九年级数学期末试题及答案解析
2023-2024学年北京市大兴区九年级上学期期末数学试题+答案解析
2023-2024学年北京市大兴区九年级上学期期末数学试题一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.2023航空航天大兴论坛于11月15日至17日在北京大兴国际机场临空经济区举办,共设如长置了“数字民航”“电动航空”“商业航天”“通航维修”四场专题论坛.若某位航天科研工作者随机选择一个专题论坛参与活动,则他选中“电动航空”的概率是()A.1B.C.D.2.下列图形中,是中心对称图形而不是轴对称图形的为()A. B. C. D.3.关于方程的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断4.抛物线的对称轴是()A. B.C. D.5.在平面直角坐标系xOy中,将抛物线先向右平移4个单位长度,再向上平移1个单位长度,得到的抛物线是()A. B.C. D.6.若圆的半径为1,则的圆心角所对的弧长为()A. B. C. D.7.如图,菱形OABC的顶点A,B,C在上,过点B作的切线交OA的延长线于点若的半径为2,则BD的长为()A.2B.4C.D.8.如图,点A,B在上,且点A,O,B不在同一条直线上,点P是上一个动点点P不与点A,B重合,在点P运动的过程中,有如下四个结论:①恰好存在一点P,使得;②若直线OP垂直于AB,则;③的大小始终不变.上述结论中,所有正确结论的序号是()A.①②B.①③C.②③D.①②③二、填空题:本题共8小题,每小题3分,共24分。
9.若是关于x的一元二次方程,则a的取值范围是__________.10.若关于x的一元二次方程的一个实数根是1,则m的值为__________.11.在平面直角坐标系xOy中,若点,在抛物线上,则__________填“>”,“=”或“<”12.如图,已知四边形ABCD内接于,E在AD的延长线上,,则的度数是__________.13.如图,的内切圆与AB,BC,AC相切,切点为D,E,F,若,,则周长为__________.14.写出一个过点且当自变量时,函数值y随x的增大而增大的二次函数的解析式__________.15.杭州亚运会的吉祥物“江南忆”出自唐朝诗人白居易的名句“江南忆,最忆是杭州”,它融合了杭州的历史人文、自然生态和创新基因.经统计,某商店吉祥物“江南忆”6月份的销售量为1200件,8月份的销售量为1452件,设吉祥物“江南忆”6月份到8月份销售量的月平均增长率为x,则可列方程为__________.16.如图,在平面直角坐标系xOy中,二次函数的图象经过点,给出下面三个结论:①;②;③关于x的一元二次方程有两个异号实数根.上述结论中,所有正确结论的序号是__________.三、解答题:本题共12小题,共96分。
九年级数学(下)期末测试卷含答案解析
九年级数学(下)期末测试卷(测试时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知513ba=,则a ba b-+的值是()A.23B.32C.94D.492.如图是由4个大小相同的正方体搭成的几何体,其俯视图是()A. B. C. D.3.如图,在△ABC中,E、F分别是AB、AC上的点,EF∥BC,且12AEEB=,若△AEF的面积为2,则四边形EBCF的面积为()A.4 B.6 C.16 D.184.在Rt△ABC中,∠C=90°,若sinA=35,则co sB的值是()A.45B.35C.34D.435.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=32,则t的值是()A.1 B.1.5 C.2 D.36.反比例函数y=-x3的图象上有P 1(x 1,-2),P 2(x 2,-3)两点,则x 1与x 2的大小关系是( ) A. x 1>x 2 B. x 1=x 2 C. x 1<x 2 D. 不确定7.已知长方形的面积为20cm 2,设该长方形一边长为ycm ,另一边的长为xcm ,则y 与x 之间的函数图象大致是( )8.某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为( )。
A .5. 3米 B. 4.8米 C. 4.0米 D.2.7米9.如图,在矩形ABCD 中,E 、F 分别是DC 、BC 边上的点,且∠AEF=90°则下列结论正确的是( )。
A 、△ABF ∽△AEF B 、△ABF ∽△CEF C 、△CEF ∽△DAE D 、△DAE ∽△BAF10.为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如图图形,其中AB ⊥BE ,EF ⊥B E ,AF 交BE 于D ,C 在BD 上.有四位同学分别测量出以下四组数据:①BC ,∠ACB ; ②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 间距离的有( ).A .1组B .2组C .3组D .4组二、填空题(每小题3分,共30分)11.若与成反比例,且图象经过点,则________.(用含的代数式表示)12.在Rt△ABC中,∠C=90°,AB=5,BC=3,则sin A= .13.如图,点在的边上,请你添加一个条件,使得∽,这个条件可以是______________.14.若,则=________.15.完成某项任务可获得500元报酬,考虑由x人完成这项任务,试写出人均报酬y(元)与人数x(人)之间的函数关系式.16.已知四条线段a=0.5 m,b=25 cm,c=0.2 m,d=10 cm,则这四条线段________成比例线段.(填“是”或“不是”)17.如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角α=︒,则飞机A到控制点B的距离约为_________________。
九年级数学上册期末考试卷(附答案解析)
九年级数学上册期末考试卷(附答案解析)一、选择题(每小题3分,共24分)1.(3分)如图,点D是△ABC的边BC上任一点,AB=4,AD=2,∠DAC=∠B.若△ABD的面积为a,则△ACD的面积为()A.a B.a C.a D.a2.(3分)如果Rt△ABC的各边长都扩大为原来的3倍,那么锐角A的正弦、余弦值是()A.都扩大为原来的3倍B.都缩小为原来的C.没有变化D.不能确定3.(3分)如图,点A、B、C、D、E都是⊙O上的点,=,∠D=128°,则∠B的度数为()A.128°B.126°C.118°D.116°4.(3分)用配方法解一元二次方程x2+8x+7=0,则方程可化为()A.(x+4)2=9 B.(x﹣4)2=9 C.(x+8)2=23 D.(x﹣8)2=95.(3分)将抛物线y=2(x﹣1)2﹣3先向上平移2个单位长度,再向左平移3个单位长度,得到的抛物线的解析式为()A.y=2(x+2)2﹣1 B.y=2(x+2)2﹣5C.y=2(x﹣4)2﹣1 D.y=2(x﹣4)2﹣56.(3分)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tan B=()A.2B.2C.D.7.(3分)如图,在长为30m,宽20m的矩形田地中开辟两条宽度相等的道路,已知剩余田地的面积为551m2,求道路的宽度.设道路的宽度为xm,则可列方程()A.(20+x)(30+x)=551 B.(20﹣x)(30﹣x)=551C.20×30﹣20x﹣30x=551 D.20×30﹣20x﹣30x﹣x2=5518.(3分)二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值如下表:x…﹣2 ﹣1 0 2 4 5 …y…﹣7 ﹣2 1 1 ﹣7 ﹣14 …下列说法正确的是()A.抛物线的开口向上B.当x>1时,y随x的增大而增大C.二次函数的最大值是2D.抛物线与x轴只有一个交点二.填空题(每小题3分,共18分)9.(3分)若关于x的一元二次方程k2x2+(4k﹣1)x+4=0有两个不同的实数根,则k的取值范围是.10.(3分)如图,以点O为位似中心,把△AOB缩小后得到△COD,使△COD∽△AOB,且相似比为,已知点A(3,6),则点C的坐标为.11.(3分)如图,若二次函数y=ax2+bx+c(a≠0)的图象的对称轴为直线x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则下列结论:①abc>0;②二次函数的最大值为a+b+c;③a﹣b+c<0;④b2﹣4ac<0;⑤当y>0时,﹣1<x<3.⑥3a+c=0;其中正确的结论有.12.(3分)如图,正方形ABCD中,扇形ABC与扇形BCD的弧交于点E,AB=2cm,则图中阴影部分的面积为cm2.(不求近似值)13.(3分)抛物线y=ax2+bx+c经过点A(0,﹣3),B(2,﹣3),C(﹣2,5),则该抛物线上纵坐标为5的另一个点D的坐标是.14.(3分)车从甲地驶往乙地,行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间的反比例函数关系如图所示.若列车要在 2.5h内到达,则速度至少需要提高到km/h.三、解答题(共78分)15.(4分)计算:﹣12022﹣+|﹣2|.16.(6分)如图,数学兴趣小组成员在热气球A上看到正面为横跨河流两岸的大桥BC,并测得B,C两点的角分别为53°和45°,已知大桥BC与地面在同一水平面上,其长度为75米,又知此时地面气温为20℃,海拔每升高100米,气温会下降约0.6℃,试求此时热气球(体积忽略不计)附近的温度.(参考数据:,,)17.(10分)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M是弧AB的中点,CM交AB于点N,若AB=8,求MN•MC的值.18.(10分)由于新冠疫情的影响,口罩需求量急剧上升,经过连续两次价格的上调,口罩的价格由每包10元涨到了每包16.9元.(1)求出这两次价格上调的平均增长率;(2)在有关部门大力调控下,口罩价格还是降到了每包10元,而且调查发现,定价为每包10元时,一天可以卖出30包,每降价1元,可以多卖出5包.当销售额为315元时,且让顾客获得更大的优惠,应该降价多少元?19.(6分)如图,△ABC是等腰三角形,AB=AC,AD⊥BC,以AD为直径作⊙O,分别交AB、AC于点E、F,连接EF.判断EF和BC的位置关系,并证明.20.(12分)已知抛物线y=ax2+bx﹣2经过(2,2),且顶点在y轴上.(1)求抛物线解析式;(2)直线y=kx+c与抛物线交于A,B两点.①点P在抛物线上,当k=0,且△ABP为等腰直角三角形时,求c的值;②设直线y=kx+c交x轴于点M(m,0),线段AB的垂直平分线交y轴于点N,当c=1,m>6时,求点N纵坐标n的取值范围.21.(10分)如图,一次函数y=x+m的图象与反比例函数的图象交于A,B两点,且与x 轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求△AOB的面积;(3)结合图象直接写出不等式组的解集.22.(6分)有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)计算甲获胜的概率.(2)你认为这个游戏公平吗?为什么?23.(14分)已知抛物线y=﹣x2+bx+c(b、c为常数),若此抛物线与某直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线的函数解析式和顶点D的坐标;(2)若点P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P 的坐标;(3)点H(n,t)为抛物线上的一个动点,H关于y轴的对称点为H1,当点H1落在第二象限内,H1A2取得最小值时,求n的值.参考答案与解析一、选择题(每小题3分,共24分)1.【分析】首先证明△CAD∽△CBA,得,从而,即可得出答案.【解答】解:∵∠DAC=∠B,∠C=∠C,∴△CAD∽△CBA,∴,∴,∵△ABD的面积为a,∴S△CAD=a,故选:C.2.【分析】根据相似三角形的判定方法可得新三角形与Rt△ABC是相似的,从而可得锐角A 的大小是不变的,即可解答.【解答】解:∵Rt△ABC的各边长都扩大为原来的3倍后,所得的三角形与Rt△ABC是相似的,∴锐角A的大小是不变的,∴锐角A的正弦、余弦值是没有变化,故选:C.3.【分析】连接AC、CE,根据圆内接四边形的性质求出∠CAE,根据圆心角、弧、弦之间的关系定理求出∠ACE,根据圆内接四边形的性质计算,得到答案.【解答】解:连接AC、CE,∵点A、C、D、E都是⊙O上的点,∴∠CAE+∠D=180°,∴∠CAE=180°﹣128°=52°,∵=,∴∠ACE=∠AEC=×(180°﹣52°)=64°,∵点A、B、C、E都是⊙O上的点,∴∠AEC+∠B=180°,∴∠B=180°﹣64°=116°,故选:D.4.【分析】将常数项移动方程右边,方程两边都加上16,左边化为完全平方式,右边合并即可得到结果.【解答】解:x2+8x+7=0,移项得:x2+8x=﹣7,配方得:x2+8x+16=9,即(x+4)2=9.故选:A.5.【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【解答】解:将抛物线y=2(x﹣1)2﹣3先向上平移2个单位长度,再向左平移3个单位长度,得到的抛物线的解析式为:y=2(x﹣1+3)2﹣3+2,即y=2(x+2)2﹣1;故选:A.6.【分析】先判断DA=DC,过点D作DE∥AB,交AC于点F,交BC于点E,由等腰三角形的性质,可得点F是AC中点,继而可得EF是△CAB的中位线,继而得出EF、DF的长度,在Rt△ADF中求出AF,然后得出AC,tan B的值即可计算.【解答】解:∵CA是∠BCD的平分线,∴∠DCA=∠ACB,又∵AD∥BC,∴∠ACB=∠CAD,∴∠DAC=∠DCA,∴DA=DC,过点D作DE∥AB,交AC于点F,交BC于点E,∵AB⊥AC,∴DE⊥AC(等腰三角形三线合一的性质),∴点F是AC中点,∴AF=CF,∴EF是△CAB的中位线,∴EF=AB=2,∵==1,∴DF=EF=2,在Rt△ADF中,AF==4,则AC=2AF=8,tan B===2.故选:B.7.【分析】由道路的宽度为xm,可得出剩余田地部分可合成长为(30﹣x)m,宽为(20﹣x)m的矩形,根据剩余田地的面积为551m2,即可得出关于x的一元二次方程,此题得解.【解答】解:∵道路的宽度为xm,∴剩余田地部分可合成长为(30﹣x)m,宽为(20﹣x)m的矩形.依题意得:(20﹣x)(30﹣x)=551.故选:B.8.【分析】根据给出的自变量x与函数值y的对应值逐一分析解答即可.【解答】解:∵抛物线经过点(﹣2,﹣7),(4,﹣7),则对称轴为x=1,设抛物线的解析式为y=a(x﹣1)2+k,代入点(0,1)和(﹣1,﹣2)得,,解得,∴抛物线的解析式为y=﹣(x﹣1)2+2,∵a=﹣1,∴抛物线开口向下,故A不符合题意;∵对称轴为x=1,∴当x>1时,y随x的增大而减小,故B不符合题意;∵抛物线的顶点坐标为(1,2),开口向下,∴二次函数的最大值为2,故C符合题意;∵抛物线开口向下,顶点为(1,2),∴抛物线与x轴有两个交点,故D不符合题意.故选:C.二.填空题9.答案为:且k≠0.10.(3分)如图,以点O为位似中心,把△AOB缩小后得到△COD,使△COD∽△AOB,且相似比为,已知点A(3,6),则点C的坐标为(1,2)或(﹣1,﹣2).【分析】根据位似变换的性质计算即可.【解答】解:由题意得,点A与点C是对应点,△AOB与△COD的相似比是3,∴点C的坐标为(3×,6×),即(1,2),当点C值第三象限时,C(﹣1,﹣2)故答案为:(1,2)或(﹣1,﹣2).11.答案为:②⑤⑥.12.答案为:π.13.答案为:(4,5).14.答案为:240.三、解答题(共78分)15.(4分)计算:﹣12022﹣+|﹣2|.【分析】这里,先算﹣12022=﹣1,=4,|﹣2|=2﹣,再进行综合运算.【解答】解:﹣12022﹣+|﹣2|=﹣1﹣4+2﹣=﹣3﹣.16.(6分)如图,数学兴趣小组成员在热气球A上看到正面为横跨河流两岸的大桥BC,并测得B,C两点的角分别为53°和45°,已知大桥BC与地面在同一水平面上,其长度为75米,又知此时地面气温为20℃,海拔每升高100米,气温会下降约0.6℃,试求此时热气球(体积忽略不计)附近的温度.(参考数据:,,)【分析】过A作AD⊥BC,交CB延长线于点D,证△ACD是等腰直角三角形,则CD=AD,再由锐角三角函数定义得BD=AD,则AD﹣AD=75,求出AD的长,即可解决问题.【解答】解:过A作AD⊥BC,交CB延长线于点D,如图所示:则∠ACD=45°,∠ABD=53°,在Rt△ACD中,tan∠ACD=,∴CD===AD,在Rt△ABD中,tan∠ABD=,∴BD=≈=AD,由题意得:AD﹣AD=75,解得:AD=300(m),∵此时地面气温为20℃,海拔每升高100米,气温会下降约0.6℃,∴此时热气球(体积忽略不计)附近的温度约为:20℃﹣×0.6℃=18.2℃,答:此时热气球(体积忽略不计)附近的温度约为18.2℃.17.(10分)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M是弧AB的中点,CM交AB于点N,若AB=8,求MN•MC的值.【分析】(1)已知C在圆上,故只需证明OC与PC垂直即可;根据圆周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是⊙O的切线;(2)AB是直径;故只需证明BC与半径相等即可;(3)连接MA,MB,由圆周角定理可得∠ACM=∠BCM,进而可得△MBN∽△MCB,故BM2=MN •MC;代入数据可得MN•MC=BM2=8.【解答】(1)证明:∵OA=OC,∴∠A=∠ACO.又∵∠COB=2∠A,∠COB=2∠PCB,∴∠A=∠ACO=∠PCB.又∵AB是⊙O的直径,∴∠ACO+∠OCB=90°.∴∠PCB+∠OCB=90°.即OC⊥CP,∵OC是⊙O的半径.∴PC是⊙O的切线.(2)证明:∵AC=PC,∴∠A=∠P,∴∠A=∠ACO=∠PCB=∠P.又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,∴∠COB=∠CBO,∴BC=OC.∴BC=AB.(3)解:连接MA,MB,∵点M是的中点,∴=,∴∠ACM=∠BCM.∵∠ACM=∠ABM,∴∠BCM=∠ABM.∵∠BMN=∠BMC,∴△MBN∽△MCB.∴=.∴BM2=MN•MC.又∵AB是⊙O的直径,=,∴∠AMB=90°,AM=BM.∵AB=8,∴BM=4 .∴MN•MC=BM2=32.18.(10分)由于新冠疫情的影响,口罩需求量急剧上升,经过连续两次价格的上调,口罩的价格由每包10元涨到了每包16.9元.(1)求出这两次价格上调的平均增长率;(2)在有关部门大力调控下,口罩价格还是降到了每包10元,而且调查发现,定价为每包10元时,一天可以卖出30包,每降价1元,可以多卖出5包.当销售额为315元时,且让顾客获得更大的优惠,应该降价多少元?【分析】(1)设这两次价格上调的平均增长率为x,利用经过两次上调价格后的价格=原价×(1+这两次价格上调的平均增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设每包应该降价m元,则每包的售价为(10﹣m)元,每天可售出(30+5m)包,根据每天该口罩的销售额为315元,即可得出关于m的一元二次方程,解之即可得出m的值,再结合要让顾客获得更大的优惠,即可得出每包应该降价3元.【解答】解:(1)设这两次价格上调的平均增长率为x,依题意得:10(1+x)2=16.9,解得:x1=0.3=30%,x2=﹣2.3(不符合题意,舍去).答:这两次价格上调的平均增长率为30%.(2)设每包应该降价m元,则每包的售价为(10﹣m)元,每天可售出(30+5m)包,依题意得:(10﹣m)(30+5m)=315,整理得:m2﹣4m+3=0,解得:m1=1,m2=3.又∵要让顾客获得更大的优惠,∴m的值为3.答:每包应该降价3元.19.(6分)如图,△ABC是等腰三角形,AB=AC,AD⊥BC,以AD为直径作⊙O,分别交AB、AC于点E、F,连接EF.判断EF和BC的位置关系,并证明.【分析】先利用等腰三角形的性质得到∠EAD=∠FAD,则根据圆周角定理得到=,再利用垂径定理的推理得到AD⊥EF,于是可判断EF∥BC.【解答】解:EF∥BC.理由如下:∵AB=AC,AD⊥BC,∴AD平分∠BAC,即∠EAD=∠FAD,∴=,∵AD为直径,∴AD⊥EF,而AD⊥BC,∴EF∥BC.20.(12分)已知抛物线y=ax2+bx﹣2经过(2,2),且顶点在y轴上.(1)求抛物线解析式;(2)直线y=kx+c与抛物线交于A,B两点.①点P在抛物线上,当k=0,且△ABP为等腰直角三角形时,求c的值;②设直线y=kx+c交x轴于点M(m,0),线段AB的垂直平分线交y轴于点N,当c=1,m>6时,求点N纵坐标n的取值范围.【分析】(1)由题意可知b=0,再将(2,2)代入y=ax2+bx﹣2即可求解析式;(2)①求出A(,0),B(﹣,0),再由2[c+2+(c+2)2]=4(c+2),即可求c;②由题意可得m=﹣,k<0,再由m>6,可得﹣<k<0,联立,得到AB的中点为(,+1),设AB的线段垂直平分线所在直线解析式为y=k'x+b,与x轴的交点P (﹣,0),与y轴的交点为N(0,b),由∠PNO=∠AMO,可得k'=m=﹣,则有线段AB的垂直平分线为y=﹣x++,所以N点纵坐标为n=+,即可求<n<.【解答】解:(1)∵顶点在y轴上,∴b=0,∵抛物线y=ax2+bx﹣2经过(2,2),∴4a﹣2=2,∴a=1,∴y=x2﹣2;(2)①当k=0时,y=c,联立,∴A(,c),B(﹣,c),∵△ABP为等腰直角三角形,∴P点在AB的垂直平分线上,∴P点在抛物线的顶点(0,﹣2)处,∵AB=2,AP=BP=,∴2[c+2+(c+2)2]=4(c+2),∴c=﹣1;②∵c=1,∴y=kx+1,∴m=﹣,由题意可知,k<0,∵m>6,∴﹣<k<0,联立,∴x2﹣kx﹣2=0,∴x A+x B=k,∴AB的中点为(,+1),设AB的线段垂直平分线所在直线解析式为y=k'x+b,∴与x轴的交点P(﹣,0),与y轴的交点为N(0,b),∵PN⊥AB,∴∠PNO=∠AMO,∴=,∴k'=m=﹣,∴y=﹣x+b,∴线段AB的垂直平分线为y=﹣x++,∴N点纵坐标为n=+,∴<n<.21.(10分)如图,一次函数y=x+m的图象与反比例函数的图象交于A,B两点,且与x 轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求△AOB的面积;(3)结合图象直接写出不等式组的解集.【分析】(1)把A点的坐标代入函数解析式,即可求出答案;(2)解由两函数解析式组成的方程组,求出方程组的解,即可得出B点的坐标,求出C点的坐标,再根据三角形面积公式求即可;(3)根据图象即可求出答案.【解答】解:(1)由题意可得:点A(2,1)在函数y=x+m的图象上,∴2+m=1,即m=﹣1,∵A(2,1)在反比例函数的图象上,∴,∴k=2;(2)连接OA、OB,∵一次函数解析式为y=x﹣1,令y=0,得x=1,∴点C的坐标是(1,0),由解得,,∴由图象可得:点B的坐标为(﹣1,﹣2),∴;(3)由图象可知不等式组的解集为1<x≤2.22.(6分)有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)计算甲获胜的概率.(2)你认为这个游戏公平吗?为什么?【分析】本题考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.【解答】解:(1)利用列表法得出所有可能的结果,如下表:1 2 3 45 5 10 15 206 6 12 18 247 7 14 21 288 8 16 24 32由上表可知,该游戏所有可能的结果共16种,其中两卡片上的数字之积大于20的有5种,所以甲获胜的概率为P甲=.(4分)(2)这个游戏对双方不公平,因为甲获胜的概率P甲=,乙获胜的概率P乙=,,所以,游戏对双方是不公平的.(6分)23.(14分)已知抛物线y=﹣x2+bx+c(b、c为常数),若此抛物线与某直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线的函数解析式和顶点D的坐标;(2)若点P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P 的坐标;(3)点H(n,t)为抛物线上的一个动点,H关于y轴的对称点为H1,当点H1落在第二象限内,H1A2取得最小值时,求n的值.【分析】(1)用待定系数法求函数的解析式即可;(2)过点P作PG∥y轴交AC于点G,设P(t,﹣t2+2t+3),则G(t,t+1),S△PAC=﹣(t ﹣)2+当t=时,△PAC的面积最大值为,此时P(,);(3)由题意可知H1在抛物线y=﹣x2﹣2x+3上,再由H1A2=(t﹣)2+,可得当t=时,A2有最小值,求出n的值即可.H1【解答】解:(1)将A(﹣1,0),C(2,3)两点代入y=﹣x2+bx+c,∴,解得,∴y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4);(2)设AC的直线解析式为y=kx+b,∴,解得,∴y=x+1,过点P作PG∥y轴交AC于点G,设P(t,﹣t2+2t+3),则G(t,t+1),∴PG=﹣t2+t+2,∴S△PAC=×3×(﹣t2+t+2)=﹣(t﹣)2+,∴当t=时,△PAC的面积最大值为,此时P(,);(3)点H(n,t)为抛物线上的一个动点,点H1与H点关于y轴对称,∴H1(﹣n,t),H1在抛物线y=﹣x2﹣2x+3上,∴t=﹣n2﹣2n+3,∴H1A2=(n+1)2+t2=t2﹣t+4=(t﹣)2+,∴当t=时,H1A2有最小值,∴=﹣n2+2n+3,解得n=1+.。
陕西省西安市交通大学附属中学2023-2024学年九年级上学期期末数学试题(含解析)
A .B . . . 2.我们常常在建筑中看到四边形的元素.如图,墙面上砌出的菱形窗户的边长为框宽度忽略不计),其中较小的内角为A .4B .3.一元二次方程的根的情况为(A .有两个不相等的实数根D .无法确定3223210x x --=A .25.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为A .B .13A .10.点在二次函数A .最大值二.填空题(本大题共14.如图,在矩形段上移动,并与意一点,连接90︒(),A m n 4-ABCD EF EF ,AN CM三.解答题(本大题共1115.计算:(1);(2)18.已知:如图,点为对角线点,.求证:.19.为贯彻落实党的二十大精神,全面建设社会主义现代化国家、兴,某校团委举办以“无悔青春献祖国,接力奋斗新时代赛,九年级(2)班的王伟和孙莉两人文采相当,且都想代表班级参赛,于是班长制作了()0π3128-+--2cos30tan60sin45cos45︒-︒+︒O ABCD Y E F DE BF =21.西安丰庆公园是现代生态景观与历史文化景观融为一体的皇家园林,园内的最高建筑.某数学活动小组想测量怡心阁的高度心阁的高度:小明沿后退到F 恰好看到标杆顶端22.类比一次函数的研究思路,九年级“励志”行探究.下面是他们的探究过程,请补充完整:(1)列表:下表是与的几组对应值,则的值为01654210BD x y m x ⋅⋅⋅5-4-3-2-1-y ⋅⋅⋅m(3)函数的图象和直线的交点坐标是______.23.如图,四边形是的内接四边形,为直径,点为弧的中点,延长交于点,为的切线.(1)求证:;(2)若,求的长.24.如图,在平面直角坐标系中,点的坐标为,连接,将线段绕着点逆时针旋转,点的对应点为点.(1)求经过三点的抛物线的表达式;(2)将抛物线沿着轴平移到抛物线,在抛物线上是否存在点,使得以为顶点的四边形为正方形,若存在,求平移的方式.若不存在,说明理由.|1|y x =-2y =ABCD O e BD D AC AD BC 、E DF O e CDF EDF ∠=∠2DF EF ==AD A ()4,2OA OA O 90︒A B ,,B O A L L x L 'L 'D ,,,B O A D图2图3【详解】解:观察图形可得,其主视图是3.A【分析】本题考查了根的判别式,根据题意算出根的判别式即可得;掌握根的判别式即可得.【详解】解:,23210x x --=在Rt ACD中,tan C故选B.【点睛】本题考查了锐角三角比的意义.将角转化到直角三角形中是解答的关键.7.C【分析】根据二次函数的性质判断出【详解】解:∵抛物线开口向下,∴a<0,9.B【分析】本题主要考查了同弧所对的圆周角相等,∠的圆周角相等得到ADC=【点睛】本题主要考查了等边三角形的性质,每个内角都相等.13.48【分析】本题考查了反比例函数与几何的综合.1求得相似比为,利用相似比求得∵平行于轴,∴轴,∴,∵,∴,AC x BAC ∠BD x ⊥BAC BDO ∽△△2OC BC =13BC BA BO BD ==18.详见解析【分析】根据平行四边形的性质得出,再证明线段的差得出,即可得出结论.【详解】证明:∵四边形是平行四边形,OEA OFC ∠=∠AOE ≌△△AD AE BC CF -=-ABCD依题意,∴,∵,∴,∴,设,2, 1.5,EM FD MD EF MN ====3 1.5 1.5CM CD MD =-=-=CM AN ∥CME ANE V V ∽CM EM AN EN=AN x =;(3)解:把代入中得:,解得:或,∴函数的图象和直线的交点坐标是:23.(1)见详解(2)【分析】(1)由“直径所对的圆周角等于”和圆周角定理可得2y =|1|y x =-|1|2x -==1x -3x =|1|y x =-2y =390︒设与交于点,∵是等腰直角三角形,AB OD M (),D m n BOA △(2)如图所示,连接AC、(3)如图所示,过点D作DH⊥。
人教版九年级(上)期末数学试卷(解析版)
人教版九年级第一学期期末数学试卷及答案一、选择题(本大题共16小题,1-10每小题3分,11-16每小题3分,共42分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,是中心对称图形的是()A.B.C.D.2.在平面直角坐标系中,已知点A(2,﹣1)和点B(﹣2,1),则A、B两点()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=﹣x对称3.抛物线y=﹣2(x+3)2+5的顶点坐标是()A.(3,5)B.(﹣3,5)C.(﹣3,﹣5)D.(3,﹣5)4.一个小球在如图所示的地板上自由滚动,并随机停在某块方砖上.如果每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是()A.B.C.D.15.方程x2﹣3=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定6.下列说法正确的是()A.过圆心的线段是直径B.面积相等的圆是等圆C.两个半圆是等弧D.相等的圆心角所对的弧相等7.2021年顺平县森林覆盖率为39.7%,被评为“河北省森林城市”.为进一步巩固成果,全县大力开展植树造林活动,计划到2023年森林覆盖率达到50%,如果这两年的森林覆盖年平均增长率相同,均为x,那么符合题意的方程是()A.0.397(1+x)=0.5B.0.397(1+2x)=0.5C.0.397(1+x)2=0.5D.0.397(1﹣x)2=0.58.矩形的面积是200,它的长y和宽x之间的关系表达式是()A.y=200x B.y=200+x C.D.9.对于二次函数y=x2+4x+5的图象,下列说法不正确的是()A.开口向上B.对称轴是直线x=2C.顶点坐标是(﹣2,1)D.与x轴没有交点10.一个四边形ABCD各边长为2,3,4,5,另一个和它相似的四边形A1B1C1D1最长边为15,则四边形A1B1C1D1的最短边长为()A.2B.4C.6D.811.下列函数中,当x<0时,y随x的增大而减小的是()A.B.y=2x﹣1C.y=﹣3x2D.y=x2+4x+512.如图,有一个直径为4cm的圆形纸片,若在该纸片上沿虚线剪一个最大正六边形纸片,则这个正六边形纸片的边心距是()A.1B.C.2D.413.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为()A.3B.2C.5D.414.二次函数y=a2+bx+c的图象如图所示,OP=1,则下列判断正确的是()A.a>0B.b>0C.c<0D.a+b+c<015.在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB'C',则图中阴影部分面积为()A.πB.C.D.16.对于反比例函数,下列结论:①图象分布在第二,四象限;②当x<0时,y随x的增大而增大;③图象经过点(﹣2,3);④若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2,其中正确的是()A.①②③B.②③④C.①③④D.①②③④二、填空题(本大题有3个小题,每小题各有2空,每空2分,共12分.把答案写在题中横线上)17.已知关于x的一元二次方程x2﹣5x+m=0的一个根是2,则另一个根为,m的值是.18.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为1,则弦BC的长为,劣弧BC长为.19.二次函数y=﹣x2+bx+3的图象如图,对称轴为直线x=﹣1.(1)b=;(2)若直线y=t与抛物线y=﹣x2+bx+3在﹣3≤x≤1的范围内有两个交点,则t的取值范围是.三、解答题(本大题共7个小题,满分66分.解答应写出文字说明、证明过程或演算步骤)20.解方程:(1)x2+4x=5;(2)x(2x﹣1)=4x﹣2.21.一个黑箱子里装有红,白两种颜色的球4只,除颜色外完全相同.小明将球搅匀后从箱子中随机摸出一个球,记下颜色,形把它放回不斯重复实验,将多次实验结果列出如下频率统计表.摸球次数10018060010001500摸到白球次数2446149251371摸到白球频率0.240.2560.2480.2510.247(1)当揽球次数很大时,摸到白球的频率将会接近(精确到0.01),若从箱子中摸一次球,摸到红球的概率是.(2)从该箱子里随机摸出一个球,不放回,再摸出一个球.用树状图或列表法求出摸到一个红球一个白球的概率.22.G234国道顺平段改造工程于2021年10月顺利完工,花园式路景成为顺平一道美丽的风景线.工程队在路边改造中,计划建造一个面积为60m2的长方形花坛,花坛的一边靠墙(墙AB长为11m),另外三边用木栏围成,木栏总长22m,求花坛CD边和DE边的长分别是多少?设花坛CD边的长为xm.(1)填空:花坛DE边的长为m(用含x的代数式表示);(2)请列出方程,求出问题的解.23.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBF的位置,连接EF,EF的长为.(1)求BF的长;(2)若AE=1,EC=3,求∠AEB的度数.24.如图,AB为⊙O直径,点C在⊙O上,AC平分∠EAB,AE⊥CD,垂足为E.(1)求证:DE为⊙O切线.(2)若AE=2,AC=3,求⊙O的半径.25.在平面直角坐标系中,反比例函数的图象经过A(2,6)点.(1)求反比例函数的解析式;(2)点B在该反比例函数图象上,过B点作y轴的垂线,垂足为C,当△ABC的面积为9时,求点B的坐标.(3)请直接写出y<3时,自变量x的取值范围.26.疫情期间,学校按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早到校情况,发现学生到校的累计人数y(单位:人)随时间x(单位:分钟)的变化情况如图所示,当0≤x≤30时,y可看作是x的二次函数,其图象经过原点,且顶点坐标为(30,1800);当30<x≤40时,累计人数保持不变.(1)求y与x之间的函数表达式;(2)如果学生一进校就开始测量体温,校门口有2个体温检测点,每个检测点每分钟可检测20人.校门口排队等待体温检测的学生人数最多时有多少人?全部学生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在10分钟内让全部学生完成体温检测,从一开始就应该至少增加几个检测点?参考答案一、选择题(本大题共16小题,1-10每小题3分,11-16每小题3分,共42分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义(在平面内,把一个图形绕某点旋转180°,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)逐项判断即可得.解:选项A、B、D的图形都不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项C的图形能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:C.【点评】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.2.在平面直角坐标系中,已知点A(2,﹣1)和点B(﹣2,1),则A、B两点()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=﹣x对称【分析】直接利用关于原点对称点的性质可得答案.解:因为点A(2,﹣1)和点B(﹣2,1)的横坐标和纵坐标均互为相反数,所以A、B两点关于原点对称.故选:C.【点评】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号是解题关键.两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).3.抛物线y=﹣2(x+3)2+5的顶点坐标是()A.(3,5)B.(﹣3,5)C.(﹣3,﹣5)D.(3,﹣5)【分析】根据二次函数的顶点式解析式解答即可.解:抛物线y=﹣2(x+3)2+5的顶点坐标是(﹣3,5).故选:B.【点评】本题考查了二次函数的性质,熟练掌握顶点式解析式是解题的关键.4.一个小球在如图所示的地板上自由滚动,并随机停在某块方砖上.如果每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是()A.B.C.D.1【分析】根据几何概率的求法:最终停留在黑色的砖上的概率就是黑色区域的面积与总面积的比值.解:观察这个图可知:黑砖(4块)的面积占总面积(9块)的.故选:B.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.5.方程x2﹣3=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【分析】找出方程a,b及c的值,计算出根的判别式的值,根据其值的正负即可作出判断.解:∵a=1,b=0,c=﹣3,∴Δ=02﹣4×1×(﹣3)=12>0,则方程x2﹣3=0有两个不相等的实数根,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.6.下列说法正确的是()A.过圆心的线段是直径B.面积相等的圆是等圆C.两个半圆是等弧D.相等的圆心角所对的弧相等【分析】根据直径的定义,等圆的定义,等弧的定义,弧和圆心角的关系定理解答即可.解:A.过圆心且两个端点在圆上的线段是直径,故A选项说法错误;B.面积相等的圆,则半径相等,是等圆,故B选项说法正确;C.在同圆或等圆中,两个半圆是等弧,故C选项说法错误;D.在同圆或等圆中,相等的圆心角所对的弧相等,故C选项说法错误;故选:B.【点评】本题主要考查了对圆的认识和弧、弦、圆心角的关系,熟练掌握相关定义和定理是解答本题的关键.7.2021年顺平县森林覆盖率为39.7%,被评为“河北省森林城市”.为进一步巩固成果,全县大力开展植树造林活动,计划到2023年森林覆盖率达到50%,如果这两年的森林覆盖年平均增长率相同,均为x,那么符合题意的方程是()A.0.397(1+x)=0.5B.0.397(1+2x)=0.5C.0.397(1+x)2=0.5D.0.397(1﹣x)2=0.5【分析】利用2023年顺平县森林覆盖率=2021年顺平县森林覆盖率×(1+这两年顺平县的森林覆盖年平均增长率)2,即可得出关于x的一元二次方程,此题得解.解:根据题意得39.7%(1+x)2=50%,即0.397(1+x)2=0.5,故选:C.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.矩形的面积是200,它的长y和宽x之间的关系表达式是()A.y=200x B.y=200+x C.D.【分析】根据题意得到xy=200(定值),故y与x之间的函数解析式,且根据x、y实际意义x、y应>0,其图象在第一象限;于是得到结论.解:∵根据题意xy=200,∴y=(x>0,y>0).故选:D.【点评】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.9.对于二次函数y=x2+4x+5的图象,下列说法不正确的是()A.开口向上B.对称轴是直线x=2C.顶点坐标是(﹣2,1)D.与x轴没有交点【分析】把解析式化为顶点式,利用二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.解:∵y=x2+4x+5=(x+2)2+1,∴抛物线开口向上,对称轴为直线x=﹣2,顶点坐标为(﹣2,1),∴抛物线与x轴没有交点.故A,C,D正确;B不正确.故选:B.【点评】本题考查二次函数的性质、二次函数的图象,解答本题的关键是明确题意,利用二次函数的性质解答.10.一个四边形ABCD各边长为2,3,4,5,另一个和它相似的四边形A1B1C1D1最长边为15,则四边形A1B1C1D1的最短边长为()A.2B.4C.6D.8【分析】设四边形A1B1C1D1的最短边长为x,然后利用相似多边形的性质可得=,进行计算即可解答.解:设四边形A1B1C1D1的最短边长为x,∵四边形ABCD与四边形A1B1C1D1相似,∴=,解得:x=6,故选:C.【点评】本题考查了相似多边形的性质,熟练掌握相似多边形的性质是解题的关键.11.下列函数中,当x<0时,y随x的增大而减小的是()A.B.y=2x﹣1C.y=﹣3x2D.y=x2+4x+5【分析】直接利用正比例函数的性质、二次函数的性质、反比例函数的性质分别判断得出答案.解:A、y=,当x<0时,y随x的增大而减小,符合题意;B、y=2x﹣1,y随x的增大与增大,不合题意;C、y=﹣3x2,当x<0时,y随x的增大而增大,不合题意;D、y=x2+4x+5,当x<0时,y随x先减小,然后增大,不合题意;故选:A.【点评】此题主要考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.12.如图,有一个直径为4cm的圆形纸片,若在该纸片上沿虚线剪一个最大正六边形纸片,则这个正六边形纸片的边心距是()A.1B.C.2D.4【分析】根据题意画出图形,再根据正多边形圆心角的求法求出∠AOB的度数,最后根据等边三角形的性质求出OH即可.解:如图所示,连接OB、OA,过点O作OH⊥AB于点H,∵⊙O的直径为4cm,∴OB=OA=2cm,∵多边形ABCDEF是正六边形,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=2cm,∵六边形ABCDEF是正六边形∴∠AOB=360°÷6=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=2cm,∵OH⊥AB,∴BH=AB=×2=1(cm),∴OH==(cm),∴正六边形纸片的边心距是cm,故选:B.【点评】本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性质解答是解答此题的关键.13.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为()A.3B.2C.5D.4【分析】过O作OM′⊥AB,连接OA,由“过直线外一点与直线上的所有连线中垂线段最短”的知识可知,当OM于OM′重合时OM最短,由垂径定理可得出AM′的长,再根据勾股定理可求出OM′的长,即线段OM 长的最小值.解:如图所示,过O作OM′⊥AB,连接OA,∵过直线外一点与直线上的所有连线中垂线段最短,∴当OM于OM′重合时OM最短,∵AB=8,OA=5,∴AM′=×8=4,∴在Rt△OAM′中,OM′===3,∴线段OM长的最小值为3.故选:A.【点评】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.14.二次函数y=a2+bx+c的图象如图所示,OP=1,则下列判断正确的是()A.a>0B.b>0C.c<0D.a+b+c<0【分析】根据抛物线开口方向、对称轴和与y轴交点位置确定a、b、c的取值范围,结合函数图象,当x=1时,函数值为负,求得a+b+c<0,从而求解.解:∵抛物线开口向下,∴a<0;故A错误;∵﹣<0,∴b<0,故B错误;∵与y轴的交点在正半轴,∴c>0;故C错误;由图象观察知,当x=1时,函数值为负,∴a+b+c<0,故D正确;故选:D.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).15.在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB'C',则图中阴影部分面积为()A.πB.C.D.【分析】解直角三角形得到AB=BC=,AC=2BC=2,然后根据扇形的面积公式即可得到结论.解:∵∠ABC=90°,∠BAC=30°,BC=1,∴AB=BC=,AC=2BC=2,∴图中阴影部分面积=S扇形ACC′﹣S扇形ADB′﹣S△AB′C′=﹣﹣×1×=﹣.故选:C.【点评】本题主要考查了图形的旋转,扇形的面积公式,解直角三角形,熟练掌握扇形的面积公式是解决问题的关键.16.对于反比例函数,下列结论:①图象分布在第二,四象限;②当x<0时,y随x的增大而增大;③图象经过点(﹣2,3);④若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2,其中正确的是()A.①②③B.②③④C.①③④D.①②③④【分析】根据题目中的函数解析式和反比例函数的性质,可以判断各个小题中的结论是否正确.解:∵反比例函数y=﹣,∴该函数的图象分布在第二、四象限,故①正确;当x>0时,y随x的增大而增大,故②正确;当x=﹣2时,y=3,故③正确;若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则点A和点B都在第二象限或都在第四象限时y1<y2,点A在第二象限,点B在第四象限时y1>y2,故④错误;故选:A.【点评】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.二、填空题(本大题有3个小题,每小题各有2空,每空2分,共12分.把答案写在题中横线上)17.已知关于x的一元二次方程x2﹣5x+m=0的一个根是2,则另一个根为3,m的值是6.【分析】设另一个根为x1,则根据根与系数的关系得出x1+2=5,2x1=m,求出即可.解:设另一个根为x1,则x1+2=5,2x1=m,解得:x1=3,m=6.故答案为:3,6.【点评】本题考查了一元二次方程的解,根与系数的关系的应用,解此题的关键是根据根与系数的关系得出x1+2=5,2x1=m.18.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为1,则弦BC的长为,劣弧BC长为.【分析】先作OD⊥BC于D,由于∠BAC=60°,根据圆周角定理可求∠BOC=120°,又OD⊥BC,根据垂径定理可知∠BOD=60°,BD=BC,在Rt△BOD中,利用特殊三角函数值易求BD,进而可求BC.解:如右图所示,作OD⊥BC于D,∵∠BAC=60°,∴∠BOC=120°,又∵OD⊥BC,∴∠BOD=60°,BD=BC,∴BD=sin60°×OB=,∴BC=2BD=,劣弧BC==.故答案为:,.【点评】本题考查了圆周角定理、垂径定理、特殊三角函数计算,解题的关键是作辅助线OD⊥BC,并求出BD.19.二次函数y=﹣x2+bx+3的图象如图,对称轴为直线x=﹣1.(1)b=﹣2;(2)若直线y=t与抛物线y=﹣x2+bx+3在﹣3≤x≤1的范围内有两个交点,则t的取值范围是0≤t<4.【分析】(1)通过抛物线对称轴为直线x=﹣求解;(2)将抛物线解析式化为顶点式,通过﹣3≤x≤1时y的取值范围求解.解:(1)∵抛物线对称轴为直线x=﹣=﹣1,∴b=﹣2.故答案为:﹣2.(2)∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴函数最大值为y=4,∵(﹣1)﹣(﹣3)>1﹣(﹣1),∴x=1时,y=﹣1﹣2+3=0为﹣3≤x≤1的函数最小值,∴0≤t<4时,直线y=t与抛物线y=﹣x2+bx+3在﹣3≤x≤1的范围内有两个交点,故答案为:0≤t<4.【点评】本题考查二次函数的性质,解题关键是掌握抛物线顶点坐标公式,掌握二次函数与方程的关系.三、解答题(本大题共7个小题,满分66分.解答应写出文字说明、证明过程或演算步骤)20.解方程:(1)x2+4x=5;(2)x(2x﹣1)=4x﹣2.【分析】(1)先将原方程整理成一元二次方程的一般形式,然后再利用解一元二次方程﹣因式分解法,进行计算即可解答;(2)利用解一元二次方程﹣因式分解法,进行计算即可解答.解:(1)x2+4x=5,x2+4x﹣5=0,(x+5)(x﹣1)=0,x﹣1=0或x+5=0,x1=1,x2=﹣5;(2)x(2x﹣1)=4x﹣2,x(2x﹣1)﹣2(2x﹣1)=0,(2x﹣1)(x﹣2)=0,x﹣2=0或2x﹣1=0,x1=2,x2=.【点评】本题考查了解一元二次方程﹣因式分解法,熟练掌握解一元二次方程﹣因式分解法是解题的关键.21.一个黑箱子里装有红,白两种颜色的球4只,除颜色外完全相同.小明将球搅匀后从箱子中随机摸出一个球,记下颜色,形把它放回不斯重复实验,将多次实验结果列出如下频率统计表.摸球次数10018060010001500摸到白球次数2446149251371摸到白球频率0.240.2560.2480.2510.247(1)当揽球次数很大时,摸到白球的频率将会接近0.25(精确到0.01),若从箱子中摸一次球,摸到红球的概率是.(2)从该箱子里随机摸出一个球,不放回,再摸出一个球.用树状图或列表法求出摸到一个红球一个白球的概率.【分析】(1)当试验次数达到1500次时,摸到白球的频率接近于0.25,据此可得答案;(2)用总数量乘以摸到白球的频率求出其个数,再列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得答案.解:(1)由频率统计表知,当摸球次数很大时,摸到白球的频率将会接近0.25,从箱子中摸一次球,摸到红球的概率为1﹣0.25=0.75=,故答案为:0.25,;(2)由(1)知,袋中白球的个数约为4×0.25=1,红球的个数为4﹣1=3,列表如下:白红1红2红3白白红1白红2白红3红1红1白红1红2红1红3红2红2白红2红1红2红3红3红3白红3红1红3红2由表可知共有12种情况,其中一红一白的有6种,所以摸到一个红球一个白球的概率为=.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.也考查了列表法与树状图法.22.G234国道顺平段改造工程于2021年10月顺利完工,花园式路景成为顺平一道美丽的风景线.工程队在路边改造中,计划建造一个面积为60m2的长方形花坛,花坛的一边靠墙(墙AB长为11m),另外三边用木栏围成,木栏总长22m,求花坛CD边和DE边的长分别是多少?设花坛CD边的长为xm.(1)填空:花坛DE边的长为(22﹣2x)m(用含x的代数式表示);(2)请列出方程,求出问题的解.【分析】(1)由题意即可得出结论;(2)由题意:建造一个面积为60m2的长方形花坛,列出一元二次方程,解方程,即可解决问题.解:(1)由题意得:花坛DE边的长为(22﹣2x)m,故答案为:(22﹣2x),(2)根据题意得:x(22﹣2x)=60,整理得:x2﹣11x+30=0,解得:x1=5,x2=6,当x=5时,DE=22﹣2×5=12>11(不符合题意,舍去);当x=6时,DE=22﹣2×6=10<11,符合题意;答:CD边的长为6m,DE边的长为10m.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBF的位置,连接EF,EF的长为.(1)求BF的长;(2)若AE=1,EC=3,求∠AEB的度数.【分析】(1)由旋转的性质可得BE=BF,∠EBF=∠ABC=90°,由等腰直角三角形的性质可求解;(2)由勾股定理的逆定理可求∠EFC=90°,即可求解.解:(1)∵△ABE绕点B顺时针旋转90°得到△CBF,∴BE=BF,∠EBF=∠ABC=90°,∴△BEF为等腰直角三角形,设BE=BF=x,则x2+x2=(2)2,解得:x=2,∴BF的长为2;(2)∵△ABE绕点B顺时针旋转90°得到△CBF,∴∠AEB=∠BFC,AE=CF=1,在△CEF中,EF=2,CF=1,EC=3,∵CF2+EF2=12+(2)2=9,CE2=9,∴CF2+EF2=CE2,∴△CEF为直角三角形,∴∠EFC=90°,∴∠BFC=∠BFE+∠CFE=135°,∴∠AEB=135°.【点评】本题考查了旋转的性质,正方形的性质,勾股定理的逆定理,掌握旋转的性质是解题的关键.24.如图,AB为⊙O直径,点C在⊙O上,AC平分∠EAB,AE⊥CD,垂足为E.(1)求证:DE为⊙O切线.(2)若AE=2,AC=3,求⊙O的半径.【分析】(1)连接OC,如图,由AC平分∠EAB得到∠BAC=∠EAC,加上∠OAC=∠ACO,则∠EAC=∠ACO,于是可判断OC∥AE,根据平行线的性质得OC⊥CD,然后根据切线的判定定理得到结论.(2)通过证明△AEC∽△ACB,进而根据比例式求得半径.【解答】(1)连OC(如图),∵AE⊥CD,∴∠AEC=90°,又∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠EAB,∴∠EAC=∠OAC,∵∠EAC=∠OCA,∴OC∥AE,∴OC⊥DE,∵点C在⊙O上,∴OC=r,∴DE为⊙O的切线.(2)连BC(如上图),∵AB为直径,∴∠ACB=90°,又∵∠AEC=90°,∴∠ACB=∠AEC,又∵∠EAC=∠BAC,∴△AEC∽△ACB,∴=,∴=,∴AB=r=,∴r=.【点评】本题考查了切线的判定,平行线的判定与性质,等腰三角形的性质,熟练掌握切线的判定是解题的关键.25.在平面直角坐标系中,反比例函数的图象经过A(2,6)点.(1)求反比例函数的解析式;(2)点B在该反比例函数图象上,过B点作y轴的垂线,垂足为C,当△ABC的面积为9时,求点B的坐标.(3)请直接写出y<3时,自变量x的取值范围.【分析】(1)根据反比例函数图象上点的坐标特点可得k=6×2=12,进而可得反比例函数解析式;(2)根据反比例函数图象上点的坐标特点可得mn=12,再根据△ABC面积为9,可得×BC×(6﹣n)=9,解可得m的值,进而可得n的值,从而可得点B的坐标;(3)根据函数图象即可得到结论.【解答】解;(1)把A点坐标为(2,6)代入反比例函数y=得,k=12,∴反比例函数的解析式为y=;(2)设点B坐标为(m,n),分三种情况:①当B点在第一象限且在A点的上方时,(y B﹣y A)×CB=9 即(n﹣6)×m=9,×(﹣6)×m=9,解得m=﹣1(不符合题意,舍去),②当B点在第一象限且在A点的下方时,(y A﹣y B)×CB=9 即(6﹣n)×m=9,(6﹣)×m=9,解得m=5,∴点B坐标为(5,);③当B点在第三象限时,(y A﹣y B)×CB=9,(6﹣n)×(﹣m)=9 (6)×(﹣m)=9,解得m=﹣1,∴点B坐标为(﹣1,﹣12),所以点B的坐标为(5,)或(﹣1,﹣12);(3)由图象知,当y<3时,自变量x的取值范围为x>4 或x<0.【点评】此题主要考查了待定系数法求反比例函数解析式,以及反比例函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足解析式.26.疫情期间,学校按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早到校情况,发现学生到校的累计人数y(单位:人)随时间x(单位:分钟)的变化情况如图所示,当0≤x≤30时,y可看作是x的二次函数,其图象经过原点,且顶点坐标为(30,1800);当30<x≤40时,累计人数保持不变.(1)求y与x之间的函数表达式;(2)如果学生一进校就开始测量体温,校门口有2个体温检测点,每个检测点每分钟可检测20人.校门口排队等待体温检测的学生人数最多时有多少人?全部学生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在10分钟内让全部学生完成体温检测,从一开始就应该至少增加几个检测点?【分析】(1)①当0≤x≤30时由顶点坐标为(10,1800),可设y=a(x﹣30)2+1800,再将(0,0)代入,求得a的值,则可得y与x之间的函数解析式;②当30<x≤40时,根据等候的人数不变得出函数解析式;(2)设第x分钟时的排队等待人数为w人,根据w=y﹣40x及(1)中所得的y与x之间的函数解析式,可得w 关于x的二次函数和一次函数,按照二次函数和一次函数的性质可得答案;(3)设从一开始就应该增加m个监测点,根据在10分钟内让全部学生完成体温检测得到关于m的不等式解不等式即可.解:(1)①当0≤x≤30时,∴设y=a(x﹣30)2+1800,将(0,0)代入,得:900a+1800=0,解得a=﹣2,∴y=﹣2(x﹣30)2+1800=﹣2x2+120x(0≤x≤30),②当30<x≤40时,y=1800(30<x≤40),∴y与x之间的函数表达式为y=;(2)设第x分钟时的排队等待人数为w人,由题意可得:w=y﹣40x,①0≤x≤30时,w=﹣2x2+120x﹣40x=﹣2x2+80x=﹣2(x﹣20)2+800,∵﹣2<0,∴当x=20时,w的最大值是800;②当30<x≤40时,w=1800﹣40x,∵﹣4<0,∴w随x的增大而减小,∴200≤w<600,∴排队人数最多是600人,要全部学生都完成体温检测:1800﹣40x=0,解得:x=45,∴要全部学生都完成体温检测需要45分钟,(3)设从一开始就应该增加m个监测点,由题意得:10×20(m+2)≥1800,解得:m≥7,∴从一开始就应该增加7个监测点.【点评】本题主要考查了二次函数在实际问题中的应用,熟练掌握待定系数法求二次函数的解析式及二次函数的性质是解题的关键.。
2023-2024学年北京市朝阳区九年级上学期期末数学试题+答案解析
2023-2024学年北京市朝阳区九年级上学期期末数学试题一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.在平面直角坐标系中,点关于原点对称的点的坐标是()A.B.C.D.2.下列事件中,是不可能事件的是()A.一枚质地均匀骰子的六个面上分别刻有的点数,掷一次骰子,骰子向上一面的点数是8B.射击运动员射击一次,命中靶心C.通常温度降到0以下,纯净的水结冰D.在同一平面内,任意画两条直线,这两条直线平行3.在圆、正六边形、平行四边形、等边三角形这四个图形中,既是轴对称图形又是中心对称图形的图形个数是()A.1个 B.2个 C.3个D.4个4.如图,AB 是的弦,若的半径,圆心O 到弦AB 的距离,则弦AB 的长为()A.4B.6C.8D.105.不透明盒子中有6张卡片,除所标注文字不同外无其他差别.其中,写有“珍稀濒危植物种子”的卡片有1张,写有“人工种子”的卡片有5张.随机摸出一张卡片写有“珍稀濒危植物种子”的概率为()A.B.C.D.6.把抛物线向左平移2个单位长度,再向上平移5个单位长度,得到的抛物线的解析式为()A. B.C.D.7.在如图所示的正方形网格中,四边形ABCD绕某一点旋转某一角度得到四边形所有顶点都是网格线交点,在网格线交点中,可能是旋转中心的是()A.点MB.点NC.点PD.点Q8.用一个圆心角为为常数,的扇形作圆锥的侧面,记扇形的半径为R,所作的圆锥的底面圆的周长为l,侧面积为S,当R在一定范围内变化时,l与S都随R的变化而变化,则l与与R满足的函数关系分别是()A.一次函数关系,一次函数关系B.二次函数关系,二次函数关系C.一次函数关系,二次函数关系D.二次函数关系,一次函数关系二、填空题:本题共8小题,每小题3分,共24分。
9.方程的根是__________.10.的直径为15cm,若圆心O与直线l的距离为,则l与的位置关系是__________填“相交”、“相切”或“相离”11.抛物线的顶点坐标是__________.12.如图,在中,弦相交于点,则的度数为__________13.某科技公司开展技术研发,在相同条件下,对运用新技术生产的一批产品的合格率进行检测,下表是检测过程中的一组统计数据:抽取的产品数n5001000150020002500300035004000合格的产品数m476967143119262395288333673836合格的产品频率估计这批产品合格的产品的概率为__________.14.如图,AB是半圆O的直径,将半圆O绕点A逆时针旋转,点B的对应点为,连接,若,则图中阴影部分的面积是__________.15.对于向上抛的物体,在没有空气阻力的条件下,上升高度h,初速度v,抛出后所经历的时间t,这三个量之间有如下关系:其中g是重力加速度,g取将一物体以的初速度向上抛,当物体处在离抛出点18m高的地方时,t的值为__________.16.已知函数是常数,,是常数,,在同一平面直角坐标系中,若无论k为何值,函数和的图象总有公共点,则a的取值范围是__________.三、解答题:本题共12小题,共96分。
九年级期末考试(数学)试题含答案
九年级期末考试(数学)(考试总分:120 分)一、单选题(本题共计8小题,总分24分)1.(3分)下列成语描述的事件是随机事件的是( )A.海枯石烂B.画饼充饥C.瓜熟蒂落D.守株待兔2.(3分)窗花剪纸是我国传统民间艺术。
在如图所示的四个剪纸图案中.既是轴对称图形又是中心对称图形的是( )A.B.C.D.3.(3分)已知关于x的一元二次方程(a+3)x2-2x+a2-9=0有一个根为x=0,则a的值为( )A.0B.±3C.3D.-3x2+1先向左平移2个单位,再向下平移3个单位,得到的抛物线4.(3分)把抛物线y=25的解析式为( )(x−2)2+4A.y=25(x+2)2−2B.y=25(x+2)2−4C.y=25(x−2)2+2D.y=255.(3分)如图,在⊙O中,AE是直径,半径OC⊙弦AB于点D,连接BE,若AB=2√7,CD=1,则BE的长是( )A.5B.6C.7D.86.(3分)如图,将⊙ABC绕点C顺时针方向旋转40°,得⊙A′B′C.若AC⊙A′B′,则⊙A等于( )A.50°B.60°C.70°D.80°的图象过矩形OABC的顶点B,OA,OC分别在x轴、y 7.(3分)如图,反比例函数y=kx轴的正半轴上,矩形OABC的对角线OB,AC交于点E(1,2),则k的值为( )A.4B.8C.-4D.-88.(3分)如图,在四边形ABCD中,AD∥BC,⊙A=45°,⊙C=90°,AD=4cm,CD=3cm.动点M,N同时从点A出发,点M以√2cm/s的速度沿AB向终点B运动,点N以2cm/s 的速度沿折线AD—DC向终点C运动.设点N的运动时间为t(s),⊙AMN的面积为S(cm2),则下列图象能大致反映S与t之间函数关系的是( )A.B.C.D.二、填空题(本题共计8小题,总分24分)9.(3分)方程2x2-5=-6x化一般式为______.10.(3分)在分别写着“线段、钝角、平行四边形、等边三角形”的4张卡纸中,小刚从中任意抽取一张卡纸,抽到的图形是中心对称图形的概率为______.11.(3分)已知抛物线y=x2-2x-3,则它的顶点坐标是______.12.(3分)在平面直角坐标系中,点(a,5)关于原点对称的点的坐标是(1,b+1),则a+b=______.13.(3分)一个圆锥的侧面积是底面积的4倍,则这个圆锥的侧面展开图的中心角的度数为______.14.(3分)若a,b是一元二次方程x2-2020x-2021=0的两根,则a2-2021a-b=______.15.(3分)如图,半径为2的⊙O中有弦AB,以AB为折痕对折,劣弧恰好经过圆心O,则弦AB的长度为______.16.(3分)如图,在Rt⊙ABC中,⊙C=90°,AC=8,BC=6,将⊙ABC绕点C旋转,得到⊙A′B′C,点A的对应点为A′,P为A'B'的中点,连接BP.在旋转的过程中,线段BP长度的最大值为______.三、解答题(本题共计9小题,总分72分)17.(8分)解一元二次方程(1).2(x+1)2=3(x+1);(2).2x2-9x+8=0.18.(6分)如图,⊙ABC是⊙O的内接三角形,⊙BAC的外角平分线AP交⊙O于点P,连接PB,PC.求证:PB=PC.19.(6分)如图,⊙ABC是直角三角形,⊙C=90°,将⊙ABC绕点B逆时针旋转60°至⊙DEB,点E落在AB上.DE延长线交AC所在直线于点F.(1).求⊙AFE的度数;(2).求证:AF+EF=DE.20.(6分)“黄冈名师课堂”'是集黄冈众多名师的网络课堂,自上线以来受到了广大师生,家长和社会各界的好评.经统计,2020年10月在线听课的学生为66250人次,12月在线听课学生增加至95400人次。
九年级(上)期末数学试卷付答案解析
九年级(上)期末数学试卷一、选择题:(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.第1-8小题每小题3分,第9-12小题每小题3分。
)1.(3分)如图,是由4个相同小正方体组合而成的几何体,它的主视图是()A.B.C.D.2.(3分)下列说法正确的是()A.不可能事件发生的概率为0 B.概率很小的事件不可能发生C.随机事件发生的概率为D.概率很大的事件一定发生3.(3分)如图,在△ABC中,∠C=90°,AB=5,BC=3,则tanA的值是()A.B.C.D.4.(3分)如图,△ABO的面积为4,反比例函数y=(k≠0)的图象过B点,则k的值是()A.2 B.4 C.﹣8 D.85.(3分)如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,点A的坐标为(1,0),则E点的坐标为()A.(2,0) B.(1,1) C.(,)D.(2,2)6.(3分)聪聪的文件夹里放了大小相同的试卷共12页,其中语文6页,数学4页,英语2页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.7.(3分)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点0)20米的A处,则小明的影长为()米.A.4 B.5 C.6 D.78.(3分)抛物线y=3x2﹣3向右平移3个单位长度,得到新抛物线的表达式为()A.y=3(x﹣3)2﹣3 B.y=3x2C.y=3(x+3)2﹣3 D.y=3x2﹣69.(4分)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF :S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:210.(4分)如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y 轴分别交于点B(0,4)和点C(0,16),则圆心M到坐标原点O的距离是()A.10 B.8 C.4D.211.(4分)如图,已知∠1=∠2,欲证△ADE∽△ACB,可补充条件()A.∠B=∠C B.DE=AB C.∠D=∠E D.∠D=∠C12.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则正比例函数y=(b+c)x与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.二、选择题(本大题共4小题,共16分.只要求填写最后结果,每小题填对得4分)13.(4分)sin30°+tan45°=.14.(4分)如图,随机闭合开关K1、K2、K3中的两个,则能让两盏灯泡同时发光的概率为.15.(4分)如图,D是△ABC的边BC上任一点,已知AB=4,AD=2,∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为.16.(4分)在平面直角坐标系中,如果点P坐标为(m,n),向量可以用点P 的坐标表示为=(m,n),已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么与互相垂直,下列四组向量:①=(2,1),=(﹣1,2);②=(cos30°,tan45°),=(﹣1,sin60°);③=(﹣,﹣2),=(+,);④=(π0,2),=(2,﹣1).其中互相垂直的是(填上所有正确答案的符号).三、解答题:(本大题共6小题,共64分,解答时要写出必要的文字说明、证明过程或演算步骤)17.(8分)如图是一个立体图形的三视图,根据图中数据,求该几何体的表面积.18.(10分)为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.19.(10分)莒县某学校新建一教学楼,九年级数学兴趣小组想要测量其高度,在5米高的台子AB上A处,测得楼顶端E的仰角为30°,他走下台阶到达C处,测得楼顶端E的仰角为60°.已知∠BCA=30°,且A、B、C三点在同一直线上.(1)求∠ACE的度数;(2)求教学楼DE的高度.20.(12分)如图,在平面直角坐标系中,反比例函数y=(x>0,k≠0)的图象与边长是6的正方形OABC的两边AB、BC分别相交于M、N两点,△OMA的面积为6.(1)求反比例函数y=(k≠0)的解析式;(2)若动点P在x轴上,求PM+PN的最小值.21.(12分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=4,⊙O的半径为,求BC的长.22.(12分)如图,在平面直角坐标系中,顶点为(3,﹣4)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明;参考答案与试题解析一、选择题:(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.第1-8小题每小题3分,第9-12小题每小题3分。
2023-2024学年北京市平谷区九年级上学期期末数学试题+答案解析
2023-2024学年北京市平谷区九年级上学期期末数学试题一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知,那么下列比例式中成立的是()A. B. C. D.2.如图,,若,则等于()A. B. C. D.3.将抛物线向下平移1个单位长度,得到的抛物线是()A. B. C. D.4.如图,的弦,于点M,且,则的半径为()A.3B.4C.5D.65.如图,在的正方形网格中,的顶点都在小正方形的顶点上,则的值是()A.1B.C.D.6.关于反比例函数,下列说法正确的是()A.图象分布在第一、三象限B.在各自的象限内,y随x的增大而增大C.函数图象关于y轴对称D.图象经过7.已知:二次函数的图象上部分对应点坐标如下表,m的值为()x35y0m24A.1B.2C.D.08.如图,矩形ABCD中,点E是DC边上一点,点D关于直线AE的对称点点F恰好落在BC边上,给出如下三个结论:①;②;③若,,则上述结论一定正确的是()A.①②B.①③C.②③D.①②③二、填空题:本题共8小题,每小题3分,共24分。
9.在函数中,自变量x的取值范围是__________.10.如图,点P是中AB边上的一点,请你添加一个条件使,这个条件可以是__________.11.在中,,如果,,那么AB的长为__________.12.如图,在中,AB是的直径,C,D是上的点,如果,那么的度数为__________.13.若抛物线与x轴有交点,则k的取值范围是__________.14.如图,点A在双曲线上,点B在双曲线上,且轴,C、D在x轴上,若四边形ABCD 为矩形,则它的面积为__________.15.图1是装了液体的高脚杯示意图数据如图,用去一部分液体后如图2所示,此时液面__________16.“十一”黄金周期间,明明和妈妈到某商场购物,得知该商场节日促销活动,单笔消费每满50元立减5元即单笔消费有几个50元,就减几个5元,不足50元部分不减,累计消费满200元返20元购物券,购物券当天可用,用券和减免部分不在累计范围内,明明和妈妈打算购买以下三件商品:商品A:80元,商品B:95元,商品C:160元,如果你是聪明的明明,帮妈妈参谋一下三件商品妈妈分次结账,可以享受最多优惠;按此优惠方案,只需付款__________元,即可购买以上三件商品.三、解答题:本题共12小题,共96分。
九年级(上)期末数学试卷附答案解析
九年级(上)期末数学试卷一、选择题1.下列方程中,一元二次方程有()①3x2+x=20;②2x2﹣3xy+4=0;③;④x2=1;⑤A.2个B.3个C.4个D.5个2.若关于x的方程mx2﹣4x+2=0有实数根,则m的取值范围是()A.m≤2 B.m≠0 C.m≤2且m≠0 D.m<23.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则排水管内水的最大深度是()A.4 B.5 C.6D.64.一个半径为2cm的圆的内接正六边形的面积是()A.24cm2B.6cm2C.12cm2 D.8cm25.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A.35°B.45°C.55°D.75°6.函数y=﹣2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<﹣2,则()A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定7.函数y=ax2与y=﹣ax+b的图象可能是()A.B.C. D.8.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是()m.A.3 B.3C.3D.4二、填空题9.一元二次方程x2=3x的解是:.10.将抛物线y=3x2﹣2向左平移2个单位,再向下平移3个单位,则所得抛物线的解析式为.11.设x1,x2是方程x2﹣3x﹣2=0的两个根,则代数式x12+x22的值为.12.点P(﹣2,3)将点P绕点O逆时针旋转90°,则P的坐标为.13.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是.14.一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为.15.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是.三、解答题17.(2015秋•红河州期末)(1)解方程:(2x﹣3)2=9(2)化简:(﹣1)3﹣|1﹣|+()﹣2×(π﹣3.14)0﹣.18.(2012•潘集区模拟)已知关于x的方程x2+(m+2)x+2m﹣1=0.(1)求证:方程有两个不相等的实数根.(2)当m为何值时,方程的两根互为相反数?并求出此时方程的解.19.(2014•槐荫区二模)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加据统计,该商城1月份销售自行车64辆,3月份销售了100辆.若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?20.(2015秋•红河州期末)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π);(4)求出(2)△A2BC2的面积是多少.21.(2015秋•红河州期末)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球,(除颜色外其余都相同),其中白球有两个,黄球有1个,现从中任意摸出一个球是白球的概率为.(1)试求袋中蓝球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法表示两次摸到球的所有可能结果,并求两次摸到的球都是白球的概率.22.(2007•贵阳)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?23.(2015秋•红河州期末)△ABC的内切圆⊙O与BC,CA,AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长.24.(2015秋•红河州期末)如图,对称轴为直线x=﹣1的抛物线y=a(x﹣h)2﹣4(a≠0)与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣3,0)(1)求该抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.参考答案与试题解析一、选择题1.下列方程中,一元二次方程有()①3x2+x=20;②2x2﹣3xy+4=0;③;④x2=1;⑤A.2个B.3个C.4个D.5个【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:①符合一元二次方程定义,正确;②方程含有两个未知数,错误;③不是整式方程,错误;④符合一元二次方程定义,正确;⑤符合一元二次方程定义,正确.故选B.【点评】判断一个方程是否是一元二次方程时,首先判断方程是整式方程,若是整式方程,再把方程进行化简,化简后是含有一个未知数,并且未知数的最高次数是2,在判断时,一定要注意二次项系数不是0.2.若关于x的方程mx2﹣4x+2=0有实数根,则m的取值范围是()A.m≤2 B.m≠0 C.m≤2且m≠0 D.m<2【考点】根的判别式;一元一次方程的解;一元二次方程的定义.【分析】分类讨论:当m=0,方程变形为﹣4x+2=0,一元一次方程有实数解;当m≠0,根据判别式的意义得到△=(﹣4)2﹣4m×2≥0,解得m≤2,然后综合两种情况即可.【解答】解:当m=0,方程变形为﹣4x+2=0,方程的解为x=;当m≠0,△=(﹣4)2﹣4m×2≥0,解得m≤2;综上所知当m≤2时,方程有实数根.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则排水管内水的最大深度是()A.4 B.5 C.6D.6【考点】垂径定理的应用;勾股定理.【分析】过O作OD⊥AB交AB于C,交圆于点D,根据垂径定理求出BC的长,再根据勾股定理求出OC的长,由CD=OD﹣OC即可得出结论.【解答】解:过O作OD⊥AB交AB于C,交圆于点D,如图所示:∴OD=OB=10,∵AB=16,∴由垂径定理得:BC=AB=8,∴OC===6,∴CD=OD﹣OC=10﹣6=4.故选A.【点评】本题考查了垂径定理的应用、勾股定理等知识;熟练掌握垂径定理与勾股定理是解决问题的关键.4.一个半径为2cm的圆的内接正六边形的面积是()A.24cm2B.6cm2C.12cm2 D.8cm2【考点】正多边形和圆.【分析】根据正六边形的边长等于半径进行解答即可.【解答】解:∵正六边形内接于半径为2cm的圆内,∴正六边形的半径为2cm,∵正六边形的半径等于边长,∴正六边形的边长a=2cm;∴正六边形的面积S=6××2×2sin60°=6cm2.故选B.【点评】本题考查的是正六边形的性质,熟知正六边形的边长等于半径是解答此题的关键.5.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A.35°B.45°C.55°D.75°【考点】圆周角定理.【分析】首先连接AD,由直径所对的圆周角是直角,即可求得∠ADB=90°,由直角三角形的性质,求得∠A的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠BCD的度数.【解答】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=55°,∴∠A=90°﹣∠ABD=35°,∴∠BCD=∠A=35°.故选A.【点评】此题考查了圆周角定理与直角三角形的性质.此题比较简单,注意掌握辅助线的作法,注意直径所对的圆周角是直角与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.6.函数y=﹣2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<﹣2,则()A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定【考点】二次函数图象上点的坐标特征;二次函数的性质.【分析】根据x1、x2与对称轴的大小关系,判断y1、y2的大小关系.【解答】解:∵y=﹣2x2﹣8x+m,∴此函数的对称轴为:x=﹣=﹣=﹣2,∵x1<x2<﹣2,两点都在对称轴左侧,a<0,∴对称轴左侧y随x的增大而增大,∴y1<y2.故选:A.【点评】此题主要考查了函数的对称轴求法和函数的单调性,利用二次函数的增减性解题时,利用对称轴得出是解题关键.7.函数y=ax2与y=﹣ax+b的图象可能是()A.B.C. D.【考点】二次函数的图象;一次函数的图象.【分析】可根据a>0时,﹣a<0和a<0时,﹣a>0分别判定.【解答】解:当a>0时,﹣a<0,二次函数开口向上,当b>0时一次函数过一,二,四象限,当b <0时一次函数过二,三,四象限;当a<0时,﹣a>0,二次函数开口向下,当b>0时一次函数过一,二,三象限,当b<0时一次函数过一,三,四象限.所以B正确.故选:B.【点评】本题主要考查了二次函数及一次函数的图象,解题的关键是根据a,b的取值来判定二次函数及一次函数的图象的正误.8.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是()m.A.3 B.3C.3D.4【考点】平面展开-最短路径问题.【分析】求这只小猫经过的最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.根据圆锥的轴截面是边长为6cm的等边三角形可知,展开图是半径是6的半圆.点B是半圆的一个端点,而点P是平分半圆的半径的中点,根据勾股定理就可求出两点B和P 在展开图中的距离,就是这只小猫经过的最短距离.【解答】解:圆锥的底面周长是6π,则6π=,∴n=180°,即圆锥侧面展开图的圆心角是180度.则在圆锥侧面展开图中AP=3,AB=6,∠BAP=90度.∴在圆锥侧面展开图中BP=m.故小猫经过的最短距离是3m.故选C.【点评】本题考查的是平面展开﹣最短路线问题,根据题意画出圆锥的侧面展开图,利用勾股定理求解是解答此题的关键.二、填空题9.一元二次方程x2=3x的解是:x1=0,x2=3.【考点】解一元二次方程-因式分解法.【分析】利用因式分解法解方程.【解答】解:(1)x2=3x,x2﹣3x=0,x(x﹣3)=0,解得:x1=0,x2=3.故答案为:x1=0,x2=3.【点评】本题考查了解一元二次方程的方法.当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任何一元二次方程.10.将抛物线y=3x2﹣2向左平移2个单位,再向下平移3个单位,则所得抛物线的解析式为y=3(x+2)2﹣5.【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=3x2﹣2的顶点坐标为(0,﹣2),再根据点平移的规律得到点(0,﹣2)平移后所得对应点的坐标为(﹣2,﹣5),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=3x2﹣2的顶点坐标为(0,﹣2),点(0,﹣2)向左平移2个单位,再向下平移3个单位所得对应点的坐标为(﹣2,﹣5),所以所得抛物线的解析式为y=3(x+2)2﹣5.故答案为y=3(x+2)2﹣5.【点评】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.11.设x1,x2是方程x2﹣3x﹣2=0的两个根,则代数式x12+x22的值为13.【考点】根与系数的关系.【分析】根据根与系数的关系得到x1+x2=3,x1x2=﹣2,再利用完全平方公式得到x12+x22=(x1+x2)2﹣2x1x2,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=3,x1x2=﹣2,所以x12+x22=(x1+x2)2﹣2x1x2=32﹣2×(﹣2)=13.故答案为:13.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.12.点P(﹣2,3)将点P绕点O逆时针旋转90°,则P的坐标为(﹣3,2).【考点】坐标与图形变化-旋转.【专题】数形结合.【分析】如图,作PQ⊥y轴于点Q,由P点坐标得PQ=2,OQ=3,把△OPQ绕点O逆时针旋转90°得到△OP′Q′,根据旋转的性质得∠QOQ′=90°,∠OQ′P′=∠OQP=90°,P′Q′=PQ=2,OQ′=OQ=3,然后根据第二象限点的坐标特征可写出P′点的坐标.【解答】解:如图,作PQ⊥y轴于点Q,∵点P坐标为(﹣2,3),∴PQ=2,OQ=3,把△OPQ绕点O逆时针旋转90°得到△OP′Q′,∴∠QOQ′=90°,∠OQ′P′=∠OQP=90°,P′Q′=PQ=2,OQ′=OQ=3,∴P′点的坐标为(﹣3,2).故答案为(﹣3,2).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.解决本题的关键是把点旋转的问题转化为直角三角形旋转的问题和画出旋转图形.13.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是0或1.【考点】抛物线与x轴的交点;一次函数的性质.【专题】分类讨论.【分析】需要分类讨论:①若m=0,则函数为一次函数;②若m≠0,则函数为二次函数.由抛物线与x轴只有一个交点,得到根的判别式的值等于0,且m 不为0,即可求出m的值.【解答】解:①若m=0,则函数y=2x+1,是一次函数,与x轴只有一个交点;②若m≠0,则函数y=mx2+2x+1,是二次函数.根据题意得:△=4﹣4m=0,解得:m=1.故答案为:0或1.【点评】此题考查了一次函数的性质与抛物线与x轴的交点,抛物线与x轴的交点个数由根的判别式的值来确定.本题中函数可能是二次函数,也可能是一次函数,需要分类讨论,这是本题的容易失分之处.14.一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为160°.【考点】圆锥的计算.【专题】计算题.【分析】根据圆锥的底面直径求得圆锥的侧面展开扇形的弧长,再利用告诉的母线长求得圆锥的侧面展开扇形的面积,再利用扇形的另一种面积的计算方法求得圆锥的侧面展开图的圆心角即可.【解答】解:∵圆锥的底面直径是80cm,∴圆锥的侧面展开扇形的弧长为:πd=80π,∵母线长90cm,∴圆锥的侧面展开扇形的面积为:lr=×80π×90=3600π,∴=3600π,解得:n=160.故答案为:160°.【点评】本题考查了圆锥的有关计算,解决此类题目的关键是明确圆锥的侧面展开扇形与圆锥的关系.15.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是﹣3<x<1.【考点】二次函数的图象.【专题】压轴题.【分析】根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.【解答】解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.【点评】此题的关键是根据二次函数的对称轴与对称性,找出抛物线y=﹣x2+bx+c的完整图象.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是π+2.【考点】旋转的性质;扇形面积的计算.【分析】在△ABC中,BC=2,AC=2,根据勾股定理得到AB的长为4.求出∠CAB、∠CBA,顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是两个扇形的面积+△A′BC″的面积.根据扇形的面积公式可以进行计算.【解答】解:∵在Rt△ACB中,BC=2,AC=2,∴由勾股定理得:AB=4,∴AB=2BC,∴∠CAB=30°,∠CBA=60°,∴∠ABA′=120°,∠A″C″A′=90°,S=++×2×2=π+2,故答案为:π+2.【点评】本题考查了扇形的面积计算,勾股定理,含30度角的直角三角形的性质的应用,本题的关键是弄清顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的图形的形状.三、解答题17.(2015秋•红河州期末)(1)解方程:(2x﹣3)2=9(2)化简:(﹣1)3﹣|1﹣|+()﹣2×(π﹣3.14)0﹣.【考点】实数的运算;平方根;零指数幂;负整数指数幂.【专题】计算题;实数.【分析】(1)方程利用平方根定义开方即可求出解;(2)原式第一项利用乘方的意义计算,第二项利用绝对值的代数意义计算,第三项利用负整数指数幂、零指数幂法则计算,最后一项化为最简二次根式,计算即可得到结果.【解答】解:(1)开方得:2x﹣3=3或2x﹣3=﹣3,解得:x1=3,x2=0;(2)原式=﹣1﹣+1+4﹣2=4﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(2012•潘集区模拟)已知关于x的方程x2+(m+2)x+2m﹣1=0.(1)求证:方程有两个不相等的实数根.(2)当m为何值时,方程的两根互为相反数?并求出此时方程的解.【考点】根的判别式;根与系数的关系.【专题】计算题.【分析】(1)先计算出△=(m+2)2﹣4(2m﹣1),变形得到△=(m﹣2)2+4,由于(m﹣2)2≥0,则△>0,然后根据△的意义得到方程有两个不相等的实数根;(2)利用根与系数的关系得到x1+x2=0,即m+2=0,解得m=﹣2,则原方程化为x2﹣5=0,然后利用直接开平方法求解.【解答】(1)证明:△=(m+2)2﹣4(2m﹣1)=m2﹣4m+8=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,即△>0,所以方程有两个不相等的实数根;(2)设方程的两个根为x1,x2,由题意得:x1+x2=0,即m+2=0,解得m=﹣2,当m=﹣2时,方程两根互为相反数,当m=﹣2时,原方程为x2﹣5=0,解得:x1=﹣,x2=.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了解一元二次方程和根与系数的关系.19.(2014•槐荫区二模)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加据统计,该商城1月份销售自行车64辆,3月份销售了100辆.若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?【考点】一元二次方程的应用.【专题】销售问题.【分析】首先根据1月份和3月份的销售量求得月平均增长率,然后求得4月份的销量即可【解答】解:设前4个月自行车销量的月平均增长率为x,根据题意列方程:64(1+x)2=100,解得x1=﹣225%(不合题意,舍去),x2=25%,100×(1+25%)=125(辆).答:该商城4月份卖出125辆自行车.【点评】本题考查了一元二次方程的应用,解题关键是根据题意列出方程,这也是本题的难点.20.(2015秋•红河州期末)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π);(4)求出(2)△A2BC2的面积是多少.【考点】作图-旋转变换;作图-轴对称变换.【专题】计算题;作图题.【分析】(1)根据关于x轴对称的点的坐标特征,写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质,画出点A、C的对应点A2、C2,则可得到△A2BC2;(3)C点旋转到C2点所经过的路径是以B点为圆心,BC为半径,圆心角为90°的弧,然后根据弧长公式计算即可;(4)利用一个矩形的面积分别减去三个三角形的面积可计算出△A2BC2的面积.【解答】解:(1)如图,△A1B1C1为所作,点A1的坐标为(2,﹣4);(2)如图,△A2BC2为所作;(3)BC==,所以C点旋转到C2点所经过的路径长==π;(4)△A2BC2的面积=3×3﹣×1×2﹣×1×3﹣×2×3=.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.21.(2015秋•红河州期末)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球,(除颜色外其余都相同),其中白球有两个,黄球有1个,现从中任意摸出一个球是白球的概率为.(1)试求袋中蓝球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法表示两次摸到球的所有可能结果,并求两次摸到的球都是白球的概率.【考点】列表法与树状图法;概率公式.【分析】(1)直接利用概率公式,结合摸出一个球是白球的概率为求出答案;(2)采用列表法或树状图法,解题时要注意是放回实验还是不放回实验.【解答】解:(1)设蓝球个数为x个,则由题意得=,解得:x=1,答:蓝球有1个;(2)故两次摸到都是白球的概率==.【点评】此题主要考查了树状图法求概率,解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.(2007•贵阳)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?【考点】二次函数的应用.【专题】方程思想.【分析】本题是通过构建函数模型解答销售利润的问题.依据题意易得出平均每天销售量(y)与销售价x(元/箱)之间的函数关系式为y=90﹣3(x﹣50),然后根据销售利润=销售量×(售价﹣进价),列出平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式,再依据函数的增减性求得最大利润.【解答】解:(1)由题意得:y=90﹣3(x﹣50)化简得:y=﹣3x+240;(3分)(2)由题意得:w=(x﹣40)y(x﹣40)(﹣3x+240)=﹣3x2+360x﹣9600;(3分)(3)w=﹣3x2+360x﹣9600∵a=﹣3<0,∴抛物线开口向下.当时,w有最大值.又x<60,w随x的增大而增大.∴当x=55元时,w的最大值为1125元.∴当每箱苹果的销售价为55元时,可以获得1125元的最大利润.(4分)【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时取得.23.(2015秋•红河州期末)△ABC的内切圆⊙O与BC,CA,AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长.【考点】三角形的内切圆与内心.【分析】根据切线长定理,可设AE=AF=xcm,BF=BD=ycm,CE=CD=zcm.再根据题意列方程组,即可求解.【解答】解:根据切线长定理,设AE=AF=xcm,BF=BD=ycm,CE=CD=zcm.根据题意,得,解得:.即AF=4cm、BD=5cm、CE=9cm.【点评】此题要熟练运用切线长定理.注意解方程组的简便方法:三个方程相加,得到x+y+z的值,再进一步用减法求得x,y,z的值.24.(2015秋•红河州期末)如图,对称轴为直线x=﹣1的抛物线y=a(x﹣h)2﹣4(a≠0)与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣3,0)(1)求该抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.【考点】二次函数综合题.【分析】(1)由对称轴确定h的值,代入点A坐标即可求解;(2)设出点P坐标并表示△POC的面积根据题意列出方程求解即可;(3)设出点Q,D坐标并表示线段QD的长度,建立二次函数,运用二次函数的最值求解即可.【解答】解:(1)由题意对称轴为直线x=﹣1,可设抛物线解析式:y=a(x+1)2﹣4,把点A(﹣3,0)代入可得,a=1,∴y=(x+1)2﹣4=x2+2x﹣3,(2)如图1,y=x2+2x﹣3,当x=0时,y=﹣3,所以点C(0,﹣3),OC=3,令y=0,解得:x=﹣3,或x=1,∴点B(1,0),OB=1,设点P(m,m2+2m﹣3),此时S△POC=×OC×|m|=|m|,S△BOC==,由S△POC=4S△BOC得|m|=6,解得:m=4或m=﹣4,m2+2m﹣3=21,或m2+2m﹣3=5,所以点P的坐标为:(4,21),或(﹣4,5);(3)如图2,设直线AC的解析式为:y=kx+b,把A(﹣3,0),C(0,﹣3)代入得:,解得:,所以直线AC:y=﹣x﹣3,设点Q(n,﹣n﹣3),点D(n,n2+2n﹣3)所以:DQ=﹣n﹣3﹣(n2+2n﹣3)=﹣n2﹣3n=﹣(n+)2+,所以当n=﹣时,DQ有最大值.【点评】此题主要考查二次函数综合问题,会求函数解析式,会根据面积相等建立方程并准确求解,知道运用二次函数可以解决线段最值问题,是解题的关键.。
2023-2024学年湖南省长沙市长郡教育集团九年级(上)期末数学试卷及答案解析
2023-2024学年湖南省长沙市长郡教育集团九年级(上)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项)1.(3分)中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A.B.C.D.2.(3分)2024的相反数是()A.2024B.﹣2024C.D.3.(3分)元旦假期哈尔滨旅游总收入达59.14亿元,南泥北搓成了新时尚.将数据59.14亿用科学记数法表示为()A.5.914×108B.5.914×109C.5.914×1010D.59.14×1084.(3分)下列计算正确的是()A.(﹣2x3)2=4x6B.x2+x3=x5C.x8÷x2=x4D.(a+b)2=a2+b25.(3分)古语有言“逸一时,误一世”,其意是教导我们青少年要珍惜时光,切勿浪费时间,浪费青春,其数字谐音为1,1,4,5,1,4,有关这一组数,下列说法错误的是()A.中位数为4.5B.平均数为C.众数是1D.极差是46.(3分)下列命题正确的是()A.方程x2﹣x﹣1=0没有实数根B.有两边及一角对应相等的两个三角形全等C.平分弦的直径垂直于弦D.“对角线互相平分”是矩形、菱形、正方形都具有的性质7.(3分)如图,△ABC和△ABD内接于⊙O,∠ABC=80°,∠D=50°,则∠BAC的度数为()A.40°B.45°C.50°D.60°8.(3分)在同一平面直角坐标系中,函数y=kx+1(k≠0)和y=(k≠0)的图象大致是()A.B.C.D.9.(3分)如图,将△ABC绕点A按逆时针方向旋转α,得到△AB′C′.若点B′恰好在线段BC的延长线上,且∠AB′C′=40°,则旋转角α的度数为()A.60°B.70°C.100°D.110°10.(3分)如图,抛物线y=x2﹣8x+15与x轴交于A、B两点,对称轴与x轴交于点C,点D(0,﹣2),点E(0,﹣6),点P是平面内一动点,且满足∠DPE=90°,M是线段PB的中点,连接CM.则线段CM的最大值是()A.3B.C.D.5二、填空题(本大题共有6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)因式分解:3x2﹣9x=.12.(3分)若式子在实数范围内有意义,则x的取值范围是.13.(3分)把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=65°,则∠2=.14.(3分)一个多边形的内角和是其外角和的4倍,则这个多边形的边数是.15.(3分)在一个不透明的口袋中装有红球和白球共12个,这些球除颜色外都相同,将口袋中的球搅匀后,从中随机摸出1个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸球200次,发现有50次摸到红球,则口袋中红球约有个.16.(3分)若a,b是一元二次方程x2﹣2x﹣1=0的两个实数根,则a2+2b﹣ab的值是.三、解答题(本大题共有9小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:|﹣|+()﹣1+(π+1)0﹣tan60°.18.(6分)解不等式组:19.(6分)育才中学九年级的一位同学,想利用刚刚学过的三角函数知识测量新教学楼的高度,如图,她在A处测得新教学楼房顶B点的仰角为45°,走7米到C处再测得B 点的仰角为55°,已知O、A、C在同一条直线上.(1)求∠ABC的度数;(2)求新教学楼OB的高度.(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43,结果精确到0.1m).20.(8分)打造书香文化,培养阅读习惯.崇德中学计划在各班建图书角,开展“我最喜欢的书籍”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题;(1)条形图中的m=,n=,文学类书籍对应扇形圆心角等于_____度;(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.21.(8分)如图,AB是⊙O的弦,C是⊙O外一点,OC⊥OA,OC交AB于点P,交⊙O 于点D,且CP=CB.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若∠A=30°,OP=,求图中阴影部分的面积.22.(9分)某校开设智能机器人编程的校本课程,购买了A,B两种型号的机器人模型.A 型机器人模型单价比B型机器人模型单价多200元,用2000元购买A型机器人模型和用1200元购买B型机器人模型的数量相同.(1)求A型,B型机器人模型的单价分别是多少元?(2)学校准备再次购买A型和B型机器人模型共40台,购买B型机器人模型不超过A 型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A型和B型机器人模型各多少台时花费最少?最少花费是多少元?23.(9分)如图,在▱ABCD中,点E在AB上,AE=AB,ED和AC相交于点F,过点F作FG∥AB,交AD于点G.(1)求的值.(2)若AB:AC=:2,①求证:∠AEF=∠ACB.②求证:DF2=DG•DA.24.(10分)我们不妨约定,如果点(x,y)满足2x+y=2024,那么称这个点(x,y)为“郡系点”.如果一个函数的图象经过一个“郡系点”,那么称这个函数为“郡系函数”.(1)对下面的结论进行判断,请在正确结论的后面的括号中打“√”,错误结论后面的括号中打“×”.①点(1,2022)为“郡系点”();②已知y=(m为常数,且m≠0),它的图象经过的“郡系点”的坐标为(﹣1,n),则m=2025,n=2026().(2)已知点A(1,c)和B(2,c+2),那么线段AB上是否存在“郡系点”?如果存在,请表示出来;如果不存在,请说明理由.(3)已知关于x的二次函数y=ax2+(b﹣2024)x+a﹣2(a,b均为正整数)为“郡系函数”,其图象满足下面两个条件:(Ⅰ)图象经过四个象限;(Ⅱ)M,N是图象上的两个“郡系点”,且MN=90,试求该二次函数的解析式和它的“郡系点”M,N的坐标.25.(10分)已知抛物线y=ax2+bx+8过点B(4,8)和点C(8,4),与y轴交于点A.(1)求抛物线的解析式;(2)如图1,连接AB,BC,点D在线段AB上(与点A,B不重合),点F是OA的中点,连接FD,过点D作DE⊥FD交BC于点E,连接EF,当△DEF面积是△ADF面积的3倍时,求点D的坐标;(3)如图2,点P是抛物线上对称轴右侧的点,H(m,0)是x轴正半轴上的动点,若线段OB上存在点G(与点O,B不重合),使得∠GBP=∠HGP=∠BOH,求m的取值范围.2023-2024学年湖南省长沙市长郡教育集团九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项)1.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故此选项不符合题意;B、不是轴对称图形,故此选项不符合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不符合题意;故选:C.【点评】本题主要考查了轴对称图形的概念,熟知:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.这条直线是它的对称轴.2.【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【解答】解:2024的相反数是﹣2024,故选:B.【点评】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.3.【分析】科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正整数,当原数绝对值小于1时,n是负整数;由此进行求解即可得到答案.【解答】解:59.14亿=5914000000=5.914×109.故选:B.【点评】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.4.【分析】根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;完全平方公式:(a±b)2=a2±2ab+b2;对各选项分析判断后利用排除法求解.【解答】解:A、(﹣2x3)2=4x6,故A正确;B、x2、x3不是同类项不能合并,故B错误;C、x8÷x2=x6,故C错误;D、(a+b)2=a2+2ab+b2,故D错误.故选:A.【点评】本题考查积的乘方、合并同类项、同底数幂的除法、完全平方公式,熟练掌握运算性质和法则是解题的关键.5.【分析】A.根据中位数定义,将这一组数重新排序后得到1,1,1,4,4,5,则中位数应该为2.5,而不是4.5,故A错误;B.根据平均数定义,平均数为,故B正确;C.根据众数定义,众数为1,故C均正确;D.根据极差定义,极差为5﹣1=4,故D均正确.【解答】解:将这一组数按照由小到大重新排序1,1,1,4,4,5,∴中位数应该,故A错误;平均数为,故B正确;众数为1,极差为5﹣1=4,故C,D均正确;故选:A.【点评】本题考查了统计量定义及求法,涉及中位数、平均数、众数、极差的定义及求法,掌握相关统计量的定义及求法是解决问题的关键.6.【分析】分别根据一元二次方程的根与Δ的关系,全等三角形的判定定理,垂径定理及矩形、菱形、正方形的性质对各选项进行逐一判断即可.【解答】解:A、∵Δ=(﹣1)2﹣4×1×(﹣1)=5>0,∴方程x2﹣x﹣1=0有两个不相等的实数根,原说法错误,不符合题意;B、有两边及夹角对应相等的两个三角形全等,原说法错误,不符合题意;C、平分弦(非直径)的直径垂直于弦,原说法错误,不符合题意;D、“对角线互相平分”是矩形、菱形、正方形都具有的性质,正确,符合题意.故选:D.【点评】本题考查的是命题与定理,熟知一元二次方程的根与Δ的关系,全等三角形的判定定理,垂径定理及矩形、菱形、正方形的性质是解题的关键.7.【分析】根据圆周角定理求出∠ACB=∠D=50°,根据三角形内角和定理即可得出答案.【解答】解:∵∠D=50°,∴∠ACB=∠D=50°,∵∠ABC=80°,∴∠BAC=180°﹣∠ACB﹣∠ABC=180°﹣50°﹣80°=50°,故选:C.【点评】本题考查了圆周角定理,三角形的外接圆与外心,熟练掌握圆周角定理是解题的关键.8.【分析】分k>0或k<0,根据一次函数与反比例函数的性质即可得出答案.【解答】解:当k>0时,一次函数y=kx+1经过第一、二、三象限,反比例函数y=位于第一、三象限;当k<0时,一次函数y=kx+1经过第一、二、四象限,反比例函数y=位于第二、四象限;故选:D.【点评】本题主要考查了反比例函数和一次函数的图象与性质,熟练掌握k>0,图象经过第一、三象限,k<0,图象经过第二、四象限是解题的关键.9.【分析】旋转得全等,即角等和边等,得出等腰三角形,直接代值求解即可.【解答】解:∵△ABC绕点A按逆时针方向旋转α,得到△AB′C′,∴△ABC≌△AB′C′,∠BAB′=α,∴AB=AB′,∠AB′B=∠ABB′,∵∠AB′C′=40°,∴∠AB′B=∠ABB′=40°,∴∠BAB′=α=180°﹣40°﹣40°=100°,故选:C.【点评】此题考查了旋转的性质,全等三角形的性质,以及等腰三角形的性质和判定,解题关键是推出等腰三角形.10.【分析】解方程x2﹣8x+15=0得A(3,0),利用抛物线的性质得到C点为AB的中点,再根据圆周角定理得到点P在以DE为直径的圆上,圆心Q点的坐标为(﹣4,0),接着计算出AQ=5,⊙Q的半径为2,延长AQ交⊙Q于F,此时AF的最大值为7,连接AP,利用三角形的中位线性质得到CM=AP,从而得到CM的最大值.【解答】解:解方程x2﹣8x+15=0得x1=3,x2=5,则A(3,0),∵抛物线的对称轴与x轴交于点C,∴C点为AB的中点,∵∠DPE=90°,∴点P在以DE为直径的圆上,圆心Q点的坐标为(﹣4,0),AQ==5,⊙Q的半径为2,延长AQ交⊙Q于F,此时AF最大,最大值为2+5=7,连接AP,∵M是线段PB的中点,∴CM为△ABP为中位线,∴CM=AP,∴CM的最大值为.故选:C.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质和圆周角定理.二、填空题(本大题共有6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.【分析】直接提取公因式3x,进而分解因式得出答案.【解答】解:原式=3x(x﹣3).故答案为:3x(x﹣3).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.【分析】根据二次根式的被开方数大于等于0,分式的分母不为0,进行求解即可.【解答】解:由题意,得:x+1≥0且x﹣2≠0,∴x≥﹣1且x≠2;∴x的取值范围是x≥﹣1且x≠2;故答案为:x≥﹣1且x≠2.【点评】本题考查代数式有意义.熟练掌握二次根式的被开方数大于等于0,分式的分母不为0,是解题的关键.13.【分析】由折叠的性质可得:∠DEF=∠GEF,根据平行线的性质:两直线平行,内错角相等可得:∠DEF=∠EFG,从而得到∠GEF,根据平角的定义即可求得∠1,再由平行线的性质求得∠2.【解答】解:∵AD∥BC,∠EFG=65°,∴∠DEF=∠EFG=65°(两直线平行,内错角相等),∠1+∠2=180°(两直线平行,同旁内角互补),由折叠的性质可得:∠GEF=∠DEF=65°,∴∠1=180°﹣∠GEF﹣∠DEF=180°﹣65°﹣65°=50°,∴∠2=180°﹣∠1=130°.故答案为:130°.【点评】此题主要考查折叠的性质,平行线的性质和平角的定义,根据折叠的方法找准对应角是解决问题的关键.14.【分析】设这个多边形的边数为n,根据内角和公式以及多边形的外角和为360°即可列出关于n的一元一次方程,解方程即可得出结论.【解答】解:设这个多边形的边数为n,则该多边形的内角和为(n﹣2)×180°,依题意得:(n﹣2)×180°=360°×4,解得:n=10,∴这个多边形的边数是10.故答案为:10.【点评】本题考查了多边形内角与外角,解题的关键是根据多边形内角和公式得出方程(n﹣2)×180°=360°×4.15.【分析】利用频率估计随机摸出1个球是红球的概率为,根据概率公式即可求出答案.【解答】解:由题意可得,口袋中红球的个数约为:12×=3(个).故答案为:3.【点评】本题考查利用频率估计概率,解答本题的关键是明确题意,计算出相应的红球个数.16.【分析】利用一元二次方程的解,可得出a2﹣2a=1,利用根与系数的关系,可得出a+b =2,ab=﹣1,再将其代入a2+2b﹣ab=(a2﹣2a)+2(a+b)﹣ab中,即可求出结论.【解答】解:∵a是一元二次方程x2﹣2x﹣1=0的实数根,∴a2﹣2a﹣1=0,∴a2﹣2a=1.∵a,b是一元二次方程x2﹣2x﹣1=0的两个实数根,∴a+b=2,ab=﹣1,∴a2+2b﹣ab=(a2﹣2a)+2(a+b)﹣ab=1+2×2﹣(﹣1)=6.故答案为:6.【点评】本题考查了根与系数的关系以及一元二次方程的解,利用一元二次方程的解及根与系数的关系,找出a2﹣2a=1,a+b=2,ab=﹣1是解题的关键.三、解答题(本大题共有9小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.【分析】先根据绝对值、负整数指数幂、零指数幂和特殊角的三角函数值对原式进行化简,然后再合并即可.【解答】解:|﹣|+()﹣1+(π+1)0﹣tan60°==3.【点评】本题主要考查了实数的运算,能够灵活使用各种运算法则是解题的关键.18.【分析】分别解出两不等式的解集,再求其公共解.【解答】解:,解不等式①得:x<1,解不等式②得:x>﹣4,所以不等式组的解集为:﹣4<x<1.【点评】此题考查解一元一次不等式组,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.【分析】(1)根据三角形的外角性质计算,得到答案;(2)根据等腰直角三角形的性质得到OA=OB,根据正切的定义列出方程,解方程求出OB.【解答】解:(1)∵∠BCO是△ABC的外角,∴∠ABC=∠BCO﹣∠A=55°﹣45°=10°;(2)在Rt△AOB中,∠A=45°,则OA=OB,∵AC=7米,∴OC=(OB﹣7)米,在Rt△COB中,∠BCO=55°,∵tan∠BCO=,∴=1.43,解得:OB≈23.3,答:新教学楼OB的高度约为23.3米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握锐角三角函数的定义是解题的关键.20.【分析】(1)由喜欢E的人数除以所占百分比得出调查的学生人数,即可解决问题;(2)由该校共有学生人数乘以最喜欢阅读政史类书籍的学生人数所占的比例即可;(3)画树状图,共有9种等可能的结果,其中甲乙两位同学选择相同类别书籍的结果有2种,再由概率公式求解即可.【解答】解:(1)调查的学生人数为:4÷8%=50(人),∴m=50×36%=18,∴n=50﹣18﹣10﹣12﹣4=6,文学类书籍对应扇形圆心角=360°×=72°,故答案为:18,6,72;(2)2000×=480(人),答:估计最喜欢阅读政史类书籍的学生人数约为480人;(3)画树状图如下:共有9种等可能的结果,其中甲乙两位同学选择相同类别书籍的结果有2种,即BB、CC,∴甲乙两位同学选择相同类别书籍的概率为.【点评】此题考查的是用树状图法求概率以及条形统计图和扇形统计图等知识.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.【分析】(1)连接OB,根据等腰三角形的性质得出∠A=∠OBA,∠CPB=∠CBP,求出∠AOC=∠OBC=90°,再根据切线的判定得出即可;(2)根据含30°角的直角三角形的性质求出AP,求出AO,求出∠COB=30°,根据含30°角的直角三角形的性质求出OC=2BC,求出BC,再求出答案即可.【解答】解:(1)直线BC与⊙O的位置关系是相切,理由是:连接OB,∵CP=CB,OA=OB,∴∠A=∠OBA,∠CPB=∠CBP,∵∠APO=∠CPB,∴∠APO=∠CBP,∴∠A+∠APO=∠CBP+∠OBA,∵OC⊥OA,∴∠AOP=90°,∴∠CBP+∠OBA=∠A+∠APO=180°﹣90°=90°,即∠OBC=90°,∴OB⊥BC,∵OB过O,∴直线BC与⊙O的位置关系是相切;(2)∵∠AOP=90°,∠A=30°,OP=,∴AP=2OP=2,AO===3,即OB=3,∵∠A=∠OBA=30°,∴∠AOB=180°﹣∠A﹣∠OBA=120°,∵∠AOC=90°,∴∠COB=∠AOB﹣∠AOC=120°﹣90°=30°,∴OC=2BC,由勾股定理得:OC2=CB2+OB2,即BC2=(2BC)2+32,解得:BC=,﹣S扇形OBD=3×﹣=﹣π.∴阴影部分的面积S=S△OBC【点评】本题考查了圆周角定理,等腰三角形的性质,含30°角的直角三角形的性质,勾股定理,切线的判定,扇形的面积计算和三角形的面积等知识点,能综合运用知识点进行推理和计算是解此题的关键.22.【分析】(1)根据“用2000元购买A型机器人模型和用1200元购买B型机器人模型的数量相同”列方程求解;(2)先根据“购买B型机器人模型不超过A型机器人模型的3倍”求出取值范围,再根据一次函数的性质求解.【解答】解:(1)设A型编程机器人模型单价是x元,B型编程机器人模型单价是(x ﹣200)元.根据题意:,解这个方程,得:x=500,经检验,x=500是原方程的根,∴x﹣200=300,答:A型编程机器人模型单价是500元,B型编程机器人模型单价是300元;(2)设购买A型编程机器人模型m台,购买B型编程机器人模型(40﹣m)台,购买A型和B型编程机器人模型共花费w元,由题意得:40﹣m≤3m,解得:m≥10,w=500×0.8•m+300×0.8(40﹣m),即:w=160m+9600,∵160>0∴w随m的减小而减小.当m=10时,w取得最小值11200,∴40﹣m=30答:购买A型机器人模型10台和B型机器人模型30台时花费最少,最少花费是11200元.【点评】本题考查了分式方程的应、一元一次不等式的应用及一次函数的应用,找到相等关系是解题的关键.23.【分析】(1)根据平行四边形的性质得到AB=CD,AB∥CD,证明△AFE∽△CFD,根据相似三角形的性质得到即可;(2)①设AC=2a,根据题意用a表示出AE、AF,证明△FAE∽△BAC,根据相似三角形的对应角相等证明即可;②证明△GDF∽△FDA,根据相似三角形的性质列式计算即可证明结论.【解答】(1)解:在▱ABCD中,AB∥CD,AB=CD,又∵∠DFC=∠AFE,∴△AFE∽△CFD,∴;(2)①证明:∵,可设AC=2a,则,由(1)知:,∴,∴,,∴,又∵∠BAC=∠FAE,∴△FAE∽△BAC,∴∠AEF=∠ACB;②证明:∵FG∥AB,∴∠GFD=∠AED=∠ACB,又∵AD∥BC,∴∠ACB=∠FAD,∴∠FAD=∠GFD,又∵∠GDF=∠FDA,∴△GDF∽△FDA,∴,∴DF2=DG•DA.【点评】本题考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的判定定理的和性质定理是解题的关键.24.【分析】(1)①由题意可知郡系点”在直线y=﹣2x+2024上,判断所给的点是否在该直线上即可;②先求出点的坐标,再将点的坐标代入反比例函数的解析式求m即可;(2)先求直线AB的解析式为y=2x+c﹣2,当2x+c﹣2=﹣2x+2024时,x=,再由1≤x≤2,2018≤c≤2022,可知线段AB上存在“郡系点”且点为(,c+1011);(3)根据a的取值和二次函数的图象特点确定a=1,当x2+(b﹣2024)x﹣1=﹣2x+2024时,x1+x2=2022﹣b,x1•x2=﹣2025,从而得到90=,解得b=0(舍)或b=2022,即可确定二次函数的解析式为y=x2﹣2x﹣1,再求点M、N 的坐标即可.【解答】解:(1)∵2x+y=2024,∴y=﹣2x+2024,∴郡系点”在直线y=﹣2x+2024上,①∵﹣2×1=2022,∴点(1,2022)在直线y=﹣2x+2024上,∴点(1,2022)为“郡系点”,故答案为:√;②∵“郡系点”的坐标为(﹣1,n),∴n=2+2024=2026,∴点为(1,2026),∴m=2026,故答案为:×,√;(2)线段AB上存在“郡系点”,理由如下:设直线AB的解析式为y=kx+m,∴,解得,∴直线AB的解析式为y=2x+c﹣2,当2x+c﹣2=﹣2x+2024时,x=,∵1≤x≤2,2018≤c≤2022,∴线段AB上存在“郡系点”为(,c+1011);(3)∵a是正整数,∴a>0,当a≥2时,a﹣2≥0,即抛物线与y轴的交点在x轴上方或经过原点,此时二次函数的图象不能经过四个象限,∴0<a<2,∴a=1,∴函数的解析式为y=x2+(b﹣2024)x﹣1,当x2+(b﹣2024)x﹣1=﹣2x+2024时,x1+x2=2022﹣b,x1•x2=﹣2025,∵MN=90,∴90=,解得b=0(舍)或b=2022,∴二次函数的解析式为y=x2﹣2x﹣1,当x2﹣2x﹣1=﹣2x+2024时,解得x=±45,∴M(45,2114),N(﹣45,2114)或M(﹣45,2114),N(45,2114).【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,弄清定义是解题的关键.25.【分析】(1)运用待定系数法将点B、点C坐标代入解析式可求解;(2)用待定系数法求得直线BC的解析式为y=﹣x+12,可证△BGE是等腰直角三角形,设D(t,8),通过证明△AFD∽△GDE,相似三角形的性质得出m﹣t=4,则DG=AF,可证△AFD≌△GDE,由面积关系列出方程可求解;(3)通过证明△OGH∽△BPG,可得,由待定系数法可求BS的解析式,联立方程组可求点P坐标,由勾股定理可求BP的长,由二次函数的性质可求解.【解答】解:(1)∵抛物线y=ax2+bx+8过点B(4,8)和点C(8,4),∴,解得:,∴抛物线的解析式为y=﹣x2+x+8;(2)∵抛物线y=﹣x2+x+8与y轴交于点A,当x=0时,y=8,∴A(0,8),则OA=8,∵B(4,8),∴AB∥x轴,AB=4,∵点F是OA的中点,∴F(0,4),∴AB=AF=4,设直线BC的解析式为y=kx+b,∵B(4,8),C(8,4),∴,解得:,∴直线BC的解析式为y=﹣x+12,设E(m,﹣m+12)(4<m<8),如图1,过点E作EG⊥AB交AB的延长线于G,则∠G=90°,∴G(m,8),∴GE=8﹣(﹣m+12)=m﹣4,BG=m﹣4,∴BG=GE,∴△BGE是等腰直角三角形,设D(t,8),则AD=t,DG=m﹣t,∵DE⊥FD,∴∠FDE=90°,∵∠FAD=∠G=∠FDE=90°,∴∠AFD=90°﹣∠ADF=∠GDE,∴△AFD∽△GDE,∴=,即=,∴t(m﹣t)=4(m﹣4),即(t﹣4)m=(t﹣4)(t+4),∵m>4,∴m=t+4,即m﹣t=4,∴DG=AF,∴△AFD≌△GDE(ASA),∴DF=DE,又∵DE⊥DF,∴△DEF是等腰直角三角形,=DF2,∴S△DEF=AD•AF,∵S△ADF当△DEF面积是△ADF面积的3倍时,即DF2=3×AD•AF,∴DF2=12AD,在Rt△ADF中,DF2=AD2+AF2=t2+42,∴AD2+AF2=12AD,∴t2+42=12t,解得:t=6﹣2或t=2+6(舍去),∴D(6﹣2,8);(3)∵∠GBP=∠HGP=∠BOH,又∠OGH+∠HGP=∠GBP+∠BPG,∴∠OGH=∠BPG,∴△OGH∽△BPG,∴=,设BP交x轴于点S,过点B作BT⊥x轴于点T,如图2,∵∠GBP=∠BOH,∴SB=SO,∵OT=4,BT=8,∴OB==4,设BS=k,则TS=k﹣4,在Rt△TBS中,SB2=ST2+BT2,∴k2=(k﹣4)2+82,解得:k=10,∴S(10,0),设直线BS的解析式为y=ex+f,则,解得:,∴直线BS的解析式为y=﹣x+,联立,解得:或,∴P(,﹣),∴PB==,∵=,设OG=n,则BG=OB﹣OG=4﹣n,∴=,整理得:m=﹣=﹣n2+n=﹣(n﹣2)2+,∵点G在线段OB上(与点O,B不重合),∴0<OG<4,∴0<n<4,∴当n=2时,m取得的最大值为,∴0<m≤.【点评】本题是二次函数综合题,考查了待定系数法求函数解析式,一次函数与二次函数的综合运用,面积问题,相似三角形的判定和性质,二次函数的性质等,熟练掌握二次函数的性质是解题关键。
九年级(上)期末数学试卷(答案解析)
九年级(上)期末数学试卷一、选择题(每小题给出的四个选项中,只有一个是正确的,把正确选项的代号填入该小题后的括号内,每小题3分,共24分)1.(3分)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN 与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°2.(3分)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1 B.﹣1 C.1或﹣1 D.3.(3分)如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变4.(3分)在同一直线坐标系中,若正比例函数y=k1x的图象与反比例函数y=的图象没有公共点,则()A.k1+k2<0 B.k1+k2>0 C.k1k2<0 D.k1k2>05.(3分)函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()A. B.C.D.6.(3分)在Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是()A.sinB=B.cosB=C.tanB=D.tanB=7.(3分)对于二次函数y=3(x﹣2)2+1的图象,下列说法正确的是()A.顶点坐标是(2,1)B.对称轴是直线x=﹣2C.开口向下D.与x轴有两个交点8.(3分)如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()A.﹣4 B.4 C.﹣2 D.2二、填空题(每小题3分,共18分)9.(3分)在一个不透明的布袋中,装有红、黑、白三种只有颜色不同的小球,其中红色小球4个,黑、白色小球的数目相同.小明从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后随机摸出一球,记下颜色;…如此大量摸球实验后,小明发现其中摸出的红球的频率稳定于20%,由此可以估计布袋中的黑色小球有个.10.(3分)如图,矩形ABCD中,AB=2,BC=3,E是AD的中点,CF⊥BE于点F,则CF=.11.(3分)如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为m.12.(3分)点(﹣2,y1),(3,y2)在函数y=的图象上,则y1y2(填“>”“<”或“=”)13.(3分)如图,已知正方形ABCD的边长为2.如果将线段BD绕着点B旋转后,点D落在CB的延长线上的D′点处,那么tan∠BAD′等于.14.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论是(填写序号).三、简答题(共78分,解答要写出必要的文字说明、证明过程或演算步骤)15.(6分)如图是一个密封纸盒的三视图,请你根据图中数据计算这个密封纸盒的表面积(结果保留根号)16.(12分)用适当的方法解下列方程.(1)x2﹣x﹣1=0;(2)x2﹣2x=2x+1;(3)x(x﹣2)﹣3x2=﹣1;(4)(x+3)2=(1﹣2x)2.17.(6分)如图,在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE于F,连接DE.求证:DF=DC.18.(7分)分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.19.(7分)如图,在△ABC中,∠A=30°,∠B=45°,BC=,求AB的长.20.(7分)如图,矩形ABCD为台球桌面,AD=260cm,AB=130cm,球目前在E 点位置,AE=60cm.如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.(1)求证:△BEF∽△CDF;(2)求CF的长.21.(7分)如图,一次函数y=kx+5(k为常数,且k≠0)的图象与反比例函数y=﹣的函数交于A(﹣2,b),B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.22.(7分)如图,已知二次函数y=ax2﹣4x+c的图象经过点A和点B.(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)若点P(m,m)在该函数图象上,求m的值.23.(9分)如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第=.二象限的交点,AB⊥x轴于点B,且S△ABO(1)求这两个函数的表达式;(2)求直线与双曲线的两个交点A,C的坐标和△AOC的面积.24.(10分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标.参考答案与试题解析一、选择题(每小题给出的四个选项中,只有一个是正确的,把正确选项的代号填入该小题后的括号内,每小题3分,共24分)1.(3分)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,M N 与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°【解答】解:∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,∵,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=28°,∴∠BCA=∠DAC=28°,∴∠OBC=90°﹣28°=62°.故选:C.2.(3分)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1 B.﹣1 C.1或﹣1 D.【解答】解:根据题意得:a2﹣1=0且a﹣1≠0,解得:a=﹣1.故选:B.3.(3分)如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变【解答】解:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选:D.4.(3分)在同一直线坐标系中,若正比例函数y=k1x的图象与反比例函数y=的图象没有公共点,则()A.k1+k2<0 B.k1+k2>0 C.k1k2<0 D.k1k2>0【解答】解:根据题意,方程k1x=没有实数解,而x2=,所以k1与k2异号,即k1k2<0.故选:C.5.(3分)函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()A. B.C.D.【解答】解:当a>0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=﹣>0,且a>0,则b<0,但B中,一次函数a>0,b>0,排除B.故选:C.6.(3分)在Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是()A.sinB=B.cosB=C.tanB=D.tanB=【解答】解:∵在Rt△ABC中,∠C=90°,AC=2,BC=3,∴AB==,则sinB===,cosB===,tanB==,故选:C.7.(3分)对于二次函数y=3(x﹣2)2+1的图象,下列说法正确的是()A.顶点坐标是(2,1)B.对称轴是直线x=﹣2C.开口向下D.与x轴有两个交点【解答】解:A、顶点坐标是(2,1),说法正确;B、对称轴是直线x=2,故原题说法错误;C、开口向上,故原题说法错误;D、与x轴没有交点,故原题说法错误;故选:A.8.(3分)如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()A.﹣4 B.4 C.﹣2 D.2【解答】解:过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.设点A的坐标是(m,n),则AC=n,OC=m,∵∠A OB=90°,∴∠AOC+∠BOD=90°,∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC,∵∠BDO=∠ACO=90°,∴△BDO∽△OCA,∴==,∵OB=2OA,∴BD=2m,OD=2n,因为点A在反比例函数y=的图象上,则mn=1,∵点B在反比例函数y=的图象上,B点的坐标是(﹣2n,2m),∴k=﹣2n•2m=﹣4mn=﹣4.故选:A.二、填空题(每小题3分,共18分)9.(3分)在一个不透明的布袋中,装有红、黑、白三种只有颜色不同的小球,其中红色小球4个,黑、白色小球的数目相同.小明从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后随机摸出一球,记下颜色;…如此大量摸球实验后,小明发现其中摸出的红球的频率稳定于20%,由此可以估计布袋中的黑色小球有8个.【解答】解:设黑色的数目为x,则黑、白色小球一共有2x个,∵多次试验发现摸到红球的频率是20%,则得出摸到红球的概率为20%,∴=20%,解得:x=8,∴黑色小球的数目是8个.故答案为:8.10.(3分)如图,矩形ABCD中,AB=2,BC=3,E是AD的中点,CF⊥BE于点F,则CF= 2.4.【解答】解:∵AD∥BC,∴∠AEB=∠CBF,∵∠A=90°,∠CFB=90°,∴△ABE∽△FCB,∴=,∵AB=2,BC=3,E是AD的中点,∴BE=2.5,∴=,解得:FC=2.4.故答案为:2.4.11.(3分)如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为7.5m.【解答】解:当旋转到达地面时,为最短影长,等于AB,∵最小值3m,∴AB=3m,∵影长最大时,木杆与光线垂直,即AC=5m,∴BC=4,又可得△CAB∽△CFE,∴=,∵AE=5m,∴=,解得:EF=7.5m.故答案为:7.5.12.(3分)点(﹣2,y1),(3,y2)在函数y=的图象上,则y1<y2(填“>”“<”或“=”)【解答】解:∵点(﹣2,y1),(3,y2)在函数y=的图象上,∴﹣2×y1=3×y2=2,∴y1=﹣1,y2=,∴y1<y2,故答案为:<.13.(3分)如图,已知正方形ABCD的边长为2.如果将线段BD绕着点B旋转后,点D落在CB的延长线上的D′点处,那么tan∠BAD′等于.【解答】解:BD是边长为2的正方形的对角线,由勾股定理得,BD=BD′=2.∴tan∠BAD′===.故答案为:.14.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论是①④(填写序号).【解答】解:∵抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵x=﹣1时,y<0,∴a﹣b+c<0,即a+c<b,所以②错误;∵抛物线与x轴的一个交点为(﹣2,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(4,0),所以③错误;∵抛物线开口向上,∴a>0,∴b=﹣2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以④正确.故答案为①④.三、简答题(共78分,解答要写出必要的文字说明、证明过程或演算步骤)15.(6分)如图是一个密封纸盒的三视图,请你根据图中数据计算这个密封纸盒的表面积(结果保留根号)【解答】解:根据该密封纸盒的三视图知道它是一个六棱柱,∵其高为12cm,底面边长为5cm,∴其侧面积为6×5×12=360(cm2),密封纸盒的上、下底面的面积和为:12×5××5×=75(cm2),∴其表面积为(75+360)c m2.16.(12分)用适当的方法解下列方程.(1)x2﹣x﹣1=0;(2)x2﹣2x=2x+1;(3)x(x﹣2)﹣3x2=﹣1;(4)(x+3)2=(1﹣2x)2.【解答】解:(1)x2﹣x﹣1=0;这里a=1,b=﹣1,c=﹣1,△=b2﹣4ac=(﹣1)2﹣4×1×(﹣1)=5.x==,所以:x1=,x2=.(2)移项,得x2﹣4x=1,配方,得x2﹣4x+4=1+4,即(x﹣2)2=5.两边开平方,得x﹣2=±,即x=2±所以x1=2+,x2=2﹣.(3)x(x﹣2)﹣3x2=﹣1整理,得2x2+2x﹣1=0,这里a=2,b=2,c=﹣1,△=b2﹣4ac=22﹣4×2×(﹣1)=12.x===,即原方程的根为x1=,x2=.(4)移项,得(x+3)2﹣(1﹣2x)2=0,因式分解,得(x+3+1﹣2x)[x+3﹣(1﹣2x)]=0整理,得(3x+2)(﹣x+4)=0,解得x1=﹣,x2=4.17.(6分)如图,在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE于F,连接DE.求证:DF=DC.【解答】证明:∵四边形ABCD为矩形,∴AD∥BC,AB=CD,且∠B=90°,∴∠DAF=∠BEA,∵DF⊥AE,∴∠DFA=∠B,在△ADF和△EBA中∴△ADF≌△EBA(AAS),∴AB=DF,∴DF=DC.18.(7分)分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.【解答】解:根据题意画图如下:(1)共有12种情况,积为奇数的情况有6种,所以欢欢胜的概率是=;(2)由(1)得乐乐胜的概率为1﹣=,两人获胜的概率相同,所以游戏公平.19.(7分)如图,在△ABC中,∠A=30°,∠B=45°,BC=,求AB的长.【解答】解;过点C作CD⊥AB,交AB于D.∵∠B=45°,∴CD=BD,∵BC=,∴BD=,∵∠A=30°,∴tan30°=,∴AD===3,∴AB=AD+BD=3+.20.(7分)如图,矩形ABCD为台球桌面,AD=260cm,AB=130cm,球目前在E 点位置,AE=60cm.如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.(1)求证:△BEF∽△CDF;(2)求CF的长.【解答】(1)证明:如图,在矩形ABCD中:∠DFC=∠EFB,∠EBF=∠FCD=90°,∴△BEF∽△CDF;(2)解:∵由(1)知,△BEF∽△CDF.∴=,即=,解得:CF=169.即:CF的长度是169cm.21.(7分)如图,一次函数y=kx+5(k为常数,且k≠0)的图象与反比例函数y=﹣的函数交于A(﹣2,b),B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.【解答】解:(1)把A(﹣2,b)代入y=﹣得b=﹣=4,所以A点坐标为(﹣2,4),把A(﹣2,4)代入y=kx+5得﹣2k+5=4,解得k=,所以一次函数解析式为y=x+5;(2)将直线AB向下平移m(m>0)个单位长度得直线解析式为y=x+5﹣m,根据题意方程组只有一组解,消去y得﹣=x+5﹣m,整理得x2﹣(m﹣5)x+8=0,△=(m﹣5)2﹣4××8=0,解得m=9或m=1,即m的值为1或9.22.(7分)如图,已知二次函数y=ax2﹣4x+c的图象经过点A和点B.(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)若点P(m,m)在该函数图象上,求m的值.【解答】解:(1)将A(﹣1,﹣1),B(3,﹣9)代入,得,∴a=1,c=﹣6,∴y=x2﹣4x﹣6;(2)对称轴:直线x=2,顶点坐标:(2,﹣10);(3)∵点P(m,m)在函数图象上,∴m2﹣4m﹣6=m,∴m=6或﹣1.23.(9分)如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第=.二象限的交点,AB⊥x轴于点B,且S△ABO(1)求这两个函数的表达式;(2)求直线与双曲线的两个交点A,C的坐标和△AOC的面积.==,【解答】解:(1)由题意S△ABO∵k<0,∴k=﹣3,∴y=﹣y=﹣x+2(2)由,解得或,∴A(﹣1,3)C(3,﹣1),∵直线y=﹣x+2交y轴与D(0,2),S△AOC=S△AOD+S△OCD=×2×1+×2×3=4.24.(10分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标.【解答】解:(1)依题意得:,解之得:,∴抛物线解析式为y=﹣x2﹣2x+3,∵对称轴为x=﹣1,且抛物线经过A(1,0),∴B(﹣3,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2∴M(﹣1,2).即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2).。
2022-2023学年第一学期无锡市省锡中实验学校九年级期末数学试题及解析
2022-2023学年第一学期无锡市省锡中实验学校九年级期末数学试题一、选择题(本大题共10个小题,每小题3分,共30分)21-的倒数是( ) A .2- B .2 21- D .21 2.下列计算结果正确的是( ) A .632)(m m =-B .844m m m =+C .236m m m =÷ D .862m m m =⋅3.有4张卡片(形状、大小、质地都相同),上面分别画有下列图形:①平行四边形②菱形③矩形④正方形,将卡片背面朝上洗匀,从中抽取一张,正面图形既是轴对称图形,又是中心对称图形的概率是( ) A .41 B .21C .43D .14.在平面直角坐标系中,点M (-2,-3)位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.某篮球运动员在连续7场比赛的得分(单位:分)做次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( )A .18分,17分B .20分,17分C .20分,19分D .20分,20分 6.如图,已知AB ∥DF ,DE 和AC 分别平分∠CDF 和∠BAE ,若∠DEA =46°,∠ACD =56°,则∠CDF 的度数为( ) A .22° B .33° C .44° D .55°7.我国古代数学名著《孙子算经》中有一道题,原文是“今有木,不知长短,引绳度之,余绳四尺五寸:屈绳量之,不足一尺,木长几何?“意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,绳长y 尺,可列方程组( )A .⎪⎩⎪⎨⎧-=+=1215.4x y x yB .⎪⎩⎪⎨⎧+=+=1215.4x y x yC .⎪⎩⎪⎨⎧-=+=1215.4y x y xD .⎪⎩⎪⎨⎧+=+=1215.4y x y x8.已知点)2,(1-x A ,)1,(2-x B ,)1,(3x C 都在反比例函数)0(<=k xky 的图象上,则321,,x x x 的大小关系是( )A .213x x x <<B .312x x x <<C .231x x x <<D .321x x x <<9.如图,直线x y 51-=与双曲线)0,0(<<=x k xk y 交于点A ,将直线x y 51-=向上平移1个单位长度后与y 轴交于C ,与双曲线交于B ,若BC OA 32=,则k 的值为( )A .169180-B .7-C .536-D .335-335-10、如图,正方形ABCD 的边长为22,直线EF 经过正方形的中心0,并能绕着0转动,分别交AB 、 CD 边于E 、F 点,过点B 作直线EF 的垂线BG ,垂足为点G ,连接AG ,则AG 长的最小值为( ) A .2B .12-C .5D .15-二、填空题(本大题共8个小题,每小题3分,共24分) 11.分解因式:=-22 16b a .12.2019年江苏省粮食总产达40540000吨,居全国第四位.用科学记数法表示40540000是 .13.若正多边形的一个内角等于140°,则这个正多边形的边数是 . 14.已知方程01 20232=+-x x 的两根分别为21,x x ,则21x x +的值为 .15.对于抛物线ax ax y 22+=,当x =1时,y >0,则这条抛物线的顶点一定在第 象限. 16.已知圆锥的母线与高的夹角为30°,母线长为4cm 则它的底面半径为 cm ,全面积是 cm 2(结果保留π).17.如图,在四边形ABCD 中,AD ∥BC ,∠ABC =90°,AB =4,BC =6,AD =3,E 为对角线BD上的动点,点F 在边AB 上.连接AE 、BF 、EC ,记△AEF 的面积为1S ,△BCE 的面积为2S ,若3121=S S ,则BF 长为 .18.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形BFGH .连结BD 交AF 、C 于点M 、N .若DE 平分∠ADB ,现随机向该图形内掷一枚小针,则=EGBG ,针尖落在阴影区域的概率为 .三、解答题(本大题共10小题,共96分.解答时应写出文字说明、证明过程或演算过程)19.(本题满分8分)计算:(1) 30tan 6)21()2015(1210-+-+-π; (2))1(4)12(2--+a a a ;20.(本题满分8分)(1)解方程:0442=--x x ; (2)解不等式组:⎪⎩⎪⎨⎧>+->+x x x x 231075)1(2; 21.(本题满分10分)如图是边长为1的正方形网格,每个小正方形的顶点叫格点,△ABC 的顶点都在格点上.仅用无刻度的直尺,按要求画出下列图形. (1)△ABC 的周长为 ;(2)如图,点D 、P 分别是AB 与竖格线和横格线的交点,画出点P 关于过点D 竖格线的对称点Q ; (3)请在图中画出△ABC 的角平分线BE .2.(本题满分10分)如图,在平行四边形ABCD 中,点E 为AD 的中点,延长CE 交BA 的延长线于点F .(1)求证:AB =AF ;(2)若BC =2AB ,∠BCD =100°,求∠ABE 的度数.23.(本题满分10分)“低碳环保,你我同行”,公共自行车给市民出行带来切实方便,电视台记者在某区街头随机选取了市民进行调查,调查的问题是“您大概多九使用一次公共自行车?”,将本次调查结果归为四种情况:A 每天都用;B 经常使用:C 偶尔使用;D 从未使用.将这次调查情况整理并绘制如下两幅统计图:根据图中的信息,解答下列问题: (1)本次活动共有位市民参与调查: (2)补全条形统计图:(3)根据统计结果,若该区有46万市民,请估算每天都用公共自行车的市民约有多少人? 24.(本题满分10分)随着高铁、地铁的大量兴建以及铁路的改扩建,人们的出行方式越来越多,出行越来越便捷.为保障旅客快捷、安全的出入车站,每个车站都修建了如图所示的出入闸口.某车站有四个出入闸口,分别记为A ,B ,C ,(1)一名乘客通过该站闸口时,选择B 闸口通过的概率是 ;(2)当两名乘客通过该站闸口时,请用画树状图或列表法求这两名乘客选择不同间口通过的概率.25.(本题满分10分)如图,已知⊙O 是Rt △ACB 的外接圆,过点O 作OD ⊥BC 于点D ,作∠BCE =∠BOD 交AB 延长线于点E . (1)求证:CE 是⊙O 的切线: (2)若22tan =∠BCE ,,求CE 的长.26.(本题满分10分)六月是水蜜桃大量上市的季节,某果农在销售时发现:若水蜜桃的售价为15元/千克,则日销售量为50千克,若售价每提高1元仟克,日销售量就减少2千克,现设水蜜桃售价为x 元/千克(x ≥15,且x 为正整数).(1)若某日销售量为40千克,则该日水蜜桃的单价为多少元?(2)若政府将销售价格定为不超过30元仟克,设每日销售额为W 元,求W 关于x 的函数表达式,并求W 的最大值和最小值:(3)为更好地促进果农的种植积极性,市政府加大对果农的补贴,每日给果农补贴a 元后(a 为正整数),果农发现最大日收入(日收入=销售额+政府补贴)还是不超过910元,并且只有5种不同的单价使日收入不少于900元,请直接写出所有符合题意的a 的值. 27.(本题满分10分)如图,已知矩形ABCD 中,E 是边AD 上一点,将△BDE 沿BE 折叠得到△BFB ,连接DF .(1)如图1,BF 落在直线BA 上时,求证△DFA ∽△BEA ; (2)如图2,当2=ABAD时,BF 与边AD 相交时,在BB 上取一点G ,使∠BAG =∠DAF ,AG 与BF 交于点H , ① 求AGAF的值: ② 当E 是AD 的中点时,若FD •FH =18,求AG 的长.28.(本题满分10分)在平面直角坐标系中,抛物线m mx mx y 322--=与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C ,连接AC ,BC ,点A 关于BC 所在的直线的对称点A ′,连接A ′B 、A ′C .(1)点A 的坐标为 ,点B 的坐标为 .(2)若点A 落在抛物线的对称轴上,且在x 轴上方,求抛物线的解析式. (3)设抛物线顶点为Q ,若△BCQ 是锐角三角形,直接写出m 的取值范围.参考答案一、选择题(本大题共10个小题,每小题3分,共30分)21-的倒数是( ) A .2- B .2 21- D .21 【答案】A2.下列计算结果正确的是( ) A .632)(m m =-B .844m m m =+C .236m m m =÷D .862m m m =⋅【答案】D3.有4张卡片(形状、大小、质地都相同),上面分别画有下列图形:①平行四边形②菱形③矩形④正方形,将卡片背面朝上洗匀,从中抽取一张,正面图形既是轴对称图形,又是中心对称图形的概率是( ) A .41B .21C .43D .1【答案】C4.在平面直角坐标系中,点M (-2,-3)位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C5.某篮球运动员在连续7场比赛的得分(单位:分)做次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( )A .18分,17分B .20分,17分C .20分,19分D .20分,20分 【答案】D6.如图,已知AB ∥DF ,DE 和AC 分别平分∠CDF 和∠BAE ,若∠DEA =46°,∠ACD =56°,则∠CDF 的度数为( ) A .22° B .33° C .44° D .55°【答案】C7.我国古代数学名著《孙子算经》中有一道题,原文是“今有木,不知长短,引绳度之,余绳四尺五寸:屈绳量之,不足一尺,木长几何?“意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,绳长y 尺,可列方程组( )A .⎪⎩⎪⎨⎧-=+=1215.4x y x yB .⎪⎩⎪⎨⎧+=+=1215.4x y x yC .⎪⎩⎪⎨⎧-=+=1215.4y x y xD .⎪⎩⎪⎨⎧+=+=1215.4y x y x【答案】A8.已知点)2,(1-x A ,)1,(2-x B ,)1,(3x C 都在反比例函数)0(<=k xky 的图象上,则321,,x x x 的大小关系是( )A .213x x x <<B .312x x x <<C .231x x x <<D .321x x x <<【答案】A 9.如图,直线x y 51-=与双曲线)0,0(<<=x k xk y 交于点A ,将直线x y 51-=向上平移1个单位长度后与y 轴交于C ,与双曲线交于B ,若BC OA 32=,则k 的值为( ) A .169180-B .7-C .536-D .335-335-【答案】C10、如图,正方形ABCD 的边长为22,直线EF 经过正方形的中心0,并能绕着0转动,分别交AB 、 CD 边于E 、F 点,过点B 作直线EF 的垂线BG ,垂足为点G ,连接AG ,则AG 长的最小值为( ) A .2B .12-C .5D .15-【答案】D二、填空题(本大题共8个小题,每小题3分,共24分) 11.分解因式:=-22 16b a . 【答案】(4)(4)a b a b +-12.2019年江苏省粮食总产达40540000吨,居全国第四位.用科学记数法表示40540000是 .【答案】74.05410⨯13. 若正多边形的一个内角等于140°,则这个正多边形的边数是 . 【答案】914. 已知方程01 20232=+-x x 的两根分别为21,x x ,则21x x +的值为 . 【答案】202315. 对于抛物线ax ax y 22+=,当x =1时,y >0,则这条抛物线的顶点一定在第 象限. 【答案】三16.已知圆锥的母线与高的夹角为30°,母线长为4cm 则它的底面半径为 cm ,全面积是 cm 2(结果保留π). 【答案】2;12π17.如图,在四边形ABCD 中,AD ∥BC ,∠ABC =90°,AB =4,BC =6,AD =3,E 为对角线BD 上的动点,点F 在边AB 上.连接AE 、BF 、EC ,记△AEF 的面积为1S ,△BCE 的面积为2S ,若3121=S S ,则BF 长为 .【答案】4318.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形BFGH .连结BD 交AF 、C 于点M 、N .若DE 平分∠ADB ,现随机向该图形内掷一枚小针,则=EGBG,针尖落在阴影区域的概率为 .22+1;三、解答题(本大题共10小题,共96分.解答时应写出文字说明、证明过程或演算过程)19.(本题满分8分)计算:(1)30tan 6)21()2015(1210-+-+-π; (2))1(4)12(2--+a a a ;【答案】(1)3; (2)81a +20.(本题满分8分)计算:(1)解方程:0442=--x x ; (2)解不等式组:⎪⎩⎪⎨⎧>+->+x x x x 231075)1(2;【答案】12(1)222,222; (2)2x x x =+=-<21.(本题满分10分)如图是边长为1的正方形网格,每个小正方形的顶点叫格点,△ABC 的顶点都在格点上.仅用无刻度的直尺,按要求画出下列图形. (1)△ABC 的周长为 ;(2)如图,点D 、P 分别是AB 与竖格线和横格线的交点,画出点P 关于过点D 竖格线的对称点Q ; (3)请在图中画出△ABC 的角平分线BE .【答案】(1)917; (2); (3) +(3分)图略(3分)图略;(4分)22.(本题满分10分)如图,在平行四边形ABCD 中,点E 为AD 的中点,延长CE 交BA 的延长线于点F . (1)求证:AB =AF ;(2)若BC =2AB ,∠BCD =100°,求∠ABE 的度数.【答案】(1);(5) (2)40(5) 证明略分分23.(本题满分10分)“低碳环保,你我同行”,公共自行车给市民出行带来切实方便,电视台记者在某区街头随机选取了市民进行调查,调查的问题是“您大概多九使用一次公共自行车?”,将本次调查结果归为四种情况:A 每天都用;B 经常使用:C 偶尔使用;D 从未使用.将这次调查情况整理并绘制如下两幅统计图:根据图中的信息,解答下列问题:(1)本次活动共有位市民参与调查:(2)补全条形统计图:(3)根据统计结果,若该区有46万市民,请估算每天都用公共自行车的市民约有多少人?【答案】(1)200; (2):10B:56;C :104; (3)2.3; A (3分),(3分)万人(4分) 24.(本题满分10分)随着高铁、地铁的大量兴建以及铁路的改扩建,人们的出行方式越来越多,出行越来越便捷.为保障旅客快捷、安全的出入车站,每个车站都修建了如图所示的出入闸口.某车站有四个出入闸口,分别记为A ,B ,C ,(1)一名乘客通过该站闸口时,选择B 闸口通过的概率是 ;(2)当两名乘客通过该站闸口时,请用画树状图或列表法求这两名乘客选择不同间口通过的概率.【答案】13(1);(3) (2)(7) 44分分 25.(本题满分10分)如图,已知⊙O 是Rt △ACB 的外接圆,过点O 作OD ⊥BC 于点D ,作∠BCE =∠BOD 交AB 延长线于点E .(1)求证:CE 是⊙O 的切线:(2)若22tan =∠BCE ,,求CE 的长.【答案】(1);(4) (2)=43(6) EC 证明略分分26.(本题满分10分)六月是水蜜桃大量上市的季节,某果农在销售时发现:若水蜜桃的售价为15元/千克,则日销售量为50千克,若售价每提高1元仟克,日销售量就减少2千克,现设水蜜桃售价为x 元/千克(x ≥15,且x 为正整数).(1)若某日销售量为40千克,则该日水蜜桃的单价为多少元?(2)若政府将销售价格定为不超过30元仟克,设每日销售额为W 元,求W 关于x 的函数表达式,并求W 的最大值和最小值:(3)为更好地促进果农的种植积极性,市政府加大对果农的补贴,每日给果农补贴a 元后(a 为正整数),果农发现最大日收入(日收入=销售额+政府补贴)还是不超过910元,并且只有5种不同的单价使日收入不少于900元,请直接写出所有符合题意的a 的值.【答案】2(1)20; (2)=280,800600; (3)108109110; W x x +(3分)最大元,最小元(4分)、、(3分)27.(本题满分10分)如图,已知矩形ABCD 中,E 是边AD 上一点,将△BDE 沿BE 折叠得到△BFB ,连接DF .(1)如图1,BF 落在直线BA 上时,求证△DFA ∽△BEA ;(2)如图2,当2=AB AD 时,BF 与边AD 相交时,在BB 上取一点G ,使∠BAG =∠DAF ,AG 与BF 交于点H ,① 求AGAF 的值: ② 当E 是AD 的中点时,若FD •FH =18,求AG 的长.证明略(4分)①分)②分)【答案】(1); (2)2;6;28.(本题满分10分)在平面直角坐标系中,抛物线m mx mx y 322--=与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C ,连接AC ,BC ,点A 关于BC 所在的直线的对称点A ′,连接A ′B 、A ′C .(1)点A 的坐标为 ,点B 的坐标为 .(2)若点A 落在抛物线的对称轴上,且在x 轴上方,求抛物线的解析式.(3)设抛物线顶点为Q ,若△BCQ 是锐角三角形,直接写出m 的取值范围.【答案】232322(1)1030; (2)3; (3)11; 3322y x x m m -=-++-<<-<<(,)(,)(2分)分)(4分)。
人教版九年级上册数学期末考试试卷(含解析)
人教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案,每小题3分,共30分)1.下列属于一元二次方程的是( )A .x 2-3x+y=0B .x 2+2x= C .2x 2=5x D .x(x 2-4x)=32.抛物线的顶点坐标为( )A .(3,0) B.(-3,0) C .(0,3) D .(0,-3)3.以下关于新型冠状病毒的防范宣传图标中是中心对称图形的是( )A . B . C . D .4.若关于x 的方程x 2﹣2x ﹣k =0有实数根,则k 的值可能为( )A .﹣4B .﹣3C .﹣2D .05.若△ABC ∽△DEF ,且S △ABC :S △DEF =3:4,则△ABC 与△DEF 的周长比为A .3:4B .4:3C 2D .26.如图,将就点C 按逆时针方向旋转75°后得到,若∠ACB =25°,则∠BCA′的度数为( )A .50°B .40°C .25°D .60°7.为了迎接春节,某厂10月份生产春联万幅,计划在12月份生产春联万幅,设11、12月份平均每月增长率为根据题意,可列出方程为()A .B .C .D .8.如图,AB 是⊙O 的直径,点C ,D 在⊙O 上.若∠ABD=55°,则∠BCD 的度数为( )1x 2y 2x 3=-()()2019nCoV -ABC A B C ''△50120,x ()()2501501120x x +++=()()250501501120x x ++++=()2501120x +=()50160x +=A .25°B .30°C .35°D .40°9.若二次函数的图象,过不同的六点、、、、、,则、、的大小关系是( )A .B .C .D .10.关于x 的方程k 2x 2+(2k-1)x+1 =0有实数根,则下列结论正确的是()A .当k=时,方程的两根互为相反数B .当k=0时,方程的根是x=-1C .若方程有实数根,则k≠0且k≤D .若方程有实数根,则k≤二、填空题。
九年级(上)期末数学试卷(附答案解析)
九年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列事件中是必然事件的是()A.平安夜下雪B.地球在自转的同时还不停的公转C.所有人15岁时身高必达到1.70米D.下雨时一定打雷2.下列图形既是轴对称图形又是中心对称图形的是()A.B. C.D.3.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3 B.(x﹣2)2=3 C.(x﹣2)2=5 D.(x+2)2=54.下列关系式中:①y=2x;;③y=﹣;④y=5x+1;⑤y=x2﹣1;⑥y=;⑦x y=11,y是x的反比例函数的共有()A.4个B.3个C.2个D.1个5.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=,BD=,则AB的长为()A.2 B.3 C.4 D.56.对于函数y=,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小7.在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x>1 B.x<1 C.x>﹣1 D.x<﹣18.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则阴影部分的面积为()A.π﹣1 B.2π﹣1 C.π﹣1 D.π﹣29.已知两点A(5,6)、B(7,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C的坐标为()A.(2,3)B.(3,1)C.(2,1)D.(3,3)10.如图,D、E分别是△ABC边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则的值为()A.B.C.D.11.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③二、填空题(共6小题,每小题3分,满分18分)13.在比例尺为1:1000 000的地图上,量得甲、乙两地的距离是15cm,则两地的实际距离km.14.如果两个相似三角形的相似比为2:3,那么这两个相似三角形的面积比为.15.某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有个.16.如图,正六边形ABCDEF内接于圆O,半径为4,则这个正六边形的边心距OM为.17.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.18.在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.(1)若α=60°,且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,此时∠CDB 的度数为(2)在图2中,点P不与点B、M重合,线段CQ的延长线交射线BM于点D,则∠CDB的度数为(用含α的代数式表示).(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B、M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,则α的取值范围是.三、解答题(共7小题,满分66分)19.已知关于x的一元二次方程x2+2x+k﹣1=0有实数根,k为正整数.(1)求k的值;(2)当此方程有两个非零的整数根时,求关于x的二次函数y=x2+2x+k﹣1的图象的对称轴和顶点坐标.20.在x2□2x□1的空格中,任意填上“+”“﹣”,求其中能构成完全平方的概率(列出表格或画出树形图)21.如图,在平面直角坐标系中,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,与反比例函数y=的图象交于C、D两点,DE⊥x轴于点E,已知C点的坐标是(﹣6,﹣1),DE=3.(1)求反比例函数与一次函数的解析式.(2)根据图象直接回答:当x为何值时,一次函数的值小于反比例函数的值.22.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知圆心0到BD的距离为3,求AD的长.23.一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x 倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤1).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为元,今年生产的这种玩具每件的出厂价为元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.24.如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=5,AD=时,求线段BG的长.25.已知二次函数的图象如图.(1)求它的对称轴与x轴交点D的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x轴,y轴的交点分别为A、B、C 三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列事件中是必然事件的是()A.平安夜下雪B.地球在自转的同时还不停的公转C.所有人15岁时身高必达到1.70米D.下雨时一定打雷【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、平安夜下雪是随机事件,故A错误;B、地球在自转的同时还不停的公转,是必然事件,故B正确;C、所有人15岁时身高必达到1.70米是随机事件,故C错误;D、下雪时一定打雷是不可能事件,故D错误;故选:B.2.下列图形既是轴对称图形又是中心对称图形的是()A.B. C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可作出判断.【解答】解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,也不是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:A.3.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3 B.(x﹣2)2=3 C.(x﹣2)2=5 D.(x+2)2=5【分析】方程常数项移到右边,两边加上4变形后,即可得到结果.【解答】解:方程移项得:x2+4x=﹣1,配方得:x2+4x+4=3,即(x+2)2=3.故选A.4.下列关系式中:①y=2x;;③y=﹣;④y=5x+1;⑤y=x2﹣1;⑥y=;⑦xy=11,y是x的反比例函数的共有()A.4个B.3个C.2个D.1个【分析】分别根据反比例函数、二次函数及一次函数的定义对各小题进行逐一分析即可.【解答】解:①y=2x是正比例函数;可化为y=5x,是正比例函数;③y=﹣符合反比例函数的定义,是反比例函数;④y=5x+1是一次函数;⑤y=x2﹣1是二次函数;⑥y=不是函数;⑦xy=11可化为y=,符合反比例函数的定义,是反比例函数.故选C.5.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=,BD=,则AB的长为()A.2 B.3 C.4 D.5【分析】根据垂径定理和相交弦定理求解.【解答】解:连接OD.由垂径定理得HD=,由勾股定理得HB=1,设圆O的半径为R,在Rt△ODH中,则R2=()2+(R﹣1)2,由此得2R=3,或由相交弦定理得()2=1×(2R﹣1),由此得2R=3,所以AB=3故选B.6.对于函数y=,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小【分析】根据反比例函数的性质:对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大解答即可.【解答】解:函数y=的图象位于第一、第三象限,A正确;图象既是轴对称图形又是中心对称图形,B正确;当x>0时,y随x的增大而减小,C错误;当x<0时,y随x的增大而减小,D正确,由于该题选择错误的,故选:C.7.在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x>1 B.x<1 C.x>﹣1 D.x<﹣1【分析】抛物线y=﹣x2+2x+1中的对称轴是直线x=1,开口向下,x<1时,y随x的增大而增大.【解答】解:∵a=﹣1<0,∴二次函数图象开口向下,又∵对称轴是直线x=﹣=1,∴当x<1时,函数图象在对称轴的左边,y随x的增大而增大.故选B.8.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则阴影部分的面积为()A.π﹣1 B.2π﹣1 C.π﹣1 D.π﹣2【分析】已知BC为直径,则∠CDB=90°,在等腰直角三角形ABC中,CD垂直平分AB,CD=DB,D为半圆的中点,阴影部分的面积可以看做是扇形ACB的面积与△ADC的面积之差.【解答】解:在Rt△ACB中,AB==2,∵BC是半圆的直径,∴∠CDB=90°,在等腰Rt△ACB中,CD垂直平分AB,CD=BD=,∴D为半圆的中点,S阴影部分=S扇形ACB﹣S△ADC=π×22﹣×()2=π﹣1.故选A.9.已知两点A(5,6)、B(7,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C的坐标为()A.(2,3)B.(3,1)C.(2,1)D.(3,3)【分析】先根据点平移的规律得到A点平移后的对应点的坐标为(4,6),然后根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k求解.【解答】解:∵线段AB向左平移一个单位,∴A点平移后的对应点的坐标为(4,6),∴点C的坐标为(4×,6×),即(2,3).故选A.10.如图,D、E分别是△ABC边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则的值为()A.B.C.D.【分析】由S△BDE:S△CDE=1:3,得到=,于是得到=,根据DE∥AC,推出△BDE∽△ABC,根据相似三角形的性质即可得到结论.【解答】解:∵S△BDE:S△CDE=1:3,∴=,∴=,∵DE∥AC,∴△BDE∽△ABC,∴==,故选D.11.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)【分析】作CH⊥x轴于H,如图,先根据一次函数图象上点的坐标特征确定A(2,2),再利用旋转的性质得BC=BA=2,∠ABC=60°,则∠CBH=30°,然后在Rt△CBH中,利用含30度的直角三角形三边的关系可计算出CH=BC=,BH=CH=3,所以OH=BH﹣OB=3﹣2=1,于是可写出C点坐标.【解答】解:作CH⊥x轴于H,如图,∵点B的坐标为(2,0),AB⊥x轴于点B,∴A点横坐标为2,当x=2时,y=x=2,∴A(2,2),∵△ABO绕点B逆时针旋转60°得到△CBD,∴BC=BA=2,∠ABC=60°,∴∠CBH=30°,在Rt△CBH中,CH=BC=,BH=CH=3,OH=BH﹣OB=3﹣2=1,∴C(﹣1,).故选:A.12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③【分析】①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.【解答】解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x=﹣=1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,∴=﹣3,则a=﹣.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.故③正确;④根据题意知,a=﹣,﹣=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,∴≤c≤4,即≤n≤4.故④错误.综上所述,正确的说法有①③.故选D.二、填空题(共6小题,每小题3分,满分18分)13.在比例尺为1:1000 000的地图上,量得甲、乙两地的距离是15cm,则两地的实际距离150 km.【分析】设两地的实际距离为xcm,根据比例尺的定义得到15:x=1:1000 000,然后根据比例的性质计算出x,再把单位由cm化为km即可.【解答】解:设两地的实际距离为xcm,根据题意得15:x=1:1000 000,所以x=15000000cm=150km.故答案为150.14.如果两个相似三角形的相似比为2:3,那么这两个相似三角形的面积比为4:9.【分析】根据相似三角形的面积比等于相似比的平方可直接得出结果.【解答】解:∵两个相似三角形的相似比为2:3,∴这两个相似三角形的面积比为4:9.15.某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有18个.【分析】让球的总数×黄色玻璃球的概率即为所求的黄色玻璃球的球数.【解答】解:∵摸到红球、黄球、蓝球的频率为35%、25%和40%,∴摸到黄球的概率为0.25,故口袋中黄色玻璃球有0.25×72=18(个).故答案为:18.16.如图,正六边形ABCDEF内接于圆O,半径为4,则这个正六边形的边心距OM为2.【分析】由正六边形的性质得出∠AOM=60°,OA=4,求出∠OAM=30°,由含30°角的直角三角形的性质得出OM=OA=2即可.【解答】解:∵六边形ABCDEF是正六边形,OM⊥AC,∴∠AOM=60°,∠OMA=90°,OA=4,∴∠OAM=30°,∴OM=OA=2,即这个正三角形的边心距OM为2;故答案为:2.17.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为2.【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【解答】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线上,∴四边形AEOD的面积为1,∵点B在双曲线y=上,且AB∥x轴,∴四边形BEOC的面积为3,∴四边形ABCD为矩形,则它的面积为3﹣1=2.故答案为:2.18.在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.(1)若α=60°,且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,此时∠CDB 的度数为30°(2)在图2中,点P不与点B、M重合,线段CQ的延长线交射线BM于点D,则∠CDB的度数为(用含α的代数式表示)90°﹣α.(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B、M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,则α的取值范围是45°<α<60°.【分析】(1)由条件可得出AB=BC=AC,再利用旋转可得出QM=MC,证得CB=CD=BA,再由三角形外角的性质即可得出结论;(2)由(1)可得BM为AC的垂直平分线,结合条件可以得出Q,C,A在以P为圆心,PA为半径的圆上,由圆周角定理可得∠ACQ=∠APQ=α,可得出∠CDB和α的关系;(3)借助(2)的结论和PQ=QD,可得出∠PAD=∠PCQ=∠PQC=2∠CDB=180°﹣2α,结合∠BAD >∠PAD>∠MAD,代入可得出α的范围.【解答】解:(1)如图1,∵BA=BC,∠BAC=60°,∴AB=BC=AC,∠ABC=60°,∵M为AC的中点,∴MB⊥AC,∠CBM=30°,AM=MC.∵PQ由PA旋转而成,∴AP=PQ=QM=MC.∵∠AMQ=2α=120°,∴∠MCQ=60°,∠QMD=30°,∴∠MQC=60°.∴∠CDB=30°.故答案为:30°;(2)如图2,连接PC,∵由(1)得BM垂直平分AC,∴AP=PC,∠ADB=∠CDB,∠PAD=∠PCD,又∵PQ=PA,∴PQ=PC=PA,∴Q,C,A在以P为圆心,PA为半径的圆上,∴∠ACQ=∠APQ=α,∴∠BAC=∠ACD,∴DC∥BA,∴∠CDB=∠ABD=90°﹣α.故答案为:90°﹣α;(3)∵∠CDB=90°﹣α,且PQ=QD,∴∠PAD=∠PCQ=∠PQC=2∠CDB=180°﹣2α,∵点P不与点B,M重合,∴∠BAD>∠PAD>∠MAD,∴2α>180°﹣2α>α,∴45°<α<60°.故答案为:45°<α<60°.三、解答题(共7小题,满分66分)19.已知关于x的一元二次方程x2+2x+k﹣1=0有实数根,k为正整数.(1)求k的值;(2)当此方程有两个非零的整数根时,求关于x的二次函数y=x2+2x+k﹣1的图象的对称轴和顶点坐标.【分析】(1)根据一元二次方程x2+2x+k﹣1=0有实数根,可推△≥0,求出k的取值范围,得出k 的数值即可;(2)分别把k的值代入方程2x2+4x+k﹣1=0,解得结果根据方程有两个非零的整数根进行分析,确定k的值,进一步利用二次函数的性质确定对称轴和顶点坐标.【解答】解:(1)∵关于x的一元二次方程x2+2x+k﹣1=0有实数根,∴△=4﹣4(k﹣1)≥0.∴k≤2.∵k为正整数,∴k=1,2;(2)设方程x2+2x+k﹣1=0的两根为x1,x2,则x1+x2=﹣2,x1•x2=k﹣1,当k=1时,方程x2+2x+k﹣1=0有一个根为零;当k=2时,方程x2+2x+k﹣1=0有两个相同的非零实数根﹣1.k=2符合题意.二次函数y=x2+2x+1=(x+1)2,对称轴是x=﹣1,顶点坐标是(﹣1,0).20.在x2□2x□1的空格中,任意填上“+”“﹣”,求其中能构成完全平方的概率(列出表格或画出树形图)【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中能构成完全平方的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有4种等可能的结果,其中能构成完全平方的有2种情况,∴其中能构成完全平方的概率为:=.21.如图,在平面直角坐标系中,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,与反比例函数y=的图象交于C、D两点,DE⊥x轴于点E,已知C点的坐标是(﹣6,﹣1),DE=3.(1)求反比例函数与一次函数的解析式.(2)根据图象直接回答:当x为何值时,一次函数的值小于反比例函数的值.【分析】(1)先由点C的坐标求出反比例函数的关系式,再由DE=3,求出点D的坐标,把点C,点D的坐标代入一次函数关系式求出k,b即可求一次函数的关系式.(2)由图象可知:一次函数的值小于反比例函数的值.【解答】解:(1)点C(﹣6,﹣1)在反比例函数y=的图象上,∴m=﹣6×(﹣1)=6,∴反比例函数的关系式为y=,∵点D在反比例函数y=上,且DE=3,∴y=3,代入求得:x=2,∴点D的坐标为(2,3).∵C、D两点在直线y=kx+b上,∴,解得:,∴一次函数的关系式为y=x+2.(2)由图象可知:当x<﹣6或0<x<2时,一次函数的值小于反比例函数的值.22.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知圆心0到BD的距离为3,求AD的长.【分析】(1)由同弧所对的圆周角相等求得∠CAB=∠CDB=40°,然后根据平角是180°求得∠BPD=115°;最后在△BPD中依据三角形内角和定理求∠B即可;(2)过点O作OE⊥BD于点E,则OE=3.根据直径所对的圆周角是直角,以及平行线的判定知OE∥AD;又由O是直径AB的半径可以判定O是AB的中点,由此可以判定OE是△ABD的中位线;最后根据三角形的中位线定理计算AD的长度.【解答】解:(1)∵∠CAB=∠CDB(同弧所对的圆周角相等),∠CAB=40°,∴∠CDB=40°;又∵∠APD=65°,∴∠BPD=115°;∴在△BPD中,∴∠B=180°﹣∠CDB﹣∠BPD=25°;(2)过点O作OE⊥BD于点E,则OE=3.∵AB是直径,∴AD⊥BD(直径所对的圆周角是直角);∴OE∥AD;又∵O是AB的中点,∴OE是△ABD的中位线,∴AD=2OE=6.23.一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x 倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤1).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为(10+7x)元,今年生产的这种玩具每件的出厂价为(12+6x)元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.【分析】(1)根据题意今年这种玩具每件的成本比去年成本增加0.7x倍,即为(10+10•0.7x)元/件;这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,即为(12+12•0.5x)元/件;(2)今年这种玩具的每件利润y等于每件的出厂价减去每件的成本价,即y=(12+6x)﹣(10+7x),然后整理即可;(3)今年的年销售量为(2+2x)万件,再根据年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量,得到w=2(1+x)(2﹣x),然后把它配成顶点式,利用二次函数的最值问题即可得到答案.【解答】解:(1)10+7x;12+6x;(2)y=(12+6x)﹣(10+7x),∴y=2﹣x (0<x≤1);(3)∵w=2(1+x)•y=2(1+x)(2﹣x)=﹣2x2+2x+4,∴w=﹣2(x﹣0.5)2+4.5∵﹣2<0,0<x≤1,∴w有最大值,∴当x=0.5时,w最大=4.5(万元).答:当x为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元.24.如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=5,AD=时,求线段BG的长.【分析】(1)由△ABC是等腰直角三角形和ADEF是正方形得到判断△ABD≌△ACF的条件;(2)由全等得到∠BGC=90°,利用勾股定理计算即可.【解答】解:(1)BD=CF成立.理由:∵△ABC是等腰直角三角形,∴AB=AC,∵ADEF是正方形,∴AD=AF,∠BAC=∠DAF,∴∠BAC﹣∠DAC=∠DAF﹣∠DAC,即∠BAD=∠CAF,在△ABD和△ACF中∴△ABD≌△ACF,∴BD=CF.(2)①由(1)全等得:∠ABD=∠ACE,∴∠GBC+∠GCB=∠GBC+∠ACF+∠ACB=(∠ABG+∠GBC)+∠ACB=45°+45°=90°,∴∠BGC=90°,∴BG⊥CF.②过D作DH⊥AB于H,AH=DH=AD÷=1,∴BH=3,∴BD==,延长AD交BC于P,则BP=CP,(AD平分∠BAC,AB=AC,等腰三角形三线合一)由∠BCG=90°知:DP∥CG,∴=1,∴BG=2BD=2.25.已知二次函数的图象如图.(1)求它的对称轴与x轴交点D的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x轴,y轴的交点分别为A、B、C 三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.【分析】(1)根据对称轴公式求出x=﹣,求出即可;(2)假设出平移后的解析式即可得出图象与x轴的交点坐标,再利用勾股定理求出即可;(3)由抛物线的解析式可得,A,B,C,M各点的坐标,再利用勾股定理逆定理求出CD⊥CM,即可证明.【解答】解:(1)由,得x=﹣=﹣=3,∴D(3,0);(2)方法一:如图1,设平移后的抛物线的解析式为,则C(0,k)OC=k,令y=0即,得,x2=3﹣,∴A,B,∴,=2k2+8k+36,∵AC2+BC2=AB2即:2k2+8k+36=16k+36,得k1=4,k2=0(舍去),∴抛物线的解析式为,方法二:∵,∴顶点坐标,设抛物线向上平移h个单位,则得到C(0,h),顶点坐标,∴平移后的抛物线:,当y=0时,,得,x2=3+,∴A,B,∵∠ACB=90°,∴△AOC∽△COB,则OC2=OA•OB,即,解得h1=4,h2=0(不合题意舍去),∴平移后的抛物线:;(3)方法一:如图2,由抛物线的解析式可得,A(﹣2,0),B(8,0),C(0,4),M,过C、M作直线,连接CD,过M作MH垂直y轴于H,则MH=3,∴,,在Rt△COD中,CD==AD,∴点C在⊙D上,∵,∴DM2=CM2+CD2∴△CDM是直角三角形,∴CD⊥CM,∴直线CM与⊙D相切.方法二:如图3,由抛物线的解析式可得A(﹣2,0),B(8,0),C(0,4),M,作直线CM,过D作DE⊥CM于E,过M作MH垂直y轴于H,则MH=3,,由勾股定理得,∵DM∥OC,∴∠MCH=∠EMD,∴Rt△CMH∽Rt△DME,∴得DE=5,由(2)知AB=10,∴⊙D的半径为5.∴直线CM与⊙D相切.。
九年级(上)期末数学试卷(含答案解析)
九年级(上)期末数学试卷一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一个选项符合题意.1.cos60°•sin60°的值等于()A.B.C.D.2.一元二次方程x2﹣81=0的解是()A.x=﹣9 B.x=9 C.x1=9,x2=﹣9 D.x=813.下列函数中,当x>0时,y的值随x的值增大而增大的是()A.y=﹣x2B.y=﹣C.y=﹣x+1 D.y=4.三角尺在灯泡O的照射下在墙上形成的影子如图所示.若OA=20cm,OA′=50cm,则这个三角尺的周长与它在墙上形成的影子的周长的比是()A.5:2 B.2:5 C.4:25 D.25:45.已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC 的度数是()A.45°B.60°C.75°D.90°6.将函数y=2x2向左平移2个单位,再向下平移3个单位得到的新函数是()A.y=2(x+2)2+3 B.y=2(x﹣2)2+3 C.y=2(x+2)2﹣3 D.y=2(x﹣2)2﹣37.一元二次方程x2﹣5x+7=0的根的情况是()A.有两个不相等的实数根 B.只有一个实数根C.有两个相等的实数根D.没有实数根8.在Rt△ABC中,∠C=90°,AB=10,tanA=,则AC的长是()A.3 B.4 C.6 D.89.下列命题中,正确的是()A.平分弦的直线必垂直于这条弦B.垂直平分弦的直线必平分这条弦所对的弧C.平分弦的直径必垂直于这条弦,并且平分这条弦所对的两条弧D.垂直于弦的直线必过圆心10.面积为2的直角三角形一直角边长为x,另一直角边长为y,则y与x的变化规律用图象大致表示为()A.B.C.D.11.小洋用一张半径为24cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸板的面积是()A.120πcm2B.240πcm2C.260πcm2D.480πcm212.如图,在等边△ABC中,BC=6,点D,E分别在AB,AC上,DE∥BC,将△ADE沿DE翻折后,点A落在点A′处.连结A A′并延长,交DE于点M,交BC于点N.如果点A′为MN的中点,那么△ADE的面积为()A.B.3C.6D.9二、填空题:本题共5小题,每小题3分,共15分,只要求填写最后结果.13.若关于x的方程ax2﹣4x+3=0有两个相等的实数根,则常数a的值是.14.圆内接四边形ABCD的内角∠A:∠B:∠C=2:3:4,则∠D=度.15.已知△ABC∽△DEF,且相似比为3:4,S△ABC=2cm2,则S△DEF=cm2.16.如图,⊙O的直径AB=10cm,C是⊙O上一点,点D平分,DE=2cm,则弦AC=.17.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为.三、解答题:本大题共8小题,共69分,解答题应写出文字说明、证明过程或演算步骤.18.按下列的要求解一元二次方程:(1)(因式分解法)x2+7x+12=0(2)(配方法)x2+4x+1=0.19.如图,一次函数y1=kx+b的图象与反比例函数的图象交于A(1,6),B(a,2)两点.(1)求一次函数与反比例函数的解析式;(2)直接写出y1≥y2时x的取值范围.20.如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)21.如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD.(1)求证:△ACD∽△ABC;(2)若AD=3,AB=7,求AC的长.22.某商场经营某种品牌的玩具,购进时的单价是20元,根据市场调查,在一段时间内,销售单价是30元时,销量是300件,而销售单价每涨1元,就会少售出10件玩具,若商场想获得利润3750元,并规定每件玩具的利润不得超过进价时单价的100%,问该玩具的销售单价应定为多少元?23.如图,抛物线经过点A、B、C.(1)求此抛物线的解析式;(2)若抛物线和x轴的另一个交点为D,求△ODC的面积.24.如图,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.(1)求证:BC为⊙O的切线;(2)若,AD=2,求线段BC的长.25.如图,对称轴为x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标.(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标.②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.参考答案与试题解析一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一个选项符合题意.1.cos60°•sin60°的值等于()A.B.C.D.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.【解答】解:cos60°•sin60°=×=,故选:D.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.2.一元二次方程x2﹣81=0的解是()A.x=﹣9 B.x=9 C.x1=9,x2=﹣9 D.x=81【考点】解一元二次方程-直接开平方法.【分析】首先移项,把﹣81移到等号右边,再两边直接开平方即可.【解答】解:x2﹣81=0,移项得:x2=81,两边直接开平方得:x=±9,到x1=9,x2=﹣9,故选:C.【点评】此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.3.下列函数中,当x>0时,y的值随x的值增大而增大的是()A.y=﹣x2B.y=﹣C.y=﹣x+1 D.y=【考点】二次函数的性质;一次函数的性质;反比例函数的性质.【分析】分别根据反比例函数与一次函数的性质进行解答即可.【解答】解:A、∵y=﹣x2,∴对称轴x=0,当x>0时,y随着x的增大而减小,故本选项错误;B、∵反比例函数y=﹣中,k=﹣1<0,∴当x>0时y随x的增大而增大,故本选项正确;C、∵k<0,∴y随x的增大而减小,故本选项错误;D、∵k>0,∴y随着x的增大而增大,故本选项错误.故选B.【点评】本题考查了一次函数、反比例函数以及二次函数的性质,主要掌握二次函数、反比例函数、正比例函数的增减性(单调性),是解题的关键,是一道难度中等的题目.4.三角尺在灯泡O的照射下在墙上形成的影子如图所示.若OA=20cm,OA′=50cm,则这个三角尺的周长与它在墙上形成的影子的周长的比是()A.5:2 B.2:5 C.4:25 D.25:4【考点】相似三角形的应用.【分析】先根据相似三角形对应边成比例求出三角尺与影子的相似比,再根据相似三角形周长的比等于相似比解答即可.【解答】解:如图,∵OA=20cm,OA′=50cm,∴===,∵三角尺与影子是相似三角形,∴三角尺的周长与它在墙上形成的影子的周长的比==2:5.故选:B.【点评】本题考查了相似三角形的应用,注意利用了相似三角形对应边成比例的性质,周长的比等于相似比的性质.5.已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC 的度数是()A.45°B.60°C.75°D.90°【考点】圆周角定理;正多边形和圆.【分析】连接OB、OC,首先根据正方形的性质,得∠BOC=90°,再根据圆周角定理,得∠BPC=45°.【解答】解:如图,连接OB、OC,则∠BOC=90°,根据圆周角定理,得:∠BPC=∠BOC=45°.故选A.【点评】本题主要考查了正方形的性质和圆周角定理的应用.这里注意:根据90°的圆周角所对的弦是直径,知正方形对角线的交点即为其外接圆的圆心.6.将函数y=2x2向左平移2个单位,再向下平移3个单位得到的新函数是()A.y=2(x+2)2+3 B.y=2(x﹣2)2+3 C.y=2(x+2)2﹣3 D.y=2(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】由于所给的函数解析式为顶点坐标式,可直接利用“上加下减、左加右减”的平移规律进行解答.【解答】解:将函数y=2x2向左平移2个单位,得:y=2(x+2)2;再向下平移3个单位,得:y=2(x+2)2﹣3;故选C.【点评】此题主要考查的是二次函数图象的平移规律,即:左加右减,上加下减.7.一元二次方程x2﹣5x+7=0的根的情况是()A.有两个不相等的实数根 B.只有一个实数根C.有两个相等的实数根D.没有实数根【考点】根的判别式.【分析】求出根的判别式△的值再进行判断即可.【解答】解:一元二次方程x2﹣5x+7=0中,△=(﹣5)2﹣4×1×7=﹣3<0,所以原方程无实数根.故选:D.【点评】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.在Rt△ABC中,∠C=90°,AB=10,tanA=,则AC的长是()A.3 B.4 C.6 D.8【考点】锐角三角函数的定义;勾股定理.【分析】根据锐角三角函数正切等于对边比邻边,可得BC与AC的关系,根据勾股定理,可得AC 的长.【解答】解:由tanA==,得BC=3x,CA=4x,由勾股定理,得BC2+AC2=AB2,即(3x)2+(4x)2=100,解得x=2,AC=4x=4×2=8.故选:D.【点评】本题考查了锐角三角函数,利用了锐角三角函数正切等于对边比邻边,还利用了勾股定理.9.下列命题中,正确的是()A.平分弦的直线必垂直于这条弦B.垂直平分弦的直线必平分这条弦所对的弧C.平分弦的直径必垂直于这条弦,并且平分这条弦所对的两条弧D.垂直于弦的直线必过圆心【考点】命题与定理.【分析】根据垂径定理及其推论对各选项分别进行判断.【解答】解:A、平分弦(非直径)的直径必垂直于这条弦,所以A选项错误;B、垂直平分弦的直线必平分这条弦所对的弧,所以B选项正确;C、平分弦(非直径)的直径必垂直于这条弦,并且平分这条弦所对的两条弧,所以C选项错误;D、垂直平分弦的直线必过圆心,所以D选项错误.故选B.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.10.面积为2的直角三角形一直角边长为x,另一直角边长为y,则y与x的变化规律用图象大致表示为()A.B.C.D.【考点】反比例函数的应用;反比例函数的图象.【分析】根据题意有:xy=4;故y与x之间的函数图象为反比例函数,且根据x y实际意义x、y应大于0,其图象在第一象限.【解答】解:∵xy=4,∴xy=4,∴y=(x>0,y>0),当x=1时,y=4,当x=4时,y=1,故选:C.【点评】考查了反比例函数的图象及应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.11.小洋用一张半径为24cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸板的面积是()A.120πcm2B.240πcm2C.260πcm2D.480πcm2【考点】圆锥的计算.【专题】计算题.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【解答】解:圆锥的侧面积=•2π•10•24=240π(cm2),所以这张扇形纸板的面积为240πcm2.故选B.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.12.如图,在等边△ABC中,BC=6,点D,E分别在AB,AC上,DE∥BC,将△ADE沿DE翻折后,点A落在点A′处.连结A A′并延长,交DE于点M,交BC于点N.如果点A′为MN的中点,那么△ADE的面积为()A.B.3C.6D.9【考点】翻折变换(折叠问题).【分析】利用△ADE沿DE翻折的特性求出AM=A′M,再由DE∥BC,得到=,求得AE,再求出AM,利用△ADE的面积=DE•AM求解.【解答】解:△ADE沿DE翻折后,点A落在点A′处∴AM=A′M,又∵A′为MN的中点,∴AM=A′M=A′N,∵DE∥AC,∴=,∵△ABC是等边三角形,BC=6,∴BC=AC,∴=∴AE=2,∵AN是△ABC的BC边上的高,中线及角平分线,∴∠MAE=30°,∴AM=,ME=1,∴DE=2,∴△ADE的面积=DE•AM=××2=,故选:A.【点评】本题主要考查了三角形的折叠问题上,解题的关键是运用比例求出AE,再求面积.二、填空题:本题共5小题,每小题3分,共15分,只要求填写最后结果.13.若关于x的方程ax2﹣4x+3=0有两个相等的实数根,则常数a的值是.【考点】根的判别式.【分析】根据判别式的意义得到△=(﹣4)2﹣4a×3=0,然后求解即可.【解答】解:根据题意得△=(﹣4)2﹣4a×3=0,解得a=.故答案为.【点评】本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.14.圆内接四边形ABCD的内角∠A:∠B:∠C=2:3:4,则∠D=90度.【考点】圆内接四边形的性质.【分析】根据圆内接四边形的性质可求得四个角的比值,再根据四边形的内角和为360°,从而求得∠D的度数.【解答】解:∵圆内接四边形的对角互补∴∠A:∠B:∠C:∠D=2:3:4:3设∠A=2x,则∠B=3x,∠C=4x,∠D=3x∴2x+3x+4x+3x=360°∴x=30°∴∠D=90°.【点评】本题考查圆内接四边形的性质和四边形的内角和为360°的运用.15.已知△ABC∽△DEF,且相似比为3:4,S△ABC=2cm2,则S△DEF=cm2.【考点】相似三角形的性质.【分析】根据相似三角形的性质,相似三角形面积的比等于相似比的平方,可求S△DEF的值.【解答】解:∵△ABC∽△DEF,且相似比为3:4∴S△ABC:S△DEF=9:16∴S△DEF=.【点评】本题主要考查了相似三角形的性质,相似三角形面积的比等于相似比的平方.16.如图,⊙O的直径AB=10cm,C是⊙O上一点,点D平分,DE=2cm,则弦AC=6cm.【考点】圆周角定理;垂径定理.【分析】由题意可知OD平分BC,OE为△ABC的中位线,根据直径求出半径,进而求出OE的长度,再根据中位线原理即可解答.【解答】解:∵点D平分,∴OD平分BC,∴OE为△ABC的中位线,又∵⊙O的直径AB=10cm,∴OD=5cm,DE=2cm,∴0E=3cm则弦AC=6cm.故答案为6cm.【点评】本题主要考查圆周角定理与垂径定理,垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.17.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为0.【考点】抛物线与x轴的交点.【专题】数形结合.【分析】依据抛物线的对称性求得与x轴的另一个交点,代入解析式即可.【解答】解:设抛物线与x轴的另一个交点是Q,∵抛物线的对称轴是过点(1,0),与x轴的一个交点是P(4,0),∴与x轴的另一个交点Q(﹣2,0),把(﹣2,0)代入解析式得:0=4a﹣2b+c,∴4a﹣2b+c=0,故答案为:0.【点评】本题考查了抛物线的对称性,知道与x轴的一个交点和对称轴,能够表示出与x轴的另一个交点,求得另一个交点坐标是本题的关键.三、解答题:本大题共8小题,共69分,解答题应写出文字说明、证明过程或演算步骤.18.按下列的要求解一元二次方程:(1)(因式分解法)x2+7x+12=0(2)(配方法)x2+4x+1=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【专题】计算题.【分析】(1)利用因式分解法把原方程化为x+4=0或x+3=0,然后解两个一次方程即可;(2)利用配方法得到(x+2)2=3,然后利用直接开平方法解方程.【解答】解:(1)(x+4)(x+3)=0,x+4=0或x+3=0,所以x1=﹣4,x2=﹣3;(2)x2+4x=﹣1,x2+4x+4=3,(x+2)2=3,x+2=±所以x1=﹣2+,x2=﹣2﹣.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.19.如图,一次函数y1=kx+b的图象与反比例函数的图象交于A(1,6),B(a,2)两点.(1)求一次函数与反比例函数的解析式;(2)直接写出y1≥y2时x的取值范围.【考点】反比例函数与一次函数的交点问题.【专题】探究型.【分析】(1)先把A(1,6)代入反比例函数的解析式求出m的值,进而可得出反比例函数的解析式,再把B(a,2)代入反比例函数的解析式即可求出a的值,把点A(1,6),B(3,2)代入函数y1=kx+b即可求出k、b的值,进而得出一次函数的解析式;(2)根据函数图象可知,当x在A、B点的横坐标之间时,一次函数的图象在反比例函数图象的上方,再由A、B两点的横坐标即可求出x的取值范围.【解答】解:(1)∵点A(1,6),B(a,2)在y2=的图象上,∴=6,m=6.∴反比例函数的解析式为:y2=,∴=2,a==3,∵点A(1,6),B(3,2)在函数y1=kx+b的图象上,∴,解这个方程组,得∴一次函数的解析式为y1=﹣2x+8,反比例函数的解析式为y2=;(2)由函数图象可知,当x在A、B之间时一次函数的图象在反比例函数图象的上方,∵点A(1,6),B(3,2),∴1≤x≤3.【点评】本题考查的是反比例函数与一次函数的交点问题,能利用数形结合求不等式的解集是解答此题的关键.20.如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)【考点】解直角三角形的应用-仰角俯角问题.【专题】几何图形问题.【分析】首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.【解答】解:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BC•sin∠CBD=10×=5≈5×1.732=8.7(米).答:这棵树CD的高度为8.7米.【点评】本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.21.如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD.(1)求证:△ACD∽△ABC;(2)若AD=3,AB=7,求AC的长.【考点】相似三角形的判定与性质.【分析】(1)根据两角对应相等,两三角形相似即可证明△ADC∽△ACB;(2)根据相似三角形的对应边成比例得出AC:AB=AD:AC,即AC2=AB•AD,将数值代入计算即可求出AC的长.【解答】(1)证明:在△ADC与△ACB中,∵∠ABC=∠ACD,∠A=∠A,∴△ACD∽△ABC;(2)解:∵△ACD∽△ABC,∴AC:AB=AD:AC,∴AC2=AB•AD,∵AD=2,AB=7,∴AC2=7×2=14,∴AC=.【点评】本题考查的是相似三角形的判定与性质,用到的知识点为:①如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(简叙为两角对应相等,两三角形相似);②相似三角形的对应边成比例.22.某商场经营某种品牌的玩具,购进时的单价是20元,根据市场调查,在一段时间内,销售单价是30元时,销量是300件,而销售单价每涨1元,就会少售出10件玩具,若商场想获得利润3750元,并规定每件玩具的利润不得超过进价时单价的100%,问该玩具的销售单价应定为多少元?【考点】一元二次方程的应用.【专题】销售问题.【分析】利用每件利润×销量=3750,进而求出答案即可.【解答】解:设该玩具的销售单价为x元,则依题意有:[300﹣10(x﹣30)](x﹣20)=3750化简得x2﹣80x+1575=0解这个方程得:x1=35,x2=45因为利润不得超过原价的100%,所以x2=45应舍去.答:该玩具应定价为35元.【点评】考查了一元二次方程的应用,解题的关键是了解总利润等于单件利润乘以销量,难度不大.23.如图,抛物线经过点A、B、C.(1)求此抛物线的解析式;(2)若抛物线和x轴的另一个交点为D,求△ODC的面积.【考点】待定系数法求二次函数解析式;抛物线与x轴的交点.【专题】计算题.【分析】(1)由于已知抛物线的顶点坐标,则可设顶点式y=a(x﹣1)2﹣4,然后把A点坐标代入求出a的值即可;(2)利用抛物线的对称性易得D点坐标,然后根据三角形面积公式求解.【解答】解:(1)设抛物线的解析式为y=a(x﹣1)2﹣4,把A(﹣1,0)代入得a•(﹣1﹣1)2﹣4=0,解得a=1,所以抛物线的解析式为y=(x﹣1)2﹣4;(2)因为抛物线的对称轴为直线x=1,则点A(﹣1,0)关于直线x=1的对称点D的坐标为(3,0),所以△ODC的面积=×3×4=6.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.24.如图,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.(1)求证:BC为⊙O的切线;(2)若,AD=2,求线段BC的长.【考点】切线的判定与性质;勾股定理.【专题】计算题.【分析】(1)因为BC经过圆的半径的外端,只要证明AB⊥BC即可.连接OE、OC,利用△OBC≌△OEC,得到∠OBC=90°即可证明BC为⊙O的切线.(2)作DF⊥BC于点F,构造Rt△DFC,利用勾股定理解答即可.【解答】(1)证明:连接OE、OC.∵CB=CE,OB=OE,OC=OC,∴△OBC≌△OEC.∴∠OBC=∠OEC.又∵DE与⊙O相切于点E,∴∠OEC=90°.∴∠OBC=90°.∴BC为⊙O的切线.(2)解:过点D作DF⊥BC于点F,则四边形ABFD是矩形,BF=AD=2,DF=AB=2.∵AD、DC、BC分别切⊙O于点A、E、B,∴DA=DE,CE=CB.设BC为x,则CF=x﹣2,DC=x+2.在Rt△DFC中,(x+2)2﹣(x﹣2)2=(2)2,解得x=.∴BC=.【点评】此题考查了切线的判定和勾股定理的应用,作出辅助线构造直角三角形和全等三角形是解题的关键.25.如图,对称轴为x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标.(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标.②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.【考点】二次函数综合题.【专题】压轴题.【分析】(1)由抛物线y=ax2+bx+c的对称轴为直线x=﹣1,交x轴于A、B两点,其中A点的坐标为(﹣3,0),根据二次函数的对称性,即可求得B点的坐标;(2)①a=1时,先由对称轴为直线x=﹣1,求出b的值,再将B(1,0)代入,求出二次函数的解析式为y=x2+2x﹣3,得到C点坐标,然后设P点坐标为(x,x2+2x﹣3),根据S△POC=4S△BOC列出关于x的方程,解方程求出x的值,进而得到点P的坐标;②先运用待定系数法求出直线AC的解析式为y=﹣x﹣3,再设Q点坐标为(x,﹣x﹣3),则D点坐标为(x,x2+2x﹣3),然后用含x的代数式表示QD,根据二次函数的性质即可求出线段QD长度的最大值.【解答】解:(1)∵对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=﹣1对称,∵点A的坐标为(﹣3,0),∴点B的坐标为(1,0);(2)①a=1时,∵抛物线y=x2+bx+c的对称轴为直线x=﹣1,∴=﹣1,解得b=2.将B(1,0)代入y=x2+2x+c,得1+2+c=0,解得c=﹣3.则二次函数的解析式为y=x2+2x﹣3,∴抛物线与y轴的交点C的坐标为(0,﹣3),OC=3.设P点坐标为(x,x2+2x﹣3),∵S△POC=4S△BOC,∴×3×|x|=4××3×1,∴|x|=4,x=±4.当x=4时,x2+2x﹣3=16+8﹣3=21;当x=﹣4时,x2+2x﹣3=16﹣8﹣3=5.∴点P的坐标为(4,21)或(﹣4,5);②设直线AC的解析式为y=kx+t (k≠0)将A(﹣3,0),C(0,﹣3)代入,得,解得,即直线AC的解析式为y=﹣x﹣3.设Q点坐标为(x,﹣x﹣3)(﹣3≤x≤0),则D点坐标为(x,x2+2x﹣3),QD=(﹣x﹣3)﹣(x2+2x﹣3)=﹣x2﹣3x=﹣(x+)2+,∴当x=﹣时,QD有最大值.【点评】此题考查了待定系数法求二次函数、一次函数的解析式,二次函数的性质以及三角形面积、线段长度问题.此题难度适中,解题的关键是运用方程思想与数形结合思想.。
2023-2024学年北京市门头沟区九年级上学期期末数学试题+答案解析
2023-2024学年北京市门头沟区九年级上学期期末数学试题一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.如果,那么的值是()A. B. C. D.2.将抛物线向上平移3个单位,向左移动1个单位,所得抛物线的解析式是()A. B. C. D.3.如图所示的网格是边长为1的正方形网格,点A,B,C是网格线交点,则()A. B. C. D.4.已知的半径为4,如果OP的长为3,则点P在()A.内B.上C.外D.不确定5.一个多边形的内角和是外角和的2倍.这个多边形的边数为()A.5B.6C.7D.86.若点,,都在反比例函数的图象上,则,的大小关系是()A. B. C. D.7.一个圆柱形管件,其横截面如图所示,管内存有一些水阴影部分,测得水面宽AB为8cm,水的最大深度CD为2cm,则此管件的直径为()A.5cmB.8cmC.10cmD.12cm8.二次函数的图象是一条抛物线,自变量x与函数y的部分对应值如下表:x…0123…y…00…有如下结论:①抛物线的开口向上②抛物线的对称轴是直线③抛物线与y轴的交点坐标为④由抛物线可知的解集是其中正确的是()A.①②B.①②③C.①②④D.①②③④二、填空题:本题共7小题,每小题3分,共21分。
9.已知二次函数的顶点坐标为__________.10.如图,在中,,,,则__________.11.如图,在中,,,则的度数是__________.12.写出一个二次函数,其图象满足:①开口向上;②对称轴为,这个二次函数的表达式可以是__________.13.如图,已知点P是反比例函数上的一点,则矩形OAPB的面积为__________.14.如图,在平面直角坐标系中,点A,B,C都在格点上,过A,B,C三点作一圆弧,则圆心的坐标是__________.15.如图,已知E、F是正方形ABCD的边BC和CD上的两点,且,,的面积S 与CE的长x满足函数关系,写出该函数的表达式__________.三、解答题:本题共13小题,共104分。
2023-2024学年天津市河西区九年级(上)期末数学试卷及答案解析
2023-2024学年天津市河西区九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,岸只有一项是符合题目要求的)1.(3分)已知⊙O的直径为15cm,若直线l与⊙O只有一个交点,那么圆心O到这条直线的距离为()A.7cm B.7.5cm C.8cm D.10cm2.(3分)2sin60°的值等于()A.B.C.D.3.(3分)下列是与中国航天事业相关的图标,可以看作是中心对称图形的是()A.B.C.D.4.(3分)一个等边三角形的边长为2,则这个等边三角形的内切圆半径为()A.B.1C.D.5.(3分)如图,在△ABC中,若∠C=90°,则有()A.B.C.D.6.(3分)如图,⊙O中,弦AB、CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()A.43°B.35°C.34°D.44°7.(3分)一元二次方程4x2=5x﹣1的两根之和与两根之积分别为()A.,B.﹣,C.D.8.(3分)抛物线y=x2﹣2x﹣3与x轴的两个交点分别为()A.(3,0)和(﹣1,0)B.(﹣3,0)和(1,0)C.(2,0)和(﹣4,0)D.(4,0)和(﹣2,0)9.(3分)一个扇形的半径为24cm,面积是240πcm2,则扇形的圆心角为()A.300°B.240°C.180°D.150°10.(3分)如图,在△ABC中,∠BAC=120°;将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则下列结论一定正确的是()A.CB=CD B.DE+DC=BC C.AB∥CD D.∠ABC=∠ADC11.(3分)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB'C′,连接B'C并延长交AB于点D,当B′D⊥AB时,的长是()A.B.C.D.12.(3分)如图所示,是我国汉代数学家赵爽在注解《周髀算经》时给出“赵爽弦图”,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形面积为100,小正方形面积为4,则图中∠θ的正切值为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)将点P(2,6)绕原点顺时针旋转180°,点P的对应点的坐标为.14.(3分)不透明袋子中装有9个球,其中有7个绿球、2个白球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是.15.(3分)在Rt△ABC中,若∠C=90°,,AC=3,则∠A的度数为.16.(3分)若抛物线y=x2﹣6x+k与x轴没有交点,则实数k的值可以是(写出一个即可).17.(3分)如图,已知正方形ABCD的边长为2,以顶点C、D为圆心,2为半径的两弧交于点E,点F为AB边的中点,连接EF,则EF的长为.18.(3分)如图,在每个小正方形边长为1的网格中,线段AB的端点A,B均落在格点上.(Ⅰ)线段AB的长等于;(Ⅱ)经过点A,B的圆交网格线于点C,在上有一点E,满足,请用无刻度的直尺,在如图所示的网格中,画出点E,并简要说明点E的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(8分)解方程:x2﹣6x+9=(5﹣2x)2.20.(8分)学生甲与学生乙学习概率初步知识后设计了如下游戏:学生甲手中有5、7、9三张扑克牌,学生乙手中有6、8、10三张扑克牌.每人从手中取出一张牌进行比较,数字小的为本局获胜.(Ⅰ)若每人随机取手中的一张牌进行比赛,请列举出所有情况;(Ⅱ)求学生乙本局获胜的概率.21.(10分)请你结合题意,分别画出示意图,并完成解答:(Ⅰ)在Rt△ABC中,若∠C=90°,若∠A=30°,AC=3,求AB的长;(Ⅱ)在△ABC中,AB=AC=9,BC=6,求∠C的正弦.22.(10分)小明上学途中要经过A,B两地,由于A,B两地之间有一片草坪,所以需要走路线AC,CB,如图,在△ABC中,AB=63m,∠A=45°,∠B=37°,求AC,CB 的长.(结果保留小数点后一位)参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,取1.414.23.(10分)如图,△ABC中,AB=AC,D为AC上一点,以CD为直径的⊙O与AB相切于点E,交BC于点F,FG⊥AB,垂足为G.(Ⅰ)求证:FG是⊙O的切线;(Ⅱ)若⊙O的半径长为,BF=3,求BE的长.24.(10分)如图,在菱形ABCD中,∠B=60°,AB=2,动点P从点A出发,以1单位长度/秒的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线AC→CD运动到点D,当一个点停止运动时,另一个点也随之停止.设△APQ的面积为y,运动时间为x秒.(Ⅰ)当点P运动到AB的中点,求此时x的值和△APQ的面积;(Ⅱ)①当0<x<2时,求y与x之间的函数关系式;②当2<x≤4时,求y与x之间的函数关系式;(Ⅲ)求在运动过程中△APQ面积的最大值.(直接写出结果即可)25.(10分)已知抛物线y=(x﹣n)(x﹣m),其中n,m为常数,且n≠m.(Ⅰ)若n=﹣1,m=3,求抛物线的顶点坐标;(Ⅱ)若抛物线的对称轴为x=2,且抛物线经过点(1,p).请你用含m的式子表示p,并求出p的取值范围;(Ⅲ)若n=1,点M(m,0),抛物线与y轴负半轴交于点G,过点G作直线l平行于x轴,E是直线l上的动点,F是y轴上的动点,,点H是EF的中点,当MH的最小值是时,求y=(x﹣n)(x﹣m)在﹣2m﹣1≤x≤﹣2m的图象的最低点的坐标.2023-2024学年天津市河西区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,岸只有一项是符合题目要求的)1.【分析】根据已知直线l与⊙O有唯一的一个交点得出直线与圆相切,即可得出d与r的关系.【解答】解:圆心O到直线l的距离为dcm,∵直线l与⊙O有唯一的一个交点,∴直线与圆相切,∵⊙O的直径为15cm,∴半径为7.5cm,∴d=r=7.5cm.故选:B.【点评】此题主要考查了直线与圆的位置关系,根据已知直线l与⊙O有唯一的一个交点得出直线与圆相切是解决问题的关键.2.【分析】根据特殊锐角三角函数值代入计算即可.【解答】解:2sin60°=2×=,故选:A.【点评】本题考查特殊锐角三角函数值,掌握sin60°的值是正确计算的关键.3.【分析】根据中心对称图形的概念判断.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【解答】解:选项A、B、C都不能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项D能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:D.【点评】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.4.【分析】构造内切圆半径,三角形边的一半,圆心和顶点连线形成的直角三角形,利用直角三角形的30度特殊角的三角函数即可求解.【解答】解:如图:过O点作OD⊥AB,则AD=AB=1,∵∠OAD=30°,∴OD=tan30°•AD=.故选:C.【点评】本题考查了三角形的内切圆与内心的计算.解这类题一般都利用过内心向正三角形的一边作垂线,则正三角形的半径、内切圆半径和正三角形边长的一半构成一个直角三角形,解这个直角三角形,可求出相关边长或角.5.【分析】根据锐角三角函数的定义逐项判断即可.【解答】解:已知在△ABC中,若∠C=90°,那么tan A=,则A符合题意;sin A=,则B,D均不符合题意;cos A=,则C不符合题意;故选:A.【点评】本题考查锐角三角函数的定义,此为基础且重要知识点,必须熟练掌握.6.【分析】由同弧所对的圆周角相等求得∠A=∠D=42°,然后根据三角形外角的性质即可得到结论.【解答】解:∵∠D=∠A=42°,∴∠B=∠APD﹣∠D=35°,故选:B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等是解答此题的关键.7.【分析】先把方程化为一般式,然后根据根与系数的关系求解.【解答】解:方程4x2=5x﹣1化为一般式为4x2﹣5x+1=0,所以方程4x2=5x﹣1的两个根之和为,两根之积为.故选:A.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.8.【分析】依据题意,通过解方程x2﹣2x﹣3=0得到抛物线y=x2﹣2x﹣3与x轴的两个交点坐标.【解答】解:当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,所以抛物线y=x2﹣2x﹣3与x轴的两个交点坐标为(﹣1,0),(3,0).故选:A.【点评】本题主要考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.9.【分析】设扇形的圆心角为n,根据扇形面积公式计算即可.【解答】解:设扇形的圆心角为n,则=240π,解得,n=150°,故选:D.【点评】本题考查的是扇形面积计算,掌握扇形面积公式:S=是解题的关键.10.【分析】由旋转的性质得出CD=CA,∠EDC=∠BAC=120°,则可得出结论.【解答】解:由旋转的性质得出CD=CA,∠EDC=∠BAC=120°,∵点A,D,E在同一条直线上,∴∠EDC=60°,∴∠CAD=∠EDC=60°,∴∠BAD=60°,∴AB∥CD.故选:C.【点评】本题考查三角形的旋转,解题的关键是掌握旋转的性质及等腰三角形的性质.11.【分析】证明α=30°,根据已知可算出AD的长度,根据弧长公式即可得出答案.【解答】解:∵CA=CB,CD⊥AB,∴AD=DB=AB′.∴∠AB′D=30°∴α=30°,∵AC=4,∴AD=AC•cos30°=4×=2,∴,∴的长度l==π.故选:B.【点评】本题主要考查了弧长的计算及旋转的性质,熟练掌握弧长的计算及旋转的性质进行求解是解决本题的关键.12.【分析】先由两个正方形的面积分别得出其边长,设AC=BD=a,由勾股定理解得a的值,按照正切函数的定义即可求解.【解答】解:∵大正方形的面积是100,小正方形面积是4,∴大正方形的边长是10,小正方形的边长是2,设AC=BD=a,如图,在Rt△ABD中,由勾股定理得:a2+(2+a)2=100,解得a=6或﹣8(舍去),∴tanθ==.故选:C.【点评】本题考查了勾股定理,明确相关性质及定理是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.【分析】根据两点关于原点的对称的坐标特征:横纵坐标均互为相反数,即可求解.【解答】解:点P(2,6)绕原点O旋转180°后,P点的对应点与点P关于原点对称,则其坐标为(﹣2,﹣6).故答案为:(﹣2,﹣6).【点评】本题考查的是坐标与图形变化﹣旋转,熟知平面直角坐标系中关于原点对称的两点的坐标特征是解题的关键.14.【分析】用绿球的个数除以球的总数即可.【解答】解:∵不透明袋子中装有9个球,其中有7个绿球、2个白球,∴从袋子中随机取出1个球,则它是绿球的概率是,故答案为:.【点评】此题主要考查了概率公式,关键是掌握概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种可能,那么事件A的概率P(A)=.15.【分析】先根据勾股定理求出AB的长,再由直角三角形的性质即可得出结论.【解答】解:如图,∵∠C=90°,,AC=3,∴AB==2,∵AB=2BC,∴∠A=30°.故答案为:30°.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.16.【分析】根据抛物线y=x2﹣6x+k与x轴没有交点,可以得到Δ<0,从而可以得到k的取值范围.【解答】解:∵抛物线y=x2﹣6x+k与x轴没有交点,∴Δ=(﹣6)2﹣4×1×k<0,解得,k>9,故答案为:10(答案不唯一).【点评】本题考查抛物线与x轴的交点,解答本题的关键是明确Δ<0时,抛物线与x 轴没有交点.17.【分析】延长FE交DC于点H,连接CE,根据题意可得EF∥BC,在Rt△CEH中,根据勾股定理即可求解EH,从而求出EF.【解答】解:延长FE交DC于点H,连接CE,如图:∵E为两弧交于点,点F为AB边的中点,∴EF∥BC,∵C是圆心,E在弧上,∴CE=CB=2,在Rt△CEH中,EH==,∴EF=2﹣,故答案为:2﹣.【点评】本题考查正方形的性质,勾股定理,正确作出辅助线是解题关键.18.【分析】(Ⅰ)利用勾股定理求解;(Ⅱ)取圆与格线的交点P,Q,连接PQ,则PQ是直径,连接AC,AB,得到AC,AB 的中点J,K,取格点W,Z,R,S,连接WR,SZ交于点L.连接KL交PQ于点O,作直线JO交AB于点T,连接CT,延长CT交⊙O于点E,点E即为所求.【解答】解:(1)AB==,故答案为:;(Ⅱ)如图,点E即为所求.步骤:取圆与格线的交点P,Q,连接PQ,则PQ是直径,连接AC,AB,得到ACAB 的中点J,K,取格点W,Z,R,S,连接WR,SZ交于点L.连接KL交PQ于点O,作直线JO交AB于点T,连接CT,延长CT交⊙O于点E,点E即为所求.故答案为:取圆与格线的交点P,Q,连接PQ,则PQ是直径,连接AC,AB,得到ACAB 的中点J,K,取格点W,Z,R,S,连接WR,SZ交于点L.连接KL交PQ于点O,作直线JO交AB于点T,连接CT,延长CT交⊙O于点E,点E即为所求.【点评】本题考查作图﹣复杂作图,勾股定理,垂径定理等知识,解题的关键是学会利用数形结合的思想解决问题,题目比较难.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.【分析】把方程左边化成一个完全平方式,那么将出现两个完全平方式相等,则这两个式子相等或互为相反数,据此即可转化为两个一元一次方程即可求解.【解答】解:∵(x﹣3)2=(5﹣2x)2,∴x﹣3=5﹣2x或x﹣3=2x﹣5解之得:x1=2,x2=.【点评】解一元二次方程的基本思想是降次,把一元二次方程转化为一元一次方程,从而求解.20.【分析】(1)利用树状图展示所有9种等可能的结果数;(2)找出学生乙本局获胜的结果数,然后根据概率公式计算.【解答】解:(1)画树状图为:共有9种等可能的结果数;(2)学生乙本局获胜的结果数为3,所以学生乙本局获胜的概率==.【点评】本题考查了列表法与树状图法,解答本题的关键是利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.21.【分析】(Ⅰ)由锐角的余弦定义得到cos A==,即可求出AB长.(Ⅱ)过A作AH⊥BC于H,由等腰三角形的性质得到CH=BC=3,由勾股定理求出AH==6,即可得到sin C==.【解答】解:(Ⅰ)如图:∵∠C=90°,∠A=30°,∴cos A=cos30°==,∵AC=3,∴AB=2;(Ⅱ)如图:过A作AH⊥BC于H,∵AB=AC,∴CH=BC=3,∴AH==6,∴sin C===【点评】本题考查解直角三角形,勾股定理,关键是掌握锐角三角函数定义.22.【分析】根据锐角三角函数,可用CD表示AD,BD,AC,BC,根据线段的和差,可得关于CD的方程,根据解方程,可得CD的长,根据AC=CD,CB=,可得答案.【解答】解:过点C作CD⊥AB垂足为D.,在Rt△ACD中,tan A=tan45°==1,CD=AD,sin A=sin45°==,AC=CD.在Rt△BCD中,tan B=tan37°=≈0.75,BD=;sin B=sin37°=≈0.60,CB=.∵AD+BD=AB=63,∴CD+=63,解得CD≈27(m),AC=CD≈1.414×27=38.178≈38.2(m),CB=≈=45.0(m),答:AC的长约为38.2m,CB的长约等于45.0m.【点评】本题考查了解直角三角形的应用,利用线段的和差得出关于CD的方程是解题关键.23.【分析】(1)由等腰三角形的性质可证∠B=∠C=∠OFC,可证OF∥AB,可得结论;(2)由切线的性质可证四边形GFOE是矩形,可得OE=GF=2,由勾股定理可求解.【解答】(1)证明:如图,连接OF,∵AB=AC,∴∠B=∠C,∵OF=OC,∴∠C=∠OFC,∴∠OFC=∠B,∴OF∥AB,∵FG⊥AB,∴FG⊥OF,又∵OF是半径,∴GF是⊙O的切线;(2)解:如图,连接OE,∵⊙O与AB相切于点E,∴OE⊥AB,又∵AB⊥GF,OF⊥GF,∴四边形GFOE是矩形,∴GF=OE=EG=2,在Rt△BFG中,由勾股定理得,BG===1,∴BE=BG+EG=2+1.【点评】本题考查切线的性质和判定,勾股定理,等腰三角形的性质,矩形的判定和性质,锐角三角函数等知识,灵活运用这些性质解决问题是解题的关键.24.【分析】(Ⅰ)由菱形的性质可得AB=BC=2,可证△ABC是等边三角形,可得AB=AC=2,∠BAC=60°,可证△APQ是等边三角形,即可求解;(Ⅱ)①由锐角三角函数可求QH的长,由三角形的面积公式可求解;②由锐角三角函数可求QN的长,由三角形的面积公式可求解;(Ⅲ)由二次函数的性质可求解.【解答】解:(Ⅰ)∵四边形ABCD是菱形,∴AB=BC=2,∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC=2,∠BAC=60°,∵点P运动到AB的中点,∴AP=BP=1,∴x==1,∴AQ=1,∴AP=AQ=1,∴△APQ是等边三角形,=×12=;∴S△APQ(Ⅱ)①当0≤x≤2时,如图1,过点Q作QH⊥AB于H,由题意可得BP=AQ=x,∵在菱形ABCD中,∠B=60°,AB=2,∴AB=BC=AD=CD,∠B=∠D=60°,∴△ABC和△ADC都是等边三角形,∴AC=AB=2,∠BAC=60°=∠ACD,∵sin∠BAC=,∴HQ=AQ•sin60°=x,∴△APQ的面积=y=(2﹣x)×x=﹣(x﹣1)2+;②当2<x≤4时,如图2,过点Q作QN⊥AC于N,由题意可得AP=CQ=x﹣2,∵sin∠ACD==,∴NQ=(x﹣2),∴△APQ的面积=y=(x﹣2)×(x﹣2)=(x﹣2)2,(Ⅲ)当0≤x≤2时,y=﹣(x﹣1)2+;∴当x=1时,y的最大值为;当2<x≤4时,y=(x﹣2)2,∴当x=4时,y的最大值为,∴△APQ面积的最大值为.【点评】本题是四边形综合题,考查了动点问题的函数图象,菱形的性质,等边三角形的判定和性质,锐角三角函数,二次函数的性质等知识,利用分类讨论思想解决问题是本题的关键.25.【分析】(1)n=﹣1,m=3时,抛物线y=(x+1)(x﹣3)的对称轴为直线x==1,把x=1代入y=(x+1)(x﹣3)即得抛物线的顶点坐标为(1,﹣4);(2)可得=2,n=4﹣m,而抛物线y=(x﹣n)(x﹣m)经过点(1,p),知p=(1﹣n)(1﹣m)=(1﹣4+m)(1﹣m)=﹣m2+4m﹣3=﹣(m﹣2)2+1,有二次函数性质可得答案;(3)求出G(0,m),直线l为y=m,连接GM、GH,由H是EF的中点,得GH=EF=,故点H在以点G为圆心,为半径的圆上,可得MG=﹣m,①当MG≥,即m≤﹣1时,满足条件的点H在线段MG上,有MG﹣GH=﹣m﹣=,m=﹣;可得抛物线解析式为y=(x﹣1)(x+),﹣2m﹣1≤x≤﹣2m即是2≤x≤3,即可知y=(x﹣n)(x﹣m)在﹣2m﹣1≤x≤﹣2m的图象的最低点的坐标为(2,);②当MG<,即﹣1<m<0时,满足条件的点N落在线段GM的延长线上,同类可得y=(x﹣n)(x﹣m)在﹣2m﹣1≤x≤﹣2m的图象的最低点的坐标为(,﹣).【解答】解:(1)n=﹣1,m=3时,抛物线y=(x+1)(x﹣3)与x轴交点为(﹣1,0),(3,0),∴对称轴为直线x==1,把x=1代入y=(x+1)(x﹣3)得y=2×(﹣2)=﹣4;∴抛物线的顶点坐标为(1,﹣4);(2)∵抛物线y=(x﹣n)(x﹣m)的对称轴为直线x=,∴=2,∴n=4﹣m,∵抛物线y=(x﹣n)(x﹣m)经过点(1,p),∴p=(1﹣n)(1﹣m)=(1﹣4+m)(1﹣m)=﹣m2+4m﹣3=﹣(m﹣2)2+1,∵n≠m,∴m≠2,∴﹣(m﹣2)2+1<1,∴p<1;(3)n=1时,y=(x﹣1)(x﹣m),令x=0得y=m,∴G(0,m),直线l为y=m,连接GM、GH,如图:∵H是EF的中点,∴GH=EF=,∴点H在以点G为圆心,为半径的圆上,∵M(m,0),G(0,m),∴MO=﹣m,GO=﹣m,在Rt△MGO中,MG=﹣m,①当MG≥,即m≤﹣1时,满足条件的点H在线段MG上,此时MH的最小值为MG﹣GH=﹣m﹣=,解得m=﹣;∴抛物线解析式为y=(x﹣1)(x+),﹣2m﹣1≤x≤﹣2m即是2≤x≤3,此时图象在对称轴直线x=﹣右侧,开口向上,当x=2时,y=(2﹣1)×(2+)=;∴y=(x﹣n)(x﹣m)在﹣2m﹣1≤x≤﹣2m的图象的最低点的坐标为(2,);②当MG<,即﹣1<m<0时,满足条件的点N落在线段GM的延长线上,此时MH的最小值为HG﹣MG=﹣(﹣m)=,解得m=﹣;∴抛物线解析式为y=(x﹣1)(x+),﹣2m﹣1≤x≤﹣2m即是0≤x≤1,此时图象包含顶点(,﹣),开口向上,∴y=(x﹣n)(x﹣m)在﹣2m﹣1≤x≤﹣2m的图象的最低点的坐标为(,﹣);综上所述,y=(x﹣n)(x﹣m)在﹣2m﹣1≤x≤﹣2m的图象的最低点的坐标为(2,)或(,﹣).【点评】本题考查二次函数的综合应用,涉及二次函数图象与系数的关系,动点问题等,解题的关键是分类讨论思想的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级期末数 学 试 题一、选择题(每小题3分,共21分) 1. ︒30sin 的值是( ). A .21 B .22C .23D .1 2. 与3是同类二次根式的是( ).A .2B .9C .18D .313. 以下事件中,必然发生的是( ). A .打开电视机,正在播放体育节目 B .打开数学课本,恰好翻到第88页 C .通常情况下,水加热到100℃沸腾 D .抛掷一枚均匀的硬币,恰好正面朝上4. 一元二次方程092=-x 的根是( ).A .9=xB .9±=xC .3=xD .3±=x 5. 用配方法解方程0142=-+x x ,下列配方结果正确的是( ). A .5)2(2=+x B .1)2(2=+x C .1)2(2=-x D .5)2(2=-x 6. 顺次连结矩形各边中点所得的四边形是( ).A. 矩形B. 菱形C. 正方形D. 等腰梯形 7. 下列四个三角形,与左图中的三角形相似的是( ).二、填空题(每小题4分,共40分)8.若二次根式3-x 在实数范围内有意义,则x 的取值范围是 . 9.比较大小:.(选填“>”、“=”、“<”). 10.方程03-2=x x 的解是.(第7题图)A .B .C .D .A CDE11.如果52=y x ,那么=+-x y x y . 12.若两个三角形的相似比为2:3,则这两个三角形对应角平分线的比为 . 13.如图,在ABC ∆中,D 、E 分别是AB 、BC 的中点,若5=DE ,则=AC . 14. 一个不透明的袋子中装有3个黑球和2个红球,这些球除了颜色外都相同,搅匀后从袋子中随机摸出一个球,则摸到黑球的概率是 .15.正方形网格中,AOB ∠如图放置,则AOB ∠tan 的值为 .16.如图,D 、E 两点分别在ABC △的边BC 、CA 上,DE 与AB 不平行,当满足条件(写出一个即可) 时,CDE ∆∽CAB ∆. 17.将一副三角尺如图所示叠放在一起,则AEC ∠的度数是 ,ECBE的值是 .三、解答题(共89分)18.(9分)计算:2627⨯-19. (9分)先化简,再求值: )1()2)(2(x x x x -+-+,其中42-=x .20.(9分)解方程:542=-x x .ABO(第15题图) (第17题图)45°30°EDCBA(第16题图) E DCBA21.(9分)如图,ABC ∆三个顶点坐标分别为 )3,2(-A ,)1,3(-B ,)1,1(-C .(1)请画出ABC ∆关于y 轴对称的111C B A ∆; (2)以原点O 为位似中心,将111C B A ∆放大为原来的2倍,得到222C B A ∆,请在第三 象限内画出222C B A ∆,并求出111C B A S ∆:222C B A S ∆的值.22.(9分)三张卡片的正面分别写有数字3、3、4,卡片除数字外完全相同,将它们洗匀后,背面朝上放置在桌面上.(1)从中任意抽取一张卡片,该卡片上数字是3的概率为 ;(2)学校将组织歌咏比赛,九年级(1)班只有一个名额,小刚和小芳都想去,于是利用上述三张卡片做游戏决定谁去,游戏规则是:从中任意抽取一张卡片,记下数字后放回,洗匀后再任意抽取一张,将抽取的两张卡片上的数字相加,若和等于6,小刚去;若和等于7,小芳去;和是其他数,游戏重新开始.你认为游戏对双方公平吗?请用画树状图或列表的方法说明理由.23.(9分)如图,我国渔政船在钓鱼岛海域C 处测得钓鱼岛A 在渔政船的北偏西︒30的方向上,随后渔政船以80海里/小时的速度向北偏东︒30的方向航行,半小时后到达B 处,此时又测得钓鱼岛A 在渔政船的北偏西︒60的方向上,求此时渔政船距钓鱼岛A 的距离AB .(结果精确到1.0海里,其中732.13≈)(第21题图)A北25. (13分) 如图所示,污水处理公司为某楼房建一座周长为30米的三级污水处理池,平面图为矩形ABCD ,x AB =米,中间两条隔墙分别为EF 、GH ,池墙的厚度不考虑. (1)用含x 的代数式表示外围墙AD 的长度;(2)如果设计时要求矩形水池ABCD 恰好被隔墙分成三个全等的矩形,且它们均与矩形ABCD 相似,求此时AB 的长;(第24题图)F(3)如果设计时要求矩形水池ABCD 恰好被隔墙分成三个全等的正方形.已知池的外围墙建造单价为每米400元,中间两条隔墙建造单价每米300元,池底建造的单价为每平方米100元.试计算此项工程的总造价.(结果精确到1元)26.(13分)如图,在平面直角坐标系中,点A 的坐标为)2,0(,点)0,(t P 在x 轴上,B 是线段PA 的中点.将线段PB 绕着点P 顺时针方向旋转︒90,得到线段PC ,连结OB 、BC .(1)判断PBC ∆的形状,并简要说明理由;(2)当0>t 时,试问:以P 、O 、B 、C 为顶点的四边形能否为平行四边形?若能,求(第25题图)HG FE 隔墙隔墙DCBA出相应的t 的值?若不能,请说明理由; (3)当t 为何值时,AOP ∆与∆参考答案及评分标准一、选择题(每小题3分,共21分)1.A 2.D 3.C 4.D 5.A 6.B 7.B 二、填空题(每小题4分,共40分)8.x ≥3 9.> 10.01=x ,32=x 11.73 12.2:3 13.10 14. 5315.2 16.答案不唯一,如A CDE ∠=∠ 17. ︒75 33(每空各2分) 三、解答题(共89分)(第26题图)18.(本小题9分)解:原式=3233-……………………………………………………………………………6分=3 ……………………………………………………………………………………9分19.(本小题9分)解:原式=222x x x -+- ………………………………………………………………………4分=2-x …………………………………………………………………………………6分 当42-=x 时, 原式242--=62-= ………………………………………………………………………………9分 20.(本小题9分)解: 222)2(5)2(4-+=-+-x x9)2(2=-x ……………………6分 32±=-x∴51=x ,12-=x ……………………9分21.(本小题9分)解:(1)111C B A ∆如图所示;……………3分 (2)222C B A ∆如图所示, ……………6分 ∵111C B A ∆放大为原来的2倍得到222C B A ∆,∴111C B A ∆∽222C B A ∆,且相似比为21,(第21题图)∴111C B A S ∆:222C B A S ∆41)21(2==. ……………………………………………………………9分 22.(本小题9分) 解:(1)32…………………………………………………………………………………………3分 (2)解法一:………………………………………………………………………………………………………6分由树状图可知共有9种机会均等的情况,其中数字和为6的共有4种,数字和为7的共有4种,∴P (数字和为6)=94,P (数字和为7)=94,∴P (数字和为6)=P (数字和为7),∴游戏对双方公平.. …………………………………………………9分 法二:根据题意列表如下:…………………………………………………………………………………………6分由列表可知共有9种机会均等的情况, 其中数字和为6的共有4种,数字和为7的共有4种,∴P (数字和为6)=94,P (数字和为7)=94,∴P (数字和为6)=P (数字和为7),∴游戏对双方公第一次第二次A平. ……………………………………………………………………………9分∴︒=︒-︒-︒=∠903060180ABC ,.....................5分 答:此时渔政船距钓鱼岛A 的距离AB 约为69.3海里. (9)分24.(本小题9分)形, 2分分 , 7分在ADE Rt ∆中,由勾股定理得:9分25.(本小题13分)解:(1)15AD x =-米;……………………………………………………………………3分(第24题图)FDBA(2) 由题意可知,ABAEAD AB =,即AEAD AB ⋅=2,且1A EA D =…………………………………5分26.(本小题13分)(1)PBC ∆是等腰直角三角形. ………………………………………………………………1分线段PB 绕着点P 顺时针方向旋转︒90,得到线段PC︒=∠=∴90,BPC PC PB ,PBC ∆∴是等腰直角三角形. …………………………………………………………………3分(2)当BP OB ⊥时,以P 、O 、B 、C 为顶点的四边形为平行四边形. ……………4分D︒=∠=∠90BPC OBPPC OB //∴,B 是PA 的中点PC BP AP OB ===∴21 ∴四边形POBC 是平行四边形当BP OB ⊥时,有OB OP 2=即OP )141(222+=∴t t 21=∴t ,22-=t (不合题意)∴当2=t 时,以P 、O 、B 、C 为顶点的四边形为平行四边形. (8)分 (3)由题意可知,︒=∠=∠90APC AOP , ……………………………………………9分当21==PA PC OA OP 时,AOP ∆∽APC ∆,此时121==OA OP 1±=∴t ………………………………………………………………………………………11分当21==PA PC OP OA 时,AOP ∆∽CPA ∆,此时42==OA OP 4±=∴t ∴当1±=t 或4±时,AOP ∆与CPA ∆相似………………………………………………13分(第26题图)。