直线与方程知识梳理、典型例题讲解与习题

合集下载

最新直线与方程知识点及典型例题

最新直线与方程知识点及典型例题

第三章 直线与方程知识点及典型例题1. 直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x 轴平行或重合时 ,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α<180° 2. 直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k 表示。

即k=tan α。

斜率反映直线与轴的倾斜程度。

当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; 当直线l 与x 轴垂直时, α= 90°, k 不存在. 当[)90,0∈α时,0≥k ; 当()180,90∈α时,0<k ; 当90=α时,k 不存在。

例.如右图,直线l 1的倾斜角α=30°,直线l 1⊥l 2,求直线l 1和解:k 1=tan30°=33∵l 1⊥l 2 ∴ k 1·k 2 =—1 ∴k 2 =—3例:直线053=-+y x 的倾斜角是( )A.120°B.150°C.60° ②过两点P 1 (x 1,y 1)、P 1(x 1,y 1) 的直线的斜率公式:)(211212x x x x y y k ≠--=注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

例.设直线 l 1经过点A(m ,1)、B(—3,4),直线 l 2经过点C(1,m )、D(—1,m +1), 当(1) l 1/ / l 2 (2) l 1⊥l 1时分别求出m 的值※三点共线的条件:如果所给三点中任意两点的斜率都有斜率且都相等,那么这三点共线。

直线与方程知识点与练习试题

直线与方程知识点与练习试题

直线与方程【知识点一:直线的方程】 (1)直线方程的几种形式(2)线段的中点坐标公式121122,(,),(,)P P x y x y 若点的坐标分别是,1212122(,)2x x x PP M x y y y y +⎧=⎪⎪⎨+⎪=⎪⎩且线段的中点的坐标为 【知识点二:直线平行与垂直】(1)两条直线平行:对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有2121 // k k l l =⇔特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行(2)两条直线垂直:如果两条直线12,l l 斜率存在,设为12,k k ,则有1- 2121=⋅⇔⊥k k l l 注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直;反过来,两直线垂直,斜率之积不一定为-1。

如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直.【知识点三 直线的交点坐标与距离】 (1)两条直线的交点设两条直线的方程是1111:0l A x B y C ++=, 2222:0l A x B y C ++=两条直线的交点坐标就是方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩的解。

①若方程组有唯一解,则这两条直线相交,此解就是交点的坐标; ②若方程组无解,则两条直线无公共点,此时两条直线平行. (2)几种距离两点间的距离:平面上的两点111222(,),(,)P x y P x y 间的距离公式12||PP =特别地,原点(0,0)O 与任一点(,)P x y的距离||OP =点到直线的距离:点00(,)o P x y 到直线0Ax By C ++=的距离d =两条平行线间的距离:两条平行线1200Ax By C Ax By C ++=++=与间的距离d =一、疑难辨析判断下列结论的正误.(正确的打“√”,错误的打“×”) 1.直线的倾斜角越大,其斜率越大.( )2.斜率公式k =y 2-y 1x 2-x 1,不适用于垂直于x 轴和平行于x 轴的直线.( )3.当直线的斜率不存在时,其倾斜角存在.( )4.过点P (x 1,y 1)的直线方程一定可设为y -y 1=k (x -x 1).( ) 5.直线方程的截距式x a +yb =1中,a ,b 均应大于0.( ) 二、选择题1.已知直线l 的斜率为-33,那么直线l 的倾斜角是( ) A .60° B .120° C .30° D .150°2直线l 经过原点O 和点P (-1,-1),则它的倾斜角是( )A .45°B .135°C .135°或225°D .0°3过点M (-2,m ),N(m ,4)的直线的斜率等于1,则m 的值为( )A .1B .4C .1或3D .1或44直线l 过点A (1,2)且不过第四象限,那么直线l 的斜率的取值范围为( )A .[0,2]B .(0,2)C .⎣⎡⎦⎤0,12D .⎝⎛⎭⎫0,12 5.中直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则 ( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 26经过点(1,3)且斜率不存在的直线方程为( )A .x =1B .x =3C .y =1D .y =3 7.已知点A (-3,4)和B (0,b ),且|AB |=5,则b 等于( )A .0或8B .0或-8C .0或6D .0或-6 8将方程3x -2y +1=0化成斜截式方程为( )A .y =23x +12B .y =32x +12C .y =32x +1D .y =23x +19直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是( )A .3x +2y -1=0B .3x +2y +7=0C .2x -3y +5=0D .2x -3y +8=0直线l 过点(-1,2)且与直线2x -3y +4=0平行,则l 的方程是10直线l 1:ax -y +b =0,l 2:bx +y -a =0(ab ≠0)的图象只可能是( )11已知A (2,0),B (3,3),直线l ∥AB ,则直线l 的斜率k =( )A .-3B .3C .-13D .1312已知直线l 1的斜率为0,且l 1⊥l 2,则l 2的倾斜角为( ) A .0° B .135° C .90° D .180°13点P(2,5)关于直线x+y=0的对称点的坐标是()A.(5,2) B.(2,5)C.(-5,-2) D.(-2,5)14.经过直线2x-y+4=0与x-y+5=0的交点,且垂直于直线x-2y=0的直线方程是()A.2x+y-8=0 B.2x-y-8=0C.2x+y+8=0 D.2x-y+8=0三填空题15已知l1⊥l2,直线l1的倾斜角为60°,则直线l2的倾斜角为________.16直线l的方程为y-m=(m-1)(x+1),若l在y轴上的截距为7,则m=________.17倾斜角为30°,且过点(0,2)的直线的斜截式方程为________.18已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.19.直线y=kx+2(k∈R)不过第三象限,则斜率k的取值范围是________.20.直角坐标平面上连接点(-2,5)和点M的线段的中点是(1,0),那么点M到原点的距离为________.21.方程mx+(m2+m)y+4=0表示一条直线,则实数m≠________.22.已知直线l1过点A(-2,3),B(4,m),直线l2过点M(1,0),N(0,m-4),若l1⊥l2,则常数m的值是____________.四、解答题23经过两条直线2x-3y+10=0和3x+4y-2=0的交点,且垂直于直线3x-2y+4=0的直线的方程为________.24.已知A(1,-1),B(2,2),C(3,0)三点,求点D的坐标,使直线CD⊥AB,且CB∥A D.限时训练1.(2,1),B (3,-1)两点连线的斜率为( )A .-2B .-12C .12D .22.直线y =2x +10,y =x +1,y =ax -2交于一点,则a 的值为( )A .12B .-12C .23D .-233.直线y =-2x -1的斜率与纵截距分别为( )A .-2,-1B .2,-1C .-2,1D .2,14若过两点P (6,m )和Q(m ,3)的直线与斜率为12的直线M N 平行,则m 的值为( )A .5B .4C .9D .05经过两条直线2x -3y +10=0和3x +4y -2=0的交点,且垂直于直线3x -2y +4=0的直线的方程为________.。

直线与方程_知识点总结_例题习题精讲_详细答案_提高训练

直线与方程_知识点总结_例题习题精讲_详细答案_提高训练

【知识点一:倾斜角与斜率】 (1)直线的倾斜角①关于倾斜角的概念要抓住三点:1、与x 轴相交;2、x 轴正向;3、直线向上方向。

②直线与x 轴平行或重合时,规定它的倾斜角为00 ③倾斜角α的范围000180α≤< (2)直线的斜率①直线的斜率就是直线倾斜角的正切值,而倾斜角为090的直线斜率不存在. 记作tan k α=0(90)α≠⑴当直线l 与x 轴平行或重合时, 00α=,0tan 00k ==⑵当直线l 与x 轴垂直时, 090α=,k 不存在.②经过两点1112212(,),(,)P x y P x y x x ≠()的直线的斜率公式是2121y y k x x -=-③每条直线都有倾斜角,但并不是每条直线都有斜率.(3)求斜率的一般方法:①已知直线上两点,根据斜率公式212121()y y k x x x x -=≠-求斜率;②已知直线的倾斜角α或α的某种三角函数根据tan k α=来求斜率; (4)利用斜率证明三点共线的方法:已知112233(,),(,),(,)A x y B x y C x y ,若123AB BC x x x k k ===或,则有A 、B 、C 三点共线。

【知识点二:直线平行与垂直】(1)两条直线平行:对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有2121 // k k l l =⇔ 特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行(2)两条直线垂直:如果两条直线12,l l 斜率存在,设为12,k k ,则有1- 2121=⋅⇔⊥k k l l 注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直;反过来,两直线垂直,斜率之积不一定为-1。

如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直. 【知识点三:直线的方程】 名称 方程的形式 已知条件 局限性①点斜式11()y y k x x -=-11(,)x y 为直线上一定点, k 为斜率不包括垂直于x 轴的直线②斜截式 y kx b =+ k 为斜率,b 是直线在y 轴上的截距不包括垂直于x 轴的直线知能梳理问题:过两点111222(,),(,)P x y P x y 的直线是否一定可用两点式方程表示? 【不一定】 (1)若1212x x y y =≠且,直线垂直于x 轴,方程为1x x =; (2)若1212x x y y ≠=且,直线垂直于y 轴,方程为12y y =; (3)若1212x x y y ≠≠且,直线方程可用两点式表示直线的点斜式方程实际上就是我们熟知的一次函数的解析式; 利用斜截式求直线方程时,需要先判断斜率存在与否.用截距式方程表示直线时,要注意以下几点:方程的条件限制为0,0a b ≠≠,即两个截距均不能为零,因此截距式方程不能表示过原点的直线以及与坐标轴平行的直线;用截距式方程最便于作图,要注意截距是坐标而不是长度.截距与距离的区别:截距的值有正、负、零。

直线与方程知识点及典型例题

直线与方程知识点及典型例题

11. 关于直线的对称点与对称直线的求法 课堂练习:已知直线 l:2x-3y+1=0 和点 P(-1,-2). (1) 分别求:点 P(-1,-2)关于 x 轴、y 轴、原点 O、直线 y=x、直线 y= - x 的对称点 Q 坐标; x 轴: y 轴: 原点 O: 直线 y=x: 直线 y= - x: (2) 分别求:直线 l:2x-3y+1=0 关于 x 轴、y 轴、原点 O、直线 y=x、直线 y= - x 的对称的直线方程; x 轴: y 轴: 原点 O: 直线 y=x: 直线 y= - x: (3)总结(2)中各对称直线斜率 k 及截距之间的关系: 关于 x 轴对称的两个直线斜率 k 及截距之间的关系: 关于 y 轴对称的两个直线斜率 k 及截距之间的关系: 关于原点 O 对称的两个直线斜率 k 及截距之间的关系: 关于直线 y=x 对称的两个直线斜率 k 及截距之间的关系: 关于直线 y= - x 对称的两个直线斜率 k 及截距之间的关系: 【课后作业:】 1、点 P(-1,-2)关于直线 l: x+y-2=0 的对称点的坐标为 。
【课后作业: 】关于 x、y 的方程组
有无穷多组解,实数 m=

7. 两点间距离公式:设 A(x1,y1)、B(x2,y2)是平面直角坐标系中的两个点,则|AB|= ( x 2 x 1 ) ( y 2 y1 )
2
2
例题:已知直线 l 的斜率为 6,且被两坐标轴所截得的线段长为
,则直线 l 的方程为
. (填序号)
4、已知直线 l 1 的方程是 ax-y+b=0, l 2 的方程是 bx-y-a=0(ab≠0,a≠b) ,则下列示意图形中,正确的是
第 2 页 共 4 页

第三章 直线与方程知识点归纳及练习题

第三章 直线与方程知识点归纳及练习题

1.直线的倾斜角与斜率(1)倾斜角与斜率从“形”和“数”两方面刻画了直线的倾斜程度,但倾斜角α是角度(0°≤α<180°),是倾斜度的直接体现;斜率k是实数(k∈(-∞,+∞)),是倾斜程度的间接反映.在解题的过程中,用斜率往往比用倾斜角更方便.(2)倾斜角与斜率的对应关系:当α=90°时,直线的斜率不存在;当α≠90°时,斜率k=tan α,且经过两点A(x1,y1),B(x2,y2)(x1≠x2)的直线的斜率k AB=y2-y1 x2-x1.(3)当α由0°→90°→180°(不含180°)变化时,k由0(含0)逐渐增大到+∞(不存在),然后由-∞(不存在)逐渐增大到0(不含0).2.解题时要根据题目条件灵活选择,注意其适用条件:点斜式和斜截式不能表示斜率不存在的直线,两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直和过原点的直线,一般式虽然可以表示任何直线,但要注意A2+B2≠0,必要时要对特殊情况进行讨论.3.由两直线的方程判断两条直线是否平行或垂直时,要注意条件的限制;同时已知平行或垂直关系求直线的方程或确定方程的系数关系时,要根据题目条件设出合理的直线方程.4.学习时要注意特殊情况下的距离公式,并注意利用它的几何意义,解题时往往将代数运算与几何图形直观分析相结合.5.直线系方程直线系方程是解析几何中直线方程的基本内容之一,它把具有某一共同性质的直线族表示成一个含参数的方程,然后根据直线所满足的其他条件确定出参数的值,进而求出直线方程.直线系方程的常见类型有:(1)过定点P (x 0,y 0)的直线系方程是:y -y 0=k (x -x 0)(k 是参数,直线系中未包括直线x =x 0),也就是平常所提到的直线的点斜式方程;(2)平行于已知直线Ax +By +C =0的直线系方程是:Ax +By +λ=0(λ是参数,λ≠C );(3)垂直于已知直线Ax +By +C =0的直线系方程是:Bx -Ay +λ=0(λ是参数);(4)过两条已知直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的交点的直线系方程是:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ是参数,当λ=0时,方程变为A 1x +B 1y +C 1=0,恰好表示直线l 1;当λ≠0时,方程表示过直线l 1和l 2的交点,但不含直线l 2).6.“对称”问题的解题策略对称问题主要有两大类:一类是中心对称,一类是轴对称.(1)中心对称①两点关于点对称,设P 1(x 1,y 1),P (a ,b ),则P 1(x 1,y 1)关于P (a ,b )对称的点为P 2(2a -x 1,2b -y 1),即P 为线段P 1P 2的中点.特别地,P (x ,y )关于原点对称的点为P ′(-x ,-y ).②两直线关于点对称,设直线l 1,l 2关于点P 对称,这时其中一条直线上任一点关于点P 对称的点在另一条直线上,并且l 1∥l 2,P 到l 1,l 2的距离相等.(2)轴对称①两点关于直线对称,设P 1,P 2关于直线l 对称,则直线P 1P 2与l 垂直,且线段P 1P 2的中点在l 上,这类问题的关键是由“垂直”和“平分”列方程.②两直线关于直线对称,设l 1,l 2关于直线l 对称.当三条直线l 1,l 2,l 共点时,l 上任意一点到l 1,l 2的距离相等,并且l 1,l 2中一条直线上任意一点关于l 对称的点在另外一条直线上;当l 1∥l 2∥l 时,l 1与l 间的距离等于l 2与l 间的距离.题型一 直线的倾斜角和斜率倾斜角和斜率分别从“形”和“数”两个方面刻画了直线的倾斜程度.倾斜角α与斜率k 的对应关系和单调性是解题的易错点,应引起特别重视.(1)对应关系①α≠90°时,k =tan α.②α=90°时,斜率不存在.(2)单调性当α由0°→90°→180°(不含180°)变化时,k 由0(含0)逐渐增大到+∞,然后由-∞逐渐增大到0(不含0).经过A (x 1,y 1),B (x 2,y 2)(x 1≠x 2)两点的直线的斜率公式k =y 2-y 1x 2-x 1(x 1≠x 2),应注意其适用的条件x 1≠x 2,当x 1=x 2时,直线斜率不存在.例1 已知坐标平面内的三点A (-1,1),B (1,1),C (2,3+1).(1)求直线AB ,BC ,AC 的斜率和倾斜角;(2)若D 为△ABC 的边AB 上一动点,求直线CD 的斜率k 的取值范围.跟踪训练1 求经过A (m,3)、B (1,2)两点的直线的斜率,并指出倾斜角α的取值范围.题型二 直线方程的五种形式直线方程的五种形式在使用时要根据题目的条件灵活选择,尤其在选用四种特殊形式的方程时,注意其适用条件,必要时要对特殊情况进行讨论.求直线方程的方法一般是待定系数法,在使用待定系数法求直线方程时,要注意直线方程形式的选择及适用范围,如点斜式、斜截式适合直线斜率存在的情形,容易遗漏斜率不存在的情形;两点式不含垂直于坐标轴的直线;截距式不含垂直于坐标轴和过原点的直线;一般式适用于平面直角坐标系中的任何直线.因此,要注意运用分类讨论的思想.在高考中,题型以选择题和填空题为主,与其他知识点综合时,一般以解答题的形式出现.例2 求与直线y =43x +53垂直,并且与两坐标轴围成的三角形的面积为24的直线l 的方程.跟踪训练2 过点P (-1,0),Q (0,2)分别作两条互相平行的直线,使它们在x 轴上截距之差的绝对值为1,求这两条直线的方程.题型三直线的位置关系两条直线的位置关系有相交(特例垂直)、平行、重合三种,主要考查两条直线的平行和垂直.通常借助直线的斜截式方程来判断两条直线的位置关系.解题时要注意分析斜率是否存在,用一般式方程来判断,可以避免讨论斜率不存在的情况.例3已知两条直线l1:ax-by+4=0,l2:(a-1)x+y+b=0,求分别满足下列条件的a、b的值.(1)直线l1过点(-3,-1),并且直线l1与直线l2垂直;(2)直线l1与直线l2平行,并且坐标原点到l1、l2的距离相等.跟踪训练3(1)求经过两直线l1:x-2y+4=0和l2:x+y-2=0的交点P,且与直线l3:3x-4y+5=0垂直的直线l的方程;(2)已知直线l1:mx+8y+n=0与l2:2x+my-1=0互相平行,且l1,l2之间的距离为 5.求直线l1的方程.题型四最值问题方法梳理1.构造函数求解最值:利用函数的定义域、奇偶性、周期性、单调性等性质特征及复合函数的结构特征求解函数的最值.2.结合直线方程的相关特征,保证在符合条件的范围内求解最值.3.结合图象,利用几何性质帮助解答.数学思想函数思想:通常情况下求解最值问题可以转化为对函数的研究,函数思想给我们一种最严谨的眼光来看待问题,是一种探求普遍真理的思想,本章中求最大距离、最大面积等问题时常常会用到函数思想.例4已知△ABC,A(1,1),B(m,m)(1<m<4),C(4,2).当m为何值时,△ABC的面积S最大?跟踪训练4 如图,一列载着危重病人的火车从O 地出发,沿北偏东α度(射线OA )方向行驶,其中sin α=1010.在距离O 地5a (a 为正常数)千米,北偏东β度的N 处住有一位医学专家,其中sin β=35,现120指挥中心紧急征调离O 地正东p 千米B 处的救护车,先到N 处载上医学专家,再全速赶往乘有危重病人的火车,并在C 处相遇.经计算,当两车行驶的路线与OB 所围成的三角形OBC 的面积S 最小时,抢救最及时.(1)在以O 为原点,正北方向为y 轴的直角坐标系中,求射线OA 所在的直线方程;(2)求S 关于p 的函数关系式S =f (p );(3)当p 为何值时,抢救最及时?题型五 分类讨论思想分类讨论思想其实质就是将整体问题化为部分问题来解决.在解题过程中,需选定一个标准,根据这个标准划分成几个能用不同形式解决的小问题,从而使问题得到解决.在本章中涉及到分类讨论的问题主要是由直线的斜率是否存在及直线的点斜式、斜截式、两点式、截距式的局限性引起的分类讨论问题.例5 设直线l 的方程为(a +1)x +y +2-a =0(a ∈R )在两坐标轴上的截距相等,求直线l 的方程.题型六 数形结合思想根据数学问题的条件和结论的内在联系,将抽象的数学语言与直观的图形相结合,使抽象思维与形象思维相结合. 例6 已知直线l 过点P (-1,2),且与以A (-2,-3),B (3,0)为端点的线段相交,求直线l 的斜率的取值范围.1.在平面解析几何中,用代数知识解决几何问题时应首先挖掘出几何图形的几何条件,把它们进一步转化为代数方程之间的关系求解.2.关于对称问题,要充分利用“垂直平分”这个基本条件,“垂直”是指两个对称点的连线与已知直线垂直,“平分”是指:两对称点连成线段的中点在已知直线上,可通过这两个条件列方程组求解.3.涉及直线斜率问题时,应从斜率存在与不存在两方面考虑,防止漏掉情况.。

直线与方程知识点总结与典型习题分类练习解析(精品)

直线与方程知识点总结与典型习题分类练习解析(精品)
y k ( x 3) 1 3k 2 1 4k ,解得 A , . k 1 k 1 x y 1 0
8分 由
y k ( x 3) 1 3k 7 1 9k ,解得 B , , x y 6 0 k 1 k 1
4.直线 l 经过点 P(3,2)且与 x,y 轴的正半轴分别交于 A、B 两点,△OAB 的面积为 12, 求直线 l 的方程. 解 方法一 设直线 l 的方程为
x y 1 (a>0,b>0), a b
∴A(a,0),B(0,b), ∴ 3 2
ab 24, a b 1.
a 1
a 2 1 x -(a+1), 1 a
l1∥l2 2 1 a
3 (a 1)

解得 a=-1,
综上可知,a=-1 时,l1∥l2,否则 l1 与 l2 不平行. 方法二 由 A1B2-A2B1=0,得 a ( a-1)-1×2=0,由 A1C2-A2C1 ≠0,得 a(a -1)-1×6≠0,
【课堂讲解与练习】
直线的方程 3 3 3 1.设 a,b,c 是互不相等的三个实数,如果 A(a,a ) 、B(b,b ) 、C(c,c )在同一直线 上,求证:a+b+c=0. 证明 ∵A、B、C 三点共线,∴kAB=kAC, ∴
a 3 b3 a 3 c3 ,化简得 a2+ab+b2=a2+ac+c2, ab ac
2
y x =1,将(-5,2)代入所设方 2a a 2 5 2 5 3 4
卓越个性化教学讲义
程,解得 a=- , 此时,直线方程为 x+2y+1=0.综上所述,所求直线方程为 x+2y+1=0 或 2x+5y=0.

直线与方程知识点总结和练习

直线与方程知识点总结和练习

必修二第三章直线与方程的知识点倾斜角与斜率1. 当直线与x 轴相交时,我们把x 轴 方向与直线向 方向之间所成的角叫做直线l 的倾斜角. 直线的倾斜角α的范围是 .2. 斜率:①倾斜角为α,则 k= ( 条件: )②已知直线上两点1122(,),(,)P x y P x y ,则有k= ( 条件: ) 特别地是,当12x x =,12y y ≠时,直线与x 轴 ,斜率k 注意:当090α︒<<︒时,斜率 ,随着α的增大,斜率 ; 当90180α︒<<︒时,斜率 ,随着α的增大,斜率 。

两条直线平行与垂直的判定1. 对于两条不重合的直线1l 、2l ,其斜率分别为1k 、2k ,有:(1)平行 (2)垂直2. 特例:两条直线中一条斜率不存在时,另一条斜率也不存在时,则它们平行,都垂直于x 轴; 两条直线中一条斜率不存在,另一条斜率为0,则它们垂直。

直线的点斜式方程1. 点斜式:直线l 过点000(,)P x y ,且斜率为k ,其方程为 .2. 斜截式:直线l 的斜率为k ,在y 轴上截距为b ,其方程为 .3. 点斜式和斜截式不能表示 的直线.4. 注意:00y y k x x -=-与00()y y k x x -=-是不同的方程,前者表示的直线上缺少一点000(,)P x y ,后者才是整条直线.直线的两点式方程1. 两点式:直线l 经过两点111222(,),(,)P x y P x y ,其方程为 ,2. 截距式:直线l 在x 、y 轴上的截距分别为a 、b ,其方程为 .3. 两点式不能表示 的直线;截距式不能表示 的直线4. 线段12P P 中点坐标公式 直线的一般式方程1. 一般式:0Ax By C ++=,注意A 、B 不同时为0. 直线一般式方程0(0)Ax By C B ++=≠化为斜截式方程 ,斜率为 ,y 轴上截距为 .2. 与直线:0l Ax By C ++=平行的直线,可设所求方程为 ;与直线0Ax By C ++=垂直的直线,可设所求方程为 . 3. 已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),则两条直线的位置关系可以如下判别:(1)平行 (2)垂直 .两条直线的交点坐标1. 求交点:解方程组11122200A xB yC A x B y C ++=⎧⎨++=⎩.2. 方程111222()()0A x B y C A x B y C λ+++++=为直线系,所有的直线恒过一个定点,其定点就是1110A x B y C ++=与2220A x B y C ++=的交点. 两点间的距离1. 平面内两点111(,)P x y ,222(,)P x y ,则两点间的距离为: .点到直线的距离及两平行线距离1. 点00(,)P x y 到直线:0l Ax By C ++=的距离公式为 .2.两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=之间的距离公式 ,对称问题1、关于点的对称:实质考察:2、关于线的对称:要点:一.选择题1.(安徽高考) 过点(1,0)且与直线x-2y=0平行的直线方程是( ) A.x-2y-1=0 B. x-2y+1=0 C. 2x+y-2=0 D. x+2y-1=02. 过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A. 012=-+y xB. 052=-+y xC. 052=-+y xD. 072=+-y x 3. 已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( ) A. 0 B. -8 C. 2 D. 104.(安徽高考)直线过点(-1,2),且与直线2x-3y+4=0垂直,则直线的方程是( )A . 3x+2y-1=0 B. 3x+2y+7=0 C. 2x-3y+5=0 D. 2x-3y+8=0 5.设直线ax+by+c=0的倾斜角为θ,切sin cos 0θθ+=则a,b 满足 ( )A. a+b=1B. a-b=1C. a+b=0D. a-b=06. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a= A 、 -3 B 、-6 C 、23- D 、327.点P (-1,2)到直线8x-6y+15=0的距离为( )A 2 B 21 C 1 D 278. 直线mx-y+2m+1=0经过一定点,则该点的坐标是 ( )A (-2,1)B (2,1)C (1,-2)D (1,2)9. 已知直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,则k 得值是( ) A. 1或3 B.1或5 C.3或5 D.1或2 10、若图中的直线L 1、L 2、L 3的斜率分别为K 1、K 2、K 3则( ) A 、K 1﹤K 2﹤K3 B 、K 2﹤K 1﹤K 3C 、K 3﹤K 2﹤K 1D 、K 1﹤K 3﹤K 211、与直线2x+3y-6=0关于点(1,-1)对称的直线是( )A.3x-2y-6=0B.2x+3y+7=0C. 3x-2y-12=0D. 2x+3y+8=0 12. 若直线ax + by + c = 0在第一、二、三象限,则( )A. ab >0,bc >0B. ab >0,bc <0C. ab <0,bc >0D. ab <0,bc <0 13. 原点关于x - 2y + 1 = 0的对称点的坐标为( )A. ⎪⎭⎫ ⎝⎛52 ,54- B. ⎪⎭⎫ ⎝⎛54 ,52- C. ⎪⎭⎫ ⎝⎛52 ,54 D. ⎪⎭⎫ ⎝⎛54 ,52- 二、填空题1. 点(1,1)P -到直线10x y -+=的距离是________________.2.已知A(-4,-6),B(-3,-1),C(5,a)三点共线,则a 的值为3.经过两直线11x+3y -7=0和12x+y -19=0的交点,且与A (3,-2),B (-1,6)等距离的直线的方程是 。

直线与方程知识点加例题

直线与方程知识点加例题

直线与方程(一) 倾斜角与斜率1. 当直线l 与x 轴相交时,我们把x 轴正方向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时, 我们规定它的倾斜角为0°. 则直线l 的倾斜角α的范围是0απ≤<.2. 倾斜角不是90°的直线的斜率,等于直线的倾斜角的正切值,即tan k θ=. 如果知道直线上两点1122(,),(,)P x y P x y ,则有斜率公式2121y y k x x -=-. 特别地是,当12x x =,12y y ≠时,直线与x 轴垂直,斜率k 不存在;当12x x ≠,12y y =时,直线与y 轴垂直,斜率k =0.注意:直线的倾斜角α=90°时,斜率不存在,即直线与y 轴平行或者重合. 当α=90°时,斜率k =0;当090α︒<<︒时,斜率0k >,随着α的增大,斜率k 也增大;当90180α︒<<︒时,斜率0k <,随着α的增大,斜率k 也增大. 这样,可以求解倾斜角α的范围与斜率k 取值范围的一些对应问题. 例1 经过(2,0)A -,(5,3)B -两点的直线的斜率是____________,倾斜角是_______.例2若直线:l y kx =2360x y +-=的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A .,63ππ⎡⎫⎪⎢⎣⎭ B .,62ππ⎛⎫ ⎪⎝⎭ C .,32ππ⎛⎫ ⎪⎝⎭ D .,62ππ⎡⎤⎢⎥⎣⎦(二) 两条直线平行与垂直的判定1. 对于两条不重合的直线1l 、2l ,其斜率分别为1k 、2k ,有:(1)12//l l ⇔12k k =;(2)12l l ⊥⇔121k k ⋅=-.2. 特例:两条直线中一条斜率不存在时,另一条斜率也不存在时,则它们平行,都垂直于x 轴;…. 例3 已知过点(2,)A m -和点(,4)B m 的直线与直线210x y +-=平行,则m 的值为( )A .0B .8-C .2D .10例4 直线l 过点(1,2)-且与直线2340x y -+=垂直,则l 的方程是( )A .3210x y +-=B .3270x y ++=C .2350x y -+=D .2380x y -+=(三)直线的点斜式方程1. 点斜式:直线l 过点000(,)P x y ,且斜率为k ,其方程为00()y y k x x -=-.2. 斜截式:直线l 的斜率为k ,在y 轴上截距为b ,其方程为y kx b =+.3. 点斜式和斜截式不能表示垂直x 轴直线. 若直线l 过点000(,)P x y 且与x 轴垂直,此时它的倾斜角为90°,斜率不存在,它的方程不能用点斜式表示,这时的直线方程为00x x -=,或0x x =.4. 注意:0y y k x x -=-与00()y y k x x -=-是不同的方程,前者表示的直线上缺少一点000(,)P x y ,后者才是整条直线.例5.过点P (1,2)且与原点O 距离最大的直线l 的方程( ).A. 250x y +-=B. 240x y +-=C. 370x y +-=D. 350x y +-=例6.倾斜角是135 ,在y 轴上的截距是3的直线方程是 . (四 )直线的两点式方程1. 两点式:直线l 经过两点111222(,),(,)P x y P x y ,其方程为112121y y x x y y x x --=--, 2. 截距式:直线l 在x 、y 轴上的截距分别为a 、b ,其方程为1x ya b+=.3. 两点式不能表示垂直x 、y 轴直线;截距式不能表示垂直x 、y 轴及过原点的直线.4. 线段12P P 中点坐标公式1212(,)22x x y y ++.例7.(04年全国卷Ⅱ.文8)已知点A (1,2)、B (3,1),则线段AB 的垂直平分线的方程是( ).A .425x y +=B .425x y -=C .25x y +=D .25x y -=例8.过点(4,2)A ,且在两坐标轴上截距相等的直线方程是 .五 直线的一般式方程1. 一般式(general form ):0Ax B y C ++=,注意A 、B 不同时为0. 直线一般式方程0(0)Ax By C B ++=≠化为斜截式方程A C y x B B =--,表示斜率为A B -,y 轴上截距为CB-的直线.2 与直线:0l Ax By C ++=平行的直线,可设所求方程为'0Ax By C ++=;与直线0Ax By C ++=垂直的直线,可设所求方程为'0Bx Ay C -+=. 过点00(,)P x y 的直线可写为00()()0A x x B y y -+-=. 经过点0M ,且平行于直线l 的直线方程是00()()0A x x B y y -+-=; 经过点0M ,且垂直于直线l 的直线方程是00()()0B x x A y y ---=.3. 已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),则两条直线的位置关系可以如下判别:(1)1212120l l A A B B ⊥⇔+=; (2)1212211221//0,0l l A B A B AC A B ⇔-=-≠; (3)1l 与2l 重合122112210,0A B A B AC A B ⇔-=-=; (4)1l 与2l 相交12210A B A B ⇔-≠.如果2220A B C ≠时,则11112222//A B C l l A B C ⇔=≠;1l 与2l 重合111222A B C A B C ⇔==;1l 与2l 相交1122A BA B ⇔≠.例9.根据下列各条件写出直线的方程,并且化成一般式:(1)斜率是-12,经过点A (8,-2); (2)经过点B (4,2),平行于x 轴;(3)在x 轴和y 轴上的截距分别是32,-3; (4)经过两点1P (3,-2)、2P (5,-4).例10.已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),且12120A A B B +=. 求证12l l ⊥.六 两条直线的交点坐标1. 一般地,将两条直线的方程联立,得到二元一次方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩. 若方程组有惟一解,则两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合.2. 方程111222()()0A x B y C A x B y C λ+++++=为直线系,所有的直线恒过一个定点,其定点就是1110A x B y C ++=与2220A x B y C ++=的交点.例11.直线1l :2x +3y =12与2l :x -2y =4的交点坐标为 .例12.(07年上海卷.理2)若直线1210l x my ++=: 与直线231l y x =-:平行,则m = . 七 两点间的距离1. 平面内两点111(,)P x y ,222(,)P x y,则两点间的距离为:12||PP .特别地,当12,P P 所在直线与x 轴平行时,1212||||PP x x =-;当12,P P 所在直线与y 轴平行时,1212||||PP y y =-;当12,P P 在直线y kx b =+上时,1212|||PP x x =-. 2. 坐标法解决问题的基本步骤是:(1)建立坐标系,用坐标表示有关量;(2)进行有关代数运算;(3)把代数运算的结果“翻译”成几何关系.例13.已知点(1,2),(3,4),(5,0)A B C ,判断ABC ∆的类型.例14.已知(1,0)(1,0)M N -、,点P 为直线210x y --=上的动点.求22PM PN +的最小值,及取最小值时点P 的坐标.八 点到直线的距离及两平行线距离1. 点00(,)P x y 到直线:0l Ax By C ++=的距离公式为d =2. 利用点到直线的距离公式,可以推导出两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=之间的距离公式d =,推导过程为:在直线2l 上任取一点00(,)P x y ,则0020Ax B y C++=,即002Ax B y C+=-.这时点00(,)P x y 到直线11:0l Ax By C ++=的距离为d ==例15 已知点(1,3),(3,1),(1,0)A B C -,求△ABC 的面积.例16 已知直线l 经过直线250x y +-=与20x y -=的交点.若点(5,0)A 到l 的距离为3,求l 的方程.。

《直线的方程》全章知识点总结及典型例题

《直线的方程》全章知识点总结及典型例题

直线的方程一、考点、热点回顾知识点一、直线的方程已知条件 图示方程形式适用条件局限 点斜式点P (x 0,y 0)和斜率ky -y 0=k (x -x 0)斜率存在不能表示斜率不存在的直线斜截式斜率k 和直线在y 轴上的截距by =kx +b斜率存在不能表示斜率不存在的直线两点式P 1(x 1,y 1),P 2(x 2,y 2),其中x 1≠x 2,y 1≠y 2y -y 1y 2-y 1=x -x 1x 2-x 1斜率存在且 不为0x 1≠x 2,y 1≠y 2即不能表示与坐标轴平行的直线 截距式在x ,y 轴上的截距分别为a ,b 且a≠0,b≠0x a +yb=1 斜率存在且 不为0,不过原点不能表示与坐标轴平行及过原点的直线 一般形式Ax +By +C =0 A ,B 不同时为0无知识点二、线段的中点坐标公式若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),设P (x ,y )是线段P 1P 2的中点,则⎩⎨⎧x =x 1+x 22,y =y 1+y22.知识点三、直线的一般式求直线平行或垂直设直线l 1与l 2的方程分别为A 1x +B 1y +C 1=0(A 1,B 1不同时为0),A 2x +B 2y +C 2=0(A 2,B 2不同时为0),则l 1∥l 2⇔⎩⎪⎨⎪⎧A 1B 2-A 2B 1=0,B 1C 2-B 2C 1≠0或A 1C 2-A 2C 1≠0.或111222C A BC A B =≠(A 、B 、C 均不为零)l 1⊥l 2⇔A 1A 2+B 1B 2=0.二、典型例题考点一、直线的点斜式方程例1、写出下列直线的点斜式方程. (1)经过点A (2,5),且与直线y =2x +7平行; (2)经过点C (-1,-1),且与x 轴平行;(3)经过点D (1,2),且与x 轴垂直.变式训练1、(1)经过点(-3,1)且平行于y 轴的直线方程是________.(2)直线y =2x +1绕着其上一点P (1,3)逆时针旋转90°后得到直线l ,则直线l 的点斜式方程是________. (3)一直线l 1过点A (-1,-2),其倾斜角等于直线l 2:y =33x 的倾斜角的2倍,则l 1的点斜式方程为________.考点二、直线的斜截式方程 例2、(1)倾斜角为60°,与y 轴的交点到坐标原点的距离为3的直线的斜截式方程是___ __. (2)已知直线l 1的方程为y =-2x +3,l 2的方程为y =4x -2,直线l 与l 1平行且与l 2在y 轴上的截距相同,求直线l 的方程.变式训练2、已知直线l 的斜率为16,且和两坐标轴围成面积为3的三角形,求l 的斜截式方程.考点三、直线过定点问题例3、求证:不论m 为何值时,直线l :y =(m -1)x +2m +1总过第二象限.变式训练3、已知直线l :5ax -5y -a +3=0.求证:不论a 为何值,直线l 总经过第一象限.考点四、直线的两点式方程例4、已知A (-3,2),B (5,-4),C (0,-2),在△ABC 中, (1)求BC 边的方程;(2)求BC 边上的中线所在直线的方程.变式训练4、若点P (3,m )在过点A (2,-1),B (-3,4)的直线上,则m =________.考点五、直线的截距式方程命题角度1 与三角形有关的直线方程例5、过点P (1,3),且与x 轴、y 轴的正半轴围成的三角形的面积等于6的直线方程是( ) A .3x +y -6=0 B .x +3y -10=0 C .3x -y =0 D .x -3y +8=0变式训练5、直线l 过点P (43,2),且与两坐标正半轴围成的三角形周长为12,求直线l 的方程.命题角度2 判断直线的条数例6、过点A (3,-1)且在两坐标轴上截距的绝对值相等的直线有( ) A .2条 B .3条 C .4条 D .无数多条变式训练6、过点P (2,3)且在两坐标轴上的截距相等的直线有( ) A .1条 B .2条 C .3条 D .无数多条考点六、直线的一般式方程 命题角度1 求直线的一般式方程例7、根据下列条件分别写出直线的方程,并化为一般式方程: (1)斜率是3,且经过点A (5,3); (2)斜率为4,在y 轴上的截距为-2; (3)经过点A (-1,5),B (2,-1)两点; (4)在x 轴,y 轴上的截距分别为-3,-1.变式训练7、根据条件写出下列直线的一般式方程:(1)斜率是-12,且经过点A (8,-6)的直线方程为________________;(2)经过点B (4,2),且平行于x 轴的直线方程为________________; (3)在x 轴和y 轴上的截距分别是32和-3的直线方程为________________;(4)经过点P 1(3,-2),P 2(5,-4)的直线方程为________________.命题角度2由含参数的一般式求参数例8、设直线l的方程为(m2-2m-3)x-(2m2+m-1)y+6-2m=0.(1)若直线l在x轴上的截距为-3,则m=________;(2)若直线l的斜率为1,则m=________.变式训练8、若方程(a2+5a+6)x+(a2+2a)y+1=0表示一条直线,则实数a满足______.考点七、由直线的一般式研究直线的平行与垂直命题角度1利用两直线的位置关系求参数例9、(1)已知直线l1:2x+(m+1)y+4=0与直线l2:mx+3y-2=0平行,求m的值;(2)当a为何值时,直线l1:(a+2)x+(1-a)y-1=0与直线l2:(a-1)x+(2a+3)y+2=0互相垂直?变式训练9、已知直线l1:ax+2y-3=0,l2:3x+(a+1)y-a=0,求满足下列条件的a的值.(1)l1∥l2;(2)l1⊥l2.命题角度2求平行、垂直的直线方程例10、已知直线l的方程为3x+4y-12=0,求满足下列条件的直线l′的方程:(1)过点(-1,3),且与l平行;(2)过点(-1,3),且与l垂直.变式训练10、已知点A(2,2)和直线l:3x+4y-20=0.求:(1)过点A和直线l平行的直线方程;(2)过点A和直线l垂直的直线方程.三、课后练习一、选择题(每小题只有一个正确答案)1.不论m为何值,直线(m-1)x+(2m-1)y=m-5恒过定点()A.11,2⎛⎫-⎪⎝⎭B. (-2,0)C. (2,3)D. (9,-4)2.已知不等式组表示的平面区域为,若以原点为圆心的圆与无公共点,则圆的半径的取值范围为( )A. B. C. D.3.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2之间的距离为( )A. B. C. D.4.若点()1,1A 关于直线y kx b =+的对称点是()3,3B -,则直线y kx b =+在y 轴上的截距是( ) A. 1 B. 2 C. 3 D. 45.已知直线1:10l x y --=,动直线()()2:10l k x ky k k R +++=∈,则下列结论错误..的是( ) A. 存在k ,1l 使得2l 的倾斜角为90° B. 对任意的k ,1l 与2l 都有公共点 C. 对任意的k ,1l 与2l 都不.重合 D. 对任意的k ,1l 与2l 都不垂直...6.设点 ()2,3A -, ()3,2B --,直线l 过点()1,1P ,且与线段AB 相交,则l 的斜率k 的取值范围 ( ) A. 34k ≥或4k ≤- B. 344k -≤≤ C. 344k -≤≤ D. 以上都不对 7.图中的直线123,,l l l 的斜率分别是123,,k k k ,则有( )A. 123k k k <<B. 312k k k <<C. 321k k k <<D. 231k k k << 8.直线310x y --=的倾斜角为( ).A. B. C. D.9.直线 的斜率和在轴上的截距分别是( ) A.B.C. D.10.过点,且平行于向量的直线方程为( ) A.B.C.D.11.过点A (3,3)且垂直于直线的直线方程为A. B. C. D.12.在平面直角坐标系中,已知()1,2A -, ()3,0B ,那么线段AB 中点的坐标为( ). A. ()2,1- B. ()2,1 C. ()4,2- D. ()1,2-二、填空题13.已知,,a b c 为直角三角形的三边长, c 为斜边长,若点(),M m n 在直线:20l ax by c ++=上,则22m n +的最小值为__________.14.m R ∈,动直线1:10l x my +-=过定点A ,动直线2:230l mx y m --+=过定点B ,若直线l 与2l 相交于点P (异于点,A B ),则PAB ∆周长的最大值为_________15.过点(2,-3)且在两坐标轴上的截距互为相反数的直线方程为_________________.16.定义点到直线的有向距离为.已知点到直线的有向距离分别是,给出以下命题: ①若,则直线与直线平行; ②若,则直线与直线平行; ③若,则直线与直线垂直;④若,则直线与直线相交;其中正确命题的序号是_______________.三、解答题17.求符合下列条件的直线方程: (1)过点,且与直线平行; (2)过点,且与直线垂直;(3)过点,且在两坐标轴上的截距相等.18.已知的三个顶点坐标分别为,,.(1)求边上的高所在直线的一般式方程; (2)求边上的中线所在直线的一般式方程.19.已知直线:322420l x y x y λλλ+-+++= (1)求证:直线l 过定点。

必修2-第三章-直线与方程-知识点及经典例题

必修2-第三章-直线与方程-知识点及经典例题

数学必修2 第三章 直线与方程练习知 识 点(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α<180°性质:直线的倾斜角α=90°时,斜率不存在,即直线与y 轴平行或者重合. 当α=0°时,斜率k =0;当090α︒<<︒时,斜率0k >,随着α的增大,斜率k 也增大;当90180α︒<<︒时,斜率0k <,随着α的增大,斜率k 也增大. (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k 表示。

即 当[)90,0∈α时,0≥k ; 当()180,90∈α时,0<k ; 当90=α时,k 不存在。

②过两点的直线的斜率公式:)(211212x x x x y y k ≠--=注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。

②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x y a b+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。

史上最全直线与直线方程题型归纳

史上最全直线与直线方程题型归纳

直线与直线方程一、知识梳理1.直线的倾斜角与斜率:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角.当直线和x 轴平行或重合时,我们规定直线的倾斜角为0°.倾斜角的取值范围是0°≤α<180°.倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用k 表示.倾斜角是90°的直线没有斜率.2.斜率公式:经过两点),(),,(222111y x P y x P 的直线的斜率公式:)(211212x x x x y y k ≠--=3. 直线方程的五种形式 直线形式 直线方程局限性 选择条件 点斜式不能表示与x 轴垂直的直线①已知斜率 ②已知一点 斜截式不能表示与x 轴垂直的直线①已知斜率②已知在y 轴上的截距两点式不能表示与x 轴、y 轴垂直的直线 ①已知两个定点 ②已知两个截距 截距式(b a 、分别为直线在x 轴和y 轴上的截距)不能表示与x 轴垂直、与y 轴垂直、过原点的直线 已知两个截距(截距可以为负) 一般式表示所有的直线求直线方程的结果均可化为一般式方程7.斜率存在时两直线的平行:21//l l ⇔1k =2k 且21b b ≠.8.斜率存在时两直线的垂直:⇔⊥21l l 121-=k k .9.特殊情况下的两直线平行与垂直:当两条直线中有一条直线没有斜率时:(1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.二、典例精析题型一:倾斜角与斜率【例1】下列说法正确的个数是( ) ①任何一条直线都有唯一的倾斜角;②倾斜角为030的直线有且仅有一条; ③若直线的斜率为θtan ,则倾斜角为θ; ④如果两直线平行,则它们的斜率相等A. 0个B.1个C.2个D.3个【练习】如果0<AC 且0<BC ,那么直线0=++C By Ax 不通过( )A.第一象限B.第二象限C.第三象限D.第四象限【例2】如图,直线l 经过二、三、四象限,l 的倾斜角为α,斜率为k ,则( )A .k sin α>0B .k cos α>0C .k sin α≤0D .k cos α≤0 【练习】图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( ).A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2【例3】经过点()2,1P 作直线l ,若直线l 与连接()10—,A ,()1,4B 的线段总有公共点,求直线l 的倾斜角α与斜率k 的取值范围。

直线与方程基础知识及练习

直线与方程基础知识及练习

直线和方程分知识点讲解一、直线的倾斜角和斜率 1、直线的倾斜角的概念:当直线l 与x 轴相交时,取x 轴作为基准, x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角...。

(1)倾斜角α的取值范围:0°≤α<180°。

(2)当直线l 与x 轴平行或重合时, 规定α= 0°。

(3)当直线l 与x 轴垂直时, α= 90°。

2、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,也就是 k = tanα⑴当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l 与x 轴垂直时, α= 90°, k 不存在。

由此可知, 一条直线l 的倾斜角α一定存在,但是斜率k 不一定存在。

例如, α=45°时, k = tan45°= 1; α=135°时, k = tan135°= tan(180°- 45°) = - tan45°= - 1。

3、直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,直线斜率的表示方法:1212x x y y k --=4、直线的斜率与倾斜角大小之间的关系:倾斜角为锐角时,斜率为正;倾斜角为钝角时,斜率为负;倾斜角为直角时,斜率不存在;倾斜角为0时,斜率为0.例1 已知A(3, 2), B(-4, 1), C(0, -1), 求直线AB , BC , CA 的斜率, 并判断它们的倾斜角是钝角还是锐角。

二、两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即上面的等价是在两条直线不重合且斜率存在........的前提下才成立的,缺少这个前提,结论并不成立.即如果k 1=k 2, 那么一定有L 1∥L 2; 反之则不一定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与方程知识梳理、典型例题讲解与习题
一、复习引入
介绍斜率概念、两条直线平行与垂直的判断公式,直线方程的三种形式。

(1)两条直线平行:对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有2121 // k k l l =⇔ 特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行
(2)两条直线垂直:如果两条直线12,l l 斜率存在,设为12,k k ,则有1- 2121=⋅⇔⊥k k l l
(3)(1)两条直线的交点
设两条直线的方程是1111:0l A x B y C ++=, 2222:0l A x B y C ++=
两条直线的交点坐标就是方程组11122200
A x
B y
C A x B y C ++=⎧⎨++=⎩的解。

①若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;
②若方程组无解,则两条直线无公共点,此时两条直线平行.
(4)几种距离
两点间的距离:平面上的两点111222(,),(,)P x y P x y 间的距离公式
22
122121||()()PP x x y y =-+-
特别地,原点(0,0)O 与任一点(,)P x y 的距离22||OP x y =+
点到直线的距离:点00(,)o P x y 到直线0Ax By C ++=的距离
0022||
Ax By C d A B ++=+
两条平行线间的距离:两条平行线1200Ax By C Ax By C ++=++=与间的距离
1222||C C d A B -=
+
二、课堂讲解
讲解、.一直线被两直线0653:,064:21=--=++y x l y x l 截得线段的中点是P 点,当P 点分别为(0,0),(0,1)时,求此直线方程。

.解:由4603560x y x y ++=⎧⎨
--=⎩得两直线交于2418(,)2323-,记为2418(,)2323A -,则直线AP 垂直于所求直线l ,即43l k =,或245l k =43y x ∴=,或2415
y x -=,即430x y -=,或24550x y -+=为所求。

讲解、一直线过点(3,4)M -,并且在两坐标轴上截距之和为12,这条直线方程是__________. 答案:4160x y -+=,或390x y +-=
解:设444(3),0,3;0,34;33412y k x y x x y k k k k
---=+==-==+-++= 2413110,31140,4,3
k k k k k k --=--===-或
三、巩固练习1.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是__22______________.
2.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( C )
A .0≠m
B .23-≠m
C .1≠m
D .1≠m ,2
3-≠m ,0≠m . 3、过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( A )
A .012=-+y x
B .052=-+y x
C .052=-+y x
D .072=+-y x
4、若1
(2,3),(3,2),(,)2
A B C m --三点共线 则m 的值为( A ) A.21 B.2
1- C.2- D.2
5、两直线330x y +-=与610x my ++=平行,则它们之间的距离为( D )
A .4
B .
21313 C .51326 D .71020
四、课堂小结
强调这章的重点与难点
课后作业:
求倾斜角是直线y =-3x +1的倾斜角的14
,且分别满足下列条件的直线方程: (1)经过点(3,-1);(2)在y 轴上的截距是-5.
解:∵直线的方程为y =-3x +1,∴k =-3,倾斜角α=120°,
由题知所求直线的倾斜角为30°,即斜率为33
. (1)∵直线经过点(3,-1),∴所求直线方程为y +1=33
(x -3),即3x -3y -6=0. (2)∵直线在y 轴上的截距为-5,∴由斜截式知所求直线方程为y =
33x -5,即3x -3y -15=0.。

相关文档
最新文档