[K12学习]2018版高考数学大一轮复习 第七章 不等式 7.4 基本不等式及其应用教师用书 理

合集下载

2018版高考数学(理)第一轮总复习教师用书:第七章不等式含答案

2018版高考数学(理)第一轮总复习教师用书:第七章不等式含答案

第七章错误!不 等 式 第一节不等式的性质及一元二次不等式突破点(一) 不等式的性质基础联通 抓主干知识的“源"与“流”1.比较两个实数大小的方法 (1)作差法错误! (2)作商法错误! 2.不等式的基本性质性质 性质内容 特别提醒对称性 a 〉b ⇔b <a ⇔ 传递性 a 〉b ,b >c ⇒a >c ⇒ 可加性 a 〉b ⇔a +c 〉b +c ⇔可乘性 错误!⇒ac >bc 注意c 的符号错误!⇒ac 〈bc 同向可加性 错误!⇒a +c >b +d ⇒ 同向同正可乘性错误!⇒ac 〉bd 〉0 ⇒ 可乘方性 a >b 〉0⇒a n 〉b n (n ∈N ,n ≥1) a ,b 同为正数 可开方性a 〉b 〉0⇒错误!〉错误!(n ∈N ,n ≥2)3。

不等式的一些常用性质 (1)倒数的性质①a 〉b ,ab 〉0⇒错误!<错误!。

②a <0<b ⇒错误!<错误!.③a 〉b >0,0<c 〈d ⇒错误!>错误!.④0〈a 〈x 〈b 或a 〈x <b 〈0⇒错误!〈错误!〈错误!.(2)有关分数的性质若a 〉b 〉0,m >0,则:①ba <错误!;错误!>错误!(b -m >0).②错误!>错误!;错误!<错误!(b -m 〉0). 考点贯通 抓高考命题的“形”与“神”本节主要包括2个知识点:1。

不等式的性质;2。

一元二次不等式。

比较两个数(式)的大小[例1] (1)已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M 〈N B .M 〉N C .M =ND .不确定(2)若a =ln 22,b =错误!,则a ________b (填“>”或“<”).[解析] (1)M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=(a 1-1)(a 2-1),又∵a 1∈(0,1),a 2∈(0,1),∴a 1-1〈0,a 2-1〈0。

2018高考数学(文)(人教新课标)大一轮复习配套文档第七章不等式7-1不等关系与不等式Word版含答案

2018高考数学(文)(人教新课标)大一轮复习配套文档第七章不等式7-1不等关系与不等式Word版含答案

第七章不等式1.不等关系了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景.2.一元二次不等式(1)会从实际问题的情境中抽象出一元二次不等式模型.(2)通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.3.二元一次不等式组与简单线性规划问题(1)会从实际情境中抽象出二元一次不等式组.(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.4.基本不等式:ab≤a+b2(a≥0,b≥0)(1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.7.1 不等关系与不等式1.两个实数大小的比较(1)a>b⇔a-b________;(2)a=b⇔a-b________;(3)a<b⇔a-b________.2.不等式的性质(1)对称性:a>b⇔__________;(2)传递性:a>b,b>c⇒__________;(3)不等式加等量:a>b⇔a+c______b+c;(4)不等式乘正量:a>b,c>0⇒__________,不等式乘负量:a>b,c<0⇒__________;(5)同向不等式相加:a>b,c>d⇒__________;※(6)异向不等式相减:a>b,c<d⇒a-c>b-d;(7)同向不等式相乘:a>b>0,c>d>0⇒__________;※(8)异向不等式相除:a>b>0,0<c<d⇒ac>bd;※(9)不等式取倒数:a>b,ab>0⇒1a<1b;(10)不等式的乘方:a>b>0⇒______________;(11)不等式的开方:a>b>0⇒______________.※注:1.(5)(6)说明,同向不等式可相加,但不可相减,而异向不等式可相减;2.(7)(8)说明,都是正数的同向不等式可相乘,但不可相除,而都是正数的异向不等式可相除.自查自纠1.>0 =0 <02.(1)b<a(2)a>c(3)> (4)ac>bc ac<bc(5)a+c>b+d(7)ac>bd(10)a n>b n(n∈N且n≥2)(11)na>nb(n∈N且n≥2)(2014·山东)已知实数x ,y 满足a x <a y(0<a<1),则下列关系式恒成立的是( )A.1x 2+1>1y 2+1B .ln(x 2+1)>ln(y 2+1) C .sin x >sin yD .x 3>y 3解:根据指数函数的性质得x >y ,此时x 2,y 2的大小不确定,故选项A ,B 中的不等式不恒成立;根据三角函数的性质,选项C 中的不等式也不恒成立;根据不等式的性质知,选项D 中的不等式恒成立.故选D .(2016·贵州模拟)若a ,b 都是实数,则“a -b >0”是“a 2-b 2>0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:由a -b >0得a >b ≥0,由a 2-b 2>0得a 2>b 2,即|a |>|b |,所以“a -b >0”是“a 2-b 2>0”的充分不必要条件.故选A .(2016·贵州模拟)若c >1,0<b <a <1,则( ) A .a c<b cB .ba c <ab cC .a log b c <b log a cD .log a c <log b c解:令a =12,b =14,c =2,则a c <b c ,ba c <ab c,a logbc <b log a c 都不成立,所以排除A ,B ,C 选项,对于D 选项,因为log b c -log a c =log c a -log c blog c b ×log c a >0,所以log a c <log b c .故选D .已知a =27,b =6+22,则a ,b 的大小关系是a ________b .解:由于a =27,b =6+22,平方作差得a 2-b2=28-14-83=14-83=8⎝ ⎛⎭⎪⎫74-3>0,从而a >b .故填>.(2016·武汉模拟)已知a 1≤a 2,b 1≥b 2,则a 1b 1+a 2b 2与a 1b 2+a 2b 1的大小关系是________.解:a 1b 1+a 2b 2-(a 1b 2+a 2b 1)=(a 1-a 2)(b 1-b 2),因为a 1≤a 2,b 1≥b 2,所以a 1-a 2≤0,b 1-b 2≥0,于是(a 1-a 2)(b 1-b 2)≤0,故a 1b 1+a 2b 2≤a 1b 2+a 2b 1.故填a 1b 1+a 2b 2≤a 1b2+a 2b 1.类型一 建立不等关系(2015·湖北)设x ∈R ,表示不超过x 的最大整数.若存在实数t ,使得=1,=2,…,=n 同.时成立...,则正整数n 的最大值是( ) A .3B .4C .5D .6解:因为表示不超过x 的最大整数.由=1得1≤t <2,由=2得2≤t 2<3,由=4得4≤t 4<5,所以2≤t 2<5,由=3得3≤t 3<4,所以6≤t 5<45,由=5得5≤t 5<6,与6≤t 5<45矛盾,故正整数n 的最大值是4.故选B .【点拨】解决有关不等关系的实际问题,应抓住关键字词,例如“要”“必须”“不少于”“大于”等,从而建立相应的方程或不等式模型.本例表示不超过x 的最大整数,故由=k ,可得k ≤x <k +1,再由多个不等式结合不等式的性质找到正整数n 的最大值.(2016·湖南模拟)用一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 m ,要求菜园的面积不小于108 m 2,靠墙的一边长为x m ,其中的不等关系可用不等式(组)表示为________.解:设矩形靠墙的一边长为x m , 则另一边长为30-x 2 m ,即⎝ ⎛⎭⎪⎫15-x 2 m ,根据题意知⎩⎪⎨⎪⎧0<x ≤18,x ⎝ ⎛⎭⎪⎫15-x 2≥108. 故填⎩⎪⎨⎪⎧0<x≤18,x ⎝ ⎛⎭⎪⎫15-x 2≥108. 类型二 不等式的性质已知下列三个不等式①ab >0;②c a >db;③bc >ad .以其中两个作为条件,余下一个作结论,则可组成几个正确命题?解:(1)对②变形c a >d b ⇔bc -adab>0,由ab >0,bc>ad 得②成立,所以①③⇒②.(2)若ab >0,bc -adab>0,则bc >ad , 所以①②⇒③. (3)若bc >ad ,bc -adab>0,则ab >0, 所以②③⇒①.综上所述可组成3个正确命题.【点拨】运用比较法及不等式性质进行比较时要注意不等式需满足的条件,如比较ac 与bc 的大小关系应注意从c >0,c =0,c <0三个方面讨论.(2014·四川)若a >b >0,c <d <0,则一定有( )A.a c >b dB.a c <b dC.a d >b cD.a d <b c解:由c <d <0⇒-1d >-1c>0,又a >b >0,故由不等式性质,得-a d >-b c >0,所以a d <b c.故选D .类型三 不等式性质的应用(1)若1<α<3,-4<β<2,则α2-β的取值范围是________.解:由1<α<3得12<α2<32,由-4<β<2得-2<-β<4,所以α2-β的取值范围是⎝ ⎛⎭⎪⎫-32,112.故填⎝ ⎛⎭⎪⎫-32,112.【点拨】①需要注意的是,两同向不等式可以相加但不可以相减,所以不能直接由12<α2<32和-4<β<2两式相减来得到α2-β的范围.②此类题目用线性规划也可解.(2)已知-1<a +b <3且2<a -b <4,则2a +3b 的取值范围是________.解:设2a +3b =x (a +b )+y (a -b ), 所以⎩⎪⎨⎪⎧x +y =2,x -y =3,解得⎩⎪⎨⎪⎧x =52,y =-12.所以-52<52(a +b )<152,-2<-12(a -b )<-1.所以-92<52(a +b )-12(a -b )<132,即-92<2a +3b <132.故填⎝ ⎛⎭⎪⎫-92,132. 【点拨】由于a +b ,a -b 的范围已知,所以要求2a +3b 的取值范围,只需将2a +3b 用已知量a +b ,a -b 表示出来,可设2a +3b =x (a +b )+y (a -b ),用待定系数法求出x ,y ,再利用同向不等式的可加性求解.(1)若角α,β满足-π2<α<β<π2,则2α-β的取值范围是________.解:因为-π2<α<β<π2,所以-π2<α<π2,-π2<β<π2,-π2<-β<π2,而α<β,所以-π<α-β<0,所以2α-β=(α-β)+α∈⎝ ⎛⎭⎪⎫-3π2,π2.故填⎝ ⎛⎭⎪⎫-3π2,π2.(2)(2016·云南模拟)若-1≤lg xy≤2,1≤lg xy ≤4,则lg x 2y的取值范围是________.解:由1≤lg xy ≤4,-1≤lg xy≤2, 得1≤lg x +lg y ≤4,-1≤lg x -lg y ≤2,则lg x 2y =2lg x -lg y =12(lg x +lg y )+32(lg x -lg y ),所以-1≤lg x 2y≤5.故填.类型四 比较大小实数b >a >0,实数m >0,比较a +mb +m 与ab的大小,则a +mb +m ________ab. 解法一:(作差比较):a +mb +m -a b =b (a +m )-a (b +m )b (b +m )=m (b -a )b (b +m ), 因为b >a >0,m >0,所以m (b -a )b (b +m )>0,所以a +mb +m>ab.解法二(作商比较):因为b >a >0,m >0, 所以bm >am ⇒ab +bm >ab +am >0,所以ab +bm ab +am >1,即a +m b +m ·b a >1⇒a +m b +m >a b.故填>.【点拨】本题思路是作差整理,定符号,所得结论也称作真分数性质.作差(商)比较法的步骤是:①作差(商);②变形:配方、因式分解、通分、分母(分子)有理化等;③判断符号(判断商和“1”的大小关系);④作出结论.(2015·福建月考)已知a ,b ,c ∈R +,且a 2+b 2=c 2,当n ∈N ,n >2时,比较c n 与a n +b n的大小,则a n+b n________c n.解:因为a ,b ,c ∈R +,所以a n ,b n ,c n>0,而a n +b ncn=⎝ ⎛⎭⎪⎫a c n +⎝ ⎛⎭⎪⎫b c n .因为a 2+b 2=c 2,所以⎝ ⎛⎭⎪⎫a c 2+⎝ ⎛⎭⎪⎫b c 2=1,所以0<a c <1,0<b c <1.当n ∈N ,n >2时,⎝ ⎛⎭⎪⎫a c n <⎝ ⎛⎭⎪⎫a c 2,⎝ ⎛⎭⎪⎫b c n <⎝ ⎛⎭⎪⎫b c 2,所以a n +b n cn =⎝ ⎛⎭⎪⎫a c n +⎝ ⎛⎭⎪⎫b c n <a 2+b 2c2=1,所以a n +b n <c n.故填<.1.理解不等关系的意义、实数运算的符号法则、不等式的性质,是解不等式和证明不等式的依据和基础.2.一般数学结论都有前提,不等式性质也是如此.在运用不等式性质之前,一定要准确把握前提条件,一定要注意不可随意放宽其成立的前提条件.3.不等式性质包括“充分条件(或者是必要条件)”和“充要条件”两种,前者一般是证明不等式的理论基础,后者一般是解不等式的理论基础.4.利用几个不等式来确定某个代数式的范围时要注意:“同向(异向)不等式的两边可相加(相减)”这种变形不是等价变形,若多次使用,则有可能使取值范围扩大,解决这一问题的方法是:先建立待求范围的整体与已知范围的整体的等量关系,再一次性的运用这种变形,即可求得正确的待求整体的范围.5.比较两个实数的大小,有作差法和作商法两种方法.一般多用作差法,注意当这两个数都是正数时,才可以用作商法.作差法是比较作差后的式子与“0”的大小关系;作商法是比较作商后的式子与“1”的大小关系.6.对于实际问题中的不等量关系,还要注意实际问题对各个参变数的限制.1.(2015·浙江)设a,b是实数,则“a+b>0”是“ab>0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:若a+b>0,取a=3,b=-2,则ab>0不成立;反之,若a=-2,b=-3,则a+b>0也不成立,因此“a+b>0”是“ab>0”的既不充分也不必要条件.故选D.2.(2016·宜昌模拟)设a,b,c∈R,且a>b,则( )A.ac>bc B.1a<1bC.a2>b2D.a3>b3解:A选项,当c<0时,ac<bc,故A不正确;B 选项,当a>0>b时,显然B不正确;C选项,当a=1,b=-2时,a2<b2,C不正确;D选项,因y=x3是单调增函数,所以当a>b时,有a3>b3,D正确.故选D.3.(2015·云南模拟)若a,b,c∈R,且a>b,则下列不等式一定成立的是( )A.a+c≥b-c B.(a-b)c2≥0C.ac>bc D.c2a-b>0解:A项:当c<0时,不等式a+c<b-c可能成立;B项:a>b⇒a-b>0,c2≥0,故(a-b)c2≥0;C项:当c=0时,ac=bc;D项:当c=0时,c2a-b=0.故选B.4.(2014·湖南)已知命题p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(q);④(p)∨q中,真命题是( )A.①③B.①④C.②③D.②④解:当x>y时,两边乘以-1可得-x<-y,所以命题p为真命题;当x=1,y=-2时,显然x2<y2,所以命题q为假命题,所以②③为真命题.故选C.5.(2014·浙江)已知函数f(x)=x3+ax2+bx+c,且0<f(-1)=f(-2)=f(-3)≤3,则( )A.c≤3 B.3<c≤6C.6<c≤9 D.c>9解:由f(-1)=f(-2)=f(-3)得,-1+a-b+c=-8+4a-2b+c=-27+9a-3b+c,消去c得⎩⎪⎨⎪⎧3a-b=7,5a-b=19,解得⎩⎪⎨⎪⎧a=6,b=11,于是0<c-6≤3,即6<c≤9.故选C.6.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m2)分别为x,y,z,且x<y<z,三种颜色涂料的粉刷费用(单位:元/m2)分别为a,b,c,且a<b<c.在不同的方案中,最低的总费用(单位:元)是( )A.ax+by+cz B.az+by+cxC.ay+bz+cx D.ay+bx+cz解:令x=1,y=2,z=3,a=1,b=2,c=3,则ax+by+cz=14,az+by+cx=10,ay+bz+cx=11,ay+bx+cz=13.由此可判断最低总费用是az+by+cx.故选B.7.(2015·江西模拟)设a=lge,b=(lge)2,c=lg e,则a,b,c的大小关系为________.解:因为e<10,所以lge<lg10=12,所以(lge)2<12·lge=lg e,即b<c.又因为e<e,所以lg e<lge,即c<a.故填b<c<a.8.(2016·合肥质检)已知△ABC的三边长分别为a,b,c,且满足b+c≤3a,则ca的取值范围为________.解:由已知及三角形三边关系得⎩⎪⎨⎪⎧a<b+c≤3a,a+b>c,a+c>b,所以⎩⎪⎨⎪⎧1<b a +c a≤3,1+b a >c a ,1+c a >b a ,所以⎩⎪⎨⎪⎧1<b a +ca≤3,-1<c a -b a <1,两式相加得,0<2×c a <4,所以ca的取值范围为(0,2).故填(0,2).9.设实数a ,b ,c 满足 ①b +c =6-4a +3a 2, ②c -b =4-4a +a 2.试确定a ,b ,c 的大小关系.解:因为c -b =(a -2)2≥0,所以c ≥b , 又2b =2+2a 2,所以b =1+a 2,所以b -a =a 2-a +1=⎝ ⎛⎭⎪⎫a -122+34>0,所以b >a ,从而c ≥b >a .10.某企业去年年底给全部的800名员工共发放1 000万元年终奖,该企业计划从今年起,10年内每年发放的年终奖都比上一年增加30万元,企业员工每年净增a 人.(1)若a =10,在计划时间内,该企业的人均年终奖是否会超过1.5万元?(2)为使人均年终奖年年有增长,该企业每年员工的净增量不能超过多少人?解:(1)设从今年起的第x 年(今年为第1年)该企业人均发放年终奖为y 万元.则y =1 000+30x 800+ax (a ∈N *,1≤x ≤10).假设会超过1.5万元,则当a =10时有1 000+30x800+10x >1.5,解得x >403>10.所以,10年内该企业的人均年终奖不会超过1.5万元.(2)设1≤x 1<x 2≤10,y =f (x )=1 000+30x800+ax,则f (x 2)-f (x 1)=1 000+30x 2800+ax 2-1 000+30x 1800+ax 1=(30×800-1 000a )(x 2-x 1)(800+ax 2)(800+ax 1)>0,所以30×800-1 000a >0,得a <24.所以,为使人均年终奖年年有增长,该企业每年员工的净增量不能超过23人.11.(2015·云南模拟改编)已知a +b +c =0,且a >b >c ,求ca的取值范围.解:因为a +b +c =0,所以b =-(a +c ).又a >b >c , 所以a >-(a +c )>c ,且3a >a +b +c =0>3c , 则a >0,c <0,所以1>-a +c a >ca, 即1>-1-c a >c a ,所以⎩⎪⎨⎪⎧2ca <-1,ca>-2, 解得-2<c a <-12.故c a 的取值范围是⎝⎛⎭⎪⎫-2,-12. (2016·武汉模拟)(1)设x ≥1,y ≥1,证明:x +y +1xy ≤1x +1y+xy ;(2)设1<a ≤b ≤c ,证明:log a b +log b c +log c a ≤log b a +log c b +log a c .证明:(1)由于x ≥1,y ≥1, 所以x +y +1xy ≤1x +1y+xy ⇔xy (x +y )+1≤y +x+(xy )2.将上式中的右式减左式, 得- =-=(xy +1)(xy -1)-(x +y )(xy -1) =(xy -1)(xy -x -y +1) =(xy -1)(x -1)(y -1).因为x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0, 从而x +y +1xy ≤1x +1y+xy 成立.(2)设log a b =x ,log b c =y ,则x ≥1,y ≥1,由对数的换底公式得log b a =1x ,log c b =1y ,log c a =1xy,log a c=xy .于是,所要证明的不等式即为x +y +1xy ≤1x +1y+xy .由(1)知所要证明的不等式成立.。

2018高三大一轮复习数学(文)课件:第七章 不等式 7-4

2018高三大一轮复习数学(文)课件:第七章 不等式 7-4

x+y-3≥0, 3.(2016· 高考浙江卷)若平面区域2x-y-3≤0, x-2y+3≥0
夹在两条
斜率为 1 的平行直线之间,则这两条平行直线间的距离的最小值 是( ) 3 5 A. 5 3 2 C. 2 B. 2 D. 5
解析:选 B.画出平面区域表示的可行域如图阴影部分所示.
(4)不等式 x2-y2<0 表示的平面区域是一、三象限角的平分线 和二、四象限角的平分线围成的含有 y 轴的两块区域.( )
答案:(1)× (2)√ (3)× (4)√
[基础自测] 1.已知点(-3,-1)和点(4,-6)在直线 3x-2y-a=0 的两 侧,则 a 的取值范围为( A.(-24,7) B.(-7,24) C.(-∞,-7)∪(24,+∞) D.(-∞,-24)∪(7,+∞) )
解析:选 B.根据题意知(-9+2-a)· (12+12-a)<0. 即(a+7)(a-24)<0,解得-7<a<24.
2.(2016· 高考北京卷)已知 A(2,5),B(4,1).若点 P(x,y)在线 段 AB 上,则 2x-y 的最大值为( A.-1 C.7 B.3 D.8 )
解析:选 C.如图所示,作直线 2x-y=0,向右下平移,当直 线过点 B(4,1)时,z=2x-y 取最大值,得 zmax=2×4-1=7,故选 C.
解析:作出不等式组表示的可行域,利用数形结合思想求解. x-y+1≥0, 不等式组x+y-3≥0, x-3≤0
表示的可行域如图阴影部分所示.
1 1 由 z=x-2y 得 y=2x-2z. 1 平移直线 y=2x,易知经过点 A(3,4)时,z 有最小值,最小值 为 z=3-2×4=-5.
画出平面区域后,只有 C 符合题意.

2018版高考数学(文理通用新课标)一轮复习教师用书:第七章 不等式 Word版含解析

2018版高考数学(文理通用新课标)一轮复习教师用书:第七章 不等式 Word版含解析

第七章⎪⎪⎪不 等 式 第一节不等式的性质及一元二次不等式突破点(一) 不等式的性质1.比较两个实数大小的方法 (1)作差法⎩⎪⎨⎪⎧a -b >0⇔a >b (a ,b ∈R ),a -b =0⇔a =b (a ,b ∈R ),a -b <0⇔a <b (a ,b ∈R ).(2)作商法⎩⎪⎨⎪⎧ab >1⇔a >b (a ∈R ,b >0),ab =1⇔a =b (a ∈R ,b >0),a b<1⇔a <b (a ∈R ,b >0).2.不等式的基本性质本节主要包括2个知识点: 1.不等式的性质;一元二次不等式.3.不等式的一些常用性质 (1)倒数的性质①a >b ,ab >0⇒1a <1b .②a <0<b ⇒1a <1b .③a >b >0,0<c <d ⇒a c >b d .④0<a <x <b 或a <x <b <0⇒1b <1x <1a . (2)有关分数的性质若a >b >0,m >0,则:①b a <b +m a +m ;b a >b -m a -m (b -m >0).②a b >a +m b +m ;a b <a -mb -m (b -m >0).例1] (1)已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .不确定(2)若a =ln 22,b =ln 33,则a ________b (填“>”或“<”).解析] (1)M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=(a 1-1)(a 2-1),又∵a 1∈(0,1),a 2∈(0,1),∴a 1-1<0,a 2-1<0.∴(a 1-1)(a 2-1)>0,即M -N >0.∴M >N .(2)易知a ,b 都是正数,b a =2ln 33ln 2=log 89>1,所以b >a .答案] (1)B (2)<方法技巧] 比较两个数(式)大小的两种方法例2] (1)如果a <bA.1a <1bB .ab <b 2C .-ab <-a 2D .-1a <-1b(2)下列命题中,正确的是( ) A .若a >b ,c >d ,则ac >bd B .若ac >bc ,则a >b C .若a c 2<bc2,则a <bD .若a >b ,c >d ,则a -c >b -d(3)(2016·西安八校联考)“x 1>3且x 2>3”是“x 1+x 2>6且x 1x 2>9”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析] (1)法一(性质判断):对于A 项,由a <b <0,得b -a >0,ab >0,故1a -1b =b -a ab >0,1a >1b ,故A 项错误;对于B 项,由a <b <0,得b (a -b )>0,ab >b 2,故B 项错误;对于C 项,由a <b <0,得a (a -b )>0,a 2>ab ,即-ab >-a 2,故C 项错误;对于D 项,由a <b <0,得a -b <0,ab >0,故-1a -⎝⎛⎭⎫-1b =a -b ab <0,-1a <-1b 成立,故D 项正确.法二(特殊值法):令a =-2,b =-1,则1a =-12>1b =-1,ab =2>b 2=1,-ab =-2>-a 2=-4,-1a =12<-1b=1.故A 、B 、C 项错误,D 项正确.(2)取a =2,b =1,c =-1,d =-2,可知A 错误;当c <0时,ac >bc ⇒a <b ,∴B 错误;∵a c 2<bc2,∴c ≠0,又c 2>0,∴a <b ,C 正确;取a =c =2,b =d =1,可知D 错误. (3)x 1>3,x 2>3⇒x 1+x 2>6,x 1x 2>9;反之不成立,例如x 1=12,x 2=20,x 1+x 2=412>6,x 1x 2=10>9,但x 1<3.故“x 1>3且x 2>3”是“x 1+x 2>6且x 1x 2>9”的充分不必要条件.答案] (1)D (2)C (3)A 方法技巧]不等式性质应用问题的常见类型及解题策略(1)不等式成立问题.熟记不等式性质的条件和结论是基础,灵活运用是关键,要注意不等式性质成立的前提条件.(2)与充分、必要条件相结合问题.用不等式的性质分别判断p ⇒q 和q ⇒p 是否正确,要注意特殊值法的应用.(3)与命题真假判断相结合问题.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法.能力练通 抓应用体验的“得”与“失”1.[考点一]设a ,b ∈0,+∞),A =a +b ,B =a +b ,则A ,B 的大小关系是( ) A .A ≤B B .A ≥B C .A <BD .A >B解析:选B 由题意得,B 2-A 2=-2ab ≤0,且A ≥0,B ≥0,可得A ≥B . 2.[考点二]若m <0,n >0且m +n <0,则下列不等式中成立的是( ) A .-n <m <n <-m B .-n <m <-m <n C .m <-n <-m <nD .m <-n <n <-m解析:选D 法一:(取特殊值法)令m =-3,n =2分别代入各选项检验即可. 法二:m +n <0⇒m <-n ⇒n <-m ,又由于m <0<n ,故m <-n <n <-m 成立. 3.[考点二]若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc <0;③a -c >b -d ;④a (d -c )>b (d -c )中,成立的个数是( )A .1B .2C .3D .4解析:选C ∵a >0>b ,c <d <0,∴ad <0,bc >0,∴ad <bc ,故①不成立.∵a >0>b >-a ,∴a >-b >0,∵c <d <0,∴-c >-d >0,∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +bc =ac +bdcd<0,故②成立.∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ),a -c >b -d ,故③成立.∵a >b ,d -c >0,∴a (d -c )>b (d -c ),故④成立.成立的个数为3.4.[考点二]设a ,b 是实数,则“a >b >1”是“a +1a >b +1b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 因为a +1a -⎝⎛⎭⎫b +1b =(a -b )(ab -1)ab,若a >b >1,显然a +1a -⎝⎛⎭⎫b +1b =(a -b )(ab -1)ab >0,则充分性成立,当a =12,b =23时,显然不等式a +1a >b +1b成立,但a >b >1不成立,所以必要性不成立.突破点(二) 一元二次不等式1.三个“二次”之间的关系2.不等式ax 2+bx +c >0(<0)恒成立的条件(1)不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧ a =b =0,c >0或⎩⎪⎨⎪⎧ a >0,Δ<0.(2)不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧ a =b =0,c <0或⎩⎪⎨⎪⎧a <0,Δ<0.例1] (1)-3x 2-2x +8≥0; (2)0<x 2-x -2≤4;(3)ax 2-(a +1)x +1<0(a >0).解] (1)原不等式可化为3x 2+2x -8≤0,即(3x -4)(x +2)≤0.解得-2≤x ≤43,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-2≤x ≤43. (2)原不等式等价于⎩⎪⎨⎪⎧ x 2-x -2>0,x 2-x -2≤4⇔⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0⇔⎩⎪⎨⎪⎧ (x -2)(x +1)>0,(x -3)(x +2)≤0⇔⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3.借助于数轴,如图所示,原不等式的解集为{}x |-2≤x <-1或2<x ≤3. (3)原不等式变为(ax -1)(x -1)<0, 因为a >0,所以a ⎝⎛⎭⎫x -1a (x -1)<0. 所以当a >1,即1a <1时,解为1a <x <1;当a =1时,解集为∅;当0<a <1,即1a >1时,解为1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <1. 方法技巧]1.解一元二次不等式的方法和步骤(1)化:把不等式变形为二次项系数大于零的标准形式. (2)判:计算对应方程的判别式.(3)求:求出对应的一元二次方程的根,或根据判别式说明方程有没有实根. (4)写:利用“大于取两边,小于取中间”写出不等式的解集. 2.解含参数的一元二次不等式时分类讨论的依据(1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应方程的实根的个数不确定时,讨论判别式Δ与0的关系.(3)确定无实根时可直接写出解集,确定方程有两个实根时,要讨论两实根的大小关系,从而确定解集形式.由一元二次不等式恒成立求参数范围全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外,常转化为求二次函数的最值或用分离参数求最值.考法(一) 在实数集R 上恒成立例2] 已知不等式mx 2-2x -m +1<0,是否存在实数m 使得对所有的实数x ,不等式恒成立?若存在,求出m 的取值范围;若不存在,请说明理由.解] 不等式mx 2-2x -m +1<0恒成立,即函数f (x )=mx 2-2x -m +1的图象全部在x 轴下方.当m =0时,1-2x <0,则x >12,不满足题意;当m ≠0时,函数f (x )=mx 2-2x -m +1为二次函数, 需满足开口向下且方程mx 2-2x -m +1=0无解,即⎩⎪⎨⎪⎧m <0,Δ=4-4m (1-m )<0, 不等式组的解集为空集,即m 无解.综上可知不存在这样的实数m 使不等式恒成立. 考法(二) 在某区间上恒成立例3] 设函数f (x )=mx 2-mx -1(m ≠0),若对于x ∈1,3],f (x )<-m +5恒成立,求m 的取值范围.解] 要使f (x )<-m +5在1,3]上恒成立,则mx 2-mx +m -6<0,即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈1,3]上恒成立.法一:令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈1,3]. 当m >0时,g (x )在1,3]上是增函数, 所以g (x )max =g (3)=7m -6<0. 所以m <67,则0<m <67.当m <0时,g (x )在1,3]上是减函数,所以g (x )max =g (1)=m -6<0.所以m <6,则m <0.综上所述,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪0<m <67或m <0. 法二:因为x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在1,3]上的最小值为67,所以只需m <67即可.因为m ≠0,所以m 的取值范围是mm <0或0<m <67.考法(三) 在参数的某区间上恒成立时求变量范围例4] 对任意m ∈-1,1],函数f (x )=x 2+(m -4)x +4-2m 的值恒大于零,求x 的取值范围.解] 由f (x )=x 2+(m -4)x +4-2m =(x -2)m +x 2-4x +4,令g (m )=(x -2)m +x 2-4x +4,则原问题转化为关于m 的一次函数问题. 由题意知在-1,1]上,g (m )的值恒大于零,∴⎩⎪⎨⎪⎧g (-1)=(x -2)×(-1)+x 2-4x +4>0,g (1)=(x -2)+x 2-4x +4>0,解得x <1或x >3.故当x 的取值范围是(-∞,1)∪(3,+∞)时,对任意的m ∈-1,1],函数f (x )的值恒大于零.易错提醒]解决恒成立问题一定要清楚选谁为主元,谁是参数.一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.即把变元与参数交换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解.能力练通 抓应用体验的“得”与“失”1.[考点一]不等式组⎩⎪⎨⎪⎧x (x +2)>0,|x |<1的解集为( )A .{x |-2<x <-1}B .{x |-1<x <0}C .{x |0<x <1}D .{x |x >1}解析:选C 解x (x +2)>0,得x <-2或x >0;解|x |<1,得-1<x <1.因为不等式组的解集为两个不等式解集的交集,即解集为{x |0<x <1}.2.[考点一]已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,则a +b 等于( )A .-3B .1C .-1D .3解析:选A 由题意得,A ={x |-1<x <3},B ={x |-3<x <2},∴A ∩B ={x |-1<x <2},由根与系数的关系可知,a =-1,b =-2,则a +b =-3.3.[考点二·考法(一)]若不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( )A .(-3,0)B .-3,0)C .-3,0]D .(-3,0]解析:选D 当k =0时,显然成立;当k ≠0时,即一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则⎩⎪⎨⎪⎧k <0,k 2-4×2k ×⎝⎛⎭⎫-38<0,解得-3<k <0. 综上,满足不等式2kx 2+kx -38<0对一切实数x 都成立的k 的取值范围是(-3,0].4.[考点二·考法(二)]若不等式x 2-(a +1)x +a ≤0的解集是-4,3]的子集,则a 的取值范围是( )A .-4,1]B .-4,3]C .1,3]D .-1,3]解析:选B 原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为1,a ],此时只要a ≤3即可,即1<a ≤3.综上可得-4≤a ≤3.5.[考点二·考法(三)]要使不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立,则x 的取值范围为________.解析:将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0.令f (a )=(x -3)a +x 2-6x +9.因为f (a )>0在|a |≤1时恒成立,所以①若x =3,则f (a )=0,不符合题意,应舍去.②若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧ f (-1)>0,f (1)>0,即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0,解得x <2或x >4.答案:(-∞,2)∪(4,+∞)全国卷5年真题集中演练——明规律] 1.(2014·新课标全国卷Ⅰ)已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},则A ∩B =( )A .-2,-1]B .-1,2)C .-1,1]D .1,2)解析:选A A ={x |x ≤-1或x ≥3},故A ∩B =-2,-1],故选A.2.(2014·新课标全国卷Ⅱ)设集合M ={0,1,2},N ={x |x 2-3x +2≤0},则M ∩N =( ) A .{1} B .{2} C .{0,1}D .{1,2}解析:选D N ={x |x 2-3x +2≤0}={x |1≤x ≤2},又M ={0,1,2},所以M ∩N ={1,2}. 3.(2013·新课标全国卷Ⅰ)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( ) A .A ∩B =∅ B .A ∪B =R C .B ⊆AD .A ⊆B解析:选B 集合A ={x |x >2或x <0},所以A ∪B ={x |x >2或x <0}∪{x |-5<x <5}=R ,故选B.课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考练基础小题——强化运算能力]1.若a >b >0,则下列不等式不成立的是( ) A.1a <1bB .|a |>|b |C .a +b <2abD.⎝⎛⎭⎫12a <⎝⎛⎭⎫12b解析:选C ∵a >b >0,∴1a <1b ,且|a |>|b |,a +b >2ab ,又f (x )=⎝⎛⎭⎫12x 是减函数,∴⎝⎛⎭⎫12a <⎝⎛⎭⎫12b.故C 项不成立.2.函数f (x )= 1-xx +2的定义域为( ) A .-2,1] B .(-2,1]C .-2,1)D .(-∞,-2]∪1,+∞)解析:选B 要使函数f (x )=1-x x +2有意义,则⎩⎪⎨⎪⎧(1-x )(x +2)≥0,x +2≠0,解得-2<x ≤1,即函数的定义域为(-2,1].3.已知x >y >z ,x +y +z =0,则下列不等式成立的是( ) A .xy >yz B .xz >yz C .xy >xzD .x |y |>z |y |解析:选C 因为x >y >z ,x +y +z =0,所以3x >x +y +z =0,所以x >0,又y >z ,所以xy >xz ,故选C.4.不等式组⎩⎪⎨⎪⎧x 2-4x +3<0,2x 2-7x +6>0的解集是( )A .(2,3) B.⎝⎛⎭⎫1,32∪(2,3) C.⎝⎛⎭⎫-∞,32∪(3,+∞) D .(-∞,1)∪(2,+∞)解析:选B ∵x 2-4x +3<0,∴1<x <3.又∵2x 2-7x +6>0,∴(x -2)(2x -3)>0,∴x <32或x >2,∴原不等式组的解集为⎝⎛⎭⎫1,32∪(2,3). 5.已知关于x 的不等式ax 2+2x +c >0的解集为-13,12,则不等式-cx 2+2x -a >0的解集为________.解析:依题意知,⎩⎨⎧-13+12=-2a ,-13×12=ca ,∴解得a =-12,c =2,∴不等式-cx 2+2x -a >0,即为-2x 2+2x +12>0,即x 2-x -6<0,解得-2<x <3.所以不等式的解集为(-2,3).答案:(-2,3)练常考题点——检验高考能力]一、选择题1.设集合A ={x |x 2+x -6≤0},集合B 为函数y =1x -1的定义域,则A ∩B 等于( ) A .(1,2) B .1,2] C .1,2) D .(1,2]解析:选D A ={x |x 2+x -6≤0}={x |-3≤x ≤2},由x -1>0得x >1,即B ={x |x >1},所以A ∩B ={x |1<x ≤2}.2.已知a ,b ,c ∈R ,则下列命题正确的是( ) A .a >b ⇒ac 2>bc 2 B.a c >bc ⇒a >b C.⎭⎬⎫a >b ab <0⇒1a >1bD.⎭⎬⎫a >b ab >0⇒1a >1b解析:选C 当c =0时,ac 2=0,bc 2=0,故由a >b 不能得到ac 2>bc 2,故A 错误;当c <0时,a c >b c ⇒a <b ,故B 错误;因为1a -1b =b -aab >0⇔⎩⎨⎧ab >0,a <b 或⎩⎪⎨⎪⎧ab <0,a >b ,故选项D 错误,C 正确.故选C.3.已知a >0,且a ≠1,m =a a 2+1,n =a a +1,则( )A .m ≥nB .m >nC .m <nD .m ≤n解析:选B 由题易知m >0,n >0,两式作商,得mn =a (a 2+1)-(a +1)=a a (a -1),当a >1时,a (a -1)>0,所以a a (a -1)>a 0=1,即m >n ;当0<a <1时,a (a -1)<0,所以a a (a -1)>a 0=1,即m >n .综上,对任意的a >0,a ≠1,都有m >n .4.若不等式组⎩⎪⎨⎪⎧x 2-2x -3≤0,x 2+4x -(1+a )≤0的解集不是空集,则实数a 的取值范围是( )A .(-∞,-4]B .-4,+∞)C .-4,3]D .-4,3)解析:选B 不等式x 2-2x -3≤0的解集为-1,3],假设⎩⎪⎨⎪⎧x 2-2x -3≤0,x 2+4x -(a +1)≤0的解集为空集,则不等式x 2+4x -(a +1)≤0的解集为集合{x |x <-1或x >3}的子集,因为函数f (x )=x 2+4x -(a +1)的图象的对称轴方程为x =-2,所以必有f (-1)=-4-a >0,即a <-4,则使⎩⎪⎨⎪⎧x 2-2x -3≤0,x 2+4x -(1+a )≤0的解集不为空集的a 的取值范围是a ≥-4.5.若不等式x 2+ax -2>0在区间1,5]上有解,则a 的取值范围是( ) A.⎝⎛⎭⎫-235,+∞ B.⎣⎡⎦⎤-235,1 C .(1,+∞)D.⎝⎛⎦⎤-∞,-235 解析:选A 由Δ=a 2+8>0,知方程恒有两个不等实根,又知两根之积为负,所以方程必有一正根、一负根.于是不等式在区间1,5]上有解的充要条件是f (5)>0,解得a >-235,故a 的取值范围为⎝⎛⎭⎫-235,+∞. 6.在R 上定义运算:⎝⎛⎭⎫a c b d =ad -bc ,若不等式⎝⎛⎭⎫x -1a +1a -2x ≥1对任意实数x 恒成立,则实数a 的最大值为( )A .-12B .-32 C.12 D.32解析:选D 由定义知,不等式⎝ ⎛⎭⎪⎫x -1a +1a -2x ≥1等价于x 2-x -(a 2-a -2)≥1,∴x 2-x +1≥a 2-a 对任意实数x 恒成立.∵x 2-x +1=⎝⎛⎭⎫x -122+34≥34,∴a 2-a ≤34,解得-12≤a ≤32,则实数a 的最大值为32.二、填空题7.已知a ,b ,c ∈R ,有以下命题: ①若1a <1b ,则c a <c b ;②若a c 2<b c 2,则a <b ;③若a >b ,则a ·2c >b ·2c .其中正确的是__________(请把正确命题的序号都填上).解析:①若c ≤0,则命题不成立.②由a c 2<b c 2得a -bc2<0,于是a <b ,所以命题正确.③中由2c >0知命题正确.答案:②③8.若0<a <1,则不等式(a -x )⎝⎛⎭⎫x -1a >0的解集是________. 解析:原不等式为(x -a )⎝⎛⎭⎫x -1a <0,由0<a <1得a <1a ,∴a <x <1a. 答案:⎩⎨⎧⎭⎬⎫x ⎪⎪a <x <1a 9.已知函数f (x )=⎩⎪⎨⎪⎧x 2+ax ,x ≥0,bx 2-3x ,x <0为奇函数,则不等式f (x )<4的解集为________.解析:若x >0,则-x <0,则f (-x )=bx 2+3x .因为f (x )为奇函数,所以f (-x )=-f (x ),即bx 2+3x =-x 2-ax ,可得a =-3,b =-1,所以f (x )=⎩⎪⎨⎪⎧x 2-3x ,x ≥0,-x 2-3x ,x <0.当x ≥0时,由x 2-3x <4解得0≤x <4;当x <0时,由-x 2-3x <4解得x <0,所以不等式f (x )<4的解集为(-∞,4).答案:(-∞,4)10.(2016·西安一模)若关于x 的二次不等式x 2+mx +1≥0的解集为R ,则实数m 的取值范围是________.解析:不等式x 2+mx +1≥0的解集为R ,相当于二次函数y =x 2+mx +1的最小值非负,即方程x 2+mx +1=0最多有一个实根,故Δ=m 2-4≤0,解得-2≤m ≤2.答案:-2,2] 三、解答题11.已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值. 解:(1)∵f (x )=-3x 2+a (6-a )x +6, ∴f (1)=-3+a (6-a )+6=-a 2+6a +3>0, 即a 2-6a -3<0,解得3-23<a <3+2 3. ∴不等式的解集为{a |3-23<a <3+23}. (2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3, ∴⎩⎪⎨⎪⎧-1+3=a (6-a )3,-1×3=-6-b3,解得⎩⎪⎨⎪⎧a =3±3,b =-3.故a 的值为3+3或3-3,b 的值为-3.12.已知函数f (x )=x 2-2ax -1+a ,a ∈R. (1)若a =2,试求函数y =f (x )x(x >0)的最小值; (2)对于任意的x ∈0,2],不等式f (x )≤a 成立,试求a 的取值范围.解:(1)依题意得y =f (x )x =x 2-4x +1x =x +1x-4.因为x >0,所以x +1x ≥2. 当且仅当x =1x 时, 即x =1时,等号成立. 所以y ≥-2.所以当x =1时,y =f (x )x 的最小值为-2. (2)因为f (x )-a =x 2-2ax -1,所以要使得“对任意的x ∈0,2],不等式f (x )≤a 成立”只要“x 2-2ax -1≤0在0,2]恒成立”.不妨设g (x )=x 2-2ax -1,则只要g (x )≤0在0,2]上恒成立即可.所以⎩⎪⎨⎪⎧ g (0)≤0,g (2)≤0,即⎩⎪⎨⎪⎧0-0-1≤0,4-4a -1≤0,解得a ≥34.则a 的取值范围为⎣⎡⎭⎫34,+∞. 第二节二元一次不等式(组)与简单的线性规划问题突破点(一) 二元一次不等式(组)表示的平面区域1.二元一次不等式(组)表示的平面区域2.确定二元一次不等式(组)表示的平面区域的方法步骤1.求平面区域的面积,要先作出不等式组表示的平面区域,然后根据区域的形状求面积. 2.求平面区域的面积问题,平面区域形状为三角形的居多,尤其当△ABC 为等腰直角三角形(A 为直角)时,点B 到直线AC 的距离即△ABC 的腰长|AB |.由点到直线的距离公式求得|AB |,面积便可求出.例1] 不等式组⎩⎪⎨⎪⎧2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域的面积为( )本节主要包括3个知识点:1.二元一次不等式(组)表示的平面区域;2.简单的线性规划问题;3.线性规划的实际应用.A .4B .1C .5D .无穷大解析]不等式组⎩⎨⎧2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域如图所示(阴影部分),△ABC 的面积即所求.求出点A ,B ,C 的坐标分别为A (1,2),B (2,2),C (3,0),则△ABC 的面积为S =12×(2-1)×2=1.答案] B 方法技巧]解决求平面区域面积问题的方法步骤(1)画出不等式组表示的平面区域;(2)判断平面区域的形状,并求得直线的交点坐标、图形的边长、相关线段的长(三角形的高、四边形的高)等,若为规则图形则利用图形的面积公式求解;若为不规则图形则利用割补法求解.提醒] 求面积时应考虑圆、平行四边形等图形的对称性.根据平面区域满足的条件求参数不等式组中的参数影响平面区域的形状,如果不等式组中的不等式含有参数,这时它表示的区域的分界线是一条变动的直线,此时要根据参数的取值范围确定这条直线的变化趋势、倾斜角度、上升还是下降、是否过定点等,确定区域的可能形状,进而根据题目要求求解;如果是一条曲线与平面区域具有一定的位置关系,可以考虑对应的函数的变化趋势,确定极限情况求解;如果目标函数中含有参数,则要根据这个目标函数的特点考察参数变化时目标函数与平面区域的关系,在运动变化中求解.例2] 若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a 表示的平面区域是一个三角形,则a 的取值范围是( )A.⎣⎡⎭⎫43,+∞B .(0,1]C.⎣⎡⎦⎤1,43 D .(0,1]∪⎣⎡⎭⎫43,+∞ 解析]不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图所示(阴影部分).由⎩⎪⎨⎪⎧ y =x ,2x +y =2,得A 23,23;由⎩⎪⎨⎪⎧y =0,2x +y =2,得B (1,0).若原不等式组表示的平面区域是一个三角形,则直线x +y =a 中a 的取值范围是0<a ≤1或a ≥43.答案] D易错提醒]此类问题的难点在于参数取值范围的不同导致平面区域或者曲线位置的改变,解答的思路可能会有变化,所以求解时要根据题意进行必要的分类讨论及对特殊点、特殊值的考虑.能力练通 抓应用体验的“得”与“失”1.[考点一]设动点P (x ,y )在区域Ω:⎩⎪⎨⎪⎧x ≥0,y ≥x ,x +y ≤4上,过点P 任作直线l ,设直线l 与区域Ω的公共部分为线段AB ,则以AB 为直径的圆的面积的最大值为( )A .πB .2πC .3πD .4π解析:选D 作出不等式组所表示的可行域如图中阴影部分所示,则根据图形可知,AB 长度的最大值为4,则以AB 为直径的圆的面积为最大值S =π×⎝⎛⎭⎫422=4π.2.[考点二]若不等式组⎩⎪⎨⎪⎧x +y -2≤0,x +2y -2≥0,x -y +2m ≥0表示的平面区域为三角形,且其面积等于43,则m 的值为( )A .-3B .1 C.43D .3解析:选B 作出可行域,如图中阴影部分所示,易求A ,B ,C ,D 的坐标分别为A (2,0),B (1-m,1+m ),C 2-4m 3,2+2m3,D (-2m,0).S△ABC =S △ADB -S △ADC =12|AD |·|y B -y C |=12(2+2m )⎝ ⎛⎭⎪⎫1+m -2+2m 3=(1+m )⎝⎛⎭⎪⎫1+m -23=43,解得m =1或m =-3(舍去).3.[考点一]不等式组 ⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.解析:作出不等式组表示的平面区域如图中阴影部分所示,可知S △ABC =12×2×(2+2)=4.答案:44.[考点二]若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a的整点(x ,y )恰有9个,其中整点是指横、纵坐标都是整数的点,则整数a 的值为________.解析:不等式组所表示的平面区域如图中阴影部分,当a =0时,只有4个整点(1,1),(0,0),(1,0),(2,0);当a =-1时,增加了(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)共5个整点,此时,整点的个数共9个,故整数a =-1.答案:-1突破点(二) 简单的线性规划问题1.线性规划中的基本概念在确定线性约束条件和线性目标函数的前提下,用图解法求最优解的步骤概括为“画、移、求、答”.即例1] (2016·天津高考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0,则目标函数z =2x+5y 的最小值为( )A .-4B .6C .10D .17解析] 由约束条件作出可行域如图所示,目标函数可化为y =-25x +15z ,在图中画出直线y =-25x ,平移该直线,易知经过点A 时z 最小.又知点A的坐标为(3,0),∴z min =2×3+5×0=6.故选B.答案] B 方法技巧]求解线性目标函数最值的常用方法线性目标函数的最优解一般在平面区域的顶点或边界处取得,所以对于一般的线性规划问题,若可行域是一个封闭的图形,我们可以直接解出可行域的顶点,然后将坐标代入目标函数求出相应的数值,从而确定目标函数的最值;若可行域不是封闭图形还是需要借助截距的几何意义来求最值.非线性目标函数的最值例2] (2016·山东高考)若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A .4B .9C .10D .12解析] 作出不等式组表示的平面区域,如图中阴影部分所示.x 2+y 2表示平面区域内点到原点距离的平方,由⎩⎪⎨⎪⎧x +y =2,2x -3y =9得A (3,-1),由图易得(x 2+y 2)max =|OA |2=32+(-1)2=10.故选C.答案] C方法技巧]非线性目标函数最值问题的常见类型及求法(1)距离平方型:目标函数为z =(x -a )2+(y -b )2时,可转化为可行域内的点(x ,y )与点(a ,b )之间的距离的平方求解.(2)斜率型:对形如z =ay +bcx +d(ac ≠0)型的目标函数,可利用斜率的几何意义来求最值,即先变形为z =ac ·y -⎝⎛⎭⎫-b a x -⎝⎛⎭⎫-dc 的形式,将问题化为求可行域内的点(x ,y )与点⎝⎛⎭⎫-d c ,-b a 连线的斜率的ac 倍的取值范围、最值等.(3)点到直线距离型:对形如z =|Ax +By +C |型的目标函数,可先变形为z =A 2+B 2·|Ax +By +C |A 2+B2的形式,将问题化为求可行域内的点(x ,y )到直线Ax +By +C =0的距离的A 2+B 2倍的最值.线性规划中的参数问题例3] 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0.若z =ax +y 的最大值为4,则a =( )A .3B .2C .-2D .-3解析] 画出不等式组表示的平面区域如图阴影部分所示,若z =ax +y 的最大值为4,则最优解为x =1,y =1或x =2,y =0,经检验知x =2,y =0符合题意,∴2a +0=4,此时a =2.答案] B 方法技巧]求解线性规划中含参问题的两种基本方法(1)把参数当成常数用,根据线性规划问题的求解方法求出最优解,代入目标函数确定最值,通过构造方程或不等式求解参数的值或范围;(2)先分离含有参数的式子,通过观察的方法确定含参的式子所满足的条件,确定最优解的位置,从而求出参数.能力练通 抓应用体验的“得”与“失”1.[考点一]设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .2解析:选B 作出可行域如图中阴影部分所示,由z =2x -y 得y =2x -z ,作出直线y =2x ,平移使之经过可行域,观察可知,当直线经过点A (5,2)时,对应的z 值最大.故z max =2×5-2=8.2.[考点二]已知(x ,y )满足⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1,则k =yx +1的最大值为( ) A.12 B.32 C .1D.14解析:选C如图,不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1表示的平面区域为△AOB 的边界及其内部区域,k =yx +1=y -0x -(-1)表示平面区域内的点(x ,y )和点(-1,0)连线的斜率.由图知,平面区域内的点(0,1)和点(-1,0)连线的斜率最大,所以k max =1-00-(-1)=1.3.[考点一](2017·银川模拟)设z =x +y ,其中实数x ,y 满足⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k ,若z 的最大值为6,则z 的最小值为( )A .-3B .-2C .-1D .0解析:选A 作出实数x ,y 满足的平面区域,如图中阴影部分所示,由图知,当目标函数z =x +y 经过点C (k ,k )时,取得最大值,且z max =k +k =6,得k =3.当目标函数z =x +y 经过点B (-6,3)时,取得最小值,且z min =-6+3=-3,故选A.4.[考点三]x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A.12或-1 B .2或12C .2或1D .2或-1解析:选D 由题中条件画出可行域如图中阴影部分所示,可知A (0,2),B (2,0),C (-2,-2),则z A =2,z B =-2a ,z C =2a -2,要使目标函数取得最大值的最优解不唯一,只要z A =z B >z C 或z A =z C >z B 或z B =z C >z A ,解得a =-1或a =2.5.[考点二]设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3,则z =(x +1)2+y 2的最大值为________.解析:作出不等式组⎩⎨⎧x -y +5≥0,x +y ≥0,x ≤3表示的平面区域,如图中阴影部分所示.(x +1)2+y 2可看作点(x ,y )到点P (-1,0)的距离的平方,由图可知可行域内的点A 到点P (-1,0)的距离最大.解方程组⎩⎪⎨⎪⎧x =3,x -y +5=0,得A 点的坐标为(3,8),代入z =(x +1)2+y 2,得z max =(3+1)2+82=80. 答案:80突破点(三) 线性规划的实际应用基础联通 抓主干知识的“源”与“流”解线性规划应用题的一般步骤考点贯通 抓高考命题的“形”与“神”线性规划的实际应用典例] 1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )甲 乙 原料限额 A (吨) 3 2 12 B (吨)128A .12万元B .16万元C .17万元D .18万元解析] 设每天生产甲、乙产品分别为x 吨、y 吨,每天所获利润为z 万元,则有⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,z =3x +4y ,作出可行域如图阴影部分所示,由图形可知,当直线z =3x +4y 经过点A (2,3)时,z 取最大值,最大值为3×2+4×3=18.答案] D易错提醒]求解线性规划应用题的三个注意点(1)明确问题中的所有约束条件,并根据题意判断约束条件是否能够取到等号. (2)注意结合实际问题的实际意义,判断所设未知数x ,y 的取值范围,特别注意分析x ,y 是否为整数、是否为非负数等.(3)正确地写出目标函数,一般地,目标函数是等式的形式.能力练通 抓应用体验的“得”与“失”1.某校今年计划招聘女教师a 名,男教师b 名,若a ,b 满足不等式组⎩⎪⎨⎪⎧2a -b ≥5,a -b ≤2,a <7,设这所学校今年计划招聘教师最多x 名,则x =( )A .10B .12C .13D .16解析:选C 如图所示,画出约束条件所表示的区域,即可行域,作直线b +a =0,并平移,结合a ,b ∈N ,可知当a =6,b =7时,a +b 取最大值,故x =6+7=13.2.A ,B 两种规格的产品需要在甲、乙两台机器上各自加工一道工序才能成为成品.已知A 产品需要在甲机器上加工3小时,在乙机器上加工1小时;B 产品需要在甲机器上加工1小时,在乙机器上加工3小时.在一个工作日内,甲机器至多只能使用11小时,乙机器至多只能使用9小时.A 产品每件利润300元,B 产品每件利润400元,则这两台机器在一个工作日内创造的最大利润是________元.解析:设生产A 产品x 件,B 产品y 件,则x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y ≤11,x +3y ≤9,x ∈N ,y ∈N ,生产利润为z =300x +400y .画出可行域,如图中阴影部分(包含边界)内的整点,显然z =300x +400y 在点M 或其附近的整数点处取得最大值,由方程组⎩⎪⎨⎪⎧ 3x +y =11,x +3y =9,解得⎩⎪⎨⎪⎧x =3,y =2,则z max =300×3+400×2=1 700.故最大利润是1 700元.答案:1 700全国卷5年真题集中演练——明规律]1.(2014·新课标全国卷Ⅰ)不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D .有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2; p 2:∃(x ,y )∈D ,x +2y ≥2; p 3:∀(x ,y )∈D ,x +2y ≤3; p 4:∃(x ,y )∈D ,x +2y ≤-1. 其中的真命题是( ) A .p 2,p 3 B .p 1,p 4 C .p 1,p 2 D .p 1,p 3解析:选C 画出可行域如图中阴影部分所示,由图可知,当目标函数z =x +2y 经过可行域内的点A (2,-1)时,取得最小值0,故x +2y ≥0,因此p 1,p 2是真命题,选C.2.(2013·新课标全国卷Ⅱ)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3).若z =2x +y 的最小值为1,则a =( )A.14 B.12C .1D .2解析:选B 由已知约束条件,作出可行域如图中△ABC 内部及边界部分所示,由目标函数z =2x +y 的几何意义为直线l :y =-2x +z 在y 轴上的截距,知当直线l 过可行域内的点B (1,-2a )时,目标函数z =2x +y 的最小值为1,则2-2a =1,a =12,故选B.3.(2016·全国丙卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z =x +y 的最大值为________.解析:不等式组表示的平面区域如图中阴影部分所示.平移直线x +y =0,当直线经过A 点时,z 取得最大值, 由⎩⎪⎨⎪⎧x -2y =0,x +2y -2=0得A 1,12,z max =1+12=32.答案:324.(2016·全国乙卷)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900 元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析:设生产A 产品x 件,B 产品y 件,由已知可得约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *.即⎩⎪⎨⎪⎧3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *.目标函数为z =2 100x +900y ,由约束条件作出不等式组表示的可行域如图中阴影部分所示.作直线2 100x +900y =0,即7x +3y =0并上下平移,易知当直线经过点M 时,z 取得最大值,联立⎩⎪⎨⎪⎧10x +3y =900,5x +3y =600,解得B (60,100).则z max =2 100×60+900×100=216 000(元). 答案:216 0005.(2015·新课标全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为________.解析:画出可行域如图阴影所示,∵yx 表示过点(x ,y )与原点(0,0)的直线的斜率,∴点(x ,y )在点A 处时yx 最大.由⎩⎪⎨⎪⎧ x =1,x +y -4=0,得⎩⎪⎨⎪⎧x =1,y =3.∴A (1,3).∴yx 的最大值为3. 答案:36.(2012·新课标全国卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥-1,x +y ≤3,x ≥0,y ≥0,则z =x -2y 的取值范围为________.解析:依题意,画出可行域,如图所示,可行域为ABOC ,显然,当直线y =12x -z 2过点A (1,2)时,z 取得最小值为-3;当直线过点B (3,0)时,z 取得最大值为3,综上可知z 的取值范围为-3,3].答案:-3,3]课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考练基础小题——强化运算能力]1.下面给出的四个点中,位于⎩⎪⎨⎪⎧x +y -1<0,x -y +1>0表示的平面区域内的点是( )A .(0,2)B .(-2,0)C .(0,-2)D .(2,0)解析:选C 将四个点的坐标分别代入不等式组⎩⎪⎨⎪⎧x +y -1<0,x -y +1>0验证可知,满足条件的只有(0,-2).2.不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于( )A.32B.23C.43D.34解析:选C 平面区域如图中阴影部分所示.解⎩⎪⎨⎪⎧x +3y =4,3x +y =4得A (1,1),易得B (0,4),C ⎝⎛⎭⎫0,43,|BC |=4-43=83.∴S △ABC =12×83×1=43. 3.若x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为( )A .0B .1 C.32D .2解析:选D 作出不等式组所表示的平面区域,如图所示.作直线x +2y =0并上下平移,易知当直线过点A (0,1)时,z =x +2y 取最大值,即z max =0+2×1=2.4.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,y +2≥0,x +y +2≥0,则(x +2)2+(y +3)2的最小值为( )A .1B.92C .5D .9 解析:选B 不等式组表示的可行域如图阴影部分所示,由题意可知点P (-2,-3)到直线x +y +2=0的距离为|-2-3+2|2=32,所以(x +2)2+(y +3)2的最小值为⎝⎛⎭⎫322=92,故选B.5.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为________.解析:根据约束条件作出可行域如图中阴影部分所示,∵z =3x -y ,∴y =3x -z ,当该直线经过点A (2,2)时,z 取得最大值,即z max =3×2-2=4.答案:4练常考题点——检验高考能力]一、选择题1.若x ,y 满足不等式组⎩⎪⎨⎪⎧x +y -3≤0,x -y +3≥0,y ≥-1,则z =3x +y 的最大值为( )A .11B .-11C .13D .-13解析:选A 将z =3x +y 化为y =-3x +z ,作出可行域如图阴影部分所示,易知当直线y =-3x +z 经过点D 时,z 取得最大值.联立⎩⎪⎨⎪⎧x +y -3=0,y =-1,得D (4,-1),此时z max =4×3-1=11,故选A.。

高考数学一轮复习 第七章 不等式 第4讲 基本不等式 理(2021年最新整理)

高考数学一轮复习 第七章 不等式 第4讲 基本不等式 理(2021年最新整理)

2018版高考数学一轮复习第七章不等式第4讲基本不等式理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第七章不等式第4讲基本不等式理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第七章不等式第4讲基本不等式理的全部内容。

第4讲基本不等式一、选择题1.若x>0,则x+错误!的最小值为( ).A.2 B.3 C.2错误!D.4解析∵x>0,∴x+错误!≥4.答案D2.已知a>0,b>0,a+b=2,则y=错误!+错误!的最小值是( ).A。

错误! B.4 C。

错误! D.5解析依题意得1a+错误!=错误!错误!(a+b)=错误!错误!≥错误!错误!=错误!,当且仅当错误!,即a=错误!,b=错误!时取等号,即错误!+错误!的最小值是错误!.答案C3.小王从甲地到乙地的时速分别为a和b(a〈b),其全程的平均时速为v,则( ).A.a〈v<ab B.v=错误!C。

错误!<v<错误!D.v=错误!解析设甲、乙两地之间的距离为s.∵a<b,∴v=错误!=错误!〈错误!=错误!。

又v-a=错误!-a=错误!〉错误!=0,∴v〉a.答案A4.若正实数a,b满足a+b=1,则().A.错误!+错误!有最大值4 B.ab有最小值错误!C。

错误!+错误!有最大值错误! D.a2+b2有最小值错误!解析由基本不等式,得ab≤错误!=错误!,所以ab≤错误!,故B错;错误!+错误!=错误!=错误!≥4,故A错;由基本不等式得错误!≤ 错误!=错误!,即错误!+错误!≤错误!,故C 正确;a2+b2=(a+b)2-2ab=1-2ab≥1-2×错误!=错误!,故D错.答案C5.已知x>0,y〉0,且错误!+错误!=1,若x+2y>m2+2m恒成立,则实数m的取值范围是().A.(-∞,-2]∪[4,+∞)B.(-∞,-4]∪[2,+∞)C.(-2,4)D.(-4,2)解析∵x〉0,y>0且2x+错误!=1,∴x+2y=(x+2y)错误!=4+错误!+错误!≥4+2 错误!=8,当且仅当错误!=错误!,即x=4,y=2时取等号,∴(x+2y)min=8,要使x+2y〉m2+2m恒成立,只需(x+2y)min〉m2+2m恒成立,即8〉m2+2m,解得-4<m<2。

2018届高考(新课标)数学(文)大一轮复习检测第七章不等式7-4Word版含答案

2018届高考(新课标)数学(文)大一轮复习检测第七章不等式7-4Word版含答案

A 组 专项基础训练(时间:35分钟)1.下列不等式一定成立的是( )A .lg ⎝⎛⎭⎪⎫x 2+14>lg x (x >0) B .sin x +1sin x ≥2(x ≠k π,k ∈Z ) C .x 2+1≥2|x |(x ∈R )D.1x 2+1>1(x ∈R ) 【解析】 当x >0时,x 2+14≥2·x ·12=x , 所以lg ⎝⎛⎭⎪⎫x 2+14≥lg x (x >0),故选项A 不正确; 运用基本不等式时需保证“一正”“二定”“三相等”,而当x ≠k π,k ∈Z 时,sin x 的正负不定,故选项B 不正确;由基本不等式可知,选项C 正确;当x =0时,有1x 2+1=1,故选项D 不正确. 【答案】 C2.(2016·河南百校联盟质检)如图所示,一张正方形的黑色硬纸板,剪去两个一样的小矩形得到一个“E ”形的图形,设小矩形的长、宽分别为a ,b (2≤a ≤10),剪去部分的面积为8,则1b +1+9a +9的最大值为( )A .1 B.1110C.65D .2 【解析】 由题意,2ab =8,∴b =4a. ∵2≤a ≤10,∴1b +1+9a +9=14a +1+9a +9=1+5a +36a +13≤1+52a ·36a+13=65,当且仅当a =36a ,即a =6时,1b +1+9a +9取得最大值65. 【答案】 C3.(2016·新疆乌鲁木齐第二次诊断)已知x ,y 都是正数,且x +y =1,则4x +2+1y +1的最小值为( )A.1315 B .2 C.94D .3 【解析】 由题意知,x +2>0,y +1>0,(x +2)+(y +1)=4,则4x +2+1y +1=14⎝ ⎛⎭⎪⎫4x +2+1y +1 =14⎣⎢⎡⎦⎥⎤5+4(y +1)x +2+x +2y +1≥14⎣⎢⎡⎦⎥⎤5+24(y +1)x +2·x +2y +1=94,当且仅当x =23,y =13时,4x +2+1y +1取最小值94. 【答案】 C4.(2016·甘肃白银会宁一中第三次月考)对一切实数x ,不等式x 2+a |x |+1≥0恒成立,则实数a 的取值范围是( )A .(-∞,-2)B . D .,所以S ∈.故该单位每月获利,最大利润为35 000元.。

高考数学一轮复习第七章 不等式

高考数学一轮复习第七章 不等式

第七章 不 等 式1.不等关系了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景.2.一元二次不等式(1)会从实际问题的情境中抽象出一元二次不等式模型.(2)通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.3.二元一次不等式组与简单线性规划问题 (1)会从实际情境中抽象出二元一次不等式组. (2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.4.基本不等式:ab ≤a +b2(a ≥0,b ≥0)(1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.§7.1 不等关系与不等式1.比较原理 两实数a ,b 之间有且只有以下三个大小关系之一:__________、__________、__________.其中a >b ⇔a -b >0;a <b ⇔______________;a =b ⇔__________.2.不等式的性质(1)对称性:a >b ⇔__________;(2)传递性:a >b ,b >c ⇒__________;(3)不等式加等量:a >b ⇔a +c______b +c ; (4)不等式乘正量:a >b ,c >0⇒__________; 不等式乘负量:a >b ,c <0⇒__________.(5)同向不等式相加:a >b ,c >d ⇒__________; (6)异向不等式相减:a >b ,c <d ⇒__________; (7)同向不等式相乘:a >b >0,c >d >0⇒__________;(8)异向不等式相除:a >b >0,0<c <d ⇒ac ______b d; (9)不等式取倒数:a >b ,ab >0⇒1a ______1b;(10)不等式的乘方:a >b >0⇒______________; (11)不等式的开方:a >b >0⇒______________. 注:1.(5)(6)说明,同向不等式可相加,但不可相减,而异向不等式可相减;2.(7)(8)说明,都是正数的同向不等式可相乘,但不可相除,而都是正数的异向不等式可相除.自查自纠:1.a >b a <b a =b a -b <0 a -b =02.(1)b <a (2)a >c (3)> (4)ac >bc ac <bc(5)a +c >b +d (6)a -c >b -d (7)ac >bd(8)> (9)< (10)a n >b n (n ∈N *且n >1) (11)n a >nb (n ∈N *且n >1)(2013·上海)如果a <b <0,那么下列不等式成立的是( )A.1a <1bB.ab <b 2C.-ab <-a 2D.-1a <-1b解:1a -1b =b -a ab >0,故1a >1b,∴-1a<-1b.故选D.设f (x )=3x 2-x +1,g (x )=2x 2+x -1,x ∈R ,则f (x )与g (x )的大小关系是( )A.f (x )>g (x )B.f (x )≥g (x )C.f (x )=g (x )D.f (x )<g (x )解:f (x )-g (x )=x 2-2x +2=(x -1)2+1>0恒成立,故选A.已知a >0,b >0,则a a b b 与a b b a的大小关系为( )A.a a b b ≥a b b aB.a a b b <a b b aC.a a b b ≤a b b aD.与a ,b 的大小有关解:不妨设a ≥b >0,则a b ≥1,a -b ≥0,故a a b ba b ba小关系是点燃导火线后要在燃放前转移到已知导火线的燃烧速度为4m/s,导火线的长度解:人到达安全区域的时间小于导火线燃烧的随着铁钉的深入,铁钉所受的阻力会越来越大,得每次钉N*),已知一个铁钉受击且第一次受击后进入木板部分的铁钉长度是钉长的③bc>ad.则可组成几个正确命题?则一定有(A.ac>bdC.ad>bc的取值范围是解:由 α-β的取值范围是解:∵-<β<π>0)的大小解法一:a +m b +m若a <0,-1<b <0,则下列不等式成立的是________.①log 0.5(-a )<log 0.5(-ab 2);②(-a )2<(-ab 2)2;③(-a )-1>(-ab 2)-1;④0.5-a >0.5-ab 2.解法一:对于①,∵a <0,-1<b <0,可知-a >0,0<b 2<1,∴-a >-ab 2>0,结合对数函数的性质容易得到log 0.5(-a )<log 0.5(-ab 2),①成立;对于②,由①知-a >-ab 2>0,故(-a )2>(-ab 2)2,②不成立;对于③,由-a >0知,-1a >-1ab2⇔1>1b2⇔b 2>1,与-1<b <0矛盾,③不成立;对于④,由①知④不成立.解法二:用作差或作商法解本题也是可行的,如对于①,有log 0.5(-a )-log 0.5(-ab 2)=log 0.51b2<0,从而①正确,其余类似可解.故填①.1.理解不等关系的意义、实数运算的符号法则、不等式的性质,是解不等式和证明不等式的依据和基础.2.一般数学结论都有前提,不等式性质也是如此.在运用不等式性质之前,一定要准确把握前提条件,注意放宽条件和加强条件与其结论的关系,以及条件与结论间的相互联系.如:同向不等式相加,方向不改变;都是正数的同向不等式相乘,方向不改变;异向不等式相减,方向与被减不等式方向相同;都是正数的异向不等式相除,方向与被除不等式方向相同;两个正数的n 次(n ∈N +,n >1)方(开n 次方),当这两个正数相等时,它们的幂(方根)相等;而不等的两个正数,它们的幂(方根)不等,较大的正数幂(方根)较大.3.不等式性质包括“充分条件(或者是必要条件)”和“充要条件”两种,前者一般是证明不等式的理论基础,后者一般是解不等式的理论基础.4.比较两个实数的大小,有作差法和作商法两种方法.一般多用作差法,注意当这两个数都是正数时,才可以用作商法.作差法是比较作差后的式子与“0”的大小关系;作商法是比较作商后的式子与“1”的大小关系.5.对于实际问题中的不等量关系,还要注意实际问题对各个参变数的限制.1.设a ∈R ,则a >1是1a<1的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:若a >1,则1a <1成立;反之,若1a<1,则a >1或a <0.即a >1⇒1a <1,而1a<1a >1,故选A.2.已知a ,b 为正数,a ≠b ,n 为正整数,则a nb+ab n -a n +1-b n +1的正负情况为 ( )A.恒为正B.恒为负C.与n 的奇偶性有关D.与a ,b 的大小有关解:a n b +ab n -a n +1-b n +1=a n (b -a )+b n(a -b )=-(a -b )(a n -b n),不妨设a >b ,则a n >b n ,所以a n b +ab n -a n +1-b n+1<0恒成立.故选B.3.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( )A.1a <1bB.a 2>b 2C.a c 2+1>bc 2+1D.a ||c >b ||c 解:用排除法.取a =1,b =-1,排除A ,B ;取c =0,排除D.显然1c 2+1>0,对不等式a >b 的两边同时乘以1c 2+1,得a c 2+1>b c 2+1成立.故选C. 4.(2014·湖南)已知命题p :若x >y ,则-x<-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(綈q );④(綈p )∨q 中,真命题是( )A.①③B.①④C.②③D.②④解:当x >y 时,两边乘以-1可得-x <-y ,∴命题p 为真命题;当x =1,y =-2时,显然x 2<y 2,∴命题q 为假命题,∴②③为真命题.故选C.5.(2014·浙江)已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( )A.c ≤3B.3<c ≤6C.6<c ≤9D.c >9解:由f (-1)=f (-2)=f (-3)得,-1+a -b +c =-8+4a -2b +c =-27+9a -3b +c ,消去c 得⎩⎪⎨⎪⎧3a -b =7,5a -b =19, 解得a =6,b =11,于是0<c -6≤3,即6<c ≤9.故选C.6.如果0<m <b <a ,则( )A.cos b +m a +m <cos b a <cos b -m a -mB.cos b a <cos b -m a -m <cos b +m a +mc c§7.2 一元二次不等式及其解法1.解不等式的有关理论(1)若两个不等式的解集相同,则称它们是 ;(2)一个不等式变形为另一个不等式时,若两个不等式是同解不等式,这种变形称为不等式的 ;(3)解不等式变形时应进行同解变形;解不等式的结果,一般用集合表示.2.一元一次不等式解法任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax >b (a ≠0)的形式.当a >0时,解集为 ;当a <0时,解集为 .若关于x 的不等式ax >b 的解集是R ,则实数a ,b 满足的条件是.3.一元二次不等式及其解法 (1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式.(2)使某个一元二次不等式成立的x 的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________.(3)若一元二次不等式经过同解变形后,化为一元二次不等式ax 2+bx +c >0(或ax 2+bx +c <0)(其中a >0)的形式,其对应的方程ax 2+bx +c =0有两个不相等的实根x 1,x 2,且x 1<x 2(此时Δ=b 2-4ac >0),则可根据“大于号取,小于号取”求解集.(4)一元二次不等式的解:函数与不等式 Δ>0 Δ=0 Δ<0二次函数 y =ax 2+bx+c (a >0)的图象一元二次方程ax 2+bx +c =0(a >0)的根有两相异实根 x 1,x 2(x 1<x 2) 有两相等实根 x 1=x 2=-b 2a无实根ax 2+bx +c>0 (a >0)的解① ② R 集ax 2+bx +c<0 (a >0)的解集{x |x 1<x<x 2}∅ ③4.分式不等式解法(1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为f (x )g (x )的形式.(2)将分式不等式转化为整式不等式求解,如:f (x )g (x )>0 ⇔ f (x )g (x )>0; f (x )g (x )<0 ⇔ f (x )g (x )<0; f (x )g (x )≥0 ⇔ ⎩⎪⎨⎪⎧f (x )g (x )≥0,g (x )≠0; f (x )g (x )≤0 ⇔ ⎩⎪⎨⎪⎧f (x )g (x )≤0,g (x )≠0.自查自纠:1.(1)同解不等式 (2)同解变形2.⎩⎨⎧⎭⎬⎫x |x >b a⎩⎨⎧⎭⎬⎫x |x <b a a =0,b <03.(1)一元二次 (2)解集 (3)两边 中间 (4)①{}x |x <x 1或x >x 2②⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-b 2a③∅(2014·课标Ⅰ)已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},则A ∩B =( )A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)解:∵A ={x |x ≥3或x ≤-1},B ={x |-2≤x <2},∴A ∩B ={x |-2≤x ≤-1}=[-2,-1].故选A .设f (x )=x 2+bx +1且f (-1)=f (3),则f (x )>0的解集为( )A.{x |x ∈R }B.{x |x ≠1,x ∈R }C.{x |x ≥1}D.{x |x ≤1} 解:f (-1)=1-b +1=2-b ,f (3)=9+3b +1=10+3b ,由f (-1)=f (3),得2-b =10+3b ,解出b =-2,代入原函数,f (x )>0即x 2-2x30的解集为)x+b-解:由(解:(1)①当m=-②当m=(2)当m(1)x2-(3)x2-解:(1).而y=-x+1,x-1,x1)≤1的解集是A.{x|-1≤解集是{x|-5≤解:∵不等式≤1},∴x1=-<x<3}解:∵不等式,∴a<0,且根,由根与系数的关系得.解:(1)>0,不等式的解集为(2)当a∈R).解:不等式整理为当a=0当a≠0解:x -2x x +2x +1≥0|x -2x ≤0A.{x |-1≤C.{x |0≤解:易知⎦⎥⎤0,12成立,则A.0 B.图1 图2 图3综上 ①②③,≥-52.故选(2)已知对于任意的a ∈[-11],函数f (x )+(a -4)x +2a 的值总大于,则x 的取值范围是( )A.1<x <3B.x <1或 3C.1<x <2D.x <1或 2解:记g (a )x -2)a +x 2-+4,a ∈[-1,依题意,只须(1)>0,(-1)>0⇒-3x +2>0,-5x +6>0<1或x >3,故选B.点拨:(1)一元二次不等式恒成立问题,对于x 变化的情形,解法一利用参变量分离法,化成a >f (x )(a (x ))型恒成立问题,再利用>f (x )max (a <∈[-2,解法一:当-a2<-且仅有一解,则A.a <-C.-1<解法一:,即-1×(2点的关系.本书2.4节有较详细的讨论,可参看.如果方程x2+(m-1)x+m2-2=0的两个实根一个小于-1,另一个大于1,那么实数m的取值范围是( )A.-2<m< 2B.-2<m<0C.-2<m<1D.0<m<1解:令f(x)=x2+(m-1)x+m2-2,结合二次函数图象可知,⎩⎪⎨⎪⎧f(-1)<0,f(1)<0,即⎩⎪⎨⎪⎧m2-m<0,m2+m-2<0,解之,得实数m的取值范围是0<m<1.故选D.类型八一元二次不等式的应用(2013·上海)甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每小时可获得利润是100⎝⎛⎭⎪⎫5x+1-3x元.(1)要使生产该产品2小时获得的利润不低于3000元,求x的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.解:(1)根据题意,200⎝⎛⎭⎪⎫5x+1-3x≥3 000⇒5x-14-3x≥0⇒5x2-14x-3≥0⇒(5x+1)(x-3)≥0,又1≤x≤10,可解得3≤x≤10.(2)设利润为y元,则y=900x·100⎝⎛⎭⎪⎫5x+1-3x=9×104⎝⎛⎭⎪⎫-3x2+1x+5=9×104⎣⎢⎡⎦⎥⎤-3⎝⎛⎭⎪⎫1x-162+6112.故x=6时,y max=457 500元.点拨:和一元二次不等式有关的实际应用题是教材中的重点,这也是将实际生活和数学相结合的切入点,是考查能力的好载体,应予以重视.某小型服装厂生产一种风衣,日销货量x件与货价p元/件之间的关系为p=160-2x,生产x件所需成本为C=500+30x元,则该厂日产量为时,日获利不少于1300元.解:由题意,得(160-2x)x-(500+30x)≥1300,化简得x2-65x+900≤0,解之得20≤x≤45.因此,该厂日产量在20件至45件时,日获利不少于1300元.故填20件至45件.1.一元二次不等式ax2+bx+c>0(或ax2+bx+c<0)(a≠0)的解集的确定,受二次项系数a的符号及判别式Δ=b2-4ac的符号制约,且与相应的二次函数、一元二次方程有密切联系,可结合相应的函数y=ax2+bx+c(a≠0)的图象,数形结合求得不等式的解集;二次函数y=ax2+bx+c的值恒大于0的条件是a>0且Δ<0;若恒大于或等于0,则a>0且Δ≤0.若二次项系数中含参数且未指明该函数是二次函数时,必须考虑二次项系数为0这一特殊情形.2.解分式不等式要使一边为零;求解非严格分式不等式时,要注意分母不等于0,转化为不等式组.(注:形如f(x)g(x)≥0或f(x)g(x)≤0的不等式称为非严格分式不等式).3.解含参数的不等式的基本途径是分类讨论,能避免讨论的应设法避免讨论.对字母参数的逻辑划分要具体问题具体分析,必须注意分类不重、不漏、完全、准确.4.解不等式的过程,实质上是不等式等价转化的过程.因此保持同解变形是解不等式应遵循的基本原则.5.各类不等式最后一般都要化为一元一次不等式(组)或一元二次不等式(组)来解,这体现了转化与化归的数学思想.6.对给定的一元二次不等式,求解的程序框图是:1.不等式x-2x+1≤0的解集是( )A.(-∞,-1)∪(-1,2]B.[-1,2]C.(-∞,-1)∪[2,+∞)D.(-1,2]解:x-2x+1≤0⇔()x+1()x-2≤0,且x≠-1,即x∈(-1,2],故选D.2.关于x的不等式(mx-1)(x-2)>0,若此不等式的解集为⎩⎨⎧⎭⎬⎫x|1m<x<2,则m的取值范围是单位:m)的取值范围是B.[12,25]D.[20,30]解:设矩形的另一边为y m,依题意得§7.3 二元一次不等式(组)与简单的线性规划问题1.二元一次不等式表示的区域(1)当B>0时,Ax+By+C>0表示直线Ax+By +C=0的;Ax+By+C<0表示直线Ax+By+C=0的.(2)当B<0时,Ax+By+C>0表示直线Ax+By +C=0的;Ax+By+C<0表示直线Ax+By+C=0的.2.线性规划(1)不等式组是一组对变量x,y的约束条件,由于这组约束条件都是关于x,y的一次不等式,所以又可称其为线性约束条件.Z=Ax+By是要求最大值或最小值的函数,我们把它称为.由于Z=Ax+By是关于x,y的一次解析式,所以又可叫做.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的的问题,统称为线性规划问题.(3)满足线性约束条件的解(x,y)叫做,由所有可行解组成的集合叫做.其中,使目标函数取得最大值或最小值的可行解都叫做这个问题的.线性目标函数的最值常在可行域的边界上,且通常在可行域的顶点处取得;而求最优整数解首先要看它是否在可行域内.(4)用图解法解决简单的线性规划问题的基本步骤:①首先,要根据 (即画出不等式组所表示的公共区域).②设,画出直线l0.③观察、分析、平移直线l0,从而找到最优解.④最后求得目标函数的.(5)利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出条件,确定函数.然后,用图解法求得数学模型的解,即,在可行域内求得使目标函数.自查自纠:1.(1)上方区域下方区域(2)下方区域上方区域2.(1)目标函数线性目标函数(2)最大值或最小值(3)可行解可行域最优解(4)①线性约束条件画出可行域②z=0④最大值或最小值(5)约束线性目标画出可行域取得最值的解下列命题中正确的是( )A.点(0,1)在区域x-y+1>0内B.点(0,0)在区域x+y+1<0内C.点(1,0)在区域y≥2x内D.点(0,0)在区域x+y≥0内解:将(0,0)代入x+y≥0,成立.故选D.不等式x-2y+6>0表示的区域在直线x -2y+6=0的( )A.左下方B.左上方C.右下方D.右上方解:画出直线及区域范围知C正确.故选C.(2014·湖北)若变量x,y满足约束条件⎩⎪⎨⎪⎧x+y≤4,x-y≤2,x≥0,y≥0,则z=2x+y的最大值是( )A.2B.4C.7D.8解:画出不等式组的可行域如图阴影部分所示,结合目标函数可知,当直线y=-2x+z经过点A(3,1)时,z取最大值,且为7.故选C.点()-2,t在直线2x-3y+6=0的上方,则t的取值范围是.解:()-2,t在2x-3y+6=0的上方,则2×()-2-3t+6<0,解得t>23.故填⎩⎨⎧⎭⎬⎫t|t>23.不等式组⎩⎪⎨⎪⎧x>0,y>0,4x+3y<12表示的平面区域内的整点(横坐标和纵坐标都是整数的点)共有个.解:画出平面区域的图象,可以看出整点有(1,1),(1,2),(2,1),共3个,故填3.≥0,+3y ≥4,+y ≤4与D 有公共点,则x +1)恒过定点C (-BC =12,k AC =4,∴要使直线D 有公共点,则12+y -2≥0,+2y -4≤0,+3y -2≥0________.|BD |=2,C 点坐标(8,-2),=S △ABD +S △BCD =12×2×(2+2)=y ≤x ,x +y ≤1,y ≥-1,和n ,则=-2x +z 经过点B 时,z 1),则n =z min =2×(-1)故选C.)A.有最小值B.有最小值C.有最大值解:画出不等式表示的平面区域,如图,由z =x +y ,得y =-x +z ,令z =0,画出y =-x 的图象,当它的平行线经过A (2,0)时,z 取得最小值为z min =2+0=2,由于可行域是向右上方无限延伸的非封闭区域,y =-x +z 向右上方移动时,z =x +y 也趋于无穷大,所以z =x +y 无最大值,故选B.类型三 含参数的线性规划问题(1)若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A.73B.37C.43D.34解:由题目所给的不等式组可知,其表示的平面区域如图阴影部分所示,这里直线y =kx +43只需经过线段AB 的中点D即可,此时D 点的坐标为⎝ ⎛⎭⎪⎫12,52,代入可得k =73.故选A.(2)在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0(a 为常数)所表示的平面区域的面积等于2,则a 的值为( )A.-5B.1C.2D.3解:如图可得阴影部分即为满足x -1≤0与x +y -1≥0的可行域,而直线ax -y +1=0恒过点(0,1),故看作直线绕点(0,1)旋转,若不等式组所表示的平面区域内的面积等于2,则它是三角形,设该三角形为△ABC ,因为△ABC 的点A 和B 的坐标分别为A (0,1)和B (1,0),且S △ABC=2,设点C 的坐标为C (1,y ),则12×1×y =2⇒y=4,将点C (1,4)代入ax -y +1=0得a =3.故选D.点拨:此类问题综合性较强,注意到y =kx +43,ax -y +1=0都是含参数且恒过定点的直线,因此这两题我们采用数形结合求解.注意把握的两点:①参数的几何意义;②条件的合理转化.(1)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2.目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是( )A.(-1,2)B.(-4,2)C.(-4,0]D.(-2,4)解法一:z =ax +2y 的斜率为-a2,目标函数在点(1,0)处取得最小值,由图象知斜率-a 2满足:-1<-a2<2⇒-4<a<2,所以参数a 的取值范围是(-4,2).解法二:由条件知,可行域是一个三角形,顶点为A (1,0),B (3,4),C (0,1),由于目标函数的最小值仅在A 点处取得,z A =a ,z B =3a +8,z C =2,依题意,z A =a <z B =3a +8,z A =a <z C =2,所以参数a 的取值范围是(-4,2),故选B.(2)(2014·湖南)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤4,y ≥k , 且z =2x +y 的最小值为-6,则k =________.解:易得出约束条件中三条直线两两所成的交点(k ,k ),(4-k ,k ),(2,2),且可行域如图,则k ≤2.最小值在点(k ,k )处取得,3k =-6,得k =-2.故填-2.类型四 利用线性规划求非线性目标函数的最优解已知⎩⎪⎨⎪⎧2x +y -2≥0,x -2y +4≥0,3x -y -3≤0.当x ,y 取何值时,x 2+y 2取得最大值、最小值?最大值、最小值各是多少?解:如图,作出可行域(图中的阴影部分),可行域是封闭的△ABC (包括边界),由⎩⎪⎨⎪⎧x -2y +4=0,3x -y -3=0,得顶点A (2,3),同理可得B (0,2),C (1,0),因为x 2+y 2是可行域内一点P (x ,y )到原点的距离的平方,所以,当P (x ,y )和A (2,3)重合时,(x 2+y 2)max =22+32=13,显然,原点到直线BC :2x +y -2=0的距离d 最小,这里d =|2×0+0-2|22+12=25,(x 2+y 2)min =d 2=45, 此时点P 的坐标满足⎩⎪⎨⎪⎧2x +y -2=0,x 2+y 2=45,⇒⎩⎪⎨⎪⎧x =45,y =25,即点P 的坐标为P ⎝ ⎛⎭⎪⎫45,25. 综上可知,当x =2,y =3时,x 2+y 2取得最大值,最大值是13;当x =45,y =25时,x 2+y 2取得最小值,最小值是45.点拨:本题不是求线性目标函数的最优解,而是求a 2+b 2取得最大值、最小值问题,理解待求式的几何意义并准确画图是解这类题目的关键,同时注意取得最值的点不一定在顶点处取得,本题的最小值就是利用距离公式求得的.实系数方程f (x )=x 2+ax +2b =0的一个根在(0,1)内,另一个根在(1,2)内,求:(1)b -2a -1的值域; (2)(a -1)2+(b -2)2的值域.解:由题意知⎩⎪⎨⎪⎧f (0)>0,f (1)<0,f (2)>0⇒⎩⎪⎨⎪⎧b >0,a +2b +1<0,a +b +2>0.可行域是一个不包括边界的三角形,其顶点为A (-3,1),B (-2,0),C (-1,0).如图所示.(1)设b -2a -1=k ⇒b =k (a -1)+2,则k 表示可行域内一个动点P (a ,b )和定点Q (1,2)连线的斜率,因为A (-3,1),C (-1,0),则k AQ =14,k CQ =1,k AQ <k <k CQ ,14<k <1.∴b -2a -1的值域是⎝ ⎛⎭⎪⎫14,1. (2)(a -1)2+(b -2)2表示可行域内一个动点P (a ,b )和定点Q (1,2)的距离的平方,显然,当动点P (a ,b )和点C (-1,0)重合时距离最小,最小值为22,而P (a ,b )和点A (-3,1)重合时距离最大,最大值为17,所以(a -1)2+(b -2)2的值域为(8,17).所表示的平面区域为和纵坐标均为整数的点的通项公式为+2y -5>+y -7>≥0,y ≥0小值为( z ,y =-34x +z4,过x ,(3,0),(4,0),(5=-34x +z4过(4,1)时有最小值(2,4),(4,1)逐个试验积不超过50植黄瓜和韭菜的产量、成本和售价如下表年产量黄瓜≤50,.9y ≤54,即⎩⎪⎨⎪⎧x +y ≤50,4x +3y ≤180,x ≥0,y ≥0.画出可行域如图所示.两类产品,甲种设备每天能生产类产品10件,类产品20设备乙每天的租赁费为类产品300y 对应的直线过两直线⎩⎪⎨⎪⎧x +65y =10,x +2y =14的交点(4,5)时,目标函数z =200x +300y 取得最小值为2300元.故填2300.1.解客观题可利用特殊点判断二元一次不等式(组)表示的平面区域所在位置,如果直线Ax +By +C =0不经过原点,则把原点代入Ax +By +C ,通过Ax +By +C 的正负和不等号的方向,来判断二元一次不等式(组)表示的平面区域所在的位置.2.如果可行域是一个多边形,那么一般在其顶点处目标函数取得最大值或最小值.最优解一般是多边形的某个顶点,到底是哪个顶点为最优解,有三种解决方法:第一种方法:将目标函数的直线平行移动,最先通过或最后通过的一个便是.第二种方法:利用围成可行域的直线斜率来判断.特别地,当线性目标函数的直线与可行域某条边重合时,其最优解可能有无数组.第三种方法:将可行域所在多边形的每一个顶点P i 逐一代入目标函数ZP i =mx +ny ,比较各个ZP i ,得最大值或最小值.1.不等式组⎩⎪⎨⎪⎧x ≥2,x -y ≥0所表示的平面区域是( )解:画出直线x =2,在平面上取直线的右侧部分(包含直线本身);再画出直线x -y =0,取直线的右侧部分(包含直线本身),两部分重叠的区域就是不等式组表示的平面区域.故选D.2.(2014·天津)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为( )A.2B.3C.4D.5解:画出约束条件表示的平面区域如图中阴影部分所示,目标函数可化为y =-12x +12z ,由图可知,当直线y =-12x +12z 经过点(1,1)时,z 取得最小值3.故选B.3.设二元一次不等式组⎩⎪⎨⎪⎧x +2y -19≥0,x -y +8≥0,2x +y -14≤0所表示的平面区域为M ,则使函数y =a x()a >0,a ≠1的图象过区域M 的a 的取值范围是( )A.[1,3]B.[2,10]C.[2,9]D.[10,9]解:如图,阴影部分为平面区域M ,显然a >1,只需研究过(1,9),(3,8)两种情形,a 1≤9且a 3≥8即2≤a ≤9,故选C.4.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形,则a 的取值范围是( )A.a ≥43 B.0<a ≤1C.1≤a ≤43D.0<a ≤1或a ≥43解:如图,由条件可知,当直线x +y =a 在直线x +y =43右上方时,可行域可以组成一个三角形,即a ≥43时,可行域可以组成一个△OAB ;当0<a ≤1,可以组成一个三角形,所以0<a ≤1或a ≥43,故选D.解:作出可行域如图阴影部分所示,-ax得y=ax+z.当AB重合时,z取最大值直线y=ax+z与直线,此时a=-1.故选D.z=x+y,则y=-知可行域只可能是△ABC,且x+y的最大值只在点x-y-3=0,-my=-1解:作出可行域如图中阴影部分,联立易得,1),C(5,2).-3y⇔y=43x-z13,易知平移如图,作出可行域,作直线l :6x 向右上方平移至l 1位置,直线经过可行域且与原点距离最大,此时z =解方程组⎩⎪⎨⎪⎧3x +10y =300,4x +5y =200得M (20,C 三点的坐标分别为0).,则直线b =2a -取得最小值,经过点C 时,z 取得最大值,即,又A ,B ,C 三点不在可行域内,1)的光线经x 轴反射后的光线所,-1),由图可知,区域3,1),所以所求直线+2y -4≤0,§7.4 基本不等式及其应用1.如果a>0,b>0,那么叫做这两个正数的算术平均数.2.如果a>0,b>0,那么叫做这两个正数的几何平均数.3.重要不等式:a,b∈R,则a2+b2≥ (当且仅当a=b时取等号).4.基本不等式:a>0,b>0,则,当且仅当a=b时等号成立,即两个正数的算术平均数不小于它们的几何平均数.5.求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a+b≥,a2+b2≥.6.求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即,亦即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.7.拓展:若a>0,b>0时,21a+1b≤≤a+b2≤,当且仅当a=b时等号成立.自查自纠:1.a+b22.ab3.2ab4.a+b2≥ab5.最小值2ab2ab6.ab≤⎝⎛⎭⎪⎫a+b22ab≤14(a+b)2ab≤a2+b227.aba2+b22设a,b∈R,且a+b=3,则2a+2b的最小值是( )A.6B.42C.2 2D.2 6解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42,当且仅当a=b=32时取等号,故选B.若a>0,b>0,且a+2b-2=0,则ab的最大值为( )A.12B.1C.2D.4解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤12.当且仅当a=1,b=12时等号成立.故选A.小王从甲地到乙地往返的时速分别为a和b(a<b),其全程的平均时速为v,则( )A.a<v<abB.v=abC.ab<v<a+b2D.v=a+b2解:设甲、乙两地之间的距离为s.∵a<b,∴v=2ssa+sb=2aba+b<2ab2ab=ab.又v-a=2aba+b-a=ab-a2a+b>a2-a2a+b=0,∴v>a.故选A.(2014·上海)若实数x,y满足xy=1,则x2+2y2的最小值为________.解:由xy=1得x2+2y2=x2+2x2≥22,当且仅当x=±42时等号成立.故填22.点(m,n)在直线x+y=1位于第一象限内的图象上运动,则log2m+log2n的最大值是________.解:由条件知,m>0,n>0,m+n=1,所以mn≤⎝⎛⎭⎪⎫m+n22=14,当且仅当m=n=12时取等号,∴log2m+log2n=log2mn≤log214=-2,故填-2.类型一利用基本不等式求最值(1)求函数y=(x+5)(x+2)x+1(x>-1)的值域.解:∵x>-1,∴x+1>0,令m=x+1,则m>0,且y=(m+4)(m+1)m=m+4m+5≥2m·4m+5=9,当且仅当m=2时取等号,故4t+1t的最小值为解:∵t,解集是M,则对任意实常数A.2∈MC.2∈M解法一:求出不等式的解集:k然对数的底数(0,+∞)上恒成立,求实数解:由条件知∞)上恒成立要求矩形场地的一面利用旧墙其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为维修费用为用的旧墙的长度为x 的函数; 使修建此矩形场地围墙的总费用最小,并求出最小总费用.如图,设矩形的另一边长为180(x -2)+180·2,得a =360x,3602-360(x ≥2)要制造一个底宽孔流入,经沉淀后从 m ,高度为分数与a ,b ,b 各为多少为排出的水中杂质的质量分数,根据题意可知:y =k ab,其中k 最小,只需ab 最大+2ab +2a ≤60(a ab (a >0,b >0)ab ,ab ≤30,得0<时取“=”号,=3 m 时经沉淀后排出的水中杂解法二:同解法一得b ≤30-a a +2和;和定积最大,积定和最小”,必要时可以通过变形(拆补)、运算(指数、对数运算等)构造“和”或者“积”为定值.4.求1a +1b型最值问题,常通过“1”来进行转化,但不是所有的最值都可以通过基本不等式解决,有一些看似可以通过基本不等式解决的问题,由于条件的限制,等号不能够成立,这时就不能用基本不等式来解决,而要借助于其他求值域的方法来解决.1.若a >1,则a +1a -1的最小值是( ) A.2 B.a C.3 D.2aa -1解:∵a >1,∴a +1a -1=a -1+1a -1+1≥2(a -1)·1a -1+1=2+1=3,当a =2时等号成立.故选C.2.设a ,b ∈R ,a ≠b ,且a +b =2,则下列各式正确的是( )A.ab <1<a 2+b 22B.ab <1≤a 2+b 22C.1<ab <a 2+b 22D.ab ≤a 2+b 22≤1解:运用不等式ab ≤⎝ ⎛⎭⎪⎫a +b 22⇒ab ≤1以及(a +b )2≤2(a 2+b 2)⇒2≤a 2+b 2(由于a ≠b ,所以不能取等号)得,ab <1<a 2+b 22,故选A.3.函数f (x )=5-4x +x22-x在(-∞,2)上的最小值是( )A.0B.1C.2D.3解:当x <2时,2-x >0,因此f (x )=1+(4-4x +x 2)2-x =12-x +(2-x )≥2·12-x ·(2-x )=2,当且仅当12-x=2-x 时上式取等号.而此方程有解x =1∈(-∞,2),因此f (x )在(-∞,2)上的最小值为2,故选C.4.(2014·福建)要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A.80元B.120元C.160元D.240元解:假设底面的长、宽分别为x m ,4xm ,由条件知该容器的最低总造价为y =80+20x +80x≥160,当且仅当底面边长x =2时,总造价最低,且为160元.故选C.5.下列不等式中正确的是( )A.若a ,b ∈R ,则b a +a b≥2b a ·a b=2 B.若x ,y 都是正数,则lg x +lg y ≥2lg x ·lg yC.若x <0,则x +4x≥-2x ·4x=-4 D.若x ≤0,则2x +2-x≥22x·2-x=2解:对于A ,a 与b 可能异号,A 错;对于B ,lg x 与lg y 可能是负数,B 错;对于C ,应是x +4x=-⎣⎢⎡⎦⎥⎤(-x )+4-x ≤-2(-x )·4-x=-4,C错;对于D ,若x ≤0,则2x+2-x≥22x ·2-x=2成立(x =0时取等号).故选D.6.(2014·重庆)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( )A.6+2 3B.7+2 3C.6+4 3D.7+4 3 解:因为log 4(3a +4b )=log 2ab ,所以log 4(3a+4b )=log 4(ab ),即3a +4b =ab ,且⎩⎪⎨⎪⎧3a +4b >0,ab >0,即a >0,b >0,所以4a +3b =1(a >0,b >0),a +b=(a +b )⎝ ⎛⎭⎪⎫4a +3b =7+4b a +3a b ≥7+24b a ·3a b =7+43,当且仅当4b a =3ab时取等号.故选D.7.若对任意x >0,xx 2+3x +1≤a 恒成立,则a的取值范围是.解:因为x >0,所以x +1x≥2(当且仅当x =1时取等号),所以有x x 2+3x +1=1x +1x+3≤12+3=15,即x x 2+3x +1的最大值为15,故填a ≥15. 8.(2014·四川)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解:易知定点A (0,0),B (1,3). 且无论m 取何值,两直线垂直. 所以无论P 与A ,B 重合与否,均有36 m长网的材料,宽各设计为多少时,可使每间虎笼面积最大?若使每间虎笼面积为24 m2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋设每间虎笼长为x m,宽为36,即2x+3y=设每间虎笼的面积为S,则S=( 21解:问题转化为求△ABC中∠BCAAB的延长线于点米,看A,B的视角最大,=α,∠ACD=β一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M ={x |0≤x <3},N ={x |x 2-3x -4<0},则集合M ∩N =( ) A.{x |0≤x <3} B.{x |0≤x ≤3} C.{x |0≤x ≤1} D.{x |0≤x <1}解:x 2-3x -4<0⇔(x -4)(x +1)<0⇔-1<x <4,∴N ={x |-1<x <4},∴M ∩N ={x |0≤x <3}.故选A.2.不等式x +5()x -12≥2的解集是( )A.⎣⎢⎡⎦⎥⎤-3,12B.⎣⎢⎡⎦⎥⎤-12,3C.⎣⎢⎡⎭⎪⎫12,1∪(1,3]D.⎣⎢⎡⎭⎪⎫-12,1∪(1,3] 解:x +5(x -1)2≥2⇔(x +5)-2(x -1)2(x -1)2≥0⇔-2x 2+5x +3(x -1)2≥0⇔-2x 2+5x +3≥0(x ≠1)⇔2x 2-5x -3≤0(x ≠1)⇔-12≤x ≤3且x ≠1.故选D.3.(2014·北京)设a ,b 是实数,则“a >b ”是“a 2>b 2”的( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解:令a =2,b =-3,则“a >b ”推不出“a 2>b 2”;反之,令a =-1,b =0,则“a 2>b 2”推不出“a >b ”.综上知,故选D.4.若一个矩形的对角线长为常数a ,则其面积的最大值为( )A.a 2B.12a 2C.aD.12a解:如图,设矩形的长和宽分别为x ,y ,则x 2+y 2=a 2,其面积S =xy ,由基本不等式得S ≤12(x 2+y 2)=12a 2,当且仅当x =y 时取等号,此时为正方形.故选B.5.函数y =log 2⎝ ⎛⎭⎪⎫x +1x -1+5(x >1)的最小值为( ) A.-4 B.-3 C.3 D.4解:函数y =log 2⎝ ⎛⎭⎪⎫x +1x -1+5(x >1)=log 2(x -1+1x -1+6)≥log 2⎝⎛⎭⎪⎫2(x -1)×1x -1+6=log 28=3,当且仅当x -1=1x -1,即x =2时取得等号.故选C.6.(2014·四川)执行如图所示的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为( )A.0B.1C.2D.3解:由程序框图知,当⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1时,目标函数S =2x +y ∈[0,2],否则,S =1.因此,输出的S 的最大值为2.故选C.7.(2014·山东)已知实数x ,y 满足a x <a y(0<a <1),则下列关系式恒成立的是( )A.1x 2+1>1y 2+1B.ln(x 2+1)>ln(y 2+1) C.sin x >sin y D.x 3>y 3解:根据指数函数的性质得x >y ,此时x 2,y 2的大小不确定,故选项A ,B 中的不等式不恒成立;根据三角函数的性质,选项C 中的不等式也不恒成立;根据不等式的性质知,选项D 中的不等式恒成立.故选D.8.(2014·湖南模拟)在关于x 的不等式x 2-(a +1)x +a <0的解集中恰有两个整数,则a 的取值范围是( )A.(3,4)B.(-2,-1)∪(3,4)C.(3,4]D.[-2,-1)∪(3,4]解:由题意得,原不等式为(x -1)(x -a )<0.当a >1时,解得1<x <a ,此时解集中的整数为2,3,则3<a ≤4;当a <1时,解得a <x <1,此时解集中的整数为0,-1,则-2≤a <-1.故a ∈[-2,-1)∪(3,4].故选D.9.若直线ax -by +2=0(a >0,b >0)被圆x 2+y 2+2x -4y +1=0截得的弦长为4,则1a+1b的最小值为( ) A.14 B. 2 C.32+ 2 D.32+2 2 解:圆的直径是4,说明直线过圆心(-1,2),故12a +b =1,1a +1b =⎝ ⎛⎭⎪⎫12a +b ⎝ ⎛⎭⎪⎫1a +1b =32+b a +a 2b ≥32+2(当且仅当a =22-2,b =2-2时等号成立),故选C. 10.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m=( )A.2B.3C.4D.5。

2018版高考数学大一轮复习 第七章 不等式 7.4 基本不等式及其应用教师用书 理 新人教版

2018版高考数学大一轮复习 第七章 不等式 7.4 基本不等式及其应用教师用书 理 新人教版

第七章 不等式 7.4 基本不等式及其应用教师用书 理 新人教版1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +a b≥2(a ,b 同号). (3)ab ≤⎝ ⎛⎭⎪⎫a +b 22 (a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值p 24.(简记:和定积最大)【知识拓展】不等式的恒成立、能成立、恰成立问题(1)恒成立问题:若f (x )在区间D 上存在最小值,则不等式f (x )>A 在区间D 上恒成立⇔f (x )min >A (x ∈D );若f (x )在区间D 上存在最大值,则不等式f (x )<B 在区间D 上恒成立⇔f (x )max <B (x ∈D ). (2)能成立问题:若f (x )在区间D 上存在最大值,则在区间D 上存在实数x 使不等式f (x )>A 成立⇔f (x )max >A (x ∈D );若f (x )在区间D 上存在最小值,则在区间D 上存在实数x 使不等式f (x )<B 成立⇔f (x )min <B (x ∈D ).(3)恰成立问题:不等式f (x )>A 恰在区间D 上成立⇔f (x )>A 的解集为D ; 不等式f (x )<B 恰在区间D 上成立⇔f (x )<B 的解集为D . 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数y =x +1x的最小值是2.( × )(2)函数f (x )=cos x +4cos x ,x ∈(0,π2)的最小值等于4.( × )(3)“x >0且y >0”是“x y +y x≥2”的充要条件.( × ) (4)若a >0,则a 3+1a2的最小值为2a .( × )(5)不等式a 2+b 2≥2ab 与a +b2≥ab 有相同的成立条件.( × )(6)两个正数的等差中项不小于它们的等比中项.( √ )1.(教材改编)设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81 D .82 答案 C解析 ∵x >0,y >0,∴x +y2≥xy ,即xy ≤(x +y2)2=81,当且仅当x =y =9时,(xy )max =81.2.已知f (x )=x +1x-2(x <0),则f (x )有( )A .最大值为0B .最小值为0C .最大值为-4D .最小值为-4答案 C 解析 f (x )≤-2-x-1x-2=-4,当且仅当x =-1时,f (x )max =-4.3.若a >0,b >0,且a +b =4,则下列不等式恒成立的是( ) A.1ab ≤14B.1a +1b≤1C.ab ≥2 D .a 2+b 2≥8答案 D解析 4=a +b ≥2ab (当且仅当a =b 时,等号成立),即ab ≤2,ab ≤4,1ab ≥14,选项A ,C 不成立;1a +1b =a +b ab =4ab≥1,选项B 不成立;a 2+b 2=(a +b )2-2ab =16-2ab ≥8,选项D成立.4.(教材改编)已知x ,y 均为正实数,且x +4y =1,则xy 的最大值为________. 答案116解析 1=x +4y ≥24xy =4xy , ∴xy ≤(14)2=116,当且仅当x =4y =12,即⎩⎪⎨⎪⎧x =12,y =18时,(xy )max =116.5.(教材改编)若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________ m 2. 答案 25解析 设矩形的一边为x m , 则另一边为12×(20-2x )=(10-x )m ,∴y =x (10-x )≤[x +-x2]2=25,当且仅当x =10-x ,即x =5时,y max =25.题型一 利用基本不等式求最值 命题点1 通过配凑法利用基本不等式例1 (1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________. (2)已知x <54,则f (x )=4x -2+14x -5的最大值为________.(3)函数y =x 2+2x -1(x >1)的最小值为________.答案 (1)23(2)1 (3)23+2解析 (1)x (4-3x )=13·(3x )(4-3x )≤13·[3x +-3x 2]2=43,当且仅当3x =4-3x ,即x =23时,取等号.(2)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-(5-4x +15-4x )+3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1.(3)y =x 2+2x -1=x 2-2x ++x -+3x -1=x -2+x -+3x -1=(x -1)+3x -1+2≥23+2. 当且仅当(x -1)=3x -,即x =3+1时,等号成立.命题点2 通过常数代换法利用基本不等式例2 已知a >0,b >0,a +b =1,则1a +1b的最小值为________.答案 4解析 ∵a >0,b >0,a +b =1, ∴1a +1b =a +b a +a +b b =2+b a +a b≥2+2b a ·a b =4,即1a +1b 的最小值为4,当且仅当a =b =12时等号成立. 引申探究1.条件不变,求(1+1a )(1+1b)的最小值.解 (1+1a )(1+1b )=(1+a +b a )(1+a +b b )=(2+b a )·(2+ab)=5+2(b a +ab)≥5+4=9.当且仅当a =b =12时,取等号.2.已知a >0,b >0,1a +1b=4,求a +b 的最小值.解 由1a +1b =4,得14a +14b=1.∴a +b =(14a +14b )(a +b )=12+b 4a +a 4b ≥12+2b 4a ·a4b=1. 当且仅当a =b =12时取等号.3.将条件改为a +2b =3,求1a +1b的最小值.解 ∵a +2b =3, ∴13a +23b =1, ∴1a +1b =(1a +1b )(13a +23b )=13+23+a 3b +2b 3a ≥1+2a 3b ·2b 3a =1+223. 当且仅当a =2b 时,取等号.思维升华 (1)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.(2)在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.(3)条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.(1)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________.(2)已知x ,y ∈(0,+∞),2x -3=(12)y ,若1x +my(m >0)的最小值为3,则m =________. 答案 (1)5 (2)4解析 (1)方法一 由x +3y =5xy 可得15y +35x =1,∴3x +4y =(3x +4y )(15y +35x)=95+45+3x 5y +12y 5x ≥135+125=5. 当且仅当3x 5y =12y 5x ,即x =1,y =12时,等号成立,∴3x +4y 的最小值是5.方法二 由x +3y =5xy 得x =3y5y -1,∵x >0,y >0,∴y >15,∴3x +4y =9y5y -1+4y =y -15+95+45-4y 5y -1+4y=135+95·15y -15+4(y -15) ≥135+23625=5, 当且仅当y =12时等号成立,∴(3x +4y )min =5.(2)由2x -3=(12)y得x +y =3, 1x +m y =13(x +y )(1x +m y ) =13(1+m +y x +mx y ) ≥13(1+m +2m ) (当且仅当y x =mxy,即y =mx 时取等号), ∴13(1+m +2m )=3, 解得m =4.题型二 基本不等式的实际应用例3 (2017·淄博质检)某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x ),当年产量不足80千件时,C (x )=13x 2+10x (万元).当年产量不小于80千件时,C (x )=51x +10 000x-1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L (x )(万元)关于年产量x (千件)的函数解析式; (2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?解 (1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.05×1 000x 万元,依题意得:当0<x <80时,L (x )=1 000x ×0.05-(13x 2+10x )-250=-13x 2+40x -250;当x ≥80时,L (x )=1 000x ×0.05-(51x +10 000x-1 450)-250=1 200-(x +10 000x).∴L (x )=⎩⎪⎨⎪⎧-13x 2+40x -x ,1 200-x +10 000xx(2)当0<x <80时,L (x )=-13(x -60)2+950.对称轴为x =60,即当x =60时,L (x )最大=950(万元); 当x ≥80时,L (x )=1 200-(x +10 000x)≤1 200-210 000=1 000(万元), 当且仅当x =100时,L (x )最大=1 000(万元), 综上所述,当年产量为100千件时,年获利润最大.思维升华 (1)设变量时一般要把求最大值或最小值的变量定义为函数. (2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. (3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.(1)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品________件.(2)某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则每台机器为该公司创造的年平均利润的最大值是________万元. 答案 (1)80 (2)8解析 (1)设每件产品的平均费用为y 元,由题意得y =800x +x 8≥2 800x ·x8=20. 当且仅当800x =x8(x >0),即x =80时“=”成立.(2)年平均利润为y x=-x -25x+18=-(x +25x)+18,∵x +25x≥2x ·25x =10,∴y x=18-(x +25x)≤18-10=8, 当且仅当x =25x,即x =5时,取等号.题型三 基本不等式的综合应用命题点1 基本不等式与其他知识交汇的最值问题例4 (1)(2016·菏泽一模)已知直线ax +by +c -1=0(b ,c >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c的最小值是( )A .9B .8C .4D .2(2)(2016·山西忻州一中等第一次联考)设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是________. 答案 (1)A (2)92解析 (1)圆x 2+y 2-2y -5=0化成标准方程, 得x 2+(y -1)2=6, 所以圆心为C (0,1).因为直线ax +by +c -1=0经过圆心C , 所以a ×0+b ×1+c -1=0,即b +c =1. 因此4b +1c =(b +c )(4b +1c )=4c b +bc+5.因为b ,c >0,所以4c b +b c≥24c b ·bc=4.当且仅当4c b =bc时等号成立.由此可得b =2c ,且b +c =1,即b =23,c =13时,4b +1c 取得最小值9.(2)a n =a 1+(n -1)d =n ,S n =n+n2, ∴S n +8a n=n+n2+8n=12(n +16n+1)≥ 12(2n ·16n +1)=92,当且仅当n =4时取等号. ∴S n +8a n 的最小值是92. 命题点2 求参数值或取值范围例5 (1)已知a >0,b >0,若不等式3a +1b ≥m a +3b 恒成立,则m 的最大值为( )A .9B .12C .18D .24(2)已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N *,f (x )≥3恒成立,则a 的取值范围是________.答案 (1)B (2)[-83,+∞)解析 (1)由3a +1b ≥ma +3b ,得m ≤(a +3b )(3a +1b )=9b a +ab+6.又9b a +a b +6≥29+6=12(当且仅当9b a =ab时等号成立),∴m ≤12,∴m 的最大值为12.(2)对任意x ∈N *,f (x )≥3恒成立,即x 2+ax +11x +1≥3恒成立,即知a ≥-(x +8x)+3.设g (x )=x +8x ,x ∈N *,则g (2)=6,g (3)=173.∵g (2)>g (3),∴g (x )min =173,∴-(x +8x )+3≤-83,∴a ≥-83,故a 的取值范围是[-83,+∞).思维升华 (1)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解.(2)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解.(3)求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围.(1)(2016·福建四地六校联考)已知函数f (x )=x +a x+2的值域为(-∞,0]∪[4,+∞),则a 的值是( ) A.12 B.32C .1D .2 (2)已知各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n的最小值为( )A.32B.53C.94D.256 答案 (1)C (2)A解析 (1)由题意可得a >0,①当x >0时,f (x )=x +ax +2≥2a +2,当且仅当x =a 时取等号; ②当x <0时,f (x )=x +a x+2≤-2a +2, 当且仅当x =-a 时取等号,所以⎩⎨⎧2-2a =0,2a +2=4,解得a =1,故选C.(2)由各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,可得a 1q 6=a 1q 5+2a 1q 4, 所以q 2-q -2=0,解得q =2或q =-1(舍去). 因为a m a n =4a 1,所以q m +n -2=16,所以2m +n -2=24,所以m +n =6.所以1m +4n =16(m +n )(1m +4n)=16(5+n m +4m n ) ≥16(5+2n m ·4m n )=32. 当且仅当n m=4mn时,等号成立,又m +n =6,解得m =2,n =4,符合题意. 故1m +4n 的最小值等于32.9.利用基本不等式求最值典例 (1)已知x >0,y >0,且1x +2y=1,则x +y 的最小值是________.(2)函数y =1-2x -3x(x <0)的值域为________.错解展示解析 (1)∵x >0,y >0,∴1=1x +2y ≥22xy,∴xy ≥22,∴x +y ≥2xy =42, ∴x +y 的最小值为4 2.(2)∵2x +3x ≥26,∴y =1-2x -3x≤1-2 6.∴函数y =1-2x -3x(x <0)的值域为(-∞,1-26].答案 (1)4 2 (2)(-∞,1-26] 现场纠错解析 (1)∵x >0,y >0, ∴x +y =(x +y )(1x +2y)=3+y x+2xy≥3+22(当且仅当y =2x 时取等号),∴当x =2+1,y =2+2时,(x +y )min =3+2 2. (2)∵x <0,∴y =1-2x -3x =1+(-2x )+(-3x)≥1+2-2x3-x=1+26,当且仅当x =-62时取等号,故函数y =1-2x -3x(x <0)的值域为[1+26,+∞). 答案 (1)3+2 2 (2)[1+26,+∞)纠错心得 利用基本不等式求最值时要注意条件:一正二定三相等;多次使用基本不等式要验证等号成立的条件.1.已知a ,b ∈R ,且ab ≠0,则下列结论恒成立的是( ) A .a +b ≥2ab B.a b +b a≥2 C .|a b +b a|≥2 D .a 2+b 2>2ab答案 C解析 因为a b 和b a 同号,所以|a b +b a |=|a b |+|b a|≥2. 2.下列不等式一定成立的是( ) A .lg(x 2+14)>lg x (x >0)B .sin x +1sin x≥2(x ≠k π,k ∈Z ) C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R ) 答案 C解析 当x >0时,x 2+14≥2·x ·12=x ,所以lg(x 2+14)≥lg x (x >0),故选项A 不正确;运用基本不等式时需保证“一正”“二定“三相等”, 而当x ≠k π,k ∈Z 时,sin x 的正负不定, 故选项B 不正确;由基本不等式可知,选项C 正确; 当x =0时,有1x 2+1=1,故选项D 不正确.3.当x >0时,函数f (x )=2xx 2+1有( ) A .最小值1 B .最大值1 C .最小值2 D .最大值2答案 B 解析 f (x )=2x x 2+1=2x +1x≤22=1,当且仅当x =1时取等号. 4.已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( )A.72 B .4 C.92 D .5 答案 C解析 依题意,得1a +4b =12(1a +4b )·(a +b )=12[5+(b a +4a b )]≥12(5+2b a ·4a b )=92, 当且仅当⎩⎪⎨⎪⎧a +b =2,b a =4ab ,a >0,b >0,即a =23,b =43时取等号,即1a +4b 的最小值是92. 5.(2016·平顶山至阳中学期中)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( ) A .1+ 2 B .1+ 3 C .3 D .4答案 C解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2x -1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3,故选C. 6.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为( ) A.22B .2 2 C. 2 D .2 答案 D解析 ∵x >0,y >0,x +2y ≥22xy , ∴4xy -(x +2y )≤4xy -22xy , ∴4≤4xy -22xy ,即(2xy -2)(2xy +1)≥0, ∴2xy ≥2,∴xy ≥2.*7.(2016·吉林九校第二次联考)若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值是( )A .1B .6C .9D .16 答案 B解析 ∵正数a ,b 满足1a +1b =1,∴b =a a -1>0,解得a >1.同理可得b >1,所以1a -1+9b -1=1a -1+9a a -1-1=1a -1+9(a -1)≥21a -1a -=6,当且仅当1a -1=9(a -1),即a =43时等号成立,所以最小值为6.故选B. 8.(2016·唐山一模)已知x ,y ∈R 且满足x 2+2xy +4y 2=6,则z =x 2+4y 2的取值范围为________. 答案 [4,12]解析 ∵2xy =6-(x 2+4y 2),而2xy ≤x 2+4y 22,∴6-(x 2+4y 2)≤x 2+4y 22,∴x 2+4y 2≥4(当且仅当x =2y 时取等号). 又∵(x +2y )2=6+2xy ≥0,即2xy ≥-6,∴z =x 2+4y 2=6-2xy ≤12 (当且仅当x =-2y 时取等号). 综上可知4≤x 2+4y 2≤12.9.(2016·潍坊模拟)已知a ,b 为正实数,直线x +y +a =0与圆(x -b )2+(y -1)2=2相切,则a 2b +1的取值范围是________.答案 (0,+∞)解析 ∵x +y +a =0与圆(x -b )2+(y -1)2=2相切, ∴d =|b +1+a |2=2,∴a +b +1=2,即a +b =1,∴a 2b +1=-b 2b +1=b +2-b ++4b +1=(b +1)+4b +1-4≥24-4=0. 又∵a ,b 为正实数, ∴a 2b +1的取值范围是(0,+∞).10.设a >0,b >0,若3是3a 与3b的等比中项,则1a +1b的最小值为________.答案 4解析 由题意知3a·3b=3,即3a +b=3,∴a +b =1,∵a >0,b >0, ∴1a +1b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=2+b a +a b≥2+2b a ·ab=4, 当且仅当a =b =12时,等号成立.*11.(2017·东莞调研)函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中m ,n 均大于0,则1m +2n的最小值为________.答案 8解析 y =log a (x +3)-1恒过定点A (-2,-1), 由A 在直线mx +ny +1=0上. 则-2m -n +1=0,即2m +n =1. ∴1m +2n =2m +n m+m +n n =n m +4m n +4≥24+4=8(当且仅当n m =4m n ,即m =14,n =12时等号成立).12.已知x >0,y >0,且2x +5y =20. (1)求u =lg x +lg y 的最大值; (2)求1x +1y的最小值.解 (1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy . ∵2x +5y =20,∴210xy ≤20,xy ≤10, 当且仅当2x =5y 时,等号成立.因此有⎩⎪⎨⎪⎧2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg 10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1. (2)∵x >0,y >0, ∴1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·2x +5y20 =120⎝ ⎛⎭⎪⎫7+5y x +2x y ≥120⎝ ⎛⎭⎪⎫7+25y x·2x y=7+21020, 当且仅当5y x =2xy时,等号成立.由⎩⎪⎨⎪⎧2x +5y =20,5y x =2xy,解得⎩⎪⎨⎪⎧x =1010-203,y =20-4103.∴1x +1y 的最小值为7+21020. 13.经市场调查,某旅游城市在过去的一个月内(以30天计),第t 天(1≤t ≤30,t ∈N *)的旅游人数f (t )(万人)近似地满足f (t )=4+1t,而人均消费g (t )(元)近似地满足g (t )=120-|t -20|.(1)求该城市的旅游日收益W (t )(万元)与时间t (1≤t ≤30,t ∈N *)的函数关系式; (2)求该城市旅游日收益的最小值.解 (1)W (t )=f (t )g (t )=(4+1t)(120-|t -20|)=⎩⎪⎨⎪⎧401+4t +100t , 1≤t ≤20,559+140t-4t , 20<t ≤30.(2)当t ∈[1,20]时,401+4t +100t≥401+24t ·100t=441(t =5时取最小值).当t ∈(20,30]时,因为W (t )=559+140t-4t 递减,所以t =30时,W (t )有最小值W (30)=44323,所以t ∈[1,30]时,W (t )的最小值为441万元.14.如图所示,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1 km ,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2 km ,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由. 解 (1)令y =0,得kx -120(1+k 2)x 2=0.由实际意义和题设条件知x >0,k >0, 故x =20k 1+k 2=20k +1k≤202=10, 当且仅当k =1时取等号. 所以炮的最大射程为10 km.(2)因为a >0,所以炮弹可击中目标⇔存在k >0,使3.2=ka -120(1+k 2)a 2成立⇔关于k 的方程a 2k 2-20ak +a 2+64=0有正根⇔Δ=(-20a )2-4a 2(a 2+64)≥0⇔0<a ≤6. 所以当a 不超过6 km 时,可击中目标.。

(江苏版)2018年高考数学一轮复习专题7.4基本不等式及其应用(讲)

(江苏版)2018年高考数学一轮复习专题7.4基本不等式及其应用(讲)

4 x+x
≥ 480+ 320×2
x·4= 480+ 320×2 x
4= 1760, 当 且 仅 当
x= 4, 即 x
x= 2 时 , ymin=
1760.
故当池底长为 2 m 时,这个水池的造价最低,最低造价为 1760元.
题组二 常错题
5.若 x>-1,则 x+x+4 1的最小值为________.
2.一段长为 40 m 的篱笆围成一个矩形菜园,则菜园的最大面积是________. 【解析】设矩形菜园的长为 x m,宽为 y m,则 2(x+y)=40,即 x+y=20,∴ 矩形的面积 S=xy≤
( ) x+y 2 2 =100,当且仅当 x=y=10时,等号成立,此时菜园的面积最大,最大的面积是 100 m2 3.将一根铁丝切割成三段做一个面积为 2 m 2、形状为直角三角形的框架,选用最合理(够.用且浪费
基本不等式及其应用在高考中是一个必考的知识点,在处理最值时是一种非常行之有效的工具,在 使用时一定多观察所给代数式的形式,和基本不等式成立的条件.
考点 1 利用基本不等式证明不等式
【重点难点突破】
【1-1】不已知 a 、 b 、 c 都是正数,求证: (a b)(b c)(c a) 8abc
考点 3 基本不等式的实际应用 利用基本不等式求解实际应用题的方法
(1)问题的背景是人们关心的社会热点问题,如“物价、销售、税收、原材料”等,题目往往较 长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解.
(2)当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求 解,此时可根据变量的范围用对应函数的单调性求解.
2
2
推论: ab a2 b2 ( a,b R ) 2

2018高考数学(文)(人教新课标)大一轮复习配套文档第七章不等式7-4基本不等式及其应用Word版含答案

2018高考数学(文)(人教新课标)大一轮复习配套文档第七章不等式7-4基本不等式及其应用Word版含答案

7.4 基本不等式及其应用1.如果a >0,b >0,那么 叫做这两个正数的算术平均数.2.如果a >0,b >0,那么 叫做这两个正数的几何平均数.3.重要不等式:a ,b ∈R ,则a 2+b 2≥ (当且仅当a =b 时取等号).4.基本不等式:a >0,b >0,则 ,当且仅当a =b 时等号成立,即两个正数的算术平均数不小于它们的几何平均数.5.求最小值:a >0,b >0,当ab 为定值时,a +b ,a 2+b 2有 ,即a +b ≥ ,a 2+b 2≥ .简记为:积定和最小.6.求最大值:a >0,b >0,当a +b 为定值时,ab 有最大值,即 ,亦即 ;或a 2+b 2为定值时,ab 有最大值(a >0,b >0),即 .简记为:和定积最大.7.拓展:若a >0,b >0时,21a +1b≤ ≤a +b2≤ ,当且仅当a =b 时等号成立.自查自纠1.a +b22.ab3.2ab4.a +b2≥ab5.最小值 2ab 2ab6.ab ≤⎝ ⎛⎭⎪⎫a +b 22 ab ≤14(a +b )2 ab ≤a 2+b 227.ab a 2+b22已知a ,b ∈R +,且a +b =1,则ab 的最大值为( )A .1B .14C .12D.22解: 因为a ,b ∈R +,所以1=a +b ≥2ab ,所以ab ≤14,当且仅当a =b =12时等号成立.故选B .(2016·湖南模拟)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( )A .1+ 2B .1+ 3C .3D .4解:因为x >2,所以x -2>0,则f (x )=x +1x -2=(x -2)+1x -2+2≥2(x -2)·1x -2+2=4,当且仅当x -2=1x -2,即x =3时取等号.即当f (x )取得最小值时,x =3,即a =3.故选C .设f (x )=ln x ,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .q =r >pC .p =r <qD .p =r >q解:p =f (ab )=ln ab ,q =f ⎝⎛⎭⎪⎫a +b 2=ln a +b 2,r =12(f (a )+f (b ))=12ln ab =ln ab ,函数f (x )=ln x在(0,+∞)上单调递增,因为a +b2>ab ,所以f ⎝⎛⎭⎪⎫a +b 2>f (ab ).所以q>p =r .故选C .(2014·上海)若实数x ,y 满足xy =1,则x2+2y 2的最小值为________.解:由xy =1得x 2+2y 2=x 2+2x2≥22,当且仅当x =±42时等号成立.故填22.(2016·鄂州一模)已知x >0,则xx 2+4的最大值为________.解:因为x x 2+4=1x +4x,又x >0,所以x +4x≥2x ×4x =4,当且仅当x =4x,即x =2时取等号,所以0<1x +4x≤14,即x x 2+4的最大值为14.故填14.类型一 利用基本不等式求最值(1)函数y =(x +5)(x +2)x +1(x >-1)的值域为________.解:因为x >-1,所以x +1>0,令m =x +1,则m >0,且y =(m +4)(m +1)m =m +4m+5≥2m ·4m+5=9,当且仅当m =2时取等号.故填.(2)y =2 400-5(60-x )240-x=2 400-5,当且仅当40-x =40040-x ,即x =20∈(0,30]时,y 取得最大值2 000,所以当DN =20 m 时,得到的市民健身广场面积最大,最大面积为2 000 m 2.答略.【点拨】建立关于x 的函数关系式是解决本题的关键,在运用基本不等式求最小值时,除了“一正,二定,三相等”以外,在最值的求法中,使用基本不等式次数要尽量少,最好是在最后一步使用基本不等式,如果必须使用几次,就需要查看这几次基本不等式等号成立的条件是否有矛盾,有矛盾则应调整解法.(2016·徐州质检)某住宅小区为了使居民有一个优雅、舒适的生活环境,计划建一个八边形的休闲小区,它的主体造型的平面图是由两个相同的矩形ABCD 和EFGH 构成的面积为200 m 2的十字形区域.现计划在正方形MNPQ 上建一花坛,造价为4 200元/m 2,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为210元/m 2,再在四个空角(图中四个三角形)上铺草坪,造价为80元/m 2.(1)设总造价为S 元,AD 的长为x m ,试建立S 关于x 的函数关系式;(2)计划至少投入多少元,才能建造这个休闲小区?解:(1)设DQ 的长为y m ,则x 2+4xy =200, 所以y =200-x24x.S =4 200x 2+210×4xy +80×4×12y 2=38 000+4 000x 2+400 000x2(0<x <102). (2)S =38 000+4 000x 2+400 000x2≥38 000+24 000x 2×400 000x2=38 000+216×108=118 000, 当且仅当 4 000x 2=400 000x 2,即x =10时取“=”,所以S min=118 000(元).故计划至少要投入11.8万元才能建造这个休闲小区.1.要熟悉基本不等式的变式和推广,这对提高解题能力是有帮助的,常见的基本不等式的变式和推广有:①a 2+b 2≥(a +b )22;②ab ≤a 2+b 22;③ab ≤14(a+b )2;④⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22;⑤(a +b )2≥4ab ;⑥ab ≥21a +1b;⑦a +b +c3≥3abc ;⑧abc ≤a 3+b 3+c 33等.对于以上各式,要明了其成立的条件和取“=”的条件.2.在利用基本不等式求最值时,要注意一正,二定,三相等.“一正”是指使用均值不等式的各项(必要时,还要考虑常数项)必须是正数;“二定”是指含变数的各项的和或积必须是常数;“三相等”是指具备等号成立的条件,使待求式能取到最大或最小值.3.基本不等式的应用在于“定和求积,定积求和;和定积最大,积定和最小”,必要时可以通过变形(拆补)、配凑、常数代换、运算(指数、对数运算、平方等)构造“和”或者“积”,使之为定值.4.求1a +1b型最值问题,常通过“1”来进行转化,但不是所有的最值都可以通过基本不等式解决,有一些看似可以通过基本不等式解决的问题,由于条件的限制,等号不能够成立,这时就不能用基本不等式来解决,而要借助于其他求值域的方法来解决.5.基本不等式除具有求最值的功能外,还具有将“和式”转化为“积式”以及将“积式”转化为“和式”的放缩功能,常用于比较数(式)的大小或证明不等式,解决问题的关键是抓住不等式两边的结构特征,找准利用基本不等式的切入点.1.若a >1,则a +1a -1的最小值是( ) A .2B .aC .3D.2a a -1解:因为a >1,所以a +1a -1=a -1+1a -1+1≥2(a -1)·1a -1+1=2+1=3,当且仅当a =2时等号成立.故选C .2.(2015·大理模拟)已知a >0,b >0,且2a +b =4,则1ab的最小值为( )A.14B .4C.12D .2解:因为a >0,b >0,所以4=2a +b ≥22ab ,得ab ≤2,所以1ab ≥12,当且仅当a =1,b =2时等号成立.故选C .3.(2016·西安模拟)以下函数中,最小值为2的是( )A .y =x +1xB .y =3x +3-xC .y =lg x +1lg x (0<x <1)D .y =sin x +1sin x ⎝ ⎛⎭⎪⎫0<x <π2 解:因为3x>0,3-x>0,故3x +3-x≥2(当且仅当x =0时取等号).故选B .4.小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( )A .a <v <abB .v =ab C.ab <v <a +b2D .v =a +b2解:设甲、乙两地之间的距离为s . 因为a <b ,所以v =2ss a +s b=2ab a +b <2ab2ab =ab .又v -a =2ab a +b -a =ab -a 2a +b >a 2-a2a +b =0,所以v >a .故选A .5.(2016·重庆模拟)若正数a ,b 满足a +b =2,则1a +1+4b +1的最小值是( ) A .1 B .94C .9D .16解:1a +1+4b +1=⎝ ⎛⎭⎪⎫1a +1+4b +1·(a +1)+(b +1)4 =14⎣⎢⎡⎦⎥⎤1+4+b +1a +1+4(a +1)b +1≥14(5+4)=94, 当且仅当b +1a +1=4(a +1)b +1且a +b =2,即a =13,b =53时取等号.故选B .6.(2014·重庆)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( )A .6+2 3B .7+2 3C .6+4 3D .7+4 3解:因为log 4(3a +4b )=log 2ab ,所以log 4(3a+4b )=log 4(ab ),即3a +4b =ab ,且⎩⎪⎨⎪⎧3a +4b >0,ab >0, 即a >0,b >0,所以4a +3b=1(a >0,b >0),a +b =(a +b )⎝ ⎛⎭⎪⎫4a +3b =7+4b a +3a b ≥7+24b a ·3ab=7+43,当且仅当4b a =3ab时取等号.故选D .7.(2015·青海模拟)点(m ,n )在直线x +y =1位于第一象限内的图象上运动,则log 2m +log 2n 的最大值是________.解:由条件知,m >0,n >0,m +n =1,所以mn ≤⎝ ⎛⎭⎪⎫m +n 22=14,当且仅当m =n =12时取等号,所以log 2m +log 2n =log 2mn ≤log 214=-2.故填-2.8.(2014·四川)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解:易知定点A (0,0),B (1,3). 且无论m 取何值,两直线垂直. 所以无论P 与A ,B 重合与否,均有|PA |2+|PB |2=|AB |2=10(P 在以AB 为直径的圆上).所以|PA |·|PB |≤12(|PA |2+|PB |2)=5.当且仅当|PA |=|PB |=5时,等号成立.故填5. 9.已知0<x <43,求x (4-3x )的最大值.解:已知0<x <43,所以0<3x <4.所以x (4-3x )=13(3x )(4-3x )≤13⎝ ⎛⎭⎪⎫3x +4-3x 22=43, 当且仅当3x =4-3x ,即x =23时“=”成立.所以当x =23时,x (4-3x )取最大值为43.10.已知a >0,b >0,且2a +b =1,求S =2ab -4a 2-b 2的最大值.解:因为a >0,b >0,2a +b =1,所以4a 2+b2=(2a +b )2-4ab =1-4ab .且1=2a +b ≥22ab ,即ab ≤24,ab ≤18,所以S =2ab -4a 2-b 2=2ab -(1-4ab )=2ab +4ab -1≤2-12.当且仅当a =14,b =12时,等号成立.如图所示,已知树顶A 离地面212米,树上另一点B 离地面112米,某人在离地面32米的C 处看此树,则该人离此树________米时,看A ,B 的视角最大.解:问题转化为求△ABC 中∠BCA 的取值范围.过点C 作CD ⊥AB 交AB 的延长线于点D .设该人距离此树的距离CD =x 米,看A ,B 的视角最大,即∠BCA 最大.不妨设∠BCD =α,∠ACD =β,则∠BCA =β-α,且tan α=4x ,tan β=9x ,所以tan(β-α)=9x -4x 1+9x ×4x=5xx 2+36=5x +36x≤52x ×36x=512,当且仅当x =36x,即x =6时取等号,此时∠BCA 最大.故填6.1.(2016·肇庆模拟)如果log 3m +log 3n =4,那么m +n 的最小值是( )A .4B .4 3C .9D .18解:log 3m +log 3n =log 3mn =4,所以mn =34,而m +n ≥2mn =18,当且仅当m =n =9时等号成立.故选D .2.(2016·西安模拟)若a ,b 均为大于1的正数,且ab =100,则lg a ·lg b 的最大值是( )A .0B .1C .2D.52解:因为a >1,b >1,所以lg a >0,lg b >0.lg a ·lg b ≤(lg a +lg b )24=(lg ab )24=1.当且仅当a =b =10时取等号.故选B .3.(2016·安康模拟)若x >1,则函数y =x +1x+16xx 2+1的最小值为( ) A .16B .8C .4D .2解:y =x +1x +16x x 2+1=x 2+1x +16xx 2+1≥2x 2+1x ·16x x 2+1=8,当且仅当x 2+1x =16xx 2+1时等号成立.故选B .4.(2016·湖南模拟)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件解:由题意知平均每件产品的生产准备费用是800x元,则800x +x 8≥2800x ×x 8=20,当且仅当800x =x 8,即x =80时“=”成立,所以每批应生产产品80件.故选B .5.(2016·郑州模拟)已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C . 6D .8解:因为(x +y )⎝ ⎛⎭⎪⎫1x +a y=1+ax y +y x+a ≥a +1+2a ,当且仅当ax y =y x时等号成立.要使原不等式恒成立,则只需a +1+2a ≥9恒成立,所以(a -2)(a +4)≥0,解得a ≥4, 所以正实数a 的最小值是4.故选B . 6.(2016·重庆模拟)若不等式tt 2+9≤a ≤t +2t2在t ∈(0,2]上恒成立,则a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤16,1 B.⎣⎢⎡⎦⎥⎤16,22 C.⎣⎢⎡⎦⎥⎤16,413D.⎣⎢⎡⎦⎥⎤213,1解:t t 2+9=1t +9t,而y =t +9t在(0,2]上单调递减,故t +9t ≥2+92=132,t t 2+9=1t +9t≤213(当且仅当t=2时等号成立).因为1t ≥12,所以t +2t 2=1t +2t 2=2⎝ ⎛⎭⎪⎫1t +142-18≥1(当且仅当t =2时等号成立),故a 的取值范围为⎣⎢⎡⎦⎥⎤213,1.故选D .7.(2015·重庆)设a ,b >0,a +b =5,则a +1+b +3的最大值为________.解:因为a ,b >0,a +b =5,所以(a +1+b +3)2≤2(a +1)2+2(b +3)2=18,当且仅当a =72,b =32时等号成立,则a +1+b +3≤32,即a +1+b +3的最大值为3 2.故填32.8.(2016·湖南模拟)若直线ax +by -1=0(a >0,b >0)过曲线y =1+sin πx (0<x <2)的对称中心,则1a +2b的最小值为________.解:因为曲线y =1+sin πx (0<x <2)的对称中心为(1,1),所以a +b =1,1a +2b=(a +b )⎝ ⎛⎭⎪⎫1a +2b =3+b a+2ab≥3+2b a ·2a b =3+22,当且仅当b a =2ab,且a +b =1,即a =2-1,b =2-2时等号成立.故填3+22.9.点(x ,y )在直线x +2y =3上移动,求2x+4y的最小值.解:已知点(x ,y )在直线x +2y =3上移动,所以x +2y =3.所以2x+4y≥22x·4y=22x +2y=223=4 2.当且仅当⎩⎪⎨⎪⎧2x=4y,x +2y =3, 即⎩⎪⎨⎪⎧x =32,y =34时“=”成立.所以当⎩⎪⎨⎪⎧x =32,y =34时,2x +4y取最小值为4 2.10.如图,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?解:(1)设每间虎笼长为x m ,宽为y m ,则由条件,知4x +6y =36,即2x +3y =18.设每间虎笼的面积为S ,则S =xy .解法一:由于2x +3y ≥22x ×3y =26xy , 所以26xy ≤18,得xy ≤272,即S ≤272.当且仅当2x =3y 时等号成立.由⎩⎪⎨⎪⎧2x =3y ,2x +3y =18,解得⎩⎪⎨⎪⎧x =4.5,y =3. 故每间虎笼长为4.5 m ,宽为3 m 时,可使每间虎笼面积最大.解法二:由2x +3y =18,得x =9-32y .因为x >0,所以0<y <6.S =xy =⎝ ⎛⎭⎪⎫9-32y y =32(6-y )y .因为0<y <6,所以6-y >0. 所以S ≤32⎣⎢⎡⎦⎥⎤(6-y )+y 22=272. 当且仅当6-y =y ,即y =3时,等号成立,此时x=4.5.故每间虎笼长4.5 m ,宽3 m 时,可使每间虎笼面积最大.(2)由条件知S =xy =24.设钢筋网总长为l ,则l =4x +6y .解法一:因为2x +3y ≥22x ·3y =26xy =24, 所以l =4x +6y =2(2x +3y )≥48,当且仅当2x =3y 时,等号成立.由⎩⎪⎨⎪⎧2x =3y ,xy =24,解得⎩⎪⎨⎪⎧x =6,y =4. 故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长度最小.解法二:由xy =24,得x =24y.所以l =4x +6y =96y+6y =6⎝ ⎛⎭⎪⎫16y+y ≥6×216y×y =48,当且仅当16y=y ,即y =4时,等号成立,此时x=6.故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长度最小.(2016·襄樊月考)已知a ,b 为正实数.(1)求证:a 2b +b 2a≥a +b ;(2)利用(1)的结论求函数y =(1-x )2x+x 21-x(0<x <1)的最小值.解:(1)证明:因为a ,b >0,所以(a +b )⎝ ⎛⎭⎪⎫a 2b +b 2a =a 2+b 2+a 3b +b 3a≥a 2+b 2+2ab =(a +b )2.所以a 2b +b 2a≥a +b ,当且仅当a =b 时等号成立.(2)因为0<x <1,所以1-x >0,由(1)的结论,函数y =(1-x )2x +x 21-x≥(1-x )+x =1.当且仅当1-x =x ,即x =12时等号成立.所以函数y =(1-x )2x +x21-x (0<x <1)的最小值为1.。

2018版高考数学(文)(人教A版)大一轮复习配套讲义:第七章 不等式含解析

2018版高考数学(文)(人教A版)大一轮复习配套讲义:第七章 不等式含解析

第1讲不等式的性质与一元二次不等式最新考纲1。

了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景;2.会从实际问题的情境中抽象出一元二次不等式模型;3.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系;4.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.知识梳理1.两个实数比较大小的方法(1)作差法错误!(2)作商法错误!2.不等式的性质(1)对称性:a>b⇔b<a;(2)传递性:a>b,b>c⇒a>c;(3)可加性:a>b⇔a+c>b+c;a>b,c>d⇒a+c>b+d;(4)可乘性:a>b,c>0⇒ac>bc;a>b>0,c>d>0⇒ac>bd;(5)可乘方:a>b>0⇒a n>b n(n∈N,n≥1);(6)可开方:a>b>0⇒错误!>错误!(n∈N,n≥2).3。

三个“二次”间的关系判别式Δ=b2Δ>0Δ=0Δ<0-4ac二次函数y=ax2+bx+c(a >0)的图象一元二次方程ax2+bx+c=0 (a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2=-错误!没有实数根ax2+bx+c>0(a>0)的解集{x|x>x2或x<x1}错误!Rax2+bx+c<0 (a>0)的解集{x|x1<x<x2}∅∅诊断自测1.判断正误(在括号内打“√”或“×")精彩PPT展示(1)a>b⇔ac2>bc2。

()(2)若不等式ax2+bx+c<0的解集为(x1,x2),则必有a>0.()(3)若方程ax2+bx+c=0(a<0)没有实数根,则不等式ax2+bx+c>0的解集为R。

( )(4)不等式ax2+bx+c≤0在R上恒成立的条件是a<0且Δ=b2-4ac≤0.()解析(1)由不等式的性质,ac2>bc2⇒a>b;反之,c=0时,a>b ac2>bc2.(3)若方程ax2+bx+c=0(a<0)没有实根.则不等式ax2+bx+c〉0的解集为∅.(4)当a=b=0,c≤0时,不等式ax2+bx+c≤0也在R上恒成立。

2018高考数学文人教新课标大一轮复习配套文档:第七章

2018高考数学文人教新课标大一轮复习配套文档:第七章

7.4 基本不等式及其应用1.如果a >0,b >0,那么 叫做这两个正数的算术平均数.2.如果a >0,b >0,那么 叫做这两个正数的几何平均数.3.重要不等式:a ,b ∈R ,则a 2+b 2≥ (当且仅当a =b 时取等号).4.基本不等式:a >0,b >0,则 ,当且仅当a =b 时等号成立,即两个正数的算术平均数不小于它们的几何平均数.5.求最小值:a >0,b >0,当ab 为定值时,a +b ,a 2+b 2有 ,即a +b ≥ ,a 2+b 2≥ .简记为:积定和最小.6.求最大值:a >0,b >0,当a +b 为定值时,ab 有最大值,即 ,亦即 ;或a 2+b 2为定值时,ab 有最大值(a >0,b >0),即 .简记为:和定积最大.7.拓展:若a >0,b >0时,21a +1b≤ ≤a +b2≤ ,当且仅当a =b 时等号成立.自查自纠1.a +b22.ab3.2ab4.a +b2≥ab5.最小值 2ab 2ab6.ab ≤⎝ ⎛⎭⎪⎫a +b 22 ab ≤14(a +b )2 ab ≤a 2+b 227.ab a 2+b22已知a ,b ∈R +,且a +b =1,则ab 的最大值为( )A .1B .14C .12D.22解: 因为a ,b ∈R +,所以1=a +b ≥2ab ,所以ab ≤14,当且仅当a =b =12时等号成立.故选B .(2016·湖南模拟)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( )A .1+ 2B .1+ 3C .3D .4解:因为x >2,所以x -2>0,则f (x )=x +1x -2=(x -2)+1x -2+2≥2(x -2)·1x -2+2=4,当且仅当x -2=1x -2,即x =3时取等号.即当f (x )取得最小值时,x =3,即a =3.故选C .设f (x )=ln x ,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .q =r >pC .p =r <qD .p =r >q解:p =f (ab )=ln ab ,q =f ⎝⎛⎭⎪⎫a +b 2=ln a +b 2,r =12(f (a )+f (b ))=12ln ab =ln ab ,函数f (x )=ln x在(0,+∞)上单调递增,因为a +b2>ab ,所以f ⎝⎛⎭⎪⎫a +b 2>f (ab ).所以q>p =r .故选C .(2014·上海)若实数x ,y 满足xy =1,则x2+2y 2的最小值为________.(S元,AD的长为x计划至少投入多少元,才能建造这个休闲小解:问题转化为求△ABC中∠BCA若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度设每间虎笼长为x m ,宽为,即2x +3y =18.设每间虎笼的面积为S ,则S =xy x +3y ≥22x ×3y ,得xy ≤272,即。

2018版高考数学一轮复习 第七章 不等式 7.2 一元二次不等式及其解法 理

2018版高考数学一轮复习 第七章 不等式 7.2 一元二次不等式及其解法 理

第七章 不等式 7.2 一元二次不等式及其解法 理1.“三个二次”的关系判别式Δ=b 2-4acΔ>0 Δ=0 Δ<0二次函数y =ax 2+bx +c(a >0)的图象一元二次方程ax 2+bx +c =0(a >0)的根 有两相异实根x 1,x 2(x 1<x 2)有两相等实根x 1=x 2=-b 2a没有实数根一元二次不等式ax 2+bx +c >0(a >0)的解集 {x |x <x 1或x >x 2}{x |x ≠-b2a}{x |x ∈R }一元二次不等式ax 2+bx +c <0(a >0)的解集 {x |x 1< x <x 2} ∅ ∅2.常用结论(x -a )(x -b )>0或(x -a )(x -b )<0型不等式的解法不等式解集a <ba =ba >b(x -a )·(x -b )>0 {x |x <a 或x >b }{x |x ≠a }{x |x <b 或x >a } (x -a )·(x -b )<0{x |a <x <b }∅{x |b <x <a }口诀:大于取两边,小于取中间. 【知识拓展】 (1)f xg x>0(<0)⇔f (x )·g (x )>0(<0).(2)f xg x≥0(≤0)⇔f (x )·g (x )≥0(≤0)且g (x )≠0.以上两式的核心要义是将分式不等式转化为整式不等式. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( √ )(2)若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2.( √ )(3)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( × ) (4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( × ) (5)若二次函数y =ax 2+bx +c 的图象开口向下,则不等式ax 2+bx +c <0的解集一定不是空集.( √ )1.(教材改编)不等式x 2-3x -10>0的解集是( ) A .(-2,5) B .(5,+∞)C .(-∞,-2)D .(-∞,-2)∪(5,+∞)答案 D解析 解方程x 2-3x -10=0得x 1=-2,x 2=5,由于y =x 2-3x -10的图象开口向上,所以x 2-3x -10>0的解集为(-∞,-2)∪(5,+∞). 2.设集合M ={x |x 2-3x -4<0},N ={x |0≤x ≤5},则M ∩N 等于( ) A .(0,4] B .[0,4) C .[-1,0) D .(-1,0]答案 B解析 ∵M ={x |x 2-3x -4<0}={x |-1<x <4}, ∴M ∩N =[0,4).3.(教材改编)y =log 2(3x 2-2x -2)的定义域是________________. 答案 (-∞,1-73)∪(1+73,+∞)解析 由题意,得3x 2-2x -2>0,令3x 2-2x -2=0得x 1=1-73,x 2=1+73,∴3x 2-2x -2>0的解集为(-∞,1-73)∪(1+73,+∞).。

2018版高考数学大一轮复习 第七章 不等式 7.1 不等关系与不等式教师用书 文 新人教版

2018版高考数学大一轮复习 第七章 不等式 7.1 不等关系与不等式教师用书 文 新人教版

2018版高考数学大一轮复习 第七章 不等式 7.1 不等关系与不等式教师用书 文 新人教版1.两个实数比较大小的方法(1)作差法⎩⎪⎨⎪⎧a -b >0⇔a > b a -b =0⇔a = ba -b <0⇔a < b(a ,b ∈R );(2)作商法⎩⎪⎨⎪⎧ab>1⇔a > b ab =1⇔a = ba b <1⇔a < b(a ∈R ,b >0).2.不等式的基本性质3.(1)倒数的性质 ①a >b ,ab >0⇒1a <1b.②a <0<b ⇒1a <1b.③a >b >0,0<c <d ⇒a c >b d. ④0<a <x <b 或a <x <b <0⇒1b <1x <1a.(2)有关分数的性质 若a >b >0,m >0,则 ①b a <b +m a +m ;b a >b -ma -m(b -m >0). ②a b >a +mb +m ;a b <a -mb -m(b -m >0). 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个实数a ,b 之间,有且只有a >b ,a =b ,a <b 三种关系中的一种.( √ ) (2)若a b>1,则a >b .( × )(3)一个不等式的两边同加上或同乘以同一个数,不等号方向不变.( × ) (4)一个非零实数越大,则其倒数就越小.( × ) (5)a >b >0,c >d >0⇒a d >b c.( √ ) (6)若ab >0,则a >b ⇔1a <1b.( √ )1.设a ,b ,c ∈R ,且a >b ,则( ) A .ac >bc B.1a <1bC .a 2>b 2D .a 3>b 3答案 D解析 ∵a >b ,当c <0时,ac <bc ,故A 错;当a >0,b <0时,显然满足a >b ,此时1a >1b,故B错;当b <a <0时,a 2<b 2,故C 错;∵幂函数y =x 3在(-∞,+∞)上是增函数,∴当a >b 时,a 3>b 3,故选D.2.(教材改编)若a ,b 都是实数,则“a -b >0”是“a 2-b 2>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 A 解析a -b >0⇒a >b⇒a >b ⇒a 2>b 2,但由a 2-b 2>0D /⇒a -b >0.3.若a ,b ∈R ,且a +|b |<0,则下列不等式中正确的是( ) A .a -b >0 B .a 3+b 3>0 C .a 2-b 2<0 D .a +b <0答案 D解析 由a +|b |<0知,a <0,且|a |>|b |, 当b ≥0时,a +b <0成立,当b <0时,a +b <0成立,∴a +b <0.故选D.4.如果a ∈R ,且a 2+a <0,则a ,a 2,-a ,-a 2的大小关系是________________. 答案 a <-a 2<a 2<-a 解析 由a 2+a <0得a <-a 2, ∴a <0且a >-1,∴-a 2<a 2<-a .5.(教材改编)若0<a <b ,且a +b =1,则将a ,b ,12,2ab ,a 2+b 2从小到大排列为________________. 答案 a <2ab <12<a 2+b 2<b解析 ∵0<a <b 且a +b =1, ∴a <12<b <1,∴2b >1且2a <1,∴a <2b ·a =2a (1-a )=-2a 2+2a=-2⎝ ⎛⎭⎪⎫a -122+12<12.即a <2ab <12,又a 2+b 2=(a +b )2-2ab =1-2ab >1-12=12,即a 2+b 2>12,a 2+b 2-b =(1-b )2+b 2-b =(2b -1)(b -1),又2b -1>0,b -1<0,∴a 2+b 2-b <0, ∴a 2+b 2<b ,综上,a <2ab <12<a 2+b 2<b .题型一 比较两个数(式)的大小例1 (1)已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .不确定(2)若a =ln 33,b =ln 44,c =ln 55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c答案 (1)B (2)B解析 (1)M -N =a 1a 2-(a 1+a 2-1) =a 1a 2-a 1-a 2+1 =a 1(a 2-1)-(a 2-1) =(a 1-1)(a 2-1), 又∵a 1∈(0,1),a 2∈(0,1), ∴a 1-1<0,a 2-1<0.∴(a 1-1)(a 2-1)>0,即M -N >0. ∴M >N .(2)方法一 易知a ,b ,c 都是正数,b a =3ln 44ln 3=log 8164<1, 所以a >b ;b c =5ln 44ln 5=log 6251 024>1, 所以b >c .即c <b <a .方法二 对于函数y =f (x )=ln x x ,y ′=1-ln xx2, 易知当x >e 时,函数f (x )单调递减. 因为e<3<4<5,所以f (3)>f (4)>f (5), 即c <b <a .思维升华 比较大小的常用方法 (1)作差法:一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差. (2)作商法:一般步骤:①作商;②变形;③判断商与1的大小;④结论.(3)函数的单调性法:将要比较的两个数作为一个函数的两个函数值,根据函数单调性得出大小关系.(1)设a ,b ∈[0,+∞),A =a +b ,B =a +b ,则A ,B 的大小关系是( )A .A ≤B B .A ≥BC .A <BD .A >B(2)若a =1816,b =1618,则a 与b 的大小关系为________. 答案 (1)B (2)a <b 解析 (1)∵A ≥0,B ≥0,A 2-B 2=a +2ab +b -(a +b )=2ab ≥0, ∴A ≥B .(2)a b =18161618=(1816)161162 =(98)16(12)16=(982)16, ∵982∈(0,1),∴(982)16<1, ∵1816>0,1618>0, ∴1816<1618.即a <b . 题型二 不等式的性质例2 (1)已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中一定成立的是( ) A .ab >ac B .c (b -a )<0 C .cb 2<ab 2D .ac (a -c )>0(2)已知a ,b ,c ,d 为实数,则“a >b 且c >d ”是“ac +bd >bc +ad ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 (1)A (2)A解析 (1)由c <b <a 且ac <0知c <0且a >0. 由b >c 得ab >ac 一定成立. (2)因为c >d ,所以c -d >0. 又a >b ,所以两边同时乘以(c -d ), 得a (c -d )>b (c -d ), 即ac +bd >bc +ad .若ac +bd >bc +ad ,则a (c -d )>b (c -d ),也可能a <b 且c <d , 所以“a >b 且c >d ”是“ac +bd >bc +ad ”的充分不必要条件.思维升华 解决此类问题常用两种方法:一是直接使用不等式的性质逐个验证;二是利用特殊值法排除错误答案.利用不等式的性质判断不等式是否成立时要特别注意前提条件.若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +b c<0;③a -c >b -d ;④a (d-c )>b (d -c )中成立的个数是( ) A .1 B .2 C .3 D .4 答案 C解析 方法一 ∵a >0>b ,c <d <0, ∴ad <0,bc >0, ∴ad <bc ,故①错误. ∵a >0>b >-a ,∴a >-b >0, ∵c <d <0,∴-c >-d >0, ∴a (-c )>(-b )(-d ), ∴ac +bd <0,∴a d +b c =ac +bdcd<0,故②正确.∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ), ∴a -c >b -d ,故③正确.∵a >b ,d -c >0,∴a (d -c )>b (d -c ), 故④正确,故选C. 方法二 取特殊值. 题型三 不等式性质的应用命题点1 应用性质判断不等式是否成立例3 已知a>b>0,给出下列四个不等式:①a2>b2;②2a>2b-1;③a-b>a-b;④a3+b3>2a2b.其中一定成立的不等式为( )A.①②③ B.①②④C.①③④ D.②③④答案 A解析方法一由a>b>0可得a2>b2,①成立;由a>b>0可得a>b-1,而函数f(x)=2x在R上是增函数,∴f(a)>f(b-1),即2a>2b-1,②成立;∵a>b>0,∴a>b,∴(a-b)2-(a-b)2=2ab-2b=2b(a-b)>0,∴a-b>a-b,③成立;若a=3,b=2,则a3+b3=35,2a2b=36,a3+b3<2a2b,④不成立.故选A.方法二令a=3,b=2,可以得到①a2>b2,②2a>2b-1,③a-b>a-b均成立,而④a3+b3>2a2b不成立,故选A. 命题点2 求代数式的取值范围例4 已知-1<x<4,2<y<3,则x-y的取值范围是________,3x+2y的取值范围是________.答案(-4,2) (1,18)解析∵-1<x<4,2<y<3,∴-3<-y<-2,∴-4<x-y<2.由-1<x<4,2<y<3,得-3<3x<12,4<2y<6,∴1<3x+2y<18.引申探究1.若将例4条件改为-1<x<y<3,求x-y的取值范围.解∵-1<x<3,-1<y<3,∴-3<-y<1,∴-4<x-y<4.又∵x<y,∴x-y<0,∴-4<x-y<0,故x-y的取值范围为(-4,0).2.若将例4条件改为-1<x+y<4,2<x-y<3,求3x+2y的取值范围.解设3x+2y=m(x+y)+n(x-y),则⎩⎪⎨⎪⎧m +n =3,m -n =2,∴⎩⎪⎨⎪⎧m =52,n =12.即3x +2y =52(x +y )+12(x -y ),又∵-1<x +y <4,2<x -y <3, ∴-52<52(x +y )<10,1<12(x -y )<32,∴-32<52(x +y )+12(x -y )<232,即-32<3x +2y <232,∴3x +2y 的取值范围为(-32,232).思维升华 (1)判断不等式是否成立的方法①判断不等式是否成立,需要逐一给出推理判断或反例说明.常用的推理判断需要利用不等式的性质.②在判断一个关于不等式的命题真假时,先把要判断的命题和不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题真假,当然判断的同时还要用到其他知识,比如对数函数、指数函数的性质等. (2)求代数式的取值范围利用不等式性质求某些代数式的取值范围时,多次运用不等式的性质时有可能扩大变量的取值范围.解决此类问题,一般是利用整体思想,通过“一次性”不等关系的运算求得整体范围,是避免错误的有效途径.(1)若a <b <0,则下列不等式一定成立的是( )A.1a -b >1b B .a 2<ab C.|b ||a |<|b |+1|a |+1D .a n>b n(2)设a >b >1,c <0,给出下列三个结论: ①c a >c b;②a c <b c;③log b (a -c )>log a (b -c ). 其中所有正确结论的序号是( ) A .① B .①② C .②③D .①②③答案 (1)C (2)D解析 (1)(特值法)取a =-2,b =-1,逐个检验,可知A ,B ,D 项均不正确; C 项,|b ||a |<|b |+1|a |+1⇔|b |(|a |+1)<|a |(|b |+1)⇔|a ||b |+|b |<|a ||b |+|a |⇔|b |<|a |, ∵a <b <0,∴|b |<|a |成立,故选C. (2)由不等式性质及a >b >1知1a <1b,又c <0,∴c a >c b,①正确; 构造函数y =x c,∵c <0,∴y =x c在(0,+∞)上是减函数, 又a >b >1,∴a c <b c,②正确; ∵a >b >1,c <0,∴a -c >b -c >1,∴log b (a -c )>log a (a -c )>log a (b -c ),③正确.6.利用不等式变形求范围典例 设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围是________. 错解展示解析 由已知得⎩⎪⎨⎪⎧1≤a -b ≤2, ①2≤a +b ≤4, ②①+②得3≤2a ≤6,∴6≤4a ≤12, 又由①可得-2≤-a +b ≤-1,③ ②+③得0≤2b ≤3,∴-3≤-2b ≤0, 又f (-2)=4a -2b ,∴3≤4a -2b ≤12, ∴f (-2)的取值范围是[3,12]. 答案 [3,12] 现场纠错 解析 方法一 由⎩⎪⎨⎪⎧f -=a -b ,f=a +b ,得⎩⎪⎨⎪⎧a =12[f -+f ,b =12[f-f -,∴f (-2)=4a -2b =3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.方法二 由⎩⎪⎨⎪⎧1≤a -b ≤2,2≤a +b ≤4确定的平面区域如图阴影部分所示,当f (-2)=4a -2b 过点A (32,12)时,取得最小值4×32-2×12=5,当f (-2)=4a -2b 过点B (3,1)时, 取得最大值4×3-2×1=10, ∴5≤f (-2)≤10. 答案 [5,10]纠错心得 在求式子的范围时,如果多次使用不等式的可加性,式子中的等号不能同时取到,会导致范围扩大.1.已知a >b ,c >d ,且c ,d 不为0,那么下列不等式成立的是( ) A .ad >bc B .ac >bd C .a -c >b -d D .a +c >b +d答案 D解析 由不等式的同向可加性得a +c >b +d .2.(2016·贵阳监测考试)下列命题中,正确的是( )A .若a >b ,c >d ,则ac >bdB .若ac >bc ,则a >bC .若a c 2<bc 2,则a <bD .若a >b ,c >d ,则a -c >b -d答案 C解析 取a =-1,b =-2,c =2,d =1,则ac =bd ,a -c =b -d ,故A ,D 错误;取a =2,b =3,c =-1,则ac >bc ,a <b ,故B 错误,故选C.3.已知x >y >z ,x +y +z =0,则下列不等式成立的是( )A .xy >yzB .xz >yzC .xy >xzD .x |y |>z |y |答案 C解析 ∵x >y >z 且x +y +z =0,∴x >0,z <0,又y >z ,∴xy >xz .4.设a ,b ∈R ,则“(a -b )·a 2<0”是“a <b ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 由(a -b )·a 2<0⇒a ≠0且a <b ,∴充分性成立;由a <b ⇒a -b <0,当0=a <b 时D /⇒(a -b )·a 2<0,必要性不成立.5.设α∈(0,π2),β∈[0,π2],那么2α-β3的取值范围是() A .(0,5π6) B .(-π6,5π6)C .(0,π)D .(-π6,π)答案 D解析 由题设得0<2α<π,0≤β3≤π6,∴-π6≤-β3≤0,∴-π6<2α-β3<π.6.已知a ,b ,c ∈R ,那么下列命题中正确的是( )A .若a >b ,则ac 2>bc 2B .若a c >b c ,则a >bC .若a 3>b 3且ab <0,则1a >1bD .若a 2>b 2且ab >0,则1a <1b答案 C解析 当c =0时,可知A 不正确;当c <0时,可知B 不正确;对于C ,由a 3>b 3且ab <0,知a >0且b <0,所以1a >1b成立,C 正确; 当a <0且b <0时,可知D 不正确.7.若a >b >0,则下列不等式中一定成立的是( )A .a +1b>b +1a B.b a >b +1a +1 C .a -1b >b -1aD.2a +b a +2b >a b 答案 A解析 取a =2,b =1,排除B 与D ;另外,函数f (x )=x -1x是(0,+∞)上的增函数,但函数g (x )=x +1x在(0,1]上递减,在[1,+∞)上递增,所以,当a >b >0时,f (a )>f (b )必定成立,即a -1a >b -1b ⇔a +1b >b +1a,但g (a )>g (b )未必成立,故选A. 8.若a >b >0,则下列不等式一定不成立的是( )A.1a <1bB .log 2a >log 2bC .a 2+b 2≤2a +2b -2D .b <ab <a +b 2<a答案 C 解析 ∵(a -1)2+(b -1)2>0(由a >b >0,a ,b 不能同时为1),∴a 2+b 2-2a -2b +2>0,∴a 2+b 2>2a +2b -2,∴C 项一定不成立.*9.下面四个条件中,使a >b 成立的充分而不必要的条件是( )A .a >b +1B .a >b -1C .a 2>b 2D .a 3>b 3答案 A解析 由a >b +1,得a >b +1>b ,即a >b ,而由a >b 不能得出a >b +1,因此,使a >b 成立的充分而不必要的条件是a >b +1.10.已知a ,b ,c ∈R ,有以下命题:①若a >b ,则ac 2>bc 2;②若ac 2>bc 2,则a >b ;③若a >b ,则a ·2c >b ·2c .其中正确命题的序号是________.答案 ②③解析 ①不对,因为c 2可以为0;②对,因为c 2>0;③对,因为2c>0.11.已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是________. 答案 a =b >c解析 ∵a =log 23+log 23=log 233, b =log 29-log 23=log 233,∴a =b ,又a =log 233>1,c =log 32<1,∴a >c ,故a =b >c .12.设a >b >c >0,x =a 2+b +c 2,y =b 2+c +a 2,z =c 2+a +b 2,则x ,y ,z 的大小关系是________.(用“>”连接)答案 z >y >x解析 方法一 y 2-x 2=2c (a -b )>0,∴y >x .同理,z >y ,∴z >y >x .方法二 令a =3,b =2,c =1,则x =18,y =20, z =26,故z >y >x .*13.某单位组织职工去某地参观学习需包车前往.甲车队说:“如果领队买一张全票,其余人可享受7.5折优惠.”乙车队说:“你们属团体票,按原价的8折优惠.”这两个车队的原价、车型都是一样的,试根据单位去的人数比较两车队的收费哪家更优惠.解 设该单位职工有n 人(n ∈N *),全票价为x 元/人,坐甲车需花y 1元,坐乙车需花y 2元,则y 1=x +34x ·(n -1) =14x +34nx , y 2=45nx .所以y 1-y 2=14x +34nx -45nx =14x -120nx =14x (1-n 5). 当n =5时,y 1=y 2;当n >5时,y 1<y 2;当n <5时,y 1>y 2.因此当单位去的人数为5人时,两车队收费同等优惠; 当单位去的人数多于5人时,甲车队收费更优惠; 当单位去的人数少于5人时,乙车队收费更优惠.。

[配套K12]2018版高考数学一轮复习 第七章 不等式 第1讲 不等关系与不等式 理

[配套K12]2018版高考数学一轮复习 第七章 不等式 第1讲 不等关系与不等式 理

第七章 不等式 第1讲 不等关系与不等式一、选择题1.已知2log 3.6,a =4log 3.2,b =4log 3.6,c =则( )A.a b c >>B. a c b >>C. b a c >>D. c a b >> 解析 因为1a >,,b c 都小于1且大于0,故排除C,D;又因为,b c 都是以4为底的对数,真数大,函数值也大,所以b c <,故选B. 答案 B2.设0<b <a <1,则下列不等式成立的是( ) A .ab <b 2<1B .12log b <12log a <0C .2b<2a <2D .a 2<ab <1解析 取a =12,b =13验证可得.答案 C3.已知下列四个条件:①b >0>a ,②0>a >b ,③a >0>b ,④a >b >0,能推出1a <1b成立的有( ).A .1个B .2个C .3个D .4个解析 运用倒数性质,由a >b ,ab >0可得1a <1b,②、④正确.又正数大于负数,①正确,③错误,故选C. 答案 C4.如果a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是 ( ). A .ab >ac B .c (b -a )>0C .cb 2<ab 2D .ac (a -c )<0解析 由题意知c <0,a >0,则A 一定正确;B 一定正确;D 一定正确;当b =0时C 不正确. 答案 C5.若a >0,b >0,则不等式-b <1x<a 等价于( ).A .-1b <x <0或0<x <1aB .-1a <x <1bC .x <-1a 或x >1bD .x <-1b 或x >1a解析 由题意知a >0,b >0,x ≠0, (1)当x >0时,-b <1x <a ⇔x >1a;(2)当x <0时,-b <1x<a ⇔x <-1b.综上所述,不等式-b <1x <a ⇔x <-1b 或x >1a.答案 D6.若a 、b 均为不等于零的实数,给出下列两个条件.条件甲:对于区间[-1,0]上的一切x 值,ax +b >0恒成立;条件乙:2b -a >0,则甲是乙的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析 当x ∈[-1,0]时,恒有ax +b >0成立, ∴当a >0时,ax +b ≥b -a >0,当a <0时,ax +b ≥b >0,∴b -a >0,b >0,∴2b -a >0, ∴甲⇒乙,乙推不出甲,例如:a =32b ,b >0时,则2b -a =12b >0,但是,当x =-1时,a ·(-1)+b =-32b +b =-12b <0,∴甲是乙的充分不必要条件. 答案 A 二、填空题7.若a 1<a 2,b 1<b 2,则a 1b 1+a 2b 2与a 1b 2+a 2b 1的大小关系是________.解析 (a 1b 1+a 2b 2)-(a 1b 2+a 2b 1)=(a 1-a 2)(b 1-b 2)>0. 答案 a 1b 1+a 2b 2>a 1b 2+a 2b 18.现给出三个不等式:①a 2+1>2a ;②a 2+b 2>2⎝ ⎛⎭⎪⎫a -b -32;③7+10>3+14.其中恒成立的不等式共有________个.解析 因为a 2-2a +1=(a -1)2≥0,所以①不恒成立;对于②,a 2+b 2-2a +2b +3=(a -1)2+(b +1)2+1>0,所以②恒成立;对于③,因为(7+10)2-(3+14)2=270-242>0,且7+10>0,3+14>0,所以7+10>3+14,即③恒成立. 答案 29.已知-1≤x +y ≤4,且2≤x -y ≤3,则z =2x -3y 的取值范围是________(用区间表示). 解析 ∵z =-12(x +y )+52(x -y ),∴3≤-12(x +y )+52(x -y )≤8,∴z ∈[3,8]. 答案 [3,8] 10.给出下列四个命题: ①若a >b >0,则1a >1b;②若a >b >0,则a -1a >b -1b;③若a >b >0,则2a +b a +2b >ab;④设a ,b 是互不相等的正数,则|a -b |+1a -b≥2. 其中正确命题的序号是________(把你认为正确命题的序号都填上).解析 ①作差可得1a -1b =b -a ab ,而a >b >0,则b -a ab <0,此式错误.②a >b >0,则1a <1b,进而可得-1a >-1b ,所以可得a -1a >b -1b 正确.③2a +b a +2b -a b =b a +b -a a +2ba +2b b=b 2-a 2a +2b b =b -a b +aa +2b b<0,错误.④当a -b <0时此式不成立,错误.答案 ② 三、解答题11.已知a ∈R ,试比较11-a 与1+a 的大小.解析 11-a -(1+a )=a21-a.①当a =0时,a 21-a =0,∴11-a =1+a .②当a <1且a ≠0时,a 21-a >0,∴11-a >1+a .③当a >1时,a 21-a <0,∴11-a<1+a .综上所述,当a =0时,11-a =1+a ;当a <1且a ≠0时,11-a >1+a ;当a >1时,11-a<1+a .12.已知f (x )=ax 2-c 且-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围.解 由题意,得⎩⎪⎨⎪⎧a -c =f,4a -c =f,解得⎩⎪⎨⎪⎧a =13[f -f ,c =-43f+13f所以f (3)=9a -c =-53f (1)+83f (2).因为-4≤f (1)≤-1,所以53≤-53f (1)≤203,因为-1≤f (2)≤5,所以-83≤83f (2)≤403.两式相加,得-1≤f (3)≤20,故f (3)的取值范围是[-1,20]. 13. (1)设x ≥1,y ≥1,证明x +y +1xy ≤1x +1y+xy ;(2)设1<a ≤b ≤c ,证明log a b +log b c +log c a ≤log b a +log c b +log a c . 证明 (1)由于x ≥1,y ≥1,所以x +y +1xy ≤1x +1y+xy ⇔xy (x +y )+1≤y +x +(xy )2.将上式中的右式减左式,得[y +x +(xy )2]-[xy (x +y )+1]=[(xy )2-1]-[xy (x +y )-(x +y )]=(xy +1)(xy -1)-(x +y )(xy -1)=(xy -1)(xy -x -y +1)=(xy -1)(x -1)(y -1). 既然x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0, 从而所要证明的不等式成立.(2)设log a b =x ,log b c =y ,由对数的换底公式得 log c a =1xy ,log b a =1x ,log c b =1y,log a c =xy .于是,所要证明的不等式即为x +y +1xy ≤1x +1y+xy其中x =log a b ≥1,y =log b c ≥1.故由(1)可知所要证明的不等式成立.14.已知f (x )是定义在(-∞,4]上的减函数,是否存在实数m ,使得f (m -sin x )≤ f ⎝ ⎛⎭⎪⎫1+2m -74+cos 2x 对定义域内的一切实数x 均成立?若存在,求出实数m 的取值范围;若不存在,请说明理由.思维启迪:不等式和函数的结合,往往要利用函数的单调性和函数的值域. 解 假设实数m 存在,依题意,可得⎩⎪⎨⎪⎧m -sin x ≤4,m -sin x ≥1+2m -74+cos 2x ,即⎩⎪⎨⎪⎧m -4≤sin x ,m -1+2m +12≥-⎝ ⎛⎭⎪⎫sin x -122.因为sin x 的最小值为-1,且-(sin x -12)2的最大值为0,要满足题意,必须有⎩⎪⎨⎪⎧m -4≤-1,m -1+2m +12≥0,解得m =-12或32≤m ≤3.所以实数m 的取值范围是⎣⎢⎡⎦⎥⎤32,3∪⎩⎨⎧⎭⎬⎫-12. 探究提高 不等式恒成立问题一般要利用函数的值域,m ≤f (x )恒成立,只需m ≤f (x )min .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 不等式 7.4 基本不等式及其应用教师用书 理 新人教版1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +a b≥2(a ,b 同号). (3)ab ≤⎝ ⎛⎭⎪⎫a +b 22 (a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值p 24.(简记:和定积最大)【知识拓展】不等式的恒成立、能成立、恰成立问题(1)恒成立问题:若f (x )在区间D 上存在最小值,则不等式f (x )>A 在区间D 上恒成立⇔f (x )min >A (x ∈D );若f (x )在区间D 上存在最大值,则不等式f (x )<B 在区间D 上恒成立⇔f (x )max <B (x ∈D ). (2)能成立问题:若f (x )在区间D 上存在最大值,则在区间D 上存在实数x 使不等式f (x )>A 成立⇔f (x )max >A (x ∈D );若f (x )在区间D 上存在最小值,则在区间D 上存在实数x 使不等式f (x )<B 成立⇔f (x )min <B (x ∈D ).(3)恰成立问题:不等式f (x )>A 恰在区间D 上成立⇔f (x )>A 的解集为D ; 不等式f (x )<B 恰在区间D 上成立⇔f (x )<B 的解集为D . 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数y =x +1x的最小值是2.( × )(2)函数f (x )=cos x +4cos x ,x ∈(0,π2)的最小值等于4.( × )(3)“x >0且y >0”是“x y +y x≥2”的充要条件.( × ) (4)若a >0,则a 3+1a2的最小值为2a .( × )(5)不等式a 2+b 2≥2ab 与a +b2≥ab 有相同的成立条件.( × )(6)两个正数的等差中项不小于它们的等比中项.( √ )1.(教材改编)设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81 D .82 答案 C解析 ∵x >0,y >0,∴x +y2≥xy ,即xy ≤(x +y2)2=81,当且仅当x =y =9时,(xy )max =81.2.已知f (x )=x +1x-2(x <0),则f (x )有( )A .最大值为0B .最小值为0C .最大值为-4D .最小值为-4答案 C 解析 f (x )≤-2-x-1x-2=-4,当且仅当x =-1时,f (x )max =-4.3.若a >0,b >0,且a +b =4,则下列不等式恒成立的是( ) A.1ab ≤14 B.1a +1b≤1C.ab ≥2 D .a 2+b 2≥8答案 D解析 4=a +b ≥2ab (当且仅当a =b 时,等号成立),即ab ≤2,ab ≤4,1ab ≥14,选项A ,C 不成立;1a +1b =a +b ab =4ab≥1,选项B 不成立;a 2+b 2=(a +b )2-2ab =16-2ab ≥8,选项D成立.4.(教材改编)已知x ,y 均为正实数,且x +4y =1,则xy 的最大值为________. 答案116解析 1=x +4y ≥24xy =4xy , ∴xy ≤(14)2=116,当且仅当x =4y =12,即⎩⎪⎨⎪⎧x =12,y =18时,(xy )max =116.5.(教材改编)若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________ m 2. 答案 25解析 设矩形的一边为x m , 则另一边为12×(20-2x )=(10-x )m ,∴y =x (10-x )≤[x +-x2]2=25,当且仅当x =10-x ,即x =5时,y max =25.题型一 利用基本不等式求最值 命题点1 通过配凑法利用基本不等式例1 (1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________. (2)已知x <54,则f (x )=4x -2+14x -5的最大值为________.(3)函数y =x 2+2x -1(x >1)的最小值为________.答案 (1)23(2)1 (3)23+2解析 (1)x (4-3x )=13·(3x )(4-3x )≤13·[3x +-3x 2]2=43,当且仅当3x =4-3x ,即x =23时,取等号.(2)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-(5-4x +15-4x )+3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1.(3)y =x 2+2x -1=x 2-2x ++x -+3x -1=x -2+x -+3x -1=(x -1)+3x -1+2≥23+2. 当且仅当(x -1)=3x -,即x =3+1时,等号成立.命题点2 通过常数代换法利用基本不等式例2 已知a >0,b >0,a +b =1,则1a +1b的最小值为________.答案 4解析 ∵a >0,b >0,a +b =1, ∴1a +1b =a +b a +a +b b =2+b a +a b≥2+2b a ·a b =4,即1a +1b 的最小值为4,当且仅当a =b =12时等号成立. 引申探究1.条件不变,求(1+1a )(1+1b)的最小值.解 (1+1a )(1+1b )=(1+a +b a )(1+a +b b )=(2+b a )·(2+ab)=5+2(b a +ab)≥5+4=9.当且仅当a =b =12时,取等号.2.已知a >0,b >0,1a +1b=4,求a +b 的最小值.解 由1a +1b =4,得14a +14b=1.∴a +b =(14a +14b )(a +b )=12+b 4a +a 4b ≥12+2b 4a ·a4b=1. 当且仅当a =b =12时取等号.3.将条件改为a +2b =3,求1a +1b的最小值.解 ∵a +2b =3, ∴13a +23b =1, ∴1a +1b =(1a +1b )(13a +23b )=13+23+a 3b +2b 3a ≥1+2a 3b ·2b 3a =1+223. 当且仅当a =2b 时,取等号.思维升华 (1)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.(2)在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.(3)条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.(1)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________.(2)已知x ,y ∈(0,+∞),2x -3=(12)y ,若1x +my(m >0)的最小值为3,则m =________. 答案 (1)5 (2)4解析 (1)方法一 由x +3y =5xy 可得15y +35x =1,∴3x +4y =(3x +4y )(15y +35x)=95+45+3x 5y +12y 5x ≥135+125=5. 当且仅当3x 5y =12y 5x ,即x =1,y =12时,等号成立,∴3x +4y 的最小值是5.方法二 由x +3y =5xy 得x =3y5y -1,∵x >0,y >0,∴y >15,∴3x +4y =9y5y -1+4y =y -15+95+45-4y 5y -1+4y=135+95·15y -15+4(y -15) ≥135+23625=5, 当且仅当y =12时等号成立,∴(3x +4y )min =5.(2)由2x -3=(12)y得x +y =3, 1x +m y =13(x +y )(1x +m y ) =13(1+m +y x +mx y ) ≥13(1+m +2m ) (当且仅当y x =mxy,即y =mx 时取等号), ∴13(1+m +2m )=3, 解得m =4.题型二 基本不等式的实际应用例3 (2017·淄博质检)某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x ),当年产量不足80千件时,C (x )=13x 2+10x (万元).当年产量不小于80千件时,C (x )=51x +10 000x-1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L (x )(万元)关于年产量x (千件)的函数解析式; (2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?解 (1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.05×1 000x 万元,依题意得:当0<x <80时,L (x )=1 000x ×0.05-(13x 2+10x )-250=-13x 2+40x -250;当x ≥80时,L (x )=1 000x ×0.05-(51x +10 000x-1 450)-250=1 200-(x +10 000x).∴L (x )=⎩⎪⎨⎪⎧-13x 2+40x -x ,1 200-x +10 000xx(2)当0<x <80时,L (x )=-13(x -60)2+950.对称轴为x =60,即当x =60时,L (x )最大=950(万元); 当x ≥80时,L (x )=1 200-(x +10 000x)≤1 200-210 000=1 000(万元), 当且仅当x =100时,L (x )最大=1 000(万元), 综上所述,当年产量为100千件时,年获利润最大.思维升华 (1)设变量时一般要把求最大值或最小值的变量定义为函数. (2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. (3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.(1)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品________件.(2)某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则每台机器为该公司创造的年平均利润的最大值是________万元. 答案 (1)80 (2)8解析 (1)设每件产品的平均费用为y 元,由题意得y =800x +x 8≥2 800x ·x8=20. 当且仅当800x =x8(x >0),即x =80时“=”成立.(2)年平均利润为y x=-x -25x+18=-(x +25x)+18,∵x +25x≥2x ·25x =10,∴y x=18-(x +25x)≤18-10=8, 当且仅当x =25x,即x =5时,取等号.题型三 基本不等式的综合应用命题点1 基本不等式与其他知识交汇的最值问题例4 (1)(2016·菏泽一模)已知直线ax +by +c -1=0(b ,c >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c的最小值是( )A .9B .8C .4D .2(2)(2016·山西忻州一中等第一次联考)设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是________. 答案 (1)A (2)92解析 (1)圆x 2+y 2-2y -5=0化成标准方程, 得x 2+(y -1)2=6, 所以圆心为C (0,1).因为直线ax +by +c -1=0经过圆心C , 所以a ×0+b ×1+c -1=0,即b +c =1. 因此4b +1c =(b +c )(4b +1c )=4c b +bc+5.因为b ,c >0,所以4c b +b c ≥24c b ·bc=4.当且仅当4c b =bc时等号成立.由此可得b =2c ,且b +c =1,即b =23,c =13时,4b +1c 取得最小值9.(2)a n =a 1+(n -1)d =n ,S n =n+n2, ∴S n +8a n=n+n2+8n=12(n +16n+1)≥ 12(2n ·16n +1)=92,当且仅当n =4时取等号. ∴S n +8a n 的最小值是92. 命题点2 求参数值或取值范围例5 (1)已知a >0,b >0,若不等式3a +1b ≥m a +3b 恒成立,则m 的最大值为( )A .9B .12C .18D .24(2)已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N *,f (x )≥3恒成立,则a 的取值范围是________.答案 (1)B (2)[-83,+∞)解析 (1)由3a +1b ≥ma +3b ,得m ≤(a +3b )(3a +1b )=9b a +ab+6.又9b a +a b +6≥29+6=12(当且仅当9b a =ab时等号成立),∴m ≤12,∴m 的最大值为12.(2)对任意x ∈N *,f (x )≥3恒成立,即x 2+ax +11x +1≥3恒成立,即知a ≥-(x +8x)+3.设g (x )=x +8x ,x ∈N *,则g (2)=6,g (3)=173.∵g (2)>g (3),∴g (x )min =173,∴-(x +8x )+3≤-83,∴a ≥-83,故a 的取值范围是[-83,+∞).思维升华 (1)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解.(2)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解.(3)求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围.(1)(2016·福建四地六校联考)已知函数f (x )=x +a x+2的值域为(-∞,0]∪[4,+∞),则a 的值是( ) A.12 B.32C .1D .2 (2)已知各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n的最小值为( )A.32B.53C.94D.256 答案 (1)C (2)A解析 (1)由题意可得a >0,①当x >0时,f (x )=x +ax +2≥2a +2,当且仅当x =a 时取等号; ②当x <0时,f (x )=x +a x+2≤-2a +2, 当且仅当x =-a 时取等号,所以⎩⎨⎧2-2a =0,2a +2=4,解得a =1,故选C.(2)由各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,可得a 1q 6=a 1q 5+2a 1q 4, 所以q 2-q -2=0,解得q =2或q =-1(舍去). 因为a m a n =4a 1,所以q m +n -2=16,所以2m +n -2=24,所以m +n =6.所以1m +4n =16(m +n )(1m +4n)=16(5+n m +4m n ) ≥16(5+2n m ·4m n )=32. 当且仅当n m=4mn时,等号成立,又m +n =6,解得m =2,n =4,符合题意. 故1m +4n 的最小值等于32.9.利用基本不等式求最值典例 (1)已知x >0,y >0,且1x +2y=1,则x +y 的最小值是________.(2)函数y =1-2x -3x(x <0)的值域为________.错解展示解析 (1)∵x >0,y >0,∴1=1x +2y ≥22xy,∴xy ≥22,∴x +y ≥2xy =42, ∴x +y 的最小值为4 2.(2)∵2x +3x ≥26,∴y =1-2x -3x≤1-2 6.∴函数y =1-2x -3x(x <0)的值域为(-∞,1-26].答案 (1)4 2 (2)(-∞,1-26] 现场纠错解析 (1)∵x >0,y >0, ∴x +y =(x +y )(1x +2y)=3+y x+2xy≥3+22(当且仅当y =2x 时取等号),∴当x =2+1,y =2+2时,(x +y )min =3+2 2. (2)∵x <0,∴y =1-2x -3x =1+(-2x )+(-3x)≥1+2-2x3-x=1+26,当且仅当x =-62时取等号,故函数y =1-2x -3x(x <0)的值域为[1+26,+∞). 答案 (1)3+2 2 (2)[1+26,+∞)纠错心得 利用基本不等式求最值时要注意条件:一正二定三相等;多次使用基本不等式要验证等号成立的条件.1.已知a ,b ∈R ,且ab ≠0,则下列结论恒成立的是( ) A .a +b ≥2ab B.a b +b a≥2 C .|a b +b a|≥2 D .a 2+b 2>2ab答案 C解析 因为a b 和b a 同号,所以|a b +b a |=|a b |+|b a|≥2. 2.下列不等式一定成立的是( ) A .lg(x 2+14)>lg x (x >0)B .sin x +1sin x≥2(x ≠k π,k ∈Z ) C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R ) 答案 C解析 当x >0时,x 2+14≥2·x ·12=x ,所以lg(x 2+14)≥lg x (x >0),故选项A 不正确;运用基本不等式时需保证“一正”“二定“三相等”, 而当x ≠k π,k ∈Z 时,sin x 的正负不定, 故选项B 不正确;由基本不等式可知,选项C 正确; 当x =0时,有1x 2+1=1,故选项D 不正确.3.当x >0时,函数f (x )=2xx 2+1有( ) A .最小值1 B .最大值1 C .最小值2 D .最大值2答案 B 解析 f (x )=2x x 2+1=2x +1x≤22=1,当且仅当x =1时取等号. 4.已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( )A.72 B .4 C.92 D .5 答案 C解析 依题意,得1a +4b =12(1a +4b )·(a +b )=12[5+(b a +4a b )]≥12(5+2b a ·4a b )=92, 当且仅当⎩⎪⎨⎪⎧a +b =2,b a =4ab ,a >0,b >0,即a =23,b =43时取等号,即1a +4b 的最小值是92. 5.(2016·平顶山至阳中学期中)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( ) A .1+ 2 B .1+ 3 C .3 D .4答案 C解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2x -1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3,故选C. 6.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为( ) A.22B .2 2 C. 2 D .2 答案 D解析 ∵x >0,y >0,x +2y ≥22xy , ∴4xy -(x +2y )≤4xy -22xy , ∴4≤4xy -22xy ,即(2xy -2)(2xy +1)≥0, ∴2xy ≥2,∴xy ≥2.*7.(2016·吉林九校第二次联考)若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值是( )A .1B .6C .9D .16 答案 B解析 ∵正数a ,b 满足1a +1b =1,∴b =a a -1>0,解得a >1.同理可得b >1,所以1a -1+9b -1=1a -1+9a a -1-1=1a -1+9(a -1)≥21a -1a -=6,当且仅当1a -1=9(a -1),即a =43时等号成立,所以最小值为6.故选B. 8.(2016·唐山一模)已知x ,y ∈R 且满足x 2+2xy +4y 2=6,则z =x 2+4y 2的取值范围为________. 答案 [4,12]解析 ∵2xy =6-(x 2+4y 2),而2xy ≤x 2+4y 22,∴6-(x 2+4y 2)≤x 2+4y 22,∴x 2+4y 2≥4(当且仅当x =2y 时取等号). 又∵(x +2y )2=6+2xy ≥0,即2xy ≥-6,∴z =x 2+4y 2=6-2xy ≤12 (当且仅当x =-2y 时取等号). 综上可知4≤x 2+4y 2≤12.9.(2016·潍坊模拟)已知a ,b 为正实数,直线x +y +a =0与圆(x -b )2+(y -1)2=2相切,则a 2b +1的取值范围是________.答案 (0,+∞)解析 ∵x +y +a =0与圆(x -b )2+(y -1)2=2相切, ∴d =|b +1+a |2=2,∴a +b +1=2,即a +b =1,∴a 2b +1=-b 2b +1=b +2-b ++4b +1=(b +1)+4b +1-4≥24-4=0. 又∵a ,b 为正实数, ∴a 2b +1的取值范围是(0,+∞).10.设a >0,b >0,若3是3a 与3b的等比中项,则1a +1b的最小值为________.答案 4解析 由题意知3a·3b=3,即3a +b=3,∴a +b =1,∵a >0,b >0, ∴1a +1b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=2+b a +a b≥2+2b a ·ab=4, 当且仅当a =b =12时,等号成立.*11.(2017·东莞调研)函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中m ,n 均大于0,则1m +2n的最小值为________.答案 8解析 y =log a (x +3)-1恒过定点A (-2,-1), 由A 在直线mx +ny +1=0上. 则-2m -n +1=0,即2m +n =1. ∴1m +2n =2m +n m+m +n n =n m +4m n +4≥24+4=8(当且仅当n m =4m n ,即m =14,n =12时等号成立).12.已知x >0,y >0,且2x +5y =20. (1)求u =lg x +lg y 的最大值; (2)求1x +1y的最小值.解 (1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy . ∵2x +5y =20,∴210xy ≤20,xy ≤10, 当且仅当2x =5y 时,等号成立.因此有⎩⎪⎨⎪⎧2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg 10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1. (2)∵x >0,y >0, ∴1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·2x +5y20 =120⎝ ⎛⎭⎪⎫7+5y x +2x y ≥120⎝ ⎛⎭⎪⎫7+25y x·2x y=7+21020, 当且仅当5y x =2xy时,等号成立.由⎩⎪⎨⎪⎧2x +5y =20,5y x =2xy,解得⎩⎪⎨⎪⎧x =1010-203,y =20-4103.∴1x +1y 的最小值为7+21020. 13.经市场调查,某旅游城市在过去的一个月内(以30天计),第t 天(1≤t ≤30,t ∈N *)的旅游人数f (t )(万人)近似地满足f (t )=4+1t,而人均消费g (t )(元)近似地满足g (t )=120-|t -20|.(1)求该城市的旅游日收益W (t )(万元)与时间t (1≤t ≤30,t ∈N *)的函数关系式; (2)求该城市旅游日收益的最小值.解 (1)W (t )=f (t )g (t )=(4+1t)(120-|t -20|)=⎩⎪⎨⎪⎧401+4t +100t , 1≤t ≤20,559+140t-4t , 20<t ≤30.(2)当t ∈[1,20]时,401+4t +100t≥401+24t ·100t=441(t =5时取最小值).当t ∈(20,30]时,因为W (t )=559+140t-4t 递减,所以t =30时,W (t )有最小值W (30)=44323,所以t ∈[1,30]时,W (t )的最小值为441万元.14.如图所示,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1 km ,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2 km ,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由. 解 (1)令y =0,得kx -120(1+k 2)x 2=0.由实际意义和题设条件知x >0,k >0, 故x =20k 1+k 2=20k +1k≤202=10, 当且仅当k =1时取等号. 所以炮的最大射程为10 km.(2)因为a >0,所以炮弹可击中目标⇔存在k >0,使3.2=ka -120(1+k 2)a 2成立⇔关于k 的方程a 2k 2-20ak +a 2+64=0有正根⇔Δ=(-20a )2-4a 2(a 2+64)≥0⇔0<a ≤6. 所以当a 不超过6 km 时,可击中目标.。

相关文档
最新文档