第七章系统函数

合集下载

《信号与系统》考研试题解答第七章 系统函数

《信号与系统》考研试题解答第七章 系统函数

第七章 系统函数一、单项选择题X7.1(浙江大学2004考研题)一个因果、稳定的离散时间系统函数)(z H 的极点必定在z 平面的 。

(A )单位圆以外 (B )实轴上 (C )左半平面 (D )单位圆以内 H (s )只有一对在虚轴上的共轭极点,则它的h (t )应是 。

(A )指数增长信号 (B )指数衰减振荡信号 (C )常数 (D )等幅振荡信号 X7.3(浙江大学2003考研题)如果一离散时间系统的系统函数)(z H 只有一个在单位圆上实数为1的极点,则它的h (k )应是 。

(A )ε(k ) (B ))(k ε- (C ))()1(k kε- (D )1X7.4(浙江大学2002考研题)已知一连续系统的零、极点分布如图X7.4所示,1)(=∞H ,则系统函数H (s )为 。

(A )2+s (B )1+s (C ))2)(1(++s s (D )1-s X7.5(西安电子科技大学2004考研题)图X7.5所示信号流图的系统函数H (s )为 。

(A )26132+++s s s (B )2132++s s (C )26132--+s s s (D )1212-+s s X7.6(哈尔滨工业大学2002考研题)下列几个因果系统函数中,稳定(包括临界稳定)的系统函数有 个。

(1)4312+--s s s (2)s s s 312++ (3)34234+++s s s (4)33223++++s s s s (5)1224++s s s (6)2421ss + (A )3 (B )2 (C )1 (D )4X7.7(哈尔滨工业大学2002考研题)下面的几种描述中,正确的为 。

(A )系统函数能提供求解零输入响应所需的全部信息;(B )系统函数的零点位置影响时域波形的衰减或增长; (C )若零极点离虚轴很远,则它们对频率响应的影响非常小; (D )原点的二阶极点对应)(2t t ε形式的滤形。

信号与系统第七章 系统函数

信号与系统第七章  系统函数

=
K
N1N 2 " N m e j(ψ1+ψ2 +"ψm ) M1 M2 " Mn ej(θ1+θ2 +"θn )
H (jω)
=
K
N1N2 " Nm M1M2 "Mn
ϕ (ω) = (ψ1 +ψ2 + "ψm ) − (θ1 +θ 2 + "θ n )
当ω 沿虚轴移动时,各复数因子(矢量)的模和辐角都
①H(z)在单位圆内的极点所对应的响应序列为衰减的。 即当k→∞时,响应均趋于0。 ②H(z)在单位圆上的一阶极点所对应的响应函数为稳 态响应。
③H(z)在单位圆上的高阶极点或单位圆外的极点,其 所对应的响应序列都是递增的。即当k→∞时,响应 均趋于∞。
第 19 页
三、由系统函数零、极点分布 决定频响特性
v1(t ) −
R
+
C v2(t )

写出网络转移函数表达式
H (s)
=
V2 (s) V1 (s )
=
1 RC
⎜⎛ ⋅⎜ ⎜⎜⎝
s
1 +1
RC
⎟⎞ ⎟ ⎟⎟⎠
=
1 RC
1 M1 ejθ1
= V2 ejϕ (ω) V1
M1
θ1
−1 RC

O
σ
第 28 页
频响特性

M1
V2 1 V1 1
2 θ1
−1 RC
O
σ
O1 RC
( ) H

=
1 RC
1 M1 e jθ1
= V2 ejϕ (ω) V1

第七章 系统函数

第七章 系统函数
若系统函数H(z)的极点全部在单位圆内, 即H(z)的收 敛域包含 单位圆,则
H ( e j ) H ( z ) z e j bm (e j zi )
i 1 m
(e p )
j i i 1
n
j j ( e z ) 和 ( e pi ) 为复数,故令 由于是 i
是当h(t)不满足绝对可积条件时,则至少有某个有界输 入f(t)产生无界输出yf(t)。 为此,设f (t)有界,则 f(-t)也有界,并且表示为
1 f ( t ) sgn[h(t )] 0 1
于是有
h(t)>0 h(t)=0 h(t)<0
h(t ) f (t ) h(t )
1 2
j j j 令 Be jw , A1e jw p1, A2e jw p2 ,
则H(jω)又可表示为
Be j B j ( 1 2 ) j (w ) H ( jw ) e | H ( j w ) | e A1e j1 A2e j 2 A1 A2
二、 H(s)与系统的频率特性 若系统的系统函数H(s)的极点全部在左半平面, 即H(s) 的收敛域包含 jω 轴,则
H ( jw ) H ( s ) s jw
bm ( jw si )
i 1 m
H ( jw ) H ( s ) s jw
( jw p )
i 1 i
第七章 系统函数
B() H () A()
连续系统
B( s) bm s m bm1s m1 b1s b0 H ( s) n A( s) s an1s n1 a1s a0
离散系统
B( z) bm z m bm1 z m1 b1 z b0 H ( z) n A( z) z an1 z n1 a1 z a0

第七章 (2)系统稳定性

第七章 (2)系统稳定性

an 1 an 3 cn 1 cn 3 d n 1 = cn 1
d n 3
an 1 an 5 cn 1 cn 5 = cn 1
罗斯准则: 罗斯准则:多项式 A(s) 是霍尔维兹多项 式的充分和必要条件是罗斯阵列中第一列元素均大 式的充分和必要条件是罗斯阵列中第一列元素均大 于零. 于零. **在排表过程中,任何一行的系数可以同乘以( **在排表过程中,任何一行的系数可以同乘以(或 在排表过程中 除以)某个正数而不会改变判别结果. 除以)某个正数而不会改变判别结果.
1 2 c2 d2
3 2 c0 d0
1 3 1 c2 = =2 2 2 2 1 d2 = =2 2 2 0 2 2
1 0 1 c0 = =0 2 2 0 1 d0 = =0 2 0 0 2 0
k = ∞
∑ h( k ) ≤ M
+∞
式中M为正常数. 式中M为正常数.
**系统函数的收敛域包含单位圆,该系统为稳定的. 系统函数的收敛域包含单位圆,该系统为稳定的. 系统函数的收敛域包含单位圆
7.2如图7.2 所示因果反馈系统, 7.2因果反馈系统 例7.2-1 如图7.2-3所示因果反馈系统,子系统的 系统函数 1
2 对于二阶系统 A(s) = a2s + a1s + a0
1 2 3
a2 a1 a0
a0 0 0
只需 a2 > 0, a1 > 0, a0 > 0 即可. 即可.
A(s) = s2 + 3s + 2 K 在例7.2 7.2在例7.2-1中
利用上式容易求得该系统为稳定系统的条件为
K<2
7.2例7.2-3 判别多项式 A(s) = s4 + s3 + 3s2 + s + 6 是否为霍尔维兹多项式. 是否为霍尔维兹多项式. 排成罗斯阵列如下: 解 排成罗斯阵列如下:

第七章 系统函数

第七章 系统函数
输出对输入序列的相移
• H ejω 即h(n)的DTFT • ejω 为周期函数,所以 H ejω 为周期函数,其周期为 2π 。
通过本征函数透视系统的频响特性
设输入xn ejn
为本征函数
xn hn yn
hn为稳定的因果系统
yn hn xn
h m ejωnm e j n h m ejω m
1 M1 ejθ1
V2 ej ω V1
ω
O
1
ω
式中:V2= 1 V1 RC
1 M
, = -θ 1
45
RC
90
低通网络,截止频率位于ω 1 处 RC
例研究右图所示二阶RC系统
的频响特性H

V2 jω V1 jω
,
注意,图中kv3是受控电压 v1t
R1 C1
v3t
C2 kv3 R2
v2 t nO Nhomakorabean
θ2
ω
ω
系统对不同频率的输入,产生不同的加权,这就是系 统的频率响应特性。
由系统函数得到频响特性
离散时间系统在单位圆上的z变换即为傅氏变换,即系 统的频率响应特性:
H ej H z z ejω H ejω ejω H ejω ~ ω :幅频特性
输出与输入序列的幅度之比
ω ~ ω :相频特性
limh(t) →∞
t→∞
2.离散系统:
Z平面: 单位圆内:p=-1/3,h(k)=
1 3
k
(k)
→0
单位圆上:p=1,h(k)=1k (k),有限值.
单位圆外:p=2,h(k)= 2 k (k) →∞
z平面
-1/3 0 1 2
极点位置与h(n)形状的关系

第七章(非线性系统的描述函数法)

第七章(非线性系统的描述函数法)

§7.4非线性系统的描述函数分析法一、描述函数法的基本概念假设非线性系统的输入函数为)sin()(t X t x ω=非线性环节Nx (t )n(t )输出n(t)将是非正弦的周期信号。

可以展成傅利叶级数,n(t)是由恒定分量、基波分量、和高次谐波组成。

假设1:如果非线性部分的特性曲线具有中心对称性质,那以输出信号n(t)的波形具有奇次对称性(波形的后半个周期重复前半个周期的变化,但符号相反)输出不含直流分量,输出响应的平均值为零。

假设2:线性部分具有良好的低通滤波性,那么高次谐波的幅值远小于基波。

闭环通道内近似地只有一次谐波信号流通。

对于一般的非线性系统而言这个条件是满足的,线性部分的低通滤波性越好,用描述函数法分析的精度越高。

上述两个假设满足时,非线性环节的输入是一个正弦信号,系统的输出是相同频率的正弦信号,对于非线性环节的输出只研究其基波成分就足够了。

假设系统中非线性环节的输入函数为tX t x ωsin )(=输出信号可以展成傅利叶级数∑∑∞=∞=++=++=1010)sin(2)cos sin (2)(i i i i i i t i Y A t i B t i A A t n ϕωωω⎰=πωωπ20)()cos()(1t d t i t n A i ⎰=πωωπ20)()sin()(1t d t i t n B i 22iii BA Y +=iii B A tg1-=ϕ若非线性部分是齐次对称的,则A 0=0,线性部分又具有低通滤波特性,可以认为非线性环节的输出中只有基波分量能够通过闭环回路反馈到输入端。

输出部分的基波分量为)sin(cos sin )(11111ϕωωω+=+=t Y t B t A t y ⎰=πωωπ201)()cos()(1t d t t n A ⎰=πωωπ201)()sin()(1t d t t n B 21211B A Y +=1111B A tg -=ϕ可以用一个复数来描述非线性环节输入正弦信号和输出信号基波的关系。

信号与系统——系统函数

信号与系统——系统函数


幅频: | H ( j) | bm B1B2...Bm
A1A2... An
相位:()=(1+…+m)-(1+…+n) 分析: 从0~∞
2019/11/20
22
例: u1(s) + -
R 1/sc
u2(s)
1 sc H(s)=u2(s)/ u1(s) = R 1 sc
11 = Rc s 1 Rc

写出网络转移函数表达式
Hs
V2 s V1 s

1 RC

s
1 1
RC

1 RC
2019/11/20
1 M1 ejθ1
V2 ej ω V1
M1
θ1
1 RC

O
σ
30
频响特性 V2

1 V1
M1
1
2
θ1
1 RC
O
σ
O1 RC
ω
H
Im[z] Z平面
2019/11/20
-1/3
1 2 Re[z]
13
极点位置与h(k)形状的关系
j Im z
1
O
1
Re z
2019/11/20
14
利用z~s平面的映射关系
s平面(单极点)
z平面(单极点)
极点位置 h(t)特点 极点位置 h(k)特点
虚轴上
等幅
单位圆上 等幅
原点时 左半平面
t 1
2019/11/20
28
结论:
凡极点位于左半开平面,零点位于右半开 平面,且所有的零点与极点对于j轴为一 镜像对称的系统函数即为全通函数.

第7章系统函数

第7章系统函数

7.3
信号流图
7.3.1 连续系统的信号流图 7.3.2 离散系统的信号流图
7.3
信号流图
y (t )
一、连续系统的方框图表示 方框图表示: f (t ) 系统的串联:
f (t )
(t )
h1 (t )
h2 (t )
hn (t )
y (t )
h(t )
(a) 时域: h(t ) h1 (t ) h2 (t ) .... hn (t ) 若 hi (t )为因果信号.
本章进一步讨论系统函数与系统时域响应、
频率特性和稳定性之间的关系。系统函数对上述
系统特性的影响取决于系统函数的零、极点在复
平面上的分布。
7.2 系统函数的基本概念
7.2.1 7.2.2 7.2.3 7.2.4 系统函数的定义 零极点 零极点分布及系统时频域特性 典型系统的系统函数
7.2.1 系统函数的定义
第七章
7.1
7.2
系统函数
绪论
系统函数的基本概念
7.3
7.4
信号流图
系统的特性
7.5
系统的实现
教学目标与要求 掌握系统零极点分布与时间特性、频域特性 之间的关系; 掌握信号流图与系统函数之间的关系; 了解系统的实现原理,理解直接实现、级联 实现和串联实现三种实现方法。
7.1 绪论
系统函数是线性时不变系统的重要概念。
F1 ( z )
F2 ( z )
1
F1 ( z ) F2 ( z )
1
z 1
Y ( z ) z 1 F ( z )
z 1
z 1 F ( z ) F ( z )
2、信号流图规则:同于连续系统信号流图规则

第七章 系统函数

第七章 系统函数

f (t ) et (t )
t
9
H ( s)
(s pi )
i 1
n
H(s)的极点与所对应的响应函数
7.1
系统函数与系统特性
2.离散因果系统 H(z)按其极点在z平面上的位置可分为:在单位圆内、 在单位圆上和在单位圆外三类。 根据z与s的对应关系,有结论: ①H(z)在单位圆内的极点所对应的响应序列为衰减的。 即当k→∞时,响应均趋于0。极点全部在单位圆内的系 统是稳定的系统。
2
7.1
系统函数与系统特性
7.1 系统函数与系统特性 一、系统函数的零、极点分布图
LTI系统的系统函数是复变量s或z的有理分式,即 B() H () A() A(.)=0的根p1,p2,…,pn称为系统函数H(.)的极点; B(.)=0的根1,2,…,m称为系统函数H(.) 的零点。 m
i 1
n
H s
s jω
H jω H jω e
j ω
H jω ——幅频特性
ω ——相频特性(相移特性)
13
H j ω H s
s jω

bm j ω j
m
7.1
系统函数与系统特性
jω p
i 1 i
H (s) 6 6 6 ( s 2)(s 3) s 2 s 2
h(t ) 6(e 2t e 3t ) (t ) g (t ) h( )d [1 e 2t 2e 3t ] (t )
0 t
(2)
Yzs ( s)
1 ( s 1)(s 2)(s 3) Yzs( s) 1 F (s) H ( s) 6( s 1)

信号与线性系统分析+课件(第四版)吴大正第七章 系统函数

信号与线性系统分析+课件(第四版)吴大正第七章  系统函数
1 −t 1 − 3t − 2t y zs (t ) = [ e − e + e ]ε (t ) 2 2
求其激励 (3)大致画出系统的幅频特性和相频特性

-3
-2 -1 0
σ
• 解:(1) 根据零极点图,得 根据零极点图,
H ( s) = k ( s + 2)( s + 3)
因为H(0)=1 K=6
1 −t f (t ) = e ε (t ) 6
• (3)因为极点均在左半开平面,所以 因为极点均在左半开平面, 因为极点均在左半开平面
1、连续系统 、
f1 (t ) =| k1 | e −αt cos(βt + θ )ε (t )
α>0 t
t ×
jω × t
s1, 2 = α ± jβ
f (t ) = e −αt ε (t )
×
× t ×
×
σ
t
bm ∏ ( s − ς j )
j =1 m
×
s1× −α ± jβ ,2 =
f (t ) = eαt ε (t )
• 相频响应: 相频响应:
ϕ(ω) =(ϕ1 +ϕ2 +⋅⋅⋅ +ϕm)−(θ1 +θ2 +⋅⋅⋅ +θn)
提示:把频率ω ( ∞ 变化到+ 根据各矢量 提示:把频率ω从0(或-∞)变化到 ∞,根据各矢量 模和幅角的变化, 模和幅角的变化,就可大致画出幅频响应和相频响 应曲线。 应曲线。
• 例1、某线性系统的系统函数的零、极点如图 、 所示,已知H(0)=1。 • (1)求该系统的冲激响应和阶跃响应 • (2)若该系统的零状态响应为
本题: 本题:由H(s)得到零极点图 得到零极点图 -2 jω (2) -1 j σ -j

信号与系统第七章(3)信号流图

信号与系统第七章(3)信号流图
称为汇点或陷点(或输出点),如图中的 x5。
通路
d
x1
1
x2 a
b
x3
e
x4 c
g
x5
f
从任一结点出发沿着支路箭头方向连续经过各相连的 不同支路和结点到达另一结点的路径称为通路。
如果通路与任一结点相遇不多于一次,则称为开通路。
如果通路的终点就是通路的起点(与其余结点相遇不 多于一次),则称为回路或闭通路(环路)。
1
z-1
+
+

z-1
F(z)
0.5
-
z-1 0.25
0.5 1
+ -
∑ Y(z)
例4 求图示信号流图的系统函数。
H4
F
1 x1
H1 x2 H2 x3 H3 x4 H5
Y
-G1
-G2
-G3
例5 求图示网络的转移电压比
H(s) U4(s) U1(s)
和输入阻抗
Zin(s)
U1(s) I1(s)
(一) 判断系统函数 H (的S)极点都在左半开平面。
(二)连续因果系统的稳定准则:罗斯-霍尔维兹准则。 1 判断多项式 A(的s)所有系数 ai (i 0是,1,否2,大, n于) 0。
2 若所有系数 a均i 大于0, 用罗斯准则进一步判断。 3 罗斯准则:多项式 A是(s霍) 尔维兹多项式的充分 和必要条件是罗斯阵列中第一列元素均大于零。
U2(s) R[I1(s) I2(s)]
U3(s) R[I2(s) I3(s)]
U4(s) RI3(s)
sC R
sC R
U2
I2
U3
I3

第7章_系统函数

第7章_系统函数
j1
n
a m ( z p i )
i1
第七章 系统函数
7.1 系统函数与系统特性
一、系统函数的零、极点分布图
极(零)点的分布类型:
✓ 一阶实极(零)点:位于 s 或 z 平面的实轴上
✓ 一阶共轭虚极(零)点:位于 s 或 z 平面虚轴上,且对称于实轴
✓ 一阶共轭复极(零)点:位于 s 或 z 平面上,并且对称于实轴
i 1
H(j
)bmB1B2 amA 1A2
Bej(12 m) m
Aej(12 m) m
H(j) bmB1B2 Bm
其中
amA1A2 Am
() (1 2 m ) - (1 2 m )
据模、辐角随 的变化,可绘出幅频特性曲线和相频特性曲线。
第七章 系统函数
7.1 系统函数与系统特性
7.2 系统的因果性与稳定性
二、系统的稳定性
例 y(k)+1.5y(k-1)-y(k-2)= f(k-1) (1) 若为因果系统,求h(k),并判断是否稳定。 (2) 若为稳定系统,求h(k).
解 H ( z ) 1 1 .5 z z 1 1 z 2 z 2 1 z . 5 z 1 ( z 0 .5 z )z ( 2 ) z 0 .4 0 z . 5 z 0 . 4 2 z
称 B() 0 的根 1,2, n为系统函数 H ( ) 的零点 。
第七章 系统函数
7.1 系统函数与系统特性
一、系统函数的零、极点分布图
系统函数可以写为:
m
H (s) B (s) A(s)
bm
(s j)
j1 n
a m ( s p i )
i1
m
H ( z)
B(z)

第七章(c语言谭版)函数

第七章(c语言谭版)函数

调用a

调用b

}
}
}
例: 用弦截法求方程的根。
x3–5x2+16x–80=0 方法如下: (1) 取两个不同点x1、x2,如果f(x1)和f(x2)符号相反, 则(x1,x2)区间内必有一个根。如果f (x1)与f (x2)同 符号,则应改变x1、x2,直到f (x1)、f (x2)异号为 止。注意x1、x2的值不应差太大,以保证(x1, x2) 区间只有一根。
float x1, x2; { int i; float x, y, y1; y1=f(x1); do { x=xpoint(x1, x2);
y=f(x);
if (y*y1>0) /*f(x)与f(x1)同符号。*/ {y1=y; x1=x;} else x2=x; } while (fabs(y)>=0.0001); return (x); }
个return.
返回值类型为函数类型。 一般return中的返
回值类型应与函数定义时的类型一致, 不一致时,
以函数定义类型为准。
5. 调用函数应对被调用函数的返回值类型作出说 明:(函数名相当于一变量,但应有所区别)
类型符 函数名( );
它不同于函数的定义(功能定义) 例: 求二实数之和 main ( ) { float add( ); float a, b, c;
hanoi(n, one, two, three)
表示n个盘子从one塔借助于two塔(空)移至three塔。 调用时塔用字符常量'A' ,' B ', ' C '表示。
§7.5 数组作为函数参数
分为两种情况: 1. 数组元素作为实参

第七章 系统函数

第七章 系统函数

第七章系统函数系统分类:连续系统离散系统分析方法:时域:h(t)h(k) 冲击响应/单位响应↑逆↑逆复频域: H(s) H(z) 系统函数H(·)↓s = jw↓z =e jwT频域: H(jw) H(e jwT) 频率响应系统的研究:系统分析: 给定系统→H(·)→系统的特性系统综合: 给定要求(如幅频特性)→确定结构和参数→H(·) 本章是在前几章的基础上加以概括和引伸主要内容:一H(·)与系统的特性(时域响应、频域响应)二系统的因果性和稳定性及判别准则三信号流图四系统模拟。

由系统函数→框图§ 7.1 系统函数与系统特性一 H(·)的零点与极点H(·)=)()(••A B 极点:A(·)=0的根,i P ,H(i P )→∞ 零点:B(·)=0的根,i ξ,H(i ξ)=0类型:实数、共轭虚数、共轭复数,一阶或二阶 二 H(·)与时域的响应关系: H(·) h(·)1 连续系统: H(s) h(t) 以虚轴为界结论:○1 H(s)的极点位置→h(t)的函数形式 ○2 极点在左半开平面→h(t)是衰减的,h(t)|∞→t →0,系统是稳定的○3 虚轴上的一阶极点→h(t)是幅度稳定,临界稳定 ○4 极点在右半开,和虚轴上二阶以上→h(t)是增长的, 系统不稳定稳定性:若输入有界,则输出有界。

若|f(·)|<∞,则| y f (·)|<∞ 2 离散系统:H(z) h(k) 以单位圆为界结论:○1 H(z)的极点位置→h(k)的序列形式 ○2 极点在单位圆内→h(k)是衰减的,k →∞,h(k)→0 系统是稳定的○3 单位圆上的一阶极点→h(k)是幅度稳定,临界稳定 ○4 极点在单位圆外,和单位圆上二阶以上→h(k)是增长的,系统不稳定三 极、零点与频率响应的关系: 1 连续系统H (s)=∏∏=-=-ni i p s mj j s m b 1)(1)(ξ 设极点都在左半开平面,收敛域含虚轴H (j ω)= H (s)|s=jw =∏∏=-=-ni i p jw mj j jw m b 1)(1)(ξ 画幅频、相频特性下面用矢量分析法分析,主要是定性分析其变化规律矢量:p i | p i | j ω |ω| 差矢量: j ω- p i 幅角i ϕ 幅角2π令 j ω- p i =A i ij e θ j ω-ζi =B j jj e ψH (j ω)=)(21)(212121n m j e n A A A j e m B B B m b θθθψψψΛΛΛΛ++++=H (ω)=nA A A mB B B m b ΛΛ2121 )(ωϕ=(m ψψψΛ++21)- (n θθθΛ++21)ω从0~∞时,可得到其幅频特性和相频特性曲线例7.1-1 研究RC 低通网络电压转移函数的频率响应H(j ω)=)(1)(2ωωj U j U解:H (s)=SCR SC 11+=RC S RC 111+• 极点S= - RC 1H (j ω)=RCj RC111+ω令θωj Ae RCj =+1A=2)1(2RC +ω θ=arctg ωcR H (ω)=ARC 11 )(ωϕ=0-θ= - arctg ωcR 定性分析:ω从0~∞时,A 单调增大,θ从0~2π H (ω)单调下降,)(ωϕ从0~ - 2π例7.1-2 典型的二阶系统,RLC 串联电路,求动点导纳y(s)=)(1)(1s U s I 的频率特性 解:H (s) =2022ωα++s s s =)2)(1(p s p s s-- 设α>0,ω02 >α2零点:s=0极点:p 1,2 = -220αωα-±j =-βαj ± 其中:Lr2=α 衰减因素 220αωβ-= LC10=ω 谐振角频率只讨论α<ω0时的频率响应,先画极、零图H (j ω)=)2)(1(p j p j j --ωωω=)(2121θθψ--•j e A A BH (ω) =21A A B)21()(θθψωϕ--= 定性分析:ω从0~∞○1 ω=0 B=0,A 1=A=ω 21θθ-= 2πψ=y (ω)=0 2)(πωϕ=ω↑ B 和A 2↑ A 1↓ 21θθ+↑ 2πψ=y (ω) ↑ )(ωϕ↓○2 ω=ω0 y (ω)=α21为极大值 0)(=ωϕ 221πθθ=+ ω↑ B 、A 2、A 1↑ y (ω) ↓ 21θθ+↑ )(ωϕ↓○3ω→∞ y (ω)→0 πθθ=+21 2)(πωϕ-=全通函数: |H(j ω)|为常数设有二阶系统H(s),左半平面有一对极点p 1,2 = -βαj ± 右半平面有一队零点ξ1,2 =βαj ±H(s)=)2)(1()2)(1(p s p s s s ----ξξH(j ω)=)2)(1()2)(1(p j p j j j ----ωωξωξω=)(21212121θθψψ--+•j e A A B B 由图:对所有ω,有A 1= B 1 A 2 =B 2∴ |H(j ω)|= 2121A A BB =1结论:凡极点位于左半开平面,零点位于右半开平面,且以j ω轴镜像对称,此系统函数即为全通函数 最小相移函数零点位于左半开平面的系统函数,其相频特性)(ωϕ最小 一阶 p 1,2 = βj e ± H(z)=ββj ez z k j e z z k --+-*11 共轭极点 h(k)=2|k 1|cos (βk+θ)·u (k)二阶实或共轭: h(k)= Ck ·u (k) k ↑ h(k)↑ (二阶以上同) h(k)=Ckcos (βk+θ)·u (k) k →∞ h(k)→∞ (3) 极点在单位圆外:|a|>1一阶实极点 p=a ,h(k)=a k ·u (k) k ↑ 一阶共轭极点:p=a βj e ± h(k)=C a k cos (βk+θ)·u (k) h(k)↑ 高阶情况同上结论:A H(z)的零、极点决定 h(k) 形式由极点决定幅度和相角由零、极点共同决定B 单位圆内的极点,h(k)为衰减序列,k →∞ h(k)→0,暂态分量C 单位圆上的一阶极点,h(k)为等幅序列,k →∞ h(k)有限值,稳态分量D 单位圆上的二阶及以上极点 h(k)为等幅序列 单位圆外的极点 k →∞ h(k)→∞ 2 离散系统:H(z)零、极点H(T j e ω)关系H(z)=∏∏=-=-ni i p z mj j z m b 1)(1)(ξ 若极点均为单位圆内,收敛域含单位圆频率响应:H(T j e ω)=∏∏=-=-n i i p j m j j j m b 1)(1)(ωξω=∏∏==n i j e i A mj j e j B m b i j11θψ=)(21)(212121nm j e n A A A j e m B B B m b θθθψψψΛΛΛΛ++++=H d (ω) )(ωϕdj e幅频:H d (ω)= H(T j e ω)=nA A A mB B B m b ΛΛ2121相频:)(ωϕd =(m ψψψΛ++21)- (n θθθΛ++21) 分析:ωT 从0~2π,即ω从0~Tπ2,z 由z=1沿单位圆逆时针方向旋转一周。

第七章 系统函数

第七章 系统函数

1、求下图所示离散系统在(1))()()2(),()(21k k f k k f εδ==激励作用下的零状态响应。

解:由梅森公式,得zz z zzzz F z Y z H -+=-+==---3223111)()()((1)1)()()(11=↔=z F k k f δ1,11111)1(1)()()(221>-+++-=-+==z z z zz z z z F z H z Y求逆z 变换,得)1()1(])1(1[)1()1()1()1()(1-----=-+--+--=-n n n n n k y nn δεεεδ(2)1)()()(22-=↔=z z z F k k f ε1],)1(1)1(11[21)1)(1(11)1(1)()()(2222222>-+-++=-++=-⋅-+==z z z z z z z z z zz z z z F z H z Y求逆z 变换,得)1(]21)1(21[)]1()1()()1()1[(21)(1----=--++--=-k k k k k k k k y kk εεεε2、已知系统的频率特性模的平方为254)(222++=ωωωH ,且该系统在3=s 有一零点,求)(s H 。

解:设由2)(ωH 求得的系统函数为)('s H 。

令js =ω代入2)(ωH ,有2222225425)(4)()(')(')('s s js js s H s H s H --=++=-= 因此2)('s H 的零点为2±,极点为5±,取全部左半平面的零、极点,有52)('++=s s s H因要求)(s H 的s=3有一零点,为了使)(s H 得幅频特性与)('s H 的幅频特性相同,两者可以差一全通函数,故所求)(s H 为1586)3)(5()3)(2()(22=+--=++-+=s s s s s s s s s H3、连续系统b a 和,其系统函数)(s H 的零点、极点分布如下图所示,且已知当1)(=∞∞→H s 时,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H ( s ) bm ( s − z1 )( s − z2 ) ⋅⋅⋅ ( s − zm ) H ( s) = = = H0 D( s ) an ( s − p1 )( s − p2 ) ⋅⋅⋅ ( s − pn )
∏ ∏
i =1 j =1 n
m
(s − z j ) ( s − pi )
(7―2)
把系统函数的零点与极点表示在s平面上的图形, 把系统函数的零点与极点表示在s平面上的图形, 叫做系统函数的零、 极点图。 其中零点用“ 叫做系统函数的零 、 极点图 。 其中零点用 “ o” 表示 。 表示。 极 点 用 “ ×” 表 示 。 若 为 n 重 极 点 或 零 点 , 则 注 以 ( n) 。 例如某系统的系统函数为
H ( s) = H 0
∏ ∏
i =1 m j =1 n
m
(s − z j ) (s − p j ) ( jω − z j ) ( jω − p j )
H ( jω ) = H 0
∏ ∏
i =1 j =1 n
(7―8)
图7.3中画出了由零点zj和极点pi与虚轴上某点jω连接 中画出了由零点z 和极点p 与虚轴上某点jω jω连接 构成的零点矢量jω 和极点矢量jω 构成的零点矢量jω-zj和极点矢量jω-pi。图中Nj、Mi分别 jωjω图中N 表示矢量的模,θ 表示矢量的模,θj、φi分别表示矢量的相角,即 分别表示矢量的相角,
当正弦激励信号的频率ω 改变时, 当正弦激励信号的频率 ω 改变时 , 稳态响应的幅度和相 位将分别随着H jω) 位将分别随着 H ( jω ) 和 φ ( ω ) 变化 ,H ( jω ) 反映了 变化,H jω) ,H( 系统在正弦激励下稳态响应随频率变化的情况, 系统在正弦激励下稳态响应随频率变化的情况 , 故又称系统 的频响特性。 的频响特性。 若 H ( s ) 的极点均位于 s 左半平面 , 令 s=jω, 也就是在 s 的极点均位于s 左半平面, s=jω,也就是在 也就是在s 平面上令s沿虚轴变化,则有H(s)|s=jω=H(jω), 平面上令s沿虚轴变化,则有H(s)|s=jω=H(jω),即为系统的 H(s)|s=jω=H(jω),即为系统的 频响特性。根据H 频响特性。根据H(s)在s平面的零、极点分布情况可以绘 平面的零、 制出频响特性曲线,包括幅频特性|H(jω)| 制出频响特性曲线 , 包括幅频特性 |H(jω)| 曲线和相频特性 |H(jω)|曲线和相频特性 φ(ω)曲线 下面介绍这种方法。 φ(ω)曲线,下面介绍这种方法。 曲线, 由式( 由式(7―2),系统函数H(s)的表示式为 系统函数H
jω t t t
0 t t t
σ
图7.2 H(s)的极点与所对应的响应函数 H(s)的极点与所对应的响应函数
(3) 若 H ( s ) 的单极点位于虚轴 ( 包括原 的单极点位于虚轴( 点),则冲激响应的模式为等幅振荡或阶跃函数, 则冲激响应的模式为等幅振荡或阶跃函数, 系统属于临界稳定系统。 系统属于临界稳定系统。 (4)若位于虚轴(包括原点)的极点为n重极 若位于虚轴(包括原点)的极点为n 点(n≥2),则冲激响应的模式呈增长形式,系统也 (n≥2),则冲激响应的模式呈增长形式 则冲激响应的模式呈增长形式, 属于不稳定系统。 属于不稳定系统。
2、系统函数的极点分布与冲激响应 H ( s ) 的一阶极点与其所对应的冲激响应函数 波形,如图7 所示。由以上讨论可得如下结论: 波形,如图7.2所示。由以上讨论可得如下结论: LTI连续系统的冲激响应的函数形式由 LTI连续系统的冲激响应的函数形式由H(s)的 连续系统的冲激响应的函数形式由H 极点确定。 极点确定。 (1) 若H(s)的极点位于s左半平面,则冲激响应 的极点位于s左半平面, 的模式为衰减指数或衰减振荡, t→∞时 的模式为衰减指数或衰减振荡,当t→∞时,它们趋于 系统属于稳定系统。 零,系统属于稳定系统。 (2) 若H(s)的极点位于s右半平面,则冲激响应 的极点位于s右半平面, 的模式为增长指数或增长振荡, t→∞时 的模式为增长指数或增长振荡,当t→∞时,它们趋于 无限大,系统属于不稳定系统。 无限大,系统属于不稳定系统。
jω jω
Mi pi
φi
Nj zj
s平平
θj
0
σ
图7.3 零点矢量和极点矢量
jω − z j = N j e jω − pi = M i e
jθ j jφ j
H 0 N 0 N1 ⋅⋅⋅ N m j[(θ1 +θ2 +⋅⋅⋅+θm ) −(ϕ1 +ϕ2 +⋅⋅⋅+ϕm )] H ( jω ) = e M 0 M 1 ⋅⋅⋅ M m = H ( jω ) e jφ (ω ) H ( jω ) = H 0
ϕ 3 = arctan[
1− 1 2
3 2 ] ≈ 75o
由式(7 10)和(7―11)可得 由式(7―10)和(7―11)可得 (7―
1 2 H ( j1) = = 2 M 1M 2 M 3
ϕ1 = −(ϕ1 + ϕ 2 + ϕ 3 ) = −13.5o
例7―4 RC高通滤波器如图7.5所示,试分析其 RC高通滤波器如图7.5所示 高通滤波器如图7.5所示, 频响特性。 频响特性。 解 RC高通滤波器的系统函数为 RC高通滤波器的系统函数为

j
-3
-2
-1 -j
σ
图 7.1
系统函数的零点、 系统函数的零点、极点图
研究系统函数的零、极点有下列几个方面的意义: 研究系统函数的零、极点有下列几个方面的意义: ( 1 ) 从系统函数的极点分布可以了解系统的固有 频率,进而了解系统冲激响应的模式, 频率 , 进而了解系统冲激响应的模式 , 也就是说可以知 道系统的冲激响应是指数型,衰减振荡型,等幅振荡型, 道系统的冲激响应是指数型,衰减振荡型,等幅振荡型, 还是几者的组合, 还是几者的组合,从而可以了解系统的响应特性及系统 是否稳定。 是否稳定。 ( 2 ) 从系统的零 、 极点分布可以求得系统的频率 从系统的零、 响应特性,从而可以分析系统的正弦稳态响应特性。 响应特性,从而可以分析系统的正弦稳态响应特性。 系统的时域、 系统的时域 、 频域特性都集中地以其系统函数或系统 函数的零、 极点分布表现出来。 函数的零 、 极点分布表现出来 。 我们先来讨论系统的 固有频率与极点的关系。 固有频率与极点的关系。
在图7.4中分别给出各极点与j1 在图7.4中分别给出各极点与j1点构成的各 7.4中分别给出各极点与j1点构成的各 极点矢量, 极点矢量,由几何关系求得
M2 jω j1 3 j 2来自φ2M1 M3 0
φ1
-1
φ3
σ
−j
3 2
图7.4
例 7 ―2 图
M 1 = 2 ≈ 1.414
ϕ1 = 45o
1 3 2 M 2 = ( ) 2 + (1 − ) ≈ 0.518 2 2 3 1− 2 ] ≈ 15o ϕ 2 = arctan[ 1 2 1 2 3 2 M 3 = ( ) + (1 − ) ≈ 1.932 2 2
第七章 系统函数
※系统函数与系统特性 ※系统的稳定性 ※信号流图 ※系统模拟
第一节 系统函数与系统特性
一、连续时间系统函数与系统特性 1、系统函数的零点、极点及系统的固有频率 系统函数的零点、 线性系统的系统函数, 线性系统的系统函数,是以多项式之比的形式 出现的, 出现的,即
bm s m + bm −1s m −1 + ⋅⋅⋅ + b1s + b0 N ( s ) H ( s) = = n n −1 an s + an −1s + ⋅⋅⋅ + a1s + a0 D ( s )
s 2 ( s + 3) H ( s) = ( s + 1)( s + 2 + j1 )( s + 2 − j1 )
它表明系统在原点处有二重零点, s=它表明系统在原点处有二重零点,在s=-3处有一个 零点;而在s= ,s=- +/- 处各有一个极点, 零点;而在s=-1,s=-2+/-j1处各有一个极点,该系统函 s=数的零、极点图如图7 所示。 数的零、极点图如图7.1所示。
(7―1)
系统函数分母多项式D(s)= 系统函数分母多项式D(s)=0的根称为系统函数的 D(s)=0 极点,而系统函数分子多项式N(s)= 极点,而系统函数分子多项式N(s)=0的根称为系统函 N(s)=0 数的零点, 极点使系统函数取值为无穷大, 数的零点 , 极点使系统函数取值为无穷大 , 而零点使 系统函数取值为零。 系统函数取值为零。 N(s)和D(s)都可以分解成线性因子的乘积 N(s)和D(s)都可以分解成线性因子的乘积,即 都可以分解成线性因子的乘积,
对称,相频特性奇对称的特点,因此绘制频响曲线时仅给出 对称 , 相频特性奇对称的特点 , ω 从 0→∞即可。 为了便于理解 , 在应用这种方法作频响特 →∞ 即可。为了便于理解, 即可
性之前,我们举例说明如何由s 性之前 , 我们举例说明如何由 s 平面零极点分布用几何法确 定频响特性曲线上一个特定点的数值。 定频响特性曲线上一个特定点的数值。
H (jω )
1 90°
φ (ω )
2 2
45°
0
1 RC
ω
0
1 RC
ω
图7.7
RC高通滤波器的频响特性 RC高通滤波器的频响特性
一般情况下,可以认为, 一般情况下,可以认为,若系统函数有一对非常 ),则 靠近虚轴的共轭极点p 靠近虚轴的共轭极点p1,2=-σi±jωi,(σi<<ωi),则 在ω=ωi附近处,幅频特性出现峰值,相频特性迅速减 附近处,幅频特性出现峰值, 小。若系统函数有一对非常靠近虚轴的共轭零点 z1,2=-σj±jωj,(σj <<ωj),则在ω=ωj附近处,幅频 ),则在 则在ω=ω 附近处, 特性出现谷值,相频特性迅速上升。 特性出现谷值,相频特性迅速上升。
相关文档
最新文档