中考数学压轴题解题技巧超详细
【中考复习】攻克中考数学压轴题的三个技巧
【中考复习】攻克中考数学压轴题的三个技巧对于数学而言,不分地区,在全国各地中考试卷中,
高中入学考试
压轴题,一直都是大家的痛,不仅耗费时间,而且分值高,一道题就是10分左右,
特别容易拉开差距。
要想得到高分,压轴题必须要攻克。
常见结局问题的特点:
一、解决过程中需要添加一定的辅助线
尤其是与几何有关的终轴问题,往往需要加线段形成特殊三角形或特殊四边形,并结
合相似三角形、两点间最短线段距离、勾股定理等知识点;或将不规则图形转换为规则图形,并通过切割和补偿方法进行计算。
二、一般来说压轴题的第一小问(如求点的坐标、函数解析式等)都比较简单,一定
要克服心理恐惧,严谨读题,一定可以拿下。
三、没有无缘无故的爱,没有无缘无故的恨,也没有无缘无故的第一个问题。
一般压轴题中几个小问都是紧密关联的,解决第二问、第三问等很多时候需要用第一
问的结论。
简而言之,最后一个问题并不难。
有很多问题类型。
仍然有可能赢得前两个问题。
这样,最后一道题可以得到2/3的分数,这也是相当可观的,与其他问题的差距也不会太大。
初中解数学压轴题技巧
初中解数学压轴题技巧初中解数学压轴题技巧一、解数学压轴题的策略解数学压轴题可分为五个步骤:1.认真默读题目,全面审视题目的所有条件和答题要求,注意挖掘隐蔽的条件和内在联系,理解好题意;2.利用重要数学思想探究解题思路;3.选择好解题的方法正确解答;4.做好检验工作,完善解题过程;5.当思维受阻、思路难觅时,要及时调整思路和方法,并重新审视题意,既要防止钻牛角尖,又要防止轻易放弃.二、解动态几何压轴题的策略近几年的数学中考试卷中都是以函数和几何图形的综合作为压轴题,用到圆、三角形和四边形等有关知识,方程与图形的综合也是常见的压轴题.动态几何问题是一种新题型,在图形的变换过程中,探究图形中某些不变的因素,把操作、观察、探求、计算和证明融合在一起.动态几何题解决的策略是:把握运动规律,寻求运动中的特殊位置;在“动”中求“静”,在“静”中探求“动”的一般规律.通过探索、归纳、猜想,获得图形在运动过程中是否保留或具有某种性质.简析:本题是一个双动点问题,是中考动态问题中出现频率最高的题型,这类题的解题策略是化动为静,注意运用分类思想.三、巧用数学思想方法解分类讨论型压轴题数学思想和方法是数学的灵魂,是知识转化为能力的桥梁 .近几年的各省市中考数学试题,越来越注重数学思想和数学方法的考查,这已成为大家的共识,为帮助读者更好地理解和掌握常用的基本数学思想和数学方法解初中数学压轴题的方法和技巧代数与几何有机结合,掌握解题策略中考压轴题主要体现在综合运用方程(组)、不等式、三角形、四边形、圆、函数知识上,对于这些内容,学生要做到一题多解、多题一解,将代数、几何知识融会贯通,会用代数的观点分析几何问题,用代数方法(方程、不等式、函数等)解决几何问题。
会从几何的角度理解代数问题,寻找几何基本图形,通过数形结合,将归纳、类比、化归、分类等方法运用到解题过程中。
平常学习中要善于归纳、总结,避免盲目的机械重复,这样我们就能找到解决问题的切入点!做好整体分析和思考,善于总结压轴题中蕴含的知识点做压轴题必须要进行全局性分析,对压轴题中蕴含的数学知识点进行剖析。
安徽中考数学压轴题解题技巧
安徽中考数学压轴题解题技巧说起安徽中考数学压轴题的技巧,我有一些心得想分享。
我辅导过一些中考生学习数学,那时候才真正感受到中考数学压轴题就像一座难以攻克的碉堡。
起初,很多同学看到压轴题就直接投降,其实只要掌握了一定技巧,并不是完全不能得分。
就拿函数类型的压轴题来说吧,它好像一个神秘迷宫。
首先,你得像个侦探一样把题目里给出的所有线索,也就是已知条件找出来。
比如说给定函数的表达式、坐标点这些,可别小瞧这一步,就和你找东西先得知道东西长啥样似的重要。
然后呢,我一般会建议学生把这些已知条件往图形里标,这就像是给地图做标记。
比如一次函数和二次函数交了个点,咱就把这个点的坐标标在图上。
真有学生忽略这个步骤,结果做题的时候就像迷失在迷宫里的小鹿,到处乱撞还找不到出口。
对了,还有个事儿要说。
方程思想是解压轴题的一把“利剑”。
很多时候我们需要根据题目中的等量关系列方程。
这就好比是在称东西,左右两边要一样重。
比如说在涉及三角形面积、线段长度关系的时候,利用已知的面积公式或者线段关系列出方程求解。
当然,我也遇到过一些失败的情况。
有一次,一个学生盲目地套技巧,题目要求用一种方法求解,他硬是用另一种不适用的技巧,结果全军覆没。
这就告诉我们,不能死记技巧,还得看清题目背后的逻辑。
而且要知道这些技巧也不是万能药。
有些压轴题出题非常灵活,可能会有陷阱或者超纲的小拓展。
如果遇到这种情况,咱们不要死磕,先把能做的部分做出来,就像吃个苹果,能吃一口是一口。
对于那些很难的部分,有时候用直觉或者排除法说不定还能得到一点分呢。
你来想想看,如果压轴题是一场战斗,那解题技巧就是我们的武器装备,你觉得你还需要在哪些方面加强这个装备库呢?希望大家也能分享一下在做安徽中考数学压轴题时的经验或者困惑呀。
像在一些几何图形结合函数的压轴题当中,图形的运动轨迹是个难点,就如同追踪一只调皮的小松鼠。
咱们要把每个时间点或者运动阶段的图形特征分析出来。
这就需要不断地划分阶段,就好比把这只松鼠走过的路分成好几段去观察。
初中数学:压轴题答题技巧,拿到高分技巧
初中数学:压轴题答题技巧,拿到关键的分数很多同学说在解答压轴题的时候,会感到压力很大,找不到解题思路。
不同类型的压轴题所对应的解题思想也存在很大的差异。
今天就来给同学们详细讲讲如何破译中考数学压轴题,帮助大家在考场中从容应对各种类型的压轴题,争取拿到关键的分数!1.分类讨论题分类讨论在数学题中经常以最后压轴题的方式出现,以下几点是需要大家注意分类讨论的:1、熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决。
在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合。
2、讨论点的位置一定要看清点所在的范围,是在直线上,还是在射线或者线段上。
3、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。
4、代数式变形中如果有绝对值、平方时,里面的数开出来要注意正负号的取舍。
5、考查点的取值情况或范围。
这部分多是考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围。
6、函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点。
7、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)时,所写的函数应该进行分段讨论。
值得注意的是:在列出所有需要讨论的可能性之后,要仔细审查是否每种可能性都会存在,是否有需要舍去的。
最常见的就是一元二次方程如果有两个不等实根,那么我们就要看看是不是这两个根都能保留。
2.四个秘诀切入点一:做不出、找相似,有相似、用相似压轴题牵涉到的知识点较多,知识转化的难度较高。
学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
切入点二:构造定理所需的图形或基本图形在解决问题的过程中,有时添加辅助线是必不可少的,几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。
切入点三:紧扣不变量在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
数学中考压轴题题型及解题技巧(一)
数学中考压轴题题型及解题技巧(一)
数学中考压轴题题型及解题技巧
1. 单选题
•理解题意:仔细阅读题目,确保理解题目的要求和限制条件。
•画图辅助分析:针对几何题目,可以通过画图来帮助理解和解答问题。
•排除法:通过逐个排除选项,找出符合题目要求的答案。
2. 多选题
•筛选关键信息:将题目中的关键信息提取出来,对比选项中的信息,选择合适的答案。
•逻辑推理:通过逻辑分析,推断出哪些选项是肯定正确的,哪些是肯定错误的。
•试验法:将选项应用到一些具体的例子中进行试验,排除不符合题目要求的选项。
3. 填空题
•空中填数法:根据已知条件和问题要求,将空缺处需要填写的数进行逐步推导,不断试错,找出符合题目要求的答案。
•利用关系式:通过已知的关系式或者公式,将题目中的其他已知条件和空缺的部分进行联立,解方程求解空缺处的答案。
4. 解答题
•分析问题:对于解答题,首先要充分理解问题的要求和限制条件,有针对性地进行分析。
•简洁明了的表达:在解答问题时,要尽量用简洁明了的语言和符号,避免冗长和歧义。
•举例和论证:通过举例和论证来证明所给答案的正确性,增加解答的可信度。
5. 解题策略
•看清关键信息:题目中常常会有一些关键信息,通过仔细阅读题目,抓住这些关键信息来辅助解题。
•分析题目结构:将问题分解为更小的问题,并且对每个小问题进行分析和解答。
•多角度思考:尝试从不同的角度和方法来考虑问题,增加解题的灵活性和创造力。
通过以上的解题技巧和策略,在数学中考中解答压轴题将会更加
得心应手。
希望同学们能够充分理解和掌握这些技巧,取得好的成绩!。
中考数学压轴攻略
中考数学压轴题攻略
一、中考数学压轴题命题规律
1. 知识分布:数形结合思想、分类讨论思想、函数与方程思想、应用题。
2. 题型:几何压轴题、代数压轴题、几何代数综合压轴题。
3. 解题方法:构造法、分类讨论法、反证法、图解法。
二、中考数学压轴题难度的原因
1. 题目的设计包含了多个知识点,要求学生具有发散思维和综合能力。
2. 题目的解题方法多样,要求学生有深入的思考和研究。
3. 题目信息量大,需要学生有筛选和整理信息的能力。
4. 题目设计有陷阱,要求学生细心审题,避免失误。
三、中考数学压轴题解题策略
1. 认真审题,理解题意,确定解题思路。
2. 挖掘已知条件,找出关键信息和隐藏信息。
3. 运用所学知识,将问题分解为若干个较小的部分,逐一解决。
4. 综合各部分的结果,得出答案。
四、中考数学压轴题训练方法
1. 多做真题,熟悉题型和解题方法。
2. 注重基础知识的掌握,不要忽视课本上的例题和练习题。
3. 培养自己的思维能力和解决问题的能力。
4. 学会总结和归纳,找出自己的薄弱环节,针对性地加强训练。
5. 在考试中保持冷静,不要因为遇到难题而影响心态。
五、中考数学压轴题注意事项
1. 注意时间分配,不要在难题上花费太多时间。
2. 注意解题步骤的清晰和完整,不要跳步或省略步骤。
3. 注意答案的准确性和规范性,不要犯低级错误。
4. 注意心态的调整,不要因为遇到难题而产生负面情绪。
初三数学压轴题解题方法大全
初三数学压轴题在数学学习中占据着非常重要的地位,下面我将为您提供一些解题方法和技巧,以帮助您更好地解决这些难题。
1. 熟悉基本概念和公式:在解题之前,首先要熟练掌握相关的基本概念和公式。
这包括对代数、几何、三角函数等基本概念的深入理解,以及掌握各种常用的数学公式。
2. 仔细审题:审题是解题的关键步骤。
在审题时,需要明确问题的要求和条件,并尝试从问题入手,找出解题的突破口。
同时,要注意题目中的隐含条件,这些条件往往会成为解题的关键。
3. 善于运用转化思想:转化思想是数学解题中非常重要的思想。
通过转化,可以将复杂的问题转化为简单的问题,将未知的问题转化为已知的问题。
因此,在解题时,要善于运用转化思想,寻找问题的突破口。
4. 学会归纳和总结:归纳和总结是解题的重要环节。
在解题过程中,需要不断总结归纳题目中的信息和条件,找出规律和解题方法。
同时,在解题后要及时总结和反思,加深对题目的理解和掌握。
5. 实践练习:要想真正掌握压轴题的解题方法,必须通过大量的实践练习。
只有通过不断地练习,才能逐渐掌握各种解题技巧和方法,提高解题能力。
在练习时,可以采用模拟试题、历年考题等素材进行练习。
总之,初三数学压轴题的解题方法需要不断地积累和实践。
只有在熟练掌握基本概念和公式的基础上,通过仔细审题、转化思想、归纳总结和实践练习等步骤,才能逐步提高解题能力,攻克压轴题的难关。
中考数学压轴题解题技巧
中考数学压轴题解题技巧
1. 哎呀呀,你知道吗,中考数学压轴题其实并不可怕!就像爬山,虽然陡峭,但找对路径就容易多啦!比如遇到那种几何和函数结合的难题,咱别慌,先仔细观察图形,找到关键的线段或角度呀。
2. 嘿,要我说啊,做中考数学压轴题得有耐心!这就好比钓鱼,得沉得住气。
像那种需要分类讨论的题目,一个个情况去分析呀,像搭积木一样,慢慢就把答案堆出来啦!
3. 哇哦,解中考数学压轴题一定要抓住关键信息!这就像在一堆宝藏里找那颗最闪亮的宝石。
比如看到一个条件提及比值,那是不是可以考虑设未知数来求解呢!
4. 呀,可得注意啦,中考数学压轴题中方程思想超重要的!这就如同给了你一把万能钥匙。
像那种给出很多等式的题目,咱就勇敢地设未知数,列方程求解呀!
5. 嘿呀,千万别忘了,做中考数学压轴题思维要灵活!像孙悟空一样会七十二变。
比如遇到一个看似无解的题目,咱换个角度想想,说不定就有新思路啦!
6. 哇,告诉你哦,中考数学压轴题也得注重细节!就跟拼图一样,少一块都不行。
比如计算过程中一个小数点可都不能马虎呀!
总之,中考数学压轴题并不可怕,只要掌握了这些技巧,多练习,咱就一定能拿下它!。
初三数学压轴题解题技巧和方法
初三数学压轴题解题技巧和方法
1. 压轴题解题技巧
认真审题,弄清题意。
压轴题通常会给出含多个未知数的一元二次方程或
二元一次方程组,并伴随一些其他条件或限制。
首先,要明确题目要求解什么,以及给出的条件和限制是什么。
尝试化简方程或方程组。
如果方程或方程组较为复杂,尝试将其化简,以
便更容易找到解题思路。
寻找等量关系。
压轴题中通常会有一些等量关系,如面积、体积、角度等。
找到这些等量关系,可以帮助我们找到解题的突破口。
尝试使用代数方法。
对于一些压轴题,代数方法可能比较适用。
例如,通
过对方程进行变形、替换或解方程等,可以找到未知数的值。
画图分析。
对于一些几何压轴题,可以通过画图来帮助分析。
在画图的过
程中,可以更好地理解题目的条件和要求,从而找到解题思路。
2. 压轴题方法总结
代数法:通过对方程进行变形、替换或解方程等,找到未知数的值。
几何法:通过画图来帮助分析,更好地理解题目的条件和要求,从而找到
解题思路。
等量关系法:通过寻找等量关系,如面积、体积、角度等,找到解题的突
破口。
化简法:将复杂的方程或方程组化简,以便更容易找到解题思路。
初中数学解题技巧+中考压轴题30道
初中数学解题技巧+中考压轴题30道选择题法大全方法一:排除选项法选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
方法二:赋予特殊值法即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
方法三:通过猜想、测量的方法,直接观察或得出结果这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
方法四:直接求解法有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。
我们在做解答题时大部分都是采用这种方法。
例如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )、160元 B、128元 C 、120元 D、 88元方法五:数形结合法解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。
方法六:代入法将选择支代入题干或题代入选择支进行检验,然后作出判断。
方法七:观察法观察题干及选择支特点,区别各选择支差异及相互关系作出选择。
方法八:枚举法列举所有可能的情况,然后作出正确的判断。
例如:把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )A.5种 B.6种 C.8种 D.10种分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B。
方法九:待定系数法要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。
方法十:不完全归纳法当某个数学问题涉及到相关多乃至无穷多的情形,头绪纷乱很难下手时,行之有效的方法是通过对若干简单情形进行考查,从中找出一般规律,求得问题的解决。
数学压轴题解题方法技巧
数学压轴题的解题方法技巧如下:
分解题目:如果遇到一个很困难的问题,可以将其分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。
承认中间结论:当解题过程中卡在某一过渡环节上是常见的,这时可以先承认中间结论,往后推,看能否得到结论。
逆向思维:对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展。
逐步得分:一般情况下,每个大题都有至少两个小题,而每题的最后一小题是最压轴最难的,第一小题最简单。
无论压轴题多难,第一小题一般同学都可以做出来拿到分数,所以在对付压轴题的时候,第一小题一定要做对才有资格接着做后面的题目。
学习基础比较好的同学在最后一道压轴题的第二小题上,一般情况下可以拿到一半左右的分数。
因为压轴题很难,用时久,所以能够拿到一半的分数就算很棒了。
因此建议大家在压轴题上不要耗时太久,在不浪费整体考试时间的基础上,能拿多少分就拿多少分,强弩之末不能穿缟,考试时要适可而止。
希望以上方法可以帮到你。
祝你学习进步!。
压轴题的解题技巧
压轴题的解题技巧
压轴题通常是指数学、物理等科目中难度较大、综合性较强的题目。
在考试中,压轴题往往能拉开分数差距,因此掌握压轴题的解题技巧对于提高成绩至关重要。
以下是一些常见的压轴题解题技巧:
1. 分析题目条件:仔细阅读题目,理解并分析给出的条件,包括已知量、未知量、等式或不等式等。
2. 寻找等量关系:在数学问题中,等量关系是解决问题的关键。
通过已知条件和未知量之间的关系,建立等式或方程。
3. 运用数学模型:根据问题类型,选择合适的数学模型进行解答。
例如,几何问题可以使用相似三角形、勾股定理等;代数问题可以使用一元二次方程、不等式等。
4. 化简问题:将复杂问题分解成若干个简单的小问题,逐一解决。
例如,物理中的复杂运动可以分解为多个简单运动。
5. 利用图形辅助:在解决几何、函数等问题时,可以借助图形来帮助理解和分析问题。
6. 逆向思考:对于一些难以直接解决的问题,可以从结论出发,逆向思考,寻找解题思路。
7. 总结答案:在得出最终答案之前,要仔细检查答案是否符合题目的要求,并确保答案的完整性和准确性。
掌握这些技巧需要大量的练习和经验积累。
建议多做一些压轴题的练习,通过不断总结经验来提高自己的解题能力。
数学中考压轴题题型及解题技巧
数学中考压轴题题型及解题技巧数学中考压轴题题型及解题技巧一、选择题技巧•仔细阅读题干,理解题意;•列举可能的解题路径;•排除明显错误选项;•尝试代入答案,验证正确性;•注意逻辑关系,避免陷阱选项。
二、填空题技巧•仔细审题,确定待求量的性质和条件;•注意已知条件,利用已知信息进行推理;•使用逆向思维,寻找解题突破点;•采用代入法,验证答案的正确性;•注意计算精度,保留适当位数的小数或分数。
三、解答题技巧1. 利用图像进行分析•观察图像特征,找到隐藏的规律;•利用坐标系,进行几何推理;•借助图形属性,解决复杂的几何问题。
2. 利用代数方法求解•将问题转化为方程或不等式进行求解;•利用代数恒等式化简复杂的计算;•运用代数方法解决函数问题。
3. 利用数学模型解决实际问题•将实际问题抽象化,建立数学模型;•进行变量分析和函数构建;•运用数学方法求解实际问题。
4. 利用数列的性质进行推理•发现数列的规律,寻找递推公式;•利用递推公式求解数列问题;•运用数列的性质解决实际问题。
四、解题技巧注意事项•阅读题干时,要仔细理解题意,避免理解偏差;•注意单位转换,保持计算的一致性;•计算时注意精确度,考虑适当的取舍;•解题过程要清晰、条理,步骤清楚;•检查答案是否符合题目要求。
以上是数学中考压轴题的题型及解题技巧,希望能给同学们在备战中考时提供一些指导和帮助。
通过熟练掌握这些技巧,并在平时的学习中进行实践,相信你们能够在数学中考中取得好成绩!五、解题技巧训练方法•多做题,在做题过程中培养对题型的敏感性;•分析解题思路,归纳总结解题方法;•遇到难题,可以寻找老师、同学或网上资源寻求帮助;•制定复习计划,有针对性地进行题型训练;•多参加模拟考试,提高解题速度和应变能力。
六、总结•数学中考压轴题题型主要包括选择题、填空题和解答题;•解题技巧包括利用图像进行分析、利用代数方法求解、利用数学模型解决实际问题和利用数列的性质进行推理;•解题技巧的注意事项包括仔细阅读题干、注意单位转换、注意精确度、解题过程要清晰、步骤清楚和检查答案的符合;•解题技巧的训练方法包括多做题、分析解题思路、寻求帮助、制定复习计划和参加模拟考试。
中考数学压轴题的技巧
中考数学压轴题的技巧中考数学作为关键的考试科目之一,一直是各位考生需要重点关注的科目,尤其是中考数学的压轴题更是任何一位考生不容错过的关键点,因为它往往占据了最后的几分。
那么在面对这些关键的压轴题时,我们该如何去应对呢?本文将会为大家介绍一些中考数学压轴题的解题技巧。
把握压轴题的特征首先,我们需要认识到压轴题的特点,这样才能更好地针对性地应对。
一般来说,压轴题有以下几个特点:•难度较大:这是压轴题最为显著的特点之一,一般来说,压轴题的难度普遍高于其他题目,是对考生能力的真正考验。
•层次比较复杂:压轴题的解题过程常常需要更加熟练的基本知识,同时也会考验考生的综合运用与推理能力,需要考生综合运用各种数学方法。
•针对性较强:压轴题的难度系数比较高,容易切中考试中考查的重点和难点。
在解答这些难度大、层次复杂、针对性强的压轴题时,需要考生更加谨慎细致,思路清晰,理解能力较强,运算能力熟练等多个方面的能力,而且还需要考虑时间限制。
技巧一:打好数学基础在考试前,为了做好压轴题,首先需要做好充分的复习与准备工作。
很多考生往往会忽视数学基础的打造,而直接投入到高难度的解题过程中,这无疑是错误的。
因为良好的数学基础可以极大地提高独立思考和综合运用的能力。
比如在初中数学中,我们需要从最基础明确概念开始入手,了解基本知识和规则。
通过刻意练习,我们可以逐渐加深对数学的理解,为后续解题打下坚实的基础。
技巧二:严谨的解题步骤对于数学压轴题,需要考生们有严谨、细心的解题步骤,规划自己的解题过程,充分利用好每一分时间。
具体来说,考生可以借助草稿纸,对问题进行分析和计算。
在解题过程中,需要注意以下几个方面:1. 理清解题思路解题前,首先需要理清思路,确定大概的解题思路和方向。
在解题过程中,也需要清楚每一步骤的所有具体操作和理由,做到思路清晰。
2. 合理利用时间在保证解题准确的前提下,需要合理安排好时间,尽量利用好每一分钟。
若一个问题比较复杂,可以放弃该问题,转而解决其他问题。
人教部编版初中数学中考压轴题全面总结及攻破技巧
人教部编版初中数学中考压轴题全面总结及攻破技巧中考数学压轴题作为考试中的难点,确实给很多考生带来了不小的挑战。
以下是对人教部编版初中数学中考压轴题的全面总结及攻破技巧:一、压轴题概述数学压轴题常常涵盖多个知识点,并需要学生具备一定的数学思维和分析问题的能力。
其目的是为了筛选出基础扎实、思维活跃的优秀学生。
二、常见类型及解题技巧1. 函数型压轴题:这类题目常涉及到一次函数、二次函数或反比例函数等。
解题时,要理解函数的性质,如函数的增减性、极值点等。
同时,要学会利用数形结合的方法,将函数问题转化为几何问题。
2. 三角形型压轴题:三角形与勾股定理、中线定理等知识点常结合在一起。
解答时,除了运用相关定理,还要对三角形进行适当的分类讨论。
3. 动点型压轴题:这类题目涉及到的知识点较多,如函数、几何等。
解答时,要理解动点的含义,通过设定变量,建立方程或方程组解决问题。
4. 几何型压轴题:常涉及多边形、圆、扇形等几何知识。
解答时,要注意利用几何图形的性质,如圆的周长、面积公式,多边形的内角和等。
同时,也要学会使用演绎推理的方法。
三、解题策略1. 强化基础知识:只有对各知识点有深入的理解和掌握,才能灵活应对压轴题的各种变化。
2. 提高数学思维能力:在掌握基础知识的前提下,通过大量练习提高分析问题、解决问题的能力。
3. 学会总结和反思:做完题目后,要及时总结解题方法和思路,找出自己的不足之处并加以改进。
4. 模拟考试中尝试挑战压轴题:在模拟考试中,可以有针对性地挑战压轴题,以提高自信心和应试能力。
四、攻破难点1. 针对难点进行专项训练:如函数中的一次函数与反比例函数的综合应用、几何中的多边形与圆的综合应用等。
通过专项训练,强化对难点的理解和掌握。
2. 学会利用辅助工具:如数轴、坐标系、图形等,这些工具可以帮助理解题意,简化问题。
3. 注重一题多解:尝试从不同的角度和思路去解答同一道题目,拓展解题思路。
4. 寻求老师和同学的帮助:当遇到难以解决的问题时,可以向老师或同学请教,共同探讨解题方法。
中考数学压轴题的解答技巧必备
中考数学压轴题的解答技巧必备中考数学压轴题的解答技巧必备一、重视构建知识网络——宏观把握数学框架要学会构建知识网络,数学概念是构建知识网络的出发点,也是数学中考考查的重点。
因此,我们要掌握好代数中的数、式、不等式、方程、函数、三角比、统计和几何中的平行线、三角形、四边形、圆的概念、分类、定义、性质和判定,并会应用这些概念去解决一些问题。
二、重视夯实数学双基——微观掌握知识技能在复习过程中夯实数学根底,要注意知识的不断深化,注意知识之间的内在联系和关系,将新知识及时纳入已有知识体系,逐步形成和扩充知识结构系统,这样在解题时,就能由题目所提供的信息,从记忆系统中检索出有关信息,选出最正确组合信息,寻找解题途径、优化解题过程。
三、重视强化题组训练——感悟数学思想方法除了做根底训练题、平面几何每日一题外,还可以做一些综合题,并且养成解题后反思的习惯。
反思自己的思维过程,反思知识点和解题技巧,反思多种解法的优劣,反思各种方法的纵横联系。
而总结出它所用到的数学思想方法,并把思想方法相近的题目编成一组,不断提炼、不断深化,做到举一反三、触类旁通。
逐步学会观察、试验、分析、猜测、归纳、类比、联想等思想方法,主动地发现问题和提出问题。
四、重视建立“病例档案〞——做到万无一失准备一本数学学习“病例卡〞,把平时犯的错误记下来,找出“病因〞开出“处方〞,并且经常地拿出来看看、想想错在哪里,为什么会错,怎么改正,这样到中考时你的数学就没有什么“病例〞了。
我们要在教师的指导下做一定数量的数学习题,积累解题经验、总结解题思路、形成解题思想、催生解题灵感、掌握学习方法。
五、重视常用公式技巧——做到思维敏捷准确对经常使用的数学公式要理解来龙去脉,要进一步了解其推理过程,并对推导过程中产生的一些可能变化自行探究。
对今后继续学习所必须的'知识和技能,对生活实际经常用到的常识,也要进行必要的训练。
例如:1-20的平方数;简单的勾股数;正三角形的面积公式以及高和边长的关系;30°、45°直角三角形三边的关系……这样做,一定能更好地掌握公式并胜过做大量习题,而且往往会有意想不到的效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学压轴题解题技巧超详细The document was finally revised on 20212012年中考数学压轴题解题技巧解说数学压轴题是初中数学中覆盖知识面最广,综合性最强的题型。
综合近年来各地中考的实际情况,压轴题多以函数和几何综合题的形式出现。
压轴题考查知识点多,条件也相当隐蔽,这就要求学生有较强的理解问题、分析问题、解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识和创新能力,当然,还必须具有强大的心理素质。
下面谈谈中考数学压轴题的解题技巧。
如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D (8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.解:(1)点A的坐标为(4,8)…………………1分将A (4,8)、C(8,0)两点坐标分别代入y=ax2+bx8=16a+4b得0=64a+8b解得a=-12,b=4∴抛物线的解析式为:y=-12x2+4x …………………3分(2)①在Rt△APE和Rt△ABC中,tan∠PAE=PEAP=BCAB,即PEAP=48∴PE=12AP=12t.PB=8-t.∴点E的坐标为(4+12t,8-t).∴点G 的纵坐标为:-12(4+12t )2+4(4+12t )=-18t 2+8. …………………5分∴EG=-18t 2+8-(8-t) =-18t 2+t.∵-18<0,∴当t=4时,线段EG 最长为2. …………………7分②共有三个时刻. …………………8分t 1=163, t 2=4013,t 3. …………………11分压轴题的做题技巧如下:1、对自身数学学习状况做一个完整的全面的认识,根据自己的情况考试的时候重心定位准确,防止 “捡芝麻丢西瓜”。
所以,在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。
2、解数学压轴题做一问是一问。
第一问对绝大多数同学来说,不是问题;如果第一小问不会解,切忌不可轻易放弃第二小问。
过程会多少写多少,因为数学解答题是按步骤给分的,写上去的东西必须要规范,字迹要工整,布局要合理;过程会写多少写多少,但是不要说废话,计算中尽量回避非必求成分;尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质。
3、解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。
审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。
解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。
认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。
注意1、动点题肯定是图形题,图形题是中考试重点,分值在100分以上(满分150.包括统计和概率)2、大部分压轴题都是几何图形和代数函数图形相结合,在动点的运动中存在一些特殊情况下的边长、面积、边边关系、面积和边的关系等。
特殊情况是指动点在变化过程中引起图形变化发生质的变化,如由三角形变成四边形,由四边形变成五边形,这时一定要注意分类讨论3、知识的储备:熟练掌握所有相关图形的性质。
a 、三角形(等腰、直角三角形)b 、平行四边形(矩形、菱形、正方形)c 、圆 d 、函数(一次函数,正比例函数,反比例函数,二次函数)4、坐标系中的四大金刚:① 两个一次函数平行,K 值相等;② 两个一次函数互相垂直,K 值互为负倒数。
③ 任意两点的中点坐标公式;④ 任意两点间距离公式。
函数图形与x ,y 坐标轴的交点连线的夹角也常常用到,所以要小心;有些特殊点会形成特殊角,这一点也要特别注意。
5、做题思路,有三种。
1、把几何图形放到坐标系中看看数据的变化。
2、把坐标系中的图形提出坐标系看看图形的变化。
3、把图形最难理解的部分提炼出来重点分析(即去掉无用的图形线段)。
压轴题解题技巧题型分类解说一、对称翻折平移旋转1.(南宁)如图12,把抛物线2y x =-(虚线部分)向右平移1个单位长度,再向上平移1个单位长度,得到抛物线1l ,抛物线2l 与抛物线1l 关于y 轴对称.点A 、O 、B 分别是抛物线1l 、2l 与x 轴的交点,D 、C 分别是抛物线1l 、2l 的顶点,线段CD 交y 轴于点E .(1)分别写出抛物线1l 与2l 的解析式;(2)设P 是抛物线1l 上与D 、O 两点不重合的任意一点,Q 点是P 点关于y 轴的对称点,试判断以P 、Q 、C 、D 为顶点的四边形是什么特殊的四边形?说明你的理由.(3)在抛物线1l 上是否存在点M ,使得ABMAOED S S ∆∆=四边形,如果存在,求出M 点的坐标,如果不存在,请说明理由.2.(福建宁德)如图,已知抛物线C 1:()522-+=x a y 的顶点为P ,与x 轴相交于A 、B 两点(点A 在点B 的左边),点B 的横坐标是1.(1)求P 点坐标及a 的值;(4分)(2)如图(1),抛物线C 2与抛物线C 1关于x 轴对称,将抛物线C 2向右平移,平移后的抛物线记为C 3,C 3的顶点为M ,当点P 、M 关于点B 成中心对称时,求C 3的解析式;(4分)12y xAO B P M 图C 1C 2 C 32y x A O B PN 图C 1 C 4QEF 2(3)如图(2),点Q 是x 轴正半轴上一点,将抛物线C 1绕点Q 旋转180°后得到抛物线C 4.抛物线C 4的顶点为N ,与x 轴相交于E 、F 两点(点E 在点F 的左边),当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标.(5分)二、动态:动点、动线3.(辽宁锦州)如图,抛物线与x 轴交于A (x 1,0)、B (x 2,0)两点,且x 1>x 2,与y 轴交于点C (0,4),其中x 1、x 2是方程x 2-2x -8(1)求这条抛物线的解析式;(2)点P 是线段AB 上的动点,过点P 作 PE ∥AC ,交BC 于点E ,连接CP ,当△CPE的面积最大时,求点P 的坐标;(3)探究:若点Q 是抛物线对称轴上的点, 是否存在这样的点Q ,使△QBC 成为等腰三 角形若存在,请直接写出所有符合条件的点Q 的坐标;若不存在,请说明理由.4.(山东青岛)已知:如图①,在Rt △ACB 中,∠C =90°,AC =4cm ,BC =3cm ,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为t (s )(0<t <2),解答下列问题:(1)当t 为何值时,PQ ∥BC ?(2)设△AQP 的面积为y (2cm ),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使线段PQ 恰好把Rt △ACB 的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由;(4)如图②,连接PC ,并把△PQC 沿QC 翻折,得到四边形PQP ′C ,那么是否存在某一时刻t ,使四边形PQP ′C 为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.5.(吉林省)如图所示,菱形ABCD 的边长为6厘米,∠B =60°.从初始时刻开始,点P 、Q 同时从A 点出发,点P 以1厘米/秒的速度沿A →C →B 的方向运动,点Q 以2厘米/秒的速度沿A →B →C →D 的方向运动,当点Q 运动到D 点时,P 、Q 两点同时停止运动.设P 、Q 运动的时间为x 秒时,△APQ 与△ABC 重叠部分....的面积为y 平方厘米(这里规定:点和线段是面积为0的三角形),解答下列问题:B 图CQCx xy yA O BED A CB CDG图1 图2 (1)点P 、Q 从出发到相遇所用时间是__________秒;(2)点P 、Q 从开始运动到停止的过程中,当△APQ 是等边三角形时x 的值是__________秒;(3)求y 与x 之间的函数关系式.6.(浙江嘉兴)如图,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设x AB =. (1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值; (3)探究:△ABC 的最大面积?三、圆7.(青海) 如图10,已知点A (3,0),以A 为圆心作⊙A 与Y 轴切于原点,与x 轴的另一个交点为B ,过B 作⊙A 的切线l.(1)以直线l 为对称轴的抛物线过点A 及点C (0,9),求此抛物线的解析式;(2)抛物线与x 轴的另一个交点为D ,过D 作⊙A 的切线DE ,E 为切点,求此切线长; (3)点F 是切线DE 上的一个动点,当△BFD 与EAD△相似时,求出BF 的长 .8.(天水)如图1,在平面直角坐标系xOy ,二次函数y =ax 2+bx +c (a >0)的图象顶点为D ,与y 轴交于点C ,与x 轴交于点A 、B ,点A 在原点的左侧,点B 的坐标为(3,0),OB =OC ,tan ∠ACO = 13.(1)求这个二次函数的解析式;(2)若平行于x 轴的直线与该抛物线交于点M 、N ,且以MN 为直径的圆与x 轴相切,求该圆的半径长度;(3)如图2,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上的一动点,当点P 运动到什么位置时,△AGP 的面积最大?求此时点P 的坐标和△AGP 的最大面积. 9.(湖南张家界)在平面直角坐标系中,已知A (-4,0),B (1,0),且以AB 为直径的圆交y 轴的正半轴于点C ,过点C 作圆的切线交x 轴于点D .C(第24(1)求点C 的坐标和过A ,B ,C 三点的抛物线的解析式; (2)求点D 的坐标;(3)设平行于x 轴的直线交抛物线于E ,F 两点,问:是否存在以线段EF 为直径的圆,恰好与x 轴相切?若存在,求出该圆的半径,若不存在,请说明理由.10.(潍坊市)如图,在平面直角坐标系xOy 中,半径为1的圆的圆心O 在坐标原点,且与两坐标轴分别交于A B C D 、、、四点.抛物线2y ax bx c =++与y 轴交于点D ,与直线y x =交于点MN 、,且MA NC 、分别与圆O 相切于点A 和点C . (1)求抛物线的解析式;(2)抛物线的对称轴交x 轴于点E ,连结DE ,并延长DE 交圆O 于F ,求EF 的长.(3)过点B 作圆O 的切线交DC 的延长线于点P ,判断点P 是否在抛物线上,说明理由. 四、比例比值取值范围11.(怀化)图9是二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,-4).(1)求出图象与x 轴的交点A,B 的坐标;(2)在二次函数的图象上是否存在点P ,使MAB PAB S S ∆∆=45,若存在,求出P 点的坐标;若不存在,请说明理由;(3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围.12. (湖南长沙)如图,在平面直角坐标系中,矩形OABC 82OA = cm , 的两边分别在x 轴和y 轴上,OC=8cm ,现有两动点P 、Q 分别从O 、C 同时出发,P 在线段OA 上沿OA 方向以每秒2 cm 的速度匀速运动,Q 在线段CO 上沿CO 方向以每秒1 cm 的速度匀速运动.设运动时间为t 秒.(1)用t 的式子表示△OPQ 的面积S ;(2)求证:四边形OPBQ 的面积是一个定值,并求出这个定值;(3)当△OPQ 与△PAB 和△QPB 相似时,抛物线214y x bx c =++经过B 、P 两点,过线段BP 上一动点M 作y 轴的平行线交抛物线于N ,当线段MN 的长取最大值时,求直线MN 把四边形OPBQ 分成两部分的面积之比.图9图1BC Qy O xyN CD EFBM Ayx O CD B A1 -413.(成都)在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标为(30)-,,若将经过A C 、两点的直线y kx b =+沿y 轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线2x =-.(1)求直线AC 及抛物线的函数表达式;(2)如果P 是线段AC 上一点,设ABP ∆、BPC ∆的面积分别为ABP S ∆、BPC S ∆,且:2:3ABP BPC S S ∆∆=,求点P 的坐标;(3)设Q 的半径为l ,圆心Q 在抛物线上运动,则在运动过程中是否存在Q 与坐标轴相切的情况?若存在,求出圆心Q 的坐标;若不存在,请说明理由.并探究:若设⊙Q 的半径为r ,圆心Q 在抛物线上运动,则当r 取何值时,⊙Q 与两坐轴同时相切?五、探究型14.(内江)如图,抛物线()2230y mx mx m m =-->与x 轴交于A B 、两点,与y 轴交于C 点.(1)请求出抛物线顶点M 的坐标(用含m 的代数式表示),A B 、两点的坐标;(2)经探究可知,BCM △与ABC △的面积比不变,试求出这个比值;(3)是否存在使BCM △为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由.15.(重庆潼南)如图,A 、B ,点A 的坐标为(2,0(1)求抛物线的解析式;(2)点E 是线段AC 积最大时,求点D (3)在直线BC 16.(福建龙岩)x轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;题图26(2)写出A B C,,三点的坐标并求抛物线的解析式;(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在PAB△是等腰三角形.若存在,求出所有符合条件的点P坐标;不存在,请说明理由.17.(广西钦州)如图,已知抛物线y=34x2+bx+c与坐标轴交于A、B、C三点,A点的坐标为(-1,0),过点C的直线y=34tx-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.(1)填空:点C的坐标是_▲_,b=_▲_,c=_▲_;(2)求线段QH的长(用含t的式子表示);(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.18.(重庆市)已知:如图,在平面直角坐标系xO y中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.(1)求过点E、D、C的抛物线的解析式;(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为56,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ 与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.y=ax2、B两点,=-4(a≠0)的函BC边运MN,AC(3)在(2)的条件下,抛物线的对称轴上是否存在点Q ,使得以B ,N ,Q 为顶点的三角形与△ABC 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.20.(江苏徐州)如图1,一副直角三角板满足AB =BC ,AC =DE ,∠ABC =∠DEF =90°,∠EDF =30°【操作】将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板....DEF ...绕点..E .旋转..,并使边DE 与边AB 交于点P ,边EF 与边BC 于点Q 【探究一】在旋转过程中,(1)如图2,当CE1EA=时,EP 与EQ 满足怎样的数量关系?并给出证明.(2)如图3,当CE2EA=时EP 与EQ 满足怎样的数量关系, 并说明理由.(3)根据你对(1)、(2)的探究结果,试写出当CEEA=m 时,EP 与EQ 满足的数量关系式为_________,其中m 的取值范围是_______(直接写出结论,不必证明)【探究二】若,AC =30cm ,连续PQ ,设△EPQ 的面积为S(cm 2),在旋转过程中: (1) S 是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.(2) 随着S 取不同的值,对应△EPQ 的个数有哪些变化?不出相应S 值的取值范围. (3)六、最值类22.(恩施) 如图11,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,-3)点,点P 是直线BC 下方的抛物线上一动点. (1)求这个二次函数的表达式.(2)连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP /C ,那么是否存在点P ,使四边形POP /C 为菱形?若存在,请求出此时点P 的坐标;若不存在 请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.。