高一数学对数与对数运算2
高一数学 对数与对数运算
对数与对数运算第1课时 对 数学习目标 1.了解对数的概念.2.会进行对数式与指数式的互化.3.会求简单的对数值.知识点一 对数的概念思考 解指数方程:3x = 3.可化为3x =123,所以x =12.那么你会解3x =2吗? 答案 不会,因为2难以化为以3为底的指数式,因而需要引入对数概念.梳理 对数的概念:如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.常用对数与自然对数:通常将以10为底的对数叫做常用对数,以e 为底的对数称为自然对数,log 10N 可简记为lg N ,log e N 简记为ln N .知识点二 对数与指数的关系思考 log a 1(a >0,且a ≠1)等于?答案 设log a 1=t ,化为指数式a t =1,则不难求得t =0,即log a 1=0.梳理 一般地,有对数与指数的关系:若a >0,且a ≠1,则a x =N ⇔log a N =x .对数恒等式:log a N a=N ;log a a x =x (a >0,且a ≠1).对数的性质:(1)1的对数为零;(2)底的对数为1;(3)零和负数没有对数.类型一 对数的概念例1 在N =log (5-b )(b -2)中,实数b 的取值范围是( )A.b <2或b >5B.2<b <5C.4<b <5D.2<b <5且b ≠4 跟踪训练1 求f (x )=log x 1-x 1+x的定义域. 类型二 应用对数的基本性质求值例2 求下列各式中x 的值:(1)log 2(log 5x )=0;(2)log 3(lg x )=1.解 (1)∵log 2(log 5x )=0.∴log 5x =20=1,∴x =51=5.(2)∵log 3(lg x )=1,∴lg x =31=3,∴x =103=1 000.反思与感悟 本题利用对数的基本性质从整体入手,由外到内逐层深入来解决问题.log a N =0⇒N =1;log a N =1⇒N =a 使用频繁,应在理解的基础上牢记.跟踪训练2 若log 2(log 3x )=log 3(log 4y )=log 4(log 2z )=0,则x +y +z 的值为( )A.9B.8C.7D.6类型三 对数式与指数式的互化命题角度1 指数式化为对数式例3 将下列指数式写成对数式:(1)54=625;(2)2-6=164;(3)3a =27;(4)⎝⎛⎭⎫13m =5.73. 解 (1)log 5625=4;(2)log 2164=-6; (3)log 327=a ;(4)13log 5.73=m .反思与感悟 指数式化为对数式,关键是弄清指数式各部位的去向:跟踪训练3 (1)如果a =b 2 (b >0,b ≠1),则有( )A.log 2a =bB.log 2b =aC.log b a =2D.log b 2=a (2)将3-2=19,⎝⎛⎭⎫126=164化为对数式. (3)解方程:⎝⎛⎭⎫13m =5.命题角度2 对数式化为指数式例4 求下列各式中x 的值:(1)log 64x =-23;(2)log x 8=6;(3)lg 100=x ; (4)-ln e 2=x ;(5))1log13+22=x . 解 (1)x =2364-=()2334-=4-2=116. (2)因为x 6=8,所以x =()()1111636266822x ==== 2. (3)10x =100=102,于是x =2.(4)由-ln e 2=x ,得-x =ln e 2,即e -x =e 2.所以x =-2.(5)因为)1log 13+22=x , 所以(2-1)x =13+22=1(2+1)2=12+1=2-1, 所以x =1. 反思与感悟 要求对数的值,设对数为某一未知数,将对数式化为指数式,再利用指数幂的运算性质求解. 跟踪训练4 计算:(1)log 927;(2);(3)625.命题角度3 对数恒等式log a N a=N 的应用 例5 (1)求33log 3x +=2中的x . (2)求log log log a b c b c N a⋅⋅的值(a ,b ,c 均为正实数且不等于1,N >0).跟踪训练5 设()5log 2125x -=9,则x = .1.log b N =a (b >0,b ≠1,N >0)对应的指数式是( )A.a b =NB.b a =NC.a N =bD.b N =a 2.若log a x =1,则( )A.x =1B.a =1C.x =aD.x =103.下列指数式与对数式互化不正确的一组是( )A.e 0=1与ln 1=0B.138-=12与log 812=-13C.log 39=2与129=3D.log 77=1与71=74.已知log x 16=2,则x 等于( )A.±4B.4C.256D.25.设10lg x =100,则x 的值等于( )A.10B.0.01C.100D.1 0001.对数概念与指数概念有关,指数式和对数式是互逆的,即a b =N ⇔log a N =b (a >0,且a ≠1,N >0),据此可得两个常用恒等式:(1)log a a b =b ;(2)log a N a =N .2.在关系式a x =N 中,已知a 和x 求N 的运算称为求幂运算;而如果已知a 和N 求x 的运算就是对数运算,两个式子实质相同而形式不同,互为逆运算.课时作业一、选择题1.有下列说法:①零和负数没有对数;②任何一个指数式都可以化成对数式;③以10为底的对数叫做常用对数;④以e 为底的对数叫做自然对数.其中正确命题的个数为( )A.1B.2C.3D.42.已知b =log (a -2)(5-a ),则实数a 的取值范围是( )A.a >5或a <2B.2<a <5C.2<a <3或3<a <5D.3<a <4 3.方程3log 2x =14的解是( ) A.x =19B.x =33C.x = 3D.x =94.下列四个等式: ①lg(lg 10)=0;②lg(ln e)=0;③若lg x =10,则x =10;④若ln x =e ,则x =e 2.其中正确的是( )A.①③B.②④C.①②D.③④ 5.(12)-1+log 0.54的值为( ) A.6 B.72C.0D.37 6.若log a 3=m ,log a 5=n ,则a 2m+n 的值是( ) A.15B.75C.45D.225二、填空题 7.已知f (log 2x )=x ,则f (12)= . 8.= .9.已知log 7[log 3(log 2x )]=0,那么12x-= . .10.设a =log 310,b =log 37,则3a -b = .三、解答题11.(1)先将下列式子改写成指数式,再求各式中x 的值.①log 2x =-25;②log x 3=-13. (2)已知6a =8,试用a 表示下列各式.①log 68;②log 62;③log 26.12.求22+log 23+32log 93-的值.13.设M ={0,1},N ={lg a,2a ,a,11-a },是否存在a 的值,使M ∩N ={1}?四、探究与拓展14.log(n +1+n )等于( ) A.1B.-1C.2D.-215.若集合{x ,xy ,lg(xy )}={0,|x |,y },求log 2(x 2+y 2)的值.对数的运算知识点一 对数运算性质思考 有了乘法口诀,我们就不必把乘法还原成为加法来计算.那么,有没有类似乘法口诀的东西,使我们不必把对数式还原成指数式就能计算?答案 有.例如,设log a M =m ,log a N =n ,则a m =M ,a n =N ,∴MN =a m ·a n =a m +n ,∴log a (MN )=m +n =log a M +log a N .得到的结论log a (MN )=log a M +log a N 可以当公式直接进行对数运算.梳理 一般地,如果a >0,且a ≠1,M >0,N >0,那么:(1)log a (M ·N )=log a M +log a N ;(2)log a M N=log a M -log a N ; (3)log a M n =n log a M (n ∈R ).知识点二 换底公式思考1 观察知识点一的三个公式,我们发现对数都是同底的才能用这三个公式.而实际上,早期只有常用对数表(以10为底)和自然对数表(以无理数e 为底),可以查表求对数值.那么我们在运算和求值中遇到不同底的对数怎么办?答案 设法换为同底.思考2 假设log 25log 23=x ,则log 25=x log 23,即log 25=log 23x ,从而有3x =5,再化为对数式可得到什么结论? 答案 把3x =5化为对数式为:log 35=x ,又因为x =log 25log 23,所以得出log 35=log 25log 23的结论. 梳理 一般地,对数换底公式:log a b =log c b log c a(a >0,且a ≠1,b >0,c >0,且c ≠1); 特别地:log a b ·log b a =1(a >0,且a ≠1,b >0,且b ≠1).类型一 具体数字的化简求值例1 计算:(1)log 345-log 35;(2)log 2(23×45); (3)lg 27+lg 8-lg 1 000lg 1.2; (4)log 29·log 38.解 (1)log 345-log 35=log 3455=log 39=log 332=2log 33=2. (2)log 2(23×45)=log 2(23×210)=log 2(213)=13log 22=13.(3)原式=)32lg 8lg1012lg 10-=33322lg 321012lg 10⎛⎫⨯÷ ⎪⎝⎭ =3234lg 1012lg 10⨯⎛⎫ ⎪⎝⎭ =32lg 1210lg 1210=32. (4)log 29·log 38=log 2(32)·log 3(23)=2log 23·3log 32=6·log 23·1log 23=6.反思与感悟 具体数的化简求值主要遵循2个原则.(1)把数字化为质因数的幂、积、商的形式.(2)不同底化为同底.跟踪训练1 计算:(1)2log 63+log 64;(2)(lg 25-lg 14)÷12100-; (3)log 43·log 98;(4)log 2.56.25+ln e -130.064.类型二 代数式的化简命题角度1 代数式恒等变换例2 化简log a x 2y 3z. 解 ∵x 2y 3z>0且x 2>0,y >0,∴y >0,z >0. log a x 2y 3z=log a (x 2y )-log a 3z =log a x 2+log a y -log a 3z=2log a |x |+12log a y -13log a z . 反思与感悟 使用公式要注意成立条件,如lg x 2不一定等于2 lg x ,反例:log 10(-10)2=2log 10(-10)是不成立的.要特别注意log a (MN )≠log a M ·log a N ,log a (M ±N )≠log a M ±log a N .跟踪训练2 已知y >0,化简log ax yz .命题角度2 用代数式表示对数例3 已知log 189=a,18b =5,求log 3645.解 方法一 ∵log 189=a,18b =5,∴log 185=b ,于是log 3645=log 1845log 1836=log 18(9×5)log 18(18×2)=log 189+log 1851+log 182=a +b 1+log 18189=a +b 2-a . 方法二 ∵log 189=a,18b =5,∴log 185=b ,于是log 3645=log 1845log 1836=log 18(9×5)log 18(18×2)=log 189+log 1852log 1818-log 189=a +b 2-a. 方法三 ∵log 189=a,18b =5,∴lg 9=a lg 18,lg 5=b lg 18,∴log 3645=lg 45lg 36=lg (9×5)lg 1829=lg 9+lg 52lg 18-lg 9 =a lg 18+b lg 182lg 18-a lg 18=a +b 2-a. 反思与感悟 此类问题的本质是把目标分解为基本“粒子”,然后用指定字母换元.跟踪训练3 已知log 23=a ,log 37=b ,用a ,b 表示log 4256.1.log 513+log 53等于( ) A.0 B.1 C.-1 D.log 51032.设a ,b ,c 均为不等于1的正实数,则下列等式中恒成立的是( )A.log a b ·log c b =log c aB.log a b ·log c a =log c bC.log a (bc )=log a b ·log a cD.log a (b +c )=log a b +log a c3.log 29×log 34等于( )A.14B.12C.2D.4 4.lg 0.01+log 216的值是 .1.换底公式可完成不同底数的对数式之间的转化,可正用、逆用;使用的关键是恰当选择底数,换底的目的是利用对数的运算性质进行对数式的化简.2.运用对数的运算性质应注意:(1)在各对数有意义的前提下才能应用运算性质.(2)根据不同的问题选择公式的正用或逆用.(3)在运算过程中避免出现以下错误:①log a N n =(log a N )n ,②log a (MN )=log a M ·log a N ,③log a M ±log a N =log a (M ±N ).课时作业一、选择题1.下列各式(各式均有意义)不正确的个数为( )①log a (MN )=log a M +log a N ;②log a (M -N )=log a M log a N ;③nm a =1m a n ;④(a m )n =am n ;⑤log an b =-n log a b . A.2 B.3 C.4 D.52.4等于( )A.12B.14C.2D.4 3.化简log 58log 52等于( ) A.log 54 B.3log 52 C.2 D.34.已知lg 2=a ,lg 3=b ,则用a ,b 表示lg 15为( )A.b -a +1B.b (a -1)C.b -a -1D.b (1-a )5.若log 513·log 36·log 6x =2,则x 等于( ) A.9B.19C.25D.1256.计算(log 32+log 23)2-log 32log 23-log 23log 32的值是( ) A.log 26B.log 36C.2D.1 二、填空题7.(log 43+log 83)(log 32+log 92)= .8.(lg 5)2+lg 2·lg 50= .9.已知lg(x +2y )+lg(x -y )=lg 2+lg x +lg y ,则x y= . 10.若3x =4y =36,则2x +1y= . 三、解答题11.若x ·log 32 016=1,求2 016x +2 016-x 的值.12.计算: (1)2123log 3⎛⎫ ⎪⎝⎭+log 0.2514+9log 55-log 31; (2)2lg 2+lg 31+12lg 0.36+13lg 8.13.已知x ,y ,z 为正数,3x =4y =6z,2x =py .(1)求p 的值;(2)求证:1z -1x =12y.四、探究与拓展14.计算⎝⎛⎭⎫-278-23+log 827log 23+(2-3)0-log 31+2lg 5+lg 4-5log 52= .。
高中数学 2.2.2对数与对数运算(二)练习 新人教A版必修1-新人教A版高一必修1数学试题
【金版学案】2015-2016高中数学 对数与对数运算(二)练习 新人教A 版必修1 基础梳理1.设a >0,a ≠1,M >0,N >0,则有(1)log a (MN )=log a M +log a N ,简记为:积的对数=对数的和.(2)log a MN=log a M -log a N ,简记为:商的对数=对数的差.(3)log a M n =n log a M (n ∈R). 例如:①lg (3×5)=______;②lg 5+lg 2=______;③ln e 2=______.2.几点注意:(1)对数的真数是多项式时,需将真数部分加括号,如lg(x +y )与lg x +y 的含义不同.(2)(lg M )n 与lg M n 的含义不同.(3)log 2(-3)(-5)=log 2(-3)+log 2(-5)是不成立的.(4)log 10(-10)2=2log 10(-10)是不成立的.(5)当心记忆错误:log a (MN )≠log a M ·log a N ;log a (M ±N )≠log a M ±log a N .3.对数的换底公式log a b =log c b log c a(a >0,且a ≠1;c >0,且c ≠1;b >0).换底公式的意义是把一个对数式的底数改变,可将不同底问题化为同底,便于使用运算法则.例如:log 35=________,其中a >0,且a ≠1.4.关于对数换底公式的证明方法有很多,可借助指数式证明对数换底公式.例如:设a >0,且a ≠1;c >0,且c ≠1;b >0.求证:log a b =log c b log c a.5.设a ,b >0,且均不为1,由换底公式可加以求证:(1)log a b ·log b a =1;(2)log am b n =n mlog a b .例如:①log 23·log 32=____;②log 89=________ .基础梳理1.①lg 3+lg 5 ②1 ③2 3.log a 5log a 34.证明:设log a b =x ,则b =a x ,于是log c b =log c a x ,即x log c a =log c b ,∴x =log c b log c a ,∴log a b =log c b log c a. 5.证明:(1)log a b ·log b a =lg b lg a ·lg a lg b=1. (2)log am b n =lg b n lg a m =n lg b m lg a =n mlog a b . 答案:1 23log 23 ,思考应用1.log a (M +N )=log a (MN )对吗?1.错2.log a (M -N )=log a M N 对吗?2错 自测自评1.若a >0,a ≠1,x >y >0,下列式子:①log a x ·log a y =log a (x +y );②log a x -log a y =log a (x -y );③log a xy=log a x ÷log a y ;④log a (xy )=log a x ·log a y .其中正确的个数为( ) A .0个 B .1个C .2个D .3个2.设9a =45,log 95=b ,则( )A .a =b +9B .a -b =1C .a =9bD .a ÷b =13.求值:log 274log 32=____. 1.解析:根据对数的性质知4个式子均不正确.故选A.答案:A2.解析:由9a =45得a =log 945=log 99+log 95=1+b ,即a -b =1,故选B. 答案:B3.解析:log 274log 32=lg 4lg 27lg 2lg 3=2lg 23lg 3lg 2lg 3=23. 答案:23►基础达标1.lg a 与lg b 互为相反数,则( )A .a +b =0B .a -b =0C .ab =1 D.a b=11.C2.在log (a -2)2中,a 的取值X 围是____________.2.(2,3)∪(3,+∞)3.已知log 5[log 4(log 3x )]=0,则x =____.3.814.化简12log 612-2log 62的结果为( ) A .6 2 B .12 2C .log 6 3 D.124.解析:12log 612-2log 62=12(1+log 62)-log 62=12(1-log 62)=12log 63=log 6 3.故选C.答案:C5.(log 29)·(log 34)=( )A.14B.12C .2D .4 5.解析:原式=lg 9lg 2·lg 4lg 3=2lg 3·2lg 2lg 2·lg 3=4. 答案:D6.设lg 2=a ,lg 3=b ,则log 512等于( )A.2a +b 1+aB.a +2b 1+aC.2a +b 1-aD.a +2b 1-a6.解析:log 512=lg 12lg 5=lg 3+2lg 2lg 5=lg 3+2lg 21-lg 2= b +2a 1-a. 答案:C►巩固提高7.(lg 2)3+(lg 5)3+3lg 2 lg 5的值是( )A .4B .1C .6D .37.B8.(2014·某某卷)已知a =2-13,b =log 2,c =log 1213,则( ) A .a >b >c B .a >c >bC .c >a >bD .c >b >a8.解析:0<a =2-13<20=1,b =log 213<0,a =log 1213=log 23>1,所以c >a >b ,故选C.答案:C9.求值:(lg 2)2+lg 2·lg 50+lg 25.9.解析:(lg 2)2+lg 2·lg 50+lg 25=lg 2(lg 2+lg 50)+lg 25=2lg 2+lg 25=lg 100=2.10.求值:(log 32+log 92)·(log 43+log 83).10.解析:(log 32+log 92)·(log 43+log 83)=⎝⎛⎭⎪⎫log 32+log 32log 39·⎝ ⎛⎭⎪⎫log 33log 34+log 33log 38 =32log 32·⎝ ⎛⎭⎪⎫12log 32+13log 32 =34+12=54.1.条件代数式的求值问题包括以下三个方面:①若条件简单,结论复杂,可从化简结论入手;②若条件复杂,结论简单,可从化简条件入手,转化成结论的形式;③若条件与结论的复杂程度相差无几时,可同时对它们进行化简,直到找出它们之间的联系为止.2.利用换底公式统一对数的底数,即化异为同是处理含不同底的对数的常用方法.3.在化简、求值、证明等问题中,要把换底公式与对数的运算性质结合起来.4.有时需将对数式log a 5log a 3写成log 35后解决有关问题.。
2.2.1对数与对数运算(必修一优秀课件)
课 堂 互 动 探 究
【解析】选B.由对数定义可知(1)(2)(4)均正确,而(3)中
对数的底数不等于1.
基 础 自 主 演 练 课 后 巩 固 作 业
课 前 新 知 初 探
2.(2011·海口高一检测)设a>0,a≠1,x∈R,下列结论错误的 是( ) (B)logax2=2logax (D)logaa=1
2
(3)lg 0.01 2
1 4 解:(1)( ) 16 2
(4)ln10 2.303
(2)27 128
(3)10 0.01
2
(4)e2.303 10
求下列各式的值 (1)log0.5 1 (4) log3 243 (5) lg 4 64 (6)log
2
log (2) 9 81
是2010年的2倍?
a 1 8%
x=
x
2a
x 2 即 1.08
小结:
这是已知底数和幂的值,求指数的问题。 即指数式ab=N中,已知a 和N,求b的问题。
这里( a 0且a 1 )
你能看得出来吗?怎样求呢?
对数的定义
如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对
特的方法构造出对数方法。1614年6月在爱丁堡出版的
第一本对数专著》《奇妙的对数表的描述》中阐明了 对数原理,后人称为纳皮尔对数。
假设2010年我国的国民生产总值为a亿元,如果每年 平均增长8%,那么经过多少年后国民生产总值
是2010年的2倍?
假设2010年我国的国民生产总值为a亿元,如果每年
平均增长8%,那么经过多少年后国民生产总值
(3)log25 625 解: (1)log0.5 1
高一数学对数与对数运算2
例题与练习
例6 已知log18 9 a,18b 5, 求 log 36 45.
例题与练习
例6 已知log18 9 a,18b 5, 求 log 36 45.
练习 教材P.68练习第1、2、3题
课堂小结
1. 对数的运算法则; 2.公式的逆向使用.
课后作业
1.阅读教材P.64-P.66; 2.《习案》作业二十一.
3
例题与练习
例4 已知lg 2 0.3010,lg 3 0.4771, 求 lg 45 .
例题与练习
例5 20世纪30年代,里克特制订了一种 表明地震能量大小的尺度,就是使用测 震仪衡量地震能量的等级,地震能量越 大,测震仪记录的地震曲线的振幅就越 大.这就是我们常说的里氏震级M,其计 算公式为 M=lgA-lgA0. 其中,A是被测地震的最大振幅, A0是“标准地震”的振幅 (使用标准地震振幅是为了修正测震仪距 实际震中的距离造成的偏差).
x2 y (2) log a 3 z
例题与练习 例2 计算
(1) log 5 25 (3) log 2 (47 25 )
(2) log 0.4 1 (4) lg 5 100
例题与练习 例3 计算
(1) (lg 5)2 lg 2 lg 50 (2) lg 20 log100 25 (3) lg 14 2 lg 7 lg 7 lg 18.
2.指数式与对数式的互化
ab N log a N b (a 0且a 1)
3.重要公式 (1) 负数与零没有对数; (2) loga1=0,logaa=1;
(3) 对数恒等式 a loga N N .
4.指数运算法则
4.指数运算法则
4.3.2对数的运算课件(换底公式)-高一上学期数学人教A版(2019)必修第一册
n
N log a N
m
n
特别地:当m=1时,
log a M nlog a M
n
(n∈R)即公式(3)
其他重要公式3:
log a b
1
log b a
a, b (0,1) (1,)
证明:由换底公式 loga b logb a
lg b lg a
1
lg a lg b
即
1
log a b
1
2
∴
1
2
log36 36 =2log 363=log36 9,
log363
1
log 3636 =log 364.
log36 4
=log 369+log 364=log 3636=1.
板书设计
Байду номын сангаас对数与对数运算:换底公式
logc N
loga N
logc a
log a m
(a, c (0,1) (1,), N 0)
对数函数
——对数与对数运算(2)
学习目标(1分钟)
1、熟练地运用对数运算性质解决问题
2、掌握对数的换底公式,并能正确应用
问题导学(8分钟)
根据P125-126页,探究:
(1)计算log24和log216值;
(2)根据对数的定义,你能利用log24,log216的值求
log416 的值吗?
(3)换底公式的定义是?由换底公式能推导出哪些重
p
log c N log c a , log c N p log c a,
p
log c N
log
N
c
高一(人教A版)第二章数学课件:2.2.1对数与对数运算(第2课时对数及运算)
x loga|x| (3)loga|xy|=loga|x|· loga|y|;(4)log y= . loga|y|
a
A.1 C.3
B.2 D.4
2014-6-4
研修班
22
【错解】 D
【错因】 产生错解的主要原因是没有准确掌握对数的运算性质.
(1)logax2=2logax,不能保证x>0; (3)(4)虽保证了真数大于零,但是公式应用有误.
在使用换底公式时,底数的取值不唯一,应根据实际情况选择. (3)关于换底公式的另外两个结论: ①logac·logca=1;②logab·logbc·logca=1.
2014-6-4
研修班
21
设x,y为非零实数,a>0,a≠1,则下列式子中正确的个数为(
)
(1)logax2=2logax;(2)logax2=2loga|x|;
(1) (2) (3) loga(MN)=logaM+log .aN loga(M/N)=
logaM-.logaN
logaMn= nlogaM (n∈R).
2.对数换底公式 logcb logab=log a (a>0,a≠1,b>0,c>0,c≠1); c 特别地:logab· logba=1(a>0,a≠1,b>0,b≠1).
2014-6-4 研修班 16
(1)本例的解法均利用了换底公式,关于换底公式: ①换底公式的主要用途在于将一般对数化为常用对数或自然对 数,然后查表求值,解决一般对数求值的问题. ②换底公式的本质是化同底,这是解决对数问题的基本方法. 解题过程中换什么样的底应结合题目条件,并非一定用常用对数、 自然对数. (2)求条件对数式的值,可从条件入手,从条件中分化出要求的 对数式,进行求值;也可从结论入手,转化成能使用条件的形式; 还可同时化简条件和结论,直到找到它们之间的联系.
高一数学对数与对数函数
§2.6对数与对数函数1.对数的概念一般地,如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.2.对数的性质与运算法则(1)对数的运算法则如果a >0,且a ≠1,M >0,N >0,那么:①log a (MN )=log a M +log a N ;②log a MN =log a M -log a N ;③log a M n =n log a M (n ∈R ).(2)对数的性质①负数和零没有对数;②log a 1=0,log a a =1(a >0,且a ≠1);③log a Na=N (a >0,a ≠1,且N >0);④log a a N =N (a >0,且a ≠1).(3)对数的换底公式log a b =log c blog c a(a >0,且a ≠1;c >0,且c ≠1;b >0).3.对数函数的图象与性质y =log a xa >10<a <1图象定义域(1)(0,+∞)值域(2)R性质(3)过定点(1,0),即x =1时,y =0(4)当x >1时,y >0;(5)当x >1时,y <0;当0<x <1时,y <0当0<x <1时,y >0(6)在(0,+∞)上是增函数(7)在(0,+∞)上是减函数4.反函数指数函数y =a x (a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图象关于直线y =x 对称.概念方法微思考1.根据对数换底公式:①说出log a b ,log b a 的关系?②化简log m na b .提示①log a b ·log b a =1;②logm na b =n mlog a b .2.如图给出4个对数函数的图象.比较a ,b ,c ,d 与1的大小关系.提示0<c <d <1<a <b .题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若MN >0,则log a (MN )=log a M +log a N .(×)(2)对数函数y =log a x (a >0且a ≠1)在(0,+∞)上是增函数.(×)(3)函数y =ln1+x1-x与y =ln(1+x )-ln(1-x )的定义域相同.(√)(4)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0)且过点(a,1)一、四象限.(√)题组二教材改编2.log 29·log 34·log 45·log 52=________.答案23.已知a =1-32,b =log 213,c =121log 3,则a ,b ,c 的大小关系为________.答案c >a >b解析∵0<a <1,b <0,c =121log 3=log 23>1.∴c >a >b .4.函数y的定义域是______.答案1解析由23log (21)x -≥0,得0<2x -1≤1.∴12<x ≤1.∴函数y1.题组三易错自纠5.已知b >0,log 5b =a ,lg b =c,5d =10,则下列等式一定成立的是()A .d =acB .a =cdC .c =adD .d =a +c答案B6.(多选)函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图所示,则下列结论成立的是()A .a >1B .0<c <1C .0<a <1D .c >1答案BC解析由图象可知函数为减函数,所以0<a <1,令y =0得log a (x +c )=0,x +c =1,x =1-c .由图象知0<1-c <1,∴0<c <1.7.若log a 34<1(a >0且a ≠1),则实数a 的取值范围是____________________.答案(1,+∞)解析当0<a <1时,log a 34<log a a =1,∴0<a <34;当a >1时,log a 34<log a a =1,∴a >1.∴实数a (1,+∞).对数式的运算1.已知2x =3,log 483=y ,则x +2y 的值为________.答案3解析由2x =3,log 483=y 得x =log 23,y =log 483=12log 283,所以x +2y =log 23+log 283=log 28=3.2.设函数f (x )=3x +9x ,则f (log 32)=________.答案6解析∵函数f (x )=3x +9x ,∴f (log 32)=339log 2log 2log 43929+=+=2+4=6.3.计算:(1-log 63)2+log 62·log 618log 64=________.答案1解析原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.4.(2019·北京)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为()A .1010.1B .10.1C .lg 10.1D .10-10.1答案A解析两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,令m 2=-1.45,m 1=-26.7,lgE 1E 2=25·(m 2-m 1)=25(-1.45+26.7)=10.1,E 1E 2=1010.1.思维升华对数运算的一般思路(1)拆:首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后利用对数运算性质化简合并.(2)合:将对数式化为同底数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.对数函数的图象及应用例1(1)已知函数f (x )=log a (2x +b -1)(a >0,a ≠1)的图象如图所示,则a ,b 满足的关系是()A .0<a -1<b <1B .0<b <a -1<1C .0<b -1<a <1D .0<a -1<b -1<1答案A解析由函数图象可知,f (x )为单调递增函数,故a >1.函数图象与y 轴的交点坐标为(0,log a b ),由函数图象可知-1<log a b <0,解得1a <b <1.综上有0<1a<b <1.(2)方程4x=log a x ,12上有解,则实数a 的取值范围为__________.答案,22解析若方程4x =log a x ,12上有解,则函数y =4x 和函数y =log a x ,12上有交点,a<1,a12≤2,解得0<a≤22.4x<log a x,12上恒成立,则实数a的取值范围是________.答案解析当0<x≤12时,函数y=4x的图象在函数y=log a x图象的下方.又当x=12时,124=2,即函数y=4x y=log a x,得a=22.若函数y=4x的图象在函数y=log a x图象的下方,则需22<a<1(如图所示).当a>1时,不符合题意,舍去.所以实数a思维升华对数函数图象的识别及应用方法(1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.跟踪训练1(1)(2019·河北冀州中学月考)函数f(x)=lg(|x|-1)的大致图象是()答案B解析由函数值域为R,可以排除C,D,当x>1时,f(x)=lg(x-1)在(1,+∞)上单调递增,排除A,选B.(2)若不等式x 2-log a x <0对xa 的取值范围是________.答案116,解析只需f 1(x )=x 2f 2(x )=log a x图象的下方即可.当a >1时,显然不成立;当0<a <1时,如图所示,要使x 2<loga x 在x只需ff所以有≤log a 12,解得a ≥116,所以116≤a <1.即实数a 的取值范围是116,对数函数的性质及应用命题点1解对数方程、不等式例2(1)方程log 2(x -1)=2-log 2(x +1)的解为________.答案x =5解析原方程变形为log 2(x -1)+log 2(x +1)=log 2(x 2-1)=2,即x 2-1=4,解得x =±5,又x >1,所以x =5.(2)设f (x )2x ,x >0,12(-x ),x <0,则方程f (a )=f (-a )的解集为________.答案{-1,1}解析当a >0时,由f (a )=log 2a =121log a ⎛⎫⎪⎝⎭=f (-a )=12log a ,得a =1;当a <0时,由f (a )=12log ()a-=logf (-a )=log 2(-a ),得a =-1.∴方程f (a )=f (-a )的解集为{1,-1}.本例(2)中,f (a )>f (-a )的解集为________.答案(-1,0)∪(1,+∞)解析>0,log 2a >12a<0,12(-a )>log 2(-a ),解得a >1或-1<a <0.命题点2对数函数性质的综合应用例3(2020·湛江质检)已知函数f (x )=12log (x 2-2ax +3).(1)若f (-1)=-3,求f (x )的单调区间;(2)是否存在实数a ,使f (x )在(-∞,2)上为增函数?若存在,求出a 的范围;若不存在,说明理由.解(1)由f (-1)=-3,得12log (4+2a )=-3.所以4+2a =8,所以a =2.则f (x )=12log (x 2-4x +3),由x 2-4x +3>0,得x >3或x <1.故函数f (x )的定义域为(-∞,1)∪(3,+∞).令μ=x 2-4x +3,则μ在(-∞,1)上单调递减,在(3,+∞)上单调递增.又y =12log μ在(0,+∞)上单调递减,所以f (x )的单调递增区间是(-∞,1),单调递减区间是(3,+∞).(2)令g (x )=x 2-2ax +3,要使f (x )在(-∞,2)上为增函数,应使g (x )在(-∞,2)上单调递减,且恒大于0.≥2,(2)≥0,即≥2,-4a ≥0,a 无解.所以不存在实数a ,使f (x )在(-∞,2)上为增函数.思维升华利用对数函数的性质,求与对数函数有关的函数值域和复合函数的单调性问题,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的.另外,解题时要注意数形结合、分类讨论、转化与化归思想的应用.跟踪训练2(1)若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上单调递减,则a 的取值范围为()A .[1,2)B .[1,2]C .[1,+∞)D .[2,+∞)答案A解析令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1](1)>0,≥1,-a >0,≥1,解得1≤a <2,即a ∈[1,2).(2)已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围是__________.答案解析当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数,由f (x )>1在区间[1,2]上恒成立,则f (x )min =f (2)=log a (8-2a )>1,且8-2a >0,解得1<a <83.当0<a <1时,f (x )在[1,2]上是增函数,由f (x )>1在区间[1,2]上恒成立,知f (x )min =f (1)=log a (8-a )>1,且8-2a >0.∴a >4,且a<4,故不存在.综上可知,实数a比较指数式、对数式的大小例4(1)(2019·天津市河西区模拟)设a =log 3e ,b =e 1.5,c =131log 4,则()A .b <a <cB .c <a <bC .c <b <aD .a <c <b答案D 解析c =131log 4=log 34>log 3e =a .又c =log 34<log 39=2,b =e 1.5>2,∴a <c <b .(2)(2018·全国Ⅲ)设a =log 0.20.3,b =log 20.3,则()A .a +b <ab <0B .ab <a +b <0C .a +b <0<abD .ab <0<a +b答案B解析∵a =log 0.20.3>log 0.21=0,b =log 20.3<log 21=0,∴ab <0.∵a +b ab =1a +1b=log 0.30.2+log 0.32=log 0.30.4,∴1=log 0.30.3>log 0.30.4>log 0.31=0,∴0<a +b ab<1,∴ab <a +b <0.(3)已知函数y =f (x +2)的图象关于直线x =-2对称,且当x ∈(0,+∞)时,f (x )=|log 2x |,若a =f (-3),b =fc =f (2),则a ,b ,c 的大小关系是________.答案c <a <b解析易知y =f (x )是偶函数.当x ∈(0,+∞)时,f (x )=f |log 2x |,且当x ∈[1,+∞)时,f (x )=log 2x 单调递增,又a =f (-3)=f (3),b =f f (4),所以c <a <b .思维升华(1)比较指数式和对数式的大小,可以利用函数的单调性,引入中间量;有时也可用数形结合的方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.跟踪训练3(1)已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是()A .a =b <cB .a =b >cC .a <b <cD .a >b >c答案B解析因为a =log 23+log 23=log 233=32log 23>1,b =log 29-log 23=log 233=a ,c =log 32<log 33=1,所以a =b >c .(2)(2019·天津市滨海新区模拟)已知函数f (x )=|x |,且a =f b =f c =f (2-1),则a ,b ,c 的大小关系为()A .a <c <bB .b <c <aC .c <a <bD .b <a <c答案A解析ln 32<ln e =12,log 23>12,∴log 23>12>ln 32.又f (x )是偶函数,在(0,+∞)上为增函数,∴ff f (log 23)=f ∴a <c <b .(3)若实数a ,b ,c 满足log a 2<log b 2<log c 2<0,则下列关系中正确的是()A .a <b <cB .b <a <cC .c <b <aD .a <c <b答案C解析根据不等式的性质和对数的换底公式可得1log 2a <1log 2b <1log 2c <0,即log 2c <log 2b <log 2a <0,可得c <b <a <1.故选C.1.(2019·泸州诊断)2lg 2-lg 125的值为()A .1B .2C .3D .4答案B解析2lg 2-lg 125=2lg 100=2,故选B.2.设0<a <1,则()A .log 2a >B .>C .log 2a <D .log 2a <答案B解析∵0<a <1,∴0<a 2<a <a <1,∴在A 中,log 2a =,故A 错误;在B 中,>,故B 正确;在C 中,log 2a >,故C 错误;在D 中,log 2a >,故D 错误.3.函数y =ln1|2x -3|的图象为()答案A解析易知2x -3≠0,即x ≠32,排除C ,D.当x >32时,函数为减函数;当x <32时,函数为增函数,所以选A.4.(2019·衡水中学调研卷)若0<a <1,则不等式1log a x >1的解是()A .x >aB .a <x <1C .x >1D .0<x <a答案B解析易得0<log a x <1,∴a <x <1.5.函数f (x )=12log (x 2-4)的单调递增区间为()A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)答案D解析函数y =f (x )的定义域为(-∞,-2)∪(2,+∞),因为函数y =f (x )由y =12log t 与t =g (x )=x 2-4复合而成,又y =12log t 在(0,+∞)上单调递减,g (x )在(-∞,-2)上单调递减,所以函数y =f (x )在(-∞,-2)上单调递增.6.(2020·长沙期末)已知函数f (x )2x ,x >0,x,x ≤0,且关于x 的方程f (x )-a =0有两个实根,则实数a 的取值范围为()A .(0,1]B .(0,1)C .[0,1]D .(0,+∞)答案A解析作出函数y =f (x )的图象(如图),欲使y =f (x )和直线y =a 有两个交点,则0<a ≤1.7.(多选)关于函数f (x )=ln1-x1+x,下列说法中正确的有()A .f (x )的定义域为(-∞,-1)∪(1,+∞)B .f (x )为奇函数C .f (x )在定义域上是增函数D .对任意x 1,x 2∈(-1,1),都有f (x 1)+f (x 2)=f 答案BD解析函数f (x )=ln 1-x1+x=其定义域满足(1-x )(1+x )>0,解得-1<x <1,∴定义域为{x |-1<x <1}.∴A 不对.由f (-x )=ln 1+x1-x=1=-ln1-x1+x=-f (x ),是奇函数,∴B 对.函数y =21+x -1在定义域内是减函数,根据复合函数的单调性,同增异减,∴f (x )在定义域内是减函数,C 不对.f (x 1)+f (x 2)=ln1-x 11+x 1+ln 1-x 21+x 2=f ∴D 对.8.(多选)已知函数f (x )的图象与g (x )=2x 的图象关于直线y =x 对称,令h (x )=f (1-|x |),则关于函数h (x )有下列说法,其中正确的说法为()A .h (x )的图象关于原点对称B .h (x )的图象关于y 轴对称C .h (x )的最大值为0D .h (x )在区间(-1,1)上单调递增答案BC解析函数f (x )的图象与g (x )=2x 的图象关于直线y =x 对称,∴f (x )=log 2x ,h (x )=log 2(1-|x |),为偶函数,不是奇函数,∴A 错误,B 正确;根据偶函数性质可知D 错误;∵1-|x |≤1,∴h (x )≤log 21=0,故C 正确.9.函数f (x )=log 2x ·(2x )的最小值为________.答案-14解析依题意得f (x )=12log 2x ·(2+2log 2x )=(log 2x )2+log 2x 2x -14≥-14,当log 2x =-12,即x =22时等号成立,所以函数f (x )的最小值为-14.10.(2020·深圳月考)设实数a ,b 是关于x 的方程|lg x |=c 的两个不同实数根,且a <b <10,则abc 的取值范围是________.答案(0,1)解析由题意知,在(0,10)上,函数y =|lg x |的图象和直线y =c 有两个不同交点(如图),∴ab=1,0<c <lg 10=1,∴abc 的取值范围是(0,1).11.设f (x )=log a (1+x )+log a (3-x )(a >0,且a ≠1),且f (1)=2.(1)求实数a 的值及f (x )的定义域;(2)求f (x )在区间0,32上的最大值.解(1)∵f (1)=2,∴log a 4=2(a >0,且a ≠1),∴a =2.+x >0,-x >0,得-1<x <3,∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,故函数f (x )在0,32上的最大值是f (1)=log 24=2.12.是否存在实数a ,使得f (x )=log a (ax 2-x )在区间[2,4]上是增函数?若存在,求出a 的范围;若不存在,说明理由.解设t=ax2-x=-1 4a.若f(x)在[2,4]上是增函数,<1,4,-4>0,2,2>0,解得a>1.∴存在实数a满足题意,即当a∈(1,+∞)时,f(x)在[2,4]上是增函数.13.已知函数f(x)=ln e xe-x,若fff1010(a+b),则a2+b2的最小值为()A.1B.2C.3D.4答案B解析∵f(x)+f(e-x)=2,∴ff…+f2020,∴1010(a+b)=2020,∴a+b=2.∴a2+b2≥(a+b)22=2,当且仅当a=b=1时取等号.14.若函数f(x)=log a(x2-x+2)在区间[0,2]上的最大值为2,则实数a=________.答案2解析令u(x)=x2-x+2,则u(x)在[0,2]上的最大值u(x)max=4,最小值u(x)min=74.当a>1时,y=log a u是增函数,f(x)max=log a4=2,得a=2;当0<a<1时,y=log a u是减函数,f(x)max=log a74=2,得a=72(舍去).故a=2. 15.(2019·福州模拟)已知函数f(x)=log a(2x-a)在区间12,23上恒有f(x)>0,则实数a的取值范围是()B.13,D.23,答案A解析当0<a <1时,函数f (x )在区间12,23上是减函数,所以log ,即0<43-a <1,解得13<a <43,故13<a <1;当a >1时,函数f (x )在区间12,23上是增函数,所以log a (1-a )>0,即1-a >1,解得a <0,此时无解.综上所述,实数a 16.已知函数f (x )=lgx -1x +1.(1)计算:f (2020)+f (-2020);(2)对于x ∈[2,6],f (x )<lg m(x +1)(7-x )恒成立,求实数m 的取值范围.解(1)由x -1x +1>0,得x >1或x <-1.∴函数f (x )的定义域为{x |x >1或x <-1}.又f (x )+f (-x )=0,∴f (x )为奇函数.∴f (2020)+f (-2020)=0.(2)当x ∈[2,6]时,f (x )<lgm (x +1)(7-x )恒成立可化为x -11+x <m(x +1)(7-x )恒成立.即m >(x -1)(7-x )在[2,6]上恒成立.又当x ∈[2,6]时,(x -1)(7-x )=-x 2+8x -7=-(x -4)2+9.∴当x =4时,[(x -1)(7-x )]max =9,∴m >9.即实数m 的取值范围是(9,+∞).。
高一数学 对数的运算
解:(1)lg 2 lg 5 lg( 2 5)
lg
10
1
lg10 2
1 lg10 2
1 2
(2) log3
45
log3
5
log3
45 5
log3 9 log3 32
2log3 3 2
3、利用换底公式,计算下列各式的值; (1)log2 3 log3 4 log4 5 log5 6 log6 7 log7 8, (2)logb a loga b;
练习:用lg x,lg y,lg z 表示下列各式:
(1) lg( xyz);
(2) lg xy2 ; z
xy3 (3)lg ;
z
x (4) lg y2z .
解: (1)lg(xyz) lg x lg( yz) lg x lg y lg z
(2)lg xy2 lg(xy2 ) lg z lg x 2lg y lg z
b
lg a lg b
lg b lg a
( lg3 lg 4
lg3)(lg 2 lg8 lg3
lg 2) lg 9
(
lg 3 lg 22
lg 3 lg 23
)(
lg lg
2 3
lg 2 lg 32
)
( lg3 lg3 )(lg 2 lg 2 ) 2lg 2 3lg 2 lg3 2lg3
5lg3 3lg 2 5 . 6lg 2 2lg3 4
(a>0,且a≠1; c>0,且c≠1; N>0)
证明:设 loga N p
由对数的定义可以得: N a p ,
logc N logc a p
logc N p logc a,
p logc N
2018高中数学必修1课件:2.2.1 对数与对数运算 第2课时 对数的运算 探究导学课型 精品
【深度思考】 结合教材P65例4,你认为应怎样利用对数的运算性质 计算对数式的值? 第一步:_______________________________________ _______. 将积、商、幂、方根的对数直接运用运算性 第质二转步化:_________________________.
利用对数的性质化简、求值
logaMn=nlogaM
主题2:换底公式
1.假设 log25 =x,则log25=xlog23,即log25=log23x, 从而有3lxo=g52 3,将其化为对数式,进一步可得到什么
结论?
提示:由3x=5知x=log35,即log35= log2 5 . log 2 3
2.同样由 提示:由
log356 log3(23 7) 3log32 log37 3b a . log314 log3(27) log32 log37 a b
【规律总结】换底公式的应用技巧 (1)换底公式的作用是将不同底数的对数式转化成同 底数的对数式,将一般对数式转化成自然对数式或常 用对数式来运算.要注意换底公式的正用、逆用及变 形应用.
【规律总结】对数的运算性质在解题中的两种应用
提醒:对数的运算性质主要用于化简与求值,它只适 用于同底的对数的化简.
【巩固训练】(2016·长春高一检测)已知x,y,z都是 大于1的正数,m>0,m≠1,且logmx=24,logmy=40, logm(xyz)=80,则logmz的值为 ( )
A. 1
B.16
C. 200
D. 3
60
3
20
【解析】选B.由已知得logm(xyz)=logmx+logmy+ logmz=80, 而logmx=24,logmy=40,故logmz=80-2440=16.
高一数学对数的运算2
高一数学对数的运算1
xy
x2 y
(1)loga
; z
(2)loga 3 z
积、商、幂的对数运算法则
如果 a > 0,a 1,M > 0,N > 0, 那么:
loga ( MN ) loga M loga N (1)
loga
M N
loga M
loga N
(2)
loga M n nloga M (n R) (3) 推论:loga an n
例1 用 loga x, log a y, log a z 表示下列各式:
则MN amn, loga M m, loga N n,
loga MN m n loga M loga N.
loga (MN) loga M loga N
仿照上述过程,分别由以下各式出发,可得怎
样的对数性质?
am an amn
(am )n amn
2.2.1 对数与对数运算(2)
----对数运算
一、复习:
1. 对数定义: ax N <==>
2. 两种特殊的对数:①lgN 3.对数的性质:
⑴负数与零没有对数.
loga N x
a 0且a 1
②lnN。 N 0
⑵ loga 1 0,
⑶ loga a 1
(4)对数恒等式 aloga N N loga ab b
;一键测量仪/ 一键测量仪 ;
爬在树上,弄得满头满脸的都是乱扑扑的桃花瓣儿。等回到家,又总被母亲从衣 领里抖出一大把柔柔嫩嫩的粉红。啊,那个孩子呢?那个躺在小溪边打滚,直揉得小裙子上全是草汁的孩子呢?她隐藏到什么地方去了呢? ⒅啊,春天多叫入迷惘啊!它究竟是怎么回事呢?是谁负责管理这 最初的一季呢?
对数的运算(2)换底公式 课件-2023-2024学年高一上学期数学人教A版(2019)必修第一册
(11) (11) (11)
1
1
1
所以 x lg y lg z y lg z lg x z lg x lg y (xz)lg y (xy)lg z ( yz)lg x
=
(
1
)
1 lg y
(
1
)
1 lg z
(
1
)
1 lg x
yzx
1 11 1
=
讲 课 人
10 10 10 1000
:
邢
启 强
试用 a,b 表示 log365.
(1) 9 (2) b
4 2a
讲
课
人
:
邢
启 强
17
巩固练习
1. 已知 lgx+lgy+lgz=0,
(11) (11) (11)
求 x lg y lg z y lg z lg x z lg x lg y 的值.
解:(1)已知 lgx+lgy+lgz=0 ,xyz=1
( lg 3 lg 4
lg 3) lg 8
lg 2 lg 3
5 6
讲
课
人
:
邢
启 强
13
典型例题 例3.20世纪30年代,里克特制订了一种
表明地震能量大小的尺度,就是使用测震仪衡量
地震能量的等级,地震能量越大,测震仪记录的
地震曲线的振幅就越大。这就是我们常说的里氏
震级M,其计算公式为 M lg A lg A0
p logc b 即证得
讲 课
logc a
人
loga
b
logc logc
b a
:
邢
启 强
高中数学第四章对数运算与对数函数2对数的运算换底公式课后习题北师大版必修第一册
2.1 对数的运算性质 2.2 换底公式A级必备知识基础练1.2log510+log50.25=( )A.0B.1C.2D.42.(2022内蒙古包头高三期末(文))若x log34=1,则3(4x-4-x)=( )A.5B.7C.8D.103.1lo g1419+1lo g1513等于( )A.lg 3B.-lg 3C.1lg3D.-1lg34.已知2a=3b=k(k≠1),且2a+b=ab,则实数k的值为( )A.6B.9C.12D.185.(2022江西九江高一期末)设a=lg 2,b=lg 3,则log318=( )A.2ab +1 B.2ba+1 C.ab+2 D.ba+26.log35log46log57log68log79= .7.设a x=M,y=log a N(a>0,且a≠1,M>0,N>0).试用x,y表示log M34√N= .8.计算:(1)lg2+lg5-lg8lg50-lg40;(2)lg12-lg58+lg54-log92·log43;(3)已知log53=a,log54=b,用a,b表示log25144.B级关键能力提升练9.若lg x-lg y=a,则lg(x2)3-lg(y2)3=( )A.3aB.32a C.a D.a210.若2log a(P-2Q)=log a P+log a Q(a>0,且a≠1),则PQ的值为( )A.14B.4C.1D.4或111.(多选题)设a,b,c都是正数,且4a=6b=9c,那么( )A.ab+bc=2acB.ab+bc=acC.2 c =2a+1bD.1c=2b−1a12.设a=log36,b=log520,则log215=( )A.a+b-3 (a-1)(b-1)B.a+b-2 (a-1)(b-1)C.a+2b-3 (a-1)(b-1)D.2a+b-3 (a-1)(b-1)13.(2022江西景德镇一中高一期末(文))已知实数x,y,正数a,b满足a x=b y=2,且2x +1y=-3,则1b-a的最小值为 .14.已知log a(x2+4)+log a(y2+1)=log a5+log a(2xy-1)(a>0,且a≠1),求log8yx的值.C级学科素养创新练15.设正数a,b,c满足a2+b2=c2.求证:log 21+b+ca+log 21+a-cb=1.2.1 对数的运算性质2.2 换底公式1.C 原式=log5102+log50.25=log5(100×0.25)=log525=2.2.C 因为x log34=1,所以log34x=1,即4x=3,所以3(4x-4-x)=3×3-13=8.故选C.3.C 原式=lo g1914+lo g1315=log94+log35=log32+log35=log310=1lg3.4.D ∵2a=3b=k(k≠1),∴a=log2k,b=log3k,∴1 a =log k2,1b=log k3.∵2a+b=ab,∴2 b +1a=2log k3+log k2=log k9+log k2=log k18=1,∴k=18.5.C log318=lg18lg3=lg2+lg32lg3=a+2bb=ab+2,故选C.6.3 log35log46log57log68log79=lg5lg3·lg6lg4·lg7lg5·lg8lg6·lg9lg7=lg8lg9lg3lg4=3lg2·2lg3lg3·2lg2=3.7.3x-5y4 ∵a x=M,∴x=log a M,∴log a34√N log a M3-log a4√N5=3log a M-54log a N=3x-54y.8.解(1)原式=lg2×58lg5040=lg54lg54=1.(2)(方法一)原式=lg 1258+lg54−lg2lg9×lg3lg4=lg(45×54)−lg22lg3×lg32lg2=lg1-14=-14.(方法二)原式=(lg1-lg2)-(lg5-lg8)+(lg5-lg4)-lg2lg9×lg3lg4=-lg2+lg8-lg4-lg22lg3×lg32lg2=-(lg2+lg4)+lg8-14=-lg(2×4)+lg8-14=-14.(3)∵log53=a,log54=b,∴log25144=log512=log53+log54=a+b.9.A lg(x2)3-lg(y2)3=3(lg x2-lg y2)=3(lg x-lg y)=3a.10.B 由2log a(P-2Q)=log a P+log a Q,得log a(P-2Q)2=log a(PQ),P>0,Q>0,P>2Q.由对数运算法则得(P-2Q)2=PQ,即P2-5PQ+4Q2=0,所以P=Q(舍去)或P=4Q,解得PQ=4.11.AD 由题意,设4a=6b=9c=k(k>1),则a=log4k,b=log6k,c=log9k,由ab+bc=2ac,可得bc +ba=2,因为bc+ba=lo g6klo g9k+lo g6klo g4k=lo gk9lo g k6+lo gk4lo g k6=log69+log64=log636=2,故A正确,B错误;2 a +1b=2lo g4k+1lo g6k=2log k4+log k6=log k96,2c=2lo g9k=2log k9=log k81,故2c≠2a+1b,故C错误;2 b −1a=2lo g6k−1lo g4k=2log k6-log k4=log k9,1c=1lo g9k=log k9,故1c=2b−1a,故D正确.12.D ∵a=log36=1+log32,b=log520=1+2log52,∴log23=1a-1,log25=2b-1,∴log215=log23+log25=1a-1+2b-1=2a+b-3(a-1)(b-1).故选D.13.-132 已知实数x,y,正数a,b满足a x=b y=2,则x=log a2,y=log b2,由换底公式可得2x +1y=2log2a+log2b=log2(a2b)=-3,可得a2b=18,则1b=8a2,因为a>0,则1b-a=8a2-a=8a-1162-132≥-132,当且仅当a=116时,等号成立,因此,1b-a的最小值为-132.14.解由对数的运算法则,可将等式化为log a[(x2+4)·(y2+1)]=log a[5(2xy-1)],∴(x2+4)(y2+1)=5(2xy-1).整理,得x2y2+x2+4y2-10xy+9=0,配方,得(xy-3)2+(x-2y)2=0,∴{xy=3, x=2y.∴yx=12.∴log8yx =log812=lo g232-1=-13log22=-13.15.证明log2(1+b+c a)+log2(1+a-c b)=log2[(1+b+c a)(1+a-c b)]=log2(a+b+c)(a+b-c)ab =log2(a+b)2-c2ab=log22=1.。
4.3对数的概念与对数运算(两课时)课件高一上学期数学人教A版【05】
(2)log(x-1)(2-x).
- > ,
解:(2)要使原式有意义,则
- > 0, 故 x 的取值范围为(1,2).
- ≠ ,
探究点二
对数的性质
[例3] 求下列各式中的x的值.
(1)log8[log7(log2x)]=0;
x
y
z
解:(2)令 2 =3 =5 =k(k>0),
所以 x=log2k,y=log3k,z=log5k,
所以 =logk2, =logk3, =logk5,
由 + + =1,得 logk2+logk3+logk5=logk30=1,所以 k=30,
所以 x=log230=1+log215,y=log330=1+log310,z=log530=1+log56.
对数的运算性质
如果a>0,且a≠1,M>0,N>0,那么:
(1)logaM n = n logaM (n∈R)
(2)loga(MN)=logaM+logaN
M
(3) log a
log a M log a N
N
探究点一
对数运算法则
[例1] 计算:
(2)
+
+
-
-
解:(2)原式=
;
当a>0,a≠1时,ax=N
x=㏒aN
※性质
0和负数没有对数,即N > 0;
1的对数等于0,即loga1=0;
高一数学对数的概念及运算2
下列疾病均属联合免疫缺陷病人(SCID),除了A.瑞士型无丙种球蛋白血症B.腺苷脱氨酶缺乏症C.网状组织发育不良D.伴有血小板减少和湿疹的免疫缺陷病E.性联淋巴细胞减少伴低丙种球蛋白血症 来自γ相机的模拟信号经过哪种器件变成计算机的数字信()A.电压-电流转换器B.模拟-数字转换器C.变压器D.数字-模拟转换器E.放大器 充抵保证金的有价证券,在计算保证金金额时,交易所交易型开放式指数基金折算率最高不超过。A.65%B.80%C.90%D.95% 计算机硬件系统有五大基本部件,分别是运算器、___、控制器、输人设备和输出设备。A.CPUB.存储器C.硬盘D.光驱 著作权又称。A.出版权B.报酬权C.作品权D.版权 行走中重心在A.躯干B.下肢C.骨盆D.上肢E.头部 气温直减率 网络综合布线系统安装工艺要求中,设备问的设计应符合的规定包括。A.设备间的位置宜便于设备接地B.设备间宜尽可能靠近建筑物线缆竖井位置,有利于主干缆线的引入C.设备间梁下净高不应小于1.5m,采用外开双扇门,门宽不应小于1.5mD.设备间室温度应为10℃~35℃,相对湿度应为20% 下列那些是理筋手法的功效A.整复错位B.活血散瘀C.松解粘连D.祛风散寒E.解除痉挛 [单选,配伍题]肱骨外上髁炎A.肩关节外展受限B.肩部疼痛、无活动受限C.肘关节外侧疼痛D.肘关节活动受限E.Finkelstein试验阳性 西周教育的主要内容是“六艺”,其中体现了体育的内容。A、礼B、数C、书D、御E、射F、乐 男性,35岁,乏力、消瘦2个月,腰部出现带状疱疹。检测抗HIV阳性,CD4+T淋巴细胞0.3×109/L,总淋巴细胞数1.2×109/L。此患者属HIV感染的临床分类的哪一类哪一级A.a类3级B.b类2级C.b类3级D.C类2级E.C类3级 根据外商投资企业法律制度的规定,下列关于外商投资企业合并与分立的表述中,不正确的是。A.在投资者按照合同、章程的规定缴清出资、提供合作条件并且实际开始生产、经营之前,外商投资企业不得合并、分立A.外国投资者的股权比例不得低于合并后注册资本的25%B.外商投资企业与境内 遗传研究表明,类风湿性关节炎属于A.单基因遗传B.隐性遗传C.非遗传性疾病D.显性遗传E.多基因遗传 教育史上“现代教育”的代言人是()。A.赫尔巴特B.杜威C.夸美纽斯D.洛克 上行性感染引起的急性肾盂肾炎,镜下首先发现下列哪项病变?A.间质充血水肿及中性粒细胞浸润B.肾盂黏膜充血、水肿并有大量的中性粒细胞浸润C.间质内有大量中性粒细胞浸润D.肾小管及肾小球内充满脓细胞E.肾盂内变性、坏死的中性粒细胞 建筑类型:江南的,福建的,藏族的羌族的,云南傣族的,贵族侗族的,的,西北的,内蒙古的,香港的。 摩擦与冲击火花属于A.机械火源B.化学火源C.热火源D.电火源 我国图书发行体制改革的时间先后顺序是。A.一主三多一少、三建一转、三放一联B.一主三多一少、三建一联、三放一转C.一主三多一少、三放一联、三建一转D.三放一联、一主三多一少、三建一转 不能通过经典途径激活补体的Ig是A.IgMB.IgG3C.IgAD.IgG1E.IgE 风险偏好是统一全行的认知标准。A.经营管理B.业务管理C.财务管理D.风险管理E.日常管理 患者,女,20岁。溺水,救出时呼吸、心跳已停止,立即由两人行心肺复苏术。口对口人工呼吸的频率为()A.10~12次/分B.12~16次/分C.18~20次/分D.20~24次/分E.30~40次/分 下列关于施工预算说法正确的是。A.施工预算是进行工程结算的依据B.预算定额是施工预算的编制依据C.施工预算编制人是建设单位D.施工预算是加强施工班组经济核算的依据 容积式流量测量是采用固定的小容积来反复计量通过的流体体积。 蝇蛆属于A.兼性寄生虫B.偶然寄生虫C.永久性寄生虫D.暂时性寄生虫E.以上均不是 近年来,()逐渐成为国际上金融领域最权威、最流行的个人理财职业资格。BP 当主、副井井筒到底进行短路贯通后,井底车场施工可全面展开,这时的通风工作比较困难。一般情况下,巷道串联通风的工作面数最多。超过时,各工作面爆破顺序必须先里后外进行,人员应同时全部撤出。A.不得超过2个B.不得超过3个C.不得超过4个D.不得超过5个 感染后易转为慢性的痢疾杆菌是A.志贺痢疾杆菌B.福氏痢疾杆菌C.宋内痢疾杆菌D.鲍氏痢疾杆菌E.舒氏痢疾杆菌 对于怀疑恶性肿瘤骨转移,使用下列哪种方法最好A.放射性核素全身骨扫描B.CT扫描C.X线透视D.X线平片E.MRI [多选,案例分析题]患者男性,36岁,因腹胀、腹痛、呕吐2天由朋友扶送入院,患者发病前曾与该朋友在某酒店就餐饮酒,呕吐物为宿食。查体:上腹局部稍硬,上腹明显压痛,有轻微反跳痛,既往有十二指肠溃疡病史。门诊血常规:Hb109g/L,WBC11.2×1012/L;N70%;淋巴细胞30%。该 治疗肝经湿热型阴道炎的首选方剂是。A.肾气丸合萆薢渗湿汤B.龙胆泻肝汤C.阳和汤D.仙方活命饮E.归脾汤合二妙散 航运企业的股东愿意让出部分企业所有权,通过企业增资的方式引进新股东,这种融资方式是。A.债务融资B.股权融资C.内源融资D.外源融资 目前要求火灾探测器的工作电压为。A、DC6VB、DC18VC、DC20VD、DC24V 8051单片机的核心部件是。A、算术/逻辑运算部件ALU;B、8位中央处理器CPU;C、内部存储器;D、16位中央处理器CPU。 一次能源、二次能源的定义及其种类? 理财产品的风险评估中,定量风险测量的常用指标是产品收益率的()。A.方差B.标准差C.相关系数D.β系数E.VaR 手提式二氧化碳灭火器由钢瓶、瓶头阀和喷射系统组成.A.正确B.错误 (2009)图示电路中,电流I1和电流I2分别为:A.2.5A和1.5AB.1A和0AC.2.5A和0AD.1A和1.5A 球磨机内钢球有、抛落式、离心状态3种工作状态,其中抛落式最实用。 不属于前磨牙特点的是.A.咬合面的点隙及邻面均为龋齿好发部位B.常作为判断颏孔位置的标志C.常作为义齿修复的基牙D.可能出现畸形中央尖E.拔除则可用旋转力
高一数学对数的概念及运算2
工业开关厂家 [单选]下列导致十二指肠溃疡胃酸分泌异常的因素中哪项不正确()A.壁细胞对胃泌素特别敏感B.胃酸反馈性抑制机制失灵C.对进餐刺激后的胃酸分泌在溃疡活动期增强D.晚间胃酸分泌明显增多E.胃排空减慢 工业开关厂家 [单选]下列哪一项不是卵巢实质性恶性肿瘤A.绒毛膜上皮癌B.纤维上皮瘤C.无性细胞瘤D.内胚窦瘤E.肉瘤 工业开关厂家 [单选,A1型题]111In-DOCT(铟[111In]奥曲肽注射液),主要聚集在哪些受体阳性的肿瘤()A.整合素受体阳性B.生长抑素受体阳性C.多巴胺受体阳性D.雌激素受体阳性E.血管活性肠肽受体阳性显像 工业开关厂家 [单选]在毒理学研究中,吸入染毒的剂量单位表示为()。A.mg/kgB.mg/mC.mg/LD.mg/mE.mg/g 工业开关厂家 [单选,A2型题,A1/A2型题]下列碘过敏试验方法哪项是错误的()A.皮下试验B.眼结膜试验C.舌下试验D.口服法试验E.静脉注射法试验 工业开关厂家 [单选]独立行使行政案件审判权的是()。A.行政审判庭B.合议庭C.人民法院D.审判委员会 工业开关厂家 [单选]中版海图图号是按()顺序编排的。A.地区B.新版日期C.出版日期D.改版日期 工业开关厂家 [单选]以下哪项不是感染性心内膜炎的临床表现()A.皮肤、黏膜瘀点B.皮下小结C.脾大D.贫血E.杵状指 工业开关厂家 [填空题]雷害一般有三种形式()、()、()。 工业开关厂家 [名词解释]宏观市场营销 工业开关厂家 [问答题][综合分析题]RB制造公司是一家位于华中某省的皮鞋制造公司,拥有近400名工人。大约在一年前,公司因产品有过多的缺陷而失去了两个较大的客户。RB公司领导研究了这个问题之后,一致认为:公司的基本工程技术方面还是很可靠的,问题出在生产线上的工人,质量检 工业开关厂家 [单选]输煤系统落煤筒与水平面的倾角不应小于()。A、35°B、55°C、60°D、45° 工业开关厂家 [问答题,简答题]《药品生产质量管理规范》的具体实施办法、实施步骤由那个部门规定? 工业开关厂家 [单选]在信用立法上,我国的原则与征信国家的基本原则相同的是()原则。A.保护消费者权益B.维护市场公平竞争C.强制开放征信数据D.政府推动与社会参与相结合的原则 工业开关厂家 [单选]下列各项中,不会影响营业利润金额增减的是()。A.资产减值损失B.财务费用C.投资收益D.营业外收入 工业开关厂家 [单选]无线通信导频单工方式下,在150MHZ频段,收发频率间隔一般为()A.5.7MB.10MC.45M 工业开关厂家 [单选,A1型题]药物依赖是指个体对药物产生()。A.精神依赖B.躯体依赖C.耐受性增加D.精神和躯体依赖E.耐受性降低 工业开关厂家 [单选,A4型题,A3/A4型题]男性,33岁,左小腿被锈铁钉刺伤一段时间后出现乏力、头疼、打哈欠,继而有张口困难、蹙眉和苦笑面容等表现,全身肌肉阵发性痉挛,但神志一直清醒,诊断为破伤风。该病潜伏期一般为()A.1周B.2周C.3周D.4周E.5周 工业开关厂家 [单选]规定采矿许可证制度的法律是()。A.煤炭法B.矿产资源法C.矿山安全法D.安全生产法 工业开关厂家 [单选,A1型题]社会医学的研究对象是()A.社会经济状况及其变动规律B.社会卫生状况及其变动规律C.社会发展战略D.卫生政策制定E.个人卫生状况 工业开关厂家 [单选]慢性支气管炎的诊断标准是()A.咳嗽、咳痰伴喘息3个月以上B.咳嗽、咳痰或伴喘息反复发作,每年至少3个月,并持续2年或以上者。排除其他心、肺疾病(如肺结核、哮喘、支气管扩张、肺癌、心脏病等)者。C.咳嗽、咳痰或伴喘息反复发作2年以上D.长期有咳嗽,咳痰 工业开关厂家 [单选,A2型题,A1/A2型题]下列哪项不属于女性特殊生理现象()A.月经B.痛经C.妊娠D.带下E.哺乳 工业开关厂家 [单选]在催化重整汽油馏分中,其()远比直馏汽油馏分的高。A、芳烃B、异构烷烃C、正构烷烃D、不饱和烃 工业开关厂家 [单选,A2型题,A1/A2型题]患者呼吸时发生吹哨声应考虑患有()。A.慢性鼻炎B.鼻中隔血肿C.鼻中隔前段小穿孔D.鼻中隔大穿孔E.鼻中隔后段小穿孔 工业开关厂家 [单选]人力资源计划中应解决的核心问题是()。A.充分考虑内外部环境变化B.企业的人力资源保障问题C.企业总体发展战略目标D.人力资源规划 工业开关厂家 [单选]下列指标中,属于建设项目动态财务评价指标的有()。A.利息备付率B.财务内部收益率C.资产负债率D.偿债备付率 工业开关厂家 [多选]关于工程无法按规定期限竣工验收情况下的缺陷责任期的起计日期,下列说法正确的有()。A.承包人原因所致的,从实际通过竣工验收之日起计B.承包人原因所致的,在承包人提交竣工验收报告30天后,工程自动进入缺陷责任期C.发包人原因所致的,从实际通过竣工验收 工业开关厂家 [判断题]螺旋线圈的作用是连接驾驶侧气囊导线连接器和点火开关连接器。()A.正确B.错误 工业开关厂家 [单选]关于性接触和艾滋病感染关系的描述错误的是()A.同性或异性性接触均具有传染性B.同时患其他STD,可增加传染概率C.处于血清阳性期的患者传染性大D.肛交主动方受感染的几率大于被动方 工业开关厂家 [单选]对于一级航行通告项中有“EST”的通告,下列说法中正确的是。()A.表示该资料为永久性资料B.需要以后再发布一个航行通告以取消或代替C.到预计时间后自行失效 工业开关厂家 [名词解释]天然药 工业开关厂家 [问答题,简答题]为什么要对抄表员进行抄表区轮换? 工业开关厂家 [单选]()是指在一个独立行使管理权的基层物业管理单位内,独立核算的财务主体所进行的以物业服务费为主要对象的费用计划、编制、控制、使用管理和分析的财务活动。A.物业管理项目财务管理B.物业管理项目企业管理C.财务管理项目物业管理D.企业管理项目财务管理 工业开关厂家 [单选]识别项目的关键特征是:()A.一次性B.唯一性C.整体性D.目标明确性 工业开关厂家 [多选]下列关于反向市场的说法,正确的有()。A.这种市场状态的出现可能是因为近期对该商品的需求非常迫切B.这种市场状态的出现可能是因为市场预期将来该商品的供给会大幅增加C.这种市场状态表明持有该商品现货没有持仓费的支出D.这种市场状态表明现货价格和期 工业开关厂家 [多选]一水硬铝石的分子式为()。A、γ—AlOOHB、γ—Al2O3•H2OC、α—AlOOHD、α—Al2O3•H2O 工业开关厂家 [单选]孙某与甲公司签订了为期3年的劳动合同,月工资1200元(当地最低月工资标准为800元)。期满终止合同时,甲公司未向孙某提出以不低于原工资标准续订劳动合同的意向。甲公司应向孙某支付的经济补偿金额为()元。A.800B.1200C.2400D.3600 工业开关厂家 [单选]关于类风湿关节炎患者行关节镜手术治疗,叙述正确的是()。A.关节镜滑膜切除术适合在类风湿关节炎疾病晚期,伴有明显滑膜炎、关节狭窄的患者B.经积极药物治疗6个月后患者仍有关节积液和滑膜炎C.关节镜下滑膜切除术是治疗类风湿关节炎的根治手术D.通过关节镜手 工业开关厂家 [单选,A1型题]有消食和胃、发散风寒的功效的中药是()A.紫苏B.神曲C.谷芽D.麦芽E.稻芽 工业开关厂家 [多选]关节镜手术的适应证有()。A.诊断不明的单或多关节炎B.骨关节炎C.类风湿关节炎D.晶体性滑膜炎E.其他关节炎:化脓性关节炎、结核、滑膜软骨瘤、色素绒毛结节性滑膜炎等
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[多选]总管线较短,投资较省,能量消耗较小,但供水独立性较差,上区受下区限制,水泵分散设置,管理维护不便的给水方式是()。A.分区并联给水方式B.并联直接给水方式C.分区串联给水方式D.分区水箱减压给水方式 [单选,A2型题,A1/A2型题]成人子宫体与子宫颈的长度比例为()A.2:1B.3:1C.1:2D.1:3E.1:1 [单选]在某双代号网络计划中,工作A的最早开始时间为第10天,其持续时间为6天,该工作有两项紧后工作,它们的最早开始时间分别为第26天和第31天,最迟开始时间分别为第27天和第34天,则工作A的总时差和自由时差()天。A.均为11B.分别为l0和9C.均为10D.分别为11和10 [单选]能源效率标识中等级的数字越小,标明该用能产品能源效率()。A.越大B.越小C.没有关系D.按具体的用能设备而定 [单选]下列各项中,影响企业当期营业利润的是()A.处置房屋的净损失B.经营出租设备的折旧费C.向灾区捐赠商品的成本D.火灾导致原材料毁损的净损失 [单选,A1型题]婴幼儿脂肪所提供的能量应占膳食总能量的比例为()A.30%~40%B.20%~40%C.45%~50%D.25%~30%E.10%~20% [单选]关于家庭承包经营的描述,下列说法有误的是()。A.承包期内,发包方可以收回承包地B.承包期内,承包方全家迁入小城镇落户的,应当按照承包方的意愿,保留其±地承包经营权或者允许其依法进行土地承包经营权流转C.承包期内,承包方全家迁入设区的市,转为非农业户口的 [单选]《铁路旅客运输规程》规定,随同成人进站身高不足()的儿童,可不买站台票。A.1.4mB.1.1mC.1.2mD.1.3m [问答题,案例分析题]病例摘要:李某,男,78岁,已婚,农民,于2011年11月12日9时就诊。患者6时晨起突发头晕,右侧肢体乏力,言语不清,神志恍惚来院诊治,平车送入病房。现症见:右侧肢体无力,伴有讲话吐字不清,口舌歪斜,神志恍惚,喉中痰鸣,伴腹胀,大便干燥3天未行。自发病 [单选]铜可溶于()A、硝酸B、盐酸C、稀硫酸D、浓硫酸 [单选]红色看起来觉得温暖,蓝色看起来觉得清凉是感觉的()现象A.适应B.后象C.对比D.联觉 [单选]如果已知甲资产的风险大于乙资产的风险,则可以推出的结论是()。A.甲资产的预期收益率大于乙资产的预期收益率B.甲资产的方差大于乙资产的方差C.甲资产的标准差大于乙资产的标准差D.甲资产的标准离差率大于乙资产的标准离差率 [单选]可有效激发机体抗肿瘤效应的佐剂为()A.福氏佐剂B.胞壁肽C.细胞因子D.羊毛脂E.多聚核苷酸 [单选]常用Allis法和Stimson法的关节脱位是()A.腕关节脱位B.肩关节脱位C.肘关节脱位D.膝关节脱位E.髋关节脱位 [单选]电动机的多地控制,其线路上控制按钮的连接原则是()。A.启动按钮要并联B.停止按钮要并联C.启动按钮要串联D.都可以 [单选]韩某在甲公司已工作10年,经甲公司与其协商同意解除劳动合同。已知韩某在劳动合同解除前12个月平均工资为7000元,当地人民政府公布的本地区上年度职工平均工资为2000元。甲公司应向韩某支付的经济补偿金额是()元。A.20000B.24000C.60000D.70000 [多选]起用了STP的二层交换网络中,交换机的端口可能会经历下面哪些状态()A.DisabledBlockingC.ListeningD.LearningE.Forwarding [单选]作用于肩关节的1/A2型题]脂溢性皮炎好发于()。A.头面、四肢B.黏膜、后背C.全身D.掌跖部位E.皮脂溢出部位 [单选]再热裂纹的特性之一是()A、沿晶断裂B、穿晶断裂C、沿晶+穿晶断裂D、混晶断裂 [多选]左心室舒张功能评价参数包括()。A.等容舒张时间B.左房室瓣血流传播速度C.左房室瓣环舒张期运动速度D.左房室瓣口E峰速度E.左心室压力最大上升速率(dp/dtmax) [单选,A1型题]下列哪种情况下可发生紫绀()A.毛细血管血液中高铁血红蛋白超过15g/LB.毛细血管血液中血红蛋白超过150g/LC.毛细血管血液中血红蛋白少于50g/LD.毛细血管血液中还原血红蛋白超过50g/LE.毛细血管血液中还原血红蛋白少750g/L [问答题,论述题]试述番茄高密度一穗果栽培要点。 [单选]船体外板是由()构成的。①船底板()②舭列板③甲板板()④舷侧列板A.①③B.②③④C.①④D.①②④ [单选]溶质溶于溶剂之后将会引起()。A.沸点降低B.凝固点升高C.蒸气压下降D.蒸气压、沸点、凝固点都不变 [单选]个体在意外事件或危急情景出现时表现出高度紧张的情绪状态,被称为()A.愤怒B.心境C.应激D.激情 [单选]洞门墙应根据实际需要设置泄水孔和()。A.施工缝或伸缩缝B.施工缝或沉降缝C.施工缝或结构缝D.沉降缝和伸缩缝 [填空题]目前国内城轨交通的主要形式有()、()、(),其中()和()是今后城市轨道交通发展的方向。 [单选]小儿惊厥最常见的原因是()A.癫痫B.低钙惊厥C.高热惊厥D.低血糖E.颅内感染 [单选]按餐位计算厨房面积,每一个餐位所需厨房面积约为()A、0.5~0.7平方米B、0.4~0.6平方米C、0.6~0.8平方米D、0.7~0.9平方米 [单选]对220KV线路要求()。A.沿全线架设双避雷线B.在山区空架设双避雷线C.沿全线架设单避雷线 [单选]于油轮,在对机舱燃油辅助锅炉进行吹灰作业前,应先经得()同意。A.轮机长B.值班轮机员C.值班驾驶员D.大副 [单选]在建筑施工现场()是导致事故发生的最主要因素。A.人的因素B.物的因素C.环境因素D.不可测知的因素 [填空题]受拉热轧光圆钢筋(HPB235)的末端应倒做()弯钩,其弯曲直径d不得小于钢筋直径的(),钩端应留有不小于钢筋直径3倍的直线段。 [单选]性激素对下丘脑、垂体的反馈,恰当的是()A.雌激素:负反馈,孕激素:负反馈B.雌激素:正反馈,孕激素:负反馈C.雌激素:负反馈,孕激素:正反馈D.雌激素:正、负反馈,孕激素:负反馈E.雌激素:负反馈,孕激素:正、负反馈 [判断题]根据室温组织不同,其组织为珠光体和铁素体的钢属于亚共析钢。()A.正确B.错误 [单选,A2型题,A1/A2型题]患者,男,68岁。胸闷气喘,咳嗽,咯痰黄稠量多,舌红,苔黄腻,脉滑数。其证型是()A.痰热蕴肺证B.燥邪犯肺证C.风热犯表证D.肺热炽盛证E.风热犯肺证 [单选]客运专线预制梁混凝土灌筑时,模板温度宜在()A、3~40B、5~35C、6~45 [单选]企业人员管理,属于员工流出管理的是()。A.平级调动B.岗位轮换C.解雇D.降职 [单选]义务教育法规定,自行实施义务教育的社会组织,应当经()批准。A、地市级人民政府B、县级人民政府C、县级人民政府教育行政部门D、省级人民政府