高中数学第一章常用逻辑用语(二)复习导学案理新人教A版选修2-1
新课标高中数学人教A版选修2-1精品导学案第1章 常用逻辑用语(22页)
1、1命题及其关系学习目标(1)了解命题概念及其构成形式(2)理解命题的真假判断(3)掌握四种命题之间的相互关系自我评价1.在数学中,我们把用、、或表达的,可以的叫做命题.其中的语句叫做真命题,的语句叫做假命题2.命题的数学形式:“若p,则q”,命题中的p叫做命题的,q叫做命题的. 1)对两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们这样的两个命题叫做,其中一个命题叫做原命题为:“若p,则q”,则逆命题为:“”.(2) 一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定, 我们把这样的两个命题叫做,其中一个命题叫做原命题,那么另一个命题叫做原命题的.若原命题为:“若p,则q”,则否命题为:“”(3)一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定, 我们把这样的两个命题叫做,其中一个命题叫做命题,那么另一个命题叫做原命题的.若原命题为:“若p,则q”,则否命题为:“”命题表述形式原命题若p,则q逆命题(1)否命题(2)逆否命题(3)原命题逆命题否命题逆否命题真真假假系:(1)(2)精典范例例1:下列语句是否为命题?你能判断它们的真假吗?①若平面四边形的边都相等,则它是菱形。
②空集是任何集合的真子集③对顶角相等吗?④对顶角不相等;⑤6>3⑥3>x命题有,真命题有假命题有.变式1:下列语句的是否为命题?能判断它们的真假吗?①若1=xy,则yx,互为倒数;②相似三角形的周长相等;③2+4=5④如果b≤-1,那么方程2220x bx b b-++=有实根;⑤若A B B=U,则B A⊆;⑥3不能被2整除;命题有,真命题有假命题有.变式2下列语句哪些是命题?是真命题还是假命题? (1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)指数函数是增函数吗?(4)若空间有两条直线不相交,则这两条直线平行;(52(2)2-;(6)15x>.命题有,真命题有假命题有.例2:指出下列命题的条件p与结论q,并判断命题的真假(1)若整数a能被2整除,则a是偶数;(2)菱形的对角线相等且互相平分;(3)相等的两个角是对顶角。
高二数学选修2-1第一章常用逻辑用语导学案
§1.1 命题及四种命题设计人:韩爱芳1. 掌握命题、真命题及假命题的概念;2. 四种命题的内在联系,能根据一个命题来构造它的逆命题、否命.复习2:什么是定理?什么是公理?.二、新课导学※学习探究1.在数学中,我们把用、、或表达的,可以的叫做命题.其中的语句叫做真命题,的语句叫做假命题练习:下列语句中:(1)若直线//a b,则直线a和直线b无公共点;(2)247+=(3)垂直于同一条直线的两个平面平行;(4)若21x=,则1x=;(5)两个全等三角形的面积相等;(6)3能被2整除.其中真命题有,假命题有2.命题的数学形式:“若p,则q”,命题中的p叫做命题的,q叫做命题的.※典型例题例1:下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)指数函数是增函数吗?(4)若空间有两条直线不相交,则这两条直线平行;(52;(6)15x>.命题有,真命题有假命题有.例2 指出下列命题中的条件p和结论q:(1)若整数a能被2整除,则a是偶数;(2)若四边形是菱形,则它的对角线互相垂直平分.解:(1)条件p:结论q:(2)条件p:结论q:变式:将下列命题改写成“若p,则q”的形式,并判断真假:(1)垂直于同一条直线的两条直线平行;(2)负数的立方是负数;(3)对顶角相等.※动手试试1.判断下列命题的真假:(1)能被6整除的整数一定能被3整除;(2)若一个四边形的四条边相等,则这个四边形是正方形;(3)二次函数的图象是一条抛物线;(4)两个内角等于45︒的三角形是等腰直角三角形.2.把下列命题改写成“若p,则q”的形式,并判断它们的真假.(1)等腰三角形两腰的中线相等;(2)偶函数的图象关于y轴对称;(3)垂直于同一个平面的两个平面平行.小结:判断一个语句是不是命题注意两点:(1)是否是陈述句;(2)是否可以判断真假.3.四种命题的概念(1)对两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们这样的两个命题叫做,其中一个命题叫做原命题为:“若p,则q”,则逆命题为:“”.(2) 一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定, 我们把这样的两个命题叫做,其中一个命题叫做命题,那么另一个命题叫做原命题的.若原命题为:“若p,则q”,则否命题为:“”(3)一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定, 我们把这样的两个命题叫做,其中一个命题叫做命题,那么另一个命题叫做原命题的.若原命题为:“若p,则q”,则否命题为:“”练习:下列四个命题:(1)若()f x是周期函数;f x是正弦函数,则()(2)若()f x是周期函数,则()f x是正弦函数;(3)若()f x不是周期函数;f x不是正弦函数,则()(4)若()f x不是正弦函数.f x不是周期函数,则()(1)(2)互为(1)(3)互为(1)(4)互为(2)(3)互为例3 命题:“已知a、b、c、d是实数,若子,==,则a c b da b c d+=+”.写出逆命题、否命题、逆否命题.变式:设原命题为“已知a、b是实数,若a b+是无理数,则a、b都是无理数”,写出它的逆命题、否命题、逆否命题.※动手试试写出下列命题的逆命题、否命题和逆否命题并判断它们的真假:(1)若一个整数的末位数是0,则这个整数能被5整除;(2)若一个三角形的两条边相等,则这个三角形的两个角相等; (3)奇函数的图像关于原点对称.三、总结提升: ※ 学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1.下列语名中不是命题的是( ). A.20x > B.正弦函数是周期函数 C.{1,2,3,4,5}x ∈ D.125>2.设M 、N 是两个集合,则下列命题是真命题的是( ). A.如果M N ⊆,那么M N M ⋂= B.如果M N N ⋂=,那么M N ⊆ C.如果M N ⊆,那么M N M ⋃= D.M N N ⋃=,那么N M ⊆3.下面命题已写成“若p ,则q ”的形式的是( ). A.能被5整除的数的末位是5B.到线段两个端点距离相等的点在线段的垂直平分线上C.若一个等式的两边都乘以同一个数,则所得的结果仍是等式D.圆心到圆的切线的距离等于半径 4.下列语句中:(1)2+2)1002是个大数(3)好人一生平安(4)968能被11整除,其中是命题的序号是 5.将“偶函数的图象关于y 轴对称”写成“若p ,则q ”的形式,则p : ,q :1.写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假 (1)若,a b 都是偶数,则a b +是偶数; (2)若0m >,则方程20x x m +-=有实数根.2.把下列命题改写成“若p,则q”的形式,并写出它们的逆命题、否命题和逆否命题,并判断它们的真假:(1)线段的垂直平分线上的点到这条线段两个端点的距离相等;(2)矩形的对角线相等.§1.1 四种命题间的相互关系设计人:李月光1.掌握四种命题的内在联系;2. 能分析逆命题、否命题和逆否命题的相互关系,并能利用等价关复习2:判断命题“若0a ≥,则20x x a +-=有实根”的逆命题的真假.二、新课导学 ※ 学习探究1:分析下列四个命题之间的关系(1)若()f x 是正弦函数,则()f x 是周期函数; (2)若()f x 是周期函数,则()f x 是正弦函数; (3)若()f x 不是正弦函数,则()f x 不是周期函数; (4)若()f x 不是周期函数,则()f x 不是正弦函数. (1)(2)互为 (1)(3)互为 (1)(4)互为 (2)(3)互为通过上例分析我们可以得出四种命题之间有如下关系:2、四种命题的真假性例1 以“若2320x x -+=,则2x =”为原命题,写出它的逆命题、否命题、逆否命题,并判断这些命题的真假并总结其规律性.(1) . (2) . 练习:判断下列命题的真假.(1)命题“在ABC ∆中,若AB AC >,则C B ∠>∠”的逆命题; (2)命题“若0ab ≠,则0a ≠且0b ≠”的否命题; (3)命题“若0a ≠且0b ≠,则0ab ≠”的逆否命题; (4)命题“若0a ≠且0b ≠,则220a b +>”的逆命题.反思:(1)直接判断(2)互为逆否命题的两个命题等价来判断. ※ 典型例题例1 证明:若220x y +=,则0x y ==.变式:判断命题“若220x y +=,则0x y ==”是真命题还是假命题?练习:证明:若222430a b a b -+--≠,则1a b -≠.例2 已知函数()f x 在(,)-∞+∞上是增函数,,a b R ∈,对于命题“若0a b +≥,则()()()()f a f b f a f b +≥-+-.”(1) 写出逆命题,判断其真假,并证明你的结论. (2) 写出其逆否命题,并证明你的结论. ※ 动手试试1.求证:若一个三角形的两条边不等,这两条边所对的角也不相等.2.命题“如果22x a b ≥+,那么2x ab ≥”的逆否命题是( ) A.如果22x a b <+,那么2x ab < B.如果2x ab ≥,那么22x a b ≥+ C.如果2x ab <,那么22x a b <+ D.如果22x a b ≥+,那么2x ab <三、总结提升: ※ 学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 命题“若0x >且0y >,则0xy >”的否命题是( ).A.若0,0x y ≤≤,则0xy ≤B.若0,0x y >>,则0xy ≤C.若,x y 至少有一个不大于0,则0xy <D.若,x y 至少有一个小于0,或等于0,则0xy ≤2. 命题“正数a 的平方根不等于0”是命题“若a 不是正数,则它的平方根等于0”的( ).A.逆命题B.否命题C.逆否命题D.等价命题3.). A.假设B. C.D.4. 若1x >,则21x >的逆命题是 否命题是5.命题“若a b >,则221a b ≥-”的否命题为1. 已知,a b 是实数,若20x ax b ++≤有非空解集,则240a b -≥,写出该命题的逆命题、否命题、逆否命题并判断其真假.2.证明:在四边形ABCD 中,若AB CD AC CD +<+,则AB AC <.§1.2.1 充分条件与必要条件设计人:杨光明1. 理解必要条件和充分条件的意义;..复习2:将命题“线段的垂直平分线上的点到这条线段两个端点的距离相等”改写为“若p,则q”的形式,并写出它的逆命题、否命题、逆否命题并判断它们的真假.二、新课导学※学习探究探究任务:充分条件和必要条件的概念问题:1. 命题“若22>+,则2x a b>”x ab(1)判断该命题的真假;(2)改写成“若p,则q”的形式,则P:q:(3)如果该命题是真命题,则该命题可记为:读着:2. 1.命题“若0a=”ab=,则0(1)判断该命题的真假;(2)改写成“若p,则q”的形式,则P:q:(3)如果该命题是真命题,则该命题可记为:读着:新知:一般地,“若p,则q”为真命题,是指由p通过推理可以得出q .我们就说,由p 推出q ,记作p q ⇒,并且说p 是q 的 ,q 是p 的 试试:用符号“⇒”与“”填空: (1) 22x y = x y =;(2) 内错角相等 两直线平行;(3) 整数a 能被6整除 a 的个位数字为偶数; (4) ac bc = a b =. ※ 典型例题例1 下列“若p ,则q ”形式的命题中,哪些命题中的p 是q 的充分条件?(1)若1x =,则2430x x -+=;(2)若()f x x =,则()f x 在(,)-∞+∞上为增函数; (3)若x 为无理数,则2x 为无理数.练习:下列“若P ,则q ”的形式的命题中,哪些命题中的p 是q 的充分条件?(1)若两条直线的斜率相等,则这两条直线平行; (2)若5x >,则10x >例2 下列“若p ,则q ”形式的命题中哪些命题中的q 是p 必要条件? (1)若x y =,则22x y =;(2)若两个三角形全等,则这两个三角形面积相等; (3)若a b >,则ac bc >练习:下列“若p ,则q ”形式的命题中哪些命题中的q 是p 必要条件? (1)若5a +是无理数,则a 是无理数; (2)若()()0x a x b --=,则x a =.小结:判断命题的真假是解题的关键.※ 动手试试练1. 判断下列命题的真假.(1)2x =是2440x x -+=的必要条件; (2)圆心到直线的距离等于半径是这条直线为圆的切线的必要条件; (3)sin sin αβ=是αβ=的充分条件; (4)0ab ≠是0a ≠的充分条件.练2. 下列各题中,p 是q 的什么条件? (1)p :1x =,q :1x - (2)p :|2|3x -≤,q :15x -≤≤; (3)p :2x =,q :3x -=(4)p :三角形是等边三角形,q :三角形是等腰三角形.三、总结提升 ※ 学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※ 知识拓展设,A B 为两个集合,集合A B ⊆,那么x A ∈是x B ∈的 条件,.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在平面内,下列哪个是“四边形是矩形”的充分条件?( ). A.平行四边形对角线相等 B.四边形两组对边相等 C.四边形的对角线互相平分 D.四边形的对角线垂直2.,x y R ∈,下列各式中哪个是“0xy ≠”的必要条件?( ). A.0x y += B.220x y +> C.0x y -= D.330x y +≠3.平面//α平面β的一个充分条件是( ). A.存在一条直线,//,//a a a αβ B.存在一条直线,,//a a a αβ⊂C.存在两条平行直线,,,,//,//a b a b a b αββα⊂⊂D.存在两条异面直线,,,,//,//a b a b a b αββα⊂⊂ 4.p :20x -=,q :(2)(3)0x x --=,p 是q 的 条件.5. p :两个三角形相似;q :两个三角形全等,p 是q 的 条件.1. 判断下列命题的真假 (1)“a b >”是“22a b >”的充分条件;(2)“|||ab >”是“22a b >”的必要条件.2. 已知{|A x x =满足条件}p ,{|B x x =满足条件}q . (1)如果A B ⊆,那么p 是q 的什么条件? (2)如果B A ⊆,那么p 是q 的什么条件?§1.2.2 充要条件设计人:刘翠霞1. 理解充要条件的概念;.,找出疑惑之处)1112复习1:什么是充分条件和必要条件?复习2:p:一个四边形是矩形q:四边形的对角线相等.p是q的什么条件?二、新课导学※学习探究探究任务一:充要条件概念问题:已知p:整数a是6的倍数,q:整数a是2 和3的倍数.那么p 是q的什么条件?q又是p的什么条件?新知:如果p q⇔,那么p与q互为试试:下列形如“若p,则q”的命题是真命题吗?它的逆命题是真命题吗?p是q的什么条件?(1)若平面α外一条直线a与平面α内一条直线平行,则直线a与平面α平行;(2)若直线a与平面α内两条直线垂直,则直线a与平面α垂直.反思:充要条件的实质是原命题和逆命题均为真命题.※ 典型例题例1 下列各题中,哪些p 是q 的充要条件?(1) p : 0b =,q :函数2()f x ax bx c =++是偶函数; (2) p : 0,0,x y >> q :0xy > (3) p : a b > , q :a c b c +>+变式:下列形如“若p ,则q ”的命题是真命题吗?它的逆命题是真命题吗?哪些p 是q 的充要条件?(1) p : 0b = ,q :函数2()f x ax bx c =++是偶函数; (2) p : 0,0,x y >> q :0xy > (3) p : a b > , q :a c b c +>+小结:判断是否充要条件两种方法 (1)p q ⇒且q p ⇒;(2)原命题、逆命题均为真命题; (3) 用逆否命题转化.练习:在下列各题中, p 是q 的充要条件? (1)p :234x x =+ , q :x =(2) p : 30x -=, q :(3)(4)0x x --= (3) p : 240(0)b ac a -≥≠ ,q :20(0)ax bx c a ++=≠(4) p : 1x =是方程20ax bx c ++=的根 q :0a b c ++=例2 已知:O 的半径为r ,圆心O 到直线的距离为d .求证:d r =是直线l 与O 相切的充要条件.变式:已知:O 的半径为r ,圆心O 到直线的距离为d ,证明: (1)若d r =,则直线l 与O 相切. (2)若直线l 与O 相切,则d r =小结:证明充要条件既要证明充分性又要证明必要性.※ 动手试试练1. 下列各题中p 是q 的什么条件? (1)p :1x =,q :1x - (2)p :|2|3x -=,q :15x -≤≤ ; (3)p :2x =,q :3x -=;(4)p :三角形是等边三角形,q :三角形是等腰三角形.练2. 求圆222()()x a y b r -+-=经过原点的充要条件.三、总结提升 ※ 学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※ 知识拓展设A 、B 为两个集合,集合A B =是指x A x B ∈⇔∈,则“x A ∈”与“x B ∈”互为.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列命题为真命题的是( ). A.a b >是22a b >的充分条件 B.||||a b >是22a b >的充要条件 C.21x =是1x =的充分条件D.αβ=是tan tan αβ= 的充要条件2.“x M N ∈”是“x M N ∈”的( ). A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.设p :240(0)b ac a ->≠,q :关于x 的方程20(0)ax bx c a ++=≠有实根,则p 是q 的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 4.22530x x --<的一个必要不充分条件是( ). A.132x -<< B.102x -<<C.132x -<< D.16x -<<5. 用充分条件、必要条件、充要条件填空. (1).3x >是5x >的(2).3x =是2230x x --=的( 3).两个三角形全等是两个三角形相似的1. 证明:20a b +=是直线230ax y ++=和直线20x by ++=垂直的充要条件.2.求证:ABC ∆是等边三角形的充要条件是222a b c ab ac bc ++=++,这里,,a b c 是ABC ∆的三边.§1.3简单的逻辑联结词设计人:李永福1. 了解“或”“且”“非”逻辑联结词的含义;2. 掌握,,∧∨⌝的真假性的判断;p q p q p3. 正确理解p⌝的意义,区别p⌝与p的否命题;p的真假性的判断,关键在于p与q的真假的判断.,找出疑惑之处)1416复习1:什么是充要条件?复习2:已知{|=满足条件}qB x x=满足条件}p,{|A x x(1)如果A B⊆,那么p是q的什么条件;(2) 如果B A⊆,那么p是q的什么条件;(3) 如果A B=,那么p是q的什么条件.二、新课导学※学习探究探究任务一:“且“的意义问题:下列三个命题有什么关系?(1)12能被3整除;(2)12能被4整除;(3)12能被3整除且能被4整除.新知:1.一般地,用逻辑联结词“且”把命题p和命题q联结起来就得到一个新命题,记作“”,读作“”.试试:判断下列命题的真假:(1)12是48且是36的约数;(2)矩形的对角线互相垂直且平分.反思:p q∧的真假性的判断,关键在于p与q的真假的判断.探究任务二:“或“的意义问题:下列三个命题有什么关系?(1) 27是7的倍数;(2)27是9的倍数;(3)27是7的倍数或是9的倍数.新知:1.一般地,用逻辑联结词“或”把命题p和命题q联结起来就得到一个新命题,记作“”,读作“”.(1)47是7的倍数或49是7的倍数;(2)等腰梯形的对角线互相平分或互相垂直.反思:p q∨的真假性的判断,关键在于p与q的真假的判断.探究任务三:“非“的意义问题:下列两个命题有什么关系?(1) 35能被5整除;(2)35不能被5整除;新知:1.一般地,对一个命题的全盘否定就得到一个新命题,记作“”,读作“”或“”.试试:写出下列命题的否定并判断他们的真假:(1)2+2=5;(2)3是方程290x-=的根;(3=-1反思:p⌝的真假性的判断,关键在于p的真假的判断.※典型例题例1 将下列命题用“且”联结成新命题并判断他们的真假:(1)p:平行四边形的对角线互相平分,q:平行四边形的对角线相等;(2)p:菱形的对角线互相垂直,q:菱形的对角线互相平分;(3)p:35是15的倍数,q:35是7的倍数变式:用逻辑联结词“且”改写下列命题,并判断他们的真假:(1)1既是奇数,又是素数;(2)2和3都是素数.小结:p q∧的真假性的判断,关键在于p与q的真假的判断.例2 判断下列命题的真假(1) 22≤;(2) 集合A是A B的子集或是A B的子集;(3) 周长相等的两个三角形全等或面积相等的两个三角形全等.变式:如果p q∨为∧为真命题,那么p q∨一定是真命题吗?反之,p q 真命题,那么p q∧一定是真命题吗?小结:p q∨的真假性的判断,关键在于p与q的真假的判断.例3 写出下列命题的否定,并判断他们的真假:(1)p:siny x=是周期函数;(2)p:32<(3)空集是集合A的子集.小结:p⌝的真假性的判断,关键在于p的真假的判断.三、总结提升※学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※知识拓展阅读教材第18页,理解逻辑联结词“且”“或”“非”与集合运算.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. “p或q为真命题”是“p且q为真命题”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.命题P:在ABC>的充要条件;命题q:a b>是C B∠>∠是sin sin∆中,C B22>的充分不必要条件,则().ac bcA.p真q假B.p假q假C.“p或q”为假D.“p且q”为真3.命题:(1)平行四边形对角线相等;(2)三角形两边的和大于或等于第三边;(3)三角形中最小角不大于60︒;(4)对角线相等的菱形为正方形.其中真命题有().A.1B.2C.3D.44.命题p:0不是自然数,命题q:π是无理数,在命题“p或q”“p且q”“非p”“非q”中假命题是,真命题是.5. 已知p:2||6-≥,q:,,x x∈∧⌝都是假命题,则x的值组成的集x Z p q q1. 写出下列命题,并判断他们的真假:(1)p q∨,这里p:4{2,3}∈;∈,q:2{2,3}(2)p q∧,这里p:4{2,3}∈;∈,q:2{2,3}(3) p q∨,这里p:2是偶数,q:3不是素数;(4) p q∧,这里p:2是偶数,q:3不是素数.2.判断下列命题的真假:(1)52>且73>(2)78≥(3)34>或34<§1.4 全称量词与存在量词班级:组名:姓名:设计人:李洪涛审核人:魏帅举领导审批:1. 掌握全称量词与存在量词的的意义;2. 掌握含有量词的命题:全称命题和特称命题真假的判断.,找出疑惑之处)2123复习1:写出下列命题的否定,并判断他们的真假:(1(2)5不是15的约数(3)8715+≠(4)空集是任何集合的真子集复习2:判断下列命题的真假,并说明理由:(1)p q∨,这里p:π是无理数,q:π是实数;(2)p q∧,这里p:π是无理数,q:π是实数;(3) p q∨,这里p:23>,q:8715+≠;(4) p q∧,这里p:23>,q:8715+≠.二、新课导学※学习探究探究任务一:全称量词的意义问题:1.下列语名是命题吗?(1)与(3),(2)与(4)之间有什么关系?(1)3x>;(2)21x+是整数;(3)对所有的,3∈>;x R x(4)对任意一个x Zx+是整数.∈,212. 下列语名是命题吗?(1)与(3),(2)与(4)之间有什么关系?(1)213x +=;(2)x 能被2和3整除;(3)存在一个0x R ∈,使0213x +=;(4)至少有一个0x Z ∈,0x 能被2和3整除.新知:1.短语“ ”“ ”在逻辑中通常叫做全称量词,并用符号“ ”表示,含有 的命题,叫做全称命题.其基本形式为:,()x M p x ∀∈,读作:2. 短语“ ”“ ”在逻辑中通常叫做存在量词,并用符号“ ”表示,含有 的命题,叫做特称称命题.其基本形式00,()x M p x ∃∈,读作:试试:判断下列命题是不是全称命题或者存在命题,如果是,用量词符号表示出来.(1)中国所有的江河都流入大海;(2)0不能作为除数;(3)任何一个实数除以1,仍等于这个实数;(4)每一个非零向量都有方向.反思:注意哪些词是量词是解决本题的关键,还应注意全称命题和存在命题的结构形式.※ 典型例题例1 判断下列全称命题的真假:(1)所有的素数都是奇数;(2)2,11x R x ∀∈+≥;(3)对每一个无理数x ,2x 也是无理数.变式:判断下列命题的真假:(1)2(5,8),()420x f x x x ∀∈=-->(2)2(3,),()420x f x x x ∀∈+∞=-->小结:要判定一个全称命题是真命题,必须对限定集合M 中每一个元素x 验证()p x 成立;但要判定全称命题是假命题,却只要能举出集合M 中的一个0x x =,使得0()p x 不成立即可.例2 判断下列特称命题的真假:(1) 有一个实数0x ,使200230x x ++=;(2) 存在两个相交平面垂直于同一条直线;(3) 有些整数只有两个正因数.变式:判断下列命题的真假:(1)2,32a Z a a ∃∈=-(2)23,32a a a ∃≥=-小结:要判定特称命题“00,()x M p x ∃∈” 是真命题只要在集合M 中找一个元素0x ,使0()p x 成立即可;如果集合M 中,使()P x 成立的元素x 不存在,那么这个特称命题是假命题.※ 动手试试练1. 判断下列全称命题的真假:(1)每个指数都是单调函数;(2)任何实数都有算术平方根;(3){|x x x ∀∈是无理数},2x 是无理数.练2. 判定下列特称命题的真假:(1)00,0x R x ∃∈≤;(2)至少有一个整数,它既不是合数,也不是素数;(3)0{|x x x ∃∈是无理数},20x 是无理数.三、总结提升※ 学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※ 知识拓展数理逻辑又称符号逻辑,是用数学的方法研究推理过程的一门学 莱布尼茨(1646—1716)是数理逻辑的创始人。
高中数学 第一章 常用逻辑用语单元测试(二)新人教A版高二选修2-1数学试题
word第一章 常用逻辑用语注意事项:1.答题前,先将自己的某某、某某号填写在试题卷和答题卡上,并将某某号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知原命题“若2a b +>,则a 、b 中至少有一个不小于1”,原命题与其逆命题的真假情况是( ) A .原命题为假,逆命题为真 B .原命题为真,逆命题为假 C .原命题与逆命题均为真命题D .原命题与逆命题均为假命题2.已知命题p :∀x ∈R ,0x a >(a >0且a ≠1),则( ) A .¬p :∀x ∈R ,0x a ≤ B .¬p :∀x ∈R ,0x a > C .¬p :0x ∃∈R ,00x a >D .¬p :0x ∃∈R ,00x a ≤3.若命题“p ∧q ”为假,且“¬p ”为假,则( ) A .p 或q 为假 B .q 为假C .q 为真D .不能判断q 的真假4.“a =-3”是“圆22=1x y +与圆()224x a y ++=相切”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.已知p 是R 的充分不必要条件,s 是R 的必要条件,q 是s 的必要条件,那么p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件6.设x 、y 、z ∈R ,则“lg y 为lg x ,lg z 的等差中项”是“y 是x ,z 的等比中项”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知命题p :对任意x ∈R ,总有20x >;q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( ) A .p q ∧B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝8.命题“t a n x =0”是命题“co sx =1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9.已知命题p :“对x ∀∈R ,m ∃∈R ,使4210x x m ++=”.若命题¬p 是假命题, 则实数m 的取值X 围是( ) A .-2≤m ≤2 B .m ≥2C .m ≤-2D .m ≤-2或m ≥210.下列命题中,错误的是( )A .命题“若2560x x -+=,则x =2”的逆否命题是“若x ≠2,则2560x x -+≠”B .已知x ,y ∈R ,则x =y 是22x y xy +⎛⎫≥ ⎪⎝⎭成立的充要条件C .命题p :x ∃∈R ,使得210x x ++<,则¬p :x ∀∈R ,则210x x ++≥D .已知命题p 和q ,若p q ∨为假命题,则命题p 与q 中必一真一假 11.已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;word②若两组数据的平均数相等,则它们的标准差也相等; ③直线x +y +1=0与圆2212x y +=相切. 其中真命题的序号是( ) A .①②③B .①②C .①③D .②③12.设a 、b ∈R ,现给出下列五个条件:①a +b =2;②a +b >2;③a +b >-2; ④ab >1;⑤log ab <0,其中能推出:“a ,b 中至少有一个大于1”的条件为( ) A .②③④ B .②③④⑤C .①②③⑤D .②⑤二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.命题“若|x |>1,则x >1”的否命题是__________________.(填“真”或“假”) 14.写出命题“若方程()200ax bx c a -+=≠的两根均大于0,则0ac >”的一个等价命题是______________________________________________.15.已知p (x ):220x x m +->,如果p (1)是假命题,p (2)是真命题,则实数m 的取值X 围是__________________.16.若p 的逆命题是r ,r 的否命题是s ,则s 是p 的否命题的__________________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)命题:已知a 、b 为实数,若关于x 的不等式20x ax b ++≤有非空解集,则240a b -≥,写出命题的逆命题、否命题、逆否命题,并判断这些命题的真假.18.(12分)写出下列命题的否定,并判断其真假: (1)p :∀m ∈R ,方程20x x m +-=必有实数根; (2)q :∃x ∈R ,使得210x x ++≤.word19.(12分)已知P ={x |a -4<x <a +4},{}2430Q x x x =-+<,且x P ∈是x Q ∈的必要条件,某某数a 的取值X 围.20.(12分)已知命题p :1,[]1m -∀∈,不等式253a a --≥;命题q :∃x ,使不等式220x ax ++<.若p 或q 是真命题,¬q 是真命题,求a 的取值X 围.word21.(12分)求使函数()()()2245413f x a a x a x +---+=的图象全在x 轴上方成立的充要条件.22.(12分)已知命题p :方程2220x ax a +-=在[-1,1]上有解;命题q :只有一个实数0x 满足不等式200220x ax a ++≤,若命题“p 或q ”是假命题,求a 的取值X 围.word2018-2019学年选修2-1第一章训练卷常用逻辑用语(二)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】B【解析】逆否命题为:a ,b 都小于1,则a +b ≤2是真命题,所以原命题是真命题, 逆命题为:若a 、b 中至少有一个不小于1,则2a b +>,例如,当a =2,b =﹣2时,满足条件,当()220a b +=+-=,这与2a b +>矛盾,故为假命题.故选B . 2.【答案】D【解析】∵命题p 为全称命题,∴¬p 为特称命题,由命题的否定只否定结论知0x a >的否定为0xa ≤,∴故选D . 3.【答案】B【解析】∵“¬p ”为假,∴p 为真,又∵p ∧q 为假,∴q 为假,p 或q 为真.故选B . 4.【答案】A【解析】当3a =-时,圆()2234x y -+=的圆心为()3,0,半径12R =, 与圆221x y +=相外切,当两圆相内切时,a =±1,故选A . 5.【答案】A【解析】图示法/p R s q⇒⇐⇒⇒,故/q p ⇒,否则q ⇒p ⇒R ⇒q ⇒p ,则R ⇒p ,故选A . 6.【答案】A【解析】由题意得,“lg y 为lg x ,lg z 的等差中项”,则22lg lg lg y x z y xz =+⇒=,则“y 是x ,z 的等比中项”;而当2y xz =时,如1x z ==,1y =-时,“lg y 为lg x ,lg z 的等差中项”不成立, 所以“lg y 为lg x ,lg z 的等差中项”是“y 是x ,z 的等比中项”的充分不必要条件, 故选A . 7.【答案】D【解析】命题p 是真命题,命题q 是假命题,所以选项D 正确.判断复合命题的真假,要先判断每一个命题的真假,然后做出判断. 8.【答案】B【解析】x =π时,t a n x =0,但co sx =-1;co sx =1时,s in x =0,故t a n x =0. 所以“t a n x =0”是“co sx =1”的必要不充分条件. 9.【答案】C【解析】由题意可知命题p 为真,即方程4210x x m ++=有解,∴4122x x m +=-≤--,当且仅当0x =时取等号,所以m ≤-2.10.【答案】D【解析】由逆否命题的定义知A 正确;当x =y 时,22x y xy +⎛⎫≥ ⎪⎝⎭成立;22x y xy +⎛⎫≥ ⎪⎝⎭||2x y +≥,故x =y ,∴B 为真命题;由特称命题的否定为全称命题知C 为真命题;∵p q ∨为假,∴p 假且q 假,∴D 为假命题. 11.【答案】C【解析】对于①,设球半径为R ,则34π3V R =,12R R =, ∴33141π1π3268R V R V ⎛⎫=⨯== ⎪⎝⎭,故①正确; 对于②,两组数据的平均数相等,标准差一般不相等; 对于③,圆心()0,0,圆心()0,0到直线的距离d =,故直线和圆相切,故①,③正确. 12.【答案】D【解析】①2a b +=可能有1a b ==;word②a +b >2时,假设a ≤1,b ≤1,则a +b ≤2矛盾; ③a +b >-2可能a <0,b <0; ④ab >1,可能a <0,b <0;⑤log ab <0,∴0<a <1,b >1或a >1,0<b <1,故②⑤能推出.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】真【解析】原命题的否命题为“若|x |≤1,则x ≤1”, ∵|x |<1,∴-1<x <1,故原命题的否命题为真命题.14.【答案】若a c≤0,则方程()200ax bx c a -+=≠的两根不全大于0. 【解析】根据原命题与它的逆否命题是等价命题可直接写出. 15.【答案】3≤m <8【解析】∵p (1)是假命题,p (2)是真命题,∴3080m m -≤⎧⎨->⎩,解得3≤m <8.16.【答案】逆命题【解析】解法1:依据四种命题的关系图解.由图示可知?处应为互逆关系. 解法2:用特殊命题探究p :若x >2,则x >1,r :若x >1,则x >2,s :若x ≤1,则x ≤2,p 的否命题:若x ≤2,则x ≤1,故s 是p 的否命题的逆命题.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】见解析.【解析】逆命题,已知a 、b 为实数,若240a b -≥,则关于x 的不等式20x ax b ++≤有非空解集.否命题:已知a 、b 为实数,若关于x 的不等式20x ax b ++≤没有非空解集, 则240a b -<.逆否命题:已知a 、b 为实数,若240a b -<,则关于x 的不等式20x ax b ++≤没有非空解集.原命题、逆命题、否命题、逆否命题均为真命题. 18.【答案】(1)见解析;(2)见解析.【解析】(1)¬p :∃m ∈R ,使方程20x x m +-=无实数根.若方程20x x m +-=无实数根,则140Δ=m +<,∴14m <-,∴¬p 为真.(2)¬q :∀x ∈R ,使得210x x ++>.∵22131024x x x ⎛⎫++=++> ⎪⎝⎭,∴¬q 为真.19.【答案】-1≤a ≤5.【解析】P ={x |a -4<x <a +4},Q ={x |1<x <3}.∵x P ∈是x Q ∈的必要条件,∴x Q ∈⇒x P ∈,即Q ⊆P . ∴4143a a -≤⎧⎨+≥⎩,51a a ≤⎧⎨≥-⎩,∴-1≤a ≤5.20.【答案】221a -≤≤-.【解析】根据p 或q 是真命题,¬q 是真命题,得p 是真命题,q 是假命题.∵,1[]1m ∈-2822,3m ⎡⎤+⎣⎦. 因为1,[]1m -∀∈,不等式22538a a m --=+2533a a --≥,∴a ≥6或a ≤-1.故命题p 为真命题时,a ≥6或a ≤-1.又命题q :∃x ,使不等式220x ax ++<,∴280Δ=a ->,∴22a >22a <- 从而命题q 为假命题时,2222a -≤word所以命题p 为真命题,q 为假命题时,a 的取值X 围为1a -≤≤-. 21.【答案】1≤a <19.【解析】∵函数()f x 的图象全在x 轴上方,∴()()22245016144530a a Δa a a ⎧+->⎪⎨=--+-⨯<⎪⎩,或245010a a a ⎧+-=⎨-=⎩, 解得1<a <19或a =1,故1≤a <19.所以使函数()f x 的图象全在x 轴的上方的充要条件是1≤a <19. 22.【答案】{a |a >2或a <-2}.【解析】由2220x ax a +-=得(2x -a )(x +a )=0,∴2ax =或x =-a , ∴当命题p 为真命题时12a≤或|-a |≤1,∴|a |≤2. 又“只有一个实数0x 满足200220x ax a ++≤”,即抛物线222y x ax a =++与x 轴只有一个交点,∴2480Δ=a a -=,∴a =0或a =2. ∴当命题q 为真命题时,a =0或a =2. ∴命题“p 或q ”为真命题时,|a |≤2. ∵命题“p 或q ”为假命题,∴a >2或a <-2. 即a 的取值X 围为{a |a >2或a <-2}.。
人教版高中数学选修2-1第一章常用逻辑语 同步复习教案2(提高)
“全称命题的否定”这些后续内容。
(5)的真假就看命题:海师附中今年存在个别(部分)高一学生数学课本不是采用人民教育出版社A版的教科书;这个命题的真假,该命题为真,所以命题(5)为假;命题(6)是假命题.事实上,存在一个(个别、部分)有中国国籍的人不是黄种人.命题(7)是假命题.事实上,存在一个(个别、某些)实数(如x=2), x<3.(至少有一个x∈R, x≤3)命题(8)是真命题。
事实上不存在某个x∈Z,使2x+1不是整数。
也可以说命题:存在某个x∈Z使2x+1不是整数,是假命题.3.发现、归纳命题(5)-(8)跟命题(3)、(4)有些不同,它们用到“所有的”“任意一个”这样的词语,这些词语一般在指定的范围内都表示整体或全部,这样的词叫做全称量词,用符号“∀”表示,含有全称量词的命题,叫做全称命题。
命题(5)-(8)都是全称命题。
通常将含有变量x的语句用p(x),q(x),r(x),……表示,变量x的取值范围用M表示。
那么全称命题“对M中任意一个x,有p(x)成立”可用符号简记为:∀x∈M,p(x),读做“对任意x属于M,有p(x)成立”。
刚才在判断命题(5)-(8)的真假的时候,我们还得出这样一些命题:(5),存在个别高一学生数学课本不是采用人民教育出版社A版的教科书;(6),存在一个(个别、部分)有中国国籍的人不是黄种人.(7),存在一个(个别、某些)实数x(如x=2),使x≤3.(至少有一个x∈R, x≤3)(8),不存在某个x∈Z使2x+1不是整数.这些命题用到了“存在一个”“至少有一个”这样的词语,这些词语都是表示整体的一部分的词叫做存在量词。
并用符号“$”表示。
含有存在量词的命题叫做特称命题(或存在命题)命题(5),-(8),都是特称命题(存在命题).特称命题:“存在M中一个x,使p(x)成立”可以用符号简记为::。
读做“存在一个x属于M,使p(x)成立”.全称量词相当于日常语言中“凡”,“所有”,“一切”,“任意一个”等;存在量词相当于日常语言中“存在一个”,“有一个”,“有些”,“至少有一个”,“至多有一个”等.巩固训练(1)下列全称命题中,真命题是:A. 所有的素数是奇数;B. ;C. D.(2)下列特称命题中,假命题是:A. B.至少有一个能被2和3整除C. 存在两个相交平面垂直于同一直线D.x2是有理数.(3)已知:对恒成立,则a的取值范围是;变式:已知:对恒成立,则a的取值范围是;(4)求函数的值域;变式:已知:对方程有解,求a的取值范围.5.作业、探究判断下列全称命题的真假:①末位是o的整数,可以被5整除;②线段的垂直平分线上的点到这条线段两个端点的距离相等;③负数的平方是正数;④梯形的对角线相等。
高中数学人教A版选修2-1导学案:第一章-常用逻辑用语(复习)(无答案)
安阳县二中分校“四步教学法”导学案
A nyangxian erzhong fenxiao sibujiaoxuefa daoxuean
课题:第一章常用逻辑用语(复习)
设计人:审核人:
班级:________ 组名:________姓名:________ 时间:________
一、自主学习:(10分钟完成)
1 学习目标
1. 命题及其关系
(1)了解命题的逆命题、否命题与逆否命题,会分析四种命题间的相互关系;
(2)理解必要条件、充分条件与充要条件的意义.
一、课前准备
复习1:
复习2:
1.什么是命题?其常见的形式是什么?什么是真命题?什么是假命题?
2.有哪四种命题?他们之间的关系是怎样的?
3.什么是充分条件、必要条件和充要条件?
4你学过哪些逻辑联结词?四逻辑联结词联结而成的命题的真假性怎样?
5.否命题与命题的否定有什么不同?
6.什么是全称量词和存在量词?。
高中数学第一章常用逻辑用语1.2充分条件与必要条件优化练习新人教A版选修2-1(2021年整理)
2017-2018学年高中数学第一章常用逻辑用语1.2 充分条件与必要条件优化练习新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第一章常用逻辑用语1.2 充分条件与必要条件优化练习新人教A版选修2-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第一章常用逻辑用语1.2 充分条件与必要条件优化练习新人教A版选修2-1的全部内容。
1.2 充分条件与必要条件[课时作业][A组基础巩固]1.设a,b∈R,那么“错误!>1”是“a>b〉0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:由错误!〉1得,错误!-1=错误!〉0,即b(a-b)〉0,得错误!或错误!,即a>b>0或a<b<0,所以“ab〉1"是“a〉b>0”的必要不充分条件,选B.答案:B2.“θ≠错误!"是“cos θ≠错误!”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:因为“θ≠π3”是“cos θ≠错误!”的逆否命题:“cos θ=错误!”是“θ=错误!”的必要不充分条件,选B.答案:B3.命题p:错误!〉0;命题q:y=a x是R上的增函数,则p是q成立的( )A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件解析:由错误!〉0得a〉1或a〈0;由y=a x是R上的增函数得a>1。
因此,p是q成立的必要不充分条件,选A。
全国通用高中数学第一章常用逻辑用语章末复习学案新人教A版选修2-1(2021年整理)
(全国通用版)2018-2019高中数学第一章常用逻辑用语章末复习学案新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用版)2018-2019高中数学第一章常用逻辑用语章末复习学案新人教A版选修2-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用版)2018-2019高中数学第一章常用逻辑用语章末复习学案新人教A版选修2-1的全部内容。
第一章常用逻辑用语章末复习学习目标1。
掌握充分条件、必要条件的判定方法.2.理解全称量词、存在量词的含义,会判断全称命题、特称命题的真假,会求含有一个量词的命题的否定.1.充分条件、必要条件和充要条件(1)定义一般地,若p则q为真命题,是指由p通过推理可以得出q。
这时,我们就说,由p可推出q,记作p⇒q,并且说p是q的充分条件,q是p的必要条件.一般地,如果既有p⇒q,又有q⇒p,就记作p⇔q。
此时,我们说,p是q的充分必要条件,简称充要条件.(2)特征充分条件与必要条件具有以下两个特征:①对称性:若p是q的充分条件,则q是p的必要条件;②传递性:若p是q的充分条件,q是r的充分条件,则p是r的充分条件.即若p⇒q,q⇒r,则p⇒r。
必要条件和充分条件一样具有传递性,但若p是q的充分条件,q是r的必要条件,则p与r的关系不能确定.2.量词(1)短语“所有"“任意”“每一个"等表示全体的量词在逻辑中通常称为全称量词,通常用符号“∀x”表示“对任意x”.(2)短语“有一个”“有些"“存在一个”“至少一个”等表示部分的量词在逻辑中通常称为存在量词,通常用符号“∃x0”表示“存在x0".3.含有全称量词的命题叫做全称命题,含有存在量词的命题叫做特称命题.(1)“所有奇数都是质数"的否定“至少有一个奇数不是质数”是真命题.(√)(2)当p是q的充要条件时,也可说成q成立当且仅当p成立.(√)(3)当q是p的必要条件时,p是q的充分条件.(√)类型一充要条件例1 (1)已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案(1)A (2)A解析(1)当b<0,且x=-错误!>0时,f(x)取得最小值-错误!,则f(x)的值域为错误!,则当f(x)=-错误!时,f(f(x))的最小值与f(x)的最小值相等,故是充分条件;当b=0时,f(x)=x2,f(f(x))=x4的最小值都是0,故不是必要条件.故选A。
高中数学第一章常用逻辑用语2充分条件与必要条件1充分条件与必要条件2教案新人教A版选修2_
充分条件与必要条件一:教法分析●三维目标1.知识与技能(1)正确理解充分条件、必要条件、充要条件三个概念;(2)能利用充分条件、必要条件、充要条件三个概念,熟练判断四种命题间的关系;(3)在理解定义的基础上,可以自觉地对定义进行转化,转化成推理关系及集合的包含关系.2.过程与方法(1)培养学生的观察与类比能力:“会观察”,通过大量的问题,会观察其共性及个性;(2)培养学生的归纳能力:“敢归纳”,敢于对一些事例,观察后进行归纳,总结出一般规律;(3)培养学生的建构能力:“善建构”,通过反复的观察分析和类比,对归纳出的结论,建构于自己的知识体系中.3.情感、态度与价值观(1)通过以学生为主体的教学方法,让学生自己构造数学命题,发展体验获取知识的感受;(2)通过对命题的四种形式及充分条件、必要条件的相对性,培养同学们的辩证唯物主义观点;(3)通过“会观察”,“敢归纳”,“善建构”,培养学生自主学习,勇于创新,多方位审视问题的创造技巧,敢于把错误的思维过程及弱点暴露出来,并在问题面前表现出浓厚的兴趣和不畏困难、勇于进取的精神.●重点难点重点:充分条件、必要条件和充要条件三个概念的定义.难点:必要条件的定义、充要条件的充分必要性.重难点突破的关键:找出题目中的p、q,判断p⇒q是否成立,同时还需判断q⇒p是否成立,再弄清是问“p是q的什么条件”,还是问“q是p的什么条件”.二:方案设计●教学建议基于教材内容和学生的年龄特征,根据“开放式”、“启发式”教学模式和新课程改革的理论认识,结合学生实际,主要突出以下几个方面:(1)创设与生活实践相结合的问题情景,在加强数学教学的实践性的同时充分调动学生求知欲,并以此来激发学生的探究心理.(2)教学方法上采用了“合作——探索”的教学模式,使课堂教学体现“参与式”、“生活化”、“探索性”,保证学生对数学知识的主动获取,以求获得最佳效果.(3)注重渗透数学思考方法(联想法、类比法、归纳总结等一般科学方法),让学生在探索学习知识的过程中,领会常见数学思想方法,培养学生的探索能力和创造性素质.(4)注意在探究问题时留给学生充分的时间,以利于开放学生的思维.指导学生掌握“观察——猜想——归纳——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对命题结构的探究.让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成实事求是的科学态度,增强锲而不舍的求学精神.●教学流程创设问题情境,通过对生活中的实际问题引出:真假命题中条件与结论有何关系?⇒引导学生通过对比、分析以上问题的答案,引出充分条件、必要条件的概念.⇒通过引导学生回答所提问题,得出四种条件的概念及判断方法.⇒通过例1及其变式训练,使学生掌握如何判断p是q的什么条件的方法,加深对概念的理解.⇒通过例2及其变式训练,使学生掌握充分、必要条件的应用,进一步巩固概念.⇒分析充要条件的特点,完成例3及其变式训练,从而解决充要条件的证明问题.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.三、自主导学读充分条件、必要条件与充要条件【问题导思】观察下面四个电路图,开关A闭合作为命题的条件p,灯泡B亮作为命题的结论q.1.在上面四个电路中,你能说出p,q之间的推出关系吗?【提示】①开关A闭合,灯泡B一定亮,灯泡B亮,开关A不一定闭合,即p⇒q,qD p;②开关A闭合,灯泡B不一定亮,灯泡B亮,开关A必须闭合,即pD q,q⇒p;③开关A闭合,灯泡B亮,反之灯泡B亮,开关A一定闭合,即p⇔q;④开关A闭合与否,不影响灯泡B,反之,灯泡B亮与否,与开关A无关,即pD q,且qD p.2.电路图③中开关A闭合,灯泡B亮;反之灯泡B亮,开关A一定闭合,两者的关系应如何表述?【提示】p⇔q.1.充分条件与必要条件命题真假“若p,则q”是真命题“若p,则q”是假命题推出关系p⇒q p q条件关系p是q的充分条件q是p的必要条件p不是q的充分条件q不是p的必要条件2.充要条件的概念一般地,如果既有p⇒q,又有q⇒p,就记作p⇔q.此时,我们说p是q的充分必要条件,简称充要条件.概括地说,如果p⇔q,那么p与q互为充要条件.四、互动探究充分条件、必要条件、充要条件的判断(1)已知实系数一元二次方程ax2+bx+c=0(a≠0),下列结论正确的是( )①Δ=b2-4ac≥0是这个方程有实根的充要条件;②Δ=b2-4ac=0是这个方程有实根的充分条件;③Δ=b2-4ac>0是这个方程有实根的必要条件;④Δ=b2-4ac<0是这个方程没有实根的充要条件.A.③④ B.②③C.①②③ D.①②④(2)若p:(x-1)(x+2)≤0,q:x<2,则p是q的( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【思路探究】(1)Δ=b2-4ac与方程有何关系?当Δ=0,Δ>0或Δ<0时,一元二次方程的根的情况如何?(2)不等式(x-1)(x+2)≤0的解集是什么?p、q有怎样的关系?【自主解答】(1)①对,Δ≥0⇔方程ax2+bx+c=0有实根;②对,Δ=0⇒方程ax2+bx+c=0有实根;③错,Δ>0⇒方程ax2+bx+c=0有实根,但ax2+bx+c=0有实根DΔ>0;④对,Δ<0⇔方程ax2+bx+c=0无实根.故选D.(2)p:-2≤x≤1,q:x<2,显然p⇒q,但qD p,即p是q的充分不必要条件.【答案】(1)D (2)A1.判断p是q的什么条件,主要判断p⇒q,及q⇒p两命题的正确性,若p⇒q真,则p是q成立的充分条件;若q⇒p真,则p是q成立的必要条件.要否定p与q不能相互推出时,可以举出一个反例进行否定.2.判定方法常用以下几种:(1)定义法:借助“⇒”号,可记为:箭头所指为必要,箭尾跟着充分.(2)集合法:将命题p、q分别看做集合A,B,当A⊆B时,p是q的充分条件,q是p 的必要条件,即p⇒q,可以用“小范围推出大范围”来记忆;当A=B时,p、q互为充要条件.已知如下三个命题中:①(2013·福州高二检测)若a∈R,则“a=2”是“(a-1)(a-2)=0”的充分不必要条件;②(2013·临沂高二检测)对于实数a,b,c,“a>b”是“ac2>bc2”的充分不必要条件;③直线l1:ax+y=3,l2:x+by-c=0.则“ab=1”是“l1∥l2”的必要不充分条件;④“m<-2或m>6”是“y=x2+mx+m+3有两个不同零点”的充要条件.正确的结论是________.【解析】①中,当a=2时,有(a-1)(a-2)=0;但当(a-1)(a-2)=0时,a=1或a=2,不一定有a=2.∴“a=2”是“(a-1)(a-2)=0”的充分不必要条件,①正确.②∵a>bD ac2>bc2(c=0),但ac2>bc2⇒a>b.∴“a>b”是“ac2>bc2”必要不充分条件,②错.③中,ab=1且ac=3时,l1与l2重合,但l1∥l2⇒a1=1b,即ab=1,∴“ab=1”是“l1∥l2”的必要不充分条件,③正确.④中,y=x2+mx+m+3有两个不同零点⇔Δ=m2-4(m+3)>0⇔m<-2或m>6.∴是充要条件,④正确.【答案】①③④充分条件、必要条件、充要条件的应用(2013·大连高二期末)设集合A={x|-x2+x+6≤0},关于x的不等式x2-ax -2a2>0的解集为B(其中a<0).(1)求集合B;(2)设p :x ∈A ,q :x ∈B ,且綈p 是綈q 的必要不充分条件,求实数a 的取值范围. 【思路探究】 (1)不等式x 2-ax -2a 2>0的解集是什么?(2)由“綈p 是綈q 的必要不充分条件”可得怎样的推出关系?这种推出关系的等价关系是什么?表现在集合上又是怎样的?【自主解答】 (1)x 2-ax -2a 2>0⇔(x -2a )(x +a )>0, 解得x >-a 或x <2a .故集合B ={x |x >-a 或x <2a }.(2)法一 若綈p 是綈q 的必要不充分条件, 则綈q ⇒綈p , 由此可得p ⇒q ,则A ={x |x 2-x -6≥0}={x |(x -3)(x +2)≥0} ={x |x ≥3或x ≤-2} 由p ⇒q , 可得A ⊆B ,∴⎩⎪⎨⎪⎧-a <3-2<2a ,⇒a >-1.法二 A ={x |x ≥3或x ≤-2},∁U A ={x |-2<x <3},而∁U B ={x |2a ≤x ≤-a }, 由綈p 是綈q 的必要不充分条件, 可得綈q ⇒綈p , 也即∁U B ⊆∁U A ,∴⎩⎪⎨⎪⎧2a >-2-a <3,⇒a >-1.1.利用充分、必要条件求参数的取值范围问题,常利用集合法求解,即先化简集合A ={x |p (x )}和B ={x |q (x )},然后根据p 与q 的关系(充分、必要、充要条件),得出集合A 与B 的包含关系,进而得到相关不等式组(也可借助数轴),求出参数的取值范围.2.判断p 是q 的什么条件,若直接判断困难,还可以用等价命题来判断,有时也可通过举反例否定充分性或必要性.已知p :x 2-8x -20≤0,q :x 2-2x +1-m 2≤0(m >0).若綈p 是綈q 的充分而不必要条件,求实数m 的取值范围.【解】 法一 由x 2-8x -20≤0,得-2≤x ≤10, 由x 2-2x +1-m 2≤0,得1-m ≤x ≤1+m (m >0). ∴綈p :A ={x |x >10或x <-2}, 綈q :B ={x |x >1+m 或x <1-m }. ∵綈p 是綈q 的充分而不必要条件,∴A B .∴⎩⎪⎨⎪⎧m >0,1+m ≤10,1-m ≥-2,解得0<m ≤3.∴m 的取值范围是{m |0<m ≤3}.法二 由x 2-8x -20≤0,得-2≤x ≤10, 由x 2-2x +1-m 2≤0得1-m ≤x ≤1+m (m >0), ∴p :A ={x |-2≤x ≤10},q :B ={x |1-m ≤x ≤1+m }.∵綈p 是綈q 的充分不必要条件, ∴q 也是p 的充分不必要条件,∴B A .∴⎩⎪⎨⎪⎧m >0,1+m ≤10,1-m ≥-2,解得0<m ≤3.∴m 的取值范围是{m |0<m ≤3}.充要条件的证明求证:方程mx 2-2x +3=0有两个同号且不等的实根的充要条件是:0<m <13.【思路探究】 先找出条件和结论,然后证明充分性和必要性都成立. 【自主解答】 充分性(由条件推结论): ∵0<m <13,∴方程mx 2-2x +3=0的判别式Δ=4-12m >0, ∴方程有两个不等的实根.设方程的两根为x 1、x 2,当0<m <13时,x 1+x 2=2m >0且x 1x 2=3m >0,故方程mx 2-2x +3=0有两个同号且不相等的实根,即0<m <13⇒方程mx 2-2x +3=0有两个同号且不相等的实根.必要性(由结论推条件):若方程mx 2-2x +3=0有两个同号且不相等的实根, 则有⎩⎪⎨⎪⎧Δ=4-12m >0x 1x 2>0,∴0<m <13,即方程mx 2-2x +3=0有两个同号且不相等的实根⇒0<m <13.综上,方程mx 2-2x +3=0有两个同号且不相等的实根的充要条件是0<m <13.1.证明p 是q 的充要条件,既要证明命题“p ⇒q ”为真,又要证明“q ⇒p ”为真,前者证明的是充分性,后者证明的是必要性.2.证明充要条件,即说明原命题和逆命题都成立,要注意“p 是q 的充要条件”与“p 的充要条件是q ”这两种说法的差异,分清哪个是条件,哪个是结论.求证:关于x 的方程ax 2+bx +c =0有一个根是1的充要条件是a +b +c =0. 【证明】 假设p :方程ax 2+bx +c =0有一个根是1,q :a +b +c =0.(1)证明p ⇒q ,即证明必要性. ∵x =1是方程ax 2+bx +c =0的根, ∴a ·12+b ·1+c =0, 即a +b +c =0.(2)证明q ⇒p ,即证明充分性. 由a +b +c =0,得c =-a -b . ∵ax 2+bx +c =0,∴ax 2+bx -a -b =0,即a (x 2-1)+b (x -1)=0. 故(x -1)(ax +a +b )=0. ∴x =1是方程的一个根.故方程ax 2+bx +c =0有一个根是1的充要条件是a +b +c =0. 五、易误辨析因考虑不周到致误一次函数y =-m nx +1n的图象同时经过第一、二、四象限的必要不充分条件是( )A .m >0,n >0B .mn <0C .m <0,n <0D .mn >0【错解】 由题意可得,一次函数y =-m nx +1n的图象同时经过第一、二、四象限,即⎩⎪⎨⎪⎧-mn <0,1n >0,解得m >0,n >0,所以选A.【答案】 A【错因分析】 p 的必要不充分条件是q ,即q 是p 的必要不充分条件,则qDp 且p ⇒q ,故本题应是题干⇒选项,而选项D 题干,选项A 为充要条件.【防范措施】 要说明p 是q 的充分不必要条件,须满足p ⇒q ,但qD p ;要说明p是q 的必要不充分条件,须满足pDq ,但q ⇒p ;要说明p 是q 的充要条件,须满足p ⇒q且q ⇒p ,解题时一定要考虑周到,切莫顾此失彼.【正解】 一次函数y =-m n x +1n 的图象同时经过第一、二、四象限,即⎩⎪⎨⎪⎧-mn <0,1n >0,得m >0,n >0.故由函数y =-m nx +1n的图象同时经过第一、二、四象限可以推出mn >0,而由mn >0不一定推出函数y =-m nx +1n的图象过一、二、四象限,所以选D.【答案】 D 六、课堂小结充分条件与必要条件的判断方法(1)定义法用定义法判断直观、简捷,且一般情况下,错误率低,在解题中应用极为广泛.(2)集合法从集合角度看,设集合A={x|x满足条件p},B={x|满足条件q}.①若A⊆B,则p是q的充分条件;若A B,则p是q的充分不必要条件.②若A⊇B,则p是q的必要条件;若A B,则p是q的必要不充分条件.③若A=B,则p是q的充要条件.④若A⃘B,且A⊉B,则p是q的既不充分也不必要条件.(3)等价转化法当某一命题不易直接判断条件和结论的关系(特别是对于否定形式或“≠”形式的命题)时,可利用原命题与逆否命题等价来解决.(4)传递法充分条件与必要条件具有传递性,即由p1⇒p2⇒p3⇒…⇒p n,则可得p1⇒p n,充要条件也有传递性.七、双基达标1.(2013·成都高二检测)“x=3”是“x2=9”的( )A.充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要的条件【解析】当x=3时,x2=9;但x2=9,有x=±3.∴“x=3”是“x2=9”的充分不必要条件.【答案】 A2.设p:x2+3x-4>0,q:x=2,则p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】当x2+3x-4>0时,不一定有x=2;但当x=2时,必有x2+3x-4>0,故p是q的必要不充分条件.【答案】 B3.在“x 2+(y -2)2=0是x (y -2)=0的充分不必要条件”这句话中,已知条件是________,结论是________.【答案】 x 2+(y -2)2=0 x (y -2)=04.若p :x =1或x =2;q :x -1=x -1,则p 是q 的什么条件?【解】 因为x =1或x =2⇒x -1=x -1;x -1=x -1⇒x =1或x =2,所以p 是q 的充要条件.八、知能检测一、选择题1.若集合A ={1,m 2},B ={2,4},则m =2是A ∩B ={4}的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 当m =2时,m 2=4,A ∩B ={4},但m 2=4时,m =±2,∴A ∩B ={4}得m =±2.【答案】 A2.(2013·济南高二检测)设α,β∈(-π2,π2),那么“α<β”是“tan α<tan β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 在(-π2,π2)中,函数y =tan x 为增函数,所以设α、β∈(-π2,π2),那么“α<β”是tan α<tan β的充要条件.【答案】 C3.下列选项中,p 是q 的必要不充分条件的是( )A .p :a +c >b +d ,q :a >b 且c >dB .p :A B ,q :x ∈A ⇒x ∈BC .p :x =1,q :x 2=xD .p :a >1,q :f (x )=log a x (a >0,且a ≠1)在(0,+∞)上为增函数【解析】 易知由a +c >b +dDa >b 且c >d . 但a >b 且c >d ,可得a +c >b +d∴“p :a +c >b +d ”是“q :a >b 且c >d ”的必要不充分条件.故选A.【答案】 A4.“α>β”是“sin α>sin β”的( )A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充要条件【解析】 由“α>β”D “sin α>sin β”;由“sin α>sin β”D “α>β”,应选C.(也可以举反例).【答案】 C5.(2013·青岛高二检测)下列各小题中,p 是q 的充分必要条件的是( ) ①p :m <-2或m >6,q :y =x 2+mx +m +3有两个不同的零点;②p :f -x f x=1,q :y =f (x )是偶函数; ③p :cos α=cos β;tan α=tan β;④p :A ∩B =A ,q :∁U B ⊆∁U A .A .①②B .②③C .③④D .①④【解析】 ①y =x 2+mx +m +3有两个不同的零点,则Δ=m 2-4(m +3)>0,得m >6或m <-2,所以p 是q 的充要条件.②若y =f (x )中存在x 0,使得f (x 0)=0,则p 是q 的充分不必要条件.③当α=β=k π+π2时,tan α,tan β无意义,所以p 是q 的必要不充分条件. ④p 是q 的充要条件.【答案】 D二、填空题6.下列不等式:①x <1;②0<x <1;③-1<x <0;④-1<x <1.其中,可以是x 2<1的一个充分条件的所有序号为________.【答案】 ②③④7.(2013·武汉高二检测)“b 2=ac ”是“a 、b 、c ”成等比数列的________条件.【解析】 “b 2=acD”a ,b ,c 成等比数列,如b 2=ac =0;而“a ,b ,c ”成等比数列“⇒”“b 2=ac ”.【答案】 必要不充分8.在平面直角坐标系xOy 中,直线x +(m +1)y =2-m 与直线mx +2y =-8互相垂直的充要条件是m =______.【解析】 直线x +(m +1)y =2-m 与直线mx +2y =-8互相垂直⇔1·m +(m +1)·2=0⇔m =-23. 【答案】 -23 三、解答题9.指出下列命题中,p 是q 的什么条件.(1)p :⎪⎪⎪⎪⎪⎪2-x -12≤34,q :13x 2+32x -3≥0; (2)p :ax 2+ax +1>0的解集是R ,q :0<a <4;(3)p :A ∪B =A ,q :A ∩B =B .【解】 (1)化简得p :⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 72≤x ≤132, q :⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≤-6或x ≥32.如图由图可知,⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 72≤x ≤132⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≤-6或x ≥32, 所以p 是q 的充分不必要条件.(2)因为ax 2+ax +1>0的解集是R ,所以①当a =0时成立;②当a ≠0时,ax 2+ax +1>0的解集是R ,有⎩⎪⎨⎪⎧ Δ=a 2-4a <0,a >0,解得0<a <4,所以0≤a <4.所以pD ⇒/q ,q ⇒p ,所以p 是q 的必要不充分条件.(3)对于p :A ∪B =A ⇔B ⊆A ,对于q :A ∩B =B ⇔B ⊆A ,即p ⇔q ,所以p 是q 的充要条件.10.若A ={x |a <x <a +2},B ={x |x <-1或x >3},且A 是B 的充分不必要条件,求实数a 的取值范围.【解】 ∵A 是B 的充分不必要条件,∴A B .又A ={x |a <x <a +2},B ={x |x <-1或x >3}.因此a +2≤-1或a ≥3,∴实数a 的取值范围是a ≥3或a ≤-3.11.设a ,b ,c 分别是△ABC 的三个内角A 、B 、C 所对的边,证明:“a 2=b (b +c )”是“A =2B ”的充要条件.【证明】 充分性:由a 2=b (b +c )=b 2+c 2-2bc cos A 可得1+2cos A =c b =sin C sin B. 即sin B +2sin B cos A =sin(A +B ).化简,得sin B =sin(A -B ).由于sin B >0且在三角形中,故B =A -B ,即A =2B .必要性:若A =2B ,则A -B =B ,sin(A +B )=sin B ,即sin(A +B )=2sin B cos A =sin A .∴sin(A +B )=sin B (1+2cos A ).∵A 、B 、C 为△ABC 的内角,∴sin(A +B )=sin C ,即sin C =sin B (1+2cos A ).∴sin C sin B =1+2cos A =1+b 2+c 2-a 2bc =b 2+c 2-a 2+bc bc,即c b =b 2+c 2+bc -a bc. 化简得a 2=b (b +c ).∴a 2=b (b +c )是“A =2B ”的充要条件.九、备课资源试求关于x 的方程x 2+mx +1=0有两个负实根的充要条件.【自主解答】 如果方程x 2+mx +1=0有两个负实根, 设两负根为x 1,x 2,则x 1x 2=1,∴⎩⎪⎨⎪⎧ Δ=m 2-4≥0,x 1+x 2=-m <0,解之得m≥2. 因此m ≥2是方程x 2+mx +1=0有两个负实根的必要条件. 下面证明充分性.因为m ≥2,所以Δ=m 2-4≥0,所以方程x 2+mx +1=0有实根,设两根为x 1,x 2, 由根与系数的关系知,x 1x 2=1>0,所以x 1,x 2同号. 又x 1+x 2=-m ≤-2<0,所以x 1,x 2同为负数.故m ≥2是方程x 2+mx +1=0有两个负实根的充要条件.求关于x 的不等式kx 2+x +k >0(k ≠0)恒成立的充要条件.【解】 kx 2+x +k >0(k ≠0)恒成立.⇔⎩⎪⎨⎪⎧ k >0Δ=1-4k 2<0⇔k >12.。
高中数学人教A版选修2-1第一章 常用逻辑用语
第一章常用逻辑用语第2节充分条件与必要条件1.设R a ∈,则“1>a ”是“12>a ”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件2.“a >b 且c >d ”是“a +c >b +d ”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.集合A={1,a},B={1,2,3},则“a=3”是“A B⊆”的() A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件4.在△ABC中,“A>30°”是“1sin2A>”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件5.设x∈R,则“12x>”是“2x2+x-1>0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.设,是向量,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:1.A2.A3.B4.Aa rb r ||||a b =r r ||||a b a b +=-r r rr5.A6.A7.D。
[精品]新人教A版选修2-1高中数学简单的逻辑联结词(2)导学案
§1.3.2简单的逻辑联结词自主学习预习课本14-18页,完成下列问题1.若p q ∧为真,则p,q 必为 ;若p q ∧为假,则p,q 必有一个为2.若p q ∨为真,则p,q 必有一个为 ;若p q ∨为假,则p,q 必为3.p ⌝形式的命题与命题p 的真假 .思考:p ⌝形式的命题叫命题的否定,注意将其与否命题进行区别自主探究【题型一】 由复合命题的真假判定简单命题的真假例1.若p q ∨为假命题,则( )A.命题p ⌝与q ⌝的真值不同B. 命题p ⌝与q ⌝至少有一个假命题C. 命题p ⌝与q ⌝的真值相同D. 命题p ⌝与q ⌝都是真命题【题型二】 两命题之间的关系例2.设p :2()21f x x mx =++在(0,)+∞内单调递增,q :43m ≥,则p ⌝是q ⌝的( )A .充分不必要B 。
必要不充分C 。
充分必要 D。
既不充的分也不必要【题型三】 利用命题的真假求参数的取值范围例3.已知命题:210p x -≤≤,22:210q x x a -+-≥(a>0),若p ⌝是q 充分不必要条件,求a 的取值范围.课堂小结巩固练习1.如果p q ∨为真,p ⌝为假命题,那么( )A .p 真q 假B 。
p 真q 真C 。
p 假q 真D 。
p 真q 可真可假2.已知条件:32p x -≤≤,条件2:56q x x ->,则p是q ⌝的( )A .充分不必要B 。
必要不充分C 。
充分必要 D。
既不充分也不必要3.设p,q 是两个命题,则复合命题p q ∨为真,p q ∧为假的充要条件是( )A. p,q 中至少有一个真B. p,q 中至少有一个假C. p,q 中有且只有一个是真D. p 真,q 假4.若命p,q 中至少有一个真 题()p q ⌝∨为假命题,则 ( )A. p,q 均为真B. p,q 均为假C. p,q 中至少有一个真 D p,q 中至多有一个真 .5. 如果p 是q 的充分不必要条件,r 是q 的必要不充分条件;那么( ).A.p r ⇒⌝⌝B.p r ⇐⌝⌝C.p r ⇔⌝⌝D.p r ⇔6.命题p :方程210x mx ++=有两个不等的正实数根,命题q :方程244(2)10x m x +++= 无实数根,若p q ∨为真命题,求m 的取值范围.。
高中数学 第一章 常用逻辑用语 1.3 简单的逻辑联结词(2)教案 新人教A版选修2-1(2021
江苏省铜山县高中数学第一章常用逻辑用语1.3 简单的逻辑联结词(2)教案新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省铜山县高中数学第一章常用逻辑用语1.3 简单的逻辑联结词(2)教案新人教A版选修2-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省铜山县高中数学第一章常用逻辑用语1.3 简单的逻辑联结词(2)教案新人教A版选修2-1的全部内容。
1。
3简单的逻辑联结词(2)教学目标:知识与技能目标:(1)掌握逻辑联结词“非”的含义(2)正确应用逻辑联结词“非”解决问题(3)掌握真值表并会应用真值表解决问题过程与方法目标:观察和思考中,在解题和证明题中,本节课要特别注重学生思维能力中严密性品质的培养.情感态度价值目标:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.教学重点:通过数学实例,了解逻辑联结词“非”的含义,使学生能正确地表述相关数学内容。
教学难点:1、正确理解命题“¬P"真假的规定和判定.2、简洁、准确地表述命题“¬P"。
教学用具:多媒体教学方法:归纳,分析教学过程:1、思考、分析问题1:下列各组命题中的两个命题间有什么关系?(1)①35能被5整除;②35不能被5整除;(2)①方程x2+x+1=0有实数根。
②方程x2+x+1=0无实数根。
学生很容易看到,在每组命题中,命题②是命题①的否定。
2、归纳定义一般地,对一个命题p 全盘否定,就得到一个新命题,记作¬p读作“非p ”或“p 的否定"。
3、命题“¬p ”与命题p 的真假间的关系命题“¬p ”与命题p 的真假之间有什么联系?引导学生分析前面所举例子中命题p 与命题¬p 的真假性,概括出这两个命题的真假之间的关系的一般规律。
人教版数学高二数学人教A版选修2-1学案复习课(一)常用逻辑用语
复习课(一)常用逻辑用语命题及其关系通过选择题、填空题的方式设置一些多知识点、知识跨度大的试题,考查命题及其关系,以及对命题真假的判断.[考点精要][典例]将下列命题改写成“若p,则q”的形式,并写出它的逆命题、否命题和逆否命题并判断它们的真假.(1)垂直于同一平面的两条直线平行;(2)当mn<0时,方程mx2-x+n=0有实数根.[解](1)将命题写成“若p,则q”的形式为:若两条直线垂直于同一个平面,则这两条直线平行.它的逆命题、否命题和逆否命题如下:逆命题:若两条直线平行,则这两条直线垂直于同一个平面.(假命题)否命题:若两条直线不垂直于同一个平面,则这两条直线不平行.(假命题)逆否命题:若两条直线不平行,则这两条直线不垂直于同一个平面.(真命题)(2)将命题写成“若p,则q”的形式为:若mn<0,则方程mx2-x+n=0有实数根.它的逆命题、否命题和逆否命题如下:逆命题:若方程mx2-x+n=0有实数根,则mn<0.(假命题)否命题:若mn≥0,则方程mx2-x+n=0没有实数根.(假命题)逆否命题:若方程mx2-x+n=0没有实数根,则mn≥0.(真命题)[类题通法]简单命题真假的判断方法[题组训练]1.下列说法中错误的个数是()①命题“余弦函数是周期函数”的否命题是“余弦函数不是周期函数”②命题“若x >1,则x -1>0”的否命题是“若x ≤1,则x -1≤0”③命题“两个正数的和为正数”的否命题是“两个负数的和为负数”④命题“x =-4是方程x 2+3x -4=0的根”的否命题是“x =-4不是方程x 2+3x -4=0的根”A .1B .2C .3D .4解析:选C ①错误,否命题是“若一个函数不是余弦函数,则它不是周期函数”;②正确;③错误,否命题是“若两个数不全为正数,则它们的和不为正数”;④错误,否命题是“若一个数不是-4,则它不是方程x 2+3x -4=0的根”.2.原命题为“若a n +a n +12<a n ,n ∈N +,则{a n }为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,真,真B .假,假,真C .真,真,假D .假,假,假 解析:选A a n +a n +12<a n ,即a n +a n +1<2a n ,则a n +1<a n ,∴{a n }为递减数列,故原命题为真,则其逆否命题也为真;若{a n }是递减数列,则a n +1<a n ,∴a n +a n +1<2a n ,∴a n +a n +12<a n ,故其逆命题也是真命题,则其否命题也是真命题.故选A .3.下列说法正确的是________.(写出所有正确说法的序号)①若p 是q 的充分不必要条件,则綈p 是綈q 的必要不充分条件;②命题“存在x 0∈R ,x 20+1>3x 0”的否定是“任意x ∈R ,x 2+1<3x ”; ③设x ,y ∈R ,命题“若xy =0,则x 2+y 2=0”的否命题是真命题;④若f (x +1)为R 上的偶函数,则f (x )的图象关于直线x =1对称.解析:①因为p 是q 的充分不必要条件,所以p ⇒q 为真命题,q ⇒p 为假命题,故綈p ⇒綈q 为假命题,綈q ⇒綈p 为真命题,故綈p 是綈q 的必要不充分条件,即命题正确;②命题“存在x 0∈R ,x 20+1>3x 0”的否定是“任意x ∈R ,x 2+1≤3x ”,故命题不正确;③逆命题为:“若x 2+y 2=0,则xy =0”是真命题,据互为逆否命题的两个命题真假相同,可知其否命题为真命题,故命题正确;④若f (x +1)为R 上的偶函数,则f (x +1)关于y 轴对称,将函数f (x +1)向右平移一个单位得到f (x ),即f (x )的图象关于直线x =1对称,故正确.答案:①③④充分条件与必要条件的考查频率,其特点是以高中数学的其他知识为载体考查充分条件、必要条件、充要条件的判断.[考点精要]充分条件、必要条件与充要条件(1)如果p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件;(2)如果p ⇒q ,q ⇒p ,则p 是q 的充要条件.[典例] (1)(山东高考)已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)若α∈R ,则“α=0”是“sin α<cos α”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[解析] (1)由题意知a ⊂α,b ⊂β,若a ,b 相交,则a ,b 有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a ,b 的位置关系可能为平行、相交或异面.因此“直线a 和直线b 相交”是“平面α和平面β相交”的充分不必要条件.故选A .(2)当α=0时,sin α=0,cos α=1,∴sin α<cos α;而当sin α<cos α时,α=0或α=π6,…,故选A .[答案] (1)A (2)A[类题通法]充分条件、必要条件、充要条件的判断方法(1)定义法.①若“p ⇒q ”,且“q p ”,则p 是q 的“充分不必要条件”,同时q 是p 的“必要不充分条件”;②若“p ⇔q ”,则p 是q 的“充要条件”,同时q 是p 的“充要条件”;③若p q ,且q p ,则p 是q 的“既不充分也不必要条件”,同时q 是p 的“既不充分也不必要条件”.(2)等价命题法.利用互为逆否的两个命题间的等价关系判断.[题组训练]1.(北京高考)设α,β是两个不同的平面,m 是直线且m ⊂α,“m ∥β ”是“α∥β ”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选B当m∥β时,过m的平面α与β可能平行也可能相交,因而m∥β⇒/ α∥β;当α∥β时,α内任一直线与β平行,因为m⊂α,所以m∥β.综上知,“m∥β”是“α∥β”的必要而不充分条件.2.对于任意实数x,x表示不小于x的最小整数,例如1.1=2,-1.1=-1,那么“|x-y|<1”是“x=y”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选B当x=1.8,y=0.9时,满足|x-y|<1,但1.8=2,0.9=1,即x≠y;当x=y时,必有|x-y|<1,所以“|x-y|<1”是“x=y”的必要不充分条件,故选B.3.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A若四边形ABCD为菱形,则AC⊥BD,反之,若AC⊥BD,则四边形ABCD 不一定是菱形,故选A.含有逻辑联结词、量词的命题题的真假,以及全称命题,特称命题的否定.[考点精要][典例](1)已知a与b均为单位向量,其夹角为θ,有下列四个命题p 1:|a +b |>1⇔θ∈⎣⎡⎭⎫0,2π3 p 2:|a +b |>1⇔θ∈⎝⎛⎦⎤2π3,π p 3:|a -b |>1⇔θ∈⎣⎡⎭⎫0,π3 p 4:|a -b |>1⇔θ∈⎝⎛⎦⎤π3,π 其中的真命题是( )A .p 1,p 4B .p 1,p 3C .p 2,p 3D .p 2,p 4(2)命题“∀x ∈R ,|x |+x 2≥0”的否定是( )A .∀x ∈R ,|x |+x 2<0B .∀x ∈R ,|x |+x 2≤0C .∃x 0∈R ,|x 0|+x 20<0D .∃x 0∈R ,|x 0|+x 20≥0[解析] (1)由|a +b |>1可得:a 2+2a ·b +b 2>1,∵|a |=1,|b |=1,∴a ·b >-12.故θ∈⎣⎡⎭⎫0,2π3.当θ∈⎣⎡⎭⎫0,2π3时,a ·b >-12,|a +b |2=a 2+2a ·b +b 2>1,即|a +b |>1;由|a -b |>1可得:a 2-2a ·b +b 2>1,∵|a |=1,|b |=1,∴a ·b <12.故θ∈⎝⎛⎦⎤π3,π,反之也成立. (2)全称命题的否定是特称命题,即命题“∀x ∈R ,|x |+x 2≥0”的否定为“∃x 0∈R ,|x 0|+x 20<0”.故选C .[答案] (1)A (2)C[类题通法]1.判断含有逻辑联结词的命题真假的方法(1)先确定简单命题p ,q .(2)分别确定简单命题p ,q 的真假.(3)利用真值表判断所给命题的真假.2.判断含有量词的命题真假的方法(1)全称命题的真假判定:要判定一个全称命题为真,必须对限定集合M 中每一个x 验证 p (x )成立,一般用代数推理的方法加以证明;要判定一个全称命题为假,只需举出一个反例即可.(2)特称命题的真假判定:要判定一个特称命题为真,只要在限定集合M 中,能找到一个x =x 0,使p (x 0)成立即可;否则,这一特称命题为假.(3)全称命题的否定一定是特称命题,特称命题的否定一定是全称命题.首先改变量词,把全称量词改为存在量词,把存在量词改为全称量词,然后把判断词加以否定.[题组训练]1.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称,则下列判断正确的是( ) A .p 为真B .綈q 为假C .p ∧q 为假D .p ∨q 为真解析:选C 由题意p 与q 均为假命题,故p ∧q 为假.2.已知命题p :∃x 0∈R ,mx 20+1≤0,命题q :∀x ∈R ,x 2+mx +1>0,若p ∧q 为真命题,则实数m 的取值范围是( )A .(-∞,-2)B .[-2,0)C .(-2,0)D .(0,2)解析:选C 因为p ∧q 为真命题,所以命题p 和命题q 均为真命题,若p 真,则m <0,①若q 真,则Δ=m 2-4<0,所以-2<m <2.②所以p ∧q 为真,由①②知-2<m <0.3.命题“存在x ∈R ,使得x 2+2x +5=0”的否定是________________.解析:这里给出的是一个特称命题,其否定是一个全称命题.等于的否定是不等于. 答案:对任意的x ∈R ,都有x 2+2x +5≠0。
【新人教A版】高中数学选修2--1教案(全套)
【新人教A版】高中数学选修2-1教案第一章常用逻辑用语1.1命题及其关系1.1.1 命题(一)教学目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
(二)教学重点与难点重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假教具准备:与教材内容相关的资料。
教学设想:通过学生的参与,激发学生学习数学的兴趣。
(三)教学过程学生探究过程:1.复习回顾初中已学过命题的知识,请同学们回顾:什么叫做命题?2.思考、分析下列语句的表述形式有什么特点?你能判断他们的真假吗?(1)若直线a∥b,则直线a与直线b没有公共点.(2)2+4=7.(3)垂直于同一条直线的两个平面平行.(4)若x2=1,则x=1.(5)两个全等三角形的面积相等.(6)3能被2整除.3.讨论、判断学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。
其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。
教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。
4.抽象、归纳定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.5.练习、深化判断下列语句是否为命题?(1)空集是任何集合的子集.(2)若整数a是素数,则是a奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)2)2(=-2.(6)x>15.让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.解略。
最新人教A版选修2-1高中数学简单的逻辑联结词(2)导学案
§1.3.2简单的逻辑联结词自主学习预习课本14-18页,完成下列问题1.若p q ∧为真,则p,q 必为 ;若p q ∧为假,则p,q 必有一个为2.若p q ∨为真,则p,q 必有一个为 ;若p q ∨为假,则p,q 必为3.p ⌝形式的命题与命题p 的真假 .思考:p ⌝形式的命题叫命题的否定,注意将其与否命题进行区别自主探究【题型一】 由复合命题的真假判定简单命题的真假例1.若p q ∨为假命题,则( )A.命题p ⌝与q ⌝的真值不同B. 命题p ⌝与q ⌝至少有一个假命题C. 命题p ⌝与q ⌝的真值相同D. 命题p ⌝与q ⌝都是真命题【题型二】 两命题之间的关系例2.设p :2()21f x x mx =++在(0,)+∞内单调递增,q :43m ≥,则p ⌝是q ⌝的( )A .充分不必要B 。
必要不充分C 。
充分必要 D。
既不充的分也不必要【题型三】 利用命题的真假求参数的取值范围例3.已知命题:210p x -≤≤,22:210q x x a -+-≥(a>0),若p ⌝是q 充分不必要条件,求a 的取值范围.课堂小结巩固练习1.如果p q ∨为真,p ⌝为假命题,那么( )A .p 真q 假B 。
p 真q 真C 。
p 假q 真D 。
p 真q 可真可假2.已知条件:32p x -≤≤,条件2:56q x x ->,则p是q ⌝的( )A .充分不必要B 。
必要不充分C 。
充分必要 D。
既不充分也不必要3.设p,q 是两个命题,则复合命题p q ∨为真,p q ∧为假的充要条件是( )A. p,q 中至少有一个真B. p,q 中至少有一个假C. p,q 中有且只有一个是真D. p 真,q 假4.若命p,q 中至少有一个真 题()p q ⌝∨为假命题,则 ( )A. p,q 均为真B. p,q 均为假C. p,q 中至少有一个真 D p,q 中至多有一个真 .5. 如果p 是q 的充分不必要条件,r 是q 的必要不充分条件;那么( ).A.p r ⇒⌝⌝B.p r ⇐⌝⌝C.p r ⇔⌝⌝D.p r ⇔6.命题p :方程210x mx ++=有两个不等的正实数根,命题q :方程2+++=无实数根,若p qx m x44(2)10∨为真命题,求m的取值范围.。
高中数学 第一章 常用逻辑用语 1.2 充分条件与必要条件导学案 新人教A版选修2-1(2021年
浙江省苍南县高中数学第一章常用逻辑用语1.2 充分条件与必要条件导学案新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省苍南县高中数学第一章常用逻辑用语1.2 充分条件与必要条件导学案新人教A版选修2-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省苍南县高中数学第一章常用逻辑用语1.2 充分条件与必要条件导学案新人教A版选修2-1的全部内容。
充分条件与必要条件【一】学习目标1.理解并掌握充分条件、必要条件、充要条件的意义;2.理解⇒”“⇒”“⇔"的意义,并会应用解题.【二】小组交流合作探究(阅读课本第9-11页完成下列问题)问题1。
命题“若22>+,则2x a b>”x ab(1)p:q:(2)判断该命题的真假____(3)该命题可记为:问题2。
命题“若0a=”ab=,则0(1)p q:(2)判断该命题的真假_____(3)该命题可记为:结论:1、一般地,“若p,则q”为真命题,是指由p通过推理可以得出q.我们就说,由p推出q,记作p q⇒,并且说p是q的,q是p的2、一般地,“若p,则q”为____命题,是指由p不能得出q。
我们就说,由p不能推出q,记作______ ,并且说p不是q的,q不是p的问题3.命题a,Ra+>c+”bb∈,“若ba>,则c(1)p:q:(2)判断该命题的真假_____(3)该命题可记为:结论:3、一般地,如果既有p qq⇒,记作______,此时我们说p是q的充分必要条件,⇒,又有p简称充要条件.问题4。
观察命题1、命题2中p、q的关系,试得出如下结论结论:4、如果有p____q,q_____p, 则p是q的充分不必要条件,5、如果有p____q,q_____p, 则p是q的必要不充分条件,问题5. 命题a ,R b ∈,“若b a >,则b a 11>” (1)p : q :(2)判断该命题的真假_____(3)p 与q 的关系___________________结论:6、如果有p ____q ,q _____p ,则p 是q 的既不充分也不必要条件,练习;用符号“⇒”与“"填空:(1) 22x y = x y =; p 是q 的 条件(2) 内错角相等 两直线平行; p 是q 的 条件(3) 整数a 能被6整除 a 的个位数字为偶数;p 的 条件是q(4) ac bc = a b =; p 的 条件是q【三】理顺思路 总结升华总结:用算法表示判断充分、必要条件的基本步骤Step1:________________________Step2:________________________Step3:________________________【四】运用理论 解决问题用“必要不充分”,“充分不必要",“充要”,“既不充分也不必要”填写下表BA 是B 的什么条件 B 是 的什么条件是有理数 是实数、 是奇数 是偶数是4的倍数是6的倍数【五】典型例题例1、已知:⊙O 的半径为r ,圆心O 到直线l 的距离为d ,求证:d =r 是直线l 与⊙O 相切的充要条件。