北京市西城区2017—2018学年度第一学期期末高一数学试题及参考答案

合集下载

2017-2018年北京市西城区高三(上)期末数学试卷(理科)及参考答案

2017-2018年北京市西城区高三(上)期末数学试卷(理科)及参考答案

2017-2018学年北京市西城区高三(上)期末数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)若集合A={x|0<x<3},B={x|﹣1<x<2},则A∪B=()A.{x|﹣1<x<3}B.{x|﹣1<x<0}C.{x|0<x<2}D.{x|2<x<3}2.(5分)下列函数中,在区间(0,+∞)上单调递增的是()A.y=﹣x+1B.y=|x﹣1|C.y=sinx D.3.(5分)执行如图所示的程序框图,输出的S值为()A.2B.6C.30D.2704.(5分)已知M为曲线C:(θ为参数)上的动点.设O为原点,则|OM|的最大值是()A.1B.2C.3D.45.(5分)实数x,y满足,则2x﹣y的取值范围是()A.[0,2]B.(﹣∞,0]C.[﹣1,2]D.[0,+∞)6.(5分)设,是非零向量,且,不共线.则“||=||”是“||=|2|”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.(5分)已知A ,B 是函数y=2x 的图象上的相异两点.若点A ,B 到直线的距离相等,则点A ,B 的横坐标之和的取值范围是( ) A .(﹣∞,﹣1) B .(﹣∞,﹣2)C .(﹣1,+∞)D .(﹣2,+∞)8.(5分)在标准温度和大气压下,人体血液中氢离子的物质的量的浓度(单位mol/L ,记作[H +])和氢氧根离子的物质的量的浓度(单位mol/L ,记作[OH ﹣])的乘积等于常数10﹣14.已知pH 值的定义为pH=﹣lg [H +],健康人体血液的pH 值保持在7.35~7.45之间,那么健康人体血液中的可以为(参考数据:lg2≈0.30,lg3≈0.48)( ) A . B .C .D .二、填空题:本大题共6小题,每小题5分,共30分. 9.(5分)在复平面内,复数对应的点的坐标为 .10.(5分)数列{a n }是公比为2的等比数列,其前n 项和为S n .若,则a n = ;S 5= . 11.(5分)在△ABC 中,a=3,,△ABC 的面积为,则c= .12.(5分)把4件不同的产品摆成一排.若其中的产品A 与产品B 都摆在产品C 的左侧,则不同的摆法有 种.(用数字作答)13.(5分)从一个长方体中截取部分几何体,得到一个以原长方体的部分顶点为顶点的凸多面体,其三视图如图所示.该几何体的表面积是 .14.(5分)已知函数,若c=0,则f (x )的值域是 ;若f (x )的值域是,则实数c 的取值范围是 .三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(13分)已知函数.(Ⅰ)求f (x )的最小正周期; (Ⅱ)求f (x )在区间上的最大值.16.(13分)已知表1和表2是某年部分日期的天安门广场升旗时刻表. 表1:某年部分日期的天安门广场升旗时刻表表2:某年2月部分日期的天安门广场升旗时刻表(Ⅰ)从表1的日期中随机选出一天,试估计这一天的升旗时刻早于7:00的概率;(Ⅱ)甲,乙二人各自从表2的日期中随机选择一天观看升旗,且两人的选择相互独立.记X 为这两人中观看升旗的时刻早于7:00的人数,求X 的分布列和数学期望E (X ).(Ⅲ)将表1和表2中的升旗时刻化为分数后作为样本数据(如7:31化为).记表2中所有升旗时刻对应数据的方差为s 2,表1和表2中所有升旗时刻对应数据的方差为,判断s 2与的大小.(只需写出结论)17.(14分)如图,三棱柱ABC ﹣A 1B 1C 1中,AB ⊥平面AA 1C 1C ,AA 1=AB=AC=2,∠A 1AC=60°.过AA 1的平面交B 1C 1于点E ,交BC 于点F . (Ⅰ)求证:A 1C ⊥平面ABC 1;(Ⅱ)求证:四边形AA 1EF 为平行四边形; (Ⅲ)若,求二面角B ﹣AC 1﹣F 的大小.18.(13分)已知函数f(x)=e ax•sinx﹣1,其中a>0.(Ⅰ)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)证明:f(x)在区间[0,π]上恰有2个零点.19.(14分)已知椭圆过点A(2,0),且离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线与椭圆C交于M,N两点.若直线x=3上存在点P,使得四边形PAMN是平行四边形,求k的值.20.(13分)数列A n:a1,a2,…,a n(n≥4)满足:a1=1,a n=m,a k+1﹣a k=0或1(k=1,2,…,n﹣1).对任意i,j,都存在s,t,使得a i+a j=a s+a t,其中i,j,s,t∈{1,2,…,n}且两两不相等.(Ⅰ)若m=2,写出下列三个数列中所有符合题目条件的数列的序号;①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,1,1,1,1,2,2,2,2(Ⅱ)记S=a1+a2+…+a n.若m=3,证明:S≥20;(Ⅲ)若m=2018,求n的最小值.2017-2018学年北京市西城区高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)若集合A={x|0<x<3},B={x|﹣1<x<2},则A∪B=()A.{x|﹣1<x<3}B.{x|﹣1<x<0}C.{x|0<x<2}D.{x|2<x<3}【解答】解:∵集合A={x|0<x<3},B={x|﹣1<x<2},∴A∪B={x|﹣1<x<3}.故选:A.2.(5分)下列函数中,在区间(0,+∞)上单调递增的是()A.y=﹣x+1B.y=|x﹣1|C.y=sinx D.【解答】解:对于A,函数在R递减,不合题意;对于B,函数在(0,1)递减,不合题意;对于C,函数在R无单调性,不合题意;对于D,函数在(0,+∞)上单调递增,符合题意;故选:D.3.(5分)执行如图所示的程序框图,输出的S值为()A.2B.6C.30D.270【解答】解:模拟程序的运行,可得S=1,k=2满足条件k≤5,执行循环体,S=2,k=3满足条件k≤5,执行循环体,S=6,k=5满足条件k≤5,执行循环体,S=30,k=9不满足条件k≤5,退出循环,输出S的值为30.故选:C.4.(5分)已知M为曲线C:(θ为参数)上的动点.设O为原点,则|OM|的最大值是()A.1B.2C.3D.4【解答】解:曲线C:(θ为参数)转化为:(x﹣3)2+y2=1,则:圆心(3,0)到原点(0.0)的距离为3,故点M到原点的最大值为:3+1=4.故选:D.5.(5分)实数x,y满足,则2x﹣y的取值范围是()A.[0,2]B.(﹣∞,0]C.[﹣1,2]D.[0,+∞)【解答】解:由实数x,y满足作出可行域如图,由图形可知C(1,2),令z=2x﹣y得:y=2x﹣z,显然直线过C(1,2)时,z最小,z的最小值是0,2x﹣y的取值范围是:[0,+∞).故选:D.6.(5分)设,是非零向量,且,不共线.则“||=||”是“||=|2 |”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:由“||=|2|”平方得“||2+4•+4||2=4||2+4•+||2,即“||2=||2”,即“||=||”,反之也成立,即“||=||”是“||=|2|”充要条件,故选:C.7.(5分)已知A,B是函数y=2x的图象上的相异两点.若点A,B到直线的距离相等,则点A,B的横坐标之和的取值范围是()A.(﹣∞,﹣1)B.(﹣∞,﹣2)C.(﹣1,+∞)D.(﹣2,+∞)【解答】解:不妨设A(x1,y1),B(x2,y2),(x1>x2),可得⇒,利用均值不等式1⇒2∴x1+x2<﹣2,故选:B.8.(5分)在标准温度和大气压下,人体血液中氢离子的物质的量的浓度(单位mol/L,记作[H+])和氢氧根离子的物质的量的浓度(单位mol/L,记作[OH﹣])的乘积等于常数10﹣14.已知pH值的定义为pH=﹣lg[H+],健康人体血液的pH值保持在7.35~7.45之间,那么健康人体血液中的可以为(参考数据:lg2≈0.30,lg3≈0.48)()A.B.C.D.【解答】解:由题意可得pH=﹣lg[H+]∈(7.35,7.45),且[H+]•[OH﹣])=10﹣14,∴lg=lg=lg[H+]2+14=2lg[H+]+14,∵7.35<﹣lg[H+]<7.45,∴﹣7.45<lg[H+]<﹣7.35,∴﹣0.9<2lg[H+]+14<﹣0.7,即﹣0.9<lg<﹣0.7,∵lg=﹣lg2≈0.30,故A错误,lg=﹣lg3≈0.48,故B错误,lg=﹣lg6=﹣(lg2+lg3)≈﹣0.78,故C正确,lg=﹣1,故D错误,故选:C.二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)在复平面内,复数对应的点的坐标为(﹣1,1).【解答】解:∵,∴复数在复平面上对应的点的坐标是(﹣1,1)故答案为:(﹣1,1)10.(5分)数列{a n}是公比为2的等比数列,其前n项和为S n.若,则a n=2n﹣3;S5=.【解答】解:根据题意,数列{a n}是公比为2的等比数列,若,则a1==,则a n=a1×q n﹣1=2n﹣3,S5===故答案为:2n﹣3,11.(5分)在△ABC中,a=3,,△ABC的面积为,则c=.【解答】解:△ABC中,a=3,,∴△ABC的面积为absinC=×3×sin=,解得b=1;∴c2=a2+b2﹣2abcosC=32+12﹣2×3×1×cos=13,c=.故答案为:.12.(5分)把4件不同的产品摆成一排.若其中的产品A与产品B都摆在产品C的左侧,则不同的摆法有8种.(用数字作答)【解答】解:根据题意,分2步分析:①,将产品A与产品B全排列,都摆在产品C的左侧,有A22=2种情况,②,三件产品放好后,有4个空位,在其中任选1个,安排最后一件产品,有4种情况,则4间产品有2×4=8种不同的摆法;故答案为:8.13.(5分)从一个长方体中截取部分几何体,得到一个以原长方体的部分顶点为顶点的凸多面体,其三视图如图所示.该几何体的表面积是36.【解答】解:根据三视图可得该几何体是四棱锥P ﹣ABCD ,如图, 底面ABCD 是边长为3的正方形,PA ⊥面ABCD ,PA=4 可得CD ⊥面PAD ,BC ⊥面PAB , ∴S △PCB =S △PCD =S △PAB =S △PAD =S 四边形ABCD =3×3=9.该几何体的表面积是S=S △PCB +S △PCD +S △PAB +S △PAD +S 四边形ABCD =36.故答案为:3614.(5分)已知函数,若c=0,则f (x )的值域是[﹣,+∞) ;若f (x )的值域是,则实数c 的取值范围是 [,1] .【解答】解:c=0时,f(x)=x2+x=(x+)2﹣,f(x)在[﹣2,﹣)递减,在(﹣,0]递增,可得f(﹣2)取得最大值,且为2,最小值为﹣;当0<x≤3时,f(x)=递减,可得f(3)=,则f(x)∈[,+∞),综上可得f(x)的值域为[﹣,+∞);∵函数y=x2+x在区间[﹣2,﹣)上是减函数,在区间(﹣,1]上是增函数,∴当x∈[﹣2,0)时,函数f(x)最小值为f(﹣)=﹣,最大值是f(﹣2)=2;由题意可得c>0,∵当c<x≤3时,f(x)=是减函数且值域为[,),当f(x)的值域是[﹣,2],可得≤c≤1.故答案为:;.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)已知函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间上的最大值.【解答】(本小题满分13分)解:(Ⅰ)因为=[(4分)]=[(5分)]=,[(7分)]所以f(x )的最小正周期.[(8分)](Ⅱ)因为,所以.[(10分)]当,即时,[(11分)]f(x )取得最大值为.[(13分)]16.(13分)已知表1和表2是某年部分日期的天安门广场升旗时刻表.表1:某年部分日期的天安门广场升旗时刻表表2:某年2月部分日期的天安门广场升旗时刻表(Ⅰ)从表1的日期中随机选出一天,试估计这一天的升旗时刻早于7:00的概率;(Ⅱ)甲,乙二人各自从表2的日期中随机选择一天观看升旗,且两人的选择相互独立.记X 为这两人中观看升旗的时刻早于7:00的人数,求X 的分布列和数学期望E (X ).(Ⅲ)将表1和表2中的升旗时刻化为分数后作为样本数据(如7:31化为).记表2中所有升旗时刻对应数据的方差为s 2,表1和表2中所有升旗时刻对应数据的方差为,判断s 2与的大小.(只需写出结论)【解答】(本小题满分13分)解:(Ⅰ)记事件A 为“从表1的日期中随机选出一天,这一天的升旗时刻早于7:00”,(1分)在表1的20个日期中,有15个日期的升旗时刻早于7:00, 所以.(3分)(Ⅱ)X 可能的取值为0,1,2.(4分)记事件B 为“从表2的日期中随机选出一天,这一天的升旗时刻早于7:00”, 则,.(5分), ,.(8分)所以X 的分布列为:.(10分)注:学生得到X~,所以,同样给分.(Ⅲ).(13分)17.(14分)如图,三棱柱ABC﹣A1B1C1中,AB⊥平面AA1C1C,AA1=AB=AC=2,∠A1AC=60°.过AA1的平面交B1C1于点E,交BC于点F.(Ⅰ)求证:A1C⊥平面ABC1;(Ⅱ)求证:四边形AA1EF为平行四边形;(Ⅲ)若,求二面角B﹣AC1﹣F的大小.【解答】(本小题满分14分)(Ⅰ)证明:因为AB⊥平面AA1C1C,所以A1C⊥AB.[(1分)]因为三棱柱ABC﹣A1B1C1中,AA1=AC,所以四边形AA1C1C为菱形,所以A1C⊥AC1.[(3分)]所以A1C⊥平面ABC1.[(4分)](Ⅱ)证明:因为A1A∥B1B,A1A⊄平面BB1C1C,所以A1A∥平面BB1C1C.[(5分)]因为平面AA1EF∩平面BB1C1C=EF,所以A1A∥EF.[(6分)]因为平面ABC∥平面A1B1C1,平面AA1EF∩平面ABC=AF,平面AA1EF∩平面A1B1C1=A1E,所以A1E∥AF.[(7分)]所以四边形AA1EF为平行四边形.[(8分)](Ⅲ)解:在平面AA1C1C内,过A作Az⊥AC.因为AB⊥平面AA1C1C,如图建立空间直角坐标系A﹣xyz.[(9分)]由题意得,A(0,0,0),B(2,0,0),C(0,2,0),,.因为,所以==(﹣,,0),所以.由(Ⅰ)得平面ABC1的法向量为=(0,﹣1,﹣).设平面AC1F的法向量为=(x,y,z),则,即,令y=1,则x=﹣2,,所以=(﹣2,1,﹣).[(11分)]所以|cos|==.[(13分)]由图知二面角B﹣AC1﹣F的平面角是锐角,所以二面角B﹣AC1﹣F的大小为45°.[(14分)]18.(13分)已知函数f(x)=e ax•sinx﹣1,其中a>0.(Ⅰ)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)证明:f(x)在区间[0,π]上恰有2个零点.【解答】(本小题满分13分)(Ⅰ)解:当a=1时,f(x)=e x•sinx﹣1,所以f'(x)=e x(sinx+cosx).[(2分)]因为f'(0)=1,f(0)=﹣1,[(4分)]所以曲线y=f(x)在点(0,f(0))处的切线方程为y=x﹣1.[(5分)](Ⅱ)证明:f'(x)=e ax(asinx+cosx).[(6分)]由f'(x)=0,得asinx+cosx=0.[(7分)]因为a>0,所以.[(8分)]当时,由asinx+cosx=0,得.所以存在唯一的,使得.[(9分)]f(x)与f'(x)在区间(0,π)上的情况如下:所以f(x)在区间(0,x0)上单调递增,在区间(x0,π)上单调递减.[(11分)]因为,[(12分)]且f(0)=f(π)=﹣1<0,所以f(x)在区间[0,π]上恰有2个零点.[(13分)]19.(14分)已知椭圆过点A(2,0),且离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线与椭圆C交于M,N两点.若直线x=3上存在点P,使得四边形PAMN是平行四边形,求k的值.【解答】(本小题满分14分)解:(Ⅰ)由题意得a=2,,所以.[(2分)]因为a2=b2+c2,[(3分)]所以b=1,[(4分)]所以椭圆C的方程为.[(5分)](Ⅱ)若四边形PAMN是平行四边形,则PA∥MN,且|PA|=|MN|.[(6分)]所以直线PA的方程为y=k(x﹣2),所以P(3,k),.[(7分)]设M(x1,y1),N(x2,y2).由得,[(8分)]由△>0,得.且,.[(9分)]所以.=.[(10分)]因为|PA|=|MN|,所以.整理得16k4﹣56k2+33=0,[(12分)]解得,或.[(13分)]经检验均符合△>0,但时不满足PAMN是平行四边形,舍去.所以,或.[(14分)]20.(13分)数列A n:a1,a2,…,a n(n≥4)满足:a1=1,a n=m,a k+1﹣a k=0或1(k=1,2,…,n﹣1).对任意i,j,都存在s,t,使得a i+a j=a s+a t,其中i,j,s,t∈{1,2,…,n}且两两不相等.(Ⅰ)若m=2,写出下列三个数列中所有符合题目条件的数列的序号;①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,1,1,1,1,2,2,2,2(Ⅱ)记S=a1+a2+…+a n.若m=3,证明:S≥20;(Ⅲ)若m=2018,求n的最小值.【解答】(本小题满分13分)解:(Ⅰ)∵数列A n:a1,a2,…,a n(n≥4)满足:a1=1,a n=2,a k+1﹣a k=0或1(k=1,2,…,n﹣1).对任意i,j,都存在s,t,使得a i+a j=a s+a t,其中i,j,s,t∈{1,2,…,n}且两两不相等.∴在①中,1,1,1,2,2,2,不符合题目条件;在②中,1,1,1,1,2,2,2,2,符合题目条件;在③中,1,1,1,1,1,2,2,2,2,符合题目条件.(3分)注:只得到②或只得到③给(1分),有错解不给分.证明:(Ⅱ)当m=3时,设数列A n中1,2,3出现频数依次为q1,q2,q3,由题意q i≥1(i=1,2,3).①假设q1<4,则有a1+a2<a s+a t(对任意s>t>2),与已知矛盾,所以q1≥4.同理可证:q3≥4.(5分)②假设q2=1,则存在唯一的k∈{1,2,…,n},使得a k=2.那么,对∀s,t,有a1+a k=1+2≠a s+a t(k,s,t两两不相等),与已知矛盾,所以q2≥2.(7分)综上:q1≥4,q3≥4,q2≥2,所以.(8分)解:(Ⅲ)设1,2,…,2018出现频数依次为q1,q2,…,q2018.同(Ⅱ)的证明,可得q1≥4,q2018≥4,q2≥2,q2017≥2,则n≥2026.取q1=q2018=4,q2=q2017=2,q i=1,i=3,4,5, (2016)得到的数列为:B n:1,1,1,1,2,2,3,4,…,2015,2016,2017,2017,2018,2018,2018,2018.(10分)下面证明B n满足题目要求.对∀i,j∈{1,2,…,2026},不妨令a i≤a j,①如果a i=a j=1或a i=a j=2018,由于q1=4,q2018=4,所以符合条件;②如果a i=1,a j=2或a i=2017,a j=2018,由于q1=4,q2018=4,q2=2,q2017=2,所以也成立;③如果a i=1,a j>2,则可选取a s=2,a t=a j﹣1;同样的,如果a i<2017,a j=2018,则可选取a s=a i+1,a t=2017,使得a i+a j=a s+a t,且i,j,s,t两两不相等;④如果1<a i≤a j<2018,则可选取a s=a i﹣1,a t=a j+1,注意到这种情况每个数最多被选取了一次,因此也成立.综上,对任意i,j,总存在s,t,使得a i+a j=a s+a t,其中i,j,s,t∈{1,2,…,n}且两两不相等.因此B n满足题目要求,所以n的最小值为2026.(13分)第21页(共21页)。

北京市西城区2017-2018学年上学期高一年级期末考试数学试卷

北京市西城区2017-2018学年上学期高一年级期末考试数学试卷
∴ 的范围是[ ,0]
故选D.
【点睛】本题考查平面向量的数量积运算,数量积的坐标运算,以及数形结合的思想方法,其中建立平面直角坐标系并利用数形结合的思想是解答该题的关键.
11.
【解析】
即答案为 .
12.-1
【解析】由 且
得 解得
即答案为:-1.
13.-2
【解析】∵角 的始边与 轴正半轴重合,终边上一点坐标为 ∴x=-1,y=2,则
如果在此网站上购买的三件商品价格如下图所示,按照“买三免一”的规则,购买这三件商品的实际折扣为________________折.
在这个网站上购买3件商品,按照“买三免一”的规则,这3件商品实际折扣力度最大约为___________________折(保留一位小数).
评卷人
得分
三、解答题
22.已知αa∈( ,π),且cosα= .
(Ⅱ)求函数f(x)的最小值.
27.若函数f(x)满足:对于s,t∈[0,+∞),都有f(s)≥0,f(t)≥0,且f(s)+f(t)≤f(s+t),则称函数f (x)为“T函数”.
(I)试判断函数f1(x)=x2与f2(x)=lg(x+1)是否是“T函数”,并说明理由;
(Ⅱ)设f (x)为“T函数”,且存在x0∈[0,+∞),使f(f(x0))=x0.求证:f (x0) =x0;
A.-1B.0C. D.1
8.要得到函数y=sin 的图象,只要将函数y=sin2x的图象
A.向左平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向右平移 个单位
9.函数f(x) =A sinx(A>0)的图象如图所示,P,Q分别为图象的最高点和最低点,O为坐标原点,若OP⊥OQ,则A=( )

北京市西城区2017-2018学年度高三上学期期末文科数学试卷及答案

北京市西城区2017-2018学年度高三上学期期末文科数学试卷及答案

北京市西城区2017 — 2018学年度第一学期期末试卷高三数学(文科) 2018.1第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的 四个选项中,选出符合题目要求的一项.1.若集合{|03}A x x =<<,{|12}B x x =-<<,则A B =(A ){|13}x x -<< (B ){|10}x x -<< (C ){|02}x x << (D ){|23}x x <<2.在复平面内,复数2i1i-对应的点的坐标为 (A)(1,1)(B)(1,1)-(C )(1,1)--(D )(1,1)-3.下列函数中,在区间(0,)+∞上单调递增的是 (A)1y x =-+(B )2(1)y x =-(C )sin y x =(D )12y x =4.执行如图所示的程序框图,输出的S 值为 (A )2 (B )6 (C )30 (D)2705.若122log log 2a b +=,则有(A )2a b = (B )2b a = (C )4a b = (D)4b a =6.一个棱长为2的正方体被一个平面截去一部分后,剩余几何体的 三视图如图所示,则截去..的几何体是 (A )三棱锥 (B )三棱柱 (C )四棱锥 (D )四棱柱7.函数()sin()f x x ϕ=+的图象记为曲线C .则“(0)(π)f f ="是“曲线C 关于直线π2x =对称”的(A)充分而不必要条件 (B)必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件8.已知A ,B 是函数2xy =的图象上的相异两点.若点A ,B 到直线12y =的距离相等, 则点A ,B 的横坐标之和的取值范围是 (A )(,1)-∞- (B)(,2)-∞-(C )(,3)-∞-(D )(,4)-∞-第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.若函数()()f x x x b =+是偶函数,则实数b =____.10.已知双曲线22221x y a b-=的一个焦点是(2,0)F ,其渐近线方程为3y x =±,该双曲线的方程是____.11.向量,a b 在正方形格中的位置如图所示.如果小正方形格的边长为1,那么⋅=a b ____.12.在△ABC 中,3a =,3C 2π∠=,△ABC 的面积为334,则b =____;c =____.13.已知点(,)M x y 的坐标满足条件10,10,10.x x y x y -⎧⎪+-⎨⎪-+⎩≤≥≥设O 为原点,则OM 的最小值是____.14.已知函数2,2,()1,3.x x x c f x c x x ⎧+-⎪=⎨<⎪⎩≤≤≤若0c =,则()f x 的值域是____;若()f x 的值域是1[,2]4-,则实数c 的取值范围是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数2π()2sin cos(2)3f x x x =-+.(Ⅰ)求()f x 的最小正周期;(Ⅱ)求证:当π[0,]2x ∈时,1()2f x -≥.16.(本小题满分13分)已知数列{}n a 是公比为13的等比数列,且26a +是1a 和3a 的等差中项.(Ⅰ)求{}n a 的通项公式;(Ⅱ)设数列{}n a 的前n 项之积为n T ,求n T 的最大值.17.(本小题满分13分)某市高中全体学生参加某项测评,按得分评为A ,B 两类(评定标准见表1).根据男女学生比例,使用分层抽样的方法随机抽取了10000名学生的得分数据,其中等级为1A 的学生中有40%是男生,等级为2A 的学生中有一半是女生.等级为1A 和2A 的学生统称为A 类学生,等级为1B 和2B 的学生统称为B 类学生.整理这10000名学生的得分数据,得到如图2所示的频率分布直方图.表1 图2(Ⅰ)已知该市高中学生共20万人,试估计在该项测评中被评为A 类学生的人数; (Ⅱ)某5人得分分别为45,50,55,75,85.从这5人中随机选取2人组成甲组,另外3人组成乙组,求“甲、乙两组各有1名B 类学生"的概率;(Ⅲ)在这10000名学生中,男生占总数的比例为51%,B 类女生占女生总数的比例为1k , B类男生占男生总数的比例为2k .判断1k 与2k 的大小.(只需写出结论)类别得分()xB1B8090x ≤≤ 2B7080x <≤ A1A5070x <≤ 2A2050x <≤18.(本小题满分14分)如图,在三棱柱111ABC A B C -中,AB ⊥平面11AA C C ,1AA AC =.过1AA 的平面交11B C 于点E ,交BC 于点F 。

北京市西城区2018 — 2018学年度第一学期期末试卷高一数学试题答案及评分标准

北京市西城区2018 — 2018学年度第一学期期末试卷高一数学试题答案及评分标准

北京市西城区2018 — 2018学年度第一学期期末试卷高一数学参考答案及评分标准 2018.1A 卷 [必修 模块4] 满分100分一、选择题:本大题共10小题,每小题4分,共40分.1.C2.A3.D4.D5.B6.A7.C8.C9.B 10.A . 二、填空题:本大题共6小题,每小题4分,共24分. 11. 2-12.3, 9- 13. πcos(2)2y x =+(或sin 2y x =-)14. 150 15. 208225-16. ○2○3 注:第16题少选得2分,多选、错选不得分. 三、解答题:本大题共3小题,共36分. 17.(本小题满分12分) 解:(Ⅰ)由π1tan()43ϕ+=-,得tan 111tan 3ϕϕ+=--, ………………3分 解得tan 2ϕ=-. ………………5分所以22tan 4tan 21tan 3ϕϕϕ==-. ………………8分(Ⅱ)由tan 2ϕ=-,得cos 0ϕ≠.将分式sin cos 2cos sin ϕϕϕϕ+-的分子分母同时除以cos ϕ,得sin cos tan 112cos sin 2tan 4ϕϕϕϕϕϕ++==---. ………………12分18.(本小题满分12分)解:(Ⅰ)π()cos cos()3f x x x =⋅-ππcos (cos cos sin sin )33x x x =⋅+………………2分21cos 22x x=+ ………………3分112cos 244x x =++………………4分1π1sin(2)264x =++, ………………6分 由πππ2π22π+262k x k -+≤≤,得ππππ+36k x k -≤≤,所以()f x 的单调递增区间为ππ[ππ+],()36k k k -∈Z ,. ………………8分(Ⅱ)因为πsin(2)[1,1]6x +∈-,所以函数1π1()sin(2)264f x x =++的值域为13[,]44-. ………………10分因为直线y a =与函数()f x 的图象无公共点, 所以13(,)(,)44a ∈-∞-+∞. ………………12分 19.(本小题满分12分)解:(Ⅰ)如图,以点B 为原点,以AB ,BC 所在的直线分别为x ,y 轴建立直角坐标系,则(0,0)B ,(2,0)A -,(0,)C a ,(1,)D a -,(1,)AD a =,(2,0)AB =,(0,)BC a =.………………2分由AP xAD =, 得(,)AP x ax =. 所以(2,)PB PA AB x ax =+=--,(2,)PC PB BC x a ax =+=--. ………4分 所以2222(2)y PB PC x a x a x =⋅=--+,即222()(1)(4)4f x a x a x =+-++. ………………6分 所以(1)1f =. ………………7分 (注:若根据数量积定义,直接得到(1)1f =,则得3分)(Ⅱ)由(Ⅰ),知函数222()(1)(4)4f x a x a x =+-++为二次函数,其图象开口向上,且对称轴为2242(1)a x a +=+, ………………8分 因为对称轴222224(1)31312(1)2(1)22(1)2a a x a a a +++===+>+++,[0,1]x ∈, ……10分 所以当0x =时, ()f x 取得最大值(0)4f =. ………………12分B 卷 [学期综合] 满分50分一、填空题:本大题共5小题,每小题4分,共20分.1. [1,0)-2. 2-或2e 3. (3,0)(3,)-+∞ 4. {0,1} 5. [10,20] 注:第2 题少解不得分.二、解答题:本大题共3小题,共30分. 6.(本小题满分10分) 解:(Ⅰ)由411()log 12a f a a -==+,得121a a -=+, ………………2分 解得3a =-. ………………4分 (Ⅱ)由函数41()log 1x f x x -=+有意义,得101x x ->+. ………………5分 所以函数()f x 的定义域为{|1x x >,或1}x <-. ………………6分因为1444111()log log ()log ()111x x x f x f x x x x ------===-=--+++, 所以()()f x f x -=-,即函数()f x 为奇函数. ………………10分 7.(本小题满分10分)解: (Ⅰ)由函数()3xf x =,()||3g x x a =+-,得函数||3()[()]3x a h x f g x +-==. ………………1分 因为函数()h x 的图象关于直线2x =对称, 所以(0)(4)h h =,即||3|4|333a a -+-=,解得2a =-. ………………3分 (Ⅱ)方法一:由题意,得[()]|3|3xg f x a =+-.由[()]|3|30x g f x a =+-=,得|3|3x a +=, ………………5分 当3a ≥时,由30x>,得33x a +>,所以方程|3|3x a +=无解,即函数[()]y g f x =没有零点; ………………6分 当33a -<≤时,因为3x y a =+在R 上为增函数,值域为(,)a +∞,且33a -<≤,所以有且仅有一个0x 使得033x a +=,且对于任意的x ,都有33x a +≠-, 所以函数[()]y g f x =有且仅有一个零点; ………………8分 当3a -<时,因为3x y a =+在R 上为增函数,值域为(,)a +∞,且3a -<,所以有且仅有一个0x 使得033x a +=,有且仅有一个1x 使得133x a +=-, 所以函数[()]y g f x =有两个零点.综上,当3a ≥时,函数[()]y g f x =没有零点; 当33a -<≤时,函数[()]y g f x =有且仅有一个零点;当3a -<时,函数[()]y g f x =有两个零点. ………………10分 方法二:由题意,得[()]|3|3xg f x a =+-.由[()]|3|30x g f x a =+-=,得|3|3x a +=, ………………5分 即33x a +=,或33x a +=-, 整理,得33x a =-,或33x a =--. ○1考察方程33x a =-的解,由函数3x y =在R 上为增函数,且值域为(0,)+∞,得当30a ->,即3a <时,方程33x a =-有且仅有一解;当03a -≤,即3a ≥时,方程33x a =-有无解; ………………7分○2考察方程33x a =--的解,由函数3x y =在R 上为增函数,且值域为(0,)+∞,得当30a -->,即3a <-时,方程33x a =--有且仅有一解;当03a --≤,即3a ≥-时,方程33x a =--有无解. ………………9分综上,当3a ≥时,函数[()]y g f x =没有零点; 当33a -<≤时,函数[()]y g f x =有且仅有一个零点;当3a -<时,函数[()]y g f x =有两个零点. ………………10分 注:若根据函数图象便得出答案,请酌情给分,没有必要的文字说明减2分. 8.(本小题满分10分)解:(Ⅰ)答案不唯一,如函数0y =,y x =等. ………………3分 (Ⅱ)因为函数2()f x ax bx c =++的图象经过点(1,0)-,所以0a b c -+=. ○1因为y x =为函数)(x f 一个承托函数,且)(x f 为函数21122y x =+的一个承托函数,所以2()1122x f x x +≤≤对x ∈R 恒成立. 所以1(1)1f ≤≤,即 (1)1f a b c =++=. ○2 ………………5分由○1○2,得12b =,12a c +=. ………………6分 所以211()22f x ax x a =++-. 由()f x x ≥对x ∈R 恒成立,得201122ax x a -+-≥对x ∈R 恒成立. 当0a =时,得01122x -+≥对x ∈R 恒成立,显然不正确; ………………7分 当0a ≠时,由题意,得0,0,114()42a a a >⎧⎪⎨∆=--⎪⎩≤ 即20(41)a -≤, 所以14a =. ………………9分 代入2()1122f x x +≤,得21110424x x -+≥, 化简,得2(1)0x -≥对x ∈R 恒成立,符合题意.所以14a =,12b =,14c =. ………………10分。

2017-2018学年北京市西城区高三(上)期末数学试卷(文科)

2017-2018学年北京市西城区高三(上)期末数学试卷(文科)

2017-2018学年北京市西城区高三(上)期末数学试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)若集合A={x|0<x<3},B={x|﹣1<x<2},则A∪B=()A.{x|﹣1<x<3}B.{x|﹣1<x<0}C.{x|0<x<2}D.{x|2<x<3} 2.(5分)在复平面内,复数对应的点的坐标为()A.(1,1) B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)3.(5分)下列函数中,在区间(0,+∞)上单调递增的是()A.y=﹣x+1 B.y=(x﹣1)2 C.y=sinx D.4.(5分)执行如图所示的程序框图,输出的S值为()A.2 B.6 C.30 D.2705.(5分)若,则有()A.a=2b B.b=2a C.a=4b D.b=4a6.(5分)一个棱长为2的正方体被一个平面截去一部分后,剩余几何体的三视图如图所示,则截去的几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱7.(5分)函数f(x)=sin(x+φ)的图象记为曲线C.则“f(0)=f(π)”是“曲线C关于直线对称”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.(5分)已知A,B是函数y=2x的图象上的相异两点.若点A,B到直线的距离相等,则点A,B的横坐标之和的取值范围是()A.(﹣∞,﹣1)B.(﹣∞,﹣2)C.(﹣∞,﹣3)D.(﹣∞,﹣4)二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)若函数f(x)=x(x+b)是偶函数,则实数b=.10.(5分)已知双曲线的一个焦点是F(2,0),其渐近线方程为,该双曲线的方程是.11.(5分)向量,在正方形网格中的位置如图所示.如果小正方形网格的边长为1,那么=.12.(5分)在△ABC中,a=3,,△ABC的面积为,则b=;c=.13.(5分)已知点M(x,y)的坐标满足条件,设O为原点,则|OM|的最小值是.14.(5分)已知函数,若c=0,则f(x)的值域是;若f(x)的值域是,则实数c的取值范围是.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)已知函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求证:当时,.16.(13分)已知数列{a n}是公比为的等比数列,且a2+6是a1和a3的等差中项.(Ⅰ)求{a n}的通项公式;(Ⅱ)设数列{a n}的前n项之积为T n,求T n的最大值.17.(13分)某市高中全体学生参加某项测评,按得分评为A,B两类(评定标准见表).根据男女学生比例,使用分层抽样的方法随机抽取了10000名学生的得分数据,其中等级为A1的学生中有40%是男生,等级为A2的学生中有一半是女生.等级为A1和A2的学生统称为A类学生,等级为B1和B2的学生统称为B 类学生.整理这10000名学生的得分数据,得到如图所示的频率分布直方图.(Ⅰ)已知该市高中学生共20万人,试估计在该项测评中被评为A类学生的人数;(Ⅱ)某5人得分分别为45,50,55,75,85.从这5人中随机选取2人组成甲组,另外3人组成乙组,求“甲、乙两组各有1名B类学生”的概率;(Ⅲ)在这10000名学生中,男生占总数的比例为51%,B类女生占女生总数的比例为k1,B类男生占男生总数的比例为k2.判断k1与k2的大小.(只需写出结论)18.(14分)如图,在三棱柱ABC﹣A1B1C1中,AB⊥平面AA1C1C,AA1=AC.过AA1的平面交B1C1于点E,交BC于点F.(Ⅰ)求证:A1C⊥平面ABC1;(Ⅱ)求证:A1A∥EF;(Ⅲ)记四棱锥B1﹣AA1EF的体积为V1,三棱柱ABC﹣A1B1C1的体积为V.若,求的值.19.(14分)已知椭圆过A(2,0),B(0,1)两点.(Ⅰ)求椭圆C的方程及离心率;(Ⅱ)设点Q在椭圆C上.试问直线x+y﹣4=0上是否存在点P,使得四边形PAQB 是平行四边形?若存在,求出点P的坐标;若不存在,说明理由.20.(13分)已知函数f(x)=x2lnx﹣2x.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求证:存在唯一的x0∈(1,2),使得曲线y=f(x)在点(x0,f(x0))处的切线的斜率为f(2)﹣f(1)(Ⅲ)比较f(1.01)与﹣2.01的大小,并加以证明.2017-2018学年北京市西城区高三(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)若集合A={x|0<x<3},B={x|﹣1<x<2},则A∪B=()A.{x|﹣1<x<3}B.{x|﹣1<x<0}C.{x|0<x<2}D.{x|2<x<3}【解答】解:∵集合A={x|0<x<3},B={x|﹣1<x<2},∴A∪B={x|﹣1<x<3}.故选:A.2.(5分)在复平面内,复数对应的点的坐标为()A.(1,1) B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)【解答】解:===﹣1+i,对应点的坐标为(﹣1,1),故选:B3.(5分)下列函数中,在区间(0,+∞)上单调递增的是()A.y=﹣x+1 B.y=(x﹣1)2 C.y=sinx D.【解答】解:对于A,函数在R递减,对于B,函数在(0,1)递减,对于C,函数在(0,+∞)无单调性,对于D,函数在(0,+∞)递增,故选:D.4.(5分)执行如图所示的程序框图,输出的S值为()A.2 B.6 C.30 D.270【解答】解:模拟程序的运行,可得S=1,k=2满足条件k≤5,执行循环体,S=2,k=3满足条件k≤5,执行循环体,S=6,k=5满足条件k≤5,执行循环体,S=30,k=9不满足条件k≤5,退出循环,输出S的值为30.故选:C.5.(5分)若,则有()A.a=2b B.b=2a C.a=4b D.b=4a【解答】解:,得,即a=4b.故选:C.6.(5分)一个棱长为2的正方体被一个平面截去一部分后,剩余几何体的三视图如图所示,则截去的几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱【解答】解:由三视图还原原几何体如图:该几何体为直四棱柱ABEA1﹣DCFD1,截去的部分为三棱柱BB1E﹣CC1F.故选:B.7.(5分)函数f(x)=sin(x+φ)的图象记为曲线C.则“f(0)=f(π)”是“曲线C关于直线对称”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:若f(0)=f(π),则sinφ=sin(π+φ)=﹣sinφ,则sinφ=0,则φ=kπ,此时f(x)=sin(x+φ)=sin(x+kπ)=±sinx,曲线C关于直线对称,反之若曲线C关于直线对称,则f(0)=f(π),即“f(0)=f(π)”是“曲线C关于直线对称”的充要条件,故选:C8.(5分)已知A,B是函数y=2x的图象上的相异两点.若点A,B到直线的距离相等,则点A,B的横坐标之和的取值范围是()A.(﹣∞,﹣1)B.(﹣∞,﹣2)C.(﹣∞,﹣3)D.(﹣∞,﹣4)【解答】解:不妨设A(x1,y1),B(x2,y2),(x1>x2),可得⇒,利用均值不等式1⇒2∴x1+x2<﹣2,故选:B.二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)若函数f(x)=x(x+b)是偶函数,则实数b=0.【解答】解:∵f(x)是偶函数,∴f(﹣x)=f(x),即﹣x(﹣x+b)=x(x+b),得x﹣b=x+b,则﹣b=b,得b=0,故答案为:0.10.(5分)已知双曲线的一个焦点是F(2,0),其渐近线方程为,该双曲线的方程是x2﹣=1.【解答】解:∵双曲线的一个焦点为(2,0),且双曲线的渐近线方程为,∴c=2,,∵c=,∴a=1,b2=3,∴双曲线的方程为x2﹣=1.故答案为:x2﹣=1.11.(5分)向量,在正方形网格中的位置如图所示.如果小正方形网格的边长为1,那么=4.【解答】解:向量,在正方形网格中的位置如图所示.如果小正方形网格的边长为1,=(2,0).=(2,﹣1).那么=2×2+0×(﹣1)=4.故答案为:4.12.(5分)在△ABC中,a=3,,△ABC的面积为,则b=1;c=.【解答】解:△ABC中,a=3,,∴△ABC的面积为absinC=×3×sin=,解得b=1;∴c2=a2+b2﹣2abcosC=32+12﹣2×3×1×cos=13,c=.故答案为:1;.13.(5分)已知点M(x,y)的坐标满足条件,设O为原点,则|OM|的最小值是.【解答】解:画出满足条件的可行域,如图所示:故|OM|的最小值为原点到直线x+y﹣1=0的距离:=.故答案为:.14.(5分)已知函数,若c=0,则f(x)的值域是[﹣,+∞);若f(x)的值域是,则实数c的取值范围是[,1] .【解答】解:c=0时,f(x)=x2+x=(x+)2﹣,f(x)在[﹣2,﹣)递减,在(﹣,0]递增,可得f(﹣2)取得最大值,且为2,最小值为﹣;当0<x≤3时,f(x)=递减,可得f(3)=,则f(x)∈[,+∞),综上可得f(x)的值域为[﹣,+∞);∵函数y=x2+x在区间[﹣2,﹣)上是减函数,在区间(﹣,1]上是增函数,∴当x∈[﹣2,0)时,函数f(x)最小值为f(﹣)=﹣,最大值是f(﹣2)=2;由题意可得c>0,∵当c<x≤3时,f(x)=是减函数且值域为[,),当f(x)的值域是[﹣,2],可得≤c≤1.故答案为:;.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)已知函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求证:当时,.【解答】(本小题满分13分)解:(Ⅰ)因为=[(4分)]=[(5分)]=,[(7分)]所以f(x)的最小正周期.[(8分)](Ⅱ)因为,所以.[(10分)]所以,[(12分)]所以.[(13分)]16.(13分)已知数列{a n}是公比为的等比数列,且a2+6是a1和a3的等差中项.(Ⅰ)求{a n}的通项公式;(Ⅱ)设数列{a n}的前n项之积为T n,求T n的最大值.【解答】(本小题满分13分)解:(Ⅰ)因为a2+6是a1和a3的等差中项,所以2(a2+6)=a1+a3.[(2分)]因为数列{a n}是公比为的等比数列,所以,[(4分)]解得a1=27.[(6分)]所以a n=a1•q n﹣1=()n﹣4.[[(8分)](Ⅱ)令a n≥1,即()n﹣4≥1,得n≤4,[(10分)]故正项数列{a n}的前3项大于1,第4项等于1,以后各项均小于1.[(11分)]所以当n=3,或n=4时,T n取得最大值,[(12分)]T n的最大值为T3=T4=a1•a2•a3=729.[(13分)]17.(13分)某市高中全体学生参加某项测评,按得分评为A,B两类(评定标准见表).根据男女学生比例,使用分层抽样的方法随机抽取了10000名学生的得分数据,其中等级为A1的学生中有40%是男生,等级为A2的学生中有一半是女生.等级为A1和A2的学生统称为A类学生,等级为B1和B2的学生统称为B 类学生.整理这10000名学生的得分数据,得到如图所示的频率分布直方图.(Ⅰ)已知该市高中学生共20万人,试估计在该项测评中被评为A类学生的人数;(Ⅱ)某5人得分分别为45,50,55,75,85.从这5人中随机选取2人组成甲组,另外3人组成乙组,求“甲、乙两组各有1名B类学生”的概率;(Ⅲ)在这10000名学生中,男生占总数的比例为51%,B类女生占女生总数的比例为k1,B类男生占男生总数的比例为k2.判断k1与k2的大小.(只需写出结论)【解答】(本小题满分13分)解:(Ⅰ)依题意得,样本中B类学生所占比例为(0.02+0.04)×10=60%,(2分)所以A类学生所占比例为40%.(3分)因为全市高中学生共20万人,所以在该项测评中被评为A类学生的人数约为8万人.(4分)(Ⅱ)由表1得,在5人(记为a,b,c,d,e)中,B类学生有2人(不妨设为b,d).将他们按要求分成两组,分组的方法数为10种.(6分)依次为:(ab,cde),(ac,bde),(ad,bce),(ae,bcd),(bc,ade),(bd,ace),(be,acd),(cd,abe),(ce,abd),(de,abc).(8分)所以“甲、乙两组各有一名B类学生”的概率为.(10分)(Ⅲ)k1<k2.(13分)18.(14分)如图,在三棱柱ABC﹣A1B1C1中,AB⊥平面AA1C1C,AA1=AC.过AA1的平面交B1C1于点E,交BC于点F.(Ⅰ)求证:A1C⊥平面ABC1;(Ⅱ)求证:A1A∥EF;(Ⅲ)记四棱锥B1﹣AA1EF的体积为V1,三棱柱ABC﹣A1B1C1的体积为V.若,求的值.【解答】(本小题满分14分)(Ⅰ)证明:因为AB⊥平面AA1C1C,所以A1C⊥AB.[(2分)]在三棱柱ABC﹣A1B1C1中,因为AA1=AC,所以四边形AA1C1C为菱形,所以A1C⊥AC1.[(3分)]所以A1C⊥平面ABC1.[(5分)](Ⅱ)证明:在三棱柱ABC﹣A1B1C1中,因为A1A∥B1B,A1A⊄平面BB1C1C,[(6分)]所以A1A∥平面BB1C1C.[(8分)]因为平面AA1EF∩平面BB1C1C=EF,所以A1A∥EF.[(10分)](Ⅲ)解:记三棱锥B1﹣ABF的体积为V2,三棱柱ABF﹣A1B1E的体积为V3.因为三棱锥B1﹣ABF与三棱柱ABF﹣A1B1E同底等高,所以,[(11分)]所以.因为,所以.[(12分)]因为三棱柱ABF﹣A1B1E与三棱柱ABC﹣A1B1C1等高,所以△ABF与△ABC的面积之比为,[(13分)]所以.[(14分)]19.(14分)已知椭圆过A(2,0),B(0,1)两点.(Ⅰ)求椭圆C的方程及离心率;(Ⅱ)设点Q在椭圆C上.试问直线x+y﹣4=0上是否存在点P,使得四边形PAQB 是平行四边形?若存在,求出点P的坐标;若不存在,说明理由.【解答】(本小题满分14分)解:(Ⅰ)由题意得,a=2,b=1.[(2分)]所以椭圆C的方程为.[(3分)]设椭圆C的半焦距为c,则,[(4分)]所以椭圆C的离心率.[(5分)](Ⅱ)由已知,设P(t,4﹣t),Q(x0,y0).[(6分)]若PAQB是平行四边形,则,[(8分)]所以(2﹣t,t﹣4)+(﹣t,t﹣3)=(x0﹣t,y0﹣4+t),整理得x0=2﹣t,y0=t﹣3.[(10分)]将上式代入,得(2﹣t)2+4(t﹣3)2=4,[(11分)]整理得5t2﹣28t+36=0,解得,或t=2.[(13分)]此时,或P(2,2).经检验,符合四边形PAQB是平行四边形,所以存在,或P(2,2)满足题意.[(14分)]20.(13分)已知函数f(x)=x2lnx﹣2x.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求证:存在唯一的x0∈(1,2),使得曲线y=f(x)在点(x0,f(x0))处的切线的斜率为f(2)﹣f(1)(Ⅲ)比较f(1.01)与﹣2.01的大小,并加以证明.【解答】解:(Ⅰ)函数f(x)=x2lnx﹣2x的定义域是(0,+∞),导函数为f'(x)=2xlnx+x﹣2,所以f'(1)=﹣1,又f(1)=﹣2,所以曲线y=f(x)在点(1,f(1))处的切线方程为y=﹣x﹣1;(Ⅱ)证明:由已知f(2)﹣f(1)=4ln2﹣2,所以只需证明方程2xlnx+x﹣2=4ln2﹣2在区间(1,2)有唯一解.即方程2xlnx+x﹣4ln2=0在区间(1,2)有唯一解.设函数g(x)=2xlnx+x﹣4ln2,则g'(x)=2lnx+3.当x∈(1,2)时,g'(x)>0,故g(x)在区间(1,2)单调递增.又g(1)=1﹣4ln2<0,g(2)=2>0,所以存在唯一的x0∈(1,2),使得g(x0)=0.综上,存在唯一的x0∈(1,2),使得曲线y=f(x)在点(x0,f(x0))处的切线的斜率为f(2)﹣f(1);(Ⅲ)f(1.01)>﹣2.01.证明如下:首先证明:当x>1时,f(x)>﹣x﹣1.设h(x)=f(x)﹣(﹣x﹣1)=x2lnx﹣x+1,则h'(x)=x+2xlnx﹣1.当x>1时,x﹣1>0,2xlnx>0,所以h'(x)>0,故h(x)在(1,+∞)单调递增,所以x>1时,有h(x)>h(1)=0,即当x>1时,有f(x)>﹣x﹣1.所以f(1.01)>﹣1.01﹣1=﹣2.01.。

2017-2018学年北京市西城区高三(上)期末数学试卷(理科)

2017-2018学年北京市西城区高三(上)期末数学试卷(理科)

2017-2018学年北京市西城区高三(上)期末数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)若集合A={x|0<x<3},B={x|﹣1<x<2},则A∪B=()A.{x|﹣1<x<3}B.{x|﹣1<x<0}C.{x|0<x<2}D.{x|2<x<3} 2.(5分)下列函数中,在区间(0,+∞)上单调递增的是()A.y=﹣x+1 B.y=|x﹣1|C.y=sinx D.3.(5分)执行如图所示的程序框图,输出的S值为()A.2 B.6 C.30 D.2704.(5分)已知M为曲线C:(θ为参数)上的动点.设O为原点,则|OM|的最大值是()A.1 B.2 C.3 D.45.(5分)实数x,y满足则2x﹣y的取值范围是()A.[0,2]B.(﹣∞,0]C.[﹣1,2]D.[0,+∞)6.(5分)设,是非零向量,且,不共线.则“||=||”是“||=|2|”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)已知A,B是函数y=2x的图象上的相异两点.若点A,B到直线的距离相等,则点A,B的横坐标之和的取值范围是()A.(﹣∞,﹣1)B.(﹣∞,﹣2)C.(﹣1,+∞)D.(﹣2,+∞)8.(5分)在标准温度和大气压下,人体血液中氢离子的物质的量的浓度(单位mol/L,记作[H+])和氢氧根离子的物质的量的浓度(单位mol/L,记作[OH﹣])的乘积等于常数10﹣14.已知pH值的定义为pH=﹣lg[H+],健康人体血液的pH值保持在7.35~7.45之间,那么健康人体血液中的可以为(参考数据:lg2≈0.30,lg3≈0.48)()A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)在复平面内,复数对应的点的坐标为.10.(5分)数列{a n}是公比为2的等比数列,其前n项和为S n.若,则a n=;S5=.11.(5分)在△ABC中,a=3,,△ABC的面积为,则c=.12.(5分)把4件不同的产品摆成一排.若其中的产品A与产品B都摆在产品C的左侧,则不同的摆法有种.(用数字作答)13.(5分)从一个长方体中截取部分几何体,得到一个以原长方体的部分顶点为顶点的凸多面体,其三视图如图所示.该几何体的表面积是.14.(5分)已知函数,若c=0,则f(x)的值域是;若f(x )的值域是,则实数c的取值范围是.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)已知函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x )在区间上的最大值.16.(13分)已知表1和表2是某年部分日期的天安门广场升旗时刻表.表1:某年部分日期的天安门广场升旗时刻表表2:某年2月部分日期的天安门广场升旗时刻表(Ⅰ)从表1的日期中随机选出一天,试估计这一天的升旗时刻早于7:00的概率;(Ⅱ)甲,乙二人各自从表2的日期中随机选择一天观看升旗,且两人的选择相互独立.记X为这两人中观看升旗的时刻早于7:00的人数,求X的分布列和数学期望E(X).(Ⅲ)将表1和表2中的升旗时刻化为分数后作为样本数据(如7:31化为).记表2中所有升旗时刻对应数据的方差为s2,表1和表2中所有升旗时刻对应数据的方差为,判断s2与的大小.(只需写出结论)17.(14分)如图,三棱柱ABC﹣A1B1C1中,AB⊥平面AA1C1C,AA1=AB=AC=2,∠A1AC=60°.过AA1的平面交B1C1于点E,交BC于点F.(Ⅰ)求证:A1C⊥平面ABC1;(Ⅱ)求证:四边形AA1EF为平行四边形;(Ⅲ)若,求二面角B﹣AC1﹣F的大小.18.(13分)已知函数f(x)=e ax•sinx﹣1,其中a>0.(Ⅰ)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)证明:f(x)在区间[0,π]上恰有2个零点.19.(14分)已知椭圆过点A(2,0),且离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线与椭圆C交于M,N两点.若直线x=3上存在点P,使得四边形PAMN是平行四边形,求k的值.20.(13分)数列A n:a1,a2,…,a n(n≥4)满足:a1=1,a n=m,a k+1﹣a k=0或1(k=1,2,…,n﹣1).对任意i,j,都存在s,t,使得a i+a j=a s+a t,其中i,j,s,t∈{1,2,…,n}且两两不相等.(Ⅰ)若m=2,写出下列三个数列中所有符合题目条件的数列的序号;①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,1,1,1,1,2,2,2,2(Ⅱ)记S=a1+a2+…+a n.若m=3,证明:S≥20;(Ⅲ)若m=2018,求n的最小值.2017-2018学年北京市西城区高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)若集合A={x|0<x<3},B={x|﹣1<x<2},则A∪B=()A.{x|﹣1<x<3}B.{x|﹣1<x<0}C.{x|0<x<2}D.{x|2<x<3}【解答】解:∵集合A={x|0<x<3},B={x|﹣1<x<2},∴A∪B={x|﹣1<x<3}.故选:A.2.(5分)下列函数中,在区间(0,+∞)上单调递增的是()A.y=﹣x+1 B.y=|x﹣1|C.y=sinx D.【解答】解:对于A,函数在R递减,不合题意;对于B,函数在(0,1)递减,不合题意;对于C,函数在R无单调性,不合题意;对于D,函数在(0,+∞)上单调递增,符合题意;故选:D.3.(5分)执行如图所示的程序框图,输出的S值为()A.2 B.6 C.30 D.270【解答】解:模拟程序的运行,可得S=1,k=2满足条件k≤5,执行循环体,S=2,k=3满足条件k≤5,执行循环体,S=6,k=5满足条件k≤5,执行循环体,S=30,k=9不满足条件k≤5,退出循环,输出S的值为30.故选:C.4.(5分)已知M为曲线C:(θ为参数)上的动点.设O为原点,则|OM|的最大值是()A.1 B.2 C.3 D.4【解答】解:曲线C:(θ为参数)转化为:(x﹣3)2+y2=1,则:圆心(3,0)到原点(0.0)的距离为3,故点M到原点的最大值为:3+1=4.故选:D.5.(5分)实数x ,y 满足则2x ﹣y 的取值范围是( )A .[0,2]B .(﹣∞,0]C .[﹣1,2]D .[0,+∞) 【解答】解:由实数x ,y 满足作出可行域如图,由图形可知 C (1,2),令z=2x ﹣y 得:y=2x ﹣z ,显然直线过C (1,2)时,z 最小,z 的最小值是0, 2x ﹣y 的取值范围是:[0,+∞). 故选:D .6.(5分)设,是非零向量,且,不共线.则“||=||”是“||=|2|”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解答】解:由“||=|2|”平方得“||2+4•+4||2=4||2+4•+||2,即“||2=||2”,即“||=||”,反之也成立,即“||=||”是“||=|2|”充要条件,故选:C7.(5分)已知A,B是函数y=2x的图象上的相异两点.若点A,B到直线的距离相等,则点A,B的横坐标之和的取值范围是()A.(﹣∞,﹣1)B.(﹣∞,﹣2)C.(﹣1,+∞)D.(﹣2,+∞)【解答】解:不妨设A(x1,y1),B(x2,y2),(x1>x2),可得⇒,利用均值不等式1⇒2∴x1+x2<﹣2,故选:B.8.(5分)在标准温度和大气压下,人体血液中氢离子的物质的量的浓度(单位mol/L,记作[H+])和氢氧根离子的物质的量的浓度(单位mol/L,记作[OH﹣])的乘积等于常数10﹣14.已知pH值的定义为pH=﹣lg[H+],健康人体血液的pH值保持在7.35~7.45之间,那么健康人体血液中的可以为(参考数据:lg2≈0.30,lg3≈0.48)()A.B.C.D.【解答】解:由题意可得pH=﹣lg[H+]∈(7.35,7.45),且[H+]•[OH﹣])=10﹣14,∴lg=lg=lg[H+]2+14=2lg[H+]+14,∵7.35<﹣lg[H+]<7.45,∴﹣7.45<lg[H+]<﹣7.35,∴﹣0.9<2lg[H+]+14<﹣0.7,即﹣0.9<lg<﹣0.7,∵lg=﹣lg2≈0.30,故A错误,lg=﹣lg3≈0.48,故B错误,lg=﹣lg6=﹣(lg2+lg3)≈﹣0.78,故C正确,lg=﹣1,故D错误,故选:C二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)在复平面内,复数对应的点的坐标为(﹣1,1).【解答】解:∵,∴复数在复平面上对应的点的坐标是(﹣1,1)故答案为:(﹣1,1)10.(5分)数列{a n}是公比为2的等比数列,其前n项和为S n.若,则a n=2n﹣3;S5=.【解答】解:根据题意,数列{a n}是公比为2的等比数列,若,则a1==,则a n=a1×q n﹣1=2n﹣3,S5===故答案为:2n﹣3,11.(5分)在△ABC中,a=3,,△ABC的面积为,则c=.【解答】解:△ABC中,a=3,,∴△ABC的面积为absinC=×3×sin=,解得b=1;∴c2=a2+b2﹣2abcosC=32+12﹣2×3×1×cos=13,c=.故答案为:.12.(5分)把4件不同的产品摆成一排.若其中的产品A 与产品B 都摆在产品C 的左侧,则不同的摆法有 8 种.(用数字作答) 【解答】解:根据题意,分2步分析:①,将产品A 与产品B 全排列,都摆在产品C 的左侧,有A 22=2种情况, ②,三件产品放好后,有4个空位,在其中任选1个,安排最后一件产品,有4种情况,则4间产品有2×4=8种不同的摆法; 故答案为:8.13.(5分)从一个长方体中截取部分几何体,得到一个以原长方体的部分顶点为顶点的凸多面体,其三视图如图所示.该几何体的表面积是 36 .【解答】解:根据三视图可得该几何体是四棱锥P ﹣ABCD ,如图, 底面ABCD 是边长为3的正方形,PA ⊥面ABCD ,PA=4 可得CD ⊥面PAD ,BC ⊥面PAB , ∴S △PCB =S △PCD =S △PAB =S △PAD =S 四边形ABCD =3×3=9.该几何体的表面积是S=S △PCB +S △PCD +S △PAB +S △PAD +S 四边形ABCD =36.故答案为:3614.(5分)已知函数,若c=0,则f(x)的值域是[﹣,+∞);若f(x)的值域是,则实数c的取值范围是[,1] .【解答】解:c=0时,f(x)=x2+x=(x+)2﹣,f(x)在[﹣2,﹣)递减,在(﹣,0]递增,可得f(﹣2)取得最大值,且为2,最小值为﹣;当0<x≤3时,f(x)=递减,可得f(3)=,则f(x)∈[,+∞),综上可得f(x)的值域为[﹣,+∞);∵函数y=x2+x在区间[﹣2,﹣)上是减函数,在区间(﹣,1]上是增函数,∴当x∈[﹣2,0)时,函数f(x)最小值为f(﹣)=﹣,最大值是f(﹣2)=2;由题意可得c>0,∵当c<x≤3时,f(x)=是减函数且值域为[,),当f(x)的值域是[﹣,2],可得≤c≤1.故答案为:;.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)已知函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x )在区间上的最大值.【解答】(本小题满分13分)解:(Ⅰ)因为=[(4分)]=[(5分)]=,[(7分)]所以f(x )的最小正周期.[(8分)](Ⅱ)因为,所以.[(10分)]当,即时,[(11分)]f(x )取得最大值为.[(13分)]16.(13分)已知表1和表2是某年部分日期的天安门广场升旗时刻表.表1:某年部分日期的天安门广场升旗时刻表表2:某年2月部分日期的天安门广场升旗时刻表(Ⅰ)从表1的日期中随机选出一天,试估计这一天的升旗时刻早于7:00的概率;(Ⅱ)甲,乙二人各自从表2的日期中随机选择一天观看升旗,且两人的选择相互独立.记X为这两人中观看升旗的时刻早于7:00的人数,求X的分布列和数学期望E(X).(Ⅲ)将表1和表2中的升旗时刻化为分数后作为样本数据(如7:31化为).记表2中所有升旗时刻对应数据的方差为s2,表1和表2中所有升旗时刻对应数据的方差为,判断s2与的大小.(只需写出结论)【解答】(本小题满分13分)解:(Ⅰ)记事件A为“从表1的日期中随机选出一天,这一天的升旗时刻早于7:00”,(1分)在表1的20个日期中,有15个日期的升旗时刻早于7:00,所以.(3分)(Ⅱ)X可能的取值为0,1,2.(4分)记事件B为“从表2的日期中随机选出一天,这一天的升旗时刻早于7:00”,则,.(5分),,.(8分)所以X 的分布列为:.(10分)注:学生得到X~,所以,同样给分.(Ⅲ).(13分)17.(14分)如图,三棱柱ABC﹣A1B1C1中,AB⊥平面AA1C1C,AA1=AB=AC=2,∠A1AC=60°.过AA1的平面交B1C1于点E,交BC于点F.(Ⅰ)求证:A1C⊥平面ABC1;(Ⅱ)求证:四边形AA1EF为平行四边形;(Ⅲ)若,求二面角B﹣AC1﹣F的大小.【解答】(本小题满分14分)(Ⅰ)证明:因为AB⊥平面AA1C1C,所以A1C⊥AB.[(1分)]因为三棱柱ABC﹣A1B1C1中,AA1=AC,所以四边形AA1C1C为菱形,所以A1C⊥AC1.[(3分)]所以A1C⊥平面ABC1.[(4分)](Ⅱ)证明:因为A1A∥B1B,A1A⊄平面BB1C1C,所以A1A∥平面BB1C1C.[(5分)]因为平面AA1EF∩平面BB1C1C=EF,所以A1A∥EF.[(6分)]因为平面ABC∥平面A1B1C1,平面AA1EF∩平面ABC=AF,平面AA1EF∩平面A1B1C1=A1E,所以A1E∥AF.[(7分)]所以四边形AA1EF为平行四边形.[(8分)](Ⅲ)解:在平面AA1C1C内,过A作Az⊥AC.因为AB⊥平面AA1C1C,如图建立空间直角坐标系A﹣xyz.[(9分)]由题意得,A(0,0,0),B(2,0,0),C(0,2,0),,.因为,所以==(﹣,,0),所以.由(Ⅰ)得平面ABC1的法向量为=(0,﹣1,﹣).设平面AC1F的法向量为=(x,y,z),则,即,令y=1,则x=﹣2,,所以=(﹣2,1,﹣).[(11分)]所以|cos|==.[(13分)]由图知二面角B﹣AC1﹣F的平面角是锐角,所以二面角B﹣AC1﹣F的大小为45°.[(14分)]18.(13分)已知函数f(x)=e ax•sinx﹣1,其中a>0.(Ⅰ)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)证明:f(x)在区间[0,π]上恰有2个零点.【解答】(本小题满分13分)(Ⅰ)解:当a=1时,f(x)=e x•sinx﹣1,所以f'(x)=e x(sinx+cosx).[(2分)]因为f'(0)=1,f(0)=﹣1,[(4分)]所以曲线y=f(x)在点(0,f(0))处的切线方程为y=x﹣1.[(5分)](Ⅱ)证明:f'(x)=e ax(asinx+cosx).[(6分)]由f'(x)=0,得asinx+cosx=0.[(7分)]因为a>0,所以.[(8分)]当时,由asinx+cosx=0,得.所以存在唯一的,使得.[(9分)]f(x)与f'(x)在区间(0,π)上的情况如下:所以f(x)在区间(0,x0)上单调递增,在区间(x0,π)上单调递减.[(11分)]因为,[(12分)]且f(0)=f(π)=﹣1<0,所以f(x)在区间[0,π]上恰有2个零点.[(13分)]19.(14分)已知椭圆过点A(2,0),且离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线与椭圆C交于M,N两点.若直线x=3上存在点P,使得四边形PAMN是平行四边形,求k的值.【解答】(本小题满分14分)解:(Ⅰ)由题意得a=2,,所以.[(2分)]因为a2=b2+c2,[(3分)]所以b=1,[(4分)]所以椭圆C的方程为.[(5分)](Ⅱ)若四边形PAMN是平行四边形,则PA∥MN,且|PA|=|MN|.[(6分)]所以直线PA的方程为y=k(x﹣2),所以P(3,k),.[(7分)]设M(x1,y1),N(x2,y2).由得,[(8分)]由△>0,得.且,.[(9分)]所以.=.[(10分)]因为|PA|=|MN|,所以.整理得16k4﹣56k2+33=0,[(12分)]解得,或.[(13分)]经检验均符合△>0,但时不满足PAMN是平行四边形,舍去.所以,或.[(14分)]20.(13分)数列A n:a1,a2,…,a n(n≥4)满足:a1=1,a n=m,a k+1﹣a k=0或1(k=1,2,…,n﹣1).对任意i,j,都存在s,t,使得a i+a j=a s+a t,其中i,j,s,t∈{1,2,…,n}且两两不相等.(Ⅰ)若m=2,写出下列三个数列中所有符合题目条件的数列的序号;①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,1,1,1,1,2,2,2,2(Ⅱ)记S=a1+a2+…+a n.若m=3,证明:S≥20;(Ⅲ)若m=2018,求n的最小值.【解答】(本小题满分13分)解:(Ⅰ)∵数列A n:a1,a2,…,a n(n≥4)满足:a1=1,a n=2,a k+1﹣a k=0或1(k=1,2,…,n﹣1).对任意i,j,都存在s,t,使得a i+a j=a s+a t,其中i,j,s,t∈{1,2,…,n}且两两不相等.∴在①中,1,1,1,2,2,2,不符合题目条件;在②中,1,1,1,1,2,2,2,2,符合题目条件;在③中,1,1,1,1,1,2,2,2,2,符合题目条件.(3分)注:只得到②或只得到③给(1分),有错解不给分.证明:(Ⅱ)当m=3时,设数列A n中1,2,3出现频数依次为q1,q2,q3,由题意q i≥1(i=1,2,3).①假设q1<4,则有a1+a2<a s+a t(对任意s>t>2),与已知矛盾,所以q1≥4.同理可证:q3≥4.(5分)②假设q2=1,则存在唯一的k∈{1,2,…,n},使得a k=2.那么,对∀s,t,有a1+a k=1+2≠a s+a t(k,s,t两两不相等),与已知矛盾,所以q2≥2.(7分)综上:q1≥4,q3≥4,q2≥2,所以.(8分)解:(Ⅲ)设1,2,…,2018出现频数依次为q1,q2,…,q2018.同(Ⅱ)的证明,可得q1≥4,q2018≥4,q2≥2,q2017≥2,则n≥2026.取q1=q2018=4,q2=q2017=2,q i=1,i=3,4,5, (2016)得到的数列为:B n:1,1,1,1,2,2,3,4,…,2015,2016,2017,2017,2018,2018,2018,2018.(10分)下面证明B n满足题目要求.对∀i,j∈{1,2,…,2026},不妨令a i≤a j,①如果a i=a j=1或a i=a j=2018,由于q1=4,q2018=4,所以符合条件;②如果a i=1,a j=2或a i=2017,a j=2018,由于q1=4,q2018=4,q2=2,q2017=2,所以也成立;③如果a i=1,a j>2,则可选取a s=2,a t=a j﹣1;同样的,如果a i<2017,a j=2018,则可选取a s=a i+1,a t=2017,使得a i+a j=a s+a t,且i,j,s,t两两不相等;④如果1<a i≤a j<2018,则可选取a s=a i﹣1,a t=a j+1,注意到这种情况每个数最多被选取了一次,因此也成立.综上,对任意i,j,总存在s,t,使得a i+a j=a s+a t,其中i,j,s,t∈{1,2,…,n}且两两不相等.因此B n满足题目要求,所以n的最小值为2026.(13分)。

北京市西城区2017-2018学年度高三上学期期末理科数学试卷及答案

北京市西城区2017-2018学年度高三上学期期末理科数学试卷及答案

北京市西城区2017 — 2018学年度第一学期期末试卷高三数学(理科) 2018.1第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.若集合{|03}A x x =<<,{|12}B x x =-<<,则A B = (A ){|13}x x -<< (B ){|10}x x -<< (C ){|02}x x <<(D ){|23}x x <<2.下列函数中,在区间(0,)+∞上单调递增的是 (A )1y x =-+(B )|1|y x =-(C )sin y x =(D )12y x =3.执行如图所示的程序框图,输出的S 值为 (A )2 (B )6 (C )30 (D )2704.已知M 为曲线C :3cos ,sin x y θθ=+⎧⎨=⎩(θ为参数)上的动点.设O 为原点,则OM 的最大值是 (A )1 (B )2 (C )3(D )45.实数,x y 满足10,10,10,x x y x y -⎧⎪+-⎨⎪-+⎩≥≥≥ 则2x y -的取值范围是(A )[0,2] (B )(,0]-∞ (C )[1,2]- (D )[0,)+∞6.设,a b 是非零向量,且,a b 不共线.则“||||=a b ”是“|2||2|+=+a b a b ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件7.已知A ,B 是函数2xy =的图象上的相异两点.若点A ,B 到直线12y =的距离相等, 则点A ,B 的横坐标之和的取值范围是 (A )(,1)-∞-(B )(,2)-∞-(C )(1,)-+∞(D )(2,)-+∞8.在标准温度和大气压下,人体血液中氢离子的物质的量的浓度(单位mol/L ,记作[H ]+)和氢氧根离子的物质的量的浓度(单位mol/L ,记作[OH ]-)的乘积等于常数1410-.已知pH 值的定义为pH lg[H ]+=-,健康人体血液的pH 值保持在7.35~7.45之间,那么健康人体血液中的[H ][OH ]+-可以为(参考数据:lg 20.30≈,lg30.48≈) (A )12(B )13(C )16(D )110第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.在复平面内,复数2i1i-对应的点的坐标为____.10.数列{}n a 是公比为2的等比数列,其前n 项和为n S .若212a =,则n a =____;5S =____.11.在△ABC 中,3a =,3C 2π∠=,△ABC 的面积为334,则 c =____.12.把4件不同的产品摆成一排.若其中的产品A 与产品B 都摆在产品C 的左侧,则不同的摆法有____种.(用数字作答)13.从一个长方体中截取部分几何体,得到一个以原长方体的部分顶点为顶点的凸多面体,其三视图如图所示.该几何 体的表面积是____.14.已知函数2,2,()1, 3.x x x c f x c x x ⎧+-⎪=⎨<⎪⎩≤≤≤若0c =,则()f x 的值域是____;若()f x 的值域是1[,2]4-,则实数c 的取值范围是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数2π()2sin cos(2)3f x x x =-+.(Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间π[0,]2上的最大值.16.(本小题满分13分)已知表1和表2是某年部分日期的天安门广场升旗时刻表.表1:某年部分日期的天安门广场升旗时刻表日期升旗时刻 日期 升旗时刻 日期 升旗时刻 日期 升旗时刻 1月1日 7:36 4月9日 5:46 7月9日 4:53 10月8日 6:17 1月21日 7:31 4月28日 5:19 7月27日 5:07 10月26日 6:36 2月10日 7:14 5月16日 4:59 8月14日 5:24 11月13日 6:56 3月2日 6:47 6月3日 4:47 9月2日 5:42 12月1日 7:16 3月22日6:156月22日4:469月20日5:5912月20日7:31表2:某年2月部分日期的天安门广场升旗时刻表日期 升旗时刻 日期 升旗时刻 日期 升旗时刻 2月1日 7:23 2月11日 7:13 2月21日 6:59 2月3日 7:22 2月13日 7:11 2月23日 6:57 2月5日 7:20 2月15日 7:08 2月25日 6:55 2月7日 7:17 2月17日 7:05 2月27日 6:52 2月9日7:152月19日7:022月28日6:49(Ⅰ)从表1的日期中随机选出一天,试估计这一天的升旗时刻早于7:00的概率; (Ⅱ)甲,乙二人各自从表2的日期中随机选择一天观看升旗,且两人的选择相互独立.记X为这两人中观看升旗的时刻早于7:00的人数,求X 的分布列和数学期望()E X . (Ⅲ)将表1和表2中的升旗时刻化为分数后作为样本数据(如7:31化为31760).记表2中所有升旗时刻对应数据的方差为2s ,表1和表2中所有升旗时刻对应数据的方差为2*s ,判断2s 与2*s 的大小.(只需写出结论)17.(本小题满分14分)如图,三棱柱111ABC A B C -中,AB ⊥平面11AA C C ,12AA AB AC ===,160A AC ︒∠=.过1AA 的平面交11B C 于点E ,交BC 于点F . (Ⅰ)求证:1AC ⊥平面1ABC ;(Ⅱ)求证:四边形1AA EF 为平行四边形; (Ⅲ)若23BF BC =,求二面角1B AC F --的大小.18.(本小题满分13分)已知函数()e sin 1axf x x =⋅-,其中0a >.(Ⅰ)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)证明:()f x 在区间[0,π]上恰有2个零点.19.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>过点(2,0)A ,且离心率为32.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线3y kx =+与椭圆C 交于,M N 两点.若直线3x =上存在点P ,使得四边形PAMN 是平行四边形,求k 的值.20.(本小题满分13分)数列n A :12,,,(4)n a a a n ≥满足:11a =,n a m =,10k k a a +-=或1(1,2,,1)k n =- .对任意,i j ,都存在,s t ,使得i j s t a a a a +=+,其中,,,{1,2,,}i j s t n ∈ 且两两不相等. (Ⅰ)若2m =,写出下列三个数列中所有符合题目条件的数列的序号; ① 1,1,1,2,2,2; ② 1,1,1,1,2,2,2,2; ③ 1,1,1,1,1,2,2,2,2 (Ⅱ)记12n S a a a =+++ .若3m =,证明:20S ≥; (Ⅲ)若2018m =,求n 的最小值.北京市西城区2017 — 2018学年度第一学期期末高三数学(理科)参考答案及评分标准2018.1一、选择题:本大题共8小题,每小题5分,共40分.1.A 2.D 3.C 4.D 5.D 6.C 7.B 8.C 二、填空题:本大题共6小题,每小题5分,共30分. 9.(1,1)- 10.32n -,31411.1312.8 13.36 14.1[,)4-+∞;1[,1]2注:第10,14题第一空2分,第二空3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)解:(Ⅰ)因为2π()2sin cos(2)3f x x x =-+ππ1cos2(cos2cos sin 2sin )33x x x =--⋅-⋅ [ 4分] 33sin 2cos 2122x x =-+[ 5分] π3sin(2)13x =-+, [ 7分]所以()f x 的最小正周期 2ππ2T ==. [8分] (Ⅱ)因为 π02x ≤≤, 所以 ππ2π2333x --≤≤. [10分] 当 ππ232x -=,即5π12x =时, [11分] ()f x 取得最大值为31+. [13分]16.(本小题满分13分)解:(Ⅰ)记事件A 为“从表1的日期中随机选出一天,这一天的升旗时刻早于7:00”,[ 1分]在表1的20个日期中,有15个日期的升旗时刻早于7:00,所以 153(A)204P ==.[ 3分] (Ⅱ)X 可能的取值为0,1,2. [ 4分] 记事件B 为“从表2的日期中随机选出一天,这一天的升旗时刻早于7:00”,则 51(B)153P ==,2(B)1(B)3P P =-=. [5分] 4(0)(B )(B )9P X P P ==⋅=; 12114(1)C ()(1)339P X ==-=; 1(2)(B)(B)9P X P P ==⋅=. [ 8分] 所以 X 的分布列为:X 0 1 2 P4949194412()0129993E X =⨯+⨯+⨯=. [10分]注:学生得到X ~1(2,)3B ,所以12()233E X =⨯=,同样给分.(Ⅲ)22*s s <. [13分]17.(本小题满分14分)解:(Ⅰ)因为 AB ⊥平面11AA C C ,所以 1A C AB ⊥. [ 1分]因为 三棱柱111ABC A B C -中,1AA AC =,所以 四边形11AA C C 为菱形, 所以 11A C AC ⊥. [ 3分]所以 1AC ⊥平面1ABC . [ 4分] (Ⅱ)因为 11//A A B B ,1A A ⊄平面11BB C C ,所以 1//A A 平面11BB C C . [ 5分]因为 平面1AA EF 平面11BB C C EF =,所以 1//A A EF . [ 6分] 因为 平面//ABC 平面111A B C ,平面1AA EF 平面ABC AF =,平面1AA EF 平面1111A B C A E =,所以 1//A E AF . [ 7分] 所以 四边形1AA EF 为平行四边形. [ 8分](Ⅲ)在平面11AA C C 内,过A 作Az AC ⊥.因为 AB ⊥平面11AA C C ,如图建立空间直角坐标系A xyz -. [ 9分] 由题意得,(0,0,0)A ,(2,0,0)B ,(0,2,0)C ,1(0,1,3)A ,1(0,3,3)C .因为23BF BC =,所以 244(,,0)333BF BC −−→−−→==-, 所以 24(,,0)33F .由(Ⅰ)得平面1ABC 的法向量为1(0,1,3)A C −−→=-. 设平面1AC F 的法向量为(,,)x y z =n ,则10,0,AC AF −−→−−→⎧⋅=⎪⎨⎪⋅=⎩n n 即330,240.33y z x y ⎧+=⎪⎨+=⎪⎩ 令1y =,则2x =-,3z =-,所以 (2,1,3)=--n . [11分]所以 111||2|cos ,|2||||AC AC AC −−→−−→−−→⋅〈〉==n n n . [13分] 由图知 二面角1B AC F --的平面角是锐角,所以 二面角1B AC F --的大小为45︒. [14分]18.(本小题满分13分)解:(Ⅰ)当1a =时,()e sin 1xf x x =⋅-,所以 ()e (sin cos )xf x x x '=+. [ 2分]因为 (0)1f '=,(0)1f =-, [ 4分]所以曲线()y f x =在点(0,(0))f 处的切线方程为1y x =-. [ 5分](Ⅱ)()e (sin cos )axf x a x x '=+. [ 6分]由 ()0f x '=,得 sin cos 0a x x +=. [ 7分] 因为 0a >,所以π()02f '≠. [ 8分]当 ππ(0,)(,π)22x ∈ 时, 由 sin cos 0a x x +=, 得 1tan x a=-. 所以 存在唯一的0π(,π)2x ∈, 使得 01tan x a=-. [ 9分] ()f x 与()f x '在区间(0,π)上的情况如下:x0(0,)x 0x0(,π)x()f x ' +-()f x↗极大值 ↘所以 ()f x 在区间0(0,)x 上单调递增,在区间0(,π)x 上单调递减. [11分]因为π020π()()e 1e 102a f x f >=->-=, [12分]且 (0)(π)10f f ==-<,所以 ()f x 在区间[0,π]上恰有2个零点. [13分]19.(本小题满分14分) 解:(Ⅰ)由题意得 2a =,32c e a ==, 所以 3c =. [ 2分] 因为 222a b c =+, [ 3分] 所以 1b =, [ 4分] 所以 椭圆C 的方程为 2214x y +=. [ 5分] (Ⅱ)若四边形PAMN 是平行四边形,则 //PA MN ,且 ||||PA MN =. [ 6分] 所以 直线PA 的方程为(2)y k x =-,所以 (3,)P k ,2||1PA k =+. [ 7分] 设11(,)M x y ,22(,)N x y .由 223,44,y kx x y ⎧=+⎪⎨+=⎪⎩ 得22(41)8380k x kx +++=, [ 8分]由0∆>,得 212k >. 且1228341k x x k +=-+,122841x x k =+. [ 9分] 所以 221212||(1)[()4]MN k x x x x =++-.22226432(1)(41)k k k -=++. [10分]因为 ||||PA MN =, 所以 222226432(1)1(41)k k k k -+=++. 整理得 421656330k k -+=, [12分]解得 32k =±,或 112k =±. [13分]经检验均符合0∆>,但32k =-时不满足PAMN 是平行四边形,舍去. 所以 32k =,或 112k =±. [14分]20.(本小题满分13分)解:(Ⅰ)②③. [ 3分] 注:只得到 ② 或只得到 ③ 给[ 1分],有错解不给分.(Ⅱ)当3m =时,设数列n A 中1,2,3出现频数依次为123,,q q q ,由题意1(1,2,3)i q i =≥. ① 假设14q <,则有12s t a a a a +<+(对任意2s t >>),与已知矛盾,所以 14q ≥.同理可证:34q ≥. [ 5分] ② 假设21q =,则存在唯一的{1,2,,}k n ∈ ,使得2k a =.那么,对,s t ∀,有 112k s t a a a a +=+≠+(,,k s t 两两不相等),与已知矛盾,所以22q ≥. [ 7分]综上:1324,4,2q q q ≥≥≥,所以 3120i i S iq ==∑≥. [ 8分](Ⅲ)设1,2,,2018 出现频数依次为122018,,...,q q q .同(Ⅱ)的证明,可得120184,4q q ≥≥,220172,2q q ≥≥,则2026n ≥.取12018220174,2q q q q ====,1,3,4,5,,2016i q i == ,得到的数列为::1,1,1,1,2,2,3,4,,2015,2016,2017,2017,2018,2018,2018,2018n B . [10分]下面证明n B 满足题目要求.对,{1,2,,2026}i j ∀∈ ,不妨令i j a a ≤,① 如果1i j a a ==或2018i j a a ==,由于120184,4q q ==,所以符合条件; ② 如果1,2i j a a ==或2017,2018i j a a ==,由于120184,4q q ==,220172,2q q ==, 所以也成立;③ 如果1,2i j a a =>,则可选取2,1s t j a a a ==-;同样的,如果2017,2018i j a a <=, 则可选取1,2017s i t a a a =+=,使得i j s t a a a a +=+,且,,,i j s t 两两不相等; ④ 如果12018i j a a <<≤,则可选取1,1s i t j a a a a =-=+,注意到这种情况每个数最多被选取了一次,因此也成立.综上,对任意,i j ,总存在,s t ,使得i j s t a a a a +=+,其中,,,{1,2,,}i j s t n ∈ 且两 两不相等.因此n B 满足题目要求,所以n 的最小值为2026. [13分]。

北京市西城区2017-2018学年度高三上学期期末文科数学试卷及答案

北京市西城区2017-2018学年度高三上学期期末文科数学试卷及答案

北京市西城区2017 — 2018学年度第一学期期末试卷高三数学〔文科〕 2018.1第Ⅰ卷〔选择题 共40分〕一、 选择题:本大题共8小题,每题5分,共40分.在每题列出的 四个选项中,选出符合题目要求的一项.1.假设集合{|03}A x x =<<,{|12}B x x =-<<,则A B =〔A 〕{|13}x x -<< 〔B 〕{|10}x x -<< 〔C 〕{|02}x x << 〔D 〕{|23}x x <<2.在复平面内,复数2i1i-对应的点的坐标为 〔A 〕(1,1)〔B 〕(1,1)-〔C 〕(1,1)--〔D 〕(1,1)-3.以下函数中,在区间(0,)+∞上单调递增的是 〔A 〕1y x =-+〔B 〕2(1)y x =-〔C 〕sin y x =〔D 〕12y x =4.执行如下图的程序框图,输出的S 值为 〔A 〕2 〔B 〕6 〔C 〕30 〔D 〕2705.假设122log log 2a b +=,则有〔A 〕2a b = 〔B 〕2b a = 〔C 〕4a b = 〔D 〕4b a =6.一个棱长为2的正方体被一个平面截去一部分后,剩余几何体的 三视图如下图,则截去..的几何体是 〔A 〕三棱锥 〔B 〕三棱柱 〔C 〕四棱锥 〔D 〕四棱柱7.函数()sin()f x x ϕ=+的图象记为曲线C .则“(0)(π)f f =”是“曲线C 关于直线π2x =对称”的〔A 〕充分而不必要条件 〔B 〕必要而不充分条件 〔C 〕充分必要条件〔D 〕既不充分也不必要条件8.已知A ,B 是函数2xy =的图象上的相异两点.假设点A ,B 到直线12y =的距离相等, 则点A ,B 的横坐标之和的取值范围是 〔A 〕(,1)-∞- 〔B 〕(,2)-∞-〔C 〕(,3)-∞-〔D 〕(,4)-∞-第Ⅱ卷〔非选择题 共110分〕二、填空题:本大题共6小题,每题5分,共30分. 9.假设函数()()f x x x b =+是偶函数,则实数b =____.10.已知双曲线22221x y a b-=的一个焦点是(2,0)F ,其渐近线方程为3y x =±,该双曲线的方程是____.11.向量,a b 在正方形格中的位置如下图.如果小正方形格的边长为1,那么⋅=a b ____.12.在△ABC 中,3a =,3C 2π∠=,△ABC 的面积为334,则b =____;c =____.13.已知点(,)M x y 的坐标满足条件10,10,10.x x y x y -⎧⎪+-⎨⎪-+⎩≤≥≥设O 为原点,则OM 的最小值是____.14.已知函数2,2,()1,3.x x x c f x c x x ⎧+-⎪=⎨<⎪⎩≤≤≤假设0c =,则()f x 的值域是____;假设()f x 的值域是1[,2]4-,则实数c 的取值范围是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.〔本小题总分值13分〕已知函数2π()2sin cos(2)3f x x x =-+.〔Ⅰ〕求()f x 的最小正周期;〔Ⅱ〕求证:当π[0,]2x ∈时,1()2f x -≥.16.〔本小题总分值13分〕已知数列{}n a 是公比为13的等比数列,且26a +是1a 和3a 的等差中项.〔Ⅰ〕求{}n a 的通项公式;〔Ⅱ〕设数列{}n a 的前n 项之积为n T ,求n T 的最大值.17.〔本小题总分值13分〕某市高中全体学生参加某项测评,按得分评为A ,B 两类〔评定标准见表1〕.根据男女学生比例,使用分层抽样的方法随机抽取了10000名学生的得分数据,其中等级为1A 的学生中有40%是男生,等级为2A 的学生中有一半是女生.等级为1A 和2A 的学生统称为A 类学生,等级为1B 和2B 的学生统称为B 类学生.整理这10000名学生的得分数据,得到如图2所示的频率分布直方图.表1 图2〔Ⅰ〕已知该市高中学生共20万人,试估计在该项测评中被评为A 类学生的人数; 〔Ⅱ〕某5人得分分别为45,50,55,75,85.从这5人中随机选取2人组成甲组,另外3人组成乙组,求“甲、乙两组各有1名B 类学生”的概率;〔Ⅲ〕在这10000名学生中,男生占总数的比例为51%,B 类女生占女生总数的比例为1k ,B 类男生占男生总数的比例为2k .判断1k 与2k 的大小.〔只需写出结论〕类别得分()xB1B8090x ≤≤ 2B7080x <≤ A1A5070x <≤ 2A2050x <≤18.〔本小题总分值14分〕如图,在三棱柱111ABC A B C -中,AB ⊥平面11AA C C ,1AA AC =.过1AA 的平面交11B C 于点E ,交BC 于点F . 〔Ⅰ〕求证:1A C ⊥平面1ABC ; 〔Ⅱ〕求证:1//A A EF ;〔Ⅲ〕记四棱锥11B AA EF -的体积为1V ,三棱柱111ABC A B C -的体积为V .假设116V V =,求BFBC的值.19.〔本小题总分值14分〕已知椭圆2222:1(0)x y C a b a b+=>>过(2,0)A ,(0,1)B 两点.〔Ⅰ〕求椭圆C 的方程及离心率;〔Ⅱ〕设点Q 在椭圆C 上.试问直线40x y +-=上是否存在点P ,使得四边形PAQB 是平行四边形?假设存在,求出点P 的坐标;假设不存在,说明理由.20.〔本小题总分值13分〕已知函数2()ln 2f x x x x =-.〔Ⅰ〕求曲线()y f x =在点(1,(1))f 处的切线方程;〔Ⅱ〕求证:存在唯一的0(1,2)x ∈,使得曲线()y f x =在点00(,())x f x 处的切线的斜率为(2)(1)f f -;〔Ⅲ〕比较(1.01)f 与 2.01-的大小,并加以证明.北京市西城区2017 — 2018学年度第一学期期末高三数学〔文科〕参考答案及评分标准2018.1一、选择题:本大题共8小题,每题5分,共40分.1.A 2.B 3.D 4.C 5.C 6.B 7.C 8.B二、填空题:本大题共6小题,每题5分,共30分.9.0 10.2213y x -= 11.412.1 13 14.1[,)4-+∞;1[,1]2注:第12,14题第一空2分,第二空3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.〔本小题总分值13分〕解:〔Ⅰ〕因为2π()2sin cos(2)3f x x x =-+ππ1cos2(cos2cos sin 2sin )33x x x =--⋅-⋅ [ 4分]32cos212x x =-+[ 5分]π)13x =-+, [ 7分]所以()f x 的最小正周期 2ππ2T ==. [ 8分] 〔Ⅱ〕因为 π2x ≤≤0,所以 ππ2π2333x --≤≤. [10分]所以 ππsin(2)sin()33x --=≥, [12分]所以 1()2f x -≥. [13分]16.〔本小题总分值13分〕 解:〔Ⅰ〕因为 26a 是1a 和3a 的等差中项,所以 2132(6)a a a +=+. [ 2分]因为数列{}n a 是公比为13的等比数列,所以 1112(6)39a aa +=+, [ 4分]解得 127a =. [ 6分]所以 1411()3n n n a a q --=⋅=. [ 8分]〔Ⅱ〕令1n a ≥,即41()13n -≥,得4n ≤, [10分]故正项数列{}n a 的前3项大于1,第4项等于1,以后各项均小于1. [11分] 所以 当3n =,或4n =时,n T 取得最大值, [12分] n T 的最大值为 34123729T T a a a ==⋅⋅=.[13分]17.〔本小题总分值13分〕解:〔Ⅰ〕依题意得,样本中B 类学生所占比例为(0.020.04)1060%+⨯=, [ 2分]所以A 类学生所占比例为40%. [ 3分] 因为全市高中学生共20万人,所以在该项测评中被评为A 类学生的人数约为8万人. [ 4分] 〔Ⅱ〕由表1得,在5人〔记为,,,,a b c d e 〕中,B 类学生有2人〔不妨设为,b d 〕. 将他们按要求分成两组,分组的方法数为10种. [ 6分]依次为:(,),(,),(,),(,),(,),(,),(,),(,),ab cde ac bde ad bce ae bcd bc ade bd ace be acd cd abe(,),(,)ce abd de abc .[ 8分] 所以“甲、乙两组各有一名B 类学生”的概率为63105=. [10分] 〔Ⅲ〕12k k <. [13分]18.〔本小题总分值14分〕解:〔Ⅰ〕 因为 AB ⊥平面11AA C C ,所以 1A C AB ⊥. [ 2分]在三棱柱111ABC A B C -中,因为 1AA AC =,所以 四边形11AA C C 为菱形, 所以 11A C AC ⊥. [ 3分]所以 1A C ⊥平面1ABC . [ 5分] 〔Ⅱ〕在 三棱柱111ABC A B C -中,因为 11//A A B B ,1A A ⊄平面11BB C C , [ 6分] 所以 1//A A 平面11BB C C . [ 8分] 因为 平面1AA EF平面11BB C C EF =,所以 1//A A EF . [10分] 〔Ⅲ〕记三棱锥1B ABF -的体积为2V ,三棱柱11ABF A B E -的体积为3V .因为三棱锥1B ABF -与三棱柱11ABF A B E -同底等高, 所以 2313V V =, [11分] 所以 1233213V V V V =-=. 因为116V V =,所以 3131624V V =⨯=. [12分] 因为 三棱柱11ABF A B E -与三棱柱111ABC A B C -等高,所以 △ABF 与△ABC 的面积之比为14, [13分]所以14BF BC =. [14分]19.〔本小题总分值14分〕解:〔Ⅰ〕由题意得,2a =,1b =. [ 2分]所以椭圆C 的方程为2214x y +=. [ 3分]设椭圆C 的半焦距为c ,则c == [ 4分] 所以椭圆C的离心率c e a ==[ 5分]〔Ⅱ〕由已知,设(,4)P t t -,00(,)Q x y . [ 6分]假设PAQB 是平行四边形,则 PA PB PQ +=, [ 8分]所以 00(2,4)(,3)(,4)t t t t x t y t --+--=--+,整理得 002, 3x t y t =-=-. [10分] 将上式代入 220044x y +=,得 22(2)4(3)4t t -+-=, [11分] 整理得 2528360t t -+=, 解得 185t =,或2t =. [13分] 此时 182(,)55P ,或(2,2)P .经检验,符合四边形PAQB 是平行四边形, 所以存在 182(,)55P ,或(2,2)P 满足题意. [14分]20.〔本小题总分值13分〕解:〔Ⅰ〕函数2()ln 2f x x x x =-的定义域是(0,)+∞,导函数为()2ln 2f x x x x '=+-. [ 1分] 所以(1)1f '=-, 又(1)2f =-,所以曲线()y f x =在点(1,(1))f 处的切线方程为1y x =--. [ 3分] 〔Ⅱ〕由已知(2)(1)4ln 22f f -=-. [ 4分]所以只需证明方程 2ln 24ln22x x x +-=-在区间(1,2)有唯一解.即方程 2ln 4ln20x x x +-=在区间(1,2)有唯一解. [ 5分]设函数 ()2ln 4ln 2g x x x x =+-, [ 6分]则 ()2ln 3g x x '=+.当 (1,2)x ∈时,()0g x '>,故()g x 在区间(1,2)单调递增. [ 7分] 又 (1)14ln 20g =-<,(2)20g =>,所以 存在唯一的0(1,2)x ∈,使得0()0g x =. [ 8分] 综上,存在唯一的0(1,2)x ∈,使得曲线()y f x =在点00(,())x f x 处的切线的斜率为(2)(1)f f -. [ 9分]〔Ⅲ〕(1.01) 2.01f >-.证明如下: [10分]首先证明:当1x >时,()1f x x >--.设 2()()(1)ln 1h x f x x x x x =---=-+, [11分] 则 ()2ln 1h x x x x '=+-.当 1x >时,10x ->,2ln 0x x >,所以 ()0h x '>,故()h x 在(1,)+∞单调递增, [12分] 所以 1x >时,有()(1)0h x h >=, 即当 1x >时,有()1f x x >--.所以 (1.01) 1.011 2.01f >--=-. [13分]。

2017年1月北京市西城区高一数学期末试题答案

2017年1月北京市西城区高一数学期末试题答案

北京市西城区2016 — 2017学年度第一学期期末试卷高一数学参考答案及评分标准 2017.1A 卷 [必修 模块4] 满分100分一、选择题:本大题共10小题,每小题4分,共40分.1.C2.A3.D4.D5.B6.A7.C8.C9.B 10.A .二、填空题:本大题共6小题,每小题4分,共24分.11. 2-12. 3, 9- 13. πcos(2)2y x =+(或sin 2y x =-) 14. 150 15. 208225-16. ○2○3 注:第16题少选得2分,多选、错选不得分.三、解答题:本大题共3小题,共36分.17.(本小题满分12分)解:(Ⅰ)由π1tan()43ϕ+=-,得tan 111tan 3ϕϕ+=--, ………………3分 解得tan 2ϕ=-. ………………5分 所以22tan 4tan 21tan 3ϕϕϕ==-. ………………8分 (Ⅱ)由tan 2ϕ=-,得cos 0ϕ≠. 将分式sin cos 2cos sin ϕϕϕϕ+-的分子分母同时除以cos ϕ, 得sin cos tan 112cos sin 2tan 4ϕϕϕϕϕϕ++==---. ………………12分 18.(本小题满分12分)解:(Ⅰ)π()cos cos()3f x x x =⋅-ππcos (cos cos sin sin )33x x x =⋅+ ………………2分21cos 22x x =+ ………………3分112cos 244x x =++ ………………4分1π1sin(2)264x =++, ………………6分 由πππ2π22π+262k x k -+≤≤,得ππππ+36k x k -≤≤, 所以()f x 的单调递增区间为ππ[ππ+],()36k k k -∈Z ,. ………………8分 (Ⅱ)因为πsin(2)[1,1]6x +∈-, 所以函数1π1()sin(2)264f x x =++的值域为13[,]44-. ………………10分 因为直线y a =与函数()f x 的图象无公共点,所以13(,)(,)44a ∈-∞-+∞ . ………………12分19.(本小题满分12分)解:(Ⅰ)如图,以点B 为原点,以AB ,BC 所在的直线分别为x ,y 轴建立直角坐标系, 则(0,0)B ,(2,0)A -,(0,)C a ,(1,)D a -,(1,)AD a = ,(2,0)AB = ,(0,)BC a = .………………2分由AP xAD = , 得(,)AP x ax = . 所以(2,)PB PA AB x ax =+=-- , (2,)PC PB BC x a ax =+=-- . ………4分 所以2222(2)y PB PC x a x a x =⋅=--+ ,即222()(1)(4)4f x a x a x =+-++. ………………6分所以(1)1f =. ………………7分 (注:若根据数量积定义,直接得到(1)1f =,则得3分)(Ⅱ)由(Ⅰ),知函数222()(1)(4)4f x a x a x =+-++为二次函数,其图象开口向上, 且对称轴为2242(1)a x a +=+, ………………8分 因为对称轴222224(1)31312(1)2(1)22(1)2a a x a a a +++===+>+++,[0,1]x ∈, ……10分 所以当0x =时, ()f x 取得最大值(0)4f =. ………………12分B 卷 [学期综合] 满分50分一、填空题:本大题共5小题,每小题4分,共20分.1. [1,0)-2. 2-或2e 3. (3,0)(3,)-+∞ 4. {0,1} 5. [10,20] 注:第2 题少解不得分.二、解答题:本大题共3小题,共30分.6.(本小题满分10分)解:(Ⅰ)由411()log 12a f a a -==+,得121a a -=+, ………………2分 解得3a =-. ………………4分 (Ⅱ)由函数41()log 1x f x x -=+有意义,得101x x ->+. ………………5分 所以函数()f x 的定义域为{|1x x >,或1}x <-. ………………6分 因为1444111()log log ()log ()111x x x f x f x x x x ------===-=--+++, 所以()()f x f x -=-,即函数()f x 为奇函数. ………………10分7.(本小题满分10分)解: (Ⅰ)由函数()3x f x =,()||3g x x a =+-,得函数||3()[()]3x a h x f g x +-==. ………………1分 因为函数()h x 的图象关于直线2x =对称,所以(0)(4)h h =,即||3|4|333a a -+-=,解得2a =-. ………………3分 (Ⅱ)方法一:由题意,得[()]|3|3xg f x a =+-.由[()]|3|30x g f x a =+-=,得|3|3x a +=, ………………5分 当3a ≥时,由30x >,得33x a +>, 所以方程|3|3x a +=无解,即函数[()]y g f x =没有零点; ………………6分 当33a -<≤时,因为3x y a =+在R 上为增函数,值域为(,)a +∞,且33a -<≤,所以有且仅有一个0x 使得033x a +=,且对于任意的x ,都有33x a +≠-, 所以函数[()]y g f x =有且仅有一个零点; ………………8分 当3a -<时,因为3x y a =+在R 上为增函数,值域为(,)a +∞,且3a -<,所以有且仅有一个0x 使得033x a +=,有且仅有一个1x 使得133x a +=-, 所以函数[()]y g f x =有两个零点.综上,当3a ≥时,函数[()]y g f x =没有零点; 当33a -<≤时,函数[()]y g f x =有且仅有一个零点;当3a -<时,函数[()]y g f x =有两个零点. ………………10分 方法二:由题意,得[()]|3|3xg f x a =+-.由[()]|3|30x g f x a =+-=,得|3|3x a +=, ………………5分 即33x a +=,或33x a +=-,整理,得33x a =-,或33x a =--.○1考察方程33x a =-的解,由函数3x y =在R 上为增函数,且值域为(0,)+∞,得当30a ->,即3a <时,方程33x a =-有且仅有一解;当03a -≤,即3a ≥时,方程33x a =-有无解; ………………7分 ○2考察方程33x a =--的解,由函数3x y =在R 上为增函数,且值域为(0,)+∞,得当30a -->,即3a <-时,方程33x a =--有且仅有一解;当03a --≤,即3a ≥-时,方程33x a =--有无解. ………………9分综上,当3a ≥时,函数[()]y g f x =没有零点; 当33a -<≤时,函数[()]y g f x =有且仅有一个零点;当3a -<时,函数[()]y g f x =有两个零点. ………………10分 注:若根据函数图象便得出答案,请酌情给分,没有必要的文字说明减2分.8.(本小题满分10分)解:(Ⅰ)答案不唯一,如函数0y =,y x =等. ………………3分 (Ⅱ)因为函数2()f x ax bx c =++的图象经过点(1,0)-,所以0a b c -+=. ○1因为y x =为函数)(x f 一个承托函数,且)(x f 为函数21122y x =+的一个承托函数, 所以2()1122x f x x +≤≤对x ∈R 恒成立. 所以1(1)1f ≤≤,即 (1)1f a b c =++=. ○2 ………………5分由○1○2,得12b = ,12a c +=. ………………6分 所以211()22f x ax x a =++-. 由()f x x ≥对x ∈R 恒成立,得201122ax x a -+-≥对x ∈R 恒成立. 当0a =时,得01122x -+≥对x ∈R 恒成立,显然不正确; ………………7分 当0a ≠时,由题意,得0,0,114()42a a a >⎧⎪⎨∆=--⎪⎩≤ 即20(41)a -≤, 所以14a =. ………………9分 代入2()1122f x x +≤,得21110424x x -+≥, 化简,得2(1)0x -≥对x ∈R 恒成立,符合题意.所以14a =,12b =,14c =. ………………10分。

2017-2018学年北京市西城区高三(上)期末数学试卷(理科)解析卷

2017-2018学年北京市西城区高三(上)期末数学试卷(理科)解析卷

2017-2018学年北京市西城区高三(上)期末数学试卷(理科)副标题一、选择题(本大题共8小题,共40.0分)1.若集合A={x|0<x<3},B={x|-1<x<2},则A∪B=()A. B. C. D.2.下列函数中,在区间(0,+∞)上单调递增的是()A. B. C. D.3.执行如图所示的程序框图,输出的S值为()A. 2B. 6C. 30D. 2704.已知M为曲线C:(θ为参数)上的动点.设O为原点,则|OM|的最大值是()A. 1B. 2C. 3D. 45.实数x,y满足,则2x-y的取值范围是()A. B. C. D.6.设,是非零向量,且,不共线.则“||=||”是“||=|2|”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件7.已知A,B是函数y=2x的图象上的相异两点.若点A,B到直线的距离相等,则点A,B的横坐标之和的取值范围是()A. B. C. D.8.在标准温度和大气压下,人体血液中氢离子的物质的量的浓度(单位mol/L,记作[H+])和氢氧根离子的物质的量的浓度(单位mol/L,记作[OH-])的乘积等于常数10-14.已知pH值的定义为pH=-lg[H+],健康人体血液的pH值保持在7.35~7.45之间,那么健康人体血液中的可以为(参考数据:lg2≈0.30,lg3≈0.48)()A. B. C. D.二、填空题(本大题共6小题,共30.0分)9.在复平面内,复数对应的点的坐标为______.10.数列{a n}是公比为2的等比数列,其前n项和为S n.若,则a n=______;S5=______.11.在△ABC中,a=3,,△ABC的面积为,则c=______.12.把4件不同的产品摆成一排.若其中的产品A与产品B都摆在产品C的左侧,则不同的摆法有______种.(用数字作答)13.从一个长方体中截取部分几何体,得到一个以原长方体的部分顶点为顶点的凸多面体,其三视图如图所示.该几何体的表面积是______.14.已知函数,,<,若c=0,则f(x)的值域是______;若f(x)的值域是,,则实数c的取值范围是______.三、解答题(本大题共6小题,共80.0分)15.已知函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间,上的最大值.16.已知表1和表2是某年部分日期的天安门广场升旗时刻表.表1:某年部分日期的天安门广场升旗时刻表表:某年月部分日期的天安门广场升旗时刻表(Ⅰ)从表的日期中随机选出一天,试估计这一天的升旗时刻早于7:00的概率;(Ⅱ)甲,乙二人各自从表2的日期中随机选择一天观看升旗,且两人的选择相互独立.记X为这两人中观看升旗的时刻早于7:00的人数,求X的分布列和数学期望E(X).(Ⅲ)将表1和表2中的升旗时刻化为分数后作为样本数据(如7:31化为).记表2中所有升旗时刻对应数据的方差为s2,表1和表2中所有升旗时刻对应数据的方差为,判断s2与的大小.(只需写出结论)17.如图,三棱柱ABC-A1B1C1中,AB⊥平面AA1C1C,AA1=AB=AC=2,∠A1AC=60°.过AA1的平面交B1C1于点E,交BC于点F.(Ⅰ)求证:A1C⊥平面ABC1;(Ⅱ)求证:四边形AA1EF为平行四边形;(Ⅲ)若,求二面角B-AC1-F的大小.18.已知函数f(x)=e ax•sin x-1,其中a>0.(Ⅰ)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)证明:f(x)在区间[0,π]上恰有2个零点.19.已知椭圆:>>过点A(2,0),且离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线与椭圆C交于M,N两点.若直线x=3上存在点P,使得四边形PAMN是平行四边形,求k的值.20.数列A n:a1,a2,…,a n(n≥4)满足:a1=1,a n=m,a k+1-a k=0或1(k=1,2,…,n-1).对任意i,j,都存在s,t,使得a i+a j=a s+a t,其中i,j,s,t∈{1,2,…,n}且两两不相等.(Ⅰ)若m=2,写出下列三个数列中所有符合题目条件的数列的序号;①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,1,1,1,1,2,2,2,2(Ⅱ)记S=a1+a2+…+a n.若m=3,证明:S≥20;(Ⅲ)若m=2018,求n的最小值.答案和解析1.【答案】A【解析】解:∵集合A={x|0<x<3},B={x|-1<x<2},∴A∪B={x|-1<x<3}.故选:A.利用并集定义直接求解.本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,考查函数与方程思想,属于基础题.2.【答案】D【解析】解:对于A,函数在R递减,不合题意;对于B,函数在(0,1)递减,不合题意;对于C,函数在R无单调性,不合题意;对于D,函数在(0,+∞)上单调递增,符合题意;故选:D.利用常见函数的单调性分别判断即可.本题考查了常见函数的单调性问题,是一道基础题.3.【答案】C【解析】解:模拟程序的运行,可得S=1,k=2满足条件k≤5,执行循环体,S=2,k=3满足条件k≤5,执行循环体,S=6,k=5满足条件k≤5,执行循环体,S=30,k=9不满足条件k≤5,退出循环,输出S的值为30.故选:C.由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.4.【答案】D【解析】【分析】本题考查的知识要点:参数方程和直角坐标方程的转化,两点间的距离公式的应用.直接把圆的参数方程转化为直角坐标方程,进一步利用两点间的距离公式求出结果.【解答】解:曲线C:(θ为参数)转化为:(x-3)2+y2=1,则:圆心(3,0)到原点(0.0)的距离为3,故点M到原点的最大值为:3+1=4.故选D.5.【答案】D【解析】解:由实数x,y满足作出可行域如图,由图形可知C(1,2),令z=2x-y得:y=2x-z,显然直线过C(1,2)时,z最小,z的最小值是0,2x-y的取值范围是:[0,+∞).故选:D.由约束条件作出可行域,数形结合得到最优解,把最优解的坐标代入目标函数即可求得k值.本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.6.【答案】C【解析】解:由“||=|2|”平方得“||2+4•+4||2=4||2+4•+||2,即“||2=||2”,即“||=||”,反之也成立,即“||=||”是“||=|2|”充要条件,故选:C根据向量数量积的运算关系,以及充分条件和必要条件进行判断即可.本题主要考查充分条件和必要条件的判断,结合向量数量积的应用是解决本题的关键.7.【答案】B【解析】解:不妨设A(x1,y1),B(x2,y2),(x1>x2),可得⇒,利用均值不等式1⇒2∴x1+x2<-2,故选:B.依题意可得⇒,利用均值不等式即可求解,本题考查了指数函数的性质,均值不等式,属于中档题.8.【答案】C【解析】解:由题意可得pH=-lg[H+]∈(7.35,7.45),且[H+]•[OH-])=10-14,∴lg=lg=lg[H+]2+14=2lg[H+]+14,∵7.35<-lg[H+]<7.45,∴-7.45<lg[H+]<-7.35,∴-0.9<2lg[H+]+14<-0.7,即-0.9<lg<-0.7,∵lg=-lg2≈0.30,故A错误,lg=-lg3≈0.48,故B错误,lg=-lg6=-(lg2+lg3)≈-0.78,故C正确,lg=-1,故D错误,故选:C.由题意可得lg=2lg[H+]+14,即可求出-0.9<lg<-0.7,代值计算比较即可本题考查了对数的运算和性质在实际生活中的应用,属于中档题9.【答案】(-1,1)【解析】解:∵,∴复数在复平面上对应的点的坐标是(-1,1)故答案为:(-1,1)首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母进行复数的乘法运算,得到最简形式即复数的代数形式,写出复数对应的点的坐标.本题考查复数的代数形式的乘除运算,考查复数在复平面上对应的点的坐标,要写点的坐标,需要把复数写成代数形式的标准形式,实部做横标,虚部做纵标,得到点的坐标.10.【答案】2n-3;【解析】解:根据题意,数列{a n}是公比为2的等比数列,若,则a1==,则a n=a1×q n-1=2n-3,S5===故答案为:2n-3,根据题意,由等比数列的性质分析可得首项a1的值,由等比数列的通项公式以及前n项和公式计算可得答案.本题考查等比数列的前n项和公式与通项公式,注意先求出等比数列的首项a1.11.【答案】【解析】解:△ABC中,a=3,,∴△ABC的面积为absinC=×3b×sin=,解得b=1;∴c2=a2+b2-2abcosC=32+12-2×3×1×cos=13,c=.故答案为:.根据三角形的面积公式和余弦定理,即可求出c的值.本题考查了三角形的面积公式和余弦定理的应用问题,是基础题.12.【答案】8【解析】解:根据题意,分2步分析:①,将产品A与产品B全排列,都摆在产品C的左侧,有A22=2种情况,②,三件产品放好后,有4个空位,在其中任选1个,安排最后一件产品,有4种情况,则4间产品有2×4=8种不同的摆法;故答案为:8.根据题意,分2步分析:①,将产品A与产品B全排列,都摆在产品C的左侧,②,ABC放好后,有4个空位,在其中任选1个,安排最后一件产品,由分步计数原理计算可得答案.本题考查排列、组合的应用,注意应用插空法分析.13.【答案】36【解析】解:根据三视图可得该几何体是四棱锥P-ABCD,如图,底面ABCD是边长为3的正方形,PA⊥面ABCD,PA=4可得CD⊥面PAD,BC⊥面PAB,∴S△PCB=S△PCD=S△PAB=S△PAD==3×3=9.S四边形ABCD=36.该几何体的表面积是S=S△PCB+S△PCD+S△PAB+S△PAD+S四边形ABCD故答案为:36根据三视图可得该几何体是四棱锥P-ABCD,如图,底面ABCD是边长为3的正方形,PA⊥面ABCD,PA=4可得CD⊥面PAD,BC⊥面PAB,求出各个面的面积即可.本题考查了三视图,几何体的表面积,属于中档题.14.【答案】[-,+∞)[,1]【解析】解:c=0时,f(x)=x2+x=(x+)2-,f(x)在[-2,-)递减,在(-,0]递增,可得f(-2)取得最大值,且为2,最小值为-;当0<x≤3时,f(x)=递减,可得f(3)=,则f(x)∈[,+∞),综上可得f(x)的值域为[-,+∞);∵函数y=x2+x在区间[-2,-)上是减函数,在区间(-,1]上是增函数,∴当x∈[-2,0)时,函数f(x)最小值为f(-)=-,最大值是f(-2)=2;由题意可得c>0,∵当c<x≤3时,f(x)=是减函数且值域为[,),当f(x)的值域是[-,2],可得≤c≤1.故答案为:;.若c=0,分别求得f(x)在[-2,0]的最值,以及在(0,3]的范围,求并集即可得到所求值域;讨论f(x)在[-2,1]的值域,以及在(c,3]的值域,注意c>0,运用单调性,即可得到所求c的范围.本题给出特殊分段函数,求函数的值域,并在已知值域的情况下求参数的取值范围,着重考查了函数的值域和二次函数的单调性和最值等知识,属于中档题.15.【答案】(本小题满分13分)解:(Ⅰ)因为=[(4分)]=[(5分)]=,[(7分)]所以f(x)的最小正周期.[(8分)](Ⅱ)因为,所以.[(10分)]当,即时,[(11分)]f(x)取得最大值为.[(13分)]【解析】(Ⅰ)利用二倍角公式以及两角和与差的三角函数化简函数的解析式,然后求f(x)的最小正周期;(Ⅱ)求出相位的范围,利用正弦函数的有界性求解函数的最大值即可.本题考查三角函数的化简取值,三角函数的性质的应用,是基础题.16.【答案】(本小题满分13分)解:(Ⅰ)记事件A为“从表1的日期中随机选出一天,这一天的升旗时刻早于7:00”,(1分)在表1的20个日期中,有15个日期的升旗时刻早于7:00,所以.(3分)(Ⅱ)X可能的取值为0,1,2.(4分)记事件B为“从表2的日期中随机选出一天,这一天的升旗时刻早于7:00”,则,.(5分),,.(8分)X.(10分)注:学生得到X~,,所以,同样给分.(Ⅲ)<.(13分)【解析】(Ⅰ)记事件A为“从表1的日期中随机选出一天,这一天的升旗时刻早于7:00”,在表1的20个日期中,有15个日期的升旗时刻早于7:00,由此能求出从表1的日期中随机选出一天,这一天的升旗时刻早于7:00的概率.(Ⅱ)X可能的取值为0,1,2,记事件B为“从表2的日期中随机选出一天,这一天的升旗时刻早于7:00”,则,,由此能求出X 的分布列和数学期望.(Ⅲ)由方差性质推导出.本题考查概率、离散型随机变量的分布列、数学期望、方差的求法,考查古典概型、二项分布、方差等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.17.【答案】(本小题满分14分)(Ⅰ)证明:因为AB⊥平面AA1C1C,所以A1C⊥AB.[(1分)]因为三棱柱ABC-A1B1C1中,AA1=AC,所以四边形AA1C1C为菱形,所以A1C⊥AC1.[(3分)]所以A1C⊥平面ABC1.[(4分)](Ⅱ)证明:因为A1A∥B1B,A1A⊄平面BB1C1C,所以A1A∥平面BB1C1C.[(5分)] 因为平面AA1EF∩平面BB1C1C=EF,所以A1A∥EF.[(6分)]因为平面ABC∥平面A1B1C1,平面AA1EF∩平面ABC=AF,平面AA1EF∩平面A1B1C1=A1E,所以A1E∥AF.[(7分)]所以四边形AA1EF为平行四边形.[(8分)](Ⅲ)解:在平面AA1C1C内,过A作Az⊥AC.因为AB⊥平面AA1C1C,如图建立空间直角坐标系A-xyz.[(9分)]由题意得,A(0,0,0),B(2,0,0),C(0,2,0),,,,,,.因为,所以==(-,,0),所以,,.由(Ⅰ)得平面ABC1的法向量为=(0,-1,-).设平面AC1F的法向量为=(x,y,z),则,即,令y=1,则x=-2,,所以=(-2,1,-).[(11分)]所以|cos<,>|==.[(13分)]由图知二面角B-AC1-F的平面角是锐角,所以二面角B-AC1-F的大小为45°.[(14分)]【解析】(Ⅰ)证明A1C⊥AB,说明四边形AA1C1C为菱形,证明A1C⊥AC1,然后证明A1C⊥平面ABC1.(Ⅱ)证明A1A∥平面BB1C1C,推出A1A∥EF,证明A1E∥AF,说明四边形AA1EF为平行四边形.(Ⅲ)如图建立空间直角坐标系A-xyz,求出相关点的坐标,求出平面ABC1的法向量,平面AC1F的法向量,利用空间向量的数量积求解,二面角B-AC1-F 的平面角即可.本题考查直线与平面平行以及直线与平面垂直的判定定理以及性质定理的应用,二面角的平面角的求法,考查空间想象能力以及计算能力.18.【答案】(本小题满分13分)(Ⅰ)解:当a=1时,f(x)=e x•sin x-1,所以f'(x)=e x(sin x+cos x).[(2分)]因为f'(0)=1,f(0)=-1,[(4分)]所以曲线y=f(x)在点(0,f(0))处的切线方程为y=x-1.[(5分)](Ⅱ)证明:f'(x)=e ax(a sin x+cos x).[(6分)]由f'(x)=0,得a sin x+cos x=0.[(7分)]因为a>0,所以.[(8分)]当∈,∪,时,由a sin x+cos x=0,得.所以存在唯一的∈,,使得.[(9分)]所以()在区间(,0)上单调递增,在区间(0,π)上单调递减.[(11分)] 因为>>,[(12分)]且f(0)=f(π)=-1<0,所以f(x)在区间[0,π]上恰有2个零点.[(13分)]【解析】(Ⅰ)当a=1时,f(x)=e x•sinx-1,求出函数的导数,求出切线的斜率,然后求解切线方程.(Ⅱ)f'(x)=e ax(asinx+cosx).求出极值点,然后判断f(x)在区间(0,x0)上单调递增,在区间(x0,π)上单调递减,利用函数的极值,判断零点个数即可.本题考查函数的导数的应用,切线方程以及函数的单调性的求法,考查转化思想以及计算能力.19.【答案】解:(Ⅰ)由题意得a=2,,所以.因为a2=b2+c2,所以b=1,所以椭圆C的方程为.(Ⅱ)若四边形PAMN是平行四边形,则PA∥MN,且|PA|=|MN|.所以直线PA的方程为y=k(x-2),所以P(3,k),.设M(x1,y1),N(x2,y2).由得,由△>0,得>.且,.所以.=.因为|PA|=|MN|,所以.整理得 16k4-56k2+33=0,解得,或.经检验均符合△>0,但时不满足PAMN是平行四边形,舍去.所以,或.【解析】(Ⅰ)利用已知条件求出a,b,即可得到椭圆的方程.(Ⅱ)直线PA的方程为y=k(x-2),得到 P(3,k),求出,设M(x1,y1),N(x2,y2).联立直线与椭圆方程,利用韦达定理以及弦长公式转化求解即可.本题考查椭圆方程的求法,直线与椭圆的位置关系的应用,考查转化思想以及计算能力.20.【答案】(本小题满分13分)解:(Ⅰ)∵数列A n:a1,a2,…,a n(n≥4)满足:a1=1,a n=2,a k+1-a k=0或1(k=1,2,…,n-1).对任意i,j,都存在s,t,使得a i+a j=a s+a t,其中i,j,s,t∈{1,2,…,n}且两两不相等.∴在①中,1,1,1,2,2,2,不符合题目条件;在②中,1,1,1,1,2,2,2,2,符合题目条件;在③中,1,1,1,1,1,2,2,2,2,符合题目条件.(3分)注:只得到②或只得到③给(1分),有错解不给分.证明:(Ⅱ)当m=3时,设数列A n中1,2,3出现频数依次为q1,q2,q3,由题意q i≥1(i=1,2,3).①假设q1<4,则有a1+a2<a s+a t(对任意s>t>2),与已知矛盾,所以q1≥4.同理可证:q3≥4.(5分)②假设q2=1,则存在唯一的k∈{1,2,…,n},使得a k=2.那么,对∀s,t,有a1+a k=1+2≠a s+a t(k,s,t两两不相等),与已知矛盾,所以q2≥2.(7分)综上:q1≥4,q3≥4,q2≥2,所以.(8分)解:(Ⅲ)设1,2,…,2018出现频数依次为q1,q2,…,q2018.同(Ⅱ)的证明,可得q1≥4,q2018≥4,q2≥2,q2017≥2,则n≥2026.取q1=q2018=4,q2=q2017=2,q i=1,i=3,4,5, (2016)得到的数列为:B n:1,1,1,1,2,2,3,4,…,2015,2016,2017,2017,2018,2018,2018,2018.(10分)下面证明B n满足题目要求.对∀i,j∈{1,2,…,2026},不妨令a i≤a j,①如果a i=a j=1或a i=a j=2018,由于q1=4,q2018=4,所以符合条件;②如果a i=1,a j=2或a i=2017,a j=2018,由于q1=4,q2018=4,q2=2,q2017=2,所以也成立;③如果a i=1,a j>2,则可选取a s=2,a t=a j-1;同样的,如果a i<2017,a j=2018,则可选取a s=a i+1,a t=2017,使得a i+a j=a s+a t,且i,j,s,t两两不相等;④如果1<a i≤a j<2018,则可选取a s=a i-1,a t=a j+1,注意到这种情况每个数最多被选取了一次,因此也成立.综上,对任意i,j,总存在s,t,使得a i+a j=a s+a t,其中i,j,s,t∈{1,2,…,n}且两两不相等.因此B n满足题目要求,所以n的最小值为2026.(13分)【解析】(Ⅰ)分别把所给的三个数列代入题目条件中进行验证,能出结果.(Ⅱ)当m=3时,设数列A n中1,2,3出现频数依次为q1,q2,q3,由题意q i≥1(i=1,2,3).假设q1<4,则与已知矛盾,从而q1≥4,同理可证:q3≥4.假设q2=1,则与已知矛盾,所以q2≥2,由此能证明S≥20.(Ⅲ)设1,2,…,2018出现频数依次为q1,q2,…,q2018.可得q1≥4,q2018≥4,q2≥2,q2017≥2,则n≥2026.取q1=q2018=4,q2=q2017=2,q i=1,i=3,4,5,…,2016,得到的数列为:B n:1,1,1,1,2,2,3,4,…,2015,2016,2017,2017,2018,2018,2018,2018.由此能出n的最小值.本题考查满足条件的数列的判断,考查数列前n不小于是的证明,考查实数值的最小值的求法,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是难题.。

2018,1西城高一试题

2018,1西城高一试题

北京市西城区2018 — 2018学年度第一学期期末试卷高一数学2018.1试卷满分:150分考试时间:120分钟A卷[必修模块4] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有二、填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 11. s in45π=_____.12. 如图所示,D 为A B C△中B C 边的中点,设A B =a ,A C =b ,则B D =_____.(用a ,b 表示) 13. 角α终边上一点的坐标为(1,2),则ta n 2α=_____.14. 设向量(0,2),a b ==,则,a b 的夹角等于_____. 15. 已知(0,)α∈π,且c o s s in 8απ=-,则α=_____.16. 已知函数()s in f x x ω=(其中0ω>)图象过(,1)π-点,且在区间(0,)3π上单调递增,则ω的值为_______.三、解答题:本大题共3小题,共36分. 解答应写出文字说明,证明过程或演算步骤.ABC17.(本小题满分12分)已知2απ∈π(,),且3s in 5α=.(Ⅰ)求ta n ()4απ-的值; (Ⅱ)求s in 2c o s 1c o s 2ααα-+的值.18.(本小题满分12分)如图所示,C B ,两点是函数()s in (2)3f x A x π=+(0>A )图象上相邻的两个最高点,D 点为函数)(x f 图象与x 轴的一个交点. (Ⅰ)若2=A ,求)(x f 在区间[0,]2π上的值域;(Ⅱ)若CDBD ⊥,求A 的值.19.(本小题满分12分)如图,在A B C△中,1A B A C ==,120B A C ∠=.(Ⅰ)求A B B C ⋅的值;(Ⅱ)设点P 在以A 为圆心,A B 为半径的圆弧B C 上运动,且A P x A B y A C=+,其中,x y ∈R . 求x y 的最大值.B 卷 [学期综合] 本卷满分:50分ACP一、填空题:本大题共5小题,每小题4分,共20分. 把答案填在题中横线上. 1.设U =R,{|0}A x x =>,{|1}B x x =>,则U A B =ð_____.2.2lo g =_____,31lo g23+=_____.3.已知函数()f x =1,2,1.x x xx ⎧-⎪⎨⎪<⎩≥1, 且()(2)0f a f +=,则实数a = _____.4.已知函数)(x f 是定义在R 上的减函数,如果()(1)f a f x >+在[1,2]x ∈上恒成立,那么实数a 的取值范围是_____.5. 通过实验数据可知,某液体的蒸发速度y (单位:升/小时)与液体所处环境的温度x (单位:℃)近似地满足函数关系e k x b y +=(e 为自然对数的底数,,k b 为常数). 若该液体在℃的蒸发速度是0.1升/小时,在30℃的蒸发速度为0.8升/小时,则该液体在20℃的蒸发速度为_____升/小时.二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 6.(本小题满分10分)已知函数26()1x f x x =+.(Ⅰ)判断函数)(x f 的奇偶性,并证明你的结论; (Ⅱ)求满足不等式(2)2x x f >的实数x 的取值范围. 7.(本小题满分10分)设a 为实数,函数2()2f x x a x =-. (Ⅰ)当1a=时,求()f x 在区间[0,2]上的值域;(Ⅱ)设函数()()g x f x =,()t a 为()g x 在区间[0,2]上的最大值,求()t a 的最小值. 8.(本小题满分10分)设函数()f x 定义域为[0,1],若()f x 在*[0,]x 上单调递增,在*[,1]x 上单调递减,则称*x为函数()f x 的峰点,()f x 为含峰函数.(特别地,若()f x 在[0,1]上单调递增或递减,则峰点为1或0)对于不易直接求出峰点*x 的含峰函数,可通过做试验的方法给出*x 的近似值. 试验原理为:“对任意的1x ,2(0,1)x ∈,12x x <,若)()(21x f x f ≥,则),0(2x 为含峰区间,此时称1x 为近似峰点;若12()()f x f x <,则)1,(1x 为含峰区间,此时称2x 为近似峰点”.我们把近似峰点与*x 之间可能出现....的最大距离称为试验的“预计误差”,记为d ,其值为=d}}1,max {},,max {max {212121x x x x x x ---(其中},max{y x 表示y x ,中较大的数). (Ⅰ)若411=x ,212=x .求此试验的预计误差d .(Ⅱ)如何选取1x 、2x ,才能使这个试验方案的预计误差达到最小?并证明你的结论(只证明1x 的取值即可).(Ⅲ)选取1x ,2(0,1)x ∈,12x x <,可以确定含峰区间为2(0,)x 或1(,1)x . 在所得的含峰区间内选取3x ,由3x 与1x 或3x 与2x 类似地可以进一步得到一个新的预计误差d '.分别求出当411=x 和125x =时预计误差d '的最小值.(本问只写结果,不必证明)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市西城区2017 — 2018学年度第一学期期末试卷高一数学2018.1试卷满分:150分 考试时间:120分钟A 卷[三角函数与平面向量] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.已知向量,a b 满足1=b ,,则向量,a b )(C )[二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上. 11. 7sin6π=_____. 12. 已知向量(1,2)=a ,(,2)x =-b ,若//a b ,则实数x =______.13. 角θ的始边与x 轴正半轴重合,终边上一点坐标为(1,2)-,则tan θ=______. 14. 函数()sin cos f x x x =+的最大值为______.15. 已知点(0,4)A ,(2,0)B ,如果2AB BC =,那么点C 的坐标为______; 设点(3,)P t ,且APB ∠是钝角,则t 的取值范围是______. 16. 已知函数()sin tan f x x x =. 给出下列结论:①函数()f x 是偶函数;②函数()f x 在区间(,0)2π-上是增函数;③函数()f x 的最小正周期是2π; ④函数()f x 的图象关于直线x =π对称.其中正确结论的序号是_____.(写出所有正确结论的序号)三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知(,)2απ∈π,且3cos 5α=-.(Ⅰ)求tan α的值;(Ⅱ)求cos2sin 21αα+的值.18.(本小题满分12分)已知函数π()sin(2)6f x x =+.(Ⅰ)请用“五点法”画出函数()f x 在一个周期上的图象;(Ⅱ)求()f x 在区间[,]122ππ上的最大值和最小值; (Ⅲ)写出()f x 的单调递增区间.19.(本小题满分12分)如图,已知AB BC ⊥,AB ==,[1,3]a ∈,圆A 是以A 为圆心、半径为2的圆,圆B 是以B 为圆心、半径为1的圆,设点E 、F 分别为圆A 、圆B 上的动点, //AE BF (且AE 与BF 同向),设BAE θ∠=([0,]θ∈π).(Ⅰ)当a =6θπ=时,求AE AC ⋅的值; (Ⅱ)用,a θ表示出CE CF ⋅,并给出一组,a θ的值,使得CE CF ⋅最小.BAFECB 卷 [学期综合]本卷满分:50分一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上. 1.设全集U =R ,集合{|0}A x x =<,{|1}B x x =>,则()U A B =ð_____.2.函数()f x _____.3.已知函数122,1,()log ,01,x x f x x x ⎧>⎪=⎨<≤⎪⎩则1(())4f f =_____;若()1f x =,则_____.4.sin 2,13log 2,121log 3三个数中最大的是_____. 5.某购物网站在2017年11月开展“买三免一”活动,规则是“购买3件商品,最便宜的一件商品免费”,比如如下结算案例:如果在此网站上购买的三件商品价格如下图所示,按照“买三免一”的规则,购买这三件商品的实际折扣为______折.在这个网站上购买3件商品,按照“买三免一”的规则,这3件商品实际折扣力度最大约为_______折(保留一位小数).二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 6.(本小题满分10分)已知函数21()f x ax x=+是偶函数. (Ⅰ)求a 的值;(Ⅱ)判断函数()f x 在区间(0,)+∞上的单调性,并用函数单调性的定义证明你的结论.x=7.(本小题满分10分)设a 为实数,函数2()1f x x x a =--+,x ∈R .(Ⅰ)当0a =时,求()f x 在区间[0,2]上的最大值和最小值; (Ⅱ)求函数()f x 的最小值.8.(本小题满分10分)若函数()f x 满足:对于,[0,)s t ∈+∞,都有()0f s ≥,()0f t ≥,且()()()f s f t f s t +≤+,则称函数()f x 为“T 函数”.(Ⅰ)试判断函数21()f x x =与2()lg(1)f x x =+是否是“T 函数”,并说明理由; (Ⅱ)设()f x 为“T 函数”,且存在0[0,)x ∈+∞,使00(())f f x x =,求证:00()f x x =; (Ⅲ)试写出一个“T 函数”()f x ,满足(1)1f =,且使集合{|(),01}y y f x x =≤≤中元素 的个数最少.(只需写出结论)北京市西城区2017— 2018学年度第一学期期末试卷高一数学参考答案及评分标准2018.1A 卷[三角函数与平面向量] 满分100分一、选择题:本大题共10小题,每小题4分,共40分.1.C2.B3.A4.A5.B6. D7. B8. C9.B 10.D.二、填空题:本大题共6小题,每小题4分,共24分. 11.12-12.1- 13.2-15.(3,2)-;(1,3) 16.①③④ 注:第15题每空2分. 第16题少选得2分,多选、错选不得分.三、解答题:本大题共3小题,共36分. 17.(本小题满分12分)解:解:(Ⅰ)因为(,)2απ∈π,3cos 5α=-,所以sin α ………………3分45==. ………………4分所以sin 4tan cos 3ααα==-. ………………6分(Ⅱ)由(Ⅰ)4sin 5α=,3cos 5α=-,所以4324sin 22sin cos 2()5525ααα==⨯⨯-=-. ………………9分2237cos22cos 12()1525αα=-=⨯--=-. ………………11分 所以7cos 225724sin 21125αα-==-+-+. ………………12分18. (本小题满分12分)解:(Ⅰ)()f x 在[,]1212π11π-上的图象如图所示………………5分说明:个别关键点错误酌情给分.(Ⅱ)π()sin(2)6f x x =+.因为122x ππ≤≤,所以ππ7π2366x ≤+≤, ………………7分当π262x π+=,即π6x =时,πsin(2)6x +最大值等于1,即()f x 的最大值等于1; ………………8分当π266x 7π+=,即π2x =时,πsin(2)6x +最小值等于12-,即()f x 的最小值等于21-. ………………9分所以()f x 在区间[,]122ππ上的最大值为1,最小值为21-.注:根据图象求出最大、最小值相应给分.(Ⅲ)函数()f x 的单调递增区间为[,]36k k ππ-+π+π(k ∈Z ). ………………12分19.(本小题满分12分)解:(Ⅰ)如图,以点A 为原点,AB 所在直线为x 轴,与AB 垂直的直线为y 轴建立平面直角坐标系.则(0,0)A,(3,C,E , ………………2分(3,1)(3,AE AC ⋅=⋅=.………………4分(Ⅱ)(0,0)A ,,)C a-,(2cos ,2sin )E θθ,cos ,sin )F θθ+, ………………7分(2cos ,2sin )(cos ,sin )CE CF a a θθθθ⋅=+⋅+2sin()26a θπ=+⋅-+………………9分 22[)]23sin ()66a θθππ=-+--因为[0,]θ∈π,所以1sin()[,1]62θπ-∈-, 以a 为变量的二次函数的对称轴)[6θπ-∈.因为[1,3]a ∈,所以当1a =时,CE CF ⋅的最小值为3)6θπ+-, ………10分又1sin()[,1]62θπ-∈-,所以CE CF ⋅的最小值为30θ=.所以,当1a =,0θ=时,CE CF ⋅的最小值为3. ………………12分B AFECx yB 卷 [学期综合] 满分50分一、填空题:本大题共5小题,每小题4分,共20分. 1.{1}x x ≤ 2. [3,)+∞ 3. 4;12 4. 121log 3 5.7.5;6.7.注:第3题、第5题每空2分. 二、解答题:本大题共3小题,共30分. 6.(本小题满分10分)解:(Ⅰ)函数()f x 的定义域为(,0)(0,)-∞+∞.由()()f x f x -=得2211ax ax x x-=+. ………………3分所以0ax =.因为0ax =对于定义域中任意的x 都成立,所以0a =. ………………5分 (Ⅱ)函数21()f x x=在区间(0,)+∞上是减函数. ………………7分证明:在(0,)+∞上任取1x ,2x ,且12x x <,则12211222221212()()11()()x x x x f x f x x x x x +--=-=, ………………9分由120x x <<,得120x x +>,210x x ->,22120x x >, 于是12()()0f x f x ->,即12()()f x f x >.所以函数21()f x x =在区间(0,)+∞上是减函数. ………………10分7.(本小题满分10分)解:(Ⅰ)当0a =,[0,2]x ∈时,函数2()1f x x x =-+, ………………2分因为()f x 的图象抛物线开口向上,对称轴为12x =,所以,当12x =时,()f x 值最小,最小值为34;当2x =时,()f x 值最大,最大值为3. ………………4分(Ⅱ)①当x a ≤时,函数2213()1()24f x x x a x a =+-+=+-+.若12a ≤-,则()f x 在(,]a -∞上单调递减,在(,]a -∞上的最小值为2()1f a a =+;若12a >-,则函数()f x 在(,]a -∞上的最小值为13()24f a -=-; ………………6分②当x a >时,2213()1()24f x x x a x a =-++=-++.若12a <,则()f x 在[,)a +∞上的最小值为13()24f a =+;若12a ≥,则()f x 在[,)a +∞上单调递增,2()()1f x f a a >=+. ………………7分 所以,当12a ≤-时,22311()()042a a a +-+=-≥,()f x 的最小值为34a +.当12a ≥时,22311()()042a a a +--=+≥,()f x 的最小值为34a -.当1122a -<<时,()f x 的最小值为34a +与34a -中小者. 所以,当102a -<<时,()f x 的最小值为34a +;当102a ≤<时,()f x 的最小值为34a -. ………………9分综上,当0a <时,()f x 的最小值为34a +;当0a ≥时,()f x 的最小值为34a -.………………10分8.(本小题满分10分)解:(Ⅰ)对于函数21()f x x =,当,[0,)s t ∈+∞时,都有1()0f s ≥,1()0f t ≥,又222111()()()()20f s f t f s t s t s t st +-+=+-+=-≤,所以111()()()f s f t f s t +≤+. 所以21()f x x =是“T 函数”. ………………2分 对于函数2()lg(1)f x x =+,当2s t ==时,22()()lg9f s f t +=,2()lg5f s t +=, 因为lg9lg5>,所以222()()()f s f t f s t +>+.所以2()lg(1)f x x =+不是“T 函数”. ………………4分 (Ⅱ)设12,[0,)x x ∈+∞,21x x >,21x x x =+∆,0x ∆>.则211111()()()()()()0f x f x f x x f x f x x x f x -=+∆-≥+∆-=∆≥所以,对于12,[0,)x x ∈+∞,12x x <,一定有12()()f x f x ≤. ………………6分 因为()f x 是“T 函数”,0[0,)x ∈+∞,所以0()0f x ≥. 若00()f x x >,则000(())()f f x f x x ≥>,不符合题意. 若00()f x x <,则000(())()f f x f x x ≤<,不符合题意.所以00()f x x =. ………………8分(Ⅲ)20,[0,1),(),[1,).x f x x x ∈⎧⎪=⎨∈+∞⎪⎩ (注:答案不唯一)………………10分。

相关文档
最新文档