章平行四边形知识点和重点题型练习
初二数学:平行四边形知识点总结及压轴题练习(附答案解析)
A C BD 初二平行四边形所有知识点总结和常考题知识点:1、平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
2、平行四边形的性质:⑴平行四边形的对边相等;⑵平行四边形的对角相等:⑶平行四边形的对角线互相平分。
3平行四边形的判定:⑴.两组对边分别相等的四边形是平行四边形; ⑵对角线互相平分的四边形是平行四边形;⑶两组对角分别相等的四边形是平行四边形; ⑷一组对边平行且相等的四边形是平行四边形。
4、矩形的定义:有一个角是直角的平行四边形。
5、矩形的性质:⑴矩形的四个角都是直角;⑵矩形的对角线相等。
6、矩形判定定理:⑴ 有三个角是直角的四边形是矩形; ⑵对角线相等的平行四边形是矩形。
7、中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。
直角三角形斜边上的中线等于斜边的一半。
(连接三角形两边中点的线段叫做三角形的中位线。
)8、菱形的定义 :有一组邻边相等的平行四边形。
9、菱形的性质:⑴菱形的四条边都相等;⑵菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
S 菱形=1/2×ab (a 、b 为两条对角线长)10、菱形的判定定理:⑴四条边相等的四边形是菱形。
⑵对角线互相垂直的平行四边形是菱形。
11、正方形定义:一个角是直角的菱形或邻边相等的矩形。
12正方形判定定理:⑴ 邻边相等的矩形是正方形。
⑵有一个角是直角的菱形是正方形。
(矩形+菱形=正方形)常考题:一.选择题(共14小题)1.矩形具有而菱形不具有的性质是( )A .两组对边分别平行B .对角线相等C .对角线互相平分D .两组对角分别相等2.平行四边形ABCD 中,AC 、BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件是( )A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD3.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形4.顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形5.在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7) B.(5,3) C.(7,3) D.(8,2)6.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.117.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.168.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°9.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.1010.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.1711.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4 C.4 D.812.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.1913.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF ⊥AB,垂足为F,则EF的长为()A.1 B.C.4﹣2D.3﹣414.如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°二.填空题(共13小题)15.已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为cm2.16.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于.17.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO 的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=厘米.18.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD 和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为.19.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是.20.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.21.如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,则AB的长是.22.如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形的面积为.23.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.24.如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C (0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为.25.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,0),B(﹣1,2),C(2,0).请直接写出以A,B,C为顶点的平行四边形的第四个顶点D的坐标.26.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.27.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.三.解答题(共13小题)28.如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.29.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.30.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.31.如图,矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为E,F.求证:BE=CF.32.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.33.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.34.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?35.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.36.如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.求证:(1)△AEH≌△CGF;(2)四边形EFGH是菱形.37.如图,四边形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于点E.(1)求证:△ABD≌△EBD;(2)过点E作EF∥DA,交BD于点F,连接AF.求证:四边形AFED是菱形.38.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE=度.39.在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.40.数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.初二平行四边形所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2013•宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分 D.两组对角分别相等【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.2.(2014•河池)平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD【分析】根据对角线相等的平行四边形是矩形判断.【解答】解:A、是邻边相等,可得到平行四边形ABCD是菱形,故不正确;B、是对角线相等,可推出平行四边形ABCD是矩形,故正确;C、是对角线互相垂直,可得到平行四边形ABCD是菱形,故不正确;D、无法判断.故选B.【点评】本题主要考查的是矩形的判定定理.但需要注意的是本题的知识点是关于各个图形的性质以及判定.3.(2008•扬州)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B、∵四边形ABCD是平行四边形,∴BO=OD,∵AC⊥BD,∴AB2=BO2+AO2,AD2=DO2+AO2,∴AB=AD,∴四边形ABCD是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D选项错误;综上所述,符合题意是D选项;故选:D.【点评】此题主要考查学生对正方形的判定、平行四边形的性质、菱形的判定和矩形的判定的理解和掌握,此题涉及到的知识点较多,学生答题时容易出错.4.(2011•张家界)顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形【分析】顺次连接任意四边形四边中点所得的四边形,一组对边平行并且等于原来四边形某一对角线的一半,说明新四边形的对边平行且相等.所以是平行四边形.【解答】解:连接BD,已知任意四边形ABCD,E、F、G、H分别是各边中点.∵在△ABD中,E、H是AB、AD中点,∴EH∥BD,EH=BD.∵在△BCD中,G、F是DC、BC中点,∴GF∥BD,GF=BD,∴EH=GF,EH∥GF,∴四边形EFGH为平行四边形.故选:A.【点评】本题三角形的中位线的性质考查了平行四边形的判定:三角形的中位线平行于第三边,且等于第三边的一半.5.(2006•南京)在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7) B.(5,3) C.(7,3) D.(8,2)【分析】因为D点坐标为(2,3),由平行四边形的性质,可知C点的纵坐标一定是3,又由D点相对于A点横坐标移动了2,故可得C点横坐标为2+5=7,即顶点C的坐标(7,3).【解答】解:已知A,B,D三点的坐标分别是(0,0),(5,0),(2,3),∵AB在x轴上,∴点C与点D的纵坐标相等,都为3,又∵D点相对于A点横坐标移动了2﹣0=2,∴C点横坐标为2+5=7,∴即顶点C的坐标(7,3).故选:C.【点评】本题主要是对平行四边形的性质与点的坐标的表示及平行线的性质和互为余(补)角的等知识的直接考查.同时考查了数形结合思想,题目的条件既有数又有形,解决问题的方法也要既依托数也依托形,体现了数形的紧密结合,但本题对学生能力的要求并不高.6.(2014•河南)如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.11【分析】利用平行四边形的性质和勾股定理易求BO的长,进而可求出BD的长.【解答】解:∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB⊥AC,AB=4,AC=6,∴BO==5,∴BD=2BO=10,故选:C.【点评】本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.7.(2013•南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.16【分析】在矩形ABCD中根据AD∥BC得出∠DEF=∠EFB=60°,由于把矩形ABCD 沿EF翻折点B恰好落在AD边的B′处,所以∠EFB=∠DEF=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中可知∠DEF=∠EFB=∠EB′F=60°故△EF B′是等边三角形,由此可得出∠A′B′E=90°﹣60°=30°,根据直角三角形的性质得出A′B′=AB=2,然后根据矩形的面积公式列式计算即可得解.【解答】解:在矩形ABCD中,∵AD∥BC,∴∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠DEF=∠EFB=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中,∵∠DEF=∠EFB=∠EB′F=60°∴△EFB′是等边三角形,Rt△A′EB′中,∵∠A′B′E=90°﹣60°=30°,∴B′E=2A′E,而A′E=2,∴B′E=4,∴A′B′=2,即AB=2,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2×8=16.故选D.【点评】本题考查了矩形的性质,翻折变换的性质,两直线平行,同旁内角互补,两直线平行,内错角相等的性质,解直角三角形,作辅助线构造直角三角形并熟记性质是解题的关键.8.(2013•扬州)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°【分析】连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.【解答】解:如图,连接BF,在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=DC,∠ABC=180°﹣∠BAD=180°﹣80°=100°,∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=40°,∴∠CBF=∠ABC﹣∠ABF=100°﹣40°=60°,∵在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=60°.故选:B.【点评】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键.9.(2015•河南)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC 于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.10【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.【点评】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.10.(2013•凉山州)如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.17【分析】根据菱形得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=4,求出即可.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是AC+CE+EF+AF=4×4=16,故选C.【点评】本题考查了菱形性质,正方形性质,等边三角形的性质和判定的应用,关键是求出AC的长.11.(2013•泰安)如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC 的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4 C.4 D.8【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF 为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD 与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF 与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.12.(2013•菏泽)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.19【分析】由图可得,S1的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=;然后,分别算出S1、S2的面积,即可解答.【解答】解:如图,设正方形S2的边长为x,根据等腰直角三角形的性质知,AC=x,x=CD,∴AC=2CD,CD==2,∴EC2=22+22,即EC=;∴S2的面积为EC2==8;∵S1的边长为3,S1的面积为3×3=9,∴S1+S2=8+9=17.故选:B.【点评】本题考查了正方形的性质和等腰直角三角形的性质,考查了学生的读图能力.13.(2013•连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B.C.4﹣2D.3﹣4【分析】根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE 的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解.【解答】解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD﹣DE=4﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×(4﹣4)=4﹣2.故选:C.【点评】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点.14.(2014•福州)如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE 相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°【分析】根据正方形的性质及全等三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC.【解答】解:∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°﹣150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°.故选:C.【点评】本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°.二.填空题(共13小题)15.(2008•恩施州)已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为24cm2.【分析】根据菱形的面积等于两对角线乘积的一半求得其面积即可.【解答】解:由已知得,菱形的面积等于两对角线乘积的一半即:6×8÷2=24cm2.故答案为:24.【点评】此题主要考查菱形的面积等于两条对角线的积的一半.16.(2015•梅州)如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD 的周长等于20.【分析】根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得结果.【解答】解:∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC,AB=CD,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∴AE+DE=AD=BC=6,∴AE+2=6,∴AE=4,∴AB=CD=4,∴▱ABCD的周长=4+4+6+6=20,故答案为:20.【点评】本题考查了平行四边形的性质,解答本题的关键是根据平行线的性质和角平分线的性质得出∠ABE=∠AEB.17.(2013•厦门)如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=3厘米.【分析】根据AC+BD=24厘米,可得出出OA+OB=12cm,继而求出AB,判断EF 是△OAB的中位线即可得出EF的长度.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AC+BD=24厘米,∴OA+OB=12cm,∵△OAB的周长是18厘米,∴AB=6cm,∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线,∴EF=AB=3cm.故答案为:3.【点评】本题考查了三角形的中位线定理,解答本题需要用到:平行四边形的对角线互相平分,三角形中位线的判定定理及性质.18.(2007•临夏州)如图,矩形ABCD的对角线AC和BD相交于点O,过点O 的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为3.【分析】根据矩形是中心对称图形寻找思路:△AOE≌△COF,图中阴影部分的面积就是△BCD的面积.【解答】解:∵四边形ABCD是矩形,∴OA=OC,∠AEO=∠CFO;又∵∠AOE=∠COF,在△AOE和△COF中,,∴△AOE≌△COF,∴S△AOE =S△COF,∴图中阴影部分的面积就是△BCD的面积.S△BCD=BC×CD=×2×3=3.故答案为:3.【点评】此题主要考查了矩形的性质以及全等三角形的判定和性质,能够根据三角形全等,从而将阴影部分的面积转化为矩形面积的一半,是解决问题的关键.19.(2014•宿迁)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B 的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是(5,4).【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D 在y轴上,∴AB=5,∴DO=4,∴点C的坐标是:(5,4).故答案为:(5,4).【点评】此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.20.(2015•黄冈)如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于65度.【分析】根据正方形的性质得出∠BAE=∠DAE,再利用SAS证明△ABE与△ADE 全等,再利用三角形的内角和解答即可.【解答】解:∵正方形ABCD,∴AB=AD,∠BAE=∠DAE,在△ABE与△ADE中,,∴△ABE≌△ADE(SAS),∴∠AEB=∠AED,∠ABE=∠ADE,∵∠CBF=20°,∴∠ABE=70°,∴∠AED=∠AEB=180°﹣45°﹣70°=65°,故答案为:65【点评】此题考查正方形的性质,关键是根据正方形的性质得出∠BAE=∠DAE,再利用全等三角形的判定和性质解答.21.(2013•十堰)如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,则AB的长是1.【分析】根据平行四边形性质推出AB=CD,AB∥CD,得出平行四边形ABDE,推出DE=DC=AB,根据直角三角形性质求出CE长,即可求出AB的长.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,即D为CE中点,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠DCF=∠ABC=60°,∴∠CEF=30°,∵EF=,∴CE==2,∴AB=1,故答案为:1.【点评】本题考查了平行四边形的性质和判定,平行线性质,勾股定理,直角三角形斜边上中线性质,含30度角的直角三角形性质等知识点的应用,此题综合性比较强,是一道比较好的题目.22.(2013•黔西南州)如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF ⊥CD于F,∠B=60°,则菱形的面积为.【分析】根据已知条件解直角三角形ABE可求出AE的长,再由菱形的面积等于底×高计算即可.【解答】解:∵菱形ABCD的边长为4,∴AB=BC=4,∵AE⊥BC于E,∠B=60°,∴sinB==,∴AE=2,∴菱形的面积=4×2=8,故答案为8.【点评】本题考查了菱形的性质:四边相等以及特殊角的三角函数值和菱形面积公式的运用.23.(2013•鞍山)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是11.【分析】利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.【解答】解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=6,∴四边形EFGH的周长=6+5=11.故答案为:11.【点评】本题考查了三角形的中位线定理,勾股定理的应用,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.24.(2015•攀枝花)如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为(2.5,4),或(3,4),或(2,4),或(8,4).【分析】由矩形的性质得出∠OCB=90°,OC=4,BC=OA=10,求出OD=AD=5,分情况讨论:①当PO=PD时;②当OP=OD时;③当DP=DO时;根据线段垂直平分线的性质或勾股定理即可求出点P的坐标.【解答】解:∵四边形OABC是矩形,∴∠OCB=90°,OC=4,BC=OA=10,∵D为OA的中点,∴OD=AD=5,①当PO=PD时,点P在OD得垂直平分线上,∴点P的坐标为:(2.5,4);②当OP=OD时,如图1所示:则OP=OD=5,PC==3,∴点P的坐标为:(3,4);③当DP=DO时,作PE⊥OA于E,则∠PED=90°,DE==3;分两种情况:当E在D的左侧时,如图2所示:OE=5﹣3=2,∴点P的坐标为:(2,4);当E在D的右侧时,如图3所示:OE=5+3=8,∴点P的坐标为:(8,4);综上所述:点P的坐标为:(2.5,4),或(3,4),或(2,4),或(8,4);故答案为:(2.5,4),或(3,4),或(2,4),或(8,4).【点评】本题考查了矩形的性质、坐标与图形性质、等腰三角形的判定、勾股定理;本题有一定难度,需要进行分类讨论才能得出结果.25.(2013•阜新)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,0),B(﹣1,2),C(2,0).请直接写出以A,B,C为顶点的平行四边形的第四个顶点D 的坐标(3,2),(﹣5,2),(1,﹣2).【分析】首先根据题意画出图形,分别以BC,AB,AC为对角线作平行四边形,即可求得答案.【解答】解:如图:以A,B,C为顶点的平行四边形的第四个顶点D的坐标分别为:(3,2),(﹣5,2),(1,﹣2).故答案为:(3,2),(﹣5,2),(1,﹣2).【点评】此题考查了平行四边形的性质.注意坐标与图形的关系.26.(2014•丹东)如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.【分析】延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF 是等边三角形,再利用菱形的边长为4求出时间t的值.。
平行四边形(知识点、经典例题、常考题型练习)
平行四边形(一)【知识梳理】1、平行四边形:平行四边形的定义决定了它有以下几个基本性质:(1)平行四边形对角相等;(2)平行四边形对边相等;(3)平行四边形对角线互相平分。
除了定义以外,平行四边形还有以下几种判定方法:(1)两组对角分别相等的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形。
2、特殊平行四边形:一、矩形(1)有一角是直角的平行四边形是矩形(2)矩形的四个角都是直角;(3)矩形的对角线相等。
(4)矩形判定定理1:有三个角是直角的四边形是矩形(5)矩形判定定理2:对角线相等的平行四边形是矩形二、菱形(1)把一组邻边相等的平行四边形叫做菱形.(2)定理1:菱形的四条边都相等(3)菱形的对角线互相垂直,并且每条对角线平分一组对角.(4)菱形的面积等于菱形的对角线相乘除以2(5)菱形判定定理1:四边都相等的四边形是菱形(6)菱形判定定理2:对角线互相垂直的平行四边形是菱形。
三、正方形(1)有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形(2)性质:①四个角都是直角,四条边相等②对角线相等,并且互相垂直平分,每条对角线平分一组对角(3)判定:①一组邻边相等的矩形是正方形②有一个角是直角的菱形是正方形平行四边形矩形菱形正方形等腰梯形直角梯形梯形四边形知识结构如下图(1)弄清定义及四边形之间关系图1:正方形(2)四边形之间关系图2:2、几种特殊的四边形的性质和判定:3、一些定理和推论:三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半。
推论:夹在两平行线间的平行线段相等。
推论:直角三角形斜边上的中线等于斜边的一半;推论:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
【例题精讲】填空题:【巩固】1、下列说法中错误的是( )A .四个角相等的四边形是矩形B .四条边相等的四边形是正方形C .对角线相等的菱形是正方形D .对角线互相垂直的矩形是正方形2、如果一个四边形的两条对角线互相平分,互相垂直且相等,那么这个四边形是 ( )A .矩形B .菱形C .正方形D .菱形、矩形或正方形3、下面结论中,正确的是( )A .对角线相等的四边形是矩形B .对角线互相平分的四边形是平行四边形C .对角线互相垂直的四边形是菱形D .对角线互相垂直且相等的四边形是正方形4、如图,在中,点D 、E 、F 分别在边、、上,且,.下列ABC △AB BC CA DE CA ∥DF BA ∥四种说法:①四边形是平行四边形;AEDF ②如果,那么四边形是矩形;90BAC ∠=oAEDF ③如果平分,那么四边形是菱形;AD BAC ∠AEDF ④如果且,那么四边形是菱形.AD BC ⊥AB AC =AEDF 其中,正确的有 .(只填写序号)AFCDE【例1】如图,在平行四边形ABCD 中,点E ,F 分别是AD ,BC 的中点.求证:四边形BFDE 是平行四边形.A E DCF B 【巩固】已知,如图9,E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF ∥BE .四边形ABCD 是平行四边形吗?请说明理由.AB ∥CD ,AC 平分∠BAD ,CE ∥AD 交AB 于点E .求证:四边形AECD 是菱形.A B C DE【例3】如图,在等边△ABC 中,点D 是BC 边的中点,以AD 为边作等边△ADE .(1)求∠CAE 的度数;(2)取AB 边的中点F ,连结CF 、CE ,试证明四边形AFCE 是矩形.【巩固】如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD .(1)试判断四边形OCED 的形状,并说明理由;(2)若AB =6,BC =8,求四边形OCED 的面积.【例4】如图所示,在△ABC 中,分别以AB 、AC 、BC 为边在BC 的同侧作等边△ABD 、等边△ACE 、等边△BCF .CB ADFE(1)求证:四边形DAEF 是平行四边形; 三角形ABD,三角形ACE,三角形BCF 都是等边三角形首先我们来证明DAEF 为平行四边形角DBF=60度-角FBA=角ABC而DB=AB, BF=BC三角形DBF 全等于三角形ABC所以:DF=AC=AE同理可证:DA=FE所以:DAEF 为平行四边形(1)如图,如果角DAE=90度,则DAEF 为矩形则必须:角BAC=360度-2*60度-90度=150度(而如果,另一种情况,BC为短边,F将落在DAECB的包围之中,角DAE=2*60度+角BAC>90度,DAEF不可能为矩形,而BC为短边,角BAC<90度)(2)如果:DA=AE,则:DAEF为菱形则必须:AB=AC(3)如果:角BAC=60度则:角DAE=3*60度=180度D,A,E共线,所以:以D、A、E、F为顶点的四边形不存在据此,(2)的结论应稍加改变为:当AB=AC,且角BAC不等于60度时,四边形DAEF是菱形(2)探究下列问题:(只填满足的条件,不需证明)①当△ABC满足_________________________条件时,四边形DAEF是矩形;②当△ABC满足_________________________条件时,四边形DAEF是菱形;③当△ABC满足_________________________条件时,以D、A、E、F为顶点的四边形不存在.平行四边形(二)【知识梳理】由平行四边形的结构知,平行四边形可以分解为一些全等的三角形,并且包含着平行线的有关性质,因此,平行四边形是全等三角形知识和平行线性质的有机结合,平行四边形包括矩形、菱形、正方形。
平行四边形知识点与经典例题
平行四边形一、 基础知识平行四边形二、1、三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三遍的一半。
2、由矩形的性质得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半。
三、例题例1、如图1,平行四边形ABCD 中,AE⊥BD,CF⊥BD,垂足分别为E 、F. 求证:∠BAE =∠DCF.例2、如图2,矩形ABCD 中,AC 与BD 交于O 点,BE⊥AC 于E ,CF⊥BD 于F.求证:BE = CF.例3、已知:如图3,在梯形ABCD 中,AD∥BC,AB = DC ,点E 、F 分别在AB 、CD 上,且BE = 2EA ,CF = 2FD. 求证:∠BEC =∠CFB.例4、如图6,E 、F 分别是 平行四边形ABCD 的AD 、BC 边上的点,且AE = CF.(1)求证:△ABE≌△CDF;(2)若 M 、N 分别是BE 、DF 的中点,连结MF 、EN ,试判断四边形MFNE 是怎样的四边形,并证明你的结论.(图1)BA DBCE F (图M NOABCDE F(图2)例5、如图7 ABCDY的对角线AC的垂直平分线与边AD,BC分别相交于点E,F.,求证:四边形AFCE是菱形.例6、如图8,四边形ABCD是平行四边形,O是它的中心,E、F是对角线AC上的点.(1)如果,则△DEC≌△BFA(请你填上一个能使结论成立的一个条件);(2)证明你的结论.例7、如图9,已知在梯形ABCD中,AD∥BC,AB = DC,对角线AC和BD相交于点O,E是BC边上一个动点(点E不与B、C两点重合),EF∥BD交AC于点F,EG∥AC交BD于点C.(1)求证:四边形EFOG的周长等于2OB;(2)请你将上述题目的条件“梯形ABCD中,AD∥BC,AB = DC”改为另一种四边形,其他条件不变,使得结论,“四边形EFOG的周长等于2OB”仍成立,并将改编后的题目画出图形,写出已知、求证、不必证明.例8、有一块梯形形状的土地,现要平均分给两个农户种植(即将梯形的面积两等分),试设计两种方案(平分方案画在备用图13(1)、(2)上),并给予合理的解释.备用图(1)备用图(2)图13BCRPDCBAEF 第12题图四、练习 一、选择题1.下列命题正确的是( )(A)、一组对边相等,另一组对边平行的四边形一定是平行四边形 (B)、对角线相等的四边形一定是矩形(C)、两条对角线互相垂直的四边形一定是菱形 (D)、在两条对角线相等且互相垂直平分的四边形一定是正方形 2. 已知平行四边形ABCD 的周长32, 5AB=3BC,则AC 的取值范围为( ) A. 6<AC<10; B. 6<AC<16; C. 10<AC<16; D. 4<AC<16 3.两个全等的三角形(不等边)可拼成不同的平形四边形的个数是( ) (A )1 (B )2 (C )3 (D )44.延长平形四边形ABCD 的一边AB 到E ,使BE =BD ,连结DE 交BC 于F ,若∠DAB =120°,∠CFE =135°,AB =1,则AC 的长为( )(A )1 (B ) (C )32(D ) 5.若菱形ABCD 中,AE 垂直平分BC 于E ,AE =1cm ,则BD 的长是( ) (A )1cm (B )2cm (C )3cm (D )4cm6.若顺次连结一个四边形各边中点所得的图形是矩形,那么这个四边形的对角线( ) (A )互相垂直 (B )相等 (C )互相平分 (D )互相垂直且相等7. 如图,等腰△ABC 中,D 是BC 边上的一点,DE ∥AC ,DF ∥AB ,AB=5那么四边形AFDE 的周长是( )(A )5 (B )10 (C )15 (D )20(第7题) (第8题) (第9题) (第10题)8.如图,将边长为8cm 的正方形纸片ABCD 折叠,使点D 落在BC 边中点E 处,点A 落在点F 处,折痕为MN ,则线段CN 的长是( ). (A )3cm (B )4cm (C )5cm (D )6cm9. 如图,在直角梯形ABCD 中,AD∥BC,∠B=90°,AC 将梯形分成两个三角形,其中△ACD 是周长为18 cm 的等边三角形,则该梯形的中位线的长是( ). (A)9 cm (B)12cm (c)29cm (D)18 cm 10.如图,在周长为20cm 的□ABCD中,AB≠AD,AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE的周长为( ) (A)4cm (B)6cm (C)8cm (D)10cm11. 如图2,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若CD =6,则AF 等于 ( )(A )34 (B )33 (C )24(D )8 12.如图,已知四边形ABCD 中,R 、P 分别是BC 、CD 上的点,E 、F 分别是 AP 、RP 的中点,当点P 在CD 上从C 向D 移动而点R 不动时,那么下列结论 成立的是 ( )A 、线段EF 的长逐渐增大B 、线段EF 的长逐渐减小C 、线段EF 的长不变D 、线段EF 的长与点P13. 在梯形ABCD 中,ADcm AC 5B. 7cmC.D. 6cm14. 国家级历史文化名城——金华,风光秀丽,花木葱茏.某广场上一个形状是 平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花. 如果有AB EF DC ∥∥,BC GH AD ∥∥,那么下列说法中错误的是( )AB CDOEABCDEF图 2黄蓝紫 橙 红绿A G EDHC B第14题ABCDEFO第10题图DABCPMN(1)(2)图9A B CD E FO 图A .红花、绿花种植面积一定相等B .紫花、橙花种植面积一定相等C .红花、蓝花种植面积一定相等D .蓝花、黄花种植面积一定相等 二、填空题1.如果四边形四个内角之比1:2:3:4,则这四边形为____形。
平行四边形知识点总结及分类练习题
平行四边形知识点总结及分类练习题一、知识点总结平行四边形是几何学中一个重要的概念,其性质和判定方法对于理解几何学中的其他问题有着至关重要的作用。
以下是对平行四边形知识点的总结:1、定义:平行四边形是一个四边形,其中相对的两边平行且相等。
可以用符号“▭”表示。
2、性质:1)对边平行:平行四边形的对边平行且相等。
2)对角相等:平行四边形的对角相等,邻角互补。
3)平行四边形的面积等于其底乘高。
3.判定方法:1)两组对边分别平行的四边形是平行四边形。
2)两组对边分别相等的四边形是平行四边形。
3)一组对边平行且相等的四边形是平行四边形。
4)对角线互相平分的四边形是平行四边形。
5)邻角互补的四边形是平行四边形。
4.特殊平行四边形:矩形、菱形和正方形都是特殊的平行四边形,它们分别具有以下性质:1)矩形:对角线相等,四个角都是直角。
2)菱形:对角线垂直且平分,四边相等。
3)正方形:对角线垂直且相等,四个角都是直角。
二、分类练习题1、选择题:1)下列哪个条件可以判定一个四边形为平行四边形?A.一组对边相等,一组对角相等B.一组对边平行,另一组对边相等C.一组对角相等,另一组对边平行D.一组对角相等,一组邻角互补答案:(C)一组对角相等,另一组对边平行。
因为一组对角相等,另一组对边平行的四边形可以由一组对边平行,另一组对边相等的四边形经过平移得到,因此选项C正确。
其他选项都不满足平行四边形的定义或判定方法。
2)下列哪个条件可以判定一个四边形为矩形?A.三个内角都是直角B.对角线相等且互相平分C.对角线互相垂直且平分D.一组对边平行且相等,一组邻角互补答案:(B)对角线相等且互相平分的四边形是矩形。
因为矩形的定义是对角线相等的平行四边形,而对角线相等且互相平分的四边形是平行四边形,因此选项B正确。
其他选项分别是矩形的定义或判定方法的一部分,但不足以单独判定一个四边形为矩形。
特殊平行四边形知识点总结及题型一、平行四边形的性质:1、平行四边形的对边平行且相等;2、平行四边形的对角相等;3、平行四边形的对角线互相平分。
人教八下平行四边形专题知识点 常考(典型)题型 重难点题型(含详细答案)
平行四边形专题知识点+常考题型+重难点题型(含详细答案)一、目录一、目录 (1)二、基础知识点 (2)1.平行四边形的定义 (2)2.平行四边形的性质 (3)3.平行四边形的判定定理 (7)4.三角形中位线定理 (10)三、重难点题型 (14)1.平行四边形的共性 (14)2.平行四边形间距离的应用 (16)3.与平行四边形有关的计算 (17)4.与平行四边形有关的证明 (19)二、基础知识点1.平行四边形的定义平行四边形:两组对边分别平行的四边形。
平行四边形ABCD记作“□ABCD”注:只要满足对边平行的四边形都是平行四边形。
矩形、菱形、正方形都是特殊的平行四边形例1.如图,□ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证:BE=DF.答案:∵四边形ABCD为平行四边形∴AD∥CB,AD=CB∵DE⊥AB,BF⊥CD∴∠DEA=∠CFB∴△ADE≌△CFB∴AE=CF∵DC=AB∴BE=DF例2.在平面直角坐标系中,有A(0,1),B(-1,0),C(1,0)三点,若点D与A,B,C构成平行四边形,求D的坐标。
(3解)答案:如下图,有三种情况,坐标分别为:(0,-1);(2,1);(-2,1)2.平行四边形的性质性质1(边):平行四边形的对边相等(AB=CD,AC=BD)证明:∵∠CAD=∠ADB ∠DAB=∠ADC AD=AD ∴△ACD≌△DBA(ASA)∴AB=CD AC=BD性质2(角):平行四边形对角相等,邻角互补(∠A=∠D,∠C=∠B;∠A+∠C=∠B+∠D=180°)证明:∵△ACD≌△DBA(ASA)又∵∠CAB=∠CAD+∠DAB ∠CDB=∠CDA+∠ADB∴∠CAB=∠CDB∵AB∥CD∴∠B+∠BDC=180°性质3(对角线):平行四边形对角线互相平分(AO=OC;BO=OD)证明:∵AD=BC ∠OAD=∠OCB ∠ODA=∠OBC∴△AOD≌△COB(ASA)∴AO=OC OB=OD注1:平行四边形对角线互相平分,但两对角线不一定相等解析:假设平行四边形对角线相等∴∠OAD=∠ADO=∠OBC=∠OCB∠OAB=∠OBA=∠OCD=∠CDO又∵∠DAB+∠CBA=180°∴∠DAB=∠ABC=∠BCD=∠CDA=90°∴仅在平行四边形的四个角为直角时(即矩形),对角线相等注2:对角线不一定平分角解析:假设平行四边形对角线平分角,则∠ADB=∠BDC ∠ACD=∠ACB ∵∠DCB=∠BAD∴∠ACD=∠CAD又∵OD=OD∴△AOD≌△COD(AAS)∴AD=DC=BC=AB∴仅当平行四边形四条边相等时(即菱形),对角线平分角性质4:平行四边形是中心对称图形,对称中心为对角线交点。
平行四边形知识点及同步练习、含答案3
平行四边形的特征【学习目标】1.探索并掌握平行四边形的特征.2.灵活运用平行四边形的特征解决问题.3.平行四边形一般转化成三角形的问题来解决.【基础知识概述】 1.平行四边形:(1)平行四边形的定义:两组对边分别平行的四边形是平行四边形. (2)平行四边形的表示:平行四边形用符号“”表示. 平行四边形ABCD 记作,读作平行四边形ABCD . (3)平行四边形定义的作用:①由定义知平行四边形的两组对边分别平行.②由定义可以得出只要四边形中两组对边分别平行,那么这个四边形是平行四边形. 2.平行四边形的特征:(1)平行四边形的邻角互补,对角相等. (2)平行四边形的对边平行且相等. (3)平行四边形的对角线互相平分.(4)平行四边形是中心对称图形,对角线的交点为对称中心.(5)若一条直线过平行四边形两对角线的交点,则这直线被一组对边截下的线段以对角线的交点为中点,且这条直线二等分平行四边形的面积.注意:①特征:都是通过连对角线把四边形问题转化成三角形问题来处理的,即通过平移或旋转,利用重合来证明的.②夹在两条平行线间的平行线段是指端点分别在两条平行线上的平行线段. ③互相平分指两条线段有公共的中点. 3.平行四边形特征的作用:可以用来证明线段相等、角相等及两直线平行等.如图12-1-1,有如下结论:⎪⎪⎩⎪⎪⎨⎧==∠=∠∠=∠==(对角线互相平分),(对角相等),(对边相等),(对边平行),是平行四边形,则如果四边形DO BO CO AO D B C A ADBC CD AB AD//BC CD //AB ABCD 4.两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.(2)两平行线间的距离处处相等.注意:距离是指垂线段的长度,是大于0的.①平行线的位置确定后,它们的距离是定值,不随垂线段的位置改变.②平行线间的距离处处相等,因此在作平行四边形的高时,可根据需要灵活选择位置.5.平行四边形的面积:(1)如图12-1-2①,.也就是(a是平行四边形任何一边长,h必须是a边与其对边的距离).(2)同底(等底)同高(等高)的平行四边形面积相等.如图12-1-2②,有公共边BC,则.注意:这里的底是相对而言的,也就是高所在的边,平行四边形任意一边都可以作底,底确定后,高也就确定了.【例题精讲】例1如图12-1-3,已知的对角线相交于点O,过O作直线交AB于E,交CD 于F,可得OE=OF.为什么?分析:要得到OE=OF,可先证得它们所在△AEO与△CFO(△BEO与△DFO)重合.解:在中,∵AB∥CD,OD=OB,∴∠1=∠2,∠3=∠4,∴将△BOE绕点O旋转180度后与△DOF重合.∴OE=OF.注意:把线段与角归结为平行四边形的边,对角线或对角,利用平行四边形的特征证明.例2(1)在中,∠A︰∠B=2︰3,求各角的度数.(2)已知的周长为28cm,AB︰BC=3︰4,求它的各边的长.分析:(1)在平行四边形中,邻角是互补的,而对角是相等的,所以∠A与∠B必是邻角,其和为180°,可据此列式求出角度.(2)平行四边形的对边相等,所以周长为邻边之和的2倍,可以据此列式求出各边长.解:(1)由于∠A、∠B是平行四边形的两个邻角,所以∠A+∠B=180°.又因为∠A︰∠B=2︰3,不妨可设∠A=2k,∠B=3k,那么2k+3k=180°,可以解得k=36°,则∠A=∠C=72°,∠B=∠D=108°.(2)由于在中,AB=CD,BC=AD.所以AB+BC+CD+AD=28,即AB+BC =14.由题意得AB︰BC=3︰4,因此可设AB=3k,BC=4k,那么有3k+4k=14,解得k =2,则AB=CD=6cm,BC=AD=8cm.例3如图12-1-4,已知的周长为60 cm,对角线AC、BD相交于点O,△AOB 的周长比△BOC的周长长8cm,求这个四边形各边长.分析:由平行四边形对边相等知AB+BC=平行四边形周长的一半=30cm,又由△AOB 的周长比△BOC的周长长8 cm知AB—BC=8cm,由此两式,可得各边长.解:∵四边形ABCD为平行四边形,∴AB=CD,AD=CB,AO=CO.∵AB+CD+AD+CB=60,AO+AB+OB-(OB+BC+OC)=8,∴AB十BC=30,AB-BC=8,∴AB=CD=19,BC=AD=11.答:这个四边形各边长分别为19 cm,11 cm,19 cm,11 cm.注意:①平行四边形的邻边之和等于平行四边形周长的一半.②平行四边形被对角线分成四个小三角形,相邻两个三角形周长之差等于邻边之差.思考:如图12-1-4,如果△AOB与△AOD的周长之差为8,而AB∶AD=3∶2,那么的周长为多少?提示:周长为80.设AB=3x,则AD=2x,依题意有3x-2x=8,∴x=8,∴AB=3x=3×8=24,AD=2x=2×8=16.∴周长=2(24+16)=80.例4 如图12-1-5,在中,∠B=120°,DE⊥AB,垂足为E,DF⊥BC,垂足为F.求∠ADE,∠EDF,∠FDC的度数.分析:由平行四边形对角相等、邻角互补得∠A=∠C,∠A+∠B=180°,再由垂直得到角为90°即可.解:在中,∵∠A=∠C,AD∥BC,∴∠A+∠B=180°.∴∠A=180°-∠B=60°.∴∠C=60°.∵DE⊥AB,DF⊥BC,∴∠ADE=∠FDC=90°-∠A=90°-60°=30°.注意:在平行四边形中求角的度数时,一般运用平行四边形的特征,即对角相等、邻角互补来进行求解.【中考考点】会利用平行四边形证明角相等,线段相等及直线平行.【命题方向】多以中档题型出现,填空、选择、计算、证明等各种形式都会涉及.【常见错误分析】例7如图12-1-7,中,AC和BD交于O,OE⊥AD于E,OF⊥BC于F,则OE=OF.为什么?错解:∵,∴OA=OC,∵OE⊥AD,OF⊥BC,∴∠AOE=∠COF.又∠1=∠2,∴△AOE旋转180°后与△COF重合,∴OE=OF.误区分析:错误出于∠AOE=∠COF这一步骤,原因在于默认了E,O,F三点共线,而已知条件中并没有这个结论,其实E,O,F三点共线在证题过程中应该加以证明,否则就犯了推理没有根据,理由不充足的逻辑错误.正解:解法一:∵,∴AD∥BC,∴∠3=∠4.又OA=OC,∠AEO=∠CFO=90°,∴△AOE旋转180°后与△COF重合,∴OE=OF.解法二:∵AD∥BC,OE⊥AD∴OE⊥BC.又OF⊥BC,∴直线OE与OF重合,即E,O,F三点共线,∴∠1=∠2.又∵OA=OC,∠AEO=∠CFO=90°,∴△AOE旋转180°后与△COF重合,∴OE=OF.此命题可推广如下:已知中,AC 和BD 交于O ,过点O 作直线EF 交AD 于F ,交BC 于F ,则OE =OF .求解(略).这个推广后的命题,是平行四边形中一个十分重要的基本命题,利用它的结果可以证明很多问题成立.【学习方法指导】1.学习平行四边形的特征时,按照对角、对边、对角线的顺序去理解,便于记忆和应用.2.本节主要内容是平行四边形的定义及特征,并且要重点理解两条平行线间的距离的概念.【同步达纲练习】 一、填空题1.若一个平行四边形相邻的两内角之比为2︰3,则此平行四边形四个内角的度数分别为____________.2.在中,周长为28,两邻边之比为3︰4,则各边长为____________. 3.在中,∠A =30°,AB =7 cm ,AD =6 cm ,则=____________. 4.一个平行四边形的一边长是8,一条对角线长是6,则它的另一条对角线x 的取值范围为____________.5.中,周长为20cm ,对角线AC 交BD 于点O ,△OAB 比△OBC 的周长多4,则边AB =____________,BC =____________.6.平行四边形的边长等于5和7,这个平行四边形锐角的平分线把长边分成两条线段长各是____________.7.已知等腰△ABC 的一腰AB =9 cm ,过底边上任一点P 作两腰平行线分别交AB 于M ,交AC 于N ,则AN 十PN =____________.8.平行四边形两邻边分别是4和6,其中一边上的高是3,则平行四边形的面积是____________.9.平行四边形邻边长是 4 cm 和8cm ,一边上的高是 5 cm ,则另一边上的高是____________.10.如图12-1-8,中,E 是AD 的中点,BD 与EC 相交于F ,若2S EFD =∆,则BFC S ∆=____________.11.已知P 为内一点,,则PCD PAB S S ∆∆+=____________.12.已知的对角线相交于点O ,它的周长为10 cm ,△BCO 的周长比△AOB 的周长多2cm ,则AB =____________.二、解答题13.已知,如图12-1-9,在△ABC中,BD是∠ABC的平分线,DE∥BC交AB于E,EF ∥AC交BC于F,则BE=FC,为什么?14.如图12-1-10,中,E,F是对角线BD上两点,且BE=FD,连结AE,FC,则AE=FC,试说明理由.15.如图12-1-11,中,对角线AC长为10 cm,∠CAB=30°,AB长为6 cm,求的面积.16.如图12-1-12,在等边△ABC中,P为△ABC内一点,PD∥AB,PE∥BC,PF∥AC,D,E,F分别在AC,AB和BC上,试说明PD+PF+PE=AB.17.从平行四边形的一个锐角顶点作两条高,如果这两条高的夹角是135°,求此平行四边形的各角的度数.三、思考题18.如图12-1-13,EF 过对角线的交点O ,交AD 于E ,交BC 于F ,若AB =4,BC =5,OE =1.5,求四边形EFCD 的周长.19.以平行四边形ABCD 两邻边BC 、CD 为边向外作正△BCP 和正△CDQ ,则△APQ 为正三角形,请说明理由.参考答案【同步达纲练习】 一、1.72°,108°,72°,108° 2.6,8,6,83.2cm 21 4.10<x<22 5.7cm ,3 cm 6.5,2 7.9 cm 8.12或189.cm 2510.8 11.50 12.1.5cm 二、13.提示:由△BED 是等腰三角形得到BE =ED ,由四边形DEFC 是平行四边形得到ED =FC 即可.14.提示:通过△ABE 与△DCF 重合可以得出.15.2cm 30.16.延长FP 交AB 于G ,延长DP 交BC 于H ,四边形AGPD ,EBHD 为平行四边形,PD =AG ,PH =BE ,△GEP ,△PHF 为等边三角形,PE =EG ,PH =PF =BE ,PD +PF +PE =AG +GE +EB =AB .17.45°,135°,45°,135°. 三、18.OE =OF =1.5,AE =CF ,DE =BF ,ED +CF =BF +FC =5,CD =AB =4,四边形EFCD 的周长为2×1.5+5+4=12.19.提示:证明△ABP 、△QDA 、△QCP 三个三角形重合,可得出AP =AQ =PQ 即可.。
人教八下平行四边形专题知识点常考(典型)题型重难点题型(含详细答案)
平行四边形专题知识点+常考题型+重难点题型(含详细答案)一、目录一、目录 (1)二、基础知识点 (2)1.平行四边形的定义 (2)2.平行四边形的性质 (3)3.平行四边形的判定定理 (7)4.三角形中位线定理 (10)三、重难点题型 (14)1.平行四边形的共性 (14)2.平行四边形间距离的应用 (16)3.与平行四边形有关的计算 (17)4.与平行四边形有关的证明 (19)二、基础知识点1.平行四边形的定义平行四边形:两组对边分别平行的四边形。
平行四边形ABCD记作“□ABCD”注:只要满足对边平行的四边形都是平行四边形。
矩形、菱形、正方形都是特殊的平行四边形例1.如图,□ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证:BE=DF.答案:∵四边形ABCD为平行四边形∴AD∥CB,AD=CB∵DE⊥AB,BF⊥CD∴∠DEA=∠CFB∴△ADE≌△CFB∴AE=CF∵DC=AB∴BE=DF例2.在平面直角坐标系中,有A(0,1),B(-1,0),C(1,0)三点,若点D与A,B,C构成平行四边形,求D的坐标。
(3解)答案:如下图,有三种情况,坐标分别为:(0,-1);(2,1);(-2,1)2.平行四边形的性质性质1(边):平行四边形的对边相等(AB=CD,AC=BD)证明:∵∠CAD=∠ADB ∠DAB=∠ADC AD=AD ∴△ACD≌△DBA(ASA)∴AB=CD AC=BD性质2(角):平行四边形对角相等,邻角互补(∠A=∠D,∠C=∠B;∠A+∠C=∠B+∠D=180°)证明:∵△ACD≌△DBA(ASA)又∵∠CAB=∠CAD+∠DAB ∠CDB=∠CDA+∠ADB∴∠CAB=∠CDB∵AB∥CD∴∠B+∠BDC=180°性质3(对角线):平行四边形对角线互相平分(AO=OC;BO=OD)证明:∵AD=BC ∠OAD=∠OCB ∠ODA=∠OBC∴△AOD≌△COB(ASA)∴AO=OC OB=OD注1:平行四边形对角线互相平分,但两对角线不一定相等解析:假设平行四边形对角线相等∴∠OAD=∠ADO=∠OBC=∠OCB∠OAB=∠OBA=∠OCD=∠CDO又∵∠DAB+∠CBA=180°∴∠DAB=∠ABC=∠BCD=∠CDA=90°∴仅在平行四边形的四个角为直角时(即矩形),对角线相等注2:对角线不一定平分角解析:假设平行四边形对角线平分角,则∠ADB=∠BDC ∠ACD=∠ACB ∵∠DCB=∠BAD∴∠ACD=∠CAD又∵OD=OD∴△AOD≌△COD(AAS)∴AD=DC=BC=AB∴仅当平行四边形四条边相等时(即菱形),对角线平分角性质4:平行四边形是中心对称图形,对称中心为对角线交点。
平行四边形知识点及经典例题
第十八章平行四边形18.1.1 平行四边形的性质第一课时平行四边形的边、角特征知识点梳理1、有两组对边分别平行的四边形叫做平行四边形,平行四边形ABCD记作□ABCD。
2、平行四边形的对边相等,对角相等,邻角互补。
3、两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条直线之间的距离。
知识点训练1.(3分)如图,两X对边平行的纸条,随意穿插叠放在一起,转动其中一X,重合的局部构成一个四边形,这个四边形是________.2.(3分)如图,在□ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,那么图中共有平行四边形( )A.6个B.7个C.8个D.9个3.(3分)在□ABCD中,AB=6 cm,BC=8 cm,那么□ABCD的周长为cm.4.(3分)用40 cm长的绳子围成一个平行四边形,使其相邻两边的长度比为3∶2,那么较长的边的长度为cm.5.(4分)在□ABCD中,假设∠A∶∠B=1∶5,那么∠D=;假设∠A+∠C=140°,那么∠D=.6.(4分)(2014·XX)如图,在□ABCD中,DE平分∠ADC,AD=6,BE=2,那么□ABCD 的周长是.7.(4分)如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,假设∠EAD =53°,那么∠BCE的度数为( )A.53°B.37°C.47°D.123°8.(8分)(2013·XX)如下图,在平行四边形ABCD中,BE=DF.求证:AE=CF.9.(4分)如图,点E,F分别是□ABCD中AD,AB边上的任意一点,假设△EBC的面积为10 cm²,那么△DCF的面积为。
10.(4分)如图,梯形ABCD中,AD∥BC,记△ABO的面积为S1,△COD的面积为S2,那么S1,S2的大小关系是( )A.S1>S2 B.S1=S2 C.S1<S2 D.无法比拟11.在□ABCD中,∠A∶∠B∶∠C∶∠D的值可能是( )A.1∶2∶3∶4 B.1∶2∶2∶1C.2∶2∶1∶1 D.2∶1∶2∶112.如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论:①MN∥BC;②MN=AM,以下说法正确的选项是( )A.①②都对B.①②都错C.①对②错D.①错②13.如图,在□ABCD中,BE⊥CD,BF⊥AD,垂足分别为E,F,CE=2,DF=1,∠EBF =60°,那么□ABCD的周长为__.14.(2013·XX)如图,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠F=110°,那么∠DAE的度数为。
平行四边形知识点归纳、巩固及题型综合训练
的四边形是平行四边形;④两条对角线
的四边形
是平行四边形;⑤一组对边 (2) 识别矩形的方法: ①有一个角是 的
的
是平行四边形.
是矩形;②两条对角线
的平行四边形是矩形;
③有三个角是 的四边形是矩形;④两条对角线 且互相平分的四边形是矩形。
3.已知:如图,在□ABCD 中,E、F 分别为边 AB、CD 的中点,BD 是对角线,AG∥ DB 交 CB 的延长线于 G.
C.有一组邻边相等的平行四边形是菱形 D.对角线互相垂直平分的四边形等是正方形
6. 下列错误的是( )
腰
A.一组邻边相等的平行四边形是菱形 B.一组邻边相等的矩形是正方形梯
C. 一组对边平行且相等的四边形是平行四边形
形
四、正方形 定义:有一个角是直角的菱形是正方形. 一组邻边邻边相等的矩形是正方形. 性质:1、正方形的四条边都相等; 2、正方形的四个角都是直角; 3、正方形既是轴对称图形,又是中心对称图形. 判定定理:1、一组邻边相等的矩形是正方形. 2、有一个角是直角的菱形是正方形.
五、梯形 定义: 一组对边平行,另一组对边不平行的四边形叫做梯形. 1、直角梯形定义:有一个角是直角的梯形是直角梯形. 2、等腰梯形定义:两腰相等的梯形是等腰梯形. 等腰梯形的性质:1、等腰梯形同一底边上的两个角相等; 2、等腰梯形的两条对角线相等; 3、对称性:等腰梯形是轴对称图形. 等腰梯形判定定理:1、两腰相等的梯形是等腰梯形; 2、同一底上两个底角相等的梯形是等腰梯形; 3、两条对角线相等的梯形是等腰梯形; 梯形问题常见的辅助线:如图
判定 1、两组对边分别平行的四边形是平行四边形(定义); 2、两组对边分别相等的四边形是平行四边形; 3、一组对边平行且相等的四边形是平行四边形; 4、两组对角分别相等的四边形是平行四边形; 5、对角线互相平分的四边形是平行四边形 .
专题24 平行四边形及其性质-重难点题型
专题4.2 平行四边形及其性质-重难点题型【知识点1 平行四边形的性质】平行四边形的性质有:对边平行且相等,对角线互相平分,对角相等,邻角互补,两条平行线之间的距离处处相等,夹在两条平行线间的平行线段相等.【题型1 平行四边形的性质(求长度)】【例1】(2021春•天府新区期末)如图,在平行四边形ABCD中,∠ABC的平分线交AD于点E,过点A作AF⊥BE,垂足为点F,若AF=5,BE=24,则CD的长为()A.8B.13C.16D.18【变式1-1】(2021秋•九龙坡区校级期末)如图,在▱ABCD中,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,若△CDE的周长为8,则▱ABCD的周长为()A.8B.10C.16D.20【变式1-2】(2021春•淮南月考)在▱ABCD中,对角线AC与BD相交于点O,△BOC的周长为20cm,BC=12cm,则AC+BD的长是()A.8cm B.16cm C.24cm D.32cm【变式1-3】(2021秋•让胡路区校级期末)在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC的长为.【题型2 平行四边形的性质(求角度)】【例2】(2021•河北一模)如图,在平行四边形ABCD中,∠B=60°,AE平分∠BAD交BC于点E,若∠AED =80°,则∠EAC的度数是()A.10°B.15°C.20°D.25°【变式2-1】(2021春•锦州期末)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,点E在▱ABCD 的对角线AC上,AE=BE=BC,∠D=105°,则∠BAC的度数是()A.35°B.30°C.25°D.20°【变式2-2】(2021春•西安期末)如图,四边形ABCD为平行四边形,DE⊥BC于点E,BF⊥CD于点F,DE、BF 相交于点H,若∠A=60°,则∠EHF的度数为()A.100°B.110°C.120°D.150°【变式2-3】(2021春•西湖区校级期中)如图所示,以▱ABCD的边AB为边向内作等边△ABE,使AD=AE,且点E在平行四边形内部,连接DE,CE,则∠CED的度数为()A.150°B.145°C.135°D.120°【题型3 平行四边形的性质(求面积)】【例3】(2021春•西湖区校级期中)如图所示,点E为▱ABCD内一点,连接EA,EB,EC,ED,AC,已知△BCE 的面积为2,△CED的面积为10,则阴影部分△ACE的面积为()A.5B.6C.7D.8【变式3-1】(2021春•娄星区期末)如图,E、F分别是▱ABCD的边AB、CD上的点,AF与DE相交于点P,BF 与CE相交于点Q.若S△APD=15,S△BQC=25,则阴影部分的面积为()A.40B.45C.50D.55【变式3-2】(2021春•成华区期末)如图,▱ABCD的面积为S,点P是它内部任意一点,△P AD的面积为S1,△PBC的面积为S2,则S,S1,S2之间满足的关系是()A.S1+S2>12S B.S1+S2<12SC.S1+S2=12S D.无法判定【变式3-3】(2021秋•海曙区校级期末)如图,在▱ABCD中,点E在边AD上,过E作EF∥CD交对角线AC于点F,若要求△FBC的面积,只需知道下列哪个三角形的面积即可()A.△ECD B.△EBF C.△EBC D.△EFC【题型4 平行四边形的性质与坐标】【例4】(2021秋•甘井子区期末)如图,平面直角坐标系中,点B,点D的坐标分别为(0,2)和(0,﹣2),以BD为对角线作▱ABCD,若点A的坐标为(2,1),则点C的坐标为.【变式4-1】(2021秋•绵阳期末)如图,在平行四边形OABC中,对角线相交于点E,OA边在x轴上,点O为坐标原点,已知点A(4,0),E(3,1),则点C的坐标为()A.(1,1)B.(1,2)C.(2,1)D.(2,2)【变式4-2】(2021秋•张店区期末)如图,已知▱ABCD三个顶点坐标是A(﹣1,0)、B(﹣2,﹣3)、C(2,﹣1),那么第四个顶点D的坐标是()A.(3,1)B.(3,2)C.(3,3)D.(3,4)【变式4-3】(2021•商河县校级模拟)如图,已知平行四边形OABC的顶点A,C分别在直线x=1和x=4上,点O是坐标原点,则点B的横坐标为()A.3B.4C.5D.10【题型5 平行四边形中的最值问题】【例5】(2021春•舞钢市期末)如图,△ABC中,AB=10,△ABC的面积是25,P是AB边上的一个动点,连接PC,以P A和PC为一组邻边作平行四边形APCQ,则线段AQ的最小值是()A.3B.4C.5D.6【变式5-1】(2021春•河南期末)如图,在△ABC中,AB=AC=4,∠B=15°,点P是射线BA上的一个动点,以AP,PC为邻边作平行四边形APCQ,则边AQ的最小值为()A.4B.2C.2√3D.4√3【变式5-2】(2021春•费县期末)如图,在△ABC中,∠BAC=30°,AB=AC=12,P为AB边上一动点,以P A,PC为边作平行四边形P AQC,则对角线PQ的长度的最小值为.【变式5-3】(2021•碑林区校级模拟)如图,在▱ABCD中,点E是对角线AC上一点,过点E作AC的垂线,交边AD于点P,交边BC于点Q,连接PC、AQ,若AC=6,PQ=4,则PC+AQ的最小值为.【题型6 平行四边形中的折叠问题】【例6】(2021春•黄浦区期末)如图,在△ABC中,∠ABC=90°,点D在AB边上,将△ACD沿直线CD翻折后,点A落在点E处,如果四边形BCDE是平行四边形,那么∠ADC=.【变式6-1】(2021•江西)如图,将▱ABCD沿对角线AC翻折,点B落在点E处,CE交AD于点F,若∠B=80°,∠ACE=2∠ECD,FC=a,FD=b,则▱ABCD的周长为.【变式6-2】(2021•滨湖区二模)如图,在Rt△ABC中,∠ACB=90°,AC=3,D是边AB上一点,连接CD,将△ACD沿CD翻折得到△ECD,连接BE.若四边形BCDE是平行四边形,则BC的长为()A.√3B.3C.2√3D.3√2【变式6-3】(2020秋•锦江区校级期中)如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,DE交BC于点F,连接CE,则下列结论:①BE=CD;②BF=DF;③S△BEF=S△DCF;④BD∥CE,其中正确的有()A.1个B.2个C.3个D.4个。
第18章 《平行四边形》知识点及考点典例
第十八章《平行四边形》知识点及考点典例一、平行四边形1、平行四边形的概念两组对边分别__________的四边形叫做平行四边形。
2、平行四边形的性质(1)平行四边形的邻角_______,对角_______。
(2)平行四边形的对边_______且________。
推论:夹在两条平行线间的平行线段_______。
(3)平行四边形的对角线_________。
(4)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积。
3、平行四边形的判定(1)定义:两组对边分别________的四边形是平行四边形(2)定理1:两组对角分别_________的四边形是平行四边形(3)定理2:两组对边分别_________的四边形是平行四边形(4)定理3:对角线___________的四边形是平行四边形(5)定理4:一组对边_________的四边形是平行四边形二、矩形1、矩形的概念有一个角是_______的平行四边形叫做矩形。
2、矩形的性质(1)具有平行四边形的一切性质(边、角、对角线);(2)矩形的四个角都是_______;(3)矩形的对角线_______;(4)矩形是______对称图形。
3、矩形的判定(1)定义:有一个角是________的平行四边形是矩形。
(2)定理1:有___________是直角的四边形是矩形。
(3)定理2:对角线相等的_______________是矩形。
4、矩形的面积S矩形=长×宽=ab三、菱形1、菱形的概念有一组___________的平行四边形叫做菱形2、菱形的性质(1)具有平行四边形的一切性质(边、角、对角线);(2)菱形的________边相等(3)菱形的对角线________,并且每一条对角线平分一组对角(4)菱形是________对称图形3、菱形的判定(1)定义:有一组___________的平行四边形是菱形(2)定理1:___________都相等的四边形是菱形(3)定理2:对角线___________的平行四边形是菱形4、菱形的面积S菱形=底边长×高=两条对角线乘积的一半四、正方形1、正方形的概念有一组邻边相等并且有一个角是直角的______________叫做正方形。
八年级数学《平行四边形的特征》重点知识及经典例题
八年级数学《平行四边形的特征》重点知识及经典例题学习目标1.掌握平行四边形的定义及平行四边形的特征.2.能够灵活运用平行四边形的特征进行有关的计算.3.了解解决平行四边形问题的基本思想、是转化为三角形来处理.4.掌握平行线的性质即平行线之间的距离相等.学法指导在理解的基础上识记平行四边形的概念及其性质,并根据相应的条件选用相应的性质利用平行四边形是中心对称图形来解决一些实际问题更容易.基础知识讲解1.平行四边形的定义两组对边分别平行的四边形叫做平行四边形,用符合“□”表示,四个顶点分别为A.B.C.D.则这个平行四边形记作□ABCD.2.平行四边形的特征(1)平行四边形的两组对边分别平行.(2)平行四边形的对边相等,对角相等.(3)平行四边形的对角线互相平分.(4)平行四边形是中心对称图形.注意:特征(2)(3)利用平行四边形是中心对称图形的性质可推出.3.平行线的性质平行线的距离为其中一条直线上任一点到另一条直线的距离叫做两条平行线之间的距离.由平行线距离的定义可知,每作两条距离与两平行线组成—个平行四边形,为此有无数个平行四边形,根据平行四边形的特征可得,平行线之间的距离处处相等.重点难点重点:平行四边形的定义和特征难点:1.运用中心对称图形的特征来理解平行四边形的特征.2.作适当的辅助线把平行四边形分解成三角形来解决一些问题.3.平行线之间的距离处处相等,实质是平行四边形对边相等.易错误区分析1.利用平行四边形的定义判定一个四边形是平行四边形易犯如下错误.例如:已知如图12-1-1所示,在□ABCD中,AE=CF.求证:四边形EBFD是平行四边形错证:∵四边形ABCD是平行四边形.∴AB=DC,AD=BC∴在△ABE和△CDF中AB=DC ∠A=∠C AE=CF∴△ABE≌△CDF(SAS)∴BE=DF ∴四边形EBFD为平行四边形分析:BE=DF不能得出四边形EBFD是平行四边形,而由BE∥DF,再由已知□ABCD才能得出.正确证:连结BD∵四边形ABCD为平行四边形∴AD BC 又∴AE=CF ∴ED=BF∴∠1=∠2 ∴△BED≌△BFD∴∠3=∠4 ∴BE∥DF又∵ED∥BF ∴四边形BEDF为平行四边形2.运用平行四边形的性质和平行线距离处处相等,易犯下面的错误.例如:求证平行四边形对角线上的交点到一组对边的距离相等.已知:如图12-1-2,□ABCD的对角线AC、BD相交于点O,OE⊥AB OF⊥CD,垂足分别为E,F.求证:OE=OF错证:∵四边形ABCD为平行四边形∴OA=OC AB∥CD∴∠3=∠4 ∵∠2=∠1 ∴△OAE≌△OCF ∴OE=0F分析:错在用∠1=∠2,即把∠1与∠2当成对顶角了,因为OE,OF是从O点分别向AB、CD作两条垂线,而OE与OF是否是同一条直线还需证明,故不能直接利用∠1=∠2 正确证明:∵四边形ABCD为平形四边形∴OA=OC AB∥CD∴∠3=∠4 ∵OE⊥AB OF⊥CD∴∠AE0=∠CF0=90°∴△OAE≌△OCF ∴OE=OF典型例题例1.已知如图12-1-4所示,□ABCD中,AB的延长线上取一点E,使BE=AB,在CE 上取一点M使CM=CD,连结DM并延长交AE的延长线于点F.求证BD=BF分析:由于BD,BF是△BDF的两边,所以要证BD=BF,可由证△BDF中∠BDF=∠F入手,易知∠F=∠CDM=∠CMD=∠EMF,故只要证BD∥CE,由此由证法一又注意到BF=BE+EF,易知BE=AB=CD=CM,EF=EM,故BF=CE,从而只要证BD=CE,由此有证法二.证法(一):∵四边形ABCD为平行四边形∴AB CD又∵E点在AB延长线上,且BE=AB ∴AB CD∴四边形BECD是平行四形∴BD∥CE ∴∠BDF=∠EMF∵∠EMF=∠CMD ∴∠BDF=∠CMD又∵CM=CD ∴∠CMD=∠CDM ∴∠BDF=∠CDM∵AF∥CD ∴∠CDM=∠F ∴BDF=∠F即BD=BF证法(二):∵四边形ABCD为平行四边形∴AB CD又∵E点在AB延长线上且BE=AB ∴BE CD∴四边形BECD是平行四边形∴BD=CE,BE=CD又∵∠EMF=∠CMD,CD=CM ∴∠CMD=∠CDM∴∠EMF=∠CDM ∵BE∥CD ∴∠F=∠EMF ∴EF=EM∴BF=BE+EF=CD+EM=CM+EM=CE=BD即BF=BD例2.如图12-1-5所示:L1∥L2、AB∥CD、CE⊥L2、FG⊥L2、E、G分别为垂足,则下列说法中错误的是()A.AB=CDB.CE=FGC.A,B两点的距离就是线段AB的长D.L1与L2间的距离就是线段CD的长分析:根据平行线之间的距离处处相等,推出夹在两平行线之间的平行线段也相等.(由图象的平移也可得到)答:选D.例3.如图12-1-6所示:已知六边形ABCDEF的6个内角均为120°,CD=2cm,BC=8cm,AB=8cm,AF=5cm,试求此六边形的周长.分析:分别求出六条边的长度,再求六边形的周长显然不可能,从图中可以发现AF分别绕A点,F点旋转60°后分别与BA,EF在同一直线上.同理DC分别绕D,C旋转60°后,分别与ED,BC在同一直线上,如图所示,得到一个平行四边形EMBN,△MFA与△DCN都为等边三角形,所以六边形的周长应等于平行四边形的周长减去AF+DC.解:由已知可得∠M=∠N=60°,又∠B=∠E=120°所以EN∥MB,EM∥NB,所以四边形MBNE为平行四边形又因为△AMF,△CDN为等边三角形所以MA=AF=MF=5cm,CD=CN=DN=2cmMB=EN=8+5=13cm,ME=BN=8+2=10cm故ED=13-2=11cm,EF=ME-MF=10-5=5cm得六边形的周长为8+8+2+11+5+5=39cm例4.把边长为3cm,5cm和7cm的两个三角形拼成一个四边形,一共能拼成几种不同的四边形?其中有几种是平形四边形?分析:由于要拼成四边形,故两个三角形一定有两条边重合在一起,这条重合的边即为四边形的对角线.因此找出问题的突破口,分三种情况讨论不难得出正确的答案.(1)以3cm长的边为对角线,有两种拼法,得到两个四边形中有一个是平行四边形.如图所示:(2)以7cm长的边为对角线,也有两种拼法,得到两个四边形,其中有一个平行四边形.如图所示:(3)以5cm长的边为对角线,也有两种拼法,得到两个四边形,其中也有一个是平行四边形,如图所示:答:总共拼成6种不同的四边形,其中有3种是平行四边形.创新思维例1.一块平行四边形菜地,若它的面积是144,测得相邻两边上的高分别为8和9,请你用平行四边行形的特征和有关的知识计算出它的周长.分析:如图12-1-7所示:要求周长必须求出BC,CD的长.从面积入手得.BC·AE=144 CD·AF=144 因而可求出周长.解:因为BC·AE=144,AE=8,所以BC=18因为DC·AF=144,AF=9,所以DC=16所以平行四边形菜地的周长=2(BC+DC)=2(18+16)=68例2.如图12-1-8,△ABC中AB=AC,点P在BC上任一点,PE∥AC,PF∥AB分别交AB,AC于E、F,试问线段PE,PF,AB之间有什么关系?试证明你的结论.分析:对于由给定条件寻求结论的这类探索性问题,其解题思路一般是从给的条件出发探索、归纳、猜想出结论,然后对猜想的结论进行证明.答:由线段PE,PF,AB之线段长度,不难得出三线段之间的关系为PE+PF=AB证明:∵PE∥AC ∴∠EPB=∠C又∵AB=AC ∴∠B=∠C∴∠EPB=∠B ∴PE=EB①∵PE∥AC PF∥AB ∴四边形AEPF是平行四边形∴PF=AE②由①+②得PE+PF=EB+AE,即PE+PF=AB例3.如右图:田村有一口呈四边形的池塘,在它的四个角A、B、C、D处均有一棵大核桃树,田村准备开挖池塘养鱼,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘为平行四边形,请问田村能否实现这一设想,若能,请你画出图形,若不能,请说明理由.(画图要留下痕迹,不写作法)分析:由平行四边形的特征可知,四棵树应在平行四边形的边上,面积要扩大一倍,则把△BOA、△BOC、△COD、△AOD的面积扩一倍即可,分别过点B,点D作AC的平行线;过点A,点C分别BD的平行线,不难证明四边形A′B′C′D′就是符合条件的平行四边形的池塘.答:能,画法如图.中考练兵1.已知如图12-1-9,平行四边形ABCD中E,F分别是BC,AD边上的点,且BE=DF,AC与EF交于点O.求证:OE=OF证明:∵四边形ABCD是平行四边形∴AD BC ∴∠1=∠2∵BE=DF ∴BC-BE=AD-DF即EC=AF在△AOF和△COE中∴△AOF≌△COE(AAS)∴OF=OE2.如图12-1-10,□ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则AB长的取什范围是()A.1<AB<7 B.2<AB<4C.6<AB<8 D.3<AB<4解:由平行四边形的性质对角线互相平分得OA=4 OB=3,由三角形三边关系得OA-OB<AB<OA+OB即1<AB<7答:故选A3.如图12-1-12,将□ABCD沿AC折叠点B落在B′处,AB′交DC于点M,求证:折叠后重合的部分(即△MAC)是等腰三角形.证明:∵△BAC≌B′AC ∴AB′=AB,B′C=BC又∵AD=BC CD=AB ∴AD=B′C CD=AB′∴△ADC≌△CB′A(SSS) ∴∠ACD=∠CAB′∴MA=MC 即△MAC是等腰三角形4.如图12-1-13,E、F是平行四边形ABCD对角线上的两点,且AE=CF,求证:△ABF ≌△CDE证明:∵四边形ABCD为平行四边形∴AB∥CD,∠CAB=∠DCA∵AE二CF ∴AE+EF=CF+EF即AF=CE ∴△ABF≌△CDE。
平行四边形知识点及练习题含答案
平行四边形知识点及练习题含答案一、解答题1.如图,在Rt ABC 中,90ACB ∠=︒,过点C 的直线//MN AB ,D 为AB 边上一点,过点D 作DE BC ⊥,交直线MN 于E ,垂足为F ,连接CD 、BE(1)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由; (2)当D 为AB 中点时,A ∠等于 度时,四边形BECD 是正方形.2.如图,在四边形ABCD 中,AB ∥DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AE =,3OE =,求线段CE 的长.3.如图,ABC ∆是等腰直角三角形,AB AC =,D 是斜边BC 的中点,,E F 分别是,AB AC 边上的点,且DE DF ⊥,若12BE =,5CF =,求线段EF 的长.4.如图,在Rt ABC 中,∠B =90°,AC =60cm ,∠A =60°,点D 从点C 出发沿CA 方向以4cm/s 的速度向点A 匀速运动.同时点E 从点A 出发沿AB 方向以2cm/秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是ts (0<t≤15).过点D 作DF ⊥BC 于点F ,连接DE ,EF .(1)求证:AE =DF ;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值,如果不能,说明理由; (3)当t 为何值时,DEF 为直角三角形?请说明理由.5.如图,平行四边形ABCD 的对角线AC BD 、交于点O ,分别过点C D 、作//,//CF BD DF AC ,连接BF 交AC 于点E .(1)求证: FCE BOE ≌;(2)当ADC ∠等于多少度时,四边形OCFD 为菱形?请说明理由.6.如图,在矩形ABCD 中,E 是AD 的中点,将ABE ∆沿BE 折叠,点A 的对应点为点G .图1 图2(1)填空:如图1,当点G 恰好在BC 边上时,四边形ABGE 的形状是________; (2)如图2,当点G 在矩形ABCD 内部时,延长BG 交DC 边于点F .①求证:BF AB DF =+. ②若3AD =,试探索线段DF 与FC 的数量关系.7.如图所示,四边形ABCD 是正方形, M 是AB 延长线上一点.直角三角尺的一条直角边经过点D ,且直角顶点E 在AB 边上滑动(点E 不与点A B 、重合),另一直角边与CBM ∠的平分线BF 相交于点F .(1)求证: ADE FEM ∠=∠;(2)如图(1),当点E 在AB 边的中点位置时,猜想DE 与EF 的数量关系,并证明你的猜想;(3)如图(2),当点E 在AB 边(除两端点)上的任意位置时,猜想此时DE 与EF 有怎样的数量关系,并证明你的猜想.8.在平面直角坐标中,四边形OCNM 为矩形,如图1,M 点坐标为(m ,0),C 点坐标为(0,n ),已知m ,n 满足550n m -+-=.(1)求m ,n 的值;(2)①如图1,P ,Q 分别为OM ,MN 上一点,若∠PCQ =45°,求证:PQ =OP+NQ ; ②如图2,S ,G ,R ,H 分别为OC ,OM ,MN ,NC 上一点,SR ,HG 交于点D .若∠SDG =135°,55HG 2=,则RS =______; (3)如图3,在矩形OABC 中,OA =5,OC =3,点F 在边BC 上且OF =OA ,连接AF ,动点P 在线段OF 是(动点P 与O ,F 不重合),动点Q 在线段OA 的延长线上,且AQ =FP ,连接PQ 交AF 于点N ,作PM ⊥AF 于M .试问:当P ,Q 在移动过程中,线段MN 的长度是否发生变化?若不变求出线段MN 的长度;若变化,请说明理由.9.在矩形ABCD 中,BE 平分∠ABC 交CD 边于点E .点F 在BC 边上,且FE⊥AE.(1)如图1,①∠BEC=_________°;②在图1已有的三角形中,找到一对全等的三角形,并证明你的结论;(2)如图2,FH∥CD 交AD 于点H ,交BE 于点M .NH∥BE,NB∥HE,连接NE .若AB=4,AH=2,求NE 的长.10.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于F ,以EC CF 、为邻边作平行四边形ECFG 。
(完整版)《平行四边形》知识点归纳和题型归类
中点四边形(拓展)
常见四边形的中点四边形。
原四边形
一般四边形
矩形
菱形
正方形
图示
顺次连接
各边中点
所得的四
边形
平行四边形
菱形
矩形
正方形
平行四边形典型题训练
1。下列命题中错误的是
A.平行四边形的对边平行且相等 B.两组对边分别相等的四边形是平行四边形
C.矩形的对角线相等 D.对角线相等的四边形是矩形
2.性质:(1)边:;
(2)角:;
(3)对角线:;
(4)是中心对称图形,也是轴对称图形.
3.面积:
4.判定:(1)的平行四边形是矩形.
(2)的平行四边形是矩形.
(3)的四边形是矩形。
要点诠释:由矩形得直角三角形的性质:
(1)直角三角形斜边上的中线等于斜边的;
(2)直角三角形中,30度角所对应的直角边等于斜边的.
18. 已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.
(1)求证:AB=BC;(2)当BE⊥AD于E时,试证明:BE=AE+CD.
19.如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.
(1)求证:BE=DF;
(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM,FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.
(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;
(2)试说明在旋转过程中,线段AF与EC总保持相等;
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.
(完整版)平行四边形相关知识梳理与常考题型
(完整版)平行四边形相关知识梳理与常考题型平行四边形相关知识梳理与常考题型总结知识梳理(1 )定义:两组对边分别平行的四边形是平行四边形;(2)表示:平行四边形用符号“ □”来表示。
2. 平行四边形性质:(1)边:两组对边分别平行且相等;(2) 角:对角相等、邻角互补;(3) 对角线:对角线互相平分。
3?平行四边形的判别方法:① 两组对边分别平行的四边形是平行四边形② 对角线互相平分的四边形是平行四边形③ 一组对边平行且相等的四边形是平行四边形④ 两组对边分别相等的四边形是平行四边形⑤ 两组对角分别相等的四边形是平行四边形4、三角形中位线一一构造平行四边形(1) 定义:连结三角形两边中点的线段叫做三角形的中位线.(2) 三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.三角形中位线定理的作用:①位置关系:可以证明两条直线平行.②数量关系:可以证明线段的倍分关系.1.平行四边形的定义 CE 、F、G 、H 分别是四边形 ABCD 各边中点. EFGH 是平行四边形的三边为边向同一侧作等边△ ABD 、△ BCE 、△ ACF ,连接 DE 、EF.求是平行四边形?3、已知如图,在四边形 ABCD 中,E 、F 分别为AB 、CD 的中点.求证:EF *(AC BD )4、已知:如图,四边形 ABCD 是平行四边形,且 EAD BAF 。
(1)说明 CEF 是等腰三角形。
(2) CEF 的哪两边之和等于平行四边形 ABCD 的周长,为什么?E经典题型1已知如图, 求证:四边形2、分别以△ ABC 证:四边形AFED5. (黄冈市中考题)如图所示,平行四边形ABCD 中, G H 是对角线BD 上两点,且 DG= BH, DM BE.求证:四边形 EHFG 是平行四边形?6 已知:如图,在平行四边形ABCD 中,AE=2EC,E, F 在直线BC 上,且EE =B C =CF .求证:AF 丄DE.7.(江西省中考题)已知:如图,平行四边形ABCD 中,AE 丄BC, CF 丄BD,垂足分别为 E 、 F , G H 分别是AD BC 的中点,GH 交BD 于点0.求证:GH 与 EF 互相平分.能力提咼ABCD 中, AB = 2BC E 为 AB 中点,DF 丄 BC,垂足 F.8.(河南省中考题)已知:如图,平行四边形延长线于点 M N,交AB BC 于点P 、Q.求证:MQ= NP. ABCD 中,对角线 AC 的平行线MN 分别交DA DC 1.已知:如图,平行四边形求证:/ AED=Z EFB. A2. 如图,在平行四边形ABCD中, BC=2AB,M为AD的中点,CEL AB,垂足为E,求证:/ DME=2 AEM.作业1.如下图所示,ABCD是平行四边形,以AD BC为边在形外作等边三角形ADE和CBF, 连结BD EF,且它们相交于0,求证:EO=FO D0=B0.2.如图所示,/ EDA是平行四边形ABCD的外角,DF平分/ EDA 与BA延长线交于F, FD 延长线与BC延长线交于G.求证:BF=BG.3. 如图所示,平行四边形ABCD中,作AF L BC于F,交BD于E,若DE=2AB求证:/ ABD=2 / EBC.取G为DE中点,连接AG.在RT△ ADE中,AG为斜边上的中线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
章-平行四边形知识点和重点题型练习
————————————————————————————————作者:————————————————————————————————日期:
ﻩ
19章《平行四边形》知识点讲解与练习
知识点1:平行四边形的性质:①对比平行且相等②对角相等,邻角互补③对角线互相 平分。
1)小明用一根36m 长的绳子围成了一个平行四边形的场地,其中一条边AB 长为8m ,其他三条边各长多少? 2)
ABCD 有一个内角等于40°,则另外三个内角分别为:
3)平行四边形的周长为50cm,两邻边之比为2:3,则两邻边分别为: 4)ABCD 的周长为40cm ,△ABC 的周长为27c m,AC 的长为 ( ) A.13cm B.3 cm C.7 cm D.11.5cm
5).如图,□AB CD 中,CE ⊥AB ,垂足为E ,如果∠A =115°,则∠BCE =______.
(5题图) N
M
D
C
B
A
(7题图)
6)若平行四边形周长为54cm ,两邻边之差为5cm ,则这两边的长度分别为______.
7)如图,在□ABCD 中,M、N 是对角线BD 上的两点,B N=DM ,请判断AM 与C N有怎样的数量关系,并说明理由.它们的位置关系如何呢?
8).在□AB CD 中,A C、B D交于点O,已知AB =8c m,BC =6cm ,△AOB 的周长是18cm ,那么△AOD的周长是_____________.
9). □ABC D的对角线交于点O ,S △AOB =2c m2,则S□ABCD =__________.
10) □ABCD 的周长为60cm ,对角线交于点O ,△BOC的周长比△AOB 的周长小8cm ,则A B=______cm ,BC =_______cm . 11) □ABC D中,对角线AC 和BD 交于点O,若A C=8,AB =6,BD =m ,那么m的取值范围是____________. 12) □A BCD 中,E 、F 在A C上,四边形DE BF 是平行四边形.求证:AE=CF .
F
E D C
B
A
13)已知:如下图, AB CD 的对角AC ,BD 交与点O.E,F 分别是OA 、O C的中点。
求证:△OB E≌△ODF.
F
E O D C
A B
知识点2.①两组对边分别平行②两组对边分别相等③两组对角分别相等④对角线互相平分⑤有一组对边平行且相等。
1).已知:如图所示,在ABCD中,E、F分别为AB、CD的中点,求证四边形AECF是平行四边形.
2)
.如图所示,BD是ABCD的对角线,AE⊥BD于E,CF⊥BD于F,求证:四边形AECF为平行四边形.
3).已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BM∥DN,且BM=DN.
4).如图,在□ABCD中,E、F分别是边AB、CD上的点,已知AE=CF,M、N是DE和FB的中点,求证:四边形ENFM是平行四边形.
5).已知:如图,四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF与对角线BD交于
点O,求证:O是BD的中点.
N
M O
C
B
D
A
第1题图
第2题图
知识点3:三角形中位线
1).如图,△ABC中,D、E、F分别是AB、AC、BC的中点,
(1)若EF=5cm,则AB= cm;若BC=9cm,则DE=cm;
(2)中线AF与DE中位线有什么特殊______________.
2).已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.
3).已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.
4).如图,△ABC的周长为64,E、F、G分别为AB、AC、BC的中点,A′、B′、C′分别为EF、EG、GF的中
点,△A′B′C′的周长为_________.如果△ABC、△EFG、△A′B′C′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n个三角形的周长是__________________.
5).已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.
知识点4.矩形的性质和判定:①四个角都是直角②对角线相等
1).已知:如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠AOD=120°,求∠AEO
的度数.
2)已知矩形AB CD 中,对角线交于点O ,AB =6c m,BC =8c m,P 是A D上一动点,PE ⊥AC于E ,PF⊥BD 于F ,则PE +PF 的值是多少?这个值会随点P 的移动(不与A 、D 重合)而改变吗?请说明理由.
A
B
C D
E F
P
3).已知:如图,矩形ABCD 的两条对角线AC 、BD 相交于点O ,∠BOC =120°,AB =4c m。
求矩形对角线的长。
O
D
C B
A
4)已知:如图,□AB CD 的四个内角的平分线分别相交于点E、F、G 、H .求证:四边形EFGH 是矩形.
H
G
F
E
D
C B
A
5)如图,在
ABC D中,E ,F为BC 上两点,且BE =C F,AF =D E.
求证:(1)△A BF ≌△D CE; (2)四边形ABC D是矩形.
知识点5:菱形的性质和判定:性质:①四边相等②对角线互相垂直,且一条对角线平 分一组对角。
1.菱形的两条对角线的长分别是6cm 和8c m,求菱形的周长和面积。
2) 如图,菱形ABCD 的边长为2,B D=2,E,F 分别是边AD ,CD 上的两个动点,且满足AE +CF =2.
(1)求证:△BDE ≌△BCF ;
A
B
D
C
E
F
A B
N
P
Q M D C
(2)判断△B EF 的形状,并说明理由;
3).如图,两张等宽的纸条交叉重叠在一起,重叠的部分ABCD 是菱形吗? 求证:(1)四边形ABC D是平行四边形
(2) 过A 作AE ⊥BC 于E 点, 过A 作AF ⊥C D于F .用等积法说明BC =CD . (3) 求证:四边形ABCD 是菱形.
A
B C
D E F
4) 如图,在四边形A BCD 中,AB =CD ,M,N ,P ,Q 分别是A D,BC ,BD ,A C的中点. 求证:M N与P Q互相垂直平分.
知识点6.正方形
1) 已知:如图,正方形ABCD 中,对角线的交点为O,E 是OB 上的一点,DG ⊥AE 于G,DG 交OA 于F . 求证:OE=O F.
ﻩ
2). 如图6,已知正方形ABC D的面积为256,点F 在AD 上,点E 在AB 的延长线上,R t△C EF的面积为200,则BE 的值是 .
3)如图正方形A BCD 的边长为8,DM=2,N 为AC 上一点,则DN +MN 的最小值为 .
N
M
第3题图
D C
B
A
A
F B
E C
D
G 图6
4)如图,在边长为4的正方形AB CD中,点P在AB 上从A向B 运动,连结DP 交AC 于点Q
.
(1)试证明:无论点P 运动到A B上何处时,都有△ADQ ≌△AB Q;
(2)当点P 在AB 上运动到什么位置时,△A DQ 的面积是正方形AB CD面积的
6
1; (3)若点P 从点A 运动到点B ,再继续在B C上运动到点C ,在整个运动过程中,当点P 运动到什么位置时,△AD Q恰为等腰三角形.
综合练习
1.如图,已知在平行四边形A BCD 中,AE ⊥BC于E ,AF ⊥CD 于F,若∠EAF =60 o ,C E=3cm ,FC =1c m,求AB 、B C的长及AB CD 面积.
60o
A
B
C
D
E
F
2.如图,正方形ABCD 中,E为BC上一点,AF 平分∠DAE ,求证:BE+DF =AE .
A
B
C
D E
F。