2005年初二数学《相似图形》测试

合集下载

完整版相似图形测试题及答案

完整版相似图形测试题及答案

《相似图形》水平测试二一、试试你的身手(每小题3分,共30分)1在比例尺为1 : 50 0000的福建省地图上,量得省会福州到漳州的距离约为46厘米,则福州到漳州实际距离约为__________ 千米.2.若线段a , b , c , d成比例,其中a 5cm, b 7cm, c 4cm,则d _________________3.已知4x 5y 0,则(x y): (x y)的值为9: 25,其中一个三角形的周长为36cm,则另一个三角形的周长是(如图1),如果把各边中点连线所围成三角形铺成黑色大理石,其余部分铺成白色大理石,则黑色大理石的面积与白色大理石的面积之比为4•两个相似三角形面积比是5.把一个矩形的各边都扩大4倍,则对角线扩大到________ 倍,其面积扩大到 _______ 倍. 6•厨房角柜的台面是三角形7•顶角为36。

的等腰三角形称为黄金三角形,如图黄金三角形,已知AB 1,贝U DE的长_________2, △ ABC, △ BDC , △ DEC 都是&在同一时刻,高为 1.5m的标杆的影长为2.5m,一古塔在地面上影长为50m,那么古塔的高为_________ .9•如图3, △ ABC 中,DE // BC , AD 2 , AE 3, BD 4,贝U AC(:10.如图4,在△ ABC和厶EBD中EB之差为10cm,则△ ABC的周长是_________二、相信你的选择(每小题3分,共30分)1 .在下列说法中,正确的是()A .两个钝角三角形一定相似B. 两个等腰三角形一定相似C. 两个直角三角形一定相似D .两个等边三角形一定相似BD ED 32.如图5,在厶ABC中,D , E分别是AB、AC边上的点,DE // BC , / ADE 30°,Z C 120°,则/ A ( )3.如果三角形的每条边都扩大为原来的5倍,那么三角形的每个角()A.都扩大为原来的5倍B.都扩大为原来的10倍C.都扩大为原来的25倍D.都与原来相等4•如图6,在Rt A ABC 中,z ACB 90°, CD AB 于D,若AD 1 , BDCD (6.如图8,点E是Y ABCD的边BC延长线上的一点,AE与CD相交于点G ,Y ABCD的对角线,则图中相似三角形共有()A . 2对B . 3对C . 4对D . 5对7.如图9,小正方形的边长均为1,则下列图中的三角形(阴影部分)与厶ABC相似的是B . 45 C. 30°4,则C. 2 D . 35.如图7, BC 6 , E , F分别是线段AB和线段AC的中点,那么线段EF的长是C. 4.5 D . 3AC是7777/7/A.1!. 2itD .20°/;图6图R&如图10,梯形ABCD的对角线交于点0,有以下四个结论:①△ A0B C0D ; ②△ AOD ACB ;其中始终正确的有()A . 1个B . 2个C. 3个9•用作相似图形的方法,可以将一个图形放大或缩小,相似中心位置可选在(同,我们就把它们叫做相似图形•比如两个正方形,它们的边长, 成比例,就可以称它们为相似图形.现给出下列4对几何图形:①两个圆;②两个菱形;③两个长方形;④两个正六边形•请指出其中哪几对是相似图形,哪几对不是相似图形,并简单地说明理由.2 . (8 分)如图12,梯形ABCD 中,AB // DC,/ B 90°,E 为BC 上一点,且AE ED .若BC 12,DC 7,BE : EC=1 : 2,求AB 的长.③ S A DOC:S A AOD DC : AB :④ S A AOD S A BOC•A •原图形的外部B •原图形的内部这支蜡烛在暗盒中所成的像CD的长是()111A . - cmB . cm C. cm D. 1cm632三、挑战你的选择(本大题共60分):如果两个几何图形形状相同而大小不一定相对角线等所有元素都对应D . 4个C.原图形的边上 D •任意位置10•如图11是小孔成像原理的示意图,根据图中所标注的尺寸,1. (8分)我们已经学习了相似三角形,也知道4. (8分)某中学平整的操场上有一根旗杆(如图 14),一数学兴趣小组欲测量其高度,现有 测量工具(皮尺、标杆)可供选用,请你用所学的知识,帮助他们设计测量方案. 要求:(1)画出你设计的测量平面图; (2)简述测量方法,并写出测量的数据2.7米宽的光亮区,如图 15,已知亮区一 1.8米,那么窗口底边离地面的高 BC 是多6. (14分)如图16,在一个长40m 、宽30m 的长方形小操场上,王刚从 A 点出发,沿着 A T B T C 的路线以3m/s 的速度跑向C 地.当他出发4s 后,张华有东西需要交给他,就从 A2地出发沿王刚走的路线追赶,当张华跑到距 B 地2-m 的D 处时,他和王刚在阳光下的影3子恰好重叠在同一条直线上•此时, A 处一根电线杆在阳光下的影子也恰好落在对角线 AC上.(1) 求他们的影子重叠时,两人相距多少米 (DE 的长)?3. ( 8分)如图13,已知△ ABC 中,点F 是BC 的中点, 样的关系?请你说明理由.DE // BC ,贝V DG 和GE 有怎(长度用a , b , c …表示).5. (14分)阳光通过窗户照到室内,在地面上留下 边到窗下墙脚的距离 CE 8.7米,窗口高 AB 少米?[R f| 16(2)求张华追赶王刚的速度是多少(精确到0.1m/s)?《相似图形》水平测试二参考答案一、1. 230282.cm53.9卡1084.60 或 -55.4, 1616.-33 「57.2& 30m9. 910. 25cm二、1. D 2. C 3. D 4. A 5. D 6. B 7. A 8. C 9. D 10. D三、1.①、④是相似图形,②、③不一定是相似图形理由:两个圆和两个正六边形分别为相似图形,因为它们的对应元素都成比例;两个菱形和两个长方形都不是,因为它们的对应元素不一定都成比例(或举出具体的反例)2.解:因为AB // DC,且/ B 90°,所以Z AEB Z BAE所以Z AEB Z CED 90°.故Z BAE Z CED .又Z B Z C 90°,所以△EAB DEC . 所以AB BEEC CD又BE: EC 1:2,且BC 12及DC7 ,故AB-.所以873.解:DG GE.因为DE // BC,所以Z ADG ZB :,Z AGD Z AFB ,所以△ ADG ABF,所以DG AGBF AFGE AG DG GE同样△ AGE AFC,所以,所以FC AF BF FC '又F是BC的中点,所以DG GE .4.解:(1)如图,沿着旗杆的影竖立标杆,使标杆影子的顶端正好与旗杆影子顶端重合.(2)用皮尺测量旗杆的影长BE 标杆CD c米. AB327a米,标杆CD的影长DE b米,fi D90°及Z C 90°.CD 根据△EDC EBA,得—AB巨,2 b,所以ABEB AB a ac b米. 即旗杆 AB 的高为 ac 米 5•解: 由已知可得 CB BD // AE ,所以A CBDCAE ,所以— CACDCE又CE 8.7, CD CB ()8.7 2.7 6, CA CB —,解得CB 4 •1.8,所以 CB 1.8 8.7即窗口底边离地面的高 BC 是4米. 6. (1)根据投影的特征可知 AC //DE ,所以 所以DE BD DE AC BA ' AC △ BDE BAC ,BE 又 AB CF 40, AC BC 、402—302 50, BD2| •所以 DE 22 3 50 (2) 因为 40 DE 所以DE 10 (m )• 3 所以 BE 所以 所以王刚从 所以张华从 AB ACDEgBC AC BE 40 匹,BC AF 30, BC 10 “ 30 ,即 BE 2,50 2 42 (m ), A 到E 的时间为42十3=14 (s ), A 到D 的时间为14- 4=10 (s ), 2 所以张华的速度为(40- 2-)十10~ 3.7 ( m/s ).3。

初二相似数学几何试题(附答案)

初二相似数学几何试题(附答案)

初中数学自测题(总分:150.0分)一选择题:(总分:45.0)1.(4.0)下列函数中,y随x的增大而减小的有[](1);(2);(3)y=-3x+1(4);(5)(x>0);(6)(x<0)A.2个B.3个C.4个D.5个ABCD下一题2.(4.0)如果梯形的面积为144,且两底长的比为4∶5,高为16cm,那么两底长为[] A.4cm,10cm B.6cm,7.5cmC.8cm,10cm D.10cm,12.5cmABCD下一题3.(4.0)(2005·山东)在反比例函数的图象上有两个点,,且,则的值为[] A.正数B.负数C.非正数D.非负数ABCD下一题4.(4.0)已知反比例函数的图象上有两点A(,),B(,),当时,有,则m的取值范围为[] A.m<0B.m>0C.D.ABCD下一题5.(4.0)下列说法中正确的是[] A.四边相等的四边形是正方形B.四个角相等的四边形是正方形C.对角线垂直的平行四边形是正方形D.对角线相等的菱形是正方形ABCD下一题6.(4.0)将直角三角形的三边长都扩大2倍,得到的三角形是[] A.直角三角形B.锐角三角形C.钝角三角形D.不能确定ABCD下一题7.(4.0)下列三角形中,不是直角三角形的是[] A.三角形的三边长分别为5,12,13B.三角形中,有一边上的中线等于这条边的一半C.三角形的三内角之比为1∶2∶3D.三角形的三边长之比为ABCD下一题8.(4.0)下列叙述错误的是[] A.圆的周长c=2π R,圆周率π和圆的半径的关系是反比例关系B.式子xy=-1表示y是x的反比例函数,也可表示x是y的反比例函数C.函数中,y是x的反比例函数,D.函数也可看作y是3x的反比例函数,k=-2ABCD下一题9.(4.0)直角三角形的周长为12,斜边长为5,则面积为[] A.12B.10C.8D.6ABCD下一题10.(4.0)如图,多边形相邻的两边均互相垂直,则这个多边形的周长为[]A.21B.26C.37D.42ABCD下一题11.(4.0)(2007·黄冈)已知某种品牌电脑的显示器的寿命大约为小时,这种显示器工作的天数为d(天),平均每天工作的时间为t(时),那么能正确表示d与t 之间的函数关系的图象是[]ABCD下一题12.(1.0)一直角三角形的斜边比一直角边大2,另一直角边长为6,则斜边长为[] A.8B.10C.12D.14ABCD下一题二填空题:(总分:30.0)1.(4.0)写出一个y关于x的反比例函数,使在每一个象限内,y随x增大而减小:________.下一题2.(4.0)已知反比例函数y=,当k________时,其图象在第一、三象限内;当k________时,在每个象限内y随x的增大而增大.下一题3.(4.0)等腰三角形一腰上的高是腰长的一半时,则底角是__________度,若底边上的高是腰长的一半时,则底角为___________度.下一题4.(4.0)己知如图所示,正方形ABCD,E是对角线上一点,CE=CD,EF⊥AC,交AD于F点,连接CF,则∠DCF=_______度,∠CFE=________度.下一题5.(4.0)用30根火柴棒首尾顺次连结,组成一个直角三角形,它的三条边长分别由________、________、________(按从小到大的顺序填空)根火柴棒首尾顺次连结而成.下一题6.(4.0)把直角三角形的三边扩大相同的倍数后所得的新三角形是________三角形.下一题7.(6.0)工人师傅做铝合金窗框时分成下面3个步骤:(1)如图①,先截出长度分别相等的两对符合规格的铝合金窗料;(2)摆放成如图②的四边形,则这时窗框的形状是________形,根据的数学道理是________________;(3)如图③,将直角尺靠紧窗框的一个角,调整窗框的边框.如图④,当直角尺的两条边与窗框无缝隙时,说明窗框合格,这时窗框是________形,根据的数学道理是________.下一题三解答题:(总分:75.0)1.(6.0)某蓄电池的电压为定值,如图表示的是该蓄电池I(A)与电阻R(Ω)之间的反比例函数关系的图像,请写出它的函数表达式.下一题2.(8.0)如图所示,在△ABC中,∠ABC=90°,BD平分∠ABC,DE⊥BC于E,DF⊥AB 于F.求证:四边形BEDF是正方形.下一题3.(6.0)已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数的图象在第一象限交于点C,CD垂直于x轴,垂足为D,若OA=OB=OD=1,求点A,B,D的坐标,一次函数和反比例函数的解析式.下一题4.(6.0)如图所示,在ABCD,∠A=45°,BD⊥AD,BD=1,求ABCD的周长和面积.下一题5.(10.0)如图,四边形ABCD是菱形,∠ABD=60°,AB=8cm①求∠BAD、∠ABC的度数.②求菱形ABCD的周长和面积.下一题6.(8.0)若△ABC的三边a,b,c满足,试判断△ABC的形状.下一题7.(10.0)求证对角线相等的梯形是等腰梯形.下一题8.(8.0)如图所示△ABC中,∠C=90°,∠1=∠2,CD=1.5,BD=2.5,求AC的长.下一题9.(6.0)如图,在△ABC中,AD⊥BC于D,DE,DF分别是AC,AB边上的中线.若AB=AC,则△DEF是什么形状的三角形?请说明理由;下一题10.(7.0)如图,已知平行四边形ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4cm.(1)平行四边形ABCD是矩形吗?说说你的理由;(2)求这个平行四边形的面积.试题答案选择题(总分:45.0)题号正确答案题分1.1 B 4 1.2 C 4 1.3 A 4 1.4 C 4 1.5 D 4 1.6 A 4 1.7 D 4 1.8 A 4 1.9 D 4 1.10 D 4 1.11 C 4 1.12 B 1 填空题(总分:30.0)题号正确答案题分2.1如(答案不惟一)4 2.2 >5/2,<5/2 4 2.3 75,30 4 2.4 22.5,67.5 4 2.5 5,12,13 4 2.6 直角 42.7 (1)略;(2)平行四边形,两组对边分别相等的四边形是平行四边形;(3)矩形,有一个角是直角平行四边形是矩形.6解答题(总分:75.0)题号正确答案题分3.1 I=6/R 63.2 证法一:因为DE⊥BC于E,DF⊥AB于GF,∠ABC=90°,所以∠DFB=∠ABC=∠DEB=90°.所以四边形BEDF是矩形,所以BF∥DE(同旁内角互补,两直线平行),8所以∠1=∠3.因为BD是∠ABC的平分线,所以∠1=∠2,所以∠2=∠3,所以BE=ED,所以矩形BEDF是正方形(有一组邻边相等的矩形是正方形).证法二:因为DE⊥BC于E,DF⊥AB于F,所以∠BFD=∠DEB=90°.因为∠ABC=90°,所以DE∥AB,FD∥BC,所以四边形BEDF是平行四边形.所以∠1=∠3(两直线平行,内错角相等).因为BD是∠ABC的平分线,所以∠1=∠2,∠2=∠3,所以BE=ED(等角对等边),所以BEDF是菱形(一组邻边相等的平行四边形是菱形),又因为∠ABC=90°,所以菱形BEDF是正方形(有一个角为直角的菱形是正方形).3.3 解:因为OA=OB=OD=1,所以A(-1,0),B(0,1),所以一次函数的关系式为y=x+1.因为C点坐标为(1,m),且C点在一次函数y=x+1上,所以C(1,2),D(1,0).把C(1,2)代入中,得m=2,所以.63.4 在△ABD中,∵∠A=45°,BD⊥AD,∴AD=BD=1,∴AB=,在ABCD中,∵AB=CD,AD=BC,∴AB+BC+CD+AD=2(AD+AB)=2(1+)=2+,∴,6∴ABCD的周长为,面积为1.3.5 ①∠BAD=60°∠ABC=120°②周长:32cm面积:103.6 直角三角形83.7 已知:在梯形ABCD中,AD∥BC,AC=BD求证:AB=DC.证明:过点D作DE∥AC,交BC的延长线于E,得ACED,所以DE=AC.∵AC=BD,∴DE=BD,∴∠1=∠E,∵∠2=∠E,∴∠1=∠2又AC=DB,BC=CB,∴△ABC≌△DCB.∴AB=DC.103.8 3 8 3.9 等腰三角形 63.10 (1)平行四边形ABCD是矩形,理由略;(2).7。

初二数学相似图形测试题2

初二数学相似图形测试题2

相似图形测试题 1已知0432≠==c b a ,则cb a +的值为( )A 、54 B 、45 C 、 D.212下列各图形中,一定相似的是( )A. 两个平行四边形B. 两个直角三角形C. 底角相等的两个等腰梯形D. 有一个角为60o 的两个菱形 3 如图,在∆A B C 中,点P 为边AB 上一点,在以下四个条件:(1)∠=∠A A C P ;(2)∠=∠A PC A C B ;(3)A CA P AB 2=·;(4)∠=∠A CP B 中,能使∆∆A B C A C P ~的条件是( ) A. (1)(2)(3)B. (2)(3)(4)C. (1)(3)(4)D. (1)(2)(3)(4)4 下列命题:(1)如果∆∆ABC A B C 和'''相似,一定可以写成∆∆A B C A B C ~''';(2)有一个锐角对应相等的两直角三角形一定相似;(3)两个相似三角形的面积比为1:9,则它们的周长比为1:3;(4)两个位似图形一定相似,其中错误的命题的序号是( ) A. (1)B. (2)C. (3)D. (4)5 如果线段a=4,b=16,c=8,那么a,b,c 的第四比例项d 为( ) A. 8 B. 16 C. 24 D. 326下列4条线段中,不能成比例的是________。

A a b c dB a b c dC a b c dD a b c d ....================3624126346510251523,,,,,,,,,,,,7.在相同时刻物高与影长成比例,如果高为1米的测竿的影长为80厘米,那么影长为9.6米的旗杆的高为( )(A)15米 (B)13米 (C)12米 (D)10米8如图,工地上竖立着两根电线杆AB 、CD ,它们相距15米,分别自两杆上高出地面4米、6米的A 、C 处,向两侧地面上的E 、D ;B 、F 点处,用钢丝绳拉紧,以固定电线杆。

初二数学相似图形单元测评卷

初二数学相似图形单元测评卷

初二数学相似图形单元测评卷一、 选择题(3分×10=30分)1、如图1,若AC :BC=3:2,则AB :BC=( ) A 、1:2 B 、1:3 C 、2:1 D 、3:12、若32=yx,则3x ﹣2y=( )A 、3B 、2C 、1D 、03、若点C 是线段AB 的黄金分割点,且AB=2,则AC=( ) A 、15- B 、53- C 、215- D 、15-或53-4、下列图形中相似的多边形是( )A 、所有的矩形B 、所有的菱形C 、所有的等腰梯形D 、所有的正方形5、△ABC 的三边长分别是102、、2,△A ′B ′C ′的两边长分别为1和5,若△ABC ∽△A ′B ′C ′,则△A ′B ′C ′的第三边长为( )A 、22B 、2C 、2D 、22A BCC如图1 如图66、如图6,在梯形ABCD 中,AD ∥EF ∥BC ,AD=8,BC=12,31=BEAE,BD 交EF于O ,OE 与OF 的关系是( )A 、OE ﹥OFB 、OE ﹤OFC 、OE=OFD 、不能确定7、P 是△ABC (∠A ﹥∠B )中的BC 边上异于B 、C 的一点,过P 点作直线截△ABC 使所得的三角形与△ABC 相似,则满足条件的直线最多有( )条 A 、1 B 、2 C 、3 D 、4 8、k bc a ac b cba ===+++,则k=( )A 、2B 、﹣1C 、2或﹣1D 、无法确定 9、甲、乙两地相距3.5km ,画在地图上的距离为7cm ,则这张地图的比例尺为( ) A 、2:1 B 、1:50000 C 、1:2 D 、50000:110、一个钢筋三角架,三边长分别为20cm 、50cm 、60cm ,现要做一个与其相似的钢筋三角架,而只有长30cm 和50cm 两根钢筋,要求以其中一根为一边,从另一根截下两段(承诺有余料),作为另两边,则不同的截法有( )种 A 、1 B 、2 C 、3 D 、4 二、 填空题(2分×10=20分)1、正方形的对角线与边长的比为2、若52=-yyx ,则y x =3、已知线段AB ,延长AB 到C ,使BC=3AB ,则BC/AC=4、电视节目主持人主持节目时,站在舞台的黄金分割点处最自然得体,舞台AB 长为20m ,试运算主持人应走到离A 点至少 m 处较恰当。

初二数学相似图形过关测试

初二数学相似图形过关测试

相似图形过关测试一. 选择题(每小题5分:共30分)1.若x :y :z=3:5:7:3x +2y -4z =9则x +y +z 的值为( )A -3B -5C -7D -152.下列说法正确的是( )A 所有的等腰三角形都相似B 所有的直角三角形都相似C 所有的等腰直角三角形都相似D 有一个角相等的两个等腰三角形都相似3.在长度为1的线段上找到两个黄金分割点P、Q。

则PQ=( )A 215-B 53- C25- D 253- 4.如图:∠APD =900:AP =PB =BC =CD :则下列结论成立的是( )A ΔPAB ∽ΔPCA B ΔPAB ∽ΔPDAC ΔABC ∽ ΔDBAD ΔABC ∽ΔDCA5.在直角坐标系中:点A (-2:0):B (0:4):C (0:3)。

过点C作直线交x 轴于点D:使以D、O、C为顶点的三角形与ΔAOB 相似:这样的直线最多可以作( )条A 2B 3C 4D 66.如果整张报纸与半张报纸相似:则整张报纸长与宽的比是( )A 1:2B 4:1C 2:1D 2:3二. 填空题(每小题5分:共30分)1. 若x :y =3:则x :(x+y)=_______2. 已知CD 是Rt ΔABC 斜边AB 上的高:且AC =6cm :BC =8cm :则CD =_____3. 两个相似三角形的面积比为4:9:那么它们周长的比为_____4. 一个三角形的各边之比为2:5:6:和它相似的另一个三角形的最大边为24:它的最小边为_____5. 已知ΔABC ∽ΔDEF :AB :DE =4:1:那么需要_____个ΔDEF 才能把ΔABC 填满。

6. D 、E 分别是ΔABC 的边AC 、AB 上的点:且AB AE AC AD •=•:则∠ADE=_____三. 解答题(共60分)1.(15分)如图: AD =2:AC =4:BC =6:∠B =360:∠D =1170:ΔABC ∽ΔDAC 。

《相似图形》测试题-初中二年级数学试题练习、期中期末试卷-初中数学试卷

《相似图形》测试题-初中二年级数学试题练习、期中期末试卷-初中数学试卷

《相似图形》测试题-初中二年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载八年级数学(下)第四章《相似图形》测试题姓名___________班级__________分数_________一、选择题(8×3′=24′)1、下列说法“①凡正方形都相似;②凡等腰三角形都相似;③凡等腰直角三角形都相似;④直角三角形斜边上的中线与斜边的比为1∶2;⑤两个相似多边形的面积比为4∶9,则周长的比为16∶81.”中,正确的个数有()个A、1B、2C、3D、42、在坐标系中,已知A(-3,0),B(0,-4),C(0,1),过点C作直线L交x轴于点D,使得以点D、C、O为顶点的三角形与∶AOB相相似,这样的直线一共可以作出()条.A、6 B、3C、4D、53、RtDABC中,CD是斜边AB上的高,∶BAC的平分线分别交BC、CD于点E、F。

图中共有8个三角形,如果把一定相似的三角形归为一类,那么图中的三角形可分为()类。

A.2B.3C.4D.54、如图,点M在BC上,点N在AM上,CM=CN,,下列结论正确的是()A.DABM∶DACB B.DANC∶DAMB C.DANC∶DACM D.DCMN∶DBCA5、在梯形ABCD中,AB∶CD,AB=a,CD=b,两腰延长线交于点M,过M作DC的平行线,交AC、BD延长线于E,EF等于()A.B.C.D.6、如图,∶ABC中,AD∶BC于D,下列条件:∶∶B+∶DAC=90°;∶∶B=∶DAC;∶=;∶其中一定能够判定∶ABC是直角三角形的有()A、1B、2C、3D、47、如图,D、E分别是∶ABC的边AB、AC上的点,∶1=∶B,AE=EC=4,BC=10,AB=12,则∶ADE和∶ACB的周长之比为()A、B、C、D、8、在∶ABC与∶中,有下列条件:①;∶③∶A=∶;④∶C=∶。

如果从中任取两个条件组成一组,那么能判断∶ABC∶∶的共有()组。

相似测试题及答案

相似测试题及答案

相似测试题及答案一、选择题1. 下列哪项不是相似图形的特征?A. 形状相同B. 面积相等C. 边长成比例D. 角度相同答案:B2. 如果两个图形相似,那么它们的对应角:A. 相等B. 不相等C. 可能相等也可能不相等D. 无法确定答案:A二、填空题1. 相似图形的对应边的比值叫做________。

答案:相似比2. 两个相似多边形的面积比等于它们的相似比的________。

答案:平方三、判断题1. 两个图形相似,它们的周长比等于它们的相似比。

()答案:√2. 如果两个图形的对应边长比为2:3,那么它们的面积比为4:9。

()答案:√四、简答题1. 请简述相似图形的定义。

答案:相似图形是指两个图形的对应角相等,对应边的比值相等的图形。

2. 相似图形的性质有哪些?答案:相似图形的性质包括:对应角相等,对应边的比值相等,面积比等于相似比的平方,周长比等于相似比。

五、计算题1. 若两个相似三角形的相似比为3:4,求它们的面积比。

答案:面积比为9:16。

2. 已知一个三角形的边长为3, 4, 5,另一个相似三角形的边长为6, 8, 10,求这两个三角形的面积比。

答案:面积比为1:4。

六、论述题1. 论述相似图形在实际生活中的应用。

答案:相似图形在实际生活中有广泛的应用,例如在建筑设计中,设计师会使用相似图形来保持建筑的比例和风格;在地图制作中,相似图形用于表示不同比例尺的地图;在服装设计中,相似图形用于保持服装的款式和比例等。

2. 论述如何判断两个图形是否相似。

答案:判断两个图形是否相似,首先要检查它们的对应角是否相等,然后检查它们的对应边的比值是否相等。

如果这两个条件都满足,那么这两个图形就是相似的。

此外,还可以通过面积比来判断,如果两个图形的面积比等于它们边长比的平方,那么它们也是相似的。

初二数学相似图形精选练习及答案

初二数学相似图形精选练习及答案

AB C D D BA E C G F 相似图形精选练习1、已知:如图:在等腰梯形ABCD 中:AD ∥BC :AB =DC :过点D 作AC 的平行线DE :交BA 的延长线于点E . 求证:(1)△ABC ≌△DCB :(2)DE·DC =AE·BD .2、如图:在△ABC 中:∠CAB =60°:点D 是△ABC 内的一点:使∠CDA=∠ADB=∠CDB . 求证:线段DA 是线段DB 、DC 的比例中项.3、如图:在Rt △ABC 中:∠ACB =90°:边AC 的垂直平分线EF 交AC 于点E :交AB 于点F :BG ⊥AB :交EF 于点G .求证:CF 是EF 与FG 的比例中项.4、如图:在正方形ABCD 中:F 是BC 上一点:EA ⊥AF :AE 交CD 的延长线于E :连结EF 交AD 于G .(1)求证:⊿ABF ≌⊿ADE : (2)求证:BF·FC =DG·EC :A B C ED A G5、如图3:在△ABC 中:AB =AC :点D 、E 、F 分别在AB 、BC 、AC 边上:DE=DF :∠EDF =∠A .(1)找出图中相似的三角形:并证明:(2)求证:BCAB CE BD .6、如图:△ABC 中D 为AC 上一点:CD=2DA :∠BAC=45°:∠BDC=60°:CE ⊥BD :E 为垂足:连结AE.求证:(1) ED=DA :(2)∠EBA =∠EAB :(3) BE 2=AD ·AC7、如图△ABC 中:∠B=∠C=α(0<α<600).将一把三角尺中300角顶点P 放在BC 边上:当P 在BC 边上移动时:三角尺中300∠CPQ=β.(1)用α、β表示∠1和∠2:(2)①当β在许可范围内变化时:α取何值总有△ABP ∽△PCQ ?②当α在许可范围内变化时:β取何值总有△ABP ∽△QCP ?(3)试探索有无可能使△ABP 、△QPC 、△ABC 两两相似?若可能:写出所有α、β的值(不写过程):若不可能:请说明理由.E D C B A参考答案:1、证明:(1)∵四边形ABCD 是等腰梯形:∴AC =DB :∵AB =DC :BC =CB :∴△ABC ≌△BCD :(2)∵△ABC ≌△BCD :∴∠ACB =∠DBC :∠ABC =∠DCB :∵AD ∥BC :∴∠DAC =∠ACB :∠EAD =∠ABC :∵ED ∥AC :∴∠EDA =∠DAC :∴∠EDA =∠DBC :∠EAD =∠DCB : ∴△ADE ∽△CBD : ∴DE ︰BD =AE ︰CD :∴DE ·DC =AE ·BD .2、解:∵∠CDA=∠ADB=∠CDB : ∴ ∠CDA=∠ADB=∠CDB =120°∴∠ACD =180°-120°-∠CAD = 60°-∠CAD .又∵∠CAB =60°: ∴∠BAD=60°-∠CAD .∴∠ACD=∠BAD . ∴△ACD ∽△BAD .∴DBDA DA DC = . ∴DC DB DA ⋅=2. 即线段DA 是线段DB 、DC 的比例中项.3、证明:∵EF ⊥AC :BC ⊥AC :∴EF ∥BC .∵AE =CE :∴AF =FB .∴CF =AF =FB .∵∠AFE =∠GFB :∠AEF =∠GBF :∴△AEF ∽△GBF . ∴FG FB AF EF =.∴FGCF CF EF =. ∴CF 是EF 与FG 的比例中项.4、证明:(1),FAB DAF 90DAF EAD ∠+∠=︒=∠+∠ADE Rt ABF Rt AB AD FAB EAD ∆≅∆⇒⎭⎬⎫=∠=∠∴又. (2)∵ED BF ADE Rt ABF Rt =⇒∆≅∆DG ∥CF∴EC DG FC ED ECED FC DG ⋅=⋅⇒= 又 BF ED =∴ EC DG FC BF ⋅=⋅ 5、(1)解:△DEF ∽△ABC :△BDE ∽△CEF .证明如下:∵AB =AC :DE =DF :∴ACDF AB DE =. ∵∠EDF =∠A :∴△DEF ∽△ABC . ∴∠DEF =∠B=∠C .∵∠BED +∠DEF =∠C +∠CFE :∴∠BED=∠CFE .∴△BDE ∽△CEF .(2)证明:∵△BDE ∽△CEF :∴EFDE CE BD =. ∵△DEF ∽△ABC :∴BC AB EF DE =. ∴BCAB CE BD =. 6、证明:(1) ∵CE ⊥BD ∴∠CED=90° 又 ∠BDC=60°∴∠ECD=30° ∴CD=2ED ∵CD=2DA ∴ED=DA(2) ∵ED=DA ∴∠DEA=∠DAE∵∠EDC=60° ∴∠EAD=∠DEA=30°∵∠BAD=45° ∴∠EAB=15°又∠BDC=∠DBA+∠BAD ∴∠DBA=15°∴∠EAB=∠EBA(3) ∵∠EAB=∠EBA ∴BE=AE∵∠AED=∠ACE ∴△AED ∽△ACE ∴AEAD AC AE ∴AE 2=AD ·AC 即BE 2=AD ·AC7、解:(1)∠1=1500-β:∠2=300+β-α:(2)①由β=∠2或∠1=∠CQP :解得α=300.∴当β在许可范围内变化时:α=300总有△ABP ∽△PCQ. ②由β=∠1或∠2=∠CQP :解得β=750.∴当α在许可范围内变化时:β=750总有△ABP ∽△QCP.(3)可能.①α=300:β=300:②β=750:α0.。

初中数学图形的相似经典测试题附解析

初中数学图形的相似经典测试题附解析

初中数学图形的相似经典测试题附解析一、选择题1.已知的三边长分别为2,6,2,A B C '''∆的两边长分别是1和3,如果ABC ∆与A B C '''∆相似,那么A B C '''∆的第三边长应该是( )A .2B .22C .62D .3 【答案】A【解析】【分析】根据题中数据先计算出两相似三角形的相似比,则第三边长可求.【详解】解:根据题意,易证ABC ∆∽△A B C ''',且相似比为:2:1, ∴△A B C '''的第三边长应该是22=. 故选:A .【点睛】 本题考查了相似三角形的性质:相似三角形的对应边成比例,关键就是要清楚对应边是谁.2.如图,在△ABC 中,∠A =75°,AB =6,AC =8,将△ABC 沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .C .D .【答案】D【解析】【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【详解】A 、根据平行线截得的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B 、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C 、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.D 、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;故选:D .【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.3.如图,在Rt △ABC 中,∠ACB =90°,∠A =60°,AC =2,D 是AB 边上一个动点(不与点A 、B 重合),E 是BC 边上一点,且∠CDE =30°.设AD =x ,BE =y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .【答案】C【解析】【分析】 根据题意可得出4,23,AB BC ==4,23,BD x CE y =-=然后判断△CDE ∽△CBD ,继而利用相似三角形的性质可得出y 与x 的关系式,结合选项即可得出答案.【详解】解:∵∠A =60°,AC =2, ∴4,3,AB BC ==4,23,BD x CE y =-=在△ACD 中,利用余弦定理可得CD 2=AC 2+AD 2﹣2AC •AD cos ∠A =4+x 2﹣2x , 故可得242CD x x =-+又∵∠CDE =∠CBD =30°,∠ECD =∠DCB (同一个角),∴△CDE ∽△CBD ,即可得,CE CD CD CB=即222342,2342yx x x x --+=-+ 故可得: 23343.y x x =-++ 即呈二次函数关系,且开口朝下. 故选C .【点睛】考查解直角三角形,相似三角形的判定与性质,掌握相似三角形的判定定理与性质定理是解题的关键.4.如图,□ABCD 的对角线AC ,BD 交于点O ,CE 平分∠BCD 交AB 于点E ,交BD 于点F ,且∠ABC =60°,AB =2BC ,连接OE .下列结论:①EO ⊥AC ;②S △AOD =4S △OCF ;③AC :BD =21:7;④FB 2=OF •DF .其中正确的是( )A .①②④B .①③④C .②③④D .①③ 【答案】B【解析】【分析】 ①正确.只要证明EC=EA=BC ,推出∠ACB=90°,再利用三角形中位线定理即可判断. ②错误.想办法证明BF=2OF ,推出S △BOC =3S △OCF 即可判断.③正确.设BC=BE=EC=a ,求出AC ,BD 即可判断.④正确.求出BF ,OF ,DF (用a 表示),通过计算证明即可.【详解】解:∵四边形ABCD 是平行四边形,∴CD ∥AB ,OD=OB ,OA=OC ,∴∠DCB+∠ABC=180°,∵∠ABC=60°,∴∠DCB=120°,∵EC 平分∠DCB ,∴∠ECB=12∠DCB=60°, ∴∠EBC=∠BCE=∠CEB=60°,∴△ECB 是等边三角形,∴EB=BC ,∵AB=2BC ,∴EA=EB=EC ,∴∠ACB=90°,∵OA=OC ,EA=EB ,∴OE ∥BC ,∴∠AOE=∠ACB=90°,∴EO ⊥AC ,故①正确,∵OE ∥BC ,∴△OEF ∽△BCF , ∴12OE OF BC FB == , ∴OF=13OB , ∴S △AOD =S △BOC =3S △OCF ,故②错误, 设BC=BE=EC=a ,则AB=2a ,AC=3a ,OD=OB=223(72)a a +=a , ∴BD=7a ,∴AC :BD=3a :7a=21:7,故③正确,∵OF=13OB=7a , ∴BF=73a , ∴BF 2=79a 2,OF•DF=76a•7779a a ⎛⎫+= ⎪ ⎪⎝⎭ a 2, ∴BF 2=OF•DF ,故④正确,故选:B .【点睛】此题考查相似三角形的判定和性质,平行四边形的性质,角平分线的定义,解直角三角形,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.5.如图,在△ABC 中,DE ∥BC ,EF ∥AB ,则下列结论正确的是( )A .AD DE DB BC = B .BF EF BC AB = C .AE EC FC DE =D .EF BF AB BC=【答案】C【解析】【分析】根据相似三角形的判定与性质逐项分析即可.由△ADE ∽△ABC ,可判断A 的正误;由△CEF ∽△CAB ,可判定B 错误;由△ADE ~△EFC ,可判定C 正确;由△CEF ∽△CAB ,可判定D 错误.【详解】解:如图所示:∵DE ∥BC ,∴∠ADE =∠B ,∠AED =∠C ,∴△ADE ∽△ABC , ∴DE AD AD BC AB DB=≠, ∴答案A 错舍去;∵EF ∥AB ,∴△CEF ∽△CAB , CF EF BC A B B BF C=≠ ∴答案B 舍去∵∠ADE =∠B ,∠CFE =∠B ,∴∠ADE =∠CFE ,又∵∠AED =∠C ,∴△ADE ~△EFC , ∴AE DE EC FC=,C 正确; 又∵EF ∥AB , ∴∠CEF =∠A ,∠CFE =∠B ,∴△CEF ∽△CAB , ∴EF CE FC BF AB AC BC BC==≠, ∴答案D 错舍去;故选C .【点睛】 本题主要考查相似三角形的判定与性质,熟练掌握两平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似是解题的关键.6.如图,在△ABC中,DE∥BC,BE和CD相交于点F,且S△EFC=3S△EFD,则S△ADE:S△ABC的值为()A.1:3 B.1:8 C.1:9 D.1:4【答案】C【解析】【分析】根据题意,易证△DEF∽△CBF,同理可证△ADE∽△ABC,根据相似三角形面积比是对应边比例的平方即可解答.【详解】∵S△EFC=3S△DEF,∴DF:FC=1:3 (两个三角形等高,面积之比就是底边之比),∵DE∥BC,∴△DEF∽△CBF,∴DE:BC=DF:FC=1:3同理△ADE∽△ABC,∴S△ADE:S△ABC=1:9,故选:C.【点睛】本题考查相似三角形的判定和性质,解题的关键是掌握相似三角形面积比是对应边比例的平方.7.如图,O是平行四边形ABCD的对角线交点,E为AB中点,DE交AC于点F,若平行四边形ABCD的面积为8,则DOE的面积是()A.2B.32C.1D.94【答案】C 【解析】由平行四边形的面积,找到三角形底边和高与平行四边形底边和高的关系,利用面积公式以及线段间的关系求解.分别作△OED 和△AOD 的高,利用平行线的性质,得出高的关系,进而求解.【详解】解:如图,过A 、E 两点分别作AN ⊥BD 、EM ⊥BD ,垂足分别为M 、N ,则EM ∥AN ,∴EM :AN =BE :AB ,∵E 为AB 中点,∴BE=12AB , ∴EM =12AN , ∵平行四边形ABCD 的面积为8,∴2×12×AN×BD =8, ∴AN×BD =8 ∴S △OED =12×OD×EM =12×12BD×12AN =18AN×BD =1. 故选:C .【点睛】 本题考查平行四边形的性质,综合了平行线分线段成比例以及面积公式.已知一个三角形的面积求另一个三角形的面积有以下几种做法:①面积比是边长比的平方比;②分别找到底和高的比.8.如图,边长为4的等边ABC V 中,D 、E 分别为AB ,AC 的中点,则ADE V 的面积是( )A 3B 3C 33D .23【答案】A【分析】由已知可得DE 是△ABC 的中位线,由此可得△ADE 和△ABC 相似,且相似比为1:2,再根据相似三角形的面积比等于相似比的平方,可求出△ABC 的面积.【详解】Q 等边ABC V 的边长为4,2ABC 3S 4434∴=⨯=V , Q 点D ,E 分别是ABC V 的边AB ,AC 的中点,DE ∴是ABC V的中位线, DE //BC ∴,1DE BC 2=,1AD AB 2=,1AE AC 2=, 即AD AE DE 1AB AC BC 2===, ADE ∴V ∽ABC V ,相似比为12, 故ADE S V :ABC S 1=V :4,即ADE ABC 11S S 43344==⨯=V V , 故选A .【点睛】本题考查了等边三角形的性质、相似三角形的判定与性质、三角形中位线定理,解题的关键是熟练掌握等边三角形的面积公式、相似三角形的判定与性质及中位线定理.9.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,如果AC=3,AB=6,那么AD 的值为( )A .32B .92C .332D .3【答案】A【解析】【分析】【详解】解:∵Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,∴△ACD ∽△ABC ,∴AC :AB=AD :AC ,∵AC=3,AB=6,∴AD=32.故选A . 考点:相似三角形的判定与性质.10.在平面直角坐标系中,已知点E (﹣4,2),F (﹣2,﹣2),以原点O 为位似中心,相似比为,把△EFO 缩小,则点E 的对应点E′的坐标是A .(﹣2,1)B .(﹣8,4)C .(﹣8,4)或(8,﹣4)D .(﹣2,1)或(2,﹣1)【答案】D【解析】试题分析:根据位似的性质,缩小后的点在原点的同侧,为(-2,1),然后求在另一侧为(2,-1).故选D考点:位似变换11.如图,已知AOB ∆和11A OB ∆是以点O 为位似中心的位似图形,且AOB ∆和11A OB ∆的周长之比为1:2,点B 的坐标为()1,2-,则点1B 的坐标为( ).A .()2,4-B .()1,4-C .()1,4-D .()4,2-【答案】A【解析】【分析】 设位似比例为k ,先根据周长之比求出k 的值,再根据点B 的坐标即可得出答案.【详解】设位似图形的位似比例为k则1111,,OA kOA OB kOB A B kAB ===△AOB Q 和11A OB △的周长之比为1:2111112OA OBAB OA OB A B ++∴=++,即12OA OB AB kOA kOB kAB ++=++ 解得2k =又Q 点B 的坐标为(1,2)-∴点1B 的横坐标的绝对值为122-⨯=,纵坐标的绝对值为224⨯=Q 点1B 位于第四象限∴点1B 的坐标为(2,4)-故选:A .【点睛】本题考查了位似图形的坐标变换,依据题意,求出位似比例式解题关键.12.如图,将图形用放大镜放大,应该属于( ).A .平移变换B .相似变换C .旋转变换D .对称变换【答案】B【解析】【分析】 根据放大镜成像的特点,结合各变换的特点即可得出答案.【详解】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B .【点睛】本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.13.要做甲、乙两个形状相同(相似)的三角形框架,已知甲三角形框架三边的长分别为50 cm 、60 cm 、80 cm ,乙三角形框架的一边长为20 cm ,则符合条件的乙三角形框架共有( ).A .1种B .2种C .3种D .4种 【答案】C【解析】试题分析:根据相似图形的定义,可由三角形相似,那么它们边长的比相同,均为5:6:8,乙那个20cm 的边可以当最短边,最长边和中间大小的边.故选:C .点睛:本题考查的是相似形的定义,相似图形的形状相同,但大小不一定相同.14.(2016山西省)宽与长的比是51-(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD 、BC 的中点E 、F ,连接EF :以点F 为圆心,以FD 为半径画弧,交BC 的延长线于点G ;作GH ⊥AD ,交AD 的延长线于点H ,则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH【答案】D【解析】【分析】 先根据正方形的性质以及勾股定理,求得DF 的长,再根据DF=GF 求得CG 的长,最后根据CG 与CD 的比值为黄金比,判断矩形DCGH 为黄金矩形.【详解】 解:设正方形的边长为2,则CD=2,CF=1在直角三角形DCF 中,22125DF +=5FG ∴=51CG ∴=512CG CD ∴= ∴矩形DCGH 为黄金矩形故选:D .【点睛】本题主要考查了黄金分割,解决问题的关键是掌握黄金矩形的概念.解题时注意,宽与长51-的矩形叫做黄金矩形,图中的矩形ABGH 也为黄金矩形.15.如图,在正方形ABCD 中,E 为AB 的中点,G ,F 分别为AD 、BC 边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为( )A.2 B.3 C.4 D.5【答案】B【解析】∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴AE AG BF BE,又∵AE=BE,∴AE2=AG•BF=2,∴AE=2(舍负),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的长为3,故选B.【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG∽△BFE.16.如图,网格中的两个三角形是位似图形,它们的位似中心是()A.点A B.点B C.点C D.点D【答案】D【解析】【分析】利用对应点的连线都经过同一点进行判断.如图,位似中心为点D.故选D.【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:两个图形必须是相似形;对应点的连线都经过同一点;对应边平行.17.如图,已知△ABC,D、E分别在边AB、AC上,下列条件中,不能确定△ADE∽△ACB 的是()A.∠AED=∠B B.∠BDE+∠C=180°C.AD•BC=AC•DE D.AD•AB=AE•AC【答案】C【解析】【分析】A、根据有两组角对应相等的两个三角形相似,进行判断即可;B:根据题意可得到∠ADE=∠C,根据有两组角对应相等的两个三角形相似,进行判断即可;C、根据两组对应边的比相等且夹角对应相等的两个三角形相似,进行判断即可;D、根据两组对应边的比相等且夹角对应相等的两个三角形相似,进行判断即可.【详解】解:A、由∠AED=∠B,∠A=∠A,则可判断△ADE∽△ACB;B、由∠BDE+∠C=180°,∠ADE+∠BDE=180°,得∠ADE=∠C,∠A=∠A,则可判断△ADE∽△ACB;C、由AD•BC=AC•DE,得不能判断△ADE∽△ACB,必须两组对应边的比相等且夹角对应相等的两个三角形相似.D、由AD•AB=AE•AC得,∠A=∠A,故能确定△ADE∽△ACB,【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似(注意,一定是夹角); 有两组角对应相等的两个三角形相似.18.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A .4.4B .4C .3.4D .2.4【答案】D【解析】【分析】 根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】解:∵////a b c ∴AB DE BC EF= 即1.5 1.82EF = 解得:EF=2.4故答案为D .【点睛】 本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.19.如图,点D 是ABC V 的边BC 上一点,,2BAD C AC AD ∠=∠= ,如果ACD V 的面积为15,那么ABC V 的面积为( )A .20B .22.5C .25D .30【答案】A【解析】先证明C ABD BA ∽△△,再根据相似比求出ABC V 的面积即可.【详解】∵,BAD C B B ∠=∠=∠∠∴C ABD BA ∽△△∵2AC AD =∴4S ABD S CBA =V V ∴43S ACD S CBA =V V ∵ACD V 的面积为15∴44152033S CBA S ACD ==⨯=VV 故答案为:A .【点睛】 本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.20.如图,P 为平行四边形ABCD 边AD 上一点,E 、F 分别为PB 、PC 的中点,△PEF 、△PDC 、△PAB 的面积分别为S 、1S 、2S ,若S=2,则1S +2S =( ).A .4B .6C .8D .不能确定 【答案】C【解析】 试题分析:过P 作PQ ∥DC 交BC 于点Q ,由DC ∥AB ,得到PQ ∥AB ,可得出四边形PQCD 与ABQP 都为平行四边形,所以△PDC ≌△CQP ,△ABP ≌△QPB ,进而确定出△PDC 与△PCQ 面积相等,△PQB 与△ABP 面积相等,再由EF 为△BPC 的中位线,利用中位线定理得到EF ∥BC ,EF=12BC ,得出△PEF 与△PBC 相似,相似比为1:2,面积之比为1:4,所以PBC CQP QPB PDC ABP S S S S S =+=+V V V V V =1S +2S =8.故选C .考点:平行四边形的性质;三角形中位线定理.。

八年级数学相似图形同步测试题2

八年级数学相似图形同步测试题2

八年级(下)数学同步辅导第四章相似图形(§6~§9)Ⅰ. 梳理知识1.三角形相似的条件(1) ,两三角形相似.(2) ,两三角形相似.(3) ,两三角形相似.2.如何寻找和发现相似三角形两个三角形相似,一般说来必须具备下列六种图形之一:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.3.相似三角形与相似多边形的性质(1)相似三角形的性质①相似三角形的三边,三角.②相似三角形的,与都等于相似比.③相似三角形周长之比等于,相似三角形面积之比等于.(2)相似多边形的性质①相似多边形的对应边,对应角.②相似多边形的对角线之比、周长之比都等于.③相似多边形面积之比等于.4.几何变换(按一定的方法把一个图形变成另一个图形)(1)相似变换:保持图形的形状不变的几何变换叫做相似变换(2)位似变换①位似图形:如果两个图形不仅是图形,而且每组对应点所在的直线都,那么这样的两个图形叫做位似图形,这个点叫做,这时的相似比又称为.②位似图形的性质:位似图形上任意一对对应点到的距离之比等于位似比.5.相似三角形的应用——测量旗杆的高度(利用阳光下的影子;利用标杆;利用镜子的反射.)Ⅱ. 典例剖析例1.如图,DE∥BC,SΔDOE ∶SΔCOB=4∶9,求AD∶BD.例2.如图,四边形ABCD是平行四边形,AE⊥BC于E,AF⊥CD于F.(1)ΔABE与ΔADF相似吗?说明理由.(2)ΔAEF与ΔABC相似吗?说说你的理由.例3.如图,在RtΔABC中,∠C=90°,AC=4,BC=3.(1)如图(1),四边形DEFG为ABC的内接正方形,求正方形的边长.(2)如图(2),三角形内有并排的两个相等的正方形,它们组成的矩形内接于ΔABC,求正方形的边长.(3)如图(3),三角形内有并排的三个相等的正方形,它们组成的矩形内接于ΔABC,求正方形的边长.(4) 如图(4),三角形内有并排的n个相等的正方形,它们组成的矩形内接于ΔABC,请写出正方形的边长.Ⅲ.同步测试一、选择题(每小题3分,共30分)1、在相同时刻的物高与影长成比例,如果高为1.5米的测竿的影长为2.5米,那么影长为30米的旗杆的高是( )A.20米 .B.18米C.16米D.15米2、如图,D 、E 分别是AB 、AC 上两点,CD 与BE 相交于点O ,下列条件中不能使ΔABE 和ΔACD 相似的是( )A.∠B=∠CB.∠ADC=∠AEBC.BE=CD ,AB=ACD.AD ∶AC=AE ∶AB3、如图所示,D 、E 分别是ΔABC 的边AB 、AC 上的点,DE ∥BC ,并且AD ∶BD=2,那么S ΔADE ∶S 四边形DBCE =( ) (A)32 (B)43 (C)54 (D)944.在矩形ABCD 中,E 、F 分别是CD 、BC 上的点,若∠AEF=90°,则一定有( )(A)ΔADE ∽ΔAEF (B)ΔECF ∽ΔAEF (C)ΔADE ∽ΔECF(D)ΔAEF ∽ΔABF(第2题图) (第3题图) (第4题图) (第5题图) 5、厨房角柜的台面是三角形(如图所示),如果把各边中点连线所围成的三角形铺成黑色大理石(图中阴影部分),其余部分铺成白色大理石,则黑色大理石面积与白色大理石的面积之比是( )A.1∶2B.1∶3C.1∶4D.1∶56、如图,在大小为4×4的正方形网格中,是相似三角形的是( )①②③④A.①和②B.②和③C.①和③D.②和④7、如图是圆桌正上方的灯泡O发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2m,桌面距离地面1m,若灯泡O距离地面3m,则地面上阴影部分的面积为()A.0.36πm2B.0.81πm2C.2πm2D.3.24πm28、如图,直线l1∥l2,AF∶FB=2∶3,BC∶CD=2∶1,则AE∶EC 是()A.5∶2B.4∶1C.2∶1D.3∶29、如图,三个正六边形全等,其中成位似图形关系的有()A.4对B.1对C.2对D.3对(第7题图) (第8题图) (第9题图) (第10题图)10、平面直角坐标系中,有一条“鱼,它有六个顶点”,则()A.将各点横坐标乘以2,纵坐标不变,得到的鱼与原来的鱼位似B.将各点纵坐标乘以2,横坐标不变,得到的鱼与原来的鱼位似C.将各点横、纵坐标都乘以2,得到的鱼与原来的鱼位似1,得到的鱼与原来的鱼位似D.将各点横坐标乘以2,纵坐标乘以2二、填空题(每小题4分,共20分)11、两个相似多边形的一组对应边分别为3cm和4.5cm,如果它们的面积之和为130cm2,那么较小的多边形的面积是cm2.AB= 时,ΔABC与ΔADE相12、如图,DE与BC不平行,当AC似.(第12题图) (第13题图) (第14题图) (第15题图)13、如图,AD=DF=FB,DE∥FG∥BC,则SⅠ∶SⅡ∶SⅢ= .14、如图,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在CB、CD上滑动,当CM= 时,ΔAED与N,M,C为顶点的三角形相似.15、如图,在直角坐标系中有两点A(4,0)、B(0,2),如果点C在x轴上(C与A不重合),当点C的坐标为或时,使得由点B、O、C组成的三角形与ΔAOB相似(至少写出两个满足条件的点的坐标).三、解答题(每小题8分,共40分)16、如图,ΔABC中,BC=a.(1)若AD 1=31AB ,AE 1=31AC ,则D 1E 1= ;(2)若D 1D 2=31D 1B ,E 1E 2=31E 1C ,则D 2E 2= ; (3)若D 2D 3=31D 2B ,E 2E 3=31E 2C ,则D 3E 3= ; ……(4)若D n -1D n =31D n -1B ,E n -1E n =31E n -1C ,则D n E n = .17、已知:如图,ΔABC 中,∠B=∠C=30°.请你设计三种不同的分法,将ΔABC 分割成四个三角形,使得其中两个是全等三角形,而另外两个是相似三角形但不全等的直角三角形.请画出分割线段,标出能够说明分法的所得三角形的顶点和内角度数或记号,并在各种分法的空格线上填空.(画图工具不限,不要求写出画法,不要求说明理由).分法一 分法二 分法三分法一:分割后所得的四个三角形中,Δ ≌Δ ,Rt Δ ∽Rt Δ .分法二:分割后所得的四个三角形中,Δ ≌Δ ,Rt Δ ∽Rt Δ .分法三:分割后所得的四个三角形中,Δ ≌Δ ,Rt Δ ∽Rt Δ .18、在比例尺为1∶5000的地图上,一块多边形地区的周长是72cm ,面积是320cm 2,求这个地区的实际周长和面积.19、如图,ΔABC中,BD是角平分线,过D作DE∥AB交BC于点E,AB=5cm,BE=3cm,求EC的长.20、如图,四边形ABCD、CDEF、EFGH都是正方形.(1)⊿ACF与⊿ACG相似吗?说说你的理由.(2)求∠1+∠2的度数.五、(本题10分)21、在ΔABC中,AB=4如图(1)所示,DE∥BC,DE把ΔABC分成面积相等的两部分,即S,求AD的长.Ⅰ=SⅡ如图(2)所示,DE∥FG∥BC,DE、FG把ΔABC分成面积相等的三部分,即SⅠ=SⅡ=SⅢ,求AD的长.如图(3)所示,DE∥FG∥HK∥…∥BC,DE、FG、HK、…把ΔABC 分成面积相等的n部分,SⅠ=SⅡ=SⅢ=…,请直接写出AD的长.。

判定两个图形是否相似练习题

判定两个图形是否相似练习题

判定两个图形是否相似练习题图形的相似性是几何学中重要的概念之一,它用于描述两个图形在形状上的相似程度。

在解决几何问题或应用中,判定两个图形是否相似是一项基本技能。

本文将介绍一些判定两个图形是否相似的练习题,帮助读者提升这一方面的能力。

一、什么是相似图形?在开始练习之前,我们首先来回顾一下相似图形的概念。

相似图形是指具有相同形状但可能不同大小的图形。

如果两个图形的对应边成比例,那么这两个图形就是相似的。

比例关系可以用于描述两个相似图形之间的对应边长比值。

二、练习题一已知图形ABCD和图形EFGH如下所示:```A E/ \ / \B C F G| |D H```请判断图形ABCD和图形EFGH是否相似,并给出相似的对应边长比值。

解答:首先,我们需要比较图形ABCD和图形EFGH的各边是否成比例。

观察这两个图形的对应边,可以看出:AB/EF = BC/FG = CD/GH = AD/EH由于这些比值都相等,我们可以得出结论:图形ABCD与图形EFGH相似。

相似的对应边长比值为:AB : EF = BC : FG = CD : GH = AD : EH三、练习题二现有两个图形:一个是正方形,另一个是一个矩形。

请判断这两个图形是否相似,并给出相似的对应边长比值。

解答:首先,我们需要比较这两个图形的各边是否成比例。

对于一个正方形,每条边的长度相等;而矩形的对边长度不相等。

因此,正方形和矩形不可能相似。

无法给出相似的对应边长比值。

四、练习题三现有两个图形:一个是等边三角形,另一个是等腰梯形。

请判断这两个图形是否相似,并给出相似的对应边长比值。

解答:首先,我们需要比较这两个图形的各边是否成比例。

对于一个等边三角形,每条边的长度相等;而等腰梯形的对边长度不相等。

因此,等边三角形和等腰梯形不可能相似。

无法给出相似的对应边长比值。

五、练习题四已知图形IJKL和图形MNOP如下所示:```I M/ \ / \J K N O| |L P```请判断图形IJKL和图形MNOP是否相似,并给出相似的对应边长比值。

八年级数学相似图形单元测试卷.doc

八年级数学相似图形单元测试卷.doc

八年级数学相似图形单元测试卷第四章 相似图形(§1—§7)测试时间60分钟 测试分值100分 学生姓名一.选择题(每小题5分,共30分)1.在比例尺为1:5000的地图上,量得甲,乙两地的距离为25cm,则甲,乙两地的实际距离是( )A.1250kmB.125kmC.12.5kmD.1.25km2.已知0432≠==c b a ,则cb a +的值为( ) A.54 B.45 C.2 D.21 3.已知⊿ABC 的三边长分别为2,6,2,⊿A ′B ′C ′的两边长分别是1和3,如果⊿ABC 与⊿A ′B ′C ′相似,那么⊿A ′B ′C ′的第三边长应该是( ) A.2 B.22 C.26 D.33 4.如图,AB 是斜靠在墙上的长梯,梯脚B 距墙脚1.6m,梯上点D 距墙1.4m,BD 长0.55m,则梯子的长为( )A.3.85mB.4.00mC.4.40mD.4.50m5.如图,∠ACB=∠ADC=90°,BC=a,AC=b,AB=c,要使⊿ABC ∽⊿CAD,只要CD 等于( ) A.c b 2 B.a b 2 C.cab D.c a 2(第4题图) (第5题图) (第10题图)6.一个钢筋三角架三 长分别为20cm,50cm,60cm,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和50cm 的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有( )A.一种B.两种C.三种D.四种二.填空题(每小题5分,共40分)7.已知43=y x ,则._____=-yy x 8.已知点C 是线段AB 的黄金分割点,且AC>BC,则AC ∶AB= .9.把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为 .10.如图,⊿ABC 中,D,E 分别是AB,AC 上的点(DE BC),当 或 或 时,⊿ADE 与⊿ABC 相似.三.解答题(每小题10分,共50分)11.在方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.请你在如图所示的4×4的方格纸中,画出两个相似但不全等的格点三角形(要求:所画三角形为钝角三角形,标明字母,并说明理由).12.小颖测得2m高的标杆在太阳下的影长为1.2m,同时又测得一棵树的影长为3.6m,请你帮助小颖计算出这棵树的高度.13.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.14.如图,测量小玻璃管口径的量具ABC,AB的长为10cm,AC被分为60等份.如果小玻璃管口DE正好对着量具上20等份处(DE∥AB),那么小玻璃管口径DE是多大?15.如图,⊿ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F.(1)试说明⊿ABD≌⊿BCE.(2)⊿AEF与⊿ABE相似吗?说说你的理由.(3)BD2=AD·DF吗?请说明理由.。

八年级数学第二学期《相似图形》单元测试卷(含答案)北师大版

八年级数学第二学期《相似图形》单元测试卷(含答案)北师大版

八年级数学第二学期《相似图形》单元测试卷(含答案)北师大版单元测试卷班级 姓名 学号 得分一、选择题(每题3分,共36分)1、在比例尺为1∶500000的平面地图上,A 、B 两地的距离是6㎝,那么A 、B 两地的实际距离是( )A 、60kmB 、1.2kmC 、30kmD 、20km 2、如图,线段AB ∶BC = 1∶2,那么AC ∶BC 等于( )A 、1∶3B 、2∶3C 、3∶1D 、3∶23、已知xy = mn ,则把它改写成比例式后,错误的是 ( ) A 、n x =y m B 、m y =x n C 、m x =n y D 、m x =yn 4、如果y y x + = 47,那么y x 的值是( ) A 、43 B 、32 C 、34 D 、23 5、若3x -4y = 0,则yyx +的值是( ) A 、73 B 、37 C 、47 D 、74 6、已知△ABC 的三边长分别为2、 6、 2, '''A B C ∆的两边长分别是1和3,如果△ABC 与'''A B C ∆相似, 那么'''A B C ∆的第三边长应该是( )A 、2B 、22 C 、26 D 、33 7、如图,AB 是斜靠在墙上的长梯,梯脚B 距墙脚1.6m,梯上点D 距墙1.4m,BD 长0.55m,则梯子的长为( )A 、3.85mB 、4.00mC 、4.40mD 、4.50m 8、如图,∠ACB=∠ADC=90°,BC=a, AC=b, AB=c, 要使△ABC ∽△CAD, 只要CD 等于( )A 、c b 2B 、a b 2C 、cab D 、c a 29、如图,矩形ABCD 中,DE ⊥AC ,E 为垂足,图中相似三角形共有(全等除外) A 、3对 B 、4对 C 、5对 D 、6对 10、如图,D 为△ABC 的边BC 上的一点,连结AD ,要使△ABD ∽△CBA ,应具备下列条件中的( )A 、BCABCD AC =B 、BD AB =2·BC C 、ADBD CD AB =D 、CD AC =2·BC 11、如图,L 1∥L 2∥L 3 , 下列比例式中错误的是 ( )A 、B AC A AB AC ''''= B 、AB BCB AC B ='''' C 、C A A B AC BC ''''= D 、''AB AC A B AC=''12、两个相似三角形的对应边上的中线之比为1:4,它们的面积比为( ) A 、1: 4 B 、1:2 C 、1:16 D 、1:8二、填空题(每空2分,共36分)1、已知线段a 、b 、c 、d 是成比例线段,且a = 2㎝,b = 0.6㎝,c=4㎝,那么d= ㎝。

初中数学图形的相似经典测试题含答案

初中数学图形的相似经典测试题含答案
【答案】A
【解析】
【分பைடு நூலகம்】
由已知可得DE是△ABC的中位线,由此可得△ADE和△ABC相似,且相似比为1:2,再根据相似三角形的面积比等于相似比的平方,可求出△ABC的面积.
【详解】
等边 的边长为4,

点D,E分别是 的边AB,AC的中点,
是 的中位线,
, , , ,
即 ,
∽ ,相似比为 ,
故 : :4,
∴AD:DF=3:2,
∵AB∥CD∥EF,
∴ ,即 ,
解得,CE=4,
故选B.
【点睛】
本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.
4.如图,点A在双曲线y═ (x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于 OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为( )
∴ ,
在Rt△ABD中,∠ABD=30°,BD=2 ,
∴AB=3,
∴ ,
∴ ,
∴DF= ,
故选D.
【点睛】
此题主要考查了含30度角的直角三角形的性质,相似三角形的判定和性质,角平分线的定义,判断出DE∥是解本题的关键.
10.如图,边长为4的等边 中,D、E分别为AB,AC的中点,则 的面积是
A. B. C. D.
∴CA:OA=13:12,
∴CO:OA=5:12,
∴ = ,
∵S△AOE=9,
∴S△COF= ,
∴ ,
∵k<0,

故选:B.
【点睛】
本题主要考查反比例函数图象上的点的特征、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,根据相似三角形解决问题,属于中考选择题中的压轴题.

数学初中相似形测试卷

数学初中相似形测试卷

一、选择题(每题4分,共20分)1. 下列各组图形中,哪一组图形一定是相似图形?A. 正方形和长方形B. 等腰三角形和直角三角形C. 等边三角形和等腰三角形D. 正方形和等边三角形2. 下列关于相似形的说法,正确的是:A. 相似形的大小一定相同B. 相似形的形状一定相同C. 相似形的面积一定相同D. 相似形的对应边长成比例3. 已知两个相似三角形的相似比为2:3,那么它们的周长比是:A. 2:3B. 4:9C. 1:1.5D. 1:24. 下列关于相似三角形面积的结论,正确的是:A. 相似三角形的面积比等于相似比的平方B. 相似三角形的面积比等于相似比C. 相似三角形的面积比等于相似比的立方D. 相似三角形的面积比等于相似比的倒数5. 下列关于相似多边形周长的结论,正确的是:A. 相似多边形的周长比等于相似比B. 相似多边形的周长比等于相似比的平方C. 相似多边形的周长比等于相似比的立方D. 相似多边形的周长比等于相似比的倒数二、填空题(每题4分,共16分)6. 如果两个相似三角形的相似比为3:2,那么它们的面积比为______。

7. 如果两个相似三角形的周长比为4:3,那么它们的相似比为______。

8. 两个相似多边形的对应角相等,那么它们的相似比为______。

9. 相似多边形的面积比为16:9,那么它们的相似比为______。

10. 相似三角形的相似比为5:3,那么它们的周长比为______。

三、解答题(每题10分,共30分)11. 已知两个相似三角形的相似比为2:3,若大三角形的周长为24cm,求小三角形的周长。

12. 已知两个相似三角形的面积比为4:9,若大三角形的面积为144cm²,求小三角形的面积。

13. 一个等边三角形的边长为10cm,另一个等边三角形的边长为15cm,求它们的面积比。

四、应用题(15分)14. 一个矩形的长为12cm,宽为8cm,求与它相似的矩形的周长为18cm时,该矩形的长度和宽度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2005年初二数学《相似图形》测试
一、选择题(每题3分,共30分)
1)已知21=y x ,则y
x y x +-的值为( ) (A)31 (B)3
1- (C)3 (D)-3 2)在比例尺为1∶20的图纸上画出的某个零件的长是32mm ,这个零件的实际长是( )
(A)64m (B)64dm (C)64cm (D)64mm
3)两个相似三角形的相似比是2:3,其中较小的三角形的面积是12,则另一个三角形的面积是( )
(A )8 (B )16 (C )24 (D )27
4)如图,D 是△ABC 边BC 上-点,△ABD ∽△CAB,则( )。

(A )∠1=∠2 (B )∠2=∠C (C )∠1=∠BAC (D )∠2=∠BAC
5)如图,能保证△ACD 与△ABC 相似的条件是( )
(A )AC:CD=AB:BC (B )CD:AD=BC:AC (C )AC 2 =AD ·AB
(D )CD 2 =AD ·DB
6)
3.如图,E 是平行四边形ABCD 的边BC 的延长线上的一点,连结AE 交CD 于F ,则图中共有相似三角形( )
(A)1对 (B)2对 (C)3对 (D)4对
(第4题图) (第5题图) (第6题图) (第 7题图)
5.ΔABC 中,DE ∥BC ,且AD ∶DB=2∶1,那么DE ∶BC 等于( )
(A)2∶1 (B)1∶2 (C)2∶3 (D)3∶2
6.如图,P 是Rt ΔABC 的斜边BC 上异于B 、C 的一点,过点P 做直线截ΔABC ,使截得的三角形与ΔABC 相似,满足这样条件的直线共有( )
(A)1条 (B)2条 (C)3条 (D)4条
7.如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( ) (A)AC AE AB AD = (B)FB EA CF CE = (C)BD
AD BC DE = (D)CB CF AB EF = 8. 4、如果y y x + = 47,那么y
x 的值是( ) A 、43 B 、32 C 、34 D 、2
3 5、若3x -4y = 0,则y
y x +的值是( ) A 、
73 B 、
37 C 、47 D 、74 1、两个相似三角形的相似比为4:9,那么这两个相似三角形的面积比为( )。

(A )2:3;(B )4:9;(C )4:81;(D )16:81。

3、如图,AB ∥A ’B ’,BC ∥B ’C ’, AC ∥A ’C ’,则图中相似三角形组数为( )。

(A )5;(B )6;(C )7;(D )8。

4、如图,△ABC 中,DE ∥BC ,BE 和CD 相交于点F ,DF:FC =1:3,则=( )。

(A )1:3;(B )1:;(C )1:9;(D )1:18。

6、已知线段a 、b 、c 、d 是成比例线段,且a = 2㎝,b = 0.6㎝,c=4㎝,那么
d= ㎝。

7、点C 是线段AB 的黄金分割点,AC >BC ,那么AB
AC 的值是 。

8、2、3、6的第四比例项是 ;2、22的比例中项是 。

9、已知(a -b )∶(a +b )= 3∶7,那么a ∶b 的值是 。

10、电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体,若舞台AB 长为20m ,试计算主持人应走到离A 点至少 m 处?,如果他向B 点再走 m ,也处在比较得体的位置?(结果精确到0.1m )
三、解答题(每题10分,共40分)
11、同学们都知道,在相同的时刻,物高与影长成比例,某班同学要测量学校国旗的旗杆高度,在某一时刻,量得旗杆的影长是8米,而同一时刻,量得某一身高为1.5米的同学的影长为1米,求旗杆的高度是多少?
12、已知
3a =5b =7c ,求(1)b c b a ++ (2) c a c b a +-+32的值。

相关文档
最新文档