(全国通用版)2018_2019高中数学第三章基本初等函数(Ⅰ)3.4函数的应用Ⅱ练习新人教B版必修

合集下载

高数16个基本初等函数

高数16个基本初等函数

高数是一门重要的数学课程,其中最基础的内容就是16个基本初等函数。

这些函数在数学和实际应用中都有着广泛的应用,下面我们将逐一介绍这16个函数。

一、常数函数常数函数是指函数f(x)=c,其中c为常数。

这个函数的图像是一条平行于x轴的直线,它的斜率为0。

常数函数在实际应用中常用于表示一些固定的量,如重力加速度g=9.8m/s²。

二、幂函数幂函数是指函数f(x)=x^a,其中a为常数。

幂函数的图像随着a的不同而变化,当a>1时,函数的图像呈现出上升的趋势,当0<a<1时,函数的图像呈现出下降的趋势。

幂函数在实际应用中常用于描述一些具有指数增长或衰减的现象,如人口增长、放射性衰变等。

三、指数函数指数函数是指函数f(x)=a^x,其中a为常数。

指数函数的图像随着a的不同而变化,当a>1时,函数的图像呈现出上升的趋势,当0<a<1时,函数的图像呈现出下降的趋势。

指数函数在实际应用中常用于描述一些具有指数增长或衰减的现象,如利息的复利计算、细胞的增长等。

四、对数函数对数函数是指函数f(x)=loga(x),其中a为常数。

对数函数的图像是一条上升的曲线,它的斜率在x=1处为1。

对数函数在实际应用中常用于描述一些量的倍数关系,如声音的强度、地震的震级等。

五、三角函数三角函数是指正弦函数、余弦函数和正切函数。

正弦函数和余弦函数的图像都是周期性波动的曲线,它们的周期为2π。

正切函数的图像则是一条无限延伸的曲线。

三角函数在实际应用中常用于描述周期性变化的现象,如天体运动、电流的交流等。

六、反三角函数反三角函数是指正弦函数的反函数、余弦函数的反函数和正切函数的反函数。

反三角函数的图像是一条上升或下降的曲线,它们的定义域和值域与对应的三角函数相反。

反三角函数在实际应用中常用于求解三角函数的反函数值,如角度的计算、电路的分析等。

七、双曲函数双曲函数是指双曲正弦函数、双曲余弦函数和双曲正切函数。

高中数学 第三章 基本初等函数(Ⅰ)本章整合课件 新人

高中数学 第三章 基本初等函数(Ⅰ)本章整合课件 新人
方法二:原式=12(5lg 2-2lg 7)-43·32lg 2+12(2lg 7+lg 5) =52lg 2-lg 7-2lg 2+lg 7+12lg 5 =12lg 2+12lg 5=12(lg 2+lg 5) =12lg 10=12.
专题一 专题二 专题三 专题四 专题五 专题六 专题七
专题二 比较大小问题
专题一 专题二 专题三 专题四 专题五 专题六 专题七
【应用 2】 比较下列各组数的大小: (1)2-12与 0.3-15;(2)log2254与 log311038;
(3)lo������13 与 lo������12.
2
3
解:(1)∵2-12<20=1,0.3-15>0.30=1,
1
1
∴2-2<0.3-5.
【应用 2】 (1)化简4b23a+32-83aa3bb+a23 ÷
1-2 3
b a
× 3 ab;
(2)求值:12lg3429 − 43lg 8+lg 245.
提示:利用指数与对数的运算法则运算即可.
专题一 专题二 专题三 专题四 专题五 专题六 专题七
1
1
1
解:(1)原式=
a3(a-8b) (2b13)2+2a13b13+
本章整合
指数与指数函数
指数
幂的概念:形如������������ 的形式称为幂,一般地,当 a > 0,α∈������时,实数指数幂������������ 均有意义 幂的运算法则:������������ ·������������ = ������������+������ ;(������������ )������ = ������������������ ;(ab)������ = ������������ ������������ ,其中 a > 0,b > 0,α,β∈������

2018-2019学年高一数学人教A版必修一教学课件:模块复习 第3课 基本初等函数(Ⅰ)

2018-2019学年高一数学人教A版必修一教学课件:模块复习 第3课 基本初等函数(Ⅰ)

• 函数图象的画法
画法 基本函数 法 应用范围 画法技巧 利用一次函数、反比例函数、二次函数、指数函 数、对数函数、幂函数的有关知识,画出特殊点 (线),直接根据函数的图象特征作出图象 弄清所给函数与基本函数的关系,恰当选择平移 、对称等变换方法,由基本函数图象变换得到函 数图象 列表、描点、连线
• • • • • • • •
(2)比较下列各组数的大小: ①1.70.2,log2.10.9与0.82.1; ②(lg m)1.9与(lg m)2.1(1<m≤10). 解:①因为函数y=log2.1x在(0,+∞)上是增函数且0.9<1, 所以log2.10.9<log2.11=0. 因为函数y=1.7x在R上是增函数且0.2>0,所以1.70.2>1.70=1. 因为函数y=0.8x在R上是减函数且2.1>0, 所以0<0.82.1<0.80=1. 综上,log2.10.9<0.82.1<1.70.2.
模块复习课
第三课
基本初等函数(Ⅰ)
1.根式的性质 (1) n
0 0=_____( n∈N*); a a)n=_____( n∈N*);
(2)( (3) n
n
n
a an=_____( n 为奇数,n∈N*);
aa≥0, n a =|a|= -aa<0
(n 为偶数,n∈N*).
a>b>1>c>d>0
类型一 指数与对数的运算
计算 (1)( 005)0. 1 2 3 (2)log3.19.61+lg 1 000+ln(e · 6
2
4 2)3
16 - 1 - 4 49 2

4
2 ×80.25 - ( - 2
1 解: (1) 原式= (2 3 1 3 4 ×(2 )

知识点整理-[高中数学]第三章 基本初等函数(I)

知识点整理-[高中数学]第三章  基本初等函数(I)

如果 a=1,y=1x=1,是一个常量,对它就没有研究的必要。
为了避免上述各种情况,所以规定 a>0 且 a≠1。
1
③如 y=2·3x,y= 2 x ,y= 3 x2 ,y=3x+1 等函数都不是指数函数,要注意区分。
(2)指数函数的图象和性质
y=ax
0<a<1
a>1
图 象
定义域为 R,值域为(0,+∞)
质对于无理指数幂也适用,这样,指数概念就扩充到了整个实数范围。
(3)利用分数指数进行根式与幂的计算
在进行幂和根式的化简时,一般是先将根式化成幂的形式,并化小数指数幂为分数指
数幂,并尽可能的统一成分数指数幂形式,再利用幂的运算性质进行化简、求值、计算,
以利于运算、达到化繁为简的目的。
对于根式计算结果,并不强求统一的表示形式,一般用分数指数幂的形式来表示,如
a0=1,即 x=0 时,y=1,图像都过点(0,1)
性 a1=a,即 x=1 时,y 等于底数 a,图像都经过点(1,a)
质 在定义域上是单调减函数
在定义域上是单调增函数
x<0 时,ax>1;
x<0 时,0<ax<1;
x>0 时,0<ax<1
x>0 时,ax>1
既不是奇函数,也不是偶函数
4
学习指数函数的图象和性质,需要注意的几个问题: ①当底数 a 大小不定时,必须分“a>1”和“0<a<1”两种情况讨论。 ②当 0<a<1 时,x→+∞,y→0;当 a>1 时,x→-∞,y→0。当 a>1 时 a 的值越大, 图象越靠近 y 轴,递增速度越快;当 0<a<1 时,a 的值越小,图象越靠近 y 轴,递减的 速度越快。(其中“x→+∞”意义是:“x 接近于正无穷大”)。 ③在同一直角坐标系中指数函数图象的位置与底数大小的关系:在 y 轴右侧,图象从 上到下相应的底数由大变小;在 y 轴左侧,图象从下到上相应的底数由大变小。 规律:当 a>1,b>1 时,指数函数 y=ax,y=bx 的图象在同一坐标系中,在直线 x=0 的右边,当 a>b 时,y=ax 的图象在 y=bx 的图象上方,在直线 x=0 的左边正好相反。 当 0<a<1,0<b<1 时,指数函数 y=ax,y=bx 的图象的关系与 a>1,b>1 正好相反。 (3)指数函数的定义域与值域 指数函数 y=ax(a>0 且 a≠1)的定义域是(-∞,+∞),值域是(0,+∞)。 求由指数函数构成的复合函数的定义域时,可能涉及解指数不等式(即未知数在指数 上的不等式)。解指数不等式的基本方法是把不等式两边化为同底的幂的形式,利用指数 函数的单调性脱去幂的形式,从而转化为熟悉的不等式。同时还应注意负数不能开偶次方, 分母不能为零,限制 x 的取值。 求由指数函数构成的复合函数的值域,一般用换元法即可,但应注意在中间变量的值 域以及指数函数的单调性的双重作用下,函数值域的变化情况。 (4)指数函数图象的变换规律 ①平移规律 若已知 y=ax 的图象,则把 y=ax 的图象向左平移 b(b>0)个单位,则得到 y=ax+b 的图 象,向右平移 b(b>0)个单位,则得到 y=ax-b 的图象,向上平移 b(b>0)个单位,则得 到 y=ax+b 的图象,向下平移 b(b>0)个单位,则得到 y=ax-b 的图象。 一般的,把函数 y=f(x)图象向右平移 m 个单位得到函数 y=f(x-m)的图象(m∈R,m< 0,就是向左平移|m|个单位);把函数 y=f(x)的图象向上平移 n 个单位,得函数 g(x)=f(x)+n 的图象(n∈R,n<0,就是向下平移|n|个单位)。

2018版高中数学第三章基本初等函数Ⅰ3.4函数的应用Ⅱ课件新人教B版必修1

2018版高中数学第三章基本初等函数Ⅰ3.4函数的应用Ⅱ课件新人教B版必修1

按乙,第一年本息合计100×1.09,第二年本息合计100×1.092,„,5年后
本息合计100×1.095≈153.86(万元).
故按乙方案投资5年可多得利3.86万元,乙方案投资更有利.
解答
反思与感悟
建立函数模型是为了预测和决策,预测准不准主要靠建立的函数模型与
实际的拟合程度.而要获得好的拟合度,就需要丰富、详实的数据.
A.(0,+∞) B.(2,+∞)
C.(-∞,2)

D.(4,+∞)
1
2
3
4
5
答案
3.某物体一天中的温度T(单位:℃)是时间t(单位:h)的函数:T(t)=t3-3t
+60,t=0表示中午12:00,其后t取正值,则下午3时温度为
题型探究
类型一
几类函数模型的增长差异
例1 (1)下列函数中,随x的增大,增长速度最快的是
A.y=50x B.y=x50
C.y=50x 解析
y=50x.
D.y=log50x(x∈N+)
四个函数中,增长速度由慢到快依次是y=log50x,y=50x,y=x50,
解析
答案
(2)函数y=2x-x2的大致图象为
解析
四个函数中,A的增长速度不变,B、C增长速度越来越快,其中C
解析 答案
增长速度比B更快,D增长速度越来越慢,故只有D能反映y与x的关系.
反思与感悟
根据实际问题提供的两个变量的数量关系可构建和选择正确的函数模
型.同时,要注意利用函数图象的直观性来确定适合题意的函数模型.
跟踪训练2
某工厂 6 年来生产某种产品的情况是:前 3 年年产量的增长
(打点计时器测量 ),画散点图分析数据(增长速度、单位时间内 的增长量等),寻找或选择函数(假说)来拟合,这个函数即为函 数模型.函数模型通常用来解释已有数据和预测.

2020学年高中数学第三章基本初等函数(Ⅰ)3.4函数的应用(Ⅱ)课件新人教B版必修1

2020学年高中数学第三章基本初等函数(Ⅰ)3.4函数的应用(Ⅱ)课件新人教B版必修1

指数函数模型 某公司拟投资 100 万元,有两种投资可供选择:一种 是年利率 10%,按单利计算,5 年后收回本金和利息;另一 种是年利率 9%,按每年复利一次计算,5 年后收回本金和利 息.哪一种投资更有利?这种投资比另一种投资 5 年可多得 利息多少元?(结果精确到 0.01 万元)
【解】 本金 100 万元,年利率 10%,按单利计算,5 年后 的本息和是 100×(1+10%×5)=150(万元). 本金 100 万元,年利率 9%,按每年复利一次计算,5 年后的 本息和是 100×(1+9%)5≈153.86(万元). 由此可见,按年利率 9%每年复利一次投资要比年利率 10% 单利投资更有利,5 年后多得利息 3.86 万元.
对数函数模型 燕子每年秋天都要从北方飞向南方过冬,研究燕子的 科学家发现,两岁燕子的飞行速度可以表示为函数 v= 5log21Q0,单位是 m/s,其中 Q 表示燕子的耗氧量. (1)求燕子静止的耗氧量是多少个单位; (2)当一只燕子的耗氧量是 80 个单位时,它的飞行速度是多 少?
【解】 (1)由题知,当燕子静止时,它的速度 v=0,代入题 中给出的公式可得:0=5log21Q0,解得 Q=10. 即燕子静止时的耗氧量是 10 个单位. (2)将耗氧量 Q=80 代入题中给出的公式得: v=5log28100=5log28=15(m/s). 即当一只燕子的耗氧量是 80 个单位时,它的飞行速度为 15 m/s.
解:(1)设 v=k·log31Q00. 因为当 Q=900 时,v=1, 所以 1=k·log3910000, 所以 k=12, 所以 v 关于 Q 的函数解析式为 v=12log31Q00.
(2)令 v=1.5,则 1.5=12log31Q00, 所以 Q=2 700. 即一条鲑鱼的游速是 1.5 m/s 时耗氧量为 2 700 个单位.

高中数学 第三章 基本初等函数(Ⅰ)3.2.2 对数函数学案 新人教B版必修1(2021年最新整理)

高中数学 第三章 基本初等函数(Ⅰ)3.2.2 对数函数学案 新人教B版必修1(2021年最新整理)

2018版高中数学第三章基本初等函数(Ⅰ)3.2.2 对数函数学案新人教B 版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高中数学第三章基本初等函数(Ⅰ)3.2.2 对数函数学案新人教B版必修1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高中数学第三章基本初等函数(Ⅰ)3.2.2 对数函数学案新人教B版必修1的全部内容。

3.2。

2 对数函数1.理解对数函数的概念、图象及性质.(重点)2.根据对数函数的定义判断一个函数是否为对数函数.(易混点)3.初步掌握对数函数的图象和性质,会解与对数函数相关的定义域、值域问题.(难点)[基础·初探]教材整理1 对数函数的概念阅读教材P102“对数函数”前两个自然段,完成下列问题.一般地,我们把函数y=log a x(a>0且a≠1)叫做对数函数,其中x是自变量,函数的定义域为(0,+∞).判断(正确的打“√",错误的打“×”)(1)函数y=log x错误!是对数函数.()(2)函数y=2log3x是对数函数.()(3)函数y=log3(x+1)的定义域是(0,+∞).()【解析】(1)×.对数函数中自变量x在真数的位置上,且x〉0,所以(1)错;(2)×.在解析式y=log a x中,log a x的系数必须是1,所以(2)错;(3)×。

由对数式y=log3(x+1)的真数x+1>0可得x>-1,所以函数的定义域为(-1,+∞),所以(3)错.【答案】(1)×(2)×(3)×教材整理2 对数函数的图象和性质阅读教材P103“表2”以下至P103“例1”以上部分,完成下列问题.对数函数y=log a x在底数a〉1及0〈a<1这两种情况下的图象和性质如下表所示:a>10<a<1图象性质定义域:(0,+∞)值域:R过定点(1,0),即x=1时,y=0在(0,+∞)上是增函数在(0,+∞)上是减函数函数y=log(3a-1)x是(0,+∞)上的减函数,则实数a的取值范围是________.【解析】由题意可得0〈3a-1〈1,解得错误!<a<错误!,所以实数a的取值范围是错误!.【答案】错误![小组合作型]对数函数的概念(1)下列函数表达式中,是对数函数的个数有( )①y=log x2;②y=log a x(a∈R);③y=log8x;④y=ln x;⑤y=log x(x+2);⑥y=2log4x;⑦y=log2(x+1).A.1个B.2个C.3个D.4个(2)若对数函数f(x)的图象过点(4,-2),则f(8)=________。

2018-2019学年高考数学(理科)一轮复习通用版:第三单元 基本初等函数(Ⅰ)及应用

2018-2019学年高考数学(理科)一轮复习通用版:第三单元  基本初等函数(Ⅰ)及应用

第三单元 基本初等函数(Ⅰ)及应用教材复习课“基本初等函数(Ⅰ)”相关基础知识一课过一、根式与幂的运算 1.根式的性质 (1)(n a )n=a .(2)当n 为奇数时,na n =a .(3)当n 为偶数时,na n =|a |=⎩⎪⎨⎪⎧a (a ≥0),-a (a <0).(4)负数的偶次方根无意义. (5)零的任何次方根都等于零. 2.有理数指数幂 (1)分数指数幂:①正分数指数幂:a m n =na m (a >0,m ,n ∈N *,且n >1). ②负分数指数幂:a -m n =1a m n =1n a m (a >0,m ,n ∈N *,且n >1).③0的正分数指数幂等于0,0的负分数指数幂没有意义. (2)有理数指数幂的运算性质. ①a r ·a s =ar +s(a >0,r ,s ∈Q ).②(a r)s =a rs (a >0,r ,s ∈Q ).③(ab )r =a r b r(a >0,b >0,r ∈Q ). 二、对数及对数运算 1.对数的定义一般地,如果a x =N (a >0,且a ≠1),那么数x 叫作以a 为底N 的对数,记作x =log a N ,其中a 叫作对数的底数,N 叫作真数.2.对数的性质 (1)log a 1=0,log a a =1. (2)a log a N =N ,log a a N =N . (3)负数和零没有对数.3.对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么 (1)log a (M N )=log a M +log a N . (2)log a MN =log a M -log a N . (3)log a M n=n log a M (n ∈R ). (4)换底公式log a b =log m blog m a(a >0且a ≠1,b >0,m >0,且m ≠1). [小题速通] 1.化简(a 23·b -1)-12·a-12·b136a ·b 5(a >0,b >0)的结果是( )A .aB .abC .a 2bD.1a解析:选D 原式=a3-1b 12a -12b13a 16b56=a---111362·b+-151362=1a .2.若x =log 43,则(2x -2-x )2=( ) A.94 B.54 C.103D.43解析:选D 由x =log 43,得4x =3,即4-x =13,(2x -2-x )2=4x -2+4-x =3-2+13=43.3.(log 23)2-4log 23+4+log 213=( )A .2B .2-2log 23C .-2D .2log 23-2解析:选B (log 23)2-4log 23+4+log 213=(log 23-2)2-log 23=2-log 23-log 23=2-2log 23.4.已知f (x )=2x +2-x ,若f (a )=3,则f (2a )=( )A .11B .9C .7D .5解析:选C 由题意可得f (a )=2a +2-a =3,则f (2a )=22a +2-2a=(2a +2-a )2-2=7.[清易错]1.在进行指数幂的运算时,一般用分数指数幂的形式表示,并且结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数.易忽视字母的符号.2.在对数运算时,易忽视真数大于零. 1.化简-x 3x 的结果是( )A .--x B.x C .-xD.-x解析:选A 依题意知x <0,故-x 3x=--x 3x 2=--x . 2.若lg x +lg y =2lg(x -2y ),则xy 的值为________.解析:∵lg x +lg y =2lg(x -2y ), ∴xy =(x -2y )2,即x 2-5xy +4y 2=0, 即(x -y )(x -4y )=0,解得x =y 或x =4y . 又x >0,y >0,x -2y >0, 故x =y 不符合题意,舍去. 所以x =4y ,即xy =4. 答案:4二次函数1.二次函数解析式的三种形式 (1)一般式:f (x )=ax 2+bx +c (a ≠0). (2)顶点式:f (x )=a (x -m )2+n (a ≠0). (3)零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). 2.二次函数的图象和性质解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0) 图象定义域 RR值域⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a单调性在⎝⎛⎦⎤-∞,-b2a 上单调递减; 在⎣⎡⎭⎫-b2a ,+∞上单调递增 在⎝⎛⎦⎤-∞,-b2a 上单调递增; 在⎣⎡⎭⎫-b2a ,+∞上单调递减[小题速通]1.若二次函数y =-2x 2-4x +t 的图象的顶点在x 轴上,则t 的值是( ) A .-4 B .4 C .-2D .2解析:选C ∵二次函数的图象的顶点在x 轴上,∴Δ=16+8t =0,可得t =-2. 2.(2018·唐山模拟)如果函数f (x )=x 2-ax -3在区间(-∞,4]上单调递减,那么实数a 的取值范围为( )A .[8,+∞)B .(-∞,8]C .[4,+∞)D .[-4,+∞)解析:选A 函数f (x )图象的对称轴方程为x =a 2,由题意得a2≥4,解得a ≥8.3.(2017·宜昌二模)函数f (x )=-2x 2+6x (-2≤x ≤2)的值域是( ) A .[-20,4] B .(-20,4) C.⎣⎡⎦⎤-20,92 D.⎝⎛⎭⎫-20,92 解析:选C 由函数f (x )=-2x 2+6x 可知,二次函数f (x )的图象开口向下,对称轴为x =32,当-2≤x <32时,函数f (x )单调递增,当32≤x ≤2时,函数f (x )单调递减,∴f (x )max =f ⎝⎛⎭⎫32=-2×94+6×32=92,又f (-2)=-8-12=-20,f (2)=-8+12=4,∴函数f (x )的值域为⎣⎡⎦⎤-20,92.[清易错]易忽视二次函数表达式f (x )=ax 2+bx +c 中的系数a ≠0.若二次函数f (x )=ax 2-4x +c 的值域为[0,+∞),则a ,c 满足的条件是________. 解析:由已知得⎩⎪⎨⎪⎧a >0,4ac -164a =0,⇒⎩⎪⎨⎪⎧a >0,ac -4=0.答案:a >0,ac =41.幂函数的定义一般地,形如y =x α的函数称为幂函数,其中x 是自变量,α为常数.2.常见的5种幂函数的图象3.常见的5种幂函数的性质1.幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的图象是( )解析:选C 令f (x )=x α,则4α=2, ∴α=12,∴f (x )=x 12.故C 正确.2.(2018·贵阳监测)已知幂函数y =f (x )的图象经过点⎝⎛⎭⎫13,3,则f ⎝⎛⎭⎫12=( ) A.12 B .2 C. 2D.22解析:选C 设幂函数的解析式为f (x )=x α,将⎝⎛⎭⎫13,3代入解析式得3-α=3,解得α=-12,∴f (x )=x -12,f ⎝⎛⎭⎫12=2,故选C.3.若函数f (x )=(m 2-m -1)x m 是幂函数,且在x ∈(0,+∞)上为增函数,则实数m 的值是( )A .-1B .2C .3D .-1或2解析:选B ∵f (x )=(m 2-m -1)x m 是幂函数,∴m 2-m -1=1,解得m =-1或m =2.又f (x )在x ∈(0,+∞)上是增函数,所以m =2.[清易错]幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.幂函数y =xm 2-2m -3(m ∈Z )的图象如图所示,则m 的值为( )A .-1<m <3B .0C .1D .2解析:选C 从图象上看,由于图象不过原点,且在第一象限下降,故m 2-2m -3<0,即-1<m <3;又从图象看,函数是偶函数,故m 2-2m-3为负偶数,将m =0,1,2分别代入,可知当m =1时,m 2-2m -3=-4,满足要求.指数函数指数函数的图象与性质y =a x (a >0,且a ≠1) a >1 0<a <1图象定义域 R 值域(0,+∞)性质当x =0时,y =1,即过定点(0,1)当x >0时,y >1;当x <0时,0<y <1 当x >0时,0<y <1;当x <0时,y >1 在R 上是增函数在R 上是减函数1.函数f (x )=a x -2+1(a >0,且a ≠1)的图象必经过点( )A .(0,1)B .(1,1)C .(2,0)D .(2,2)解析:选D 由f (2)=a 0+1=2,知f (x )的图象必过点(2,2).2.函数f (x )=1-2x 的定义域是( ) A .(-∞,0] B .[0,+∞) C .(-∞,0)D .(-∞,+∞)解析:选A 要使f (x )有意义须满足1-2x ≥0,即2x ≤1,解得x ≤0. 3.函数y =a x -a (a >0,且a ≠1)的图象可能是( )解析:选C 当x =1时,y =a 1-a =0,所以函数y =a x -a 的图象过定点(1,0),结合选项可知选C.4.设a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则a ,b ,c 的大小关系是( ) A .a >c >b B .a >b >c C .c >a >bD .b >c >a解析:选A 构造指数函数y =⎝⎛⎭⎫25x(x ∈R ),由该函数在定义域内单调递减可得b <c ;又y =⎝⎛⎭⎫25x (x ∈R )与y =⎝⎛⎭⎫35x (x ∈R )之间有如下结论:当x >0时,有⎝⎛⎭⎫35x >⎝⎛⎭⎫25x ,故⎝⎛⎭⎫3525>⎝⎛⎭⎫2525,即a >c ,故a >c >b .5.下列四类函数中,具有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )f (y )”的是( )A .幂函数B .对数函数C .指数函数D .余弦函数解析:选C 由指数运算的规律易知,a x +y =a x ·a y ,即令f (x )=a x ,则f (x +y )=f (x )f (y ),故该函数为指数函数.[清易错]指数函数y =a x (a >0,且a ≠1)的图象和性质与a 的取值有关,要特别注意区分a >1或0<a <1.若函数f (x )=a x (a >0,且a ≠1)在区间[1,2]上的最大值比最小值大a 2,则a 的值为________.解析:当a >1时,f (x )=a x 为增函数, f (x )max =f (2)=a 2,f (x )mi n =f (1)=a . ∴a 2-a =a2.即a (2a -3)=0.∴a =0(舍去)或a =32>1.∴a =32.当0<a <1时,f (x )=a x 为减函数, f (x )max =f (1)=a ,f (x )mi n =f (2)=a 2. ∴a -a 2=a2.即a (2a -1)=0,∴a =0(舍去)或a =12.∴a =12.综上可知,a =12或a =32.答案:12或32对数函数的图象与性质1.若函数f (x )=log a (3x -2)(a >0,且a ≠1)的图象经过定点A ,则A 点坐标是( ) A.⎝⎛⎭⎫0,23 B.⎝⎛⎭⎫23,0 C .(1,0) D .(0,1)答案:C2.已知a >0,且a ≠1,函数y =a x 与y =log a (-x )的图象可能是( )解析:选B 由题意知,y =a x 的定义域为R ,y =log a (-x )的定义域为(-∞,0),故排除A 、C ;当0<a <1时,y =a x 在R 上单调递减,y =log a (-x )在(-∞,0)上单调递增;当a >1时,y =a x 在R 上单调递增,y =log a (-x )在(-∞,0)上单调递减,结合B 、D 图象知,B 正确.3.函数y =log 2|x +1|的单调递减区间为__________,单调递增区间为__________.解析:作出函数y =log 2x 的图象,将其关于y 轴对称得到函数y =log 2|x |的图象,再将图象向左平移1个单位长度就得到函数y =log 2|x +1|的图象(如图所示).由图知,函数y =log 2|x +1|的单调递减区间为(-∞,-1),单调递增区间为(-1,+∞).答案:(-∞,-1) (-1,+∞)4.函数f (x )=log a (x 2-2x -3)(a >0,a ≠1)的定义域为________.解析:由题意可得x 2-2x -3>0,解得x >3或x <-1,所以函数的定义域为{x |x >3或x <-1}.答案:{x |x >3或x <-1}[清易错]解决与对数函数有关的问题时易漏两点: (1)函数的定义域. (2)对数底数的取值范围. 1.(2018·南昌调研)函数y =log 23(2x -1) 的定义域是( ) A .[1,2] B .[1,2) C.⎣⎡⎦⎤12,1D.⎝⎛⎦⎤12,1解析:选D 要使函数有意义,则⎩⎪⎨⎪⎧log 23(2x -1)≥0,2x -1>0,解得12<x ≤1.2.函数y =log a x (a >0,且a ≠1)在[2,4]上的最大值与最小值的差是1,则a 的值为________. 解析:当a >1时,函数y =log a x 在[2,4]上是增函数,所以log a 4-log a 2=1,即log a 2=1,所以a =2.当0<a <1时,函数y =log a x 在[2,4]上是减函数,所以log a 2-log a 4=1,即log a 12=1,所以a =12.故a =2或a =12.答案:2或12一、选择题1.函数f (x )=⎩⎪⎨⎪⎧2-x-1,x ≤0,x 12,x >0,满足f (x )=1的x 的值为( )A .1B .-1C .1或-2D .1或-1解析:选D 由题意,方程f (x )=1等价于⎩⎪⎨⎪⎧x ≤0,2-x -1=1或⎩⎪⎨⎪⎧x >0,x 12=1,解得x =-1或1.2.函数f (x )=ln|x -1|的图象大致是( )解析:选B 令x =1,x -1=0,显然f (x )=ln|x -1|无意义,故排除A ;由|x -1|>0可得函数的定义域为(-∞,1)∪(1,+∞),故排除D ;由复合函数的单调性可知f (x )在(1,+∞)上是增函数,故排除C ,选B.3.(2018·郑州模拟)设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )解析:选D 结合二次函数y =ax 2+bx +c (a ≠0)的图象知: 当a <0,且abc >0时,若-b2a <0,则b <0,c >0,故排除A ,若-b2a>0,则b >0,c <0,故排除B. 当a >0,且abc >0时,若-b2a <0,则b >0,c >0,故排除C ,若-b2a>0,则b <0,c <0,故选项D 符合. 4.设a =0.32,b =20.3,c =log 25,d =log 20.3,则a ,b ,c ,d 的大小关系是( ) A .d <b <a <c B .d <a <b <c C .b <c <d <aD .b <d <c <a解析:选B 由对数函数的性质可知c =log 25>2,d =log 20.3<0,由指数函数的性质可知0<a =0.32<1,1<b =20.3<2, 所以d <a <b <c .5.(2018·长春模拟)函数y =4x +2x +1+1的值域为( )A .(0,+∞)B .(1,+∞)C .[1,+∞)D .(-∞,+∞)解析:选B 令2x =t ,则函数y =4x +2x +1+1可化为y =t 2+2t +1=(t +1)2(t >0). ∵函数y =(t +1)2在(0,+∞)上递增, ∴y >1.∴所求值域为(1,+∞).故选B. 6.(2017·大连二模)定义运算:x y =⎩⎪⎨⎪⎧x ,xy ≥0,y ,xy <0,例如:=3,(-=4,则函数f (x )=x 2x -x 2)的最大值为( )A .0B .1C .2D .4解析:选D 由题意可得f (x )=x 2x -x 2)=⎩⎪⎨⎪⎧x 2,0≤x ≤2,2x -x 2,x >2或x <0,当0≤x ≤2时,f (x )∈[0,4];当x >2或x <0时,f (x )∈(-∞,0).综上可得函数f (x )的最大值为4,故选D.7.已知函数f (x )=lg ⎝⎛⎭⎫21-x +a 是奇函数,且在x =0处有意义,则该函数为( )A .(-∞,+∞)上的减函数B .(-∞,+∞)上的增函数C .(-1,1)上的减函数D .(-1,1)上的增函数解析:选D 由题意知,f (0)=lg(2+a )=0,∴a =-1,∴f (x )=lg ⎝⎛⎭⎫21-x -1=lg x +11-x ,令x +11-x >0,则-1<x <1,排除A 、B ,又y =21-x -1=-1+-2x -1在(-1,1)上是增函数,∴f (x )在(-1,1)上是增函数.选D.8.(2018·湖北重点高中协作校联考)设函数f (x )=1-x +1,g (x )=ln(ax 2-3x +1),若对任意x 1∈[0,+∞),都存在x 2∈R ,使得f (x 1)=g (x 2),则实数a 的最大值为( )A.94 B .2 C.92D .4解析:选A 设g (x )=ln (ax 2-3x +1)的值域为A ,因为函数f (x )=1-x +1在[0,+∞)上的值域为(-∞,0],所以(-∞,0]⊆A ,因此h (x )=ax 2-3x +1至少要取遍(0,1]中的每一个数,又h (0)=1,于是,实数a 需要满足a ≤0或⎩⎪⎨⎪⎧a >0,9-4a ≥0,解得a ≤94.故选A.二、填空题9.(2018·连云港调研)当x >0时,函数y =(a -8)x 的值恒大于1,则实数a 的取值范围是________.解析:由题意知,a -8>1,解得a >9. 答案:(9,+∞)10.若函数f (x )是幂函数,且满足f (4)=3f (2),则f ⎝⎛⎭⎫12的值等于________. 解析:设f (x )=x α, 又f (4)=3f (2), ∴4α=3×2α, 解得α=log 23, ∴f ⎝⎛⎭⎫12=⎝⎛⎭⎫12log 23=13. 答案:1311.若函数f (x )=⎩⎪⎨⎪⎧e 1-x ,x ≤1,ln (x -1),x >1,则使得f (x )≥2成立的x 的取值范围是________.解析:由题意,f (x )≥2等价于⎩⎪⎨⎪⎧ x ≤1,e 1-x ≥2或⎩⎪⎨⎪⎧x >1,ln (x -1)≥2,解得x ≤1-ln 2或x ≥1+e 2,则使得f (x )≥2成立的x 的取值范围是(-∞,1-ln 2]∪[1+e 2,+∞). 答案:(-∞,1-ln 2]∪[1+e 2,+∞)12.若对任意x ∈⎝⎛⎭⎫0,12,恒有4x<log a x (a >0且a ≠1),则实数a 的取值范围是________. 解析:令f (x )=4x ,则f (x )在⎝⎛⎭⎫0,12上是增函数,g (x )=log a x ,当a >1时,g (x )=log a x 在⎝⎛⎭⎫0,12上是增函数,且g (x )=log a x <0,不符合题意;当0<a <1时,g (x )=log a x 在⎝⎛⎭⎫0,12上是减函数,则⎩⎪⎨⎪⎧0<a <1,f ⎝⎛⎭⎫12≤g ⎝⎛⎭⎫12,解得22≤a <1.答案:⎣⎡⎭⎫22,1 三、解答题13.函数f (x )=log a x (a >0,a ≠1),且f (2)-f (4)=1. (1)若f (3m -2)>f (2m +5),求实数m 的取值范围; (2)求使f ⎝⎛⎭⎫x -4x =log 123成立的x 的值. 解:(1)由f (2)-f (4)=1,得a =12.∵函数f (x )=log 12x 为减函数且f (3m -2)>f (2m +5),∴0<3m -2<2m +5,解得23<m <7,故m 的取值范围为⎝⎛⎭⎫23,7.(2)f ⎝⎛⎭⎫x -4x =log 123,即x -4x =3,x 2-3x -4=0, 解得x =4或x =-1. 14.已知函数f (x )=a -22x+1为奇函数. (1)求a 的值;(2)试判断函数f (x )在(-∞,+∞)上的单调性,并证明你的结论;(3)若对任意的t ∈R ,不等式f [t 2-(m -2)t ]+f (t 2-m +1)>0恒成立,求实数m 的取值范围.解:(1)∵函数f (x )为奇函数,∴f (x )=-f (-x ), ∴a -22x +1=-a +22-x +1,∴2a =2·2x 2x +1+22x +1=2,∴a =1.(2)f (x )在R 上为单调递增函数.证明如下:设任意x 1,x 2∈R ,且x 1<x 2, 则f (x 1)-f (x 2)=1-22x 1+1-1+22x 2+1=2(2x 1-2x 2)(2x 1+1)(2x 2+1). ∵x 1<x 2,∴2x 1-2x 2<0,(2x 1+1)(2x 2+1)>0, ∴f (x 1)<f (x 2),∴f (x )为R 上的单调递增函数. (3)∵f (x )=1-22x+1为奇函数,且在R 上为增函数, ∴由f [t 2-(m -2)t ]+f (t 2-m +1)>0恒成立,∴f [t 2-(m -2)t ]>-f (t 2-m +1)=f (m -t 2-1), ∴t 2-(m -2)t >m -1-t 2对t ∈R 恒成立, 化简得2t 2-(m -2)t -m +1>0, ∴Δ=(m -2)2+8(m -1)<0, 解得-2-22<m <-2+22,故m 的取值范围为(-2-22,-2+22).高考研究课(一) 幂函数、二次函数的 3类考查点——图象、性质、解析式 [全国卷5年命题分析]考点 考查频度 考查角度 幂函数 5年2考 幂函数的性质 二次函数5年1考二次函数的图象幂函数的图象与性质[典例] -2)·x n 2-3n (n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( )A .-3B .1C .2D .1或-3(2)1.112,0.912,1的大小关系为________.[解析] (1)由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3,当n =1时,函数f (x )=x-2为偶函数,其图象关于y 轴对称,且f (x )在(0,+∞)上是减函数,所以n =1满足题意;当n =-3时,函数f (x )=x 18为偶函数,其图象关于y 轴对称,而f (x )在(0,+∞)上是增函数,所以n =-3不满足题意,舍去.故选B.(2)把1看作112,幂函数y =x 12在(0,+∞)上是增函数.∵0<0.9<1<1.1,∴0.912<112<1.112.即0.912<1<1.112.[答案] (1)B (2)0.912<1<1.112[方法技巧]幂函数图象与性质的应用(1)可以借助幂函数的图象理解函数的对称性、单调性;(2)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.[即时演练]1.已知f (x )=x 12,若0<a <b <1,则下列各式正确的是( )A .f (a )<f (b )<f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b B .f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b <f (b )<f (a ) C .f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a D .f ⎝⎛⎭⎫1a <f (a )<f ⎝⎛⎭⎫1b <f (b ) 解析:选C ∵0<a <b <1,∴0<a <b <1b <1a ,又f (x )=x 12为增函数,∴f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a .2.若(a +1)-13<(3-2a )-13,则实数a 的取值范围是________________.解析:不等式(a +1)-13<(3-2a )-13等价于a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a .解得23<a <32或a <-1.答案:(-∞,-1)∪⎝⎛⎭⎫23,32二次函数的解析式二次函数的解析式有一般式、顶点式、零点式.求二次函数的解析式时,要灵活选择解析式形式以确立解法.[典例] 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定该二次函数的解析式.[解] 法一:用“一般式”解题 设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数为f (x )=-4x 2+4x +7. 法二:用“顶点式”解题 设f (x )=a (x -m )2+n (a ≠0).∵f (2)=f (-1),∴抛物线的对称轴为x =2+(-1)2=12,∴m =12.又根据题意,函数有最大值8,∴n =8, ∴y =f (x )=a ⎝⎛⎭⎫x -122+8. ∵f (2)=-1,∴a ⎝⎛⎭⎫2-122+8=-1,解得a =-4, ∴f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 法三:用“零点式”解题由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1)(a ≠0), 即f (x )=ax 2-ax -2a -1.又函数有最大值8,即4a (-2a -1)-a 24a =8.解得a =-4或a =0(舍去).∴所求函数的解析式为f (x )=-4x 2+4x +7. [方法技巧]求二次函数解析式的方法根据已知条件确定二次函数解析式,一般用待定系数法,规律如下:[即时演练]1.为了美观,在加工太阳镜时将下半部分轮廓制作成二次函数图象的形状(如图所示).若对应的两条曲线关于y 轴对称,AE ∥x 轴,AB =4 cm ,最低点C 在x 轴上,高CH =1 cm ,BD =2 cm ,则右轮廓线DFE 所在的二次函数的解析式为( )A .y =14(x +3)2B .y =-14(x -3)2C .y =-14(x +3)2D .y =14(x -3)2解析:选D 由题图可知,对应的两条曲线关于y 轴对称,AE ∥x 轴,AB =4 cm ,最低点C 在x 轴上,高CH =1 cm ,BD =2 cm ,所以点C 的纵坐标为0,横坐标的绝对值为3,即C (-3,0),因为点F 与点C 关于y 轴对称,所以F (3,0),因为点F 是右轮廓线DFE 所在的二次函数图象的顶点,所以设该二次函数为y =a (x -3)2(a >0),将点D (1,1)代入得,a =14,即y =14(x -3)2.2.已知二次函数f (x )是偶函数,且f (4)=4f (2)=16,则函数f (x )的解析式为________. 解析:由题意可设函数f (x )=ax 2+c (a ≠0),则f (4)=16a +c =16,f (2)=4a +c =4,解得a =1,c =0,故f (x )=x 2.答案:f (x )=x 21.(2018·武汉模拟)已知函数f (x )=ax 2+2ax +b (1<a <3),且x 1<x 2,x 1+x 2=1-a ,则下列结论正确的是( )A .f (x 1)<f (x 2)B .f (x 1)>f (x 2)C .f (x 1)=f (x 2)D .f (x 1)与f (x 2)的大小关系不能确定解析:选A f (x )的对称轴为x =-1,因为1<a <3,则-2<1-a <0,若x 1<x 2≤-1,则x 1+x 2<-2,不满足x 1+x 2=1-a 且-2<1-a <0;若x 1<-1,x 2≥-1,则|x 2+1|-|-1-x 1|=x 2+1+1+x 1=x 1+x 2+2=3-a >0(1<a <3), 此时x 2到对称轴的距离大,所以f (x 2)>f (x 1);若-1≤x 1<x 2,则此时x 1+x 2>-2,又因为f (x )在[-1,+∞)上为增函数,所以f (x 1)<f (x 2). 2.设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),且实数m 的取值范围是( )A .(-∞,0]B .[2,+∞)C .(-∞,0]∪[2,+∞)D .[0,2]解析:选D 二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,则a ≠0,f ′(x )=2a (x -1)<0,x ∈[0,1],所以a >0,即函数的图象开口向上,又因为对称轴是直线x =1.所以f (0)=f (2),则当f (m )≤f (0)时,有0≤m ≤2.[方法技巧]解决二次函数图象与性质问题的2个注意点(1)抛物线的开口、对称轴位置、定义区间三者相互制约,常见的题型中这三者有两定一不定,要注意分类讨论;(2)要注意数形结合思想的应用,尤其是结合二次函数在该区间上的单调性或图象求解. 角度二:二次函数的最值问题3.已知二次函数f (x )=ax 2-2x (0≤x ≤1),求f (x )的最小值.解:(1)当a >0时,f (x )=ax 2-2x 图象的开口方向向上,且对称轴为x =1a .①当1a ≤1,即a ≥1时,f (x )=ax 2-2x 图象的对称轴在[0,1]内,∴f (x )在⎣⎡⎦⎤0,1a 上递减,在⎣⎡⎦⎤1a ,1上递增. ∴f (x )mi n =f ⎝⎛⎭⎫1a =1a -2a =-1a .②当1a >1,即0<a <1时,f (x )=ax 2-2x 图象的对称轴在[0,1]的右侧,∴f (x )在[0,1]上递减. ∴f (x )mi n =f (1)=a -2.(2)当a <0时,f (x )=ax 2-2x 的图象的开口方向向下,且对称轴x =1a <0,在y 轴的左侧, ∴f (x )=ax 2-2x 在[0,1]上递减. ∴f (x )mi n =f (1)=a -2.综上所述,f (x )mi n =⎩⎪⎨⎪⎧a -2,a ∈(-∞,0)∪(0,1),-1a,a ∈[1,+∞).4.已知a 是实数,记函数f (x )=x 2-2x +2在[a ,a +1]上的最小值为g (a ),求g (a )的解析式.解:f (x )=x 2-2x +2=(x -1)2+1,x ∈[a ,a +1],a ∈R ,对称轴为x =1.当a +1<1,即a <0时,函数图象如图(1),函数f (x )在区间[a ,a +1]上为减函数,所以最小值为f (a +1)=a 2+1;当a ≤1≤a +1,即0≤a ≤1时,函数图象如图(2),在对称轴x =1处取得最小值,最小值为f (1)=1;当a >1时,函数图象如图(3),函数f (x )在区间[a ,a +1]上为增函数,所以最小值为f (a )=a 2-2a +2.综上可知,g (a )=⎩⎪⎨⎪⎧a 2+1,a <0,1,0≤a ≤1,a 2-2a +2,a >1.[方法技巧]二次函数在闭区间上的最大值和最小值可能在三个地方取到:区间的两个端点处,或对称轴处.也可以作出二次函数在该区间上的图象,由图象来判断最值.解题的关键是讨论对称轴与所给区间的相对位置关系.1.(2016·全国卷Ⅲ)已知a =243,b =425,c =2513,则( ) A .b <a <c B .a <b <c C .b <c <aD .c <a <b解析:选A 因为a =243,b =425=245,由函数y =2x 在R 上为增函数,知b <a ;又因为a =243=423,c =2513=523,由幂函数y =x 23在(0,+∞)上为增函数,知a <c .综上得b <a <c .故选A.2.(2016·全国卷Ⅱ)已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1mx i =( )A .0B .mC .2mD .4m解析:选B ∵f (x )=f (2-x ),∴函数f (x )的图象关于直线x =1对称.又y =|x 2-2x -3|=|(x -1)2-4|的图象关于直线x =1对称,∴两函数图象的交点关于直线x =1对称.当m 为偶数时,∑i =1mx i =2×m2=m ;当m 为奇数时,∑i =1mx i =2×m -12+1=m .故选B. 3.(2014·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.解析:当x <1时,由e x -1≤2得x ≤1+ln 2,∴x <1;当x ≥1时,由x 13≤2得x ≤8,∴1≤x ≤8.综上,符合题意的x 的取值范围是x ≤8.答案:(-∞,8]一、选择题1.(2018·绵阳模拟)幂函数y =(m 2-3m +3)x m 的图象过点(2,4),则m =( ) A .-2 B .-1 C .1D .2解析:选D ∵幂函数y =(m 2-3m +3)x m的图象过点(2,4),∴⎩⎪⎨⎪⎧m 2-3m +3=1,2m =4,解得m =2.故选D.2.(2018·杭州测试)若函数f (x )=x 2-2x +1在区间[a ,a +2]上的最小值为4,则实数a 的取值集合为( )A .[-3,3]B .[-1,3]C .{-3,3}D .{-1,-3,3}解析:选C ∵函数f (x )=x 2-2x +1=(x -1)2的图象的对称轴为直线x =1,f (x )在区间[a ,a +2]上的最小值为4,∴当a ≥1时,f (x )mi n =f (a )=(a -1)2=4,a =-1(舍去)或a =3;当a +2≤1,即a ≤-1时,f (x )mi n =f (a +2)=(a +1)2=4,a =1(舍去)或a =-3; 当a <1<a +2,即-1<a <1时,f (x )mi n =f (1)=0≠4. 故a 的取值集合为{-3,3}.故选C.3.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b .其中正确的结论是( ) A .②④ B .①④ C .②③D .①③解析:选B ∵二次函数的图象与x 轴交于两点,∴b 2-4ac >0,即b 2>4ac ,①正确;对称轴为x =-1,即-b2a =-1,2a -b =0,②错误;结合图象知,当x =-1时,y >0,即a -b+c >0,③错误;由对称轴为x =-1知,b =2a ,又函数图象开口向下,∴a <0,∴5a <2a ,即5a <b ,④正确.故选B.4.若对任意a ∈[-1,1],函数F (x )=x 2+(a -4)x +4-2a 的值恒大于零,则x 的取值范围是( )A .(1,3)B .(-∞,1)∪(3,+∞)C .(1,2)D .(-∞,1)∪(2,+∞)解析:选B 由题意,令f (a )=F (x )=x 2+(a -4)x +4-2a =(x -2)a +x 2-4x +4,对任意a ∈[-1,1]恒成立,所以⎩⎪⎨⎪⎧f (1)=x 2-3x +2>0,f (-1)=x 2-5x +6>0,解得x <1或x >3. 5.若函数f (x )=mx 2-2x +3在[-1,+∞)上递减,则实数m 的取值范围为( ) A .(-1,0) B .[-1,0) C .(-∞,-1]D .[-1,0]解析:选D 当m =0时,f (x )=-2x +3在R 上递减,符合题意;当m ≠0时,函数f (x )=mx 2-2x +3在[-1,+∞)上递减,只需对称轴x =1m ≤-1,且m <0,解得-1≤m <0,综上,实数m 的取值范围为[-1,0].6.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3)解析:选A ∵f (1)=3,∴不等式f (x )>f (1),即f (x )>3.∴⎩⎪⎨⎪⎧ x ≥0,x 2-4x +6>3或⎩⎪⎨⎪⎧x <0,x +6>3,解得x >3或-3<x <1. 7.已知a ,b ,c ,d 都是常数,a >b ,c >d .若f (x )=2 017-(x -a )(x -b )的零点为c ,d ,则下列不等式正确的是( )A .a >c >b >dB .a >b >c >dC .c >d >a >bD .c >a >b >d解析:选D f (x )=2 017-(x -a )(x -b )=-x 2+(a +b )x -ab +2 017,又f (a )=f (b )=2 017,c ,d 为函数f (x )的零点,且a >b ,c >d, 所以可在平面直角坐标系中作出函数f (x )的大致图象,如图所示,由图可知c >a >b >d ,故选D.8.(2017·浙江高考)若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关解析:选B f (x )=⎝⎛⎭⎫x +a 22-a24+b , ①当0≤-a 2≤1时,f (x )mi n =m =f ⎝⎛⎭⎫-a 2=-a 24+b ,f (x )max =M =max{f (0),f (1)}=max{b,1+a +b },∴M -m =max ⎩⎨⎧⎭⎬⎫a24,1+a +a 24与a 有关,与b 无关;②当-a2<0时,f (x )在[0,1]上单调递增,∴M -m =f (1)-f (0)=1+a 与a 有关,与b 无关; ③当-a2>1时,f (x )在[0,1]上单调递减,∴M -m =f (0)-f (1)=-1-a 与a 有关,与b 无关. 综上所述,M -m 与a 有关,但与b 无关. 二、填空题9.已知幂函数f (x )=x -m 2+2m +3(m ∈Z )在(0,+∞)上为增函数,且在其定义域内是偶函数,则m 的值为________.解析:∵幂函数f (x )在(0,+∞)上为增函数, ∴-m 2+2m +3>0,即m 2-2m -3<0,解得-1<m <3. 又m ∈Z ,∴m =0或m =1或m =2.当m =0或m =2时,f (x )=x 3在其定义域内为奇函数,不满足题意;当m =1时,f (x )=x 4在其定义域内是偶函数,满足题意.综上可知,m 的值是1. 答案:110.二次函数y =3x 2+2(m -1)x +n 在区间(-∞,1)上是减函数,在区间[1,+∞)上是增函数,则实数m =________.解析:二次函数y =3x 2+2(m -1)x +n 的图象的开口向上,对称轴为直线x =-m -13,要使得函数在区间(-∞,1)上是减函数,在区间[1,+∞)上是增函数,则x =-m -13=1,解得m =-2.答案:-211.(2018·南通一调)若函数f (x )=ax 2+20x +14(a >0)对任意实数t ,在闭区间[t -1,t +1]上总存在两实数x 1,x 2,使得|f (x 1)-f (x 2)|≥8成立,则实数a 的最小值为________.解析:由题意可得,当x ∈[t -1,t +1]时,[f (x )max -f (x )mi n ]mi n ≥8,当[t -1,t +1]关于对称轴对称时,f (x )max -f (x )mi n 取得最小值,即f (t +1)-f (t )=2at +a +20≥8,f (t -1)-f (t )=-2at +a -20≥8,两式相加,得a ≥8,所以实数a 的最小值为8.答案:812.设函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤a ,x 2,x >a ,若存在实数b ,使得函数y =f (x )-bx 恰有2个零点,则实数a 的取值范围为_______.解析:显然x =0是y =f (x )-bx 的一个零点; 当x ≠0时,令y =f (x )-bx =0得b =f (x )x ,令g (x )=f (x )x =⎩⎪⎨⎪⎧x 2,x ≤a ,x ,x >a ,则b =g (x )存在唯一一个解.当a <0时,作出函数g (x )的图象,如图所示,显然当a <b <a 2且b ≠0时,b =g (x )存在唯一一个解,符合题意; 当a >0时,作出函数g (x )的图象,如图所示,若要使b =g (x )存在唯一一个解,则a >a 2,即0<a <1, 同理,当a =0时,显然b =g (x )有零解或两解,不符合题意. 综上,a 的取值范围是(-∞,0)∪(0,1). 答案:(-∞,0)∪(0,1) 三、解答题13.(2018·杭州模拟)已知值域为[-1,+∞)的二次函数f (x )满足f (-1+x )=f (-1-x ),且方程f (x )=0的两个实根x 1,x 2满足|x 1-x 2|=2.(1)求f (x )的表达式;(2)函数g (x )=f (x )-kx 在区间[-1,2]上的最大值为f (2),最小值为f (-1),求实数k 的取值范围.解:(1)由f (-1+x )=f (-1-x ),可得f (x )的图象关于直线x =-1对称, 设f (x )=a (x +1)2+h =ax 2+2ax +a +h (a ≠0), 由函数f (x )的值域为[-1,+∞),可得h =-1, 根据根与系数的关系可得x 1+x 2=-2,x 1x 2=1+ha ,∴|x 1-x 2|=(x 1+x 2)2-4x 1x 2= -4ha =2,解得a =1, ∴f (x )=x 2+2x .(2)由题意得函数g (x )在区间[-1,2]上单调递增, 又g (x )=f (x )-kx =x 2-(k -2)x . ∴g (x )的对称轴方程为x =k -22, 则k -22≤-1,即k ≤0,故k 的取值范围为(-∞,0].14.(2018·成都诊断)已知函数f (x )=x 2+ax +3-a ,若x ∈[-2,2],f (x )≥0恒成立,求a 的取值范围.解:f (x )=⎝⎛⎭⎫x +a 22-a24-a +3,令f (x )在[-2,2]上的最小值为g (a ). (1)当-a2<-2,即a >4时,g (a )=f (-2)=7-3a ≥0,∴a ≤73.又a >4,∴a 不存在.(2)当-2≤-a2≤2,即-4≤a ≤4时,g (a )=f ⎝⎛⎭⎫-a 2=-a24-a +3≥0, ∴-6≤a ≤2.又-4≤a ≤4, ∴-4≤a ≤2.(3)当-a2>2,即a <-4时,g (a )=f (2)=7+a ≥0,∴a ≥-7.又a <-4,∴-7≤a <-4.综上可知,a 的取值范围为[-7,2].1.设函数f (x )=ax 2+bx +c (a >b >c )的图象经过点A (m 1,f (m 1))和点B (m 2,f (m 2)),f (1)=0.若a 2+[f (m 1)+f (m 2)]·a +f (m 1)·f (m 2)=0,则( )A .b ≥0B .b <0C .3a +c ≤0D .3a -c <0解析:选A 由f (1)=0可得a +b +c =0,若a ≤0,由a >b >c ,得a +b +c <0,这与a +b +c =0矛盾,故a >0,若c ≥0,则有b >0,a >0,此时a +b +c >0,这与a +b +c =0矛盾;所以c <0成立,因为a 2+[f (m 1)+f (m 2)]·a +f (m 1)·f (m 2)=0,所以(a +f (m 1))(a +f (m 2))=0,所以m 1,m 2是方程f (x )=-a 的两个根,Δ=b 2-4a (a +c )=b (b +4a )=b (3a -c )≥0,而a >0,c <0,所以3a -c >0,所以b ≥0.2.设函数f (x )=2ax 2+2bx ,若存在实数x 0∈(0,t ),使得对任意不为零的实数a ,b ,均有f (x 0)=a +b 成立,则t 的取值范围是________.解析:因为存在实数x 0∈(0,t ),使得对任意不为零的实数a ,b ,均有f (x 0)=a +b 成立, 所以2ax 2+2bx =a +b 等价于(2x -1)b =(1-2x 2)a . 当x =12时,左边=0,右边≠0,即等式不成立,故x ≠12;当x ≠12时,(2x -1)b =(1-2x 2)a 等价于b a =1-2x 22x -1,设2x -1=k ,因为x ≠12,所以k ≠0,则x =k +12,则b a =1-2⎝⎛⎭⎫k +122k =12⎝⎛⎭⎫1k -k -2. 设g (k )=12⎝⎛⎭⎫1k -k -2, 则函数g (k )在(-1,0),(0,2t -1)上的值域为R . 又因为g (k )在(-∞,0),(0,+∞)上单调递减, 所以g (k )在(-1,0),(0,2t -1)上单调递减, 故当k ∈(-1,0)时,g (k )<g (-1)=-1;当k ∈(0,2t -1)时,g (k )>g (2t -1)=12⎛⎭⎫12t -1-2t -1,故要使值域为R ,则g (2t -1)<g (-1),即12t -1-2t -1<-2,解得t >1. 答案:(1,+∞) 高考研究课(二)指数函数的2类考查点——图象、性质 [全国卷5年命题分析]指数函数的性质5年3考 比较大小、求值指数函数的图象及应用[典例] (1)函数f (x )=e x ·x 2e 2x +1的大致图象是( )(2)(2018·广州模拟)若存在负实数使得方程2x -a =1x -1成立,则实数a 的取值范围是( )A .(2,+∞)B .(0,+∞)C .(0,2)D .(0,1)[解析] (1)因为f (-x )=e -x ·x 2e -2x +1=e x ·x 21+e 2x=f (x ),所以函数f (x )为偶函数,所以排除A 、D项.当x =0时,y =0,故排除B 项,选C.(2)在同一坐标系内分别作出函数y =1x -1和y =2x -a 的图象,则由图知,当a ∈(0,2)时符合要求.[答案] (1)C (2)C [方法技巧]指数函数图象问题的求解策略(1)画指数函数y =a x (a >0,a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎫-1,1a . (2)与指数函数有关函数图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象.(3)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解. [即时演练] 1.函数f (x )=2|x-1|的图象是( )解析:选B 由题意得f (x )=⎩⎪⎨⎪⎧2x -1,x ≥1,⎝⎛⎭⎫12x -1,x <1,结合图象知,选B.2.(2018·衡水模拟)若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围是________.解析:曲线|y |=2x +1与直线y =b 的图象如图所示,由图可知:如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1].角度一:比较大小或解不等式1.(2018·滕州模拟)下列各式比较大小正确的是( ) A .1.72.5>1.73 B .0.6-1>0.62C .0.8-0.1>1.250.2 D .1.70.3<0.93.1解析:选B A 中,∵函数y =1.7x 在R 上是增函数,2.5<3,∴1.72.5<1.73,故A 错误; B 中,∵y =0.6x 在R 上是减函数,-1<2, ∴0.6-1>0.62,故B 正确;C 中,∵0.8-1=1.25,∴问题转化为比较1.250.1与1.250.2的大小. ∵y =1.25x 在R 上是增函数,0.1<0.2, ∴1.250.1<1.250.2, 即0.8-0.1<1.250.2,故C 错误;D 中, ∵1.70.3>1,0<0.93.1<1, ∴1.70.3>0.93.1,故D 错误.2.(2018·绍兴模拟)设偶函数f (x )满足f (x )=2x -4(x ≥0),则{x |f (x -2)>0}=( ) A .{x |x <-2或x >4} B .{x |x <0或x >4} C .{x |x <0或x >6}D .{x |x <-2或x >2}解析:选B ∵f (x )为偶函数, 当x <0时,f (x )=f (-x )=2-x -4.∴f (x )=⎩⎪⎨⎪⎧2x-4,x ≥0,2-x -4,x <0,若f (x -2)>0,则有⎩⎪⎨⎪⎧ x -2≥0,2x -2-4>0或⎩⎪⎨⎪⎧x -2<0,2-x +2-4>0,解得x >4或x <0. [方法技巧](1)比较两个指数幂大小时,尽量化同底或同指,当底数相同,指数不同时,构造同一指数函数,然后比较大小;当指数相同,底数不同时,构造两个指数函数,利用图象比较大小.(2)有关指数不等式问题,应注意a 的取值,及结合指数函数的性质求解. 角度二:与指数函数有关的函数值域问题3.已知0≤x ≤2,则y =4x -12-3·2x +5的最大值为________.解析:令t =2x ,∵0≤x ≤2,∴1≤t ≤4,又y =22x -1-3·2x +5,∴y =12t 2-3t +5=12(t -3)2+12,∵1≤t ≤4,∴t =1时,y max =52.答案:52[方法技巧]形如y =a 2x +b ·a x +c (a >0,且a ≠1)型函数最值问题多用换元法,即令t =a x 转化为y =t 2+bt +c 的最值问题,注意根据指数函数求t 的范围.角度三:与指数函数有关的单调性问题 4.若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]解析:选B 由f (1)=19,得a 2=19,解得a =13或a =-13(舍去),即f (x )=⎝⎛⎭⎫13|2x -4|.由于y=|2x -4|在(-∞,2]上递减,在[2,+∞)上递增,所以f (x )在(-∞,2]上递增,在[2,+∞)上递减,故选B.5.已知函数f (x )=a |x +1|(a >0,且a ≠1)的值域为[1,+∞),则f (-4)与f (1)的大小关系是________________.解析:∵|x +1|≥0,函数f (x )=a |x +1|(a >0,且a ≠1)的值域为[1,+∞),∴a >1.由于函数f (x )=a |x+1|在(-1,+∞)上是增函数,且它的图象关于直线x =-1对称,则函数在(-∞,-1)上是减函数,故f (1)=f (-3),f (-4)>f (1).答案:f (-4)>f (1) [方法技巧]与指数函数有关的复合函数的单调性,要弄清复合函数由哪些基本初等函数复合而成,要注意数形结合思想的运用.角度四:与指数函数有关的最值与参数问题6.设x ,y ∈R ,a >1,b >1,若a x =b y =3,a +b =23,则1x +1y 的最大值为( )A .2 B.32 C .1D.12解析:选C 由a x =b y =3,可得a =31x ,b =31y , 所以23=a +b =31x +31y ≥231x +1y ,则1x +1y ≤1,当且仅当x =y 时,等号成立. 故1x +1y的最大值为1. 7.已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )+3m 有3个零点,则实数m 的取值范围是________.解析:因为函数g (x )=f (x )+3m 有3个零点,所以函数y =f (x )的图象与直线y =-3m 有三个不同的交点,作出函数y =f (x )=⎩⎪⎨⎪⎧2x -1,x >0,-x 2-2x ,x ≤0的图象如图所示,则0<-3m <1,所以-13<x <0. 答案:⎝⎛⎭⎫-13,01.(2013·全国卷Ⅱ)若存在正数x 使2x (x -a )<1成立,则a 的取值范围是( )A .(-∞,+∞)B .(-2,+∞)C .(0,+∞)D .(-1,+∞)解析:选D 法一:不等式2x (x -a )<1可变形为x -a <⎝⎛⎭⎫12x.在同一平面直角坐标系内作出直线y =x -a 与y =⎝⎛⎭⎫12x的图象.由题意,在(0,+∞)上,直线有一部分在曲线的下方.观察可知,有-a <1,所以a >-1,选D.法二:由2x (x -a )<1得a >x -12x .令f (x )=x -12x ,即a >f (x )有解,则a >f (x )mi n .又y =f (x )在(0,+∞)上递增,所以f (x )>f (0)=-1, 所以a >-1,选D.2.(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x +x +12>1,显然成立.当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 3.(2015·江苏高考)不等式2x 2-x <4的解集为________. 解析:∵2x 2-x <4,∴2x 2-x <22, ∴x 2-x <2,即x 2-x -2<0,∴-1<x <2. 答案:{x |-1<x <2}4.(2015·山东高考)已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________.解析:当a >1时,函数f (x )=a x+b 在[]-1,0上为增函数,由题意得⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0无解.。

全国通用近年高考数学一轮复习第三单元基本初等函数(Ⅰ)及应用学案文(2021年整理)

全国通用近年高考数学一轮复习第三单元基本初等函数(Ⅰ)及应用学案文(2021年整理)

(全国通用版)2019版高考数学一轮复习第三单元基本初等函数(Ⅰ)及应用学案文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用版)2019版高考数学一轮复习第三单元基本初等函数(Ⅰ)及应用学案文)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用版)2019版高考数学一轮复习第三单元基本初等函数(Ⅰ)及应用学案文的全部内容。

第三单元基本初等函数(Ⅰ)及应用教材复习课“基本初等函数(Ⅰ)”相关基础知识一课过指数与对数的基本运算一、根式与幂的运算1.根式的性质(1)(错误!)n=错误!。

(2)当n为奇数时,错误!=错误!.(3)当n为偶数时,错误!=|a|=错误!(4)负数的偶次方根无意义.(5)零的任何次方根都等于零.2.有理数指数幂(1)分数指数幂:①正分数指数幂:a错误!=错误!(a〉0,m,n∈N*,且n >1).②负分数指数幂:a-错误!=错误!=错误!(a〉0,m,n∈N*,且n >1).③0的正分数指数幂等于错误!,0的负分数指数幂没有意义.(2)有理数指数幂的运算性质.①a r·a s=a r+s(a〉0,r,s∈Q).②(a r)s=a rs(a>0,r,s∈Q).③(ab)r=a r b r(a>0,b>0,r∈Q).二、对数及对数运算1.对数的定义一般地,如果a x=N(a>0,且a≠1),那么数x叫作以a为底N的对数,记作x=log a N,其中a叫作对数的底数,N叫作真数.2.对数的性质(1)log a1=错误!,log a a=错误!。

(2)a log a N=N,log a a N=错误!。

全国通用版2019版高考数学一轮温习第三单元大体初等函数Ⅰ及应用学案文201806133182

全国通用版2019版高考数学一轮温习第三单元大体初等函数Ⅰ及应用学案文201806133182

第三单元 基本初等函数(Ⅰ)及应用教材复习课“基本初等函数(Ⅰ)”相关基础知识一课过指数与对数的基本运算 一、根式与幂的运算 1.根式的性质(1)(na )n =a .(2)当n 为奇数时,n a n =a .(3)当n 为偶数时,na n =|a |=⎩⎪⎨⎪⎧a a ≥0,-a a <0.(4)负数的偶次方根无意义. (5)零的任何次方根都等于零. 2.有理数指数幂 (1)分数指数幂:①正分数指数幂:a m n=na m (a >0,m ,n ∈N *,且n >1).②负分数指数幂:a -m n=1am n=1na m(a >0,m ,n ∈N *,且n >1).③0的正分数指数幂等于0,0的负分数指数幂没有意义. (2)有理数指数幂的运算性质. ①a r ·a s =a r +s (a >0,r ,s ∈Q). ②(a r )s =a rs (a >0,r ,s ∈Q).③(ab )r =a r b r (a >0,b >0,r ∈Q). 二、对数及对数运算 1.对数的定义一般地,如果a x =N (a >0,且a ≠1),那么数x 叫作以a 为底N 的对数,记作x =log a N ,其中a 叫作对数的底数,N 叫作真数.2.对数的性质(1)log a 1=0,log a a =1. (2)a log a N =N ,log a a N =N . (3)负数和零没有对数. 3.对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么 (1)log a (M N )=log a M +log a N . (2)log a M N=log a M -log a N .(3)log a M n =n log a M (n ∈R).(4)换底公式log a b =log m b log m a (a >0且a ≠1,b >0,m >0,且m ≠1).[小题速通]1.化简a 23·b -1-12·a-12·b136a ·b 5(a >0,b >0)的结果是( )A .aB .abC .a 2bD.1a解析:选D 原式=a3-1b 12a -12b13a 16b56=a---111362·b+-151362=1a.2.若x =log 43,则(2x -2-x )2=( ) A.94 B.54 C.103D.43解析:选D 由x =log 43,得4x =3,即4-x =13,(2x -2-x )2=4x -2+4-x =3-2+13=43. 3.log 232-4log 23+4+log 213=( ) A .2 B .2-2log 23 C .-2 D .2log 23-2解析:选Blog 232-4log 23+4+log 213=log 23-22-log 23=2-log 23-log 23=2-2log 23.4.已知f (x )=2x +2-x ,若f (a )=3,则f (2a )=( ) A .11 B .9 C .7D .5解析:选C 由题意可得f (a )=2a +2-a =3,则f (2a )=22a +2-2a =(2a +2-a )2-2=7.[清易错]1.在进行指数幂的运算时,一般用分数指数幂的形式表示,并且结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数.易忽视字母的符号.2.在对数运算时,易忽视真数大于零.1.化简-x 3x的结果是( )A .--x B.xC .-x D.-x解析:选A 依题意知x <0,故-x 3x =--x 3x 2=--x .2.若lg x +lg y =2lg(x -2y ),则 xy的值为________.解析:∵lg x +lg y =2lg(x -2y ), ∴xy =(x -2y )2,即x 2-5xy +4y 2=0, 即(x -y )(x -4y )=0,解得x =y 或x =4y . 又x >0,y >0,x -2y >0, 故x =y 不符合题意,舍去. 所以x =4y ,即xy=4.答案:4二次函数1.二次函数解析式的三种形式 (1)一般式:f (x )=ax 2+bx +c (a ≠0). (2)顶点式:f (x )=a (x -m )2+n (a ≠0). (3)零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). 2.二次函数的图象和性质 解析式f (x )=ax 2+bx +c (a >0) f (x )=ax 2+bx +c (a <0)图象定义域 RR值域⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞ ⎝ ⎛⎦⎥⎤-∞,4ac -b 24a单调性在⎝⎛⎦⎥⎤-∞,-b 2a 上单调递减;在⎣⎢⎡⎭⎪⎫-b2a ,+∞上单调递增在⎝⎛⎦⎥⎤-∞,-b 2a 上单调递增;在⎣⎢⎡⎭⎪⎫-b2a ,+∞上单调递减对称性 函数的图象关于直线x =-b2a对称 [小题速通]1.若二次函数y =-2x 2-4x +t 的图象的顶点在x 轴上,则t 的值是( ) A .-4 B .4 C .-2D .2解析:选C ∵二次函数的图象的顶点在x 轴上,∴Δ=16+8t =0,可得t =-2. 2.(2018·唐山模拟)如果函数f (x )=x 2-ax -3在区间(-∞,4]上单调递减,那么实数a 的取值范围为( )A .[8,+∞)B .(-∞,8]C .[4,+∞)D .[-4,+∞)解析:选A 函数f (x )图象的对称轴方程为x =a 2,由题意得a2≥4,解得a ≥8.3.(2017·宜昌二模)函数f (x )=-2x 2+6x (-2≤x ≤2)的值域是( ) A .[-20,4] B .(-20,4) C.⎣⎢⎡⎦⎥⎤-20,92D.⎝⎛⎭⎪⎫-20,92解析:选C 由函数f (x )=-2x 2+6x 可知,二次函数f (x )的图象开口向下,对称轴为x =32,当-2≤x <32时,函数f (x )单调递增,当32≤x ≤2时,函数f (x )单调递减,∴f (x )max =f ⎝ ⎛⎭⎪⎫32=-2×94+6×32=92,又f (-2)=-8-12=-20,f (2)=-8+12=4,∴函数f (x )的值域为⎣⎢⎡⎦⎥⎤-20,92.[清易错]易忽视二次函数表达式f (x )=ax 2+bx +c 中的系数a ≠0.若二次函数f (x )=ax 2-4x +c 的值域为[0,+∞),则a ,c 满足的条件是________.解析:由已知得⎩⎪⎨⎪⎧a>0,4ac-164a=0,⇒⎩⎪⎨⎪⎧a>0,ac-4=0.答案:a>0,ac=4幂函数1.幂函数的定义一般地,形如y=xα的函数称为幂函数,其中x是自变量,α为常数.2.常见的5种幂函数的图象3.常见的5种幂函数的性质函数特征性质y=x y=x2y=x3y=x12y=x-1定义域R R R[0,+∞){x|x∈R,且x≠0}值域R[0,+∞)R[0,+∞){y|y∈R,且y≠0}奇偶性奇偶奇非奇非偶奇单调性增(-∞,0]减,[0,+∞)增增增(-∞,0)减,(0,+∞)减定点(0,0),(1,1) (1,1) 1.幂函数y=f(x)的图象过点(4,2),则幂函数y=f(x)的图象是( )解析:选C 令f (x )=x α,则4α=2, ∴α=12,∴f (x )=x 12.故C 正确.2.(2018·贵阳监测)已知幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫13,3,则f ⎝ ⎛⎭⎪⎫12=( )A.12 B .2 C. 2D.22解析:选C 设幂函数的解析式为f (x )=x α,将⎝ ⎛⎭⎪⎫13,3代入解析式得3-α=3,解得α=-12,∴f (x )=x -12,f ⎝ ⎛⎭⎪⎫12=2,故选C.3.若函数f (x )=(m 2-m -1)x m是幂函数,且在x ∈(0,+∞)上为增函数,则实数m 的值是( )A .-1B .2C .3D .-1或2解析:选B ∵f (x )=(m 2-m -1)x m是幂函数,∴m 2-m -1=1,解得m =-1或m =2.又f (x )在x ∈(0,+∞)上是增函数,所以m =2.[清易错]幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.幂函数y =xm 2-2m -3(m ∈Z)的图象如图所示,则m 的值为( )A .-1<m <3B .0C .1D .2解析:选C 从图象上看,由于图象不过原点,且在第一象限下降,故m 2-2m -3<0,即-1<m <3;又从图象看,函数是偶函数,故m 2-2m -3为负偶数,将m =0,1,2分别代入,可知当m =1时,m 2-2m -3=-4,满足要求.指数函数指数函数的图象与性质y=a x(a>0,且a≠1)a>10<a<1图象定义域R值域(0,+∞)性质当x=0时,y=1,即过定点(0,1)当x>0时,y>1;当x<0时,0<y<1当x>0时,0<y<1;当x<0时,y>1在R上是增函数在R上是减函数1.函数f(x)=a x-2+1(a>0,且a≠1)的图象必经过点( )A.(0,1) B.(1,1)C.(2,0) D.(2,2)解析:选D 由f(2)=a0+1=2,知f(x)的图象必过点(2,2).2.函数f(x)=1-2x的定义域是( )A.(-∞,0] B.[0,+∞)C.(-∞,0) D.(-∞,+∞)解析:选A 要使f(x)有意义须满足1-2x≥0,即2x≤1,解得x≤0.3.函数y=a x-a(a>0,且a≠1)的图象可能是( )解析:选C 当x=1时,y=a1-a=0,所以函数y=a x-a的图象过定点(1,0),结合选项可知选C.4.设a=⎝⎛⎭⎪⎫3525,b=⎝⎛⎭⎪⎫2535,c=⎝⎛⎭⎪⎫2525,则a,b,c的大小关系是( ) A.a>c>b B.a>b>cC.c>a>b D.b>c>a解析:选A 构造指数函数y=⎝⎛⎭⎪⎫25x(x∈R),由该函数在定义域内单调递减可得b<c;又y=⎝⎛⎭⎪⎫25x(x∈R)与y=⎝⎛⎭⎪⎫35x(x∈R)之间有如下结论:当x>0时,有⎝⎛⎭⎪⎫35x>⎝⎛⎭⎪⎫25x,故⎝⎛⎭⎪⎫3525>⎝⎛⎭⎪⎫2525,即a >c ,故a >c >b .5.下列四类函数中,具有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )f (y )”的是( )A .幂函数B .对数函数C .指数函数D .余弦函数解析:选C 由指数运算的规律易知,a x +y=a x ·a y ,即令f (x )=a x,则f (x +y )=f (x )f (y ),故该函数为指数函数.[清易错]指数函数y =a x(a >0,且a ≠1)的图象和性质与a 的取值有关,要特别注意区分a >1或0<a <1.若函数f (x )=a x (a >0,且a ≠1)在区间[1,2]上的最大值比最小值大a2,则a 的值为________.解析:当a >1时,f (x )=a x为增函数,f (x )max =f (2)=a 2,f (x )min =f (1)=a .∴a 2-a =a2.即a (2a -3)=0.∴a =0(舍去)或a =32>1.∴a =32.当0<a <1时,f (x )=a x为减函数,f (x )max =f (1)=a ,f (x )min =f (2)=a 2.∴a -a 2=a2.即a (2a -1)=0,∴a =0(舍去)或a =12.∴a =12.综上可知,a =12或a =32.答案:12或32对数函数对数函数的图象与性质y =log a x (a >0,且a ≠1)a >1 0<a <1图象定义域(0,+∞)值域R性质当x=1时,y=0,即过定点(1,0)当0<x<1时,y∈(-∞,0);当x>1时,y∈(0,+∞)当0<x<1时,y∈(0,+∞);当x>1时,y∈(-∞,0)在(0,+∞)上为增函数在(0,+∞)上为减函数1.若函数f(x)=log a(3x-2)(a>0,且a≠1)的图象经过定点A,则A点坐标是( )A.⎝⎛⎭⎪⎫0,23B.⎝⎛⎭⎪⎫23,0C.(1,0) D.(0,1)答案:C2.已知a>0,且a≠1,函数y=a x与y=log a(-x)的图象可能是( )解析:选B 由题意知,y=a x的定义域为R,y=log a(-x)的定义域为(-∞,0),故排除A、C;当0<a<1时,y=a x在R上单调递减,y=log a(-x)在(-∞,0)上单调递增;当a>1时,y=a x在R上单调递增,y=log a(-x)在(-∞,0)上单调递减,结合B、D图象知,B正确.3.函数y=log2|x+1|的单调递减区间为__________,单调递增区间为__________.解析:作出函数y=log2x的图象,将其关于y轴对称得到函数y=log2|x|的图象,再将图象向左平移1个单位长度就得到函数y=log2|x+1|的图象(如图所示).由图知,函数y=log2|x+1|的单调递减区间为(-∞,-1),单调递增区间为(-1,+∞).答案:(-∞,-1) (-1,+∞)4.函数f(x)=log a(x2-2x-3)(a>0,a≠1)的定义域为________.解析:由题意可得x2-2x-3>0,解得x>3或x<-1,所以函数的定义域为{x|x>3或x<-1}.答案:{x|x>3或x<-1}[清易错]解决与对数函数有关的问题时易漏两点: (1)函数的定义域. (2)对数底数的取值范围. 1.(2018·南昌调研)函数y =log 232x -1 的定义域是( ) A .[1,2]B .[1,2)C.⎣⎢⎡⎦⎥⎤12,1D.⎝ ⎛⎦⎥⎤12,1 解析:选D 要使函数有意义,则⎩⎪⎨⎪⎧log 232x -1≥0,2x -1>0,解得12<x ≤1.2.函数y =log a x (a >0,且a ≠1)在[2,4]上的最大值与最小值的差是1,则a 的值为________.解析:当a >1时,函数y =log a x 在[2,4]上是增函数, 所以log a 4-log a 2=1,即log a 2=1,所以a =2. 当0<a <1时,函数y =log a x 在[2,4]上是减函数, 所以log a 2-log a 4=1,即log a 12=1,所以a =12.故a =2或a =12.答案:2或 12一、选择题1.函数f (x )=⎩⎪⎨⎪⎧2-x-1,x ≤0,x 12,x >0,满足f (x )=1的x 的值为( ) A .1 B .-1 C .1或-2D .1或-1解析:选D 由题意,方程f (x )=1等价于⎩⎪⎨⎪⎧x ≤0,2-x-1=1或⎩⎪⎨⎪⎧x >0,x 12=1,解得x =-1或1.2.函数f(x)=ln|x-1|的图象大致是( )解析:选B 令x=1,x-1=0,显然f(x)=ln|x-1|无意义,故排除A;由|x-1|>0可得函数的定义域为(-∞,1)∪(1,+∞),故排除D;由复合函数的单调性可知f(x)在(1,+∞)上是增函数,故排除C,选B.3.(2018·郑州模拟)设abc>0,二次函数f(x)=ax2+bx+c的图象可能是( )解析:选D 结合二次函数y=ax2+bx+c(a≠0)的图象知:当a<0,且abc>0时,若-b2a<0,则b<0,c>0,故排除A,若-b2a>0,则b>0,c<0,故排除B.当a>0,且abc>0时,若-b2a<0,则b>0,c>0,故排除C,若-b2a>0,则b<0,c<0,故选项D符合.4.设a=0.32,b=20.3,c=log25,d=log20.3,则a,b,c,d的大小关系是( ) A.d<b<a<c B.d<a<b<cC.b<c<d<a D.b<d<c<a解析:选B 由对数函数的性质可知c=log25>2,d=log20.3<0,由指数函数的性质可知0<a=0.32<1,1<b=20.3<2,所以d<a<b<c.5.(2018·长春模拟)函数y=4x+2x+1+1的值域为( )A.(0,+∞) B.(1,+∞)C.[1,+∞) D.(-∞,+∞)解析:选B 令2x=t,则函数y=4x+2x+1+1可化为y=t2+2t+1=(t+1)2(t>0).∵函数y=(t+1)2在(0,+∞)上递增,∴y >1.∴所求值域为(1,+∞).故选B. 6.(2017·大连二模)定义运算:x y =⎩⎪⎨⎪⎧x ,xy ≥0,y ,xy <0,例如:34=3,(-2)4=4,则函数f (x )=x2(2x -x 2)的最大值为( )A .0B .1C .2D .4解析:选D 由题意可得f (x )=x2(2x -x 2)=⎩⎪⎨⎪⎧x 2,0≤x ≤2,2x -x 2,x >2或x <0,当0≤x ≤2时,f (x )∈[0,4];当x >2或x <0时,f (x )∈(-∞,0).综上可得函数f (x )的最大值为4,故选D.7.已知函数f (x )=lg ⎝⎛⎭⎪⎫21-x +a 是奇函数,且在x =0处有意义,则该函数为( )A .(-∞,+∞)上的减函数B .(-∞,+∞)上的增函数C .(-1,1)上的减函数D .(-1,1)上的增函数解析:选D 由题意知,f (0)=lg(2+a )=0,∴a =-1,∴f (x )=lg ⎝ ⎛⎭⎪⎫21-x -1=lg x +11-x ,令x +11-x >0,则-1<x <1,排除A 、B ,又y =21-x -1=-1+-2x -1在(-1,1)上是增函数,∴f (x )在(-1,1)上是增函数.选D.8.(2018·湖北重点高中协作校联考)设函数f (x )=1-x +1,g (x )=ln(ax 2-3x +1),若对任意x 1∈[0,+∞),都存在x 2∈R ,使得f (x 1)=g (x 2),则实数a 的最大值为( )A.94 B .2 C.92D .4解析:选A 设g (x )=ln (ax 2-3x +1)的值域为A ,因为函数f (x )=1-x +1在[0,+∞)上的值域为(-∞,0],所以(-∞,0]⊆A ,因此h (x )=ax 2-3x +1至少要取遍(0,1]中的每一个数,又h (0)=1,于是,实数a 需要满足a ≤0或⎩⎪⎨⎪⎧a >0,9-4a ≥0,解得a ≤94.故选A.二、填空题9.(2018·连云港调研)当x >0时,函数y =(a -8)x的值恒大于1,则实数a 的取值范围是________.解析:由题意知,a -8>1,解得a >9. 答案:(9,+∞)10.若函数f (x )是幂函数,且满足f (4)=3f (2),则f ⎝ ⎛⎭⎪⎫12的值等于________. 解析:设f (x )=x α, 又f (4)=3f (2), ∴4α=3×2α, 解得α=log 23, ∴f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫12log 23=13. 答案:1311.若函数f (x )=⎩⎪⎨⎪⎧e 1-x,x ≤1,ln x -1,x >1,则使得f (x )≥2成立的x 的取值范围是________.解析:由题意,f (x )≥2等价于⎩⎪⎨⎪⎧x ≤1,e 1-x≥2或⎩⎪⎨⎪⎧x >1,ln x -1≥2,解得x ≤1-ln 2或x ≥1+e 2,则使得f (x )≥2成立的x 的取值范围是(-∞,1-ln 2]∪[1+e 2,+∞). 答案:(-∞,1-ln 2]∪[1+e 2,+∞)12.若对任意x ∈⎝ ⎛⎭⎪⎫0,12,恒有4x <log ax (a >0且a ≠1),则实数a 的取值范围是________. 解析:令f (x )=4x,则f (x )在⎝ ⎛⎭⎪⎫0,12上是增函数,g (x )=log a x ,当a >1时,g (x )=log a x在⎝ ⎛⎭⎪⎫0,12上是增函数,且g (x )=log a x <0,不符合题意;当0<a <1时,g (x )=log a x 在⎝ ⎛⎭⎪⎫0,12上是减函数,则⎩⎪⎨⎪⎧0<a <1,f ⎝ ⎛⎭⎪⎫12≤g ⎝ ⎛⎭⎪⎫12,解得22≤a <1. 答案:⎣⎢⎡⎭⎪⎫22,1 三、解答题13.函数f (x )=log a x (a >0,a ≠1),且f (2)-f (4)=1. (1)若f (3m -2)>f (2m +5),求实数m 的取值范围;(2)求使f ⎝ ⎛⎭⎪⎫x -4x =log 123成立的x 的值. 解:(1)由f (2)-f (4)=1,得a =12.∵函数f (x )=log 12x 为减函数且f (3m -2)>f (2m +5),∴0<3m -2<2m +5,解得23<m <7,故m 的取值范围为⎝ ⎛⎭⎪⎫23,7. (2)f ⎝ ⎛⎭⎪⎫x -4x =log 123,即x -4x =3,x 2-3x -4=0,解得x =4或x =-1. 14.已知函数f (x )=a -22x+1为奇函数. (1)求a 的值;(2)试判断函数f (x )在(-∞,+∞)上的单调性,并证明你的结论;(3)若对任意的t ∈R ,不等式f [t 2-(m -2)t ]+f (t 2-m +1)>0恒成立,求实数m 的取值范围.解:(1)∵函数f (x )为奇函数,∴f (x )=-f (-x ), ∴a -22x +1=-a +22-x +1,∴2a =2·2x2x +1+22x +1=2,∴a =1.(2)f (x )在R 上为单调递增函数. 证明如下:设任意x 1,x 2∈R ,且x 1<x 2, 则f (x 1)-f (x 2)=1-22 x 1+1-1+22 x 2+1=22 x 1-2 x 22 x 1+12 x 2+1.∵x 1<x 2,∴2 x 1-2 x 2<0,(2 x 1+1)(2 x 2+1)>0, ∴f (x 1)<f (x 2),∴f (x )为R 上的单调递增函数. (3)∵f (x )=1-22x+1为奇函数,且在R 上为增函数,∴由f[t2-(m-2)t]+f(t2-m+1)>0恒成立,∴f[t2-(m-2)t]>-f(t2-m+1)=f(m-t2-1),∴t2-(m-2)t>m-1-t2对t∈R恒成立,化简得2t2-(m-2)t-m+1>0,∴Δ=(m-2)2+8(m-1)<0,解得-2-22<m<-2+22,故m的取值范围为(-2-22,-2+22).高考研究课(一) 幂函数、二次函数的 3类考查点——图象、性质、解析式[全国卷5年命题分析]考点考查频度考查角度幂函数5年3考幂函数的性质二次函数5年1考二次函数的图象幂函数的图象与性质[典例] (n2+2n-2)·xn2-3n(n∈Z)的图象关于y轴对称,且在(0,+∞)上是减函数,则n的值为( ) A.-3 B.1C.2 D.1或-3(2)1.112,0.912,1的大小关系为________.[解析] (1)由于f(x)为幂函数,所以n2+2n-2=1,解得n=1或n=-3,当n=1时,函数f(x)=x-2为偶函数,其图象关于y轴对称,且f(x)在(0,+∞)上是减函数,所以n=1满足题意;当n=-3时,函数f(x)=x18为偶函数,其图象关于y轴对称,而f(x)在(0,+∞)上是增函数,所以n=-3不满足题意,舍去.故选B.(2)把1看作112,幂函数y=x12在(0,+∞)上是增函数.∵0<0.9<1<1.1,∴0.912<112<1.112.即0.912<1<1.112.[答案] (1)B (2)0.912<1<1.112[方法技巧]幂函数图象与性质的应用(1)可以借助幂函数的图象理解函数的对称性、单调性;(2)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.[即时演练]1.已知f (x )=x 12,若0<a <b <1,则下列各式正确的是( )A .f (a )<f (b )<f ⎝ ⎛⎭⎪⎫1a <f ⎝ ⎛⎭⎪⎫1b B .f ⎝ ⎛⎭⎪⎫1a <f ⎝ ⎛⎭⎪⎫1b <f (b )<f (a )C .f (a )<f (b )<f ⎝ ⎛⎭⎪⎫1b <f ⎝ ⎛⎭⎪⎫1aD .f ⎝ ⎛⎭⎪⎫1a <f (a )<f ⎝ ⎛⎭⎪⎫1b<f (b ) 解析:选C ∵0<a <b <1,∴0<a <b <1b <1a,又f (x )=x 12为增函数,∴f (a )<f (b )<f ⎝ ⎛⎭⎪⎫1b <f ⎝ ⎛⎭⎪⎫1a. 2.若(a +1)-13<(3-2a ) -13,则实数a 的取值范围是________________.解析:不等式(a +1)-13<(3-2a ) -13等价于a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a . 解得23<a <32或a <-1.答案:(-∞,-1)∪⎝ ⎛⎭⎪⎫23,32 二次函数的解析式二次函数的解析式有一般式、顶点式、零点式.求二次函数的解析式时,要灵活选择解析式形式以确立解法.定该二次函数的解析式.[解] 法一:用“一般式”解题 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数为f (x )=-4x 2+4x +7. 法二:用“顶点式”解题 设f (x )=a (x -m )2+n (a ≠0). ∵f (2)=f (-1),∴抛物线的对称轴为x =2+-12=12,∴m =12.又根据题意,函数有最大值8,∴n =8,∴y =f (x )=a ⎝ ⎛⎭⎪⎫x -122+8.∵f (2)=-1,∴a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4,∴f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.法三:用“零点式”解题由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1)(a ≠0), 即f (x )=ax 2-ax -2a -1. 又函数有最大值8,即4a-2a -1-a24a=8.解得a =-4或a =0(舍去).∴所求函数的解析式为f (x )=-4x 2+4x +7. [方法技巧]求二次函数解析式的方法根据已知条件确定二次函数解析式,一般用待定系数法,规律如下:[即时演练]1.为了美观,在加工太阳镜时将下半部分轮廓制作成二次函数图象的形状(如图所示).若对应的两条曲线关于y 轴对称,AE ∥x 轴,AB =4 cm ,最低点C 在x 轴上,高CH =1 cm ,BD =2 cm ,则右轮廓线DFE 所在的二次函数的解析式为( )A .y =14(x +3)2B .y =-14(x -3)2C .y =-14(x +3)2D .y =14(x -3)2解析:选D 由题图可知,对应的两条曲线关于y 轴对称,AE ∥x 轴,AB =4 cm ,最低点C 在x 轴上,高CH =1 cm ,BD =2 cm ,所以点C 的纵坐标为0,横坐标的绝对值为3,即C (-3,0),因为点F 与点C 关于y 轴对称,所以F (3,0),因为点F 是右轮廓线DFE 所在的二次函数图象的顶点,所以设该二次函数为y =a (x -3)2(a >0),将点D (1,1)代入得,a =14,即y =14(x -3)2. 2.已知二次函数f (x )是偶函数,且f (4)=4f (2)=16,则函数f (x )的解析式为________. 解析:由题意可设函数f (x )=ax 2+c (a ≠0),则f (4)=16a +c =16,f (2)=4a +c =4,解得a =1,c =0,故f (x )=x 2.答案:f (x )=x 2二次函数的图象与性质高考对二次函数图象与性质进行单独考查的频率较低.常与一元二次方程、一元二次不等式等知识交汇命题是高考的热点,多以选择题、填空题的形式出现,考查二次函数的图象与性质的应用.常见的命题角度有:1二次函数的图象与性质; 2二次函数的最值问题. 1.(2018·武汉模拟)已知函数f (x )=ax 2+2ax +b (1<a <3),且x 1<x 2,x 1+x 2=1-a ,则下列结论正确的是( )A .f (x 1)<f (x 2)B .f (x 1)>f (x 2)C .f (x 1)=f (x 2)D .f (x 1)与f (x 2)的大小关系不能确定解析:选A f (x )的对称轴为x =-1,因为1<a <3,则-2<1-a <0,若x 1<x 2≤-1,则x 1+x 2<-2,不满足x 1+x 2=1-a 且-2<1-a <0;若x 1<-1,x 2≥-1,则|x 2+1|-|-1-x 1|=x 2+1+1+x 1=x 1+x 2+2=3-a >0(1<a <3), 此时x 2到对称轴的距离大,所以f (x 2)>f (x 1);若-1≤x 1<x 2,则此时x 1+x 2>-2,又因为f (x )在[-1,+∞)上为增函数,所以f (x 1)<f (x 2).2.设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),且实数m 的取值范围是( )A .(-∞,0]B .[2,+∞)C .(-∞,0]∪[2,+∞)D .[0,2]解析:选D 二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,则a ≠0,f ′(x )=2a (x -1)<0,x ∈[0,1],所以a >0,即函数的图象开口向上,又因为对称轴是直线x =1.所以f (0)=f (2),则当f (m )≤f (0)时,有0≤m ≤2.[方法技巧]解决二次函数图象与性质问题的2个注意点(1)抛物线的开口、对称轴位置、定义区间三者相互制约,常见的题型中这三者有两定一不定,要注意分类讨论;(2)要注意数形结合思想的应用,尤其是结合二次函数在该区间上的单调性或图象求解. 角度二:二次函数的最值问题3.已知二次函数f (x )=ax 2-2x (0≤x ≤1),求f (x )的最小值.解:(1)当a >0时,f (x )=ax 2-2x 图象的开口方向向上,且对称轴为x =1a.①当1a≤1,即a ≥1时,f (x )=ax 2-2x 图象的对称轴在[0,1]内,∴f (x )在⎣⎢⎡⎦⎥⎤0,1a 上递减,在⎣⎢⎡⎦⎥⎤1a ,1上递增.∴f (x )min =f ⎝ ⎛⎭⎪⎫1a=1a -2a=-1a.②当1a>1,即0<a <1时,f (x )=ax 2-2x 图象的对称轴在[0,1]的右侧,∴f (x )在[0,1]上递减. ∴f (x )min =f (1)=a -2.(2)当a <0时,f (x )=ax 2-2x 的图象的开口方向向下,且对称轴x =1a<0,在y 轴的左侧,∴f (x )=ax 2-2x 在[0,1]上递减. ∴f (x )min =f (1)=a -2.综上所述,f (x )min =⎩⎪⎨⎪⎧a -2,a ∈-∞,0∪0,1,-1a,a ∈[1,+∞.4.已知a 是实数,记函数f (x )=x 2-2x +2在[a ,a +1]上的最小值为g (a ),求g (a )的解析式.解:f (x )=x 2-2x +2=(x -1)2+1,x ∈[a ,a +1],a ∈R ,对称轴为x =1.当a +1<1,即a <0时,函数图象如图(1),函数f (x )在区间[a ,a +1]上为减函数,所以最小值为f (a +1)=a 2+1;当a ≤1≤a +1,即0≤a ≤1时,函数图象如图(2),在对称轴x =1处取得最小值,最小值为f (1)=1;当a >1时,函数图象如图(3),函数f (x )在区间[a ,a +1]上为增函数,所以最小值为f (a )=a 2-2a +2.综上可知,g (a )=⎩⎪⎨⎪⎧a 2+1,a <0,1,0≤a ≤1,a 2-2a +2,a >1.[方法技巧]二次函数在闭区间上的最大值和最小值可能在三个地方取到:区间的两个端点处,或对称轴处.也可以作出二次函数在该区间上的图象,由图象来判断最值.解题的关键是讨论对称轴与所给区间的相对位置关系.1.(2016·全国卷Ⅲ)已知a =243,b =425,c =2513,则( ) A .b <a <c B .a <b <c C .b <c <aD .c <a <b解析:选A 因为a =243,b =425=245,由函数y =2x在R 上为增函数,知b <a ;又因为a =243=423,c =2513=523,由幂函数y =x 23在(0,+∞)上为增函数,知a <c .综上得b <a <c .故选A.2.(2016·全国卷Ⅱ)已知函数f (x )(x ∈R)满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1mx i =( )A .0B .mC .2mD .4m解析:选B ∵f (x )=f (2-x ),∴函数f (x )的图象关于直线x =1对称.又y =|x 2-2x -3|=|(x -1)2-4|的图象关于直线x =1对称,∴两函数图象的交点关于直线x =1对称.当m 为偶数时,∑i =1mx i =2×m2=m ;当m 为奇数时,∑i =1mx i =2×m -12+1=m .故选B.3.(2014·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.解析:当x <1时,由ex -1≤2得x ≤1+ln 2,∴x <1;当x ≥1时,由x 13≤2得x ≤8,∴1≤x ≤8.综上,符合题意的x 的取值范围是x ≤8.答案:(-∞,8]一、选择题1.(2018·绵阳模拟)幂函数y =(m 2-3m +3)x m的图象过点(2,4),则m =( ) A .-2 B .-1 C .1D .2解析:选D ∵幂函数y =(m 2-3m +3)x m的图象过点(2,4),∴⎩⎪⎨⎪⎧m 2-3m +3=1,2m=4,解得m =2.故选D.2.(2018·杭州测试)若函数f (x )=x 2-2x +1在区间[a ,a +2]上的最小值为4,则实数a 的取值集合为( )A .[-3,3]B .[-1,3]C .{-3,3}D .{-1,-3,3}解析:选C ∵函数f (x )=x 2-2x +1=(x -1)2的图象的对称轴为直线x =1,f (x )在区间[a ,a +2]上的最小值为4,∴当a ≥1时,f (x )min =f (a )=(a -1)2=4,a =-1(舍去)或a =3;当a +2≤1,即a ≤-1时,f (x )min =f (a +2)=(a +1)2=4,a =1(舍去)或a =-3; 当a <1<a +2,即-1<a <1时,f (x )min =f (1)=0≠4. 故a 的取值集合为{-3,3}.故选C.3.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b .其中正确的结论是( )A .②④B .①④C .②③D .①③解析:选B ∵二次函数的图象与x 轴交于两点,∴b 2-4ac >0,即b 2>4ac ,①正确; 对称轴为x =-1,即-b2a =-1,2a -b =0,②错误;结合图象知,当x =-1时,y >0,即a -b +c >0,③错误; 由对称轴为x =-1知,b =2a ,又函数图象开口向下,∴a <0,∴5a <2a ,即5a <b ,④正确.故选B.4.若对任意a ∈[-1,1],函数F (x )=x 2+(a -4)x +4-2a 的值恒大于零,则x 的取值范围是( )A .(1,3)B .(-∞,1)∪(3,+∞)C .(1,2)D .(-∞,1)∪(2,+∞)解析:选B 由题意,令f (a )=F (x )=x 2+(a -4)x +4-2a =(x -2)a +x 2-4x +4,对任意a ∈[-1,1]恒成立,所以⎩⎪⎨⎪⎧f1=x 2-3x +2>0,f -1=x 2-5x +6>0,解得x <1或x >3.5.若函数f (x )=mx 2-2x +3在[-1,+∞)上递减,则实数m 的取值范围为( ) A .(-1,0) B .[-1,0) C .(-∞,-1]D .[-1,0]解析:选D 当m =0时,f (x )=-2x +3在R 上递减,符合题意;当m ≠0时,函数f (x )=mx 2-2x +3在[-1,+∞)上递减,只需对称轴x =1m≤-1,且m <0,解得-1≤m <0,综上,实数m 的取值范围为[-1,0].6.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3)解析:选A ∵f (1)=3,∴不等式f (x )>f (1),即f (x )>3.∴⎩⎪⎨⎪⎧x ≥0,x 2-4x +6>3或⎩⎪⎨⎪⎧x <0,x +6>3,解得x >3或-3<x <1.7.已知a ,b ,c ,d 都是常数,a >b ,c >d .若f (x )=2 017-(x -a )(x -b )的零点为c ,d ,则下列不等式正确的是( )A .a >c >b >dB .a >b >c >dC .c >d >a >bD .c >a >b >d解析:选D f (x )=2 017-(x -a )(x -b )=-x 2+(a +b )x -ab +2 017,又f (a )=f (b )=2 017,c ,d 为函数f (x )的零点,且a >b ,c >d, 所以可在平面直角坐标系中作出函数f (x )的大致图象,如图所示,由图可知c >a >b >d ,故选D.8.(2017·浙江高考)若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关解析:选B f (x )=⎝ ⎛⎭⎪⎫x +a 22-a24+b ,① 当0≤-a2≤1时,f (x )min =m =f ⎝ ⎛⎭⎪⎫-a 2=-a 24+b ,f (x )max =M =max{f (0),f (1)}=max{b,1+a +b },∴M -m =max ⎩⎨⎧⎭⎬⎫a 24,1+a +a 24与a 有关,与b 无关;②当-a2<0时,f (x )在[0,1]上单调递增,∴M -m =f (1)-f (0)=1+a 与a 有关,与b 无关; ③当-a2>1时,f (x )在[0,1]上单调递减,∴M -m =f (0)-f (1)=-1-a 与a 有关,与b 无关.综上所述,M -m 与a 有关,但与b 无关. 二、填空题9.已知幂函数f (x )=x -m 2+2m +3(m ∈Z)在(0,+∞)上为增函数,且在其定义域内是偶函数,则m 的值为________.解析:∵幂函数f (x )在(0,+∞)上为增函数, ∴-m 2+2m +3>0,即m 2-2m -3<0,解得-1<m <3. 又m ∈Z ,∴m =0或m =1或m =2.当m =0或m =2时,f (x )=x 3在其定义域内为奇函数,不满足题意;当m =1时,f (x )=x 4在其定义域内是偶函数,满足题意.综上可知,m 的值是1. 答案:110.二次函数y =3x 2+2(m -1)x +n 在区间(-∞,1)上是减函数,在区间[1,+∞)上是增函数,则实数m =________.解析:二次函数y =3x 2+2(m -1)x +n 的图象的开口向上,对称轴为直线x =-m -13,要使得函数在区间(-∞,1)上是减函数,在区间[1,+∞)上是增函数,则x =-m -13=1,解得m =-2.答案:-211.(2018·南通一调)若函数f (x )=ax 2+20x +14(a >0)对任意实数t ,在闭区间[t -1,t +1]上总存在两实数x 1,x 2,使得|f (x 1)-f (x 2)|≥8成立,则实数a 的最小值为________.解析:由题意可得,当x ∈[t -1,t +1]时,[f (x )max -f (x )min ]min ≥8,当[t -1,t +1]关于对称轴对称时,f (x )max -f (x )min 取得最小值,即f (t +1)-f (t )=2at +a +20≥8,f (t -1)-f (t )=-2at +a -20≥8,两式相加,得a ≥8,所以实数a 的最小值为8.答案:812.设函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤a ,x 2,x >a ,若存在实数b ,使得函数y =f (x )-bx 恰有2个零点,则实数a 的取值范围为_______.解析:显然x =0是y =f (x )-bx 的一个零点; 当x ≠0时,令y =f (x )-bx =0得b =f xx, 令g (x )=f xx =⎩⎪⎨⎪⎧x 2,x ≤a ,x ,x >a ,则b =g (x )存在唯一一个解.当a <0时,作出函数g (x )的图象,如图所示,显然当a <b <a 2且b ≠0时,b =g (x )存在唯一一个解,符合题意; 当a >0时,作出函数g (x )的图象,如图所示,若要使b =g (x )存在唯一一个解,则a >a 2,即0<a <1, 同理,当a =0时,显然b =g (x )有零解或两解,不符合题意. 综上,a 的取值范围是(-∞,0)∪(0,1). 答案:(-∞,0)∪(0,1) 三、解答题13.(2018·杭州模拟)已知值域为[-1,+∞)的二次函数f (x )满足f (-1+x )=f (-1-x ),且方程f (x )=0的两个实根x 1,x 2满足|x 1-x 2|=2.(1)求f (x )的表达式;(2)函数g (x )=f (x )-kx 在区间[-1,2]上的最大值为f (2),最小值为f (-1),求实数k 的取值范围.解:(1)由f (-1+x )=f (-1-x ),可得f (x )的图象关于直线x =-1对称, 设f (x )=a (x +1)2+h =ax 2+2ax +a +h (a ≠0), 由函数f (x )的值域为[-1,+∞),可得h =-1, 根据根与系数的关系可得x 1+x 2=-2,x 1x 2=1+h a, ∴|x 1-x 2|=x 1+x 22-4x 1x 2=-4ha=2,解得a =1, ∴f (x )=x 2+2x .(2)由题意得函数g (x )在区间[-1,2]上单调递增, 又g (x )=f (x )-kx =x 2-(k -2)x . ∴g (x )的对称轴方程为x =k -22,则k -22≤-1,即k ≤0,故k 的取值范围为(-∞,0].14.(2018·成都诊断)已知函数f (x )=x 2+ax +3-a ,若x ∈[-2,2],f (x )≥0恒成立,求a 的取值范围.解:f (x )=⎝ ⎛⎭⎪⎫x +a 22-a24-a +3,令f (x )在[-2,2]上的最小值为g (a ).(1)当-a2<-2,即a >4时,g (a )=f (-2)=7-3a ≥0,∴a ≤73.又a >4,∴a 不存在.(2)当-2≤-a2≤2,即-4≤a ≤4时,g (a )=f ⎝ ⎛⎭⎪⎫-a 2=-a 24-a +3≥0, ∴-6≤a ≤2.又-4≤a ≤4, ∴-4≤a ≤2.(3)当-a2>2,即a <-4时,g (a )=f (2)=7+a ≥0,∴a ≥-7.又a <-4,∴-7≤a <-4.综上可知,a 的取值范围为[-7,2].1.设函数f (x )=ax 2+bx +c (a >b >c )的图象经过点A (m 1,f (m 1))和点B (m 2,f (m 2)),f (1)=0.若a 2+[f (m 1)+f (m 2)]·a +f (m 1)·f (m 2)=0,则( )A .b ≥0B .b <0C .3a +c ≤0D .3a -c <0解析:选A 由f (1)=0可得a +b +c =0,若a ≤0,由a >b >c ,得a +b +c <0,这与a +b +c =0矛盾,故a >0,若c ≥0,则有b >0,a >0,此时a +b +c >0,这与a +b +c =0矛盾;所以c <0成立,因为a 2+[f (m 1)+f (m 2)]·a +f (m 1)·f (m 2)=0,所以(a +f (m 1))(a +f (m 2))=0,所以m 1,m 2是方程f (x )=-a 的两个根,Δ=b 2-4a (a +c )=b (b +4a )=b (3a -c )≥0,而a >0,c <0,所以3a -c >0,所以b ≥0.2.设函数f (x )=2ax 2+2bx ,若存在实数x 0∈(0,t ),使得对任意不为零的实数a ,b ,均有f (x 0)=a +b 成立,则t 的取值范围是________.解析:因为存在实数x 0∈(0,t ),使得对任意不为零的实数a ,b ,均有f (x 0)=a +b 成立,所以2ax 2+2bx =a +b 等价于(2x -1)b =(1-2x 2)a . 当x =12时,左边=0,右边≠0,即等式不成立,故x ≠12;当x ≠12时,(2x -1)b =(1-2x 2)a 等价于b a =1-2x 22x -1,设2x -1=k ,因为x ≠12,所以k ≠0,则x =k +12,则b a =1-2⎝ ⎛⎭⎪⎫k +122k =12⎝ ⎛⎭⎪⎫1k -k -2. 设g (k )=12⎝ ⎛⎭⎪⎫1k -k -2,则函数g (k )在(-1,0),(0,2t -1)上的值域为R. 又因为g (k )在(-∞,0),(0,+∞)上单调递减, 所以g (k )在(-1,0),(0,2t -1)上单调递减, 故当k ∈(-1,0)时,g (k )<g (-1)=-1;当k ∈(0,2t -1)时,g (k )>g (2t -1)=12⎝ ⎛⎭⎪⎫12t -1-2t -1,故要使值域为R ,则g (2t -1)<g (-1),即12t -1-2t -1<-2,解得t >1.答案:(1,+∞) 高考研究课(二)指数函数的2类考查点——图象、性质 [全国卷5年命题分析]考点 考查频度 考查角度 指数函数的图象 5年3考 指数函数图象的应用 指数函数的性质5年3考比较大小、求值指数函数的图象及应用[典例] (1)函数f (x )=xe 2x +1的大致图象是( )(2)(2018·广州模拟)若存在负实数使得方程2x-a =1x -1成立,则实数a 的取值范围是( )A .(2,+∞)B .(0,+∞)C .(0,2)D .(0,1)[解析] (1)因为f (-x )=e -x·x 2e -2x +1=e x ·x21+e 2x =f (x ),所以函数f (x )为偶函数,所以排除A 、D 项.当x =0时,y =0,故排除B 项,选C.(2)在同一坐标系内分别作出函数y =1x -1和y =2x-a 的图象,则由图知,当a ∈(0,2)时符合要求.[答案] (1)C (2)C [方法技巧]指数函数图象问题的求解策略(1)画指数函数y =a x(a >0,a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎪⎫-1,1a . (2)与指数函数有关函数图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象.(3)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解. [即时演练] 1.函数f (x )=2|x -1|的图象是( )解析:选B 由题意得f (x )=⎩⎪⎨⎪⎧2x -1,x ≥1,⎝ ⎛⎭⎪⎫12x -1,x <1,结合图象知,选B.2.(2018·衡水模拟)若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围是________.解析:曲线|y |=2x+1与直线y =b 的图象如图所示,由图可知:如果|y |=2x+1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1].答案:[-1,1]指数函数的性质高考常以选择题或填空题的形式考查指数函数的性质及应用,难度偏小,属于低档题.常见的命题角度有:1比较大小或解不等式;2与指数函数有关的函数值域问题;3与指数函数有关的单调性问题;4与指数函数有关的最值与参数问题.角度一:比较大小或解不等式1.(2018·滕州模拟)下列各式比较大小正确的是( ) A .1.72.5>1.73B .0.6-1>0.62C .0.8-0.1>1.250.2D .1.70.3<0.93.1解析:选B A 中,∵函数y =1.7x在R 上是增函数,2.5<3,∴1.72.5<1.73,故A 错误; B 中,∵y =0.6x在R 上是减函数,-1<2, ∴0.6-1>0.62,故B 正确; C 中,∵0.8-1=1.25,∴问题转化为比较1.250.1与1.250.2的大小. ∵y =1.25x在R 上是增函数,0.1<0.2, ∴1.250.1<1.250.2, 即0.8-0.1<1.250.2,故C 错误;D 中, ∵1.70.3>1,0<0.93.1<1, ∴1.70.3>0.93.1,故D 错误.2.(2018·绍兴模拟)设偶函数f (x )满足f (x )=2x-4(x ≥0),则{x |f (x -2)>0}=( ) A .{x |x <-2或x >4} B .{x |x <0或x >4} C .{x |x <0或x >6}D .{x |x <-2或x >2}解析:选B ∵f (x )为偶函数, 当x <0时,f (x )=f (-x )=2-x-4.∴f (x )=⎩⎪⎨⎪⎧2x-4,x ≥0,2-x-4,x <0,若f (x -2)>0,则有⎩⎪⎨⎪⎧x -2≥0,2x -2-4>0或⎩⎪⎨⎪⎧x -2<0,2-x +2-4>0,解得x >4或x <0. [方法技巧](1)比较两个指数幂大小时,尽量化同底或同指,当底数相同,指数不同时,构造同一指数函数,然后比较大小;当指数相同,底数不同时,构造两个指数函数,利用图象比较大小.(2)有关指数不等式问题,应注意a 的取值,及结合指数函数的性质求解. 角度二:与指数函数有关的函数值域问题3.已知0≤x ≤2,则y =4x -12-3·2x+5的最大值为________.解析:令t =2x,∵0≤x ≤2,∴1≤t ≤4, 又y =22x -1-3·2x +5,∴y =12t 2-3t +5=12(t -3)2+12,∵1≤t ≤4,∴t =1时,y max =52.答案:52[方法技巧]形如y =a 2x+b ·a x +c (a >0,且a ≠1)型函数最值问题多用换元法,即令t =a x转化为y =t 2+bt +c 的最值问题,注意根据指数函数求t 的范围.角度三:与指数函数有关的单调性问题 4.若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]解析:选B 由f (1)=19,得a 2=19,解得a =13或a =-13(舍去),即f (x )=⎝ ⎛⎭⎪⎫13|2x -4|.由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增,所以f (x )在(-∞,2]上递增,在[2,+∞)上递减,故选B.5.已知函数f (x )=a|x +1|(a >0,且a ≠1)的值域为[1,+∞),则f (-4)与f (1)的大小关系是________________.解析:∵|x +1|≥0,函数f (x )=a |x +1|(a >0,且a ≠1)的值域为[1,+∞),∴a >1.由于函数f (x )=a|x +1|在(-1,+∞)上是增函数,且它的图象关于直线x =-1对称,则函数在(-∞,-1)上是减函数,故f (1)=f (-3),f (-4)>f (1).答案:f (-4)>f (1) [方法技巧]。

2019_2020学年高中数学第三章基本初等函数(Ⅰ)章末末总结课件新人教B版必修1

2019_2020学年高中数学第三章基本初等函数(Ⅰ)章末末总结课件新人教B版必修1

章末总结网络建构名师导学本章要解决的主要问题是:指数、对数、幂的计算和化简,指数函数、对数函数、幂函数的概念、图象、性质及应用.解决上述问题的关键是:理解并掌握好幂函数、指数函数、对数函数的运算,指数函数、对数函数、幂函数的概念、性质和图象等基础知识,做到基础知识无盲点.要注意函数与方程思想的应用,进一步形成应用函数思想、数形结合思想解决问题的能力.题型探究·素养提升类型一幂、指、对数的运算思路点拨:利用指数幂、对数的运算法则及性质进行化简或计算,要注意法则的正、逆应用.(1)(0.000 114)-+2237-124964-⎛⎫ ⎪⎝⎭+ 1.519-⎛⎫ ⎪⎝⎭;解:(1)原式=(0.1414)-+(3323)-12278-⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+32213-⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=0.1-1+32-178-⎛⎫ ⎪⎝⎭+313-⎛⎫ ⎪⎝⎭ =10+9-87+27=3147.解:(2)原式=22log 23+23log 3-2log (2)4=32+12-4=-2. (2)log 48-19log 3-2log 4.方法技巧(1)指数幂的运算关键是化负指数为正指数,化根式为分数指数幂,化小数为分数.(2)对数式的化简或计算要注意利用对数的运算性质或对数恒等式、换底公式来进行.类型二比较大小问题【例2】 (1)(2017·天津卷)已知奇函数f(x)在R上是增函数.若a= -f(log215 ),b=f(log24.1),c=f(20.8),则a,b,c的大小关系为( ) (A)a<b<c (B)b<a<c(C)c<b<a (D)c<a<b解析:(1)因为f(x)在R上是奇函数,所以a=-f(log215)=f(-log215)=f(log25).又f(x)在R上是增函数,且log25>log24.1>log24=2>20.8,所以f(log25)> f(log24.1)>f(20.8),所以a>b>c.故选C.(2)设a>b>1,c<0,给出下列三个结论:①ca>cb;②a c<b c;③log b(a-c)>log a(b-c).其中所有的正确结论的序号是( )(A)①(B)①②(C)②③(D)①②③解析:(2)由a>b>1可得0<1a<1b,故ca>cb,①正确;结合指数函数性质,a>b>1时,若c<0则a c<b c,②正确;另一方面a-c>b-c>1,故log b(a-c)>log a(a-c)>log a(b-c),③正确.故选D.方法技巧将两个需要比较大小的实数看成某类函数的函数值,利用函数的单调性比较是常用的一种方法,当两个幂形式的数的底数与指数都不同时,常利用选取中间量法进行比较.另外,还可以借助于图象法,比较(作差、作商)法等.类型三幂、指数、对数函数的性质、图象【例3】方程a-x=logax(a>0且a≠1)的实数解个数为() (A)0(B)1(C)2(D)3解析:利用数形结合法画出y2=a-x与y1=logax的图象,观察判断.当a>1时,在同一坐标系中画出y1=logax的图象和y2=a-x的图象如图(1),由图象知两函数图象只有一个交点;同理,当0<a<1时,由图(2)知,两函数图象也只有一个交点.因此,不论何种情况,方程只有一个实数解.故选B.类型四指数、对数型函数求值域、最值、定义域思路点拨:本题考查指数函数的单调性的应用,由于本题是分段函数,因此需分段求函数的值域.解:当x≤1时,x-1≤0,故0<3x-1≤1.由此可得-2<3x-1-2≤-1.当x>1时,1-x<0,故0<31-x <1.由此可得-2<31-x -2<-1.故所求函数的值域为(-2,-1].【例4】 求函数f(x)=1132,1,32,1x x x x --⎧-≤⎪⎨->⎪⎩ 的值域.方法技巧指数函数、对数函数的性质主要是指两种函数的定义域、值域、单调性等,其中单调性是高考考查的重点,并且经常以复合函数的形式考查,求解此类问题时,要以基本函数的单调性为主,结合复合函数单调性判断法则,在函数定义域限制之下讨论.类型五函数中的思想方法思路点拨:原方程等价于()()13,,13.x x a x x a x ⎧<<⎪<⎨⎪--=-⎩方程(x-1)(3-x)=a-x 的解满足1<x<3,方程的左边为正,右边也为正,所以必满足x<a;反之若满足x<a,则必满足1<x<3,于是问题转化为解方程(x-1)(3-x)= a-x 且x ∈(1,3).【例5】设a∈R ,试讨论关于x 的方程lg(x-1)+lg(3-x)=lg(a-x)的实根的个数.解:原方程等价于()()10,30,0,13,x x a x x x a x ->⎧⎪->⎪⎨->⎪⎪--=-⎩⇔()()10, 30, 13. x x x x a x ⎧->⎪->⎨⎪--=-⎩①②③ 由①,②得1<x<3,由③得-x 2+5x-3=a(1<x<3).在同一坐标系中分别作函数y=a 及y=-x 2+5x-3,x ∈(1,3)的图象,如图.当x=1时,y=1;当x=3时,y=3;当x=52时,y最大=134.由图可知,当a>134,或a≤1时,函数图象无交点,原方程无实数解.当a=134,或1<a≤3时,函数图象有一个交点,故原方程有一个解.当3<a<134时,函数图象有两个交点,故原方程有两个实数解.方法技巧本题将函数与方程思想、数形结合思想、分类讨论思想、转化思想与化归思想有机地结合在一起,是考查数学思想方法的好题,本题的关键是数形结合.类型六函数的实际应用题【例6】某跨国饮料公司在对全世界所有人均GDP(即人均纯收入)在0.5千美元~8千美元的地区销售该公司A饮料的情况的调查中发现:人均GDP 处在中等的地区对该饮料的销售量最多,然后向两边递减.(1)下列几个模拟函数中(x表示人均GDP,单位:千美元,y表示A饮料的年人均销量,单位:升),用哪个模拟函数来描述A饮料的年人均销量与地区的人x+b,y=a x+b.均GDP关系更合适?说明理由.y=ax2+bx,y=kx+b,y=loga解:(1)用函数y=ax2+bx来描述A饮料的年人均销量与地区的人均GDP的关x+b,y=a x+b在其定义域内都是单调函系更合适.因为函数y=kx+b,y=loga数,不具备先递增后递减的特征.(2)若人均GDP为1千美元时,A饮料的年人均销量为2升;若人均GDP为4千美元时,A饮料的年人均销量为5升,把(1)中你所选的模拟函数求出来,并求出各个地区中,A饮料的年人均销量最多是多少?解:(2)依题意知函数图象过点(1,2)和(4,5),则有2,1645,a ba b+=⎧⎨+=⎩解得1,49,4ab⎧=-⎪⎪⎨⎪=⎪⎩所以y=-14x2+94x(0.5≤x≤8).因为y=-14x2+94x=-14(x-92)2+8116≤8116.所以在各地区中,当x=92时,A饮料的年人均销量最多是8116升.方法技巧利用给定的函数模型或建立确定的函数模型解决实际问题的方法:(1)根据题意选用恰当的函数模型来描述所涉及的数量之间的关系;(2)利用待定系数法,确定具体函数模型;(3)对所选定的函数模型进行适当的评价、比较,并选择最恰当的模型;(4)根据实际问题对模型进行适当的修正.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.4 函数的应用(Ⅱ)
课时过关·能力提升
1某公司为了适应市场需求,对产品结构作了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与时间x的关系,可选用()
A.一次函数
B.二次函数
C.指数型函数
D.对数型函数
2当x越来越大时,下列函数中,增长速度最快的应该是()
A.y=100x
B.y=log100x
C.y=x100
D.y=100x
,则当x越来越大时,函数y=100x的增长速度最快.
3化学上通常用pH来表示溶液酸碱性的强弱:pH=-lg{c(H+)},其中c(H+)表示溶液中H+的浓度.
若一杯胡萝卜汁的pH比一杯葡萄汁的pH小2,则胡萝卜汁中c(H+)是葡萄汁中c(H+)的倍数为() A.2 B.10
C.100
D.200
c(H+)和葡萄汁中的c(H+)分别为a和b,依题意有lg b-lg a=-2,因此lg=-2,
即a=100b.
4今有一组数据如下表所示:
现准备用下列函数中的一个近似地表示数据满足的规律,其中接近的一个是()
A.s=2t-3+1
B.s=log2t
C.s=t2-
D.s=2t-2
.
由散点图可知,此函数是增函数,但增长速度较慢,则排除选项A;函数的图象不是直线,排除选项D;函数的图象不符合对数函数的图象,排除选项B.
5春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,则当荷叶刚好覆盖水面面积一半时,荷叶已生长了()
A.10天
B.15天
C.19天
D.2天
y与生长时间x的函数关系为y=2x,当x=20时,长满水面,故生长19天时,布满水面一半.
6某种动物繁殖数量y(单位:只)与繁殖时间x(单位:年)的关系为y=a log2(x+1),设这种动物第一年有100只,则第七年它们发展到()
A.300只
B.400只
C.500只
D.600只
,知当x=1时,y=100,即100=a log22,
即a=100,故y=100log2(x+1).
于是当x=7时,y=100log28=300(只).
7某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是
()
A.y=100x
B.y=50x2-50x+100
C.y=50×2x
D.y=100log2x+100
,再根据不同函数的不同增长特点可知最好的模型为指数型函数,故选C.
★8有浓度为a%的酒精一满瓶共m升,每次倒出n升,再用水加满,一共倒了10次,则加了10次水后瓶中的酒精浓度是.
,瓶中酒精的浓度为·a%,。

相关文档
最新文档