第十五章整式乘法与因式分解教案

合集下载

人教版八年级数学上册教案第十五章整式的乘除与因式分解

人教版八年级数学上册教案第十五章整式的乘除与因式分解

人教版八年级数学上册教案第十五章整式的乘除与因式分解一、教学目标1.掌握整式的乘法与除法运算方法。

2.熟练运用因式分解法简化整式。

3.了解整式乘法运算法则。

4.理解同类项、化简、展开与合并的概念。

二、教学重点1.整式的乘除法。

2.因式分解的应用。

三、教学难点1.针对具体的题目,确定解题方法2.因式分解运用的灵活性四、教学方法1.巩固性问题讲义、规律性问题讲义、思维性问题讲义2.案例分析、启发引导3.组卷、强化训练五、教学过程1、整式乘法【教学目标】了解整式的乘法法则。

【教学重难点】了解整式的乘法法则,掌握基本的分配律、结合律。

【教学内容】1.整式的乘法法则2.常见的整式乘法运算【课堂探究】观察并解答以下问题:如果有两个整式A和B,i表示A的每一项与B的每一项相乘得到的积,那么有哪些特殊的性质?【课堂讲解】使用分配律,将A拆分成A1,A2两个项的和,B拆分成B1,B2两个项的和,得到相对应的乘积AB=A1B1+A1B2+A2B1+A2B2【课堂演示】展示实例,让学生可以更清楚地理解整式乘法方法。

2、整式除法【教学目标】了解整式的除法方法。

【教学重难点】掌握整式除法的基本方法,在解题中学生应灵活掌握解法的方式。

【教学内容】1.整式的除法法则2.常见的整式除法运算【课堂探究】观察并解答以下问题:如果有两个整式A和B,C表示A和B的商,D表示余数,那么有哪些特殊的性质?【课堂讲解】将整式A表示成B的某个倍数与余数的和,得到下式A=BC+D【课堂演示】展示实例,让学生可以更清楚地理解整式除法的运用。

3、整式的因式分解【教学目标】了解因式分解方法,掌握因式分解的应用场景【教学重难点】以实际例子解析因式分解方法及其应用。

【教学内容】1.因式分解的定义2.因式分解的基本方法及原则3.因式分解的常见技巧【课堂探究】观察并解答以下问题:什么情况下需要进行因式分解?以及进行因式分解的好处是什么?【课堂讲解】进行因式分解,可以将一个复杂的整式简化成简单的因式相乘的形式,便于进行运算或者求解。

人教版八年级数学上册《十五章 整式的乘除与因式分解. 15.4 因式分解..(通用)》优质课教案_1

人教版八年级数学上册《十五章 整式的乘除与因式分解.  15.4 因式分解..(通用)》优质课教案_1

因式分解教学设计(一)教学设计思想通过观察两个多项式变形的例子给出了多项式因式分解的概念,要学生掌握因式分解的概念,理解因式分解是式子的变形。

提公因式法是多项式因式分解的最基本方法之一,它的理论依据是乘法分配律.课堂教学的任务不仅是传播知识,还要培养能力,训练思维,因此教学中,除了在难点与关键处给以适度的启示与点拨之外,主要让学生自己动手、动脑,并通过互相交流学习完成学习任务。

教学目标知识与技能:表述因式分解的概念,知道因式分解与整式运算之间的区别和联系;能判断因式分解的正误,知道因式分解的过程,会进行简单的因式分解;能确定多项式各项的公因式,会用提公因式法把多项式分解因式。

过程与方法:经历探索因式分解与整式乘法之间的关系的过程,提高逆向思维能力;经历探索多项式各项公因式的过程,培养分析、类比以及化归的思想方法。

情感态度价值观:体会“把一个代数式看作一个字母”的换元思想;教学重点及难点重点:①因式分解的概念;②提公因式法把多项式因式分解.难点:正确确定多项式的最大公因式。

教学方法启发引导、合作探究课时安排1课时教学媒体多媒体教学过程设计:因式分解1.小组讨论(1)如何把630分解成质数的乘积的形式?(2)能将一个多项式写成几个整式的乘积吗?2.探究把下列多项式写成整式的乘积的形式:(1)x2+x=__________________;(2)x2-1=____________________.通过探究引出概念因式分解(分解因式)。

3.独立练习,巩固新知下列各式从左到右哪些是因式分解?(屏幕出示问题)(1)x2-x=x(x-1)(√)(2)a(a-b)=a2-ab(×)(3)(a+3)(a-3)=a2-9(×)(4)a2-2a+1=a(a-2)+1(×)(5)x2-4x+4=(x-2)2(√)4.根据因式分解的定义考虑因式分解与乘法运算的区别和联系是什么?说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。

人教版八年级数学上册教案第十五章整式的乘除与因式分解

人教版八年级数学上册教案第十五章整式的乘除与因式分解

人教版八年级数学上册教案第十五章整式的乘除与因式分解一、教学目标1.了解整式的概念,掌握整式的加减乘除等基本运算法则。

2.能够将一个多项式因式分解为一次项的积和二次项的积等形式,并掌握利用整除关系和公式进行因式分解的方法。

3.能够运用简单数的知识,解决实际问题,提高逻辑思维能力。

二、教学重点和难点重点1.整式的概念和基本运算法则。

2.多项式的因式分解,利用整除关系和公式进行因式分解。

难点1.将多项式因式分解为一次项的积和二次项的积等形式。

2.利用简单数的知识解决实际问题。

三、教学内容和方法教学内容1.整式的概念和基本运算法则,包括多项式的加减乘除。

2.多项式的因式分解。

教学方法1.讲解法:通过讲解,让学生掌握整式的概念和基本运算法则,并将多项式分解为一次项的积和二次项的积等形式。

2.练习法:通过练习,巩固知识点,提高解题能力。

3.探究法:通过探究实际问题,激发学生解决实际问题的兴趣和能力。

四、教学过程1. 整式的概念和基本运算法则1.引入例:小明拿到了如下一张表格,请你们看看这张表格,表格中的运算都有什么特点呢?a b c d23574610148122028在本章中,我们要学习的就是多项式的运算,它与这个表格有一定的联系。

你们能看出来吗?2.知识点讲解•定义1:若ax2+b(a e0,b为常数)是一个代数式,则称其为一个二次多项式(简称二次式),其中x是未知数。

•定义2:若多项式中每一项的次数都相同,则称其为整式。

•加减法:整式相加或相减时,将同类项的系数相加或相减,不同类项的系数保持不变。

•乘法:整式相乘时,将每一项的系数分别相乘,幂次相加,再将各项和起来即可,注意化简。

•除法:整数的除法不能简单地用分数表示,同样地,整式的除法也不能简单地用分母式来表示。

此处需要老师进行解释,建议采用韦达定理进行讲解。

3.练习请同学们将以下整式相加或相减:•(3x2+5x−2)+(2x2−3x+1)参考答案:5x2+2x−12. 多项式的因式分解1.引入在上面的练习中,我们要完成的就是两个整式的加减运算。

整式的乘法与因式分解全章教案

整式的乘法与因式分解全章教案

整式的乘法与因式分解全章教案一、教学目标:1. 理解整式乘法的基本概念和方法,能够熟练进行整式的乘法运算。

2. 掌握因式分解的基本原理和方法,能够对简单的一元二次方程进行因式分解。

3. 能够应用整式的乘法与因式分解解决实际问题。

二、教学内容:1. 整式乘法的基本概念和方法。

2. 整式乘法的运算规则。

3. 因式分解的基本原理和方法。

4. 因式分解的运算规则。

5. 应用整式的乘法与因式分解解决实际问题。

三、教学重点与难点:1. 整式乘法的运算规则。

2. 因式分解的方法和技巧。

3. 应用整式的乘法与因式分解解决实际问题。

四、教学方法:1. 采用讲解法,讲解整式乘法与因式分解的基本概念和方法。

2. 采用示范法,示范整式乘法与因式分解的运算过程。

3. 采用练习法,让学生通过练习来巩固所学知识。

4. 采用问题解决法,引导学生应用整式的乘法与因式分解解决实际问题。

五、教学准备:1. 教案、教材、PPT等教学资源。

2. 练习题、测试题等教学资料。

3. 教学黑板、粉笔等教学工具。

4. 投影仪、电脑等教学设备。

六、教学进程:1. 导入:通过复习整式的加减法,引出整式乘法的重要性,激发学生的学习兴趣。

2. 讲解:讲解整式乘法的基本概念和方法,重点讲解运算规则。

3. 示范:示范整式乘法的运算过程,让学生理解并掌握运算规则。

4. 练习:布置练习题,让学生通过练习巩固所学知识。

5. 总结:对本节课的内容进行总结,强调整式乘法的重要性。

七、作业布置:1. 完成练习题,巩固整式乘法的运算规则。

2. 预习下一节课的内容,为学习因式分解做准备。

八、课堂反馈:1. 课堂提问:通过提问了解学生对整式乘法的掌握情况。

2. 练习批改:及时批改学生的练习题,指出错误并给予讲解。

3. 学生反馈:听取学生的意见和建议,调整教学方法。

九、课后反思:1. 总结本节课的教学效果,反思教学方法的优缺点。

2. 根据学生的反馈,调整教学策略,提高教学质量。

人教版八年级数学上册第十五章整式的乘除与因式分解(教案)

人教版八年级数学上册第十五章整式的乘除与因式分解(教案)
(1)多项式乘以多项式的法则:熟练掌握多项式乘法法则,特别是字母表示的项相乘时的符号处理和合并同类项。
举例:计算(a+b)(c+d),重点强调如何正确处理符号和合并同类项。
(2)多项式乘以单项式的法则:理解和运用单项式乘以多项式的法则,注意乘法分配律的应用。
举例:计算3x(2x^2+4x-1),重点在于如何将单项式3x分别与多项式中的每一项相乘。
(3)平方差公式和完全平方公式的应用:掌握平方差公式(a^2-b^2)和完全平方公式(a^2±2ab+b^2),并能灵活运用到实际计算中。
举例:化简表达式a^2-4,重点在于应用平方差公式得到(a+2)(a-2)。
(4)因式分解的方法:掌握提公因式法、平方差公式法和完全平方公式法,能够将多项式分解为整式的乘积。
3.平方差公式:掌握平方差公式的结构特点,能够灵活运用平方差公式进行乘法运算。
4.完全平方公式:理解并掌握完全平方公式的结构,学会运用完全平方公式进行乘法运算。
5.因式分解:掌握提公因式法、平方差公式法和完全平方公式法等因式分解方法,解决实际问题。
本节课将结合实际例题,帮助学生巩固所学知识,提高解题能力。
在学生小组讨论环节,我注意到有些学生在分享成果时表达不够清晰,可能是因为他们在讨论过程中没有充分整理自己的思路。针对这个问题,我需要在今后的教学中加强学生的语言表达训练,让他们学会如何条理清楚地表达自己的观点。
最后,总结回顾环节,我发现在这个阶段,部分学生仍然存在疑问。这说明我在课堂上的讲解和引导可能还不够到位,需要进一步关注学生的学习反馈,及时调整教学方法,提高教学效果。
五、教学反思
今天我们在课堂上学习了整式的乘除与因式分解,回顾整个教学过程,我觉得有几个地方值得反思。首先,我在导入新课环节提出了与日常生活相关的问题,希望通过这种方式激发学生的兴趣,但从学生的反应来看,可能问题设置得还不够贴近他们的实际经验,导致部分学生的参与度不高。在今后的教学中,我需要更加注意问题的设计,使其更具有针对性和吸引力。

整式的乘法与因式分解教案

整式的乘法与因式分解教案

整式的乘法与因式分解教案一、整式的乘法1.1 基本概念整式是由常数和变量按照一定的规律组成的代数式,例如3x2+2xy−5就是一个整式。

整式的乘法就是将两个或多个整式相乘的运算。

1.2 乘法法则整式的乘法法则有以下几种:1.2.1 乘法分配律对于任意的整数a,b,c,有a(b+c)=ab+ac。

例如:2(x+3)=2x+6。

1.2.2 乘法结合律对于任意的整数a,b,c,有(ab)c=a(bc)。

例如:(2x)(3y)=(2⋅3)(x⋅y)=6xy。

1.2.3 乘法交换律对于任意的整数a,b,有ab=ba。

例如:2x⋅3y=3y⋅2x。

1.3 例题解析例题1将(2x+3)(x−4)相乘。

解:按照乘法分配律展开,得到:(2x+3)(x−4)=2x⋅x+2x⋅(−4)+3⋅x+3⋅(−4)=2x2−5x−12例题2将(3x2−2xy+5)(x+2y)相乘。

解:按照乘法分配律展开,得到:(3x2−2xy+5)(x+2y)=3x2⋅x+3x2⋅(2y)−2xy⋅x−2xy⋅(2y)+5⋅x+5⋅(2y)=3x3+4xy2+5x−4y2x+10y二、整式的因式分解2.1 基本概念整式的因式分解就是将一个整式分解成若干个整式的乘积的形式,例如6x2+9x可以分解成3x(2x+3)的形式。

2.2 因式分解法则整式的因式分解法则有以下几种:2.2.1 公因式法如果一个整式的每一项都有一个公因式,那么可以将这个公因式提取出来,得到一个公因式和一个新的整式,再对新的整式进行因式分解。

例如:6x2+9x可以提取出3x,得到3x(2x+3)。

2.2.2 分组分解法如果一个整式中有两个或多个项可以分成一组,那么可以将这些项分成一组,然后将每组的公因式提取出来,得到一个公因式和一个新的整式,再对新的整式进行因式分解。

例如:3x2+5xy+2y2可以分成(3x2+3xy)+(2xy+2y2),然后提取出公因式得到3x(x+y)+2y(x+y),再将公因式(x+y)提取出来,得到(x+y)(3x+2y)。

人教版八年级数学上册教案第十五章整式的乘除与因式分解

人教版八年级数学上册教案第十五章整式的乘除与因式分解

人教版八年级数学上册教案第十五章整式的乘除与因式分解一、教学目标1.理解整式的乘法和除法运算的意义和性质;2.掌握整式的乘法和除法的计算方法;3.掌握整式的因式分解方法;4.能够应用所学知识解决相关问题。

二、教学重点1.整式的乘法和除法的计算方法;2.整式的因式分解方法。

三、教学难点整式的因式分解方法。

四、教学准备1.教材《人教版八年级数学上册》;2.录音机、磁带。

五、教学过程1. 导入通过以往学习知识的回顾,复习整式的基本概念和运算法则。

2. 整式的乘法(1) 同底数相乘两个整式的乘法,当因式中的字母及其指数相同时,可以进行相乘。

例如:(a+b)(a+b)=a2+2ab+b2(2) 不同底数相乘两个整式的乘法,当因式中的字母及其指数不同时,先用代数公式展开,再进行合并同类项。

例如:(a+b)(a+c)=a2+ac+ab+bc3. 整式的除法整式的除法是整式的乘法的逆运算。

通过列竖式进行计算,将被除式视作整式的公因式进行除法运算。

例如:(3x2+4x+5)÷(x+2)4. 整式的因式分解(1) 提取公因式法根据整式的乘法运算法则,将整式中所有的项进行拆分,提取公因式。

例如:6xy+9y=3y(2x+3)(2) 公式法利用一些公式和运算性质进行因式分解。

例如:x2+5x+6=(x+3)(x+2)(3) 分组法将待分解的整式中的项进行分组,然后对每个组进行公因式提取。

例如:2x3+xy+3x2y+3y=x(2x2+y)+3y(x2+1)=x(2x2+y)+3y(x2+1)5. 综合练习通过完成一些练习题,巩固和运用所学的整式的乘除和因式分解知识。

六、课堂小结1.整式的乘法和除法是根据乘法和除法的运算法则进行计算的;2.整式的因式分解可以通过提取公因式、使用公式和进行分组等方法进行。

七、课后作业1.完成课后习题;2.预习下一章节内容。

整式的乘法与因式分解教案

整式的乘法与因式分解教案

整式的乘法与因式分解教案教案主题:整式的乘法与因式分解一、教学目标:1. 了解整式的乘法与因式分解的定义和性质;2. 掌握整式的乘法与因式分解的基本方法;3. 能够灵活运用整式的乘法与因式分解求解实际问题。

二、教学重点与难点:1. 整式的乘法的性质与运算方法;2. 整式的因式分解的基本步骤与方法。

三、教学过程:1. 导入新课:通过简单的代数表达式相加、相减等练习,引导学生思考整式的性质和运算法则。

2. 整式的乘法:a. 讲解整式的乘法的定义和性质,包括同底数相乘、同指数相乘、不同底数相乘、几个常见特殊情况的乘法性质等;b. 通过实例演示整式的乘法的具体计算方法;c. 练习:学生完成一些简单的整式乘法计算题,加深对整式乘法规则的理解。

3. 整式的因式分解:a. 讲解整式的因式分解的定义和性质,包括提取公因式、配方法、特殊公式等;b. 通过实例演示整式的因式分解的具体步骤和方法;c. 练习:学生完成一些简单的整式因式分解题,加深对整式因式分解的掌握。

4. 综合运用:a. 学生运用整式的乘法与因式分解方法,解决一些实际相关问题;b. 教师引导学生总结整式的乘法与因式分解的应用场景和意义。

四、教学方法:1. 演讲讲解:通过讲解整式的定义、性质和运算法则,引导学生理解整式的乘法与因式分解的思想与方法。

2. 实例演示:通过实例演示整式的乘法与因式分解的具体计算过程,帮助学生掌握乘法的规则和因式分解的步骤。

3. 练习操作:通过练习题目,提高学生对整式的乘法与因式分解的运用能力和问题解决能力。

4. 问题引导:通过引导学生解决实际问题,提高学生的综合运用能力和创造性思维。

五、教学评估:1. 教师通过课堂观察,评估学生的学习态度和参与度;2. 教师布置作业,评估学生对整式乘法与因式分解的掌握程度;3. 教师组织课堂小测验,评估学生对整式乘法与因式分解的运用能力和问题解决能力。

六、教学拓展:教师可以引导学生扩展整式乘法与因式分解的应用,例如多项式乘法与多项式因式分解、整式的乘法公式与因式分解等内容,拓宽学生的知识广度。

第十五章《整式的乘除与因式分解》教案(第一部分)

第十五章《整式的乘除与因式分解》教案(第一部分)

第十五章整式的乘除与因式分解§15.1.1 整式教学目标1.单项式、单项式的定义.2.多项式、多项式的次数.3、理解整式概念.教学重点单项式及多项式的有关概念.教学难点单项式及多项式的有关概念.教学过程Ⅰ.提出问题,创设情境在七年级,我们已经学习了用字母可以表示数,思考下列问题1.要表示△ABC的周长需要什么条件?要表示它的面积呢?2.小王用七小时行驶了Skm的路程,请问他的平均速度是多少?结论:1、要表示△ABC的周长,需要知道它的各边边长.要表示△ABC•的面积需要知道一条边长和这条边上的高.如果设BC=a,AC=b,AB=c.AB边上的高为h,•那么△ABC的周长可以表示为a+b+c;△ABC的面积可以表示为12·c·h.2.小王的平均速度是St.问题:这些式子有什么特征呢?(1)有数字、有表示数字的字母.(2)数字与字母、字母与字母之间还有运算符号连接.归纳:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和)如图,正方体的表面积为_______,正方体的体积为表示一个数,则它的相反数是________表示数的字母连接起来的式子叫做代数式.判断上面得到的三个式子:a+b+c 、12ch 、St是不是代数式?(是)代数式可以简明地表示数量和数量的关系.今天我们就来学习和代数式有关的整式.Ⅱ.明确和巩固整式有关概念(出示投影)结论:(1)正方形的周长:4x .(2)汽车走过的路程:vt .(3)正方体有六个面,每个面都是正方形,这六个正方形全等,•所以它的表面积为6a 2;正方体的体积为长×宽×高,即a 3.(4)n 的相反数是-n .分析这四个数的特征.它们符合代数式的定义.这五个式子都是数与字母或字母与字母的积,而a+b+c 、12ch 、St中还有和与商的运算符号.还可以发现这五个代数式中字母指数各不相同,字母的个数也不尽相同.请同学们阅读课本P160~P161单项式有关概念.根据这些定义判断4x 、vt 、6a 2、a 3、-n 、a+b+c 、12ch 、St 这些代数式中,哪些是单项式?是单项式的,写出它的系数和次数.结论:4x、vt、6a2、a3、-n、12ch是单项式.它们的系数分别是4、1、6、1、-1、12.它们的次数分别是1、2、2、3、1、2.所以4x、-n都是一次单项式;vt、6a2、•12ch都是二次单项式;a3是三次单项式.问题:vt中v和t的指数都是1,它不是一次单项式吗?结论:不是.根据定义,单项式vt中含有两个字母,所以它的次数应该是这两个字母的指数的和,而不是单个字母的指数,所以vt是二次单项式而不是一次单项式.生活中不仅仅有单项式,像a+b+c,它不是单项式,和单项式有什么联系呢?写出下列式子(出示投影)结论:(1)t-5.(2)3x+5y+2z.(3)三角尺的面积应是直角三角形的面积减去圆的面积,即12ab-3.12r2.(4)建筑面积等于四个矩形的面积之和.而右边两个已知矩形面积分别为3×2、4×3,所以它们的面积和是18.于是得这所住宅的建筑面积是x2+2x+18.我们可以观察下列代数式:a+b+c、t-5、3x+5y+2z、12ab-3.12r2、x2+2x+18.发现它们都是由单项式的和组成的式子.是多个单项式的和,能不能叫多项式?这样推理合情合理.请看投影,熟悉下列概念.根据定义,我们不难得出a+b+c、t-5、3x+5y+2z、12ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.a+b+c的项分别是a、b、c.t-5的项分别是t、-5,其中-5是常数项. 3x+5y+2z的项分别是3x、5y、2z.1 2ab-3.12r2的项分别是12ab、-3.12r2.x2+2x+18的项分别是x2、2x、18.找多项式的次数应抓住两条,一是找准每个项的次数,•二是取每个项次数的最大值.根据这两条很容易得到这五个多项式中前三个是一次多项式,后两个是二次多项式.这节课,通过探究我们得到单项式和多项式的有关概念,它们可以反映变化的世界.同时,我们也体会到符号的魅力所在.我们把单项式与多项式统称为整式.Ⅲ.随堂练习1.课本P162练习Ⅳ.课时小结通过探究,我们了解了整式的概念.理解并掌握单项式、多项式的有关概念是本节的重点,特别是它们的次数.在现实情景中进一步理解了用字母表示数的意义,•发展符号感.Ⅴ.课后作业1.课本P165~P166习题15.1─1、5、8、9题.2.预习“整式的加减”.课后作业:《课堂感悟与探究》§15.1.2整式的加减(1)教学目的:1、解字母表示数量关系的过程,发展符号感。

第十五章整式乘法与因式分解教案

第十五章整式乘法与因式分解教案

15.1.4 单项式乘以单项式课型:新授教学目标1.知识与技能理解整式运算的算理,会进行简单的整式乘法运算.2.过程与方法经历探索单项式乘以单项式的过程,体会乘法结合律的作用和转化的思想,发展有条理的思考及语言表达能力.3.情感、态度与价值观培养学生推理能力、计算能力,通过小组合作与交流,增强协作精神.重、难点与关键1.重点:单项式乘法运算法则的推导与应用.2.难点:单项式乘法运算法则的推导与应用.3.关键:通过创设一定的问题情境,•推导出单项式与单项式相乘的运算法则,可以采用循序渐进的方法突破难点.教学方法采用“情境──探究”的教学方法,让学生在创设的情境之中自然地领悟知识.教学过程(一)知识回顾:回忆幂的运算性质:a m·a n=a m+n (a m)n=a mn (ab)n=a nb n (m,n都是正整数)(二)创设情境,引入新课【1】问题:光的速度约为3×105千米/秒,太阳光照射到地球上需要的时间大约是5×102秒,你知道地球与太阳的距离约是多少千米吗?【2】.学生分析解决:(3×105)×(5×102)=(3×5)×(105×102)=15×107【3】.问题的推广:如果将上式中的数字改为字母,即ac5·bc2,如何计算?ac5·bc2=(a·c5)·(b·c2)=(a·b)·(c5·c2)=abc5+2=abc7(三)自己动手,得到新知1.类似地,请你试着计算:(1)2c5·5c2;(2)(-5a2b3)·(-4b2c)【4】2.得出结论:单项式与单项式相乘:把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. 二、范例学习,应用所学 【例1】计算. (1)3x 2y ·(-2xy 3) (2)(-5a 2b 3)·(-4b 2c )【思路点拨】例1的两个小题,可先利用乘法交换律、•结合律变形成数与数相乘,同底数幂与同底数幂相乘的形式,单独一个字母照抄.【例2】卫星绕地球运动的速度(即第一宇宙速度)约为7.9×103米/秒,•则卫星运行3×102秒所走的路程约是多少? 【教师活动】:引导学生参与到例1,例2的解决之中. 【学生活动】参与到教师的讲例之中,巩固新知. 三、问题讨论,加深理解【问题牵引】1.a ·a 可以看作是边长为a 的正方形的面积,a ·ab 又怎样理解呢? 2.想一想,你会说明a ·b ,3a ·2a 以及3a ·5ab 的几何意义吗? 【教师活动】问题牵引,引导学生思考,提问个别学生. 【学生活动】分四人小组,合作学习.四、随堂练习,巩固深化 课本P145练习第1、2题. 五、课堂总结,发展潜能本节内容是单项式乘以单项式,重点是放在对运算法则的理解和应用上. 提问:(1)请同学们归纳出单项式乘以单项式的运算法则. (2)在应用单项式乘以单项式运算法则时应注意些什么? 六、布置作业,专题突破1.课本P149习题15.1第3题.2.选用目标小练习. 3. 附加练习:1.小民的步长为a 米,他量得家里的卧室长15步,宽14步,这间卧室的面积有多少平方米?2.3222(2)a bc ab ⋅- 323(3)x x -⋅ (-10xy 3)(2xy 4z) (-2xy 2)(-3x 2y 3)(41-xy) 3. 3(x-y)2·[154-(y-x)3][ 23-(x-y)4]4.判断:单项式乘以单项式,结果一定是单项式( )两个单项式相乘,积的系数是两个单项式系数的积( ) 两个单项式相乘,积的次数是两个单项式次数的积( )两个单项式相乘,每一个因式所含的字母都在结果里出现( )5.计算:0.4x 2y ·(21xy )2-(-2x )3·xy 36.已知a m =2,a n=3,求(a 3m+n )2的值求证:52·32n+1·2n -3n ·6n+2能被13整除 七、板书设计15.1.4 单项式乘以单项式1、单项式乘以单项式的乘法法则 例1:(1)3x 2y ·(-2xy 3) 练习:…….. 把它们的系数、相同字母分别相乘, (2)(-5a 2b 3)·(-4b 2c ) ……… 对于只在一个单项式里含有的字母, 例2卫星绕地球运动的速度 则连同它的指数作为积的一个因式. 约为7.9×103米/秒,则卫星运行3×102秒所走的路程约是多少?八、教学反思:15.1.5 单项式与多项式相乘喀拉布拉乡中学:权成龙、孙美荣 课型:新授 教学目标1.知识与技能让学生通过适当尝试,获得一些直接的经验,体验单项式与多项式的乘法运算法则,会进行简单的整式乘法运算. 2.过程与方法经历探索单项式与多项式相乘的运算过程,体会乘法分配律的作用和转化思想,发展有条理地思考及语言表达能力. 3.情感、态度与价值观培养良好的探究意识与合作交流的能力,体会整式运算的应用价值. 重、难点与关键1.重点:单项式与多项式相乘的法则. 2.难点:整式乘法法则的推导与应用.3.•关键:应用乘法分配律把单项式与多项式相乘转化到单项式与单项式相乘上来,注意知识迁移. 教学方法采用“情境──探究”教学方法,让学生直观地理解单项式与多项式相乘的法则.教学过程一、回顾交流,课堂演练1.口述单项式乘以单项式法则. 2.口述乘法分配律.3.课堂演练,计算:(1)(-5x)·(3x)2(2)(-3x)·(-x)(3)13xy·23xy2(4)-5m2·(-13mn)(5)-15x4y6-2x2y·(-12x2y5)【教师活动】组织练习,关注中下水平的学生.【学生活动】先独立完成上述“演练题”,再相互交流,部分学生上台演示.二、创设情境,引入新课小明作了一幅水彩画,所用纸的大小如图1,她在纸的左右两边各留了1 6 a米的空白,请同学们列出这幅画的画面面积是多少?【学生活动】小组合作,讨论.【教师活动】在学生讨论的基础上,提问个别学生.【情境问题2】夏天将要来临,有3家超市以相同价格n•(单位:元/台)销售A牌空调,他们在一年内的销售量(单位:台)分别是x,y,z,•请你采用不同的方法计算他们在这一年内销售这种空调的总收入.【学生活动】分四人小组,与同伴交流,寻求不同的表示方法.方法一:首先计算出这三家超市销售A牌空调的总量(单位:台),•再计算出总的收入(单位:元).即:n(x+y+z).方法二:采用分别计算出三家超市销售A牌空调的收入,•然后再计算出他们的总收入(单位:元).即:nx+ny+nz.由此可得:n(x+y+z)=nx+ny+nz.【教师活动】引导学生在不同的代数式呈现中,找到规律:单项式与多项式相乘,就是用单项式去乘多项式中的每一项,再把所得的积相加.三、范例学习,应用所学【例1】计算:(-2a2)·(3ab2-5ab3).解:原式=(-2a2)(3ab2)-(-2a2)·(5ab3)=-6a3b2+10a3b3【例2】化简:-3x2·(13xy-y2)-10x·(x2y-xy2)解:原式=-x 3y+3x 2y 2-10x 3y+10x 2y 2 =-11x 3y+13x 2y 2【例3】解方程:8x (5-x )=19-2x (4x -3) 40x -8x 2=19-8x 2+6x 40x -6x=19 34x=19x=1934四、随堂练习,巩固深化 课本P146练习. 【探研时空】 计算:(1)5x 2(2x 2-3x 3+8) (2)-16x (x 2-3y ) (3)-2a 2(12ab 2+b 4) (4)(23x 2y 3-16xy )·12xy 2 【教师活动】巡视,关注中差生.五、课堂总结,发展潜能1.单项式与多项式相乘法则:单项式与多项式相乘,•就是用单项式去乘多项式的每一项,再把所得的积相加. 2.单项式与多项式相乘,应注意(1)“不漏乘”;(2)注意“符号”. 六、布置作业,专题突破1. 课本P149习题15.1第4、6题.2.选用目标小练习3.附加练习1.若(-5a m+1b 2n-1)(2a n b m )=-10a 4b 4,则m-n 的值为______ 2.计算:(a 3b)2(a 2b)33. 计算:(3a 2b)2+(-2ab)(-4a 3b)4. 计算:)34232()25-(2y xy xy xy +-∙5.计算:)227(6)5)(3-(2222y xy x y x xy -+6.已知,3,2==b a 求)232()(32222a ab a ab ab ab b a ab -+--+的值 7.解不等式:12)23()1(222-〉+--+x x x x x x8.若m x x +-322与22-+mx x 的和中不含x 项,求m 的值,并说明不论x 取何值,它的值总是正数七、板书设计15.1.5 单项式乘以多项式1、单项式乘以多项式的乘法法则例1计算:练习单项式与多项式相乘,就是用单项(-2a2)·(3ab2-5ab3).式去乘多项式的每一项,再把所得的积相加.例2化简:注意(1)“不漏乘”;(2)注意“符号”.-3x2·(13xy-y2)-10x·(x2y-xy2)八、教学反思:15.1.6 多项式与多项式相乘喀拉布拉乡中学:权成龙、孙美荣课型:新授教学目标1.知识与技能让学生理解多项式乘以多项式的运算法则,能够按多项式乘法步骤进行简单的乘法运算.2.过程与方法经历探索多项式与多项式相乘的运算法则的推理过程,体会其运算的算理. 3.情感、态度与价值观通过推理,培养学生计算能力,发展有条理的思考,逐步形成主动探索的习惯.重、难点与关键1.重点:多项式与多项式的乘法法则的理解及应用.2.难点:多项式与多项式的乘法法则的应用.3.•关键:多项式的乘法应先转化为单项式与多项式相乘而后再应用已学过的运算法则解决.教学方法采用“情境──探索”教学方法,让学生在设置的情境中,通过操作感知多项式与多项式乘法的内涵.教学过程一、创设情境,操作感知【动手操作】首先,在你的硬纸板上用直尺画出一个矩形,并且分成如下图1•所示的四部分,标上字母.【学生活动】拿出准备好的硬纸板,画出上图1,并标上字母.【教师活动】要求学生根据图中的数据,求一下这个矩形的面积. 【学生活动】与同伴交流,计算出它的面积为:(m+b )×(n+a ).【教师引导】请同学们将纸板上的矩形沿你所画竖着的线段将它剪开,分成如下图两部分,如图2.剪开之后,分别求一下这两部分的面积,再求一下它们的和.【学生活动】分四人小组,合作探究,求出第一块的面积为m (n+a ),第二块的面积为b (n+a ),它们的和为m (n+a )+b (n+a ).【教师活动】组织学生继续沿着横的线段剪开,将图形分成四部分,如图3,•然后再求这四块长方形的面积.【学生活动】分四人小组合作学习,求出S 1=mn ;S 2=nb ;S 3=am ;S 4=ab ,•它们的和为S=mn+nb+am+ab .【教师提问】依据上面的操作,求得的图形面积,探索(m+b )(n+a )应该等于什么?【学生活动】分四人小组讨论,并交流自己的看法.(m+b )×(n+a )=m (n+a )+b (n+a )=mn+nb+am+ab ,因为我们三次计算是按照不同的方法对同一个矩形的面积进行了计算,那么,两次的计算结果应该是相同的,所以(m+b )×(n+a )=m (n+a )+b (n+a )=mn+nb+am+ab . 【师生共识】多项式与多项式相乘,用第一个多项式的每一项乘以另一个多项式的每一项,再把所得的结果相加.字母呈现: =ma+mb+na+nb . 二、范例学习,应用所学 【例1】计算: (1)(x+2)(x -3) (2)(3x -1)(2x+1) 【例2】计算: (1)(x -3y )(x+7y ) (2)(2x+5y )(3x -2y ) 【例3】先化简,再求值:(a -3b )2+(3a+b )2-(a+5b )2+(a -5b )2,其中a=-8,b=-6. 【教师活动】例1~例3,启发学生参与到例题所设置的计算问题中去. 【学生活动】参与其中,领会多项式乘法的运用方法以及注意的问题.三、随堂练习,巩固新知 课本P148练习第1、2题.【探究时空】一块长m 米,宽n 米的玻璃,长宽各裁掉a•米后恰好能铺盖一张办公桌台面(玻璃与台面一样大小),问台面面积是多少? 四、课堂总结,发展潜能1.多项式与多项式相乘,•应充分结合导图中的问题来理解多项式与多项式相乘的结果,利用乘法分配律来理解(m+n )与(a+b )相乘的结果,导出多项式乘法的法则.2.多项式与多项式相乘,第一步要先进行整理,•在用一个多项式的每一项去乘另一个多项式的每一项时,要“依次”进行,不重复,不遗漏,且各个多项式中的项不能自乘,多项式是几个单项式的和,每一项都包括前面的符号,在计算时要正确确定积中各项的符号. 五、布置作业,专题突破1.课本P149习题15.1第5、7(2)、9、10题.2.备用题1.⎩⎨⎧++〉+-〈+-++)2)(5()6)(1(22)1()3)(2(x x x x x x x x2. 求证:对于任意自然数n ,)2)(3()5(+--+n n n n 的值都能被6整除3. 计算:(x+2y-1)24. 已知x 2-2x=2,将下式化简,再求值. (x-1)2+(x+3)(x-3)+(x-3)(x-1)5. 小明找来一张挂历画包数学课本.已知课本长a 厘米,宽b 厘米,厚c 厘米,小明想将课本封面与封底的每一边都包进去m 厘米.问小明应该在挂历画上裁下多大面积的长方形? 六、 板书设计15.1.6 多项式乘以多项式1、多项式乘以多项式的乘法法则 【例1】计算:用一个多项式的每一项依次去乘 (1)(x+2)(x -3)(2)(3x -1)(2x+1) 另一个多项式的每一项 【例2】计算:注:1各个多项式中的项不能自乘 (1)(x -3y )(x+7y )(2)(2x+5y )(3x -2y )2每一项都包括前面的符号 【例3】先化简,再求值:(a -3b )2+(3a+b )2-(a+5b )2+(a -5b )2,其中a=-8,b=-6.七、教学反思教学内容:整式的乘法喀拉布拉乡中学:权成龙、孙美荣课型:练习新课指南1.知识与技能:(1)掌握同底数幂的乘法;(2)幂的乘方;(3)积的乘方;(4)整式的乘法法则及运算规律.2.过程与方法:经历探索同底数幂的乘法公式的过程,在乘法运算的基础上理解同底数幂的乘法、幂的乘方与积的乘方的运算公式,从而熟练地掌握和应用整式的乘法.3.情感态度与价值观:通过本节的学习,全面体现转化思想的应用,也使学生认识到数学知识来源于实际生活的需求,反过来又服务于实际生产、生活的需求.4.重点与难点:重点是同底数幂的乘法及幂的乘方、积的乘方运算.难点是整式的乘法.教材解读精华要义数学与生活著名诺贝尔奖获得者法国科学家居里夫人发明了“镭”,据测算:1千克镭完全蜕变后,放出的热量相当于3.75×105千克煤放出的热量.估计地壳里含有1×1010千克镭,试问这些镭蜕变后放出的热量相当于多少千克煤放出的热量?思考讨论由题意可知,地壳里1×1010千克镭完全蜕变后放出的热量相当于(3.75×105)×(1×1010)千克煤放出的热量,所以,如何计算这个算式呢?由乘法的交换律和结合律可进行如下计算:(3.75×105)×(1×1010)=3.75×105×1010=(3.75×1)×(105×1010)=3.75×(105×1010),那么如何计算105×1010呢?知识详解知识点1 同底数幂的乘法法则a m·a n=a m+n(m,n都是正整数).同底数幂相乘,底数不变,指数相加.例如:计算.(1)m3×m4; (2)ab5×ab2;知识点2 幂的乘方(a m)n=a mn(m,n都是正整数).幂的乘方,底数不变,指数相乘.【说明】(1)幂的乘方法则是由同底数幂的乘法法则和乘方的意义推导的.(2)(a m)n与的a n m区别.其中,(a m)n表示n个a m相乘,而a n m表示m n个a相乘,例如:(52)3=52×3=56,532=58.因此,(a m)n≠a n m,要仔细区别.知识点3 积的乘方(a b)n=a n b n(n为正整数).积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.探究交流填空,看看运算过程用到哪些运算律?运算结果有什么规律?(1)(a b)2=(a b)·(a b)=( a ·a )(b ·b)= a ( )b ( ) (2)(a b)3= = =a ( )b ( ) 点拨 由积的乘方法则得知:(1)2 2 (2)(a b)·(a b)·(a b) ( a ·a ·a )(b ·b ·b) 3 3【说明】 在运用积的乘方计算时,要注意灵活,如果底数互为倒数时,可适当变形.如:(21)10·210=(21·2)10=110=1;42·(-21)5=24·(-21)5=[24·(-21)4]·(-21)=[(-21)·2]4·(-21)=1·(-21)=-21.知识点4 单项式的乘法法则单项式乘法是指单项式乘以单项式.单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.为了防止出现系数与指数的混淆,同底数幂的乘法性质与幂的乘方性质的混淆等错误,同学们在初学本节解题时,应该按法则把计算步骤写全,逐步进行计算.如21x 2y ·4xy 2=(21×4)·x 2+1y 1+2=2x 3y 3. 在许多单项式乘法的题目中,都包含有幂的乘方、积的乘方等,解题时要注意综合运用所学的知识.【注意】 (1)运算顺序是先乘方,后乘法,最后加减. (2)做每一步运算时都要自觉地注意有理有据,也就是避免知识上的混淆及符号等错误.知识点5 单项式与多项式相乘的乘法法则单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.例如:a (m+n+p)=a m+a n+a p.【说明】 (1)单项式与多项式相乘,其实质就是乘法分配律的应用. (2)在应用乘法分配律时,要注意单项式分别与多项式的每一项相乘. 探究交流下列三个计算中,哪个正确?哪个不正确?错在什么地方? (1)3a (b-c+a )=3a b-c+a(2)-2x(x 2-3x+2)=-2x 3-6x 2+4x (3)2m(m 2-mn+1)=2m 3-2m 2n+2m 点拨 (1)(2)不正确,(3)正确.(1)题错在没有将单项式分别与多项式的每一项相乘.(2)题错在没有将-2x 中的负号乘进去.知识点6 多项式相乘的乘法法则 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.【说明】 多项式相乘的问题是通过把它转化为单项式与多项式相乘的问题来解决的,渗透了转化的数学思想.(a +b)(m+n)=(a +b)m+(a +b)n=a m+bm+a n+bn.计算时是首先把(a +b)看作一个整体,作为单项式,利用单项式与多项式相乘的乘法法则计算.典例剖析 师生互动基本概念题本节有关基本概念的题目包括以下几个方面:(1)同底数幂的乘法;(2)幂的乘方与积的乘方;(3)整式的乘法.例1 计算.(1)①103×104;②a ·a 3;③a ·a 3·a 5;④(m+n)2·(m+n)3.(2)①(103)5;②(b 3)4;③(-4)3·(-41)3. (3)①(2b)3;②(2a 3)2;③(-a )3;④(-3x)4.(分析) 本题主要考查三个公式:a m ·a n =a m+n ,(a m )n =a mn ,(a b)n =a n b n ,其中,m ,n 均为正整数.解:(1)①103×104=103+4=107. ②a ·a 3=a 1+3=a 4.③a ·a 3·a 5=a 1+3+5=a 9. ④(m+n)2·(m+n)3=(m+n)2+3=(m+n)5.(2)①(103)5=103×5=1015. ②(b 3)4=b 3×4=b 12.③(-4)3·(-41)3=[(-4)·(-41)]3=13=1. (3)①(2b)3=23b 3=8b 3. ②(2a 3)2=22(a 3)2=4a 6.③(-a )3=(-1)3a 3=-a 3. ④(-3x)4=(-3)4x 4=81x 4. 小结 在应用这三个公式时要准确,尤其是公式(a m )n =a mn ,不要写成(a m )n =a nm ,这是不正确的.基本知识应用题本节的基础知识应用包括:(1)经历探索整式乘法运算法则的过程;(2)会进行简单的整式乘法运算.例2 计算.(1)3x 2y ·(-2xy 3); (2)(-5a 2b 3)·(-4b 2c).(分析) 单项式乘法,其实质就是同底数幂乘法与乘法交换律和结合律. 解:(1)3x 2y ·(-2xy 3)=[3·(-2)](x 2·x)(y ·y 3)=-6x 3y 4.(2)(-5a 2b 3)·(-4b 2c)=[(-5)(-4)]a 2·(b 3·b 2)·c=20a 2b 5c.例3 计算.(1)2a 2(3a 2-5b); (2)(-2a 2)(3a b 2-5a b 3).(分析)单项式与多项式相乘,其实质就是乘法分配律的应用.解:(1)2a 2(3a 2-5b)=2a 2·3a 2-2a 2·5b=6a 4-10a 2b.解法1:(2)(-2a 2)(3a b 2-5a b 3)=(-2a 2)·3a b 2-(-2a 2)·5a b 3=-6a 3b 2+10a 3b 3.解法2:(2)(-2a 2)(3a b 2-5a b 3)=-(2a 2·3a b 2-2a 2·5a b 3)=-(6a 3b 2-10a 3b 3)=-6a 3b 2+10a 3b 3. 小结 单项式与多项式相乘时,要注意两个问题:(1)要用单项式与多项式的每一项相乘,避免漏乘;(2)单项式带有负号时,如(2)小题,乘的时候容易弄错符号,为了避免这一错误出现,可以用(2)小题的第二种解法,就能有效地解决.例4 计算.(1)(x-3y)(x+7y); (2)(5x+2y)(3x-2y).(分析)先用多项式乘法法则计算,最后要合并同类项.解:(1)(x-3y)(x+7y)=x 2+7xy-3xy-21y 2=x 2+4xy-21y 2.(2)(5x+2y)(3x-2y)=15x 2-1Oxy+6xy-4y 2=15x 2-4xy-4y 2.学生做一做 计算.(1)(x+2)(x-3); (2)(3x-1)(2x+1).老师评一评 (1)(x+2)(x-3)=x 2-3x+2x-6=x 2-x-6.(2)(3x-1)(2x+1)=6x 2+3x-2x-1=6x 2+x-1.综合应用题本节知识的综合应用包括:(1)整式乘法与方程的综合应用;(2)整式乘法与不等式的综合应用;(3)整式乘法与整式加减的综合应用.例5 化简.(1)(a +b)(a -2b)-(a +2b)(a -b);(2)5x(x 2+2x+1)-(2x+3)(x-5).(分析) 整式加减与整式乘法的混合计算,要依照先乘法,后加减的顺序计算.解:(1)(a +b)(a -2b)-(a +2b)(a -b)=(a 2-a b-2b 2)-(a 2+a b-2b 2)=a 2-a b-2b 2-a 2-a b+2b 2=-2a b.(2)5x(x 2+2x+1)-(2x+3)(x-5)=(5x 3+10x 2+5x)-(2x 2-7x-15)=5x 3+10x 2+5x-2x 2+7x+15=5x 3+8x 2+12x+15.学生做一做 化简.(1)(3y+2)(y-4)-3(y-2)(y-3);(2)(3x-2)(x-3)-2(x+6)(x-5)+31x 2-7x-13.老师评一评 (1)原式=5y-26.(2)原式=32x 2-20x+53.例6 解方程(3x-2)(2x-3)=(6x+5)(x-1).(分析) 解方程时,有括号的先去括号.解:(3x-2)(2x-3)=(6x+5)(x-1),6x 2-13x+6=6x 2-x-5,6x 2-13x-6x 2+x=-5-6,-12x=-11,∴x=1211. 学生做一做 解下列方程.(1)3x(7-x)=18-x(3x-15); (2)21x(x+2)=1-x(3-21x). 老师评一评 (1)x=3;(2)x=41. 小结 在解存在整式乘法的方程时,依照先乘法,后加减的顺序,其他步骤没有变化.例7 解不等式(3x+4)(3x-4)>9(x-2)(x+3).解:(3x+4)(3x-4)>9(x-2)(x+3),9x 2-16>9(x 2+x-6),9x 2-16>9x 2+9x-54,9x 2-9x 2-9x >16-54,-9x >38,∴x <938. 学生做一做 解不等式(x+3)(x-7)+8>(x+5)(x-1).老师评一评 x <-1.探索与创新题主要考查灵活解决问题和创新的能力.例8 已知m b a +·m b a -=m 12,求a 的值.(分析)由同底数幂乘法法则可把原式变形为m )()(b a b a -++=m 12,由此得到(a +b)+(a -b)=12,进而求出a 的值.解:∵m b a +·m b a -=m 12,∴m )()(b a b a -++=m 12.∴(a +b)+(a -b)=12,∴2a =12.∴a =6.学生做一做 (1)若644×83=2x ,则x= ;(2)若x 2n =4,x 6n = ,(3x 3n )2= ;(3)已知a m =2,a n =3,则a m+n = .老师评一评 (1)33 (2)64 576 (3)6 小结 在应用同底数幂乘法、幂的乘方及积的乘方运算解决问题时,贵在灵活,尤其是公式:a m ·a n =a m+n ,(a m )n =a mn ,(a b)m = a m b m (m ,n 为正整数),它们的逆应用非常广泛,大家要引起充分的重视.例9 计算(-3)2004·(31)2005. (分析)按照本题的运算级别,应先乘方后乘法,但是我们看到,要计算出(-3)2004·(31)2005的具体值是相当困难的,也是不必要的.因此我们不妨仔细观察本题的特点,虽然两个乘方运算的指数都很大,但是它们两者却只相差1,而且它们的底数互为负倒数,而且互为负倒数的乘积是-1,因此考虑公式(a b)m =a m b m 的逆应用,即把指数大的乘方运算中的指数进行变化.解:(-3)2004·(31)2005 =(-3)2004·(31)2004+1 =(-3)2004·(31)2004·31 =[(-3)·31]2004·31 =(-1)2004·31=1×31=31. 学生做一做 (1)(51)5993×252996= ; (2)(-32)2001×(241)1000= ; (3)(131)2001×(-141)2002×(-53)2003= . 老师评一评 (1)(51)5993×252996=(51)5993×(52)2996=(51)5993×55992=51·(51)5992·55992=51. (2)(-32)2001×(241)1000=(-32)2001×(49)1000=(-32)·(-32)2000×[(23)2]1000=(-32)×(-32)2000×(23)2000=(-32)×[(-32)×23]2000=(-32)×(-1)2000=(-32)×1=-32. (3)原式=(34)2001×(-45)2002×(-53)2003=[34×(-45)×(-53)]2001×(-45)×(-53)2=12001×(-45)×259=-209. 例10 已知2x =3,2y =5,2z =15.求证x+y=z.(分析)要说明x+y=z ,只需说明2x+y =2z 即可.证明:∵2x =3,2y =5,∴2x+y =2x ·2y =3×5=15.又∵2z =15,∴2x+y =2z .∴x+y=z.例11 比较大小.(1)1625与290;(2)2100与375.(分析) 比较两个正数幂的大小,一种是指数相同,比较底数大小,另一种是底数相同,比较指数大小.解:(1)∵1625=(24)25=2100,290=290,又∵2>1,∴290<2100,即1625>290.(2)∵2100=(24)25=1625,375=(33)25=2725,且16<27,∴1625<2725,即2100<375.学生做一做 比较355,444,533的大小.老师评一评 ∵355=(35)11=24311,444=(44)11=25611,533=(53)11=12511,且256>243>125,∴25611>24311>12511,即444>355>533.例12 如果(x+q)(x+51)的积中不含x 项,那么q= . (分析) 欲求q 的值,则需化简(x+q)(x+51)=x 2+(51+q)x+51q, 因为积中不含x 项,即x 项的系数是0,所以51+q=0,所以q=-51. 小结 欲求多项式中不含某项,即某项的系数为0.例13 若n为自然数,试说明n(2n+1)-2n(n-1)的值一定是3的倍数.解:∵n(2n+1)-2n(n-1)=2n2+n-(2n2-2n)=2n2+n-2n2+2n=3n,且n为自然数,∴n(2n+1)-2n(n-1)一定是3的倍数.学生做一做用你所学的知识,说明523-521能被120整除.老师评一评∵523-521=521+2-521=521·52-521=521·(52-1)=24×521=24×5×520=120×520,∴是120的整数倍,∴523-521能被120整除.例14 设m2+m-1=0,求m3+2m2+2004的值.(分析) 欲求代数式的值,从m2+m-1=0中求m的值是比较困难的,也是不必要的,只需利用单项式与多项式的积的逆运算即可.解:∵m2+m-1=0,∴m2+m=1.∴m3+2m2+2004=m(m2+m)+m2+2004=m·1+m2+2004=m2+m+2004=1+2004=2005.∴m3+2m2+2004=2005.学生做一做若2x+5y-3=0,则4x·32y= .老师评一评∵2x+5y-3=0,∴2x+5y=3,∴4x·32y=(22)x·(25)y-22x·25y=22x+5y=23=8.中考展望点击中考中考命题总结与展望历年中考多为填空题、选择题或化简求值题,经常与函数、方程等知识综合出题.中考试题预测例1 (2004·河北)化简(-x)3·(-x)2的结果正确的是( )A.-x6B.x6C.x5D.-x5(分析) 本题主要考查幂的乘方与单项式的乘法,解法有两种:①原式=(-x3)·x2=-x5;②原式=(-x)5=-x5.故正确答案为D项.例2 (2004·长沙)下列运算中,正确的是( )A.x2·x3=x6B.(a b)3=a3b3C.3a+2a=5a2D.(a-1)2=a2-1(分析) 本题主要考查整式的乘法与合并同类项.其中A项不正确,x2·x3=x5,主要考查同底数幂的乘法公式;B项正确,主要考查积的乘方;C项不正确,主要考查合并同类项;D项不正确,主要考查多项式相乘,故选择B项.例3 (2004·黑龙江)下列运算正确的是( )A.x2·x3=x6B.x2+x2=2x4C.(-2x)2=-4x2D.(-2x2)(-3x3)=6x5(分析) 本题主要考查整式的加减和乘法.答案:D例4 (2004·桂林)计算:4x2·(-2xy)= .(分析) 本题旨在检测单项式乘法法则.4x2·(-2xy)=-8x3y.例5 (2004·临汾)计算:(-21x 3y)2= . (分析) 本题旨在考查积的乘方与幂的乘方.(-21x 3y)2=(-21)2(x 3)2y 2=41x 6y 2. 例6 (2004·哈尔滨)下列各式正确的是( )A.(-a )2=a 2B.(-a)3=a 3C.2a -=-a 2D.3a -=a 3答案:A例7 (2004·青海)化简:a 3·a 2b= .答案:a 5b例8 (2004·西宁)计算:9xy ·(-31x 2y)= . 答案:-3x 3y 2课堂小结 本节归纳1.本节主要学习了同底数幂的乘法、幂的乘方与积的乘方公式.整式的乘法,包括单项式乘法、单项式乘以多项式及多项式乘法.2.必须掌握每种情况的运算法则,计算时一定要正确运用法则和有关知识.习题选解 课本习题课本第148~149页习题15.11.(1)不对,b 3·b 3=b 6;(2)不对,x 4·x 4=x 8;(3)不对,(a 5)2=a 10;(4)不对,(a 3)2·a 4=a 10;(5)不对,(a b 2)3=a 3b 6;(6)不对,(-2a )2=4a 2.2.(1)原式=2x 4; (2)原式=-p 3q 3;(3)原式=-16a 8b 4; (4)原式=6a 8.3.(1)原式=18x 3y ; (2)原式=-6a 2b 3;(3)原式=-4x 5y 7; (4)原式=4.94×108.4.(1)原式=-8a b+2b 3; (2)原式=2x 3-x 2;(3)原式=10a 2b-5a b 2+a b ; (4)原式=-18a 3+6a 2+4a .5.(1)原式=x 2-9x+18; (2)原式=x 2+61x-61; (3)原式=3x 2+8x+4; (4)原式=4y 2-21y+5.6.原式=-2x 2+x,当x=21时,原式=0. 7.(1)原式=-5x 2-12x+15; (2)原式=2x 2-8.9.提示:7.9×103×2×102=1.58×106(米).10.提示:图中阴影部分的面积是:(a +2a +2a +2a +a )·(1.5a +2.5a )-2a ·2.5a -2a ·2.5a=8a ·4a -5a 2-5a 2=32a 2-10a 2=22a 2(m 2)11.(1)x=1 (2)x >938 12.(1)m=13 (2)m=-20 (3)m=15 (4)m=-12(5)提示:由于pq=36,且p ,q 为正整数,所以有下列五种情形:①p=1,q=36,此时m=37;②p=2,q=18,此时m=20;③p=3,q=12,此时m=15;④p=4,q=9,此时m=13;⑤p=6,q=6,此时m=12.∴m 的值分别为37,20,15,13,12.自我评价 知识巩固1.如果x m-3·x n =x 2,那么n 等于( )A.m-1B.m+5C.4-mD.5-m2.下列计算错误的是( )A.(- a )·(-a )2=a 3B.(- a )2·(-a )2=a 4C.(- a )3·(-a )2=-a 5D.(- a )3·(-a )3=a 63.计算(a 3)2+a 2·a 4的结果为( )A.2a 9B.2a 6C.a 6+a 8D.a 124.计算(32)2003×1.52002×(-1)2004的结果是( ) A.32 B.23 C.-32 D.-23 5.方程x(x-3)+2(x-3)=x 2-8的解为( )A.x=2B.x=-2C.x=4D.x=-46.若3x(x n +5)=3x n+1-7,则x= .7.若(a n ·b m ·b)3=a 9b 15,则m= ,n= .8.计算:(-21x 2y)3·(-3xy 2)2= . 9.计算:(4×106)×(8×103)= .10.当x=2时,代数式a x 3+bx-7的值为5,则x=-2时,这个代数式的值为 .11.计算.(1)(-x)3(-y)2-(-x 3y 2);(2)890·(21)90·(21)180; (3)24×45×(-0.125)4;(4)(x-6)(x 2+x+1)-x(2x+1)(3x-1);(5)2(a -4)(a +3)-(2a +1)(a -1);(6)(2x+1)(x-1)-(x+2)(2x-1).12.已知2x =a ,2y =b ,求2x+y +23x+2y 的值.13.要使x(x 2+a )+3x-2b=x 3+5x+4成立,则a ,b 的值分别为多少?14.若(3x 2-2x+1)(x+b)中不含x 2项,求b 的值.15.若3k(2k-5)+2k(1-3k)=52,求k 的值.16.解不等式x 2+21x(3-2x)<241. 17.观察下列等式:13=1213+23=3213+23+33=6213+23+33+43=102……想一想,等式左边各项的底数与等式右边的底数有什么关系?猜一猜,可以得出什么规律?18.计算(101×91×81×…×21×1)10·(10×9×8×7×…×3×2×1)10.15.2.1平方差公式(一)喀拉布拉乡中学:权成龙、孙美荣课型:新授教学目标1.知识与技能会推导平方差公式,并且懂得运用平方差公式进行简单计算.2.过程与方法经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式.3.情感、态度与价值观通过合作学习,体会在解决具体问题过程中与他人合作的重合性,体验数学活动充满着探索性和创造性.重、难点与关键1.重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解.2.难点:平方差公式的应用.3.关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、•总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键.教学方法采用“情境──探究”的教学方法,让学生在观察、猜想中总结出平方差公式.教学过程(一) 学生动手,得到公式1. 计算下列多项式的积.(1)(x+1)(x-1)(2)(m+2)(m-2)(3)(2x+1)(2x-1)(4)(x+5y )(x-5y )2.提出问题:观察上述算式,你发现什么规律?运算出结果后,你又发现什么规律?2.特点:等号的一边:两个数的和与差的积,等号的另一边:是这两个数的平方差3.再试一试: 【学生自己出相似的题目加以验证】4.得到结论(a+b )(a-b )=a 2-ab+ab-b 2=a 2-b 2.即 (a+b )(a-b )=a 2-b 2 【1】(二) 熟悉公式1.下列哪些多项式相乘可以用平方差公式?【2】)32)(32(b a b a -+ )32)(32(b a b a -+- )32)(32(b a b a +-+- )32)(32(b a b a --- ))((c b a c b a +-++ ))((c b a c b a -+--1.认清公式:在等号左边的两个括号内分别没有符号变化的集团是a ,变号的是b(三) 运用公式1.直接运用例:(1)(3x+2)(3x-2)(2)(b+2a )(2a-b )(3)(-x+2y )(-x-2y )【3】2.简便计算例:(1)102×98【3】 (2)(y+2)(y-2)-(y-1)(y+5)3.练习: P153 练习1,2)2)(2(x y y x +--- )25)(52(x x -+)25.0)(5.0)(5.0(2++-x x x 22)6()6(--+x x 【4】100.5×99.5 99×101×10001四、课堂总结,发展潜能本节课的内容是两数和与这两数差的积,公式指出了具有特殊关系的两个二项式积的性质.运用平方差公式应满足两点:一是找出公式中的第一个数a ,•第二个数b ;二是两数和乘以这两数差,这也是判断能否运用平方差公式的方法.五、布置作业,专题突破1. 课本P156第1、2题.2.备用题1..证明:两个连续奇数的积加上1一定是一个偶数的平方2.求证:22)7()5(--+m m 一定是24的倍数 六、板书设计§15.2.1 平方差公式一、探究、归纳规律──平方差公式文字语言:两数和与这两数差的积,等于它们的平方差符号语言:(a+b )(a-b )=a 2-b 2二、1.用简便方法计算2.计算:三、应用、升华:七、教学反思:15.2.1平方差公式(二)喀拉布拉乡中学:权成龙、孙美荣课型:新授教学目标1.知识与技能探究平方差公式的应用,熟练地应用于多项式乘法之中.2.过程与方法经历平方差公式的运用过程,体会平方差公式的内涵.3.情感、态度与价值观培养良好的运算能力,以及观察事物的特征的能力,感受到学习数学知识的实际价值.重、难点与关键1.重点:运用平方差公式进行整式计算.2.难点:准确把握运用平方差公式的特征.3.关键:弄清平方差公式的结构特点,左边:(1)两个二项式的积;(2)•两个二项式中一项相同,另一项互为相反数.右边:(1)二项式;(2)两个因式中相同项平方减去互为相反数的项的平方.教学方法采用“精讲.精练”分层递推的教学方法,让学生在训练中,熟练掌握平方差的特征.教学过程一、回顾交流,课堂演练1.用平方差公式计算:(1)(-9x-2y)(-9x+2y)(2)(-0.5y+0.3x)(0.5y+0.3x)(3)(8a2b-1)(1+8a2b)(4)20082-2009×20072.计算:(a+12b)(a-12b)-(3a-2b)(3a+2b)【教师活动】请部分学生上讲台“板演”,然后组织学生交流.【学生活动】先独立完成课堂演练,再与同学交流.二、范例学习,巩固深化【例1】计算:(1)(34y+212x)(212x-34y);(2)(-56x-0.7a2b)(56x-0.7a2b);(3)(2a-3b)(2a+3b)(4a2+9b2)(16a4+81b4).解:(1)原式=(52x+34y)(52x-34y)=2259416x y2。

人教版八年级数学上册《十五章 整式的乘除与因式分解. 15.4 因式分解..(通用)》优质课教案_24

人教版八年级数学上册《十五章 整式的乘除与因式分解.  15.4 因式分解..(通用)》优质课教案_24

公式法因式分解教学设计一、教学内容分析因式分解的概念是把一个多项式化成几个整式的积,因式分解是本章中一个重要环节。

也是本章的重要内容,它与整式乘法互逆的。

因式分解方法的理论依据就是多项式乘法的逆变形。

它不仅在多项式的除法、简便运算中有直接的应用,也为以后学习分式的约分与通分、解方程、和学习三角函数提供了必要的基础。

所以学好因式分解对于今后继续深入学习,有相当重要的意义。

二、学生情况分析在上前几节课的基础上,已经基本了解整式乘法运算与因式分解之间的互逆关系,在整式的乘法运算的学习过程中,学生已经学习了平方差公式,这为本节学习提供了必要的基础.对前几节课的学习和探索,学生对类比思想、对比、观察等活动形式有了一定的认识与基础,本节课采用的活动方法是学生较为熟悉的观察、对比、讨论等方法,学生有较好的活动经验。

三、教学目标与重难点(一)教学目标1、知识与技能:使学生了解掌握运用公式法分解因式并会用平方差公式进行因式分解;使学生掌握提取公因式法是分解因式首先考虑的方法,再考虑用平方差公式分解因式。

2、过程与方法:通过观察多项式,发现用平方差公式法分解因式的方法,发展学生的观察能力和逆向思维能力,培养学生对平方差公式的运用能力。

3、情感、态度与价值观:在引导学生逆用乘法公式的过程中,培养学生逆向思维的意识。

和探索精神。

(二)教学重点、难点重点是灵活地运用平方差公式法因式分解。

难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。

四、教学准备实物、多媒体演示教学。

五、教学过程(一)练一练填空(1)(x+5)(x-5) = ;(2)(4x+y)(4x–y)= ;(3)(1+2x)(1–2x)= ;(4)(3m+2n)(3m–2n)= .根据上面式子填空:(1)9m2–4n2= ;(2)16x2–y2= ;(3)x2–9= ;活动目的:学生通过观察、对比,把整式乘法中的平方差公式进行逆向运用,发展学生的观察能力与逆向思维能力。

因式分解教案5篇

因式分解教案5篇

The process of constantly discovering that the previous self was a fool is growth.勤学乐施积极进取(页眉可删)因式分解教案5篇因式分解教案篇1第十五章整式的乘除与因式分解根据定义,我们不难得出a+b+c、t-5、3x+5+2z、 ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.15.1.2 整式的加减(3)x-(1-2x+x2)+(-1-x2)(4)(8x-3x2)-5x-2(3x-2x2)四、提高练习:1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B +C=0,问C是什么样的多项式?2、设A=2x2-3x+2-x+2,B=4x2-6x+22-3x-,若│x-2a│+(+3)2=0,且B-2A=a,求A的值。

3、已知有理数a、b、c在数轴上(0为数轴原点)的对应点如图:试化简:│a│-│a+b│+│c-a│+│b+c│小结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。

作业:课本P14习题1.3:1(2)、(3)、(6),2。

《课堂感悟与探究》因式分解教案篇2知识点:因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。

教学目标:理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。

考查重难点与常见题型:考查因式分解能力,在中考试题中,因式分解出现的频率很高。

重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。

习题类型以填空题为多,也有选择题和解答题。

教学过程:因式分解知识点多项式的因式分解,就是把一个多项式化为几个整式的积。

分解因式要进行到每一个因式都不能再分解为止。

分解因式的常用方法有:(1)提公因式法如多项式其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。

第15章整式的乘除与因式分解全章教案

第15章整式的乘除与因式分解全章教案

第15章整式的乘除与因式分解全章教案思考: 先填空,再看看列出的代数式有什么特点. (1)边长为x 的正方形的周长为_________;(2)一辆汽车的速度是v 千米/时,行驶t 小时所走过的路程为_______千米. (3)如图,正方体的表面积为_______,正方体的体积为________;(4)设n 表示一个数,则它的相反数是________.第十五章 整式的乘除与因式分解§15.1.1 整式教学目标1.单项式、单项式的定义. 2.多项式、多项式的次数. 3、理解整式概念. 教学重点单项式及多项式的有关概念.教学难点单项式及多项式的有关概念. 教学过程Ⅰ.提出问题,创设情境在七年级,我们已经学习了用字母可以表示数,思考下列问题 1.要表示△ABC 的周长需要什么条件?要表示它的面积呢?2.小王用七小时行驶了Skm 的路程,请问他的平均速度是多少?结论:1、要表示△ABC 的周长,需要知道它的各边边长.要表示△ABC•的面积需要知道一条边长和这条边上的高.如果设BC=a ,AC=b ,AB=c .AB 边上的高为h ,•那么△ABC 的周长可以表示为a+b+c ;△ABC 的面积可以表示为12·c ·h . 2.小王的平均速度是S t .问题:这些式子有什么特征呢?(1)有数字、有表示数字的字母.(2)数字与字母、字母与字母之间还有运算符号连接.归纳:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式.判断上面得到的三个式子:a+b+c 、12ch 、St 是不是代数式?(是)代数式可以简明地表示数量和数量的关系.今天我们就来学习和代数式有关的整式.Ⅱ.明确和巩固整式有关概念(出示投影)结论:(1)正方形的周长:4x . (2)汽车走过的路程:vt .(3)正方体有六个面,每个面都是正方形,这六个正方形全等,•所以它的表面积为6a 2;正方体的体积为长×宽×高,即a 3. (4)n 的相反数是-n . 分析这四个数的特征. 它们符合代数式的定义.这五个式子都是数与字母或字母与字母的积,而a+b+c 、12ch 、St 中还有和与商的运算符号.还可以发现这五个代数式中字母指数各不相同,字母的个数也不尽相同.请同学们阅读课本P160~P161单项式有关概念. 根据这些定义判断4x 、vt 、6a 2、a 3、-n 、a+b+c 、12ch 、S t 这些代数式中,哪些是单项式?是单项式的,写出它的系数和次数.第15章整式的乘除与因式分解全章教案结论:4x 、vt 、6a 2、a 3、-n 、12ch 是单项式.它们的系数分别是4、1、6、1、-1、12.它们的次数分别是1、2、2、3、1、2.所以4x 、-n 都是一次单项式;vt 、6a 2、•12ch 都是二次单项式;a 3是三次单项式.问题:vt 中v 和t 的指数都是1,它不是一次单项式吗?结论:不是.根据定义,单项式vt 中含有两个字母,所以它的次数应该是这两个字母的指数的和,而不是单个字母的指数,所以vt 是二次单项式而不是一次单项式.生活中不仅仅有单项式,像a+b+c ,它不是单项式,和单项式有什么联系呢? 写出下列式子(出示投影)结论:(1)t-5.(2)3x+5y+2z . (3)三角尺的面积应是直角三角形的面积减去圆的面积,即12ab-3.12r 2.(4)建筑面积等于四个矩形的面积之和.而右边两个已知矩形面积分别为3×2、4×3,所以它们的面积和是18.于是得这所住宅的建筑面积是x 2+2x+18. 我们可以观察下列代数式:a+b+c 、t-5、3x+5y+2z 、12ab-3.12r 2、x 2+2x+18.发现它们都是由单项式的和组成的式子.是多个单项式的和,能不能叫多项式?这样推理合情合理.请看投影,熟悉下列概念.根据定义,我们不难得出a+b+c 、t-5、3x+5y+2z 、2ab-3.12r 2、x 2+2x+18都是多项式.请分别指出它们的项和次数.a+b+c 的项分别是a 、b 、c .t-5的项分别是t 、-5,其中-5是常数项. 3x+5y+2z 的项分别是3x 、5y 、2z . 12ab-3.12r 2的项分别是12ab 、-3.12r 2.x2+2x+18的项分别是x 2、2x 、18. 找多项式的次数应抓住两条,一是找准每个项的次数,•二是取每个项次数的最大值.根据这两条很容易得到这五个多项式中前三个是一次多项式,后两个是二次多项式.这节课,通过探究我们得到单项式和多项式的有关概念,它们可以反映变化的世界.同时,我们也体会到符号的魅力所在.我们把单项式与多项式统称为整式. Ⅲ.随堂练习 1.课本P162练习 Ⅳ.课时小结通过探究,我们了解了整式的概念.理解并掌握单项式、多项式的有关概念是本节的重点,特别是它们的次数.在现实情景中进一步理解了用字母表示数的意义,•发展符号感. Ⅴ.课后作业1.课本P165~P166习题15.1─1、5、8、9题. 2.预习“整式的加减”. 课后作业:《课堂感悟与探究》§15.1.2 整式的加减(1)教学目的:1、 解字母表示数量关系的过程,发展符号感。

新人教版八年级数学上册第15章整式的乘除与因式分解教案

新人教版八年级数学上册第15章整式的乘除与因式分解教案

第15章整式的乘除与因式分解15.1.1 整式的乘法教学目标①感受生活中幂的运算的存在与价值.②经历自主探索同底数幂的乘法、幂的乘方和积的乘方等运算性质的过程,能用代数式和文字正确地表述这些性质,并会运用它们熟练地进行计算.③逐步形成独立思考、主动探索的习惯.④通过由特殊到一般的猜想与说理、验证,培养学生一定的说理能力和归纳表达能力.教学重点与难点重点:幂的三个运算性质.难点:幂的三个运算性质.教学设计创设情境导入新课问题:一种电子计算机每秒可以进行1012次运算,它工作103s可以进行多少次运算?你能用学过的知识解决吗?从实际问题的导入,让学生自己动手试一试,主动探索,在自己的实践中获得知识.从而构建新的知识体系,同时因为关于底数、指数、幂等概念是在有理数的乘法中学习的,学生可能生疏或遗忘,在新课讲解之前利用这个实际问题进行复习.学生略作思考后得出,它工作103s可以进行的运算次数是1012×103.怎样计算1012×103?根据乘方的意义可以知道:探究新知1.探一探根据乘方的意义填空:从引例到“探一探”,“猜一猜”,“说一说”是一个从特殊到一般,从具体到抽象,把幂的底数与指数分两步有层次地进行概括抽象的过程.在这一过程中,要注意留给学生探索与交流的空间,让学生在自己的实践中获得运算法则.学生独立思考后回答,教师板演.2.猜一猜问:看看计算结果,你能发现结果有什么规律吗?学生小组讨论后交流结果:不管底数是什么数,只要底数相同,结果就是指数相加.3.说一说a m×a n(m,n是正整数)?学生说出理由,教师板演共同得出结论:a m×a n=a m+n(m,n都是正整数)即同底数幂相乘,底数不变,指数相加.注意性质中的m、n的取值范围.注:要求学生用语言叙述这个性质,即“同底数的幂相乘,底数不变,指数相加”,这对于学生提高数学语言的表述能力是有益的.4.想一想a m×a n×a p=?5.做一做例1教科书第142页的例1(1)~(4)(5)-a3·a5;(6)(x+1)2·(x+1)3同底数幂的性质很容易推广到三个以上的同底数幂相乘.在例1的课堂教学中教师要求学生说明底数是什么,指数是什么,引导学生观察是不是同底数幂相乘,再利用性质进行计算.例1(5)中注意让学生说清“-a3”的底数是“a”还是“-a”.性质中的字母可以是单项式也可以是多项式,如例1(6),把底数进一步扩充到式的范围.6.自主学习根据乘方的意义及同底数幂的乘法,让学生自主探究教科书第170页探究问题.学生在独立思考、合作交流的基础上,得出幂的乘方运算性质:(a m)n=a mn(m,n都是正整数)即幂的乘方,底数不变,指数相乘.7.做一做例2教科书第171页的例2(1)~(4)(5) -(x3)4·x28.想一想让学生自主探究教科书第171页的探究问题,并完成填空.尝试分析运算过程中用到哪些运算律?运算结果有什么规律?学生自己归纳出积的乘方的运算性质:(ab)n=a n b n(n为正整数)即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.那么,(abc)n=?注:和前两个性质的教学一样,这个性质也是先用具体指数为例说明积的乘方的意义和导出性质的每一步依据,从而归纳出一般指数情形的性质.这个性质也很容易推广到三个以上因式的乘方.9.做一做例3教科书第172页的例3(1)~(4);补充:(5) [-3(x+y)2]3例4 计算:x·(x2)3-2x4·x2比一比这节课我们学习了三个运算性质:“同底数幂的乘法”、“幂的乘方”和“积的乘方”.组织学生进行计时比赛,在规定时间内完成教科书第170页、17l页、172页的练习.深入探究例5计算:(1)(-8)2004·(-0.125)2005(2)(-2)2n+1+2·(-2)2n(n为正整数).在这三个性质中的底数、指数中,指数注明为正整数,而底数可以是数、字母或式.把底数进一步扩充到式的范围.议一议下面的计算对不对?如果不对,应当怎样改正.(1)a3·a3=a6; (2)b4·b4=2b4;(3)x5+x5=x10; (4)y7·y=y8;(5)(a3)5=a8; (6)a3·a5=a15;(7)(a2)3·a4=a9; (8)(xy3)2=xy6;(9)(-2x)3=-2x3注:补充议一议与辨析题的目的是让学生通过对这些判断题的讨论甚至争论,加强对运算性质的掌握,同时也培养学生一定的批判性思维能力.小结组织学生讨论和辨析三个运算性质.课外巩固1.必做题:教科书第148页习题15.1第1、2题.2.备选题:(1)计算:(2)计算:a m-1·a n+2+a m+2·a n-1+a m·a n+1(3)已知:a m=7,b m=4,则(ab)2m=______(4)已知:3x+2y-3=0,则27x·9y=___________教学后记15.1整式的乘法(2)教学目标:①探索并了解单项式与单项式、单项式与多项式相乘的法则,并运用它们进行运算.②让学生主动参与到探索过程中去,逐步形成独立思考、主动探索的习惯,培养思维的批判性、严密性和初步解决问题的愿望与能力.教学重点与难点重点:单项式与单项式、单项式与多项式相乘的法则.难点:单项式与多项式相乘去括号法则的应用.教学设计复习引新1.知识回顾:回忆幂的运算性质:a m·a n=a m+n(m,n都是正整数)即同底数幂相乘,底数不变,指数相加.(a m)n=a mn(m,n都是正整数)即幂的乘方,底数不变,指数相乘.(ab)n=a n b n(n为正整数)即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.2.练一练口答:幂的三个运算性质是学习单项式与单项式、单项式与多项式乘法的基础,所以先组织学生对上述内容做复习.创设情境引入新课问题光的速度约为3×105千米/秒,太阳光照射到地球上需要的时间大约是5×102秒,你知道地球与太阳的距离约是多少千米吗?注:从实际的问题导入,让学生自己动手试一试,主动探索,在自己的实践中获得知识,从而构建新的知识体系.地球与太阳的距离约为(3×105)×(5×102)千米.问题是(3×105)×(5×102)等于多少呢?学生提出运用乘法交换律和结合律可以解决:(3×105)×(5×102)=(3×5)×(105×102)=15×107(为什么?)在此处再问学生更加规范的书写是什么?应该是地球与太阳的距离约为1.5×lO8千米.请学生回顾,我们是如何解决问题的.探究新知1.问题:如果将上式中的数字改为字母,即ac5·bc2,你会算吗?学生独立思考,小组交流.注:从特殊到一般,从具体到抽象,在这一过程中,要注意留给学生探索与交流的空间,让学生在自己的实践中获得单项式与单项式相乘的运算法则.学生分析:跟刚才的解决过程类似,可以将ac5和bc2分别看成a·c5和b·c2,再利用乘法交换律和结合律.ac5·bc2=(a·c5)·(b·c2)=(a·b)·(c5·c2)=abc5+2=abc7注:在教学过程中注意运用类比的方法来解决实际问题.2.试一试:类似地,请你试着计算:(1)2c5·5c2;(2)(-5a2b3)·(-4b2c)ac5和bc2,2c5和5c2,(-5a2b3)和(-4b2c)都是单项式,通过刚才的尝试,谁能告诉大家怎样进行单项式乘法?注:先不给出单项式与单项式相乘的运算法则,而是让学生类比,自己动手试一试,再相互交流,自己小结出如何进行单项式的乘法.要求学生用语言叙述这个性质,这对于学生提高数学语言的表述能力是有益的.学生小结:单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.3.算一算例1教科书第145页例4在例题教学中应该先让学生观察有哪些运算,如何利用运算性质和法则。

整式乘法与因式分解的教案设计

整式乘法与因式分解的教案设计

本教案的主要目的是帮助学生深入掌握整式乘法和因式分解的概念和方法,以便能够在数学学习中更有效地应用这些知识。

本教案设计分为以下几个部分:教学目标、教学内容、教学方法以及教学反思。

一、教学目标本教学计划的主要教学目标如下:1.理解整式乘法的概念,能够独立进行两个多项式的乘法运算;2.理解因式分解的概念,掌握不同类型的多项式因式分解方法;3.能够在实际问题中应用整式乘法和因式分解解决问题。

二、教学内容教学内容主要包括以下三个部分:1.整式乘法整式乘法是指多项式与多项式之间相乘。

对于形如(a+b)(c+d)的式子,我们可以用分配律展开乘积:(a+b)(c+d)=ac+ad+bc+bd。

同样的方法,对于多项式的乘法,我们也可以用分配律来求得它们的乘积。

但是,对于较为复杂的多项式,用分配律来展开乘积需要很多的计算,因此我们需要掌握更为高效的方法。

其中最为重要的是单项式相乘的运算法则:x^m * x^n = x^(m+n) (其中^表示为指数之意)这个运算法则可以帮助我们快速地计算出多项式的乘积,从而作为整合因式分解的基础知识。

2.因式分解因式分解是把一个多项式写成若干个因子的乘积的过程。

它是实际问题中经常会遇到的一种运算,需要用到多项式除法和因式分解的相关知识,除法的原理如下:a *b = ca and c have a greatest common divisor d, and this divisor divides both a and c称c是由a和b的最大公因数d乘上d的商得到。

因式分解的步骤根据不同的多项式类型而异,主要有以下三种情况:①一元二次多项式一元二次多项式的一般形式为ax^2 + bx + c,其中a、b、c是已知数,x是未知数。

对于一元二次多项式,因式分解的方法主要有两种:1)分解因式法:可以分解成形如(a1x+b1)(a2x+b2)的乘积。

分解因式法的主要思路是把一元二次多项式划分成两个一次多项式相乘的形式,进而求出这两个一次多项式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十五章整式的乘除与因式分解15.1.1同底数幂的乘法喀拉布拉乡中学:权成龙、孙美荣课型:新授教学目标1.知识与技能在推理判断中得出同底数幂乘法的运算法则,并掌握“法则”的应用.2.过程与方法经历探索同底数幂的乘法运算性质的过程,感受幂的意义,发展推理能力和表达能力,提高计算能力.3.情感、态度与价值观在小组合作交流中,培养协作精神、探究精神,增强学习信心.重、难点与关键1.重点:同底数幂乘法运算性质的推导和应用.2.难点:同底数幂的乘法的法则的应用.预习导航:幂的运算中的同底数幂的乘法教学,要突破这个难点,•必须引导学生,循序渐进,合作交流,获得各种运算的感性认识,进而上各项到理性上来,提醒学生注意-a2与(-a)2的区别.教学方法采用“情境导入──探究提升”的方法,让学生从生活实际出发,认识同底数幂的运算法则.教学过程一、创设情境,故事引入【情境导入】“盘古开天壁地”的故事:公元前一百万年,没有天没有地,整个宇宙是混浊的一团,突然间窜出来一个巨人,他的名字叫盘古,他手握一把巨斧,用力一劈,把混沌的宇宙劈成两半,上面是天,下面是地,从此宇宙有了天地之分,盘古完成了这样一个壮举,累死了,他的左眼变成了太阳,右眼变成了月亮,毛发变成了森林和草原,骨头变成了高山和高原,肌肉变成了平原与谷地,血液变成了河流.【教师提问】盘古的左眼变成了太阳,那么,太阳离我们多远呢?你可以计算一下,太阳到地球的距离是多少?光的速度为3×105千米/秒,太阳光照射到地球大约需要5×102秒,•你能计算出地球距离太阳大约有多远呢?【学生活动】开始动笔计算,大部分学生可以列出算式:3×105×5×102=15•×105×102=15×?(引入课题)【教师提问】到底105×102=?同学们根据幂的意义自己推导一下,现在分四人小组讨论.【学生活动】分四人小组讨论、交流,举手发言,上台演示.计算过程:105×102=(10×10×10×10×10)×(10×10) =10×10×10×10×10×10×10 =107【教师活动】下面引例.1.请同学们计算并探索规律.(1)23×24=(2×2×2)×(2×2×2×2)=2( ); (2)53×54=_____________=5( ); (3)(-3)7×(-3)6=___________________=(-3)( );(4)(110)3×(110)=___________=(110)( );(5)a 3·a 4=________________a ( ).提出问题:①这几道题目有什么共同特点?②请同学们看一看自己的计算结果,想一想,这些结果有什么规律? 【学生活动】独立完成,并在黑板上演算. 【教师拓展】计算a ·a=?请同学们想一想.【学生总结】a ·a=()()()()m aam n aa a a a a a a a a a +=个n个个=a m+n 这样就探究出了同底数幂的乘法法则.二、范例学习,应用所学【例】计算:(1)103×104; (2)a ·a 3; (3)a ·a 3·a 5; (4)x ·x 2+x 2·x 【思路点拨】(1)计算结果可以用幂的形式表示.如(1)103×104=103+4=107,但是如果计算较简单时也可以计算出得数.(2)注意a 是a 的一次方,•提醒学生不要漏掉这个指数1,x 3+x 3得2x 3,提醒学生应该用合并同类项.(3)上述例题的探究,•目的是使学生理解法则,运用法则,解题时不要简化计算过程,要让学生反复叙述法则.【教师活动】投影显示例题,指导学生学习.【学生活动】参与教师讲例,应用所学知识解决问题. 三、随堂练习,巩固深化 课本第142页练习题. 【探研时空】据不完全统计,每个人每年最少要用去106立方米的水,1立方米的水中约含有3.34×1019个水分子,那么,每个人每年要用去多少个水分子? 四、课堂总结,发展潜能1.同底数幂的乘法,使用范围是两个幂的底数相同,且是相乘关系,•使用方法:乘积中,幂的底数不变,指数相加.注意两点:一是必须是同底数幂的乘法才能运用这个性质;二是运用这个性质计算时一定是底数不变,指数相加, 即a m ·a n =a m+n (m 、n 是正整数).2.应用时可以拓展,例如含有三个或三个以上的同底数幂相乘,仍成立,•底数和指数,它既可以取一个或几个具体数,由可取单项式或多项式.练习(1)(a-b)3·(a-b)43.运用幂的乘法运算性质注意不能与整式的加减混淆.五、布置作业,专题突破1.课本P148习题15.1第1(1),(2),2(1)题.2.选用目标小练习.六、板书设计§15.1.1 同底数幂的乘法同底数幂的乘法法则:【例】:计算(由学生板演)三、练习同底数幂相乘,底数不变,指数相加. 1)103×104;(2)a·a3;……….. 即a m·a n=a m+n(m、n都是正整数) 3)a·a3·a5;(4)x·x2+x2·x七、教学反思15.1.2 幂的乘方喀拉布拉乡中学:权成龙、孙美荣课型:新授教学目标1.知识与技能理解幂的乘方的运算性质,进一步体会和巩固幂的意义;通过推理得出幂的乘方的运算性质,并且掌握这个性质.2.过程与方法经历一系列探索过程,发展学生的合情推理能力和有条理的表达能力,通过情境教学,培养学生应用能力.3.情感、态度与价值观培养学生合作交流意义和探索精神,让学生体会数学的应用价值.重、难点与关键1.重点:幂的乘方法则.2.难点:幂的乘方法则的推导过程及灵活应用.预习导航:在引导这个推导过程时,步步深入,层层引导,•要求对性质深入地理解.教学方法采用“探讨、交流、合作”的教学方法,让学生在互动交流中,认识幂的乘方法则.教学过程一、创设情境,导入新知【情境导入】大家知道太阳,木星和月亮的体积的大致比例吗?我可以告诉你,•木星的半径是地球半径的102倍,太阳的半径是地球半径的103倍,假如地球的半径为r ,那么,•请同学们计算一下太阳和木星的体积是多少?(球的体积公式为V=43πr 3) 【学生活动】进行计算,并在黑板上演算.解:设地球的半径为1,则木星的半径就是102,因此,木星的体积为V 木星=43π·(102)3=?(引入课题). 【教师引导】(102)3=?利用幂的意义来推导. 【学生活动】有些同学这时无从下手.【教师启发】请同学们思考一下a 3代表什么?(102)3呢?【学生回答】a 3=a ×a ×a ,指3个a 相乘.(102)3=102×102×102,就变成了同底数幂乘法运算,根据同底数幂乘法运算法则,底数不变,指数相加,102×102×102=102+2+2=106,•因此(102)3=106.【教师活动】下面有问题:X|k |b| 1 . c|o |m 利用刚才的推导方法推导下面几个题目: (1)(a 2)3;(2)(24)3;(3)(b n )3;(4)-(x 2)2. 【学生活动】推导上面的问题,个别同学上讲台演示.【教师推进】请同学们根据所推导的几个题目,推导一下(a )的结果是多少?【学生活动】归纳总结并进行小组讨论,最后得出结论: (a m )n =()n mmm m m m m ma a a a a+++=个n 个= a mn .评析:通过问题的提出,再依据“问题推进”所导出的规律,利用乘方的意义和幂的乘法法则,让学生自己主动建构,获取新知:幂的乘方,底数不变,指数相乘.二、范例学习,应用所学 【例】计算: (1)(103)5;(2)(b 3)4;(3)(x n )3;(4)-(x 7)7.【思路点拨】要充分理解幂的乘方法则,准确地运用幂的乘方法则进行计算.【教师活动】启发学生共同完成例题.【学生活动】在教师启发下,完成例题的问题:并进一步理解幂的乘方法则: 解:(1)(103)5=103×5=1015; (3)(x n )3=x n ×3=x 3n ; (2)(b 3)4=b 3×4=b 12; (4)-(x 7)7=-x 7×7=-x 49. 三、随堂练习,巩固练习 课本P143练习. 提高练习:计算 5(P 3)4·(-P 2)3+2[(-P )2]4·(-P 5)2 [(-1)m ]2n +1m-1+02002―(―1)1990若(x2)m=x8,则m=______若[(x3)m]2=x12,则m=_______若x m·x2m=2,求x9m的值。

若a2n=3,求(a3n)4的值。

已知a m=2,a n=3,求a2m+3n的值.【教师活动】巡视、关注中等、中下的学生。

【学生活动】书面练习、板演.四、课堂总结,发展潜能1.幂的乘方(a m)n=a mn(m,n都是正整数)使用范围:幂的乘方.方法:底数不变,指数相乘.2.知识拓展:这里的底数、指数可以是数,可以是字母,•也可以是单项式或多项式.3.幂的乘方法则与同底数幂的乘法法则区别在于,一个是“指数相乘”,•一个是“指数相加”.五、布置作业:1. 课本P148习题15.1第1、2题.2.选用目标小练习3.附加练习[-(x+y)3]4 (a n+1)2×(a2n+1)3 (-32)3 a3×a4×a+(a2)4+2(a4)2 (x m+n)2×(-x m-n)3+x2m-n×(-x3)m计算:-x2·x2·(x2)3+x10.六、板书设计15.1.2 幂的乘方1、幂的乘方的乘法法则例:计算练习:幂的乘方,底数不变,指数相乘.(1)(103)5 (2)(b3)4;(3)(x n)3 (4)-(x7)即(a m)n=a mn(m,n都是正整数)七、教学反思:15.1.3 积的乘方喀拉布拉乡中学:权成龙、孙美荣课型:新授教学目标1.知识与技能通过探索积的乘方的运算性质,进一步体会和巩固幂的意义,在推理得出积的乘方的运算性质的过程中,领会这个性质. 2.过程与方法经历探索积的乘方的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力.3.情感、态度与价值观通过小组合作与交流,培养学生团结协作的精神和探索精神,有助于塑造他们挑战困难,挑战生活的勇气和信心. 重、难点与关键1.重点:积的乘方的运算.2.难点:积的乘方的推导过程的理解和灵活运用.3.关键:要突破这个难点,教师应该在引导这个推导过程时,步步深入,•层层引导,而不该强硬地死记公式,只有在理解的情况下,才可以对积的乘方的运算性质灵活地应用. 教学方法采用“探究──交流──合作”的方法,让学生在互动中掌握知识. 教学过程(一) 回顾旧知识1. 同底数幂的乘法 2.幂的乘方(二)创设情境,引入新课 1.问题:已知一个正方体的棱长为2×103cm ,•你能计算出它的体积是多少吗? 2.学生分析(略) 3.提问:体积应是V=(2×103)3cm 3 ,结果是幂的乘方形式吗?底数是2和103的乘积,虽然103是幂,但总体来看,它是积的乘方。

相关文档
最新文档