (2013年山东济南、德州3分)如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为【】A.68° B.32° C.22° D.16°5. (2013年山东莱芜3分)如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为【】A.10° B.20° C.25° D.30°【答案】C。
【考点】平行线的性质,三角形外角性质。
【分析】如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°。
∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°。
∵GH∥EF,∴∠2=∠AEC=25°。
故选C。
6. (2013年山东莱芜3分)下列图形中,既是轴对称图形,又是中心对称图形的个数是【】①等边三角形;②矩形;③等腰梯形;④菱形;⑤正八边形;⑥圆.A.2 B.3 C.4 D.57. (2013年山东临沂3分)如图,已知AB∥CD,∠2=135°,则∠1的度数是【】A.35° B.45° C.55° D.65°【答案】B。
山东省17市2013年中考数学试题分类解析汇编 专题01 实数
某某17市2013年中考数学试题分类解析汇编 专题01 实数一、选择题1.(2013年某某滨州3分)计算1132-,正确的结果为【 】0 A .15 B .15- C .16 D .16-2. (2013年某某东营3分)16的算术平方根是【 】A. 4±B. 4C. 2±D. 23. (2013年某某东营3分)国家卫生和计划生育委员会公布H7N9禽流感病毒直径约为,则病毒直径用科学记数法表示为【 】(保留两位有效数字).A. 60.1010-⨯mB. 7110-⨯mC. 71.010-⨯mD. 60.110-⨯m有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字。
因此770.0000001m 110m 1.010m =⨯=⨯--。
故选C 。
4. (2013年某某某某3分)如果a的倒数是-1,那么a2013等于【】A.1 B.-1 C.2013 D.-20135. (2013年某某某某3分)如图,数轴上的A、B、C三点所表示的数分别是a、b、c,其中AB=BC,如果|a|>|b|>|c|,那么该数轴的原点O的位置应该在【】A.点A的左边B.点A与点B之间C.点B与点C之间 D.点B与点C之间或点C的右边6. (2013年某某某某、某某3分)下列计算正确的是【】A.2193-⎛⎫=⎪⎝⎭B()222-- C.()021-=- D.522--=7. (2013年某某某某、某某3分)森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.3亿吨用科学记数法表示为【】A.28.3×107 B.2.83×108 C.0.283×1010 D.2.83×1098. (2013年某某某某3分)一运动员某次跳水的最高点离跳台2m,记作+2m,则水面离跳台10m可以记作【】A.-10m B.-12m C.+10m D.+12mA。
中考数学真题分类汇编(第三期)专题6 不等式(组)试题(含解析)-人教版初中九年级全册数学试题
不等式(组)1. (2018·某某江汉·3分)若关于x的一元一次不等式组的解集是x >3,则m的取值X围是()A.m>4 B.m≥4 C.m<4 D.m≤4【分析】先求出每个不等式的解集,再根据不等式组的解集和已知得出关于m的不等式,再求出解集即可.【解答】解:,∵解不等式①得:x>3,解不等式②得:x>m﹣1,又∵关于x的一元一次不等式组的解集是x>3,∴m﹣1≤3,解得:m≤4,故选:D.2.(2018·某某省某某·3分)关于x的不等式﹣1<x≤a有3个正整数解,则a的取值X 围是.解:∵不等式﹣1<x≤a有3个正整数解,∴这3个整数解为1.2.3,则3≤a<4.故答案为:3≤a<4.3.(2018·某某省某某市)不等式组的解集,在数轴上表示正确的是()A.B.C.D.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x≤2,∴不等式组的解集为﹣2<x≤2,在数轴上表示为.故选B.4. (2018•呼和浩特•3分)若满足<x≤1的任意实数x,都能使不等式2x3﹣x2﹣mx>2成立,则实数m的取值X围是()A.m<﹣1 B.m≥﹣5 C.m<﹣4 D.m≤﹣4解:∵满足<x≤1的任意实数x,都能使不等式2x3﹣x2﹣mx>2成立,∴m<,∴m≤﹣4故选:D.5.(2018·某某某某·3分)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:3x﹣6≥0,3x≥6,x≥2,在数轴上表示为,故选:B.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.1.(2018·某某省某某市)(3.00分)不等式组的解集是﹣2≤x<2 .【分析】先求出两个不等式的解集,再求不等式组的公共解.【解答】解:解不等式x﹣2<0,得:x<2,解不等式3x+6≥0,得:x≥﹣2,则不等式组的解集为﹣2≤x<2,故答案为:﹣2≤x<2.【点评】本题考查了解一元一次不等式组,遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.2.(2018·某某省某某市)不等式组的解集是0<x≤8.【解答】解:∵解不等式①得:x≤8,解不等式②得:x>0,∴不等式组的解集为0<x≤8.故答案为:0<x≤8.3. (2018•呼和浩特•3分)若不等式组的解集中的任意x,都能使不等式x ﹣5>0成立,则a的取值X围是.解:∵解不等式①得:x>﹣2a,解不等式②得:x>﹣a+2,又∵不等式x﹣5>0的解集是x>5,∴﹣2a≥5或﹣a+2≥5,解得:a≤﹣2.5或a≤﹣6,经检验a≤﹣2.5不符合,故答案为:a≤﹣6.1. (2018·某某贺州·8分)某自行车经销商计划投入7.1万元购进100辆A型和30辆B 型自行车,其中B型车单价是A型车单价的6倍少60元.(1)求A.B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧X,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?【解答】解:(1)设A型自行车的单价为x元/辆,B型自行车的单价为y元/辆,根据题意得:,解得:.答:A型自行车的单价为260元/辆,B型自行车的单价为1500元/辆.(2)设购进B型自行车m辆,则购进A型自行车(130﹣m)辆,根据题意得:260(130﹣m)+1500m≤58600,解得:m≤20.答:至多能购进B型车20辆.2. (2018·某某某某·8分)解不等式组,并求出它的整数解,再化简代数式•(﹣),从上述整数解中选择一个合适的数,求此代数式的值.【分析】先解不等式组求得x的整数解,再根据分式混合运算顺序和运算法则化简原式,最后选取使分式有意义的x的值代入计算可得.【解答】解:解不等式3x﹣6≤x,得:x≤3,解不等式<,得:x>0,则不等式组的解集为0<x≤3,所以不等式组的整数解为1.2.3,原式=•[﹣]=•=,∵x≠±3.1,∴x=2,则原式=1.【点评】此题主要考查了分式的化简求值以及不等式组的解法,正确进行分式的混合运算是解题关键.3.(2018·某某荆州·5分)求不等式组的整数解.【解答】解:解不等式①,得:x≥﹣1,解不等式②,得:x<1,则不等式组的解集为﹣1≤x<1,∴不等式组的整数解为﹣1.0.4.(2018·某某省某某)某某市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了车费24.8元.求该同学的家到学校的距离在什么X围?解:设该同学的家到学校的距离是x千米,依题意:24.8﹣1.8<5+1.8(x﹣2)≤24.8,解得:12<x≤13.故该同学的家到学校的距离在大于12小于等于13的X围.5.(2018·某某省某某·8分)(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?【分析】(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元,然后根据等量关系即可列出方程求出答案.(2)设该用户7月份可用水t立方米(t>10),根据题意列出不等式即可求出答案.【解答】解:(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元解得:答:每立方米的基本水价是2.45元,每立方米的污水处理费是1元.(2)设该用户7月份可用水t立方米(t>10)10×2.45+(t﹣10)×4.9+t≤64解得:t≤15答:如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米【点评】本题考查学生的应用能力,解题的关键是根据题意列出方程和不等式,本题属于中等题型.6.(2018·某某省·8分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A.B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:千克)生产成本(单位:元)3 2 120A商品200B商品设生产A种商品x千克,生产A.B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值X围;(2)x取何值时,总成本y最小?【分析】(1)根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进而得出答案;(2)利用一次函数增减性进而得出答案.【解答】解:(1)由题意可得:y=120x+200(100﹣x)=﹣80x+20000,,解得:72≤x≤86;(2)∵y=﹣80x+20000,∴y随x的增大而减小,∴x=86时,y最小,则y=﹣80×86+20000=13120(元).【点评】此题主要考查了一次函数的应用以及不等式的应用,正确利用表格获得正确信息是解题关键.7.(2018·某某省某某·8分)解不等式组:【分析】根据不等式组的解集的表示方法:大小小大中间找,可得答案.【解答】解:解不等式①,得x<4,解不等式②,得x>3,不等式①,不等式②的解集在数轴上表示,如图,原不等式组的解集为3<x<4.【点评】本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.8.(2018·某某省某某市) 某爱心企业在政府的支持下投入资金,准备修建一批室外简易的足球场和篮球场,供市民免费使用,修建1个足球场和1个篮球场共需8.5万元,修建2个足球场和4个篮球场共需27万元.(1)求修建一个足球场和一个篮球场各需多少万元?(2)该企业预计修建这样的足球场和篮球场共20个,投入资金不超过90万元,求至少可以修建多少个足球场?【解答】解:(1)设修建一个足球场x万元,一个篮球场y万元,根据题意可得:,解得:,答:修建一个足球场和一个篮球场各需3.5万元,5万元;(2)设足球场y个,则篮球场(20﹣y)个,根据题意可得:3.5y+5(20﹣y)≤90,解得:y,答:至少可以修建6个足球场.9.(2018·某某省某某市)在运动会前夕,育红中学都会购买篮球、足球作为奖品.若购买10个篮球和15个足球共花费3000元,且购买一个篮球比购买一个足球多花50元.(1)求购买一个篮球,一个足球各需多少元?(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在搞促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1050元,则最多可购买多少个篮球?【解答】解:(1)设购买一个篮球需x元,购买一个足球需y元,根据题意可得:,解得:,答:购买一个篮球,一个足球各需150元,100元;(2)设购买a个篮球,根据题意可得:0.9×150a+0.85×100(10﹣a)≤1050,解得:a≤4,答;最多可购买4个篮球.10.(2018·某某省某某市)(12.00分)为落实“美丽某某”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?【分析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据题意得:﹣=3,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x=×40=60.答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×≤145,解得:m≥10.答:至少安排甲队工作10天.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.11. (2018•某某•9分)解不等式组:解:.∵解不等式①得:x>0,解不等式②得:x<6,∴不等式组的解集为0<x<6.12. (2018•某某•3分)已知点P(1﹣a,2a+6)在第四象限,则a的取值X围是()A.a<﹣3 B.﹣3<a<1 C.a>﹣3 D.a>1【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.【解答】解:∵点P(1﹣a,2a+6)在第四象限,∴,解得a<﹣3.故选:A.【点评】本题考查了点的坐标,一元一次不等式组的解法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).13.(2018·某某某某·9分)解不等式组:解:∵解不等式①得:x≤﹣1,解不等式②得:x≤3,∴不等式组的解集为x≤﹣1.14. (2018·某某某某·10分)为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)30 42租金/(元/辆)300 400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.【答案】(1)老师有16名,学生有284名;(2)8;(3)共有3种租车方案,最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【解析】【分析】(1)设老师有x名,学生有y名,根据等量关系:若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生,列出二元一次方程组,解出即可;(2)由(1)中得出的教师人数可以确定出最多需要几辆汽车,再根据总人数以及汽车最多的是42座的可以确定出汽车总数不能小于=(取整为8)辆,由此即可求出;(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,由题意得出400x+300(8﹣x)≤3100,得出x取值X围,分析得出即可.【详解】(1)设老师有x名,学生有y名,依题意,列方程组为,解得:,答:老师有16名,学生有284名;(2)∵每辆客车上至少要有2名老师,∴汽车总数不能大于8辆;又要保证300名师生有车坐,汽车总数不能小于=(取整为8)辆,word综合起来可知汽车总数为8辆,故答案为:8;(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,∵车总费用不超过3100元,∴400x+300(8﹣x)≤3100,解得:x≤7,为使300名师生都有座,∴42x+30(8﹣x)≥300,解得:x≥5,∴5≤x≤7(x为整数),∴共有3种租车方案:方案一:租用甲种客车3辆,乙种客车5辆,租车费用为2900元;方案二:租用甲种客车2辆,乙种客车6辆,租车费用为3000元;方案三:租用甲种客车1辆,乙种客车7辆,租车费用为3100元;故最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组是解题的关键.15.(2018·某某某某·8分)解方程组和不等式组:(2)【分析】(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(2),解不等式①得:x≥3;解不等式②得:x≥﹣1,所以不等式组的解集为:x≥3.16.(2018·某某某某·5分)(2)解不等式组:【解答】解:(2)解不等式2x﹣4>0,得:x>2,解不等式x+1≤4(x﹣2),得:x≥3,则不等式组的解集为x≥3.11 / 11。
山东省17市2013年中考数学试题分类解析汇编 专题03 方程(组)和不等式(组)
山东17市2013年中考数学试题分类解析汇编 专题03 方程(组)和不等式(组)一、选择题1. (2013年山东滨州3分)对于任意实数k ,关于x 的方程()22x 2k 1x k 2k 10-+-+-=的根的情况为【 】A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法确定2. (2013年山东滨州3分)若把不等式组2x 3x 12-≥-⎧⎨-≥-⎩的解集在数轴上表示出来,则其对应的图形为【 】A .长方形B .线段C .射线D .直线不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线3. (2013年山东东营3分)已知1O ⊙的半径1r =2,2O ⊙的半径2r 是方程32x x 1=-的根,1O ⊙与1O ⊙的圆心距为1,那么两圆的位置关系为【 】A .内含B .内切C .相交D .外切4. (2013年山东东营3分)要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是【 】A. 5个B. 6个C. 7个D. 8个5. (2013年山东济宁3分)已知ab=4,若﹣2≤b≤-1,则a 的取值范围是【 】A .a≥-4B .a≥-2C .-4≤a≤-1D .-4≤a ≤-26. (2013年山东济宁3分)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多【 】A .60元B .80元C .120元D .180元7. (2013年山东莱芜3分)方程2x 40x 2-=-的解为【 】 A .2- B .2 C .2± D .12-8. (2013年山东聊城3分)不等式组3x 1>242x 0-⎧⎨-≥⎩的解集在数轴上表示为【 】A .B .C .D .10. (2013年山东临沂3分)不等式组x2>0x1x32-⎧⎪⎨+≥-⎪⎩的解集是【】A.x≥8 B.x>2 C.0<x<2 D.2<x≤811. (2013年山东青岛3分)一个不透明的口袋里装有除颜色都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法,先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球,因此小亮估计口袋中的红球大约有【 】个A 、45B 、48C 、50D 、5512. (2013年山东日照3分)已知一元二次方程2x x 30--=的较小根为x 1,则下面对x 1的估计正确的是【 】A.12<x <1--B. 13<x <2--C. 12<x <3D. 11<x <0-13. (2013年山东日照4分) 甲计划用若干个工作日完成某项工作,从第三个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是【 】A.8B.7C.6D.5【答案】A 。
最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编
中考数学方程(组)与不等式(组)复习知识点总结一、方程【知识梳理】1、知识结构方程分式方程的应用分式方程的解法分式方程的概念分式方程的关系根的判别式,根与系数一元二次方程的解法念一元二次方程的有关概一元二次方程二元一次方程组的应用二元一次方程组的解法二元一次方程组一元一次方程的应用一元一次方程的解法一元一次方程整式方程2、知识扫描(1)只含有一个未知数,并且未知数的次数是1的整式方程,叫做一元一次方程。
(2)含有2个未知数,并且所含未知数的项的次数都是1次,这样的方程叫二元一次方程.(3)含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.(4)二元一次方程组的解法有法和法.(5)只含有1 个未知数,并且未知数的最高次数是2且系数不为0的整式方程,叫做一元二次方程,其一般形式为)0(02a cbx ax。
(6)解一元二次方程的方法有:①直接开平方法;②配方法;③公式法;④因式分解法例:(1)042x(2)0342x x(3)4722x x (4)0232x x(7)一元二次方程的根的判别式:ac b42叫做一元二次方程的根的判别式。
对于一元二次方程)0(02a cbx ax当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根;反之也成立。
(8)一元二次方程的根与系数的关系:如果)0(02acbx ax的两个根是21,x x 那么ab x x 21,ac x x 21(9)一元二次方程)0(02a cbx ax的求根公式:)04(2422ac baacb bx(10)分母中含有未知数的方程叫分式方程.(11)解分式方程的基本思想是将分式方程通过去分母转化为整式方程.◆解分式方程的步骤◆1、去分母,化分式方程为整式方程;◆2、解这个整式方程;◆3、验根。
注意:(1)解分式方程的基本思想是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.(2)因为解分式方程时可能产生增根,所以解分式方程必须检验,检验是解分式方程必要的步骤.二、不等式【知识梳理】1、知识结构解法性质概念不等式2、知识扫描(1) 只含有一个未知数,并且未知数的次数是1,系数不为 0 的不等式,叫做一元一次不等式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题03 方程(组)和不等式(组)一、选择题1.对于任意实数k ,关于x 的方程()22x 2k 1x k 2k 10-+-+-=的根的情况为【 】A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法确定2.若把不等式组2x 3x 12-≥-⎧⎨-≥-⎩的解集在数轴上表示出来,则其对应的图形为【 】 A .长方形 B .线段 C .射线 D .直线3.已知1O ⊙的半径1r =2,2O ⊙的半径2r 是方程32x x 1=-的根,1O ⊙与1O ⊙的圆心距为1,那么两圆的位置关系为【 】A .内含 B .内切C .相交D .外切 4.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是【 】A. 5个 B. 6个 C. 7个 D. 8个5.已知ab=4,若﹣2≤b≤-1,则a 的取值范围是【 】A .a≥-4B .a≥-2C .-4≤a≤-1D .-4≤a ≤-26.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多【 】A .60元 B .80元 C .120元 D .180元7.方程2x 40x 2-=-的解为【 】A .2- B .2 C .2± D .12- 8.不等式组3x 1>242x 0-⎧⎨-≥⎩的解集在数轴上表示为【 】A . B . C . D .10.不等式组x 2>0x 1x 32-⎧⎪⎨+≥-⎪⎩的解集是【 】A .x≥8 B .x >2 C .0<x <2 D .2<x≤8 11.一个不透明的口袋里装有除颜色都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法,先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球,因此小亮估计口袋中的红球大约有【 】个A 、45B 、48C 、50D 、5512.已知一元二次方程2x x 30--=的较小根为x 1,则下面对x 1的估计正确的是【 】A.12<x <1--B. 13<x <2--C. 12<x <3D. 11<x <0-13. 甲计划用若干个工作日完成某项工作,从第三个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是【 】A.8B.7C.6D.514.不等式组()x 3x 172x 4>3x ⎧--≤⎪⎨+⎪⎩的解集为【 】 A .-2<x <4 B .x <4或x≥-2 C .-2≤x<4 D .-2<x≤415.某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为【 】A .2300230033x 1.3x += B .2300230033x x 1.3x+=+ C .2300460033x x 1.3x +=+ D .4600230033x x 1.3x+=+ 16.已知关于x 的一元二次方程()2x 1m 0+-=有两个实数根,则m 的取值范围是【 】 A. 3m 4≥- B. m 0≥ C. m 1≥ D. m 2≥ 17.不等式组2x<02x 1⎧⎨-≥⎩的解集在数轴上表示为【 】18.已知关于x 的方程()2kx 1k x 10+--=,下列说法正确的是【 】.A.当k 0=时,方程无解B.当k 1=时,方程有一个实数解C.当k 1=-时,方程有两个相等的实数解D.当k 0≠时,方程总有两个不相等的实数解19.为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y ,根据题意,下面列出的方程组正确的是【 】.A.x y 22x 2.5%y 0.5%10000-=⎧⎨⨯+⨯=⎩B.x y 22x y 100002.5%0.5%-=⎧⎪⎨+=⎪⎩ C.x y 10000x 2.5%y 0.5%22+=⎧⎨⨯-⨯=⎩ D.x y 10000x y 222.5%0.5%+=⎧⎪⎨-=⎪⎩ 20.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[]12.1=,[]33=,[]35.2-=-,若x 4510+⎡⎤=⎢⎥⎣⎦,则x 的取值可以是【 】.A.40 B.45 C.51 D.56 21.1的值在【 】A. 2到3之间 B.3到4之间 C.4到5之间 D.5到6之间22.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每 件的进价为【 】A.240元 B.250元 C.280元 D.300元23.若关于x 的一元二次方程2x 2x m 0-+=有两个不相等的实数根,则m 的取值范围是【 】A. m<1- B. m<1 C. m>1- D. m>124.对于非零实数a b 、,规定1ab 1a b ⊕=-,若()22x 11⊕-=,则x 的值为【 】 A.56 B. 54 C. 32 D. 16- 25.把一根长100cm 的木棍锯成两段,使其中一段的长比另一段的2倍少5cm ,则锯出的木棍的长不可能为【 】A . 70cm B .65cm C .35cm D .35cm 或65cm二、填空题1.一元二次方程22x 3x 10-+=的解为 ▲ .2.函数1y x =与y=x ﹣2图象交点的横坐标分别为a ,b ,则11a b+的值为 ▲ . 3.在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指从塔的顶层到底层).请你算出塔的顶层有 ▲ 盏灯.4.)若x 1=﹣1是关于x 的方程2x mx 50+-=的一个根,则方程的另一个根x 2= ▲ .5.分式方程2x 13x 11x+=--的解是 ▲ .6.对于实数a,b,定义运算“﹡”:()()22a ab a ba bab a a<b⎧-≥⎪=⎨-⎪⎩﹡.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2=▲.7.)某企业2010年底缴税40万元,2012年底缴税48.4万元,设这两年该企业缴税的年平均增长率为x,根据题意,可得方程▲ .8.若关于x的方程x1mx5102x-=--无解,则m=▲9.方程2x xx1+=+的根是▲ .10.不等式x1042x<0-≥⎧⎨-⎩的最小整数解是▲11.当实数a<0时,6+a ▲6-a(填“<”或“>”).12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2013个格子中的整数是▲ .三、解答题1.解方程组:3x4y19 x y4+=⎧⎨-=⎩2.解方程:3x52x1 23+-=.3.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.4.解不等式组()3x1<5x1x12x42⎧-+⎪⎨-≥-⎪⎩,并指出它的所有非负整数解.5. 为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.6.已知m 是方程2x x 20--=的一个实数根,求代数式()22m m m 1m ⎛⎫--+ ⎪⎝⎭的值.7.已知:关于x 的一元二次方程()2kx 4k 1x 3k 30-+++= (k 是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根分别为x 1,x 2(其中x 1<x 2),设21y x x 2=--,判断y 是否为变量k 的函数?如果是,请写出函数解析式;若不是,请说明理由.8.某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y (单位:天)与平均每天的工作量x (单位:万米3)之间的函数关系式,并给出自变量x 的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?9.设A 是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A 如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可) 表1.(2)数表A 如表2所示,若经过任意一次“操作”以后,便可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a 的值表2.10.人教版教科书对分式方程验根的归纳如下:“解分式方程时,去分母后所得整式方程的解有可能使原分式方程中的分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.”请你根据对这段话的理解,解决下面问题:已知关于x的方程m1xx1x1--=--无解,方程2x kx60++=的一个根是m.(1)求m和k的值;(2)求方程2x kx60++=的另一个根.11.某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.(1)两种跳绳的单价各是多少元?(2)若学校准备用不超过2000元的现金购买200条长、短跳绳,且短跳绳的条数不超过长跳绳的6倍,问学校有几种购买方案可供选择?12.夏季来临,天气逐渐炎热起来,某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了5%,已知调价前买这两种饮料个一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料在调价前每瓶各多少元?13.为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A,B两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?14.解方程组:2x+y=3 x y=0⎧⎨-⎩15.某校学生捐款支援地震灾区,第一次捐款总额为6600元,第二次捐款总额为7260元,第二次捐款人数比第一次多30人,而且两次人均捐款额恰好相等,求第一次的捐款人数17.已知,关于x 的方程22x 2mx m 2x -=-+的两个实数根1x 、2x 满足12x x =,求实数m 的值.18. “端午”节前,小明爸爸去超市购买了大小、形状、重量等都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时从盒中随机取出火腿粽子的概率为13;妈妈从盒中取出火腿粽子3只、豆沙粽子7只送给爷爷和奶奶后,这时随机取出火腿粽子的概率为25. (1)请你用所学知识计算:爸爸买的火腿粽子和豆沙粽子各有多少只?(2)若小明一次从盒内剩余粽子中任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用列表法或树状图计算)19.某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x 元销售销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?20.要在一块长52m ,宽48m 的矩形绿地上,修建同样宽的两条互相垂直的甬路.下面分别是小亮和小颖的设计方案.(1)求小亮设计方案中甬路的宽度x ;(2)求小颖设计方案中四块绿地的总面积(友情提示:小颖设计方案中的与小亮设计方案中的取值相同)21.为增强市民的节能意识,我市试行阶梯电价.从2013年开始,按照每户每年的分三个档次计费,具体规定见下图.小明统计了自己2013年前5个月的实际用电量为1300度,请帮助小明分析下面问题.(1)若小明家计划2013年全年的用电量不超过2520度,则6至12月份小明家平均每月用电量最多为多少度?(保留整数)(2)若小明家2013年6月至12月份平均每月用电量等于前5个月的平均每月用电量,则小明家2013年应交总电费多少元?22.烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.23. (先化简,再求值:22m 35m 23m 6m m 2-⎛⎫÷+- ⎪--⎝⎭,其中m 是方程2x 3x 10++=的根. 24.解方程组2x 3y 3x 2y 2-=⎧⎨+=-⎩.25.关于x 的一元二次方程()2a 6x 8x 90--+=有实根.(1)求a 的最大整数值;(2)当a 取最大整数值时,①求出该方程的根;②求2232x 72x x 8x 11---+的值.。