重组DNA技术
DNA重组及重组DNA技术
特点
分子水平操作和细胞水平表达 定向地改造生物的遗传性状, 获得人类所需要的品种
克隆(clone) 是指通过无性繁殖过程所产生的与亲代完全相同的子代群体。
重组DNA技术的目的 ① 克隆特定基因 ②序
重组DNA技术操作流程图
ACC ACC ACC ACC
AAG AAA AAG AAA
TAC TAC TAC TAC
TTT TTT T TC T TC
由已知氨基酸序列推测可能的DNA序列
说明:由于密码存在简并性,合成出来的DNA可能与基因组DNA有所差异,此 问题可通过基因测序解决。如果是为了获得表达产物蛋白质,这种差异也 无所谓。
载体 目的基因
双酶切产生粘性末端
带有与载体 相同粘性末端
重组DNA分子
转化或转染
含重组载 体的细菌
对细菌进 行培养
操作过程可形象归纳为
分 ─ 目的DNA的分离获取 选 ─ 载体的选择与构建 接 ─ 目的DNA与载体的连接 转 ─ 重组DNA转入受体细胞 筛 ─ 重组体的筛选与鉴定
对克隆菌进行筛选、 鉴定和扩增
第二十一章 DNA重组及重组DNA技术
重组DNA技术(recombinant DNA technology):
又称分子克隆或DNA克隆或基因工程技术,其主要过程包括:在体外 将目的DNA片段与能自主复制的遗传元件(又称载体)连接,形成重组 DNA分子,进而在受体细胞中复制、扩增,从而获得单一DNA分子的大 量拷贝。在克隆目的基因后,还可针对该基因进行表达产物蛋白质或多肽 的制备以及基因结构的定向改造。
说明:这种cDNA中不包含内含子, 便于在宿主细胞中表达,适用 于真核生物基因。
S1核酸酶
AAAAAAAA(n) 3 TT T T T TT T (n) 5
DNA重组技术
8
10
② 工具酶
DNA重组技术中对DNA的“精雕细刻”主要用酶作 为工具。分子生物学研究过程中发现的酶,许多 都用作工具,所以称在核酸及有关研究中像基本 工具一样不可缺少的酶类为工具酶。这类酶包括 限制性核酸内切酶、DNA聚合酶、DNA连接酶、末 端修饰酶、RNA聚合酶、逆转录酶等。
12
限制性核酸内切酶(restriction endonuclease)
23
PCR 的特点及应用: PCR操作简便、省时、灵敏度高、对原始材料的质和 量要求低。因此,广泛应用于许多领域。 1. 基因克隆及定量、扩增特异性片段用于探针、体外 获得突变体、提供大量DNA用于测序等; 2. 遗传病的产前诊断; 3. 致病病原体的检测; 4. 癌基因的检测和诊断; 5. DNA指纹、个体识别、亲子关系鉴别及法医物证; 6. 动、植物检疫; 7. 在转基因动植物中检查植入基因的存在。
限制性核酸内切酶是从细菌中分离提纯的核酸内切酶, 可以识别并切开核酸序列特定位点——分子手术刀; 是一类能识别双链DNA分子特异性核酸序列的DNA水解酶。 是体外剪切基因片段的重要工具,所以常常与核酸聚 合酶、连接酶以及末端修饰酶等一起称为工具酶; 限制性核酸内切酶不仅是DNA重组中重要的工具,而且 与电泳技术相结合还可以用于基因组酶切图谱的鉴定 以及法医鉴定等。 Arber、Smith和Nathans因为在发现限制性内切酶方面开 创性工作而共同获得了1978年的诺贝尔奖。 13
29
30
6 重组体的转化及鉴定
转化 转化过程是指将DNA重组体或质粒转到适宜的宿主细 胞中。通过这个过程,使目的基因片段得到大量扩 增、或产生需要的基因表达产物、或使宿主生物具 备所需的性状,同时目的基因还能在宿主细胞中稳 定遗传。 若需要让克隆的基因表达和产生大量编码蛋白,可对 转化的大肠杆菌进行扩大培养使目的基因大量表达 和积累。通过对表达产物分离纯化便可获得想要的 产品。
第十三单元 重组DNA技术
【执业】1.限制性内切酶是一种
A.核酸特异的内切酶
B. DNA特异的内切酶
C.DNA序列特异的内切酶
D.RNA特异的内切酶
E.RNA序列特异的内切酶
答案:C
【执业】2.限制性内切酶的作用是
A.特异切开单链DNA
B.特异切开双链DNA
C.连接断开的单链DNA
D.切开变性的DNA
E.切开错配的DNA
答案:B
二、发展新药物
利用基因工程技术生产有药用价值的蛋白质、多肽产品已成为当今世界上的一项重大产业。目前已经或正投入市场的基因工程产品有胰岛素、生长素、促红细胞生成素、因子VIII、白介素-2、粒细胞-巨噬细胞集落刺激因子、肥大细胞生长因子及白血病抑制因子等。
三、DNA诊断
DNA诊断又称基因诊断,目前已发展成为一门独具特色的诊断学科——DNA诊断学。DNA诊断是利用分子生物学及分子遗传学的技术和原理,在DNA水平上分析、鉴定遗传性疾病所涉及的基因的置换、缺失或插入等突变。目前用于DNA诊断的方法很多,但其基本过程相似:首先分离、扩增待测的DNA片段,然后利用适当的分析手段,区分或鉴定DNA的异常。目前广泛用于待测基因的分离及扩增技术是PCR技术,其次是连接酶链反应。常用的DNA分析手段有限制性片段长度多态性(RFLP)、单链构象多态性(SSCP)、核酸分子杂交、变性梯度胶电泳、核酸酶A技术以及DNA序列分析等。
五、遗传病的防治
受累疾病基因克隆不仅为医学家提供了重要工具,使他们能深入地认识、理解一种遗传病的发生机制,为寻求可能的治疗途径、预测疗效提供了有力手段;更重要的是可以利用这成果进行极有意义的产前诊断,而后通过治疗技巧与治疗、预防能力的结合,从根本上杜绝遗传性疾病的发生和流行。
重组DNA技术
一、定义
是指能携带目的基因进入宿主细胞进行扩增和表达的一类DNA分子。
克隆载体:用于在宿主细胞中克隆和扩增外源DNA片段。
表达载体:用于在宿主细胞中获得外源基因表达产物。
二、特点
1、具备复制能力。 2、具备一个或多个筛选标志。 3、具备较多拷贝数,易从宿主细胞中分离纯化。 4、具备一个或多个限制性内切酶的单一识别点(多克隆位
• 4.诊断疾病 基因诊断是一种使用DNA分析技术来检测和鉴定出疾病的方法。利用重组DNA技术,可以制造出一 些特定的探针或引物,用于检测和分析DNA序列的异常和变异。例如,肿瘤细胞或乳腺癌细胞中常常伴随着某些基 因的改变,可以利用重组DNA技术制备出一些与变异基因相对应的探针或引物,用于检测和诊断疾病。
ACG-OH TACTTAA-P
P-AATTCGT OH-GCA
-ACGAATTCGT-TGCTTAAGCA
3、DNA聚合酶
具有5`→3`聚合活性、5`→3`外切酶活性、3`→5`外切酶活性。 可用于合成双链cDNA分子或片断连接,探针制备,序列分析等。
4、碱性磷酸酶
去除DNA、RNA、dNTP和NTP 5ˊ端的磷酸根。 (1)5’端标记 (2)制备载体时,用碱性磷酸酶处理后,可防止载体自身 连接, 提高重组效率。
2.来源:原核生物
3.分类:根据结构、作用特点不同,分为三类。 Ⅰ型酶、Ⅲ型酶:具有限制切割与甲基化修饰活性,都没有多大的实用价值。 Ⅱ型酶:应用广泛,能在DNA分子内部的特异位点,识别和切割双链DNA,其切割位点 的序列可知、固定。
通常所说的限制性内切酶就是指Ⅱ型酶。
2、DNA连接酶
催化DNA中相邻的5ˊ端磷酸基和3ˊ-OH末端之间形成3ˊ→5ˊ磷酸二酯键。 大肠杆菌连接酶,只能连接粘性末端,T4噬菌体连接酶不但能连接粘性末端, 还能连接齐平末端。
重组DNA技术
将重组DNA引入到宿主细胞的途径
转化 转染 电穿孔 脂质体介导 弹道基因转移
重组体的选择和筛选
直接筛选 1. 根据抗生素敏感性和抗性变化进行筛选 2. 根据营养需要进行筛选 3. 根据噬菌斑类型进行筛选 4. 蓝白斑选择 间接筛选 1. 核酸杂交法 2. PCR法 3. 免疫化学 4. 受体/配体的结合性质 5. Southwestern/Northwestern 6. DNA限制性内切酶图谱分析 7. DNA序列分析
胰岛素在大肠杆菌体内的表达
凝血因子VIII高表达载体的构建和及其原理
转基因动物和植物
克隆的基因不仅可以导入细菌或培养的 细胞,而且能转入动植物体内,整合到 基因组内,使其所有的细胞都带有特定 的外源基因,从而根本上改变其遗传特 性。转基因动物或转基因植物就是指在 其基因组内稳定地整合有外源基因、并 能遗传给后代的动物或植物。
蓝白筛选法图解
基因克隆的详细步骤
获得外源DNA序列和目的基因; 将目的基因与载体相连; 将重组体导入特定的宿主细胞; 目的基因序列克隆的筛选与鉴定。
获取目的基因的手段
人工合成 使用酶切将目的基因直接从另一种克隆 载体中释放出来 反转录 PCR
目的基因与载体的连接
将外源序列或目的基因插入载体,主要 是靠DNA连接酶和其它工具酶的配合使 用。根据末端的性质,它们的连接方式 主要有三种:(1)载体和目的基因具有 相同的粘性末端;(2)载体和目的基因 均为平端;(3)载体和目的基因各有一 个粘性末端和一个平端。选择哪一种连 接方式主要取决于载体的性质(特别是 MCS的性质)和目的基因的来源。
DNA重组技术
第五章DNA重组技术DNA重组技术是指在体外将目的DNA片段与质粒(plasmid)等能够自主复制的载体(vector)连接形成重组DNA分子,再导入合适的受体细胞。
由于重组DNA可以在受体细胞中复制,目的DNA片段同时也可以扩增获得大量拷贝,因此这项技术也被称为分子克隆(molecluar cloning)。
与PCR技术相比,通过分子克隆得到的拷贝错误率更低,并且获得重组DNA的受体细胞可以无限传代,目的片段可以更长久的保存,并能进行筛选、突变、融合、序列分析等一系列基因操作。
此外,如果载体在插入目的基因的区域具有合适的启动子、核糖体结合位点、转录终止子等序列,目的DNA片段所含基因还有可能能在受体细胞中大量表达,获得目的蛋白或其它表达产物。
通过DNA重组技术表达的蛋白又称为重组蛋白。
目前,DNA重组技术在基础研究、基因诊断、生物制药、基因治疗等方面都得到广泛的应用。
第一节DNA重组技术的常用工具酶在DNA重组技术中,需要利用一些酶来对基因进行操作,我们可以把这些酶称为工具酶。
工具酶的用途涵盖DNA重组技术的各个方面,包括目的DNA的获得、DNA的切割、片段的连接等。
一、目的DNA获得相关工具酶在DNA重组技术中,目的DNA的获得有多种方法。
其中通过酶扩增来获得是重要的一类方法,其中需要多种工具酶。
(一)Klenow片段Klenow片段又名DNA聚合酶I大片段,是DNA聚合酶I通过木瓜蛋白酶部分水解得到的大片段,保留了DNA聚合酶I的5’-3’的聚合和3’-5’的核酸外切酶的活性,去除了5’-3’的核酸外切酶活性。
Klenow片段可用于在体外扩增DNA片段。
由于其具有3’-5’的核酸外切酶活性,因此可以校正聚合中可能出现的错误,具有一定的保真性。
但由于其不耐热,聚合活性弱,在体外合成DNA的效率较低,随着PCR技术的发展,Klenow片段的应用已日趋减少。
现主要用于DNA双链末端的补齐和标记操作。
重组DNA技术
重组DNA技术
1 重组DNA技术的基本概念 2 重组DNA技术的基本原理 3 重组DNA技术所需的基本条件
1 重组DNA技术与基因工程的基本概念
A 重组DNA技术的基本定义
重组DNA技术是指将一种生物体(供体)的基因与
载体在体外进行拼接重组,然后转入另一种生物体(受
体)内,使之按照人们的意愿稳定遗传并表达出新产物
DNA连接酶
DNA连接酶的基本性质
修复双链DNA上缺口处的磷酸二酯键 nick
OH P
5‘ … G-C-T-C-T-G-C-A G-G-A-G … 3’ 3‘ … C-G-A-G A-C-G-T-C-C-T-C … P OH nick 5’
DNA连接酶
5‘ … G-C-T-C-T-G-C-A-G-G-A-G …
限制性核酸内切酶
II 型限制性核酸内切酶酶解反应的操作
II 型核酸内切酶的多酶联合酶解: 对盐浓度要求相同的酶,原则上可以同时酶切,但应注意:
BamHI SmaI
5‘ 3‘ …GCTACATGGATCCCGGGTTCGCAT…3’ CGATGTACCTAGGGCCC AAGCGTA…5’ 5‘… … GCTACATG GATCCCGGG TTCGCAT…3’ 3‘ …CGATGTACCTAG GGCCCAAGCGTA…5’ 5‘ …GCTACATGGATCCC 3‘ …CGATGTACCTAGGG GGGTTCGCAT…3’ CCCAAGCGTA…5’
MgCl2
NaCl DTT Volume TT
10 mM
0 - 150 mM 1 mM 20 - 100 ml 37 ℃ 1 - 1.5 hr
0 - 50 mM 低盐酶
100 mM 中盐酶
重组DNA技术
限制性核酸内切酶三种切口
❖ 产生5′突出粘性末端(cohesive end):以EcoR I为例:
5′---G AATTC---3′ 3′---CTTAA G---5′ EcoR I
(五)DNA聚合酶(DNA polymerase)
重组DNA技术概述
❖重组DNA技术的基本概念 ❖重组DNA技术的基本步骤 ❖重组DNA技术中应用的重要工具 酶
一、重组DNA技术的基本概念
❖ 重组DNA技术(recombinant DNA technology) :
是按人类的意愿,在体外对DNA分子进行重组, 再将重组分子导入受体细胞,使其在细胞中扩增和 繁殖,以获得该DNA分子的大量拷贝。
代完全相同的子代群体。
二、重组DNA技术的基本步骤
❖ 分—载体和目的基因的分离 ❖ 切—限制性内切酶 ❖ 接—载体与目的基因连接成重组体 ❖ 转—基因序列转入细胞 ❖ 筛—目的基因序列克隆的筛选和鉴定
以及表达产物的检测
. Plasmid vectors containing a polylinker, or multiple-cloning-site sequence, commonly are used to produce recombinant plasmids carrying exogenous DNA fragments. (a) Sequence of a polylinker that includes one copy of the recognition site, indicated by brackets, for each of the 10 restriction enzymes indicated. Polylinkers are chemically synthesized and then are inserted into a plasmid vector. Only one strand is shown. (b) Insertion of genomic restriction fragments into the pUC19 plasmid vector, which contains the polylinker shown in (a). (The length of the polylinker in relation to the rest of the plasmid is greatly exaggerated here.) One of the restriction enzymes whose recognition site is in the polylinker is used to cut both the plasmid molecules and genomic DNA, generating singly-cut plasmids and restriction fragments with complementary sticky ends (letters at ends of green fragments). By use of appropriate reaction conditions, insertion of a single restriction fragment per plasmid can be maximized. Note that the restriction sites are reconstituted in the recombinant plasmid.
重组DNA技术
重组DNA技术指将一种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿稳定遗传并表达出新产物或新性状的DNA体外操作程序,也称为分子克隆技术。
供体、受体、载体是重组DNA技术的三大基本元件。
基因工程指重组DNA技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。
上游技术指的是基因重组、克隆和表达的设计与构建(即重组DNA技术);下游技术则涉及到基因工程菌或细胞的大规模培养以及基因产物的分离纯化过程。
基因工程的两个基本特点∶分子水平上的操作和细胞水平上的表达。
基因工程的意义:⑴大规模生产生物活性物质⑵设计、构建生物的新性状甚至新物种⑶分离、扩增、鉴定、研究、整理生物信息资源。
基因工程的基本条件:A核酸操作的工具酶:限制性核酸内切酶、DNA连接酶、DNA聚合酶、核酸酶、核酸修饰酶。
B用于基因克隆的载体:载体的功能及特征、质粒、噬菌体或病毒DNA、考斯质粒与噬菌粒、人造染色体载体C用于基因转移的受体菌或细胞:受体细胞应具备的条件、各种基因工程受体的特性、实验室常用的基因工程受体限制性核酸内切酶的生物功能:识别双链DNA分子中的特定序列,并切割DNA双链。
主要存在于原核细菌中,帮助细菌限制外来DNA的入侵细菌的限制与修饰作用。
限制性核酸内切酶的类型:主要特性I 型II 型III 型限制修饰多功能单功能双功能蛋白结构异源三聚体同源二聚体异源二聚体辅助因子ATP Mg2+ SAM Mg2+ ATP Mg2+ SAM识别序列TGAN8TGCT旋转对称序列GAGCCAACN6GTGCCAGCAG切割位点距识别序列1kb处识别序列内或附近距识别序列下游随机性切割特异性切割24-26bp处II 型限制性核酸内切酶的基本特性:识别双链DNA分子中4-8对碱基的特定序列,大部分酶的切割位点在识别序列内部或两侧,识别切割序列呈典型的旋转对称型回文结构。
II 型限制性核酸内切酶的切割方式:平头末端5’粘性末端3’粘性末端II 型核酸内切酶的多酶联合酶解:对盐浓度要求相同的酶,原则上可以同时酶切,但应注意:对盐浓度要求不同的酶,可采取下列方法:(1)使用较贵的酶的盐浓度,加大便宜酶的用量,同时酶解(2)低盐酶先切,然后补加盐,高盐酶再切(3)一种酶先切,然后更换缓冲液,另一种酶再切影响限制性核酸内切酶活性的因素:DNA样品的纯度(B)DNA样品甲基化程度(C)限制性核算内切酶缓冲液性质(D)酶的纯度(E)DNA分子的构型(F)酶的反应温度和时间载体:基因工程中携带外源基因进入受体细胞的“运载工具”,本质是DNA复制子。
DNA重组技术
DNA重组技术不同来源的DNA分子,通过磷酸二酯键连接而重新组合的过程,称为DNA重组(DNA recombination)。
重组DNA技术(recombinant DNA technology)作为分子生物学的一项重要技术得到了迅速的发展。
利用重组DNA技术对DNA分子进行剪切和重新连接,构成重组DNA分子,然后把它导入宿主细胞,进而扩增相关DNA片段,表达相关基因的产物,是进行基因功能研究的基本方法。
克隆(clone)是指由一个细胞经过无性繁殖以后形成的子代群体。
构建DNA重组体并导入宿主细胞建立无性繁殖体系,即DNA的分子克隆(molecular cloning)过程。
因此,重组DNA技术又称为分子克隆技术或基因工程技术,其具体过程大致为分、切、连、转、筛选。
即分离纯化目的质粒载体、用限制性内切酶酶切纯化的载体、酶切后的载体与靶基因片段的连接、构建质粒载体转染感受态菌、筛选阳性克隆。
载体选择载体(vector)是携带靶DNA(目的DNA)片段进入宿主细胞进行扩增和表达的运载工具。
常用的载体是通过改造天然的细菌质粒、噬菌体和病毒等构建而成。
目前已构建成的载体主要有质粒载体、噬菌体载体、病毒载体和人工染色体等多种类型,亦可根据其用途不同分为克隆载体和表达载体二类。
载体的构建和选择应考虑以下几个主要的条件:①在宿主细胞中具有自主复制能力或能整合到宿主染色体上与基因组一同复制的能力;②有合适的限制性酶切位点供外源DNA片段插入,多种酶单一位点使载体在使用上具有较大的灵活性;③分子量不宜过大,以便于容纳较大的外源DNA片段并获得较高的拷贝数,也有利于体外重组操作。
④具有合适的筛选标记,以便区分阳性重组体和阴性重组体,常用的筛选标记有抗药性、酶基因、营养缺陷型或形成噬菌斑的能力等。
⑤配备与宿主相适应的调控元件,如启动子、增强子和前导序列等。
本试验选择高拷贝型pGEM载体系列的pGEM-3Zf(+)为基础载体,它含有Lac Z基因编码区、SP6、T7RNA聚合酶启动子和其间的多克隆区域(见图),能在离体情况下合成ssDNA或RNA由于构建DNA或RNA探针的构建。
DNA重组及重组DNA技术
77
18
目录
生物技术工程: 基因工程、蛋白质工程、酶 工程、细胞工程等
基因工程(genetic engineering) —— 实现基因 克隆所用的方法及相关的工作称基因工程, 又称重组DNA工艺学。
目的: ① 分离获得某一感兴趣的基因或DNA ② 获得感兴趣基因的表达产物(蛋白质)
77
重组体DNA,分别为:
片段重组体(patch recombinant)
拼接重组体(splice recombinant)
77
7
目录
片段重组体 (见模型图左边产物): 切开的链与原来断裂的是同一条链,重组 体含有一段异源双链区,其两侧来自同一亲 本DNA。
拼接重组体(见模型图右边产物): 切开的链并非原来断裂的链,重组体异源双 链区的两侧来自不同亲本DNA。
RE)是识别DNA的特异序列, 并在识别位点或其 周围切割双链DNA的一类内切酶。
Bam HⅠ
GGATCC CCTAGG
GCCTAG+
GATCC G
77
22
目录
分类:酶的组成、所需因子及裂解DNA的方 式 Ⅰ、Ⅱ、Ⅲ(基因工程技术中常用Ⅱ型)
作用:
与甲基化酶共同构成细菌的限制修饰 系统,限制外源DNA,保护自身DNA。
77
23
目录
命名:
Hin dⅢ
Haemophilus influenzae d株 流感嗜血杆菌d株的第三种酶
属系 株 序
第一个字母取自产生该酶的细菌属名,用大写; 第二、第三个字母是该细菌的种名,用小写; 第四个字母代表株; 用罗马数字表示发现的先后次序。
77
24
目录
Ⅱ类酶识别序列特点—— 回文结构(palindrome)
重组DNA技术
重组DNA技术重组DNA技术(recombinant DNA technique)又称遗传工程,在体外重新组合脱氧核糖核酸(DNA)分子,并使它们在适当的细胞中增殖的遗传操作。
这种操作可把特定的基因组合到载体上,并使之在受体细胞中增殖和表达。
因此它不受亲缘关系限制,为遗传育种和分子遗传学研究开辟了崭新的途径。
广义的遗传工程包括细胞水平上的遗传操作(细胞工程)和分子水平上的遗传操作,即重组DNA技术(有人称之为基因工程)。
狭义的遗传工程则专指后者。
简史重组DNA技术来源于两个方面的基础理论研究——限制性核酸内切酶(简称限制酶)和基因载体(简称载体)。
限制酶的研究可以追溯到1952年美国分子遗传学家S.E.卢里亚在大肠杆菌中所发现的一种所谓限制现象——从菌株甲的细菌所释放的噬菌体能有效地感染同一菌株的细菌,可是不能有效地感染菌株乙;少数被感染的菌株乙的细菌所释放的同一噬菌体能有效地感染菌株乙可是不能有效地感染菌株甲。
经过长期的研究,美国学者W.阿尔伯在1974年终于对这一现象提出了解释,认为通过噬菌体感染而进入细菌细胞的DNA分子能被细菌识别而分解,细菌本身的DNA则由于已被自己所修饰(甲基化)而免于被分解。
但有少数噬菌体在没有被分解以前已被修饰了,这些噬菌体经释放后便能有效地感染同一菌株的细菌。
被甲(或乙)这一菌株所修饰的噬菌体只能有效地感染甲(或乙),而不能有效地感染乙(或甲),说明各个菌株对于外来DNA的限制作用常常是专一性的。
通过进一步的研究发现这种限制现象是由于细菌细胞中具有专一性的限制性核酸内切酶的缘故。
重组DNA技术中所用的载体主要是质粒和温和噬菌体(见转导)两类,而在实际应用中的载体几乎都是经过改造的质粒或温和噬菌体。
英国微生物遗传学家W.海斯和美国微生物遗传学家J.莱德伯格等在1952年首先认识到大肠杆菌的F因子(见细菌接合)是染色体外的遗传因子。
1953年法国学者P.弗雷德里克等发现大肠杆菌产生大肠杆菌素这一性状为一种染色体外的大肠杆菌素因子所控制。
第十五章 重组DNA技术
Blue-white screening on medium with ampicillin, X-gal and IPTG. white colonies contain recombinant plasmid and can be isolated directly from this plate
• DNA诊断 • 基因治疗
27
DNA诊断 DNA Diagnosis
• DNA 诊断常用方法 PCR、限制性片断长度多态性、单链构象多 态性、限制性酶切图谱及基因测序等 • DNA诊断的应用 杜氏肌营养不良(DMD)、Leber遗传性神经 病、苯酮酸尿症
28
基因治疗 Gene Therapy
• 基因治疗的概念 从基因水平调控细胞中缺陷基因、修补矫正 或替代缺陷基因,分为基因增补、替换、修 复三种类型。
14
质粒
• 细菌染色体外、自主复制、闭合环状 DNA • 分子量1kb到200kb以上 • 带有特殊的遗传信息 “抗药性”等 • 改造后成为极其常用的载体 穿梭载体
15
pUC19 map
16
第二节 重组DNA基本步骤
• • • • • 目的基因的获得(分) 载体的选择与修饰(切) DNA分子的体外重组(接) 重组DNA分子的导入、鉴定(转,筛) 目的基因的表达(表)
25
目的基因的表达 Expressing a Target Gene
• 外源基因在原核细胞的表达 优点:简单、迅速、经济适合大规模生产 缺点:缺乏转录后、翻译后加工机制 • 目的基因在真核细胞的表达 表达产物更接近真核天然蛋白质结构 表达载体既含原核克隆载体的主要元件, 又含各种真核表达元件
26
第三节 重组DNA技术在医学中的应用
重组DNA技术
载体DNA分子,需要具备:
– 具复制原点(ori),在宿主细胞中不仅能独立地自我 复制,而且能带动携带的外源DNA片段一起复制
– 具有多克隆位点(multiple cloning site, MCS),而每 一种酶的切点只有一个,用于克隆外源DNA片段。 这些酶切位点不存在于复制原点或抗性选择标记基 因内
基因工程重要特征:
• 可把来自任何生物的基因转移到与其毫无关系的任何其他受体细胞中,可以 任意改造生物的遗传特性,创造出生物的新性状
• 某一段DNA可在受体细胞内进行复制,为制备大量纯化的DNA片段提供了可 能
基因工程技术路线
• DNA片段的取得(目的基因的分离和制备) • DNA片段和载体的连接——重组体DNA • 外源离
重组DNA技术(基因工程)
• 基因工程 • 基因工程的风险和伦理学问题
基因工程
• 基因工程概述 • 基因工程的相关技术 • 基因工程的工具酶 • 载体 • 基因工程genetic engineering
• 基因工程一般可分为广义和狭义的两种。广义的基因 工程包括:整体水平,如生物的有性杂交;细胞水平, 如细胞融合;分子水平,染色体工程、基因克隆等。 狭义的基因工程即是通常讲的基因克隆。
细菌质粒载体
◆质粒是细菌细胞内独立于细菌染色体而自然存在的、能 自我复制、易分离和导入的环状双链DNA分子 ☆这些质粒的适应范围广,拷贝数多。进入宿主细胞复制 后,每个细胞的质粒拷贝数可高达1000个 ◆早期用于基因工程的载体是经遗传改良的细菌质粒,它 们仅能用于克隆分子量小于10kb( 1000bp =1kb)的外源DNA 片段 ☆现在广泛使用且商品化的质粒,很多都具有重组表型检 测标记,在DNA克隆中根据宿主细胞的表型即可推知质粒 是否携带外源DNA片段
生物技术制药-DNA重组技术
分离病毒颗粒
培养转化细胞、收集菌体
病毒载体DNA分离与纯化
破碎细胞
质粒DNA分离与纯化
DNA分子的体外连接 目标DNA片断插入载体
DNA分子的体外连接就是在一定条件下, 由DNA连接酶催化两个双链DNA片 段组邻的5’端磷酸与3’端羟基之间 形成磷酸酸脂键的生物化学过程, DN A分子的连接是在酶切反应获得同种酶 互补序列基础上进行的。
植物细胞 动物细胞 微生物细胞:细菌和真菌
(1)将目的基因导入植物细胞 双子叶植物—农杆菌转化法
(1)将目的基因导入植物细胞 单子叶植物—基因枪法
(1)将目的基因导入植物细胞
转基因抗虫棉-花粉管通道法
(2)将目的基因导入动物细胞
显微注射法
(3)将目的基因导入大肠杆菌细胞
质粒转化法:
用CaCl2处理大肠杆菌细胞 感受态大肠杆菌细 胞 重组载体与之混合 重组载体感染感受态 细胞(目的基因进入大肠杆菌细胞)
ⅰ. 超速离心:利用两种DNA分子的大小和空间构型 ⅱ. 变性法:在变性条件下使染色体DNA变为单链,而质 粒DNA仍保持环状结构,当变性条件发生迅速变化时,前 者仍不能复性,而后者又可回复到天然构型。 变性条件可采用加热煮沸法或碱变性法
载体DNA分离的一般程序
载体DNA
感染或转染细胞(病毒型)
转化细菌细胞(质粒型)
分子放在同一溶液中,或把DNA与RNA放在一
起,只要在DNA或RNA的单链分子之间有一定
的碱基配对关系,就可以在不同的分子之间形
成杂化双链(heteroduplex) 。
复性
RNA
DNA
(一)印迹技术 (二)探针技术
探针 (probe)
一小段用同位素、生物素或荧光染料标
dna重组技术名词解释
DNA重组技术名词解释
DNA重组技术是一种利用分子生物学技术对DNA分子进行人工改造的方法。
下面是一些常见的相关术语解释:
•重组DNA(rDNA):是通过将不同源的DNA分子在体外进行重新组合而获得的DNA分子。
重组DNA技术是DNA重组的基础,用于插入外源基因到目标生物体中。
•限制性内切酶(restriction enzyme):是一类酶,能够识别DNA序列并在特定的位点上切割DNA链。
限制性内切酶在DNA重组中起到关键作用,用于切割DNA和插入外源DNA。
•载体(vector):是DNA分子,在重组DNA技术中被用来携带外源基因并将其导入到目标生物体中。
常见的载体包括质粒、噬菌体等。
•基因克隆(gene cloning):是利用重组DNA技术将目标基因复制多份,使得其在目标生物体中得以表达和传递。
基因克隆有助于研究基因功能、获得目标基因的大量表达产物等。
普通生物学_20重组DNA技术_2014
1970’s – many get cancer and die from polluted land.
Biotechnology and the Environment
What
are the events that triggered the interest in environmental biotechnology? •Burning of a River, Cuyahoga River
Chapter23 重组DNA技术
重组DNA技术
重组DNA技术是利用载体系统人工修饰有机体遗传组成的技 术,即在体外通过酶的作用将异源DNA与载体DNA重组,并将
该重组DNA分子导入受体细胞内,以扩增异源DNA,并实现其
功能表达的技术。
•
1972年,Paul Berg和他的同事将λ噬菌体基因和大肠杆菌 乳糖操纵子插入猴病毒SV40 DNA中,首次构建出同时含有 SV40和λ噬菌体的DNA重组体. 于1980年获得 Nobel Prize in Chemistry
Biotechnology and the Environment
What
are the events that triggered the interest in environmental biotechnology?
•Love Canal, Lois Marie Gibbs
•(1978, 拉夫运河事件, 露易丝.吉布斯)
Biotechnology and the Environment
What
are the events that triggered the interest in environmental biotechnology?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遗传工程也叫基因工程(gene engineering)基因操作(gene manipulation)或重组DNA技术(recombination DNA technique)是20世纪70年代以后兴起的一门新技术其主要原理是用人工的方法把生物的遗传物质通常是脱氧核糖核酸(DNA)分离出来在体外进行基因切割连接重组转移和表达的技术基因的转移已经不再限于同一类物种之间动物植物和微生物之间都可进行基因转移改变宿主遗传特性创造新品种系或新的生物材料基因工程是在分子水平上对基因进行操作的复杂技术,一般包括4个步骤:一是克隆目的基因,取得所需要的·DNA特异片段;二是将目的基因与DNA载体连接成重组DNA;三是将重组DNA引入细菌或动植物细胞内使其增殖;四是将表达目的基因的受体细胞挑选出来,使目的基因表达相应的蛋白质或其他产物,从而育成动植物优良新品种(系)。
自1977年成功地用大肠杆菌生产出生长Itl释放抑制因子以来,人胰岛素、人生长激素、胸腺肽、干扰素、尿激酶、肿瘤坏死因子、疯牛病疫苗、乙型肝炎病毒疫苗、甲型肝炎病毒疫苗、幼畜腹泻疫苗和青霉素酰化酶基因工程菌株等数十种基因工程产品相继问世。
优质产毛羊等动物新品种,金色水稻,抗虫或抗除草剂的玉米、大豆、棉花、水稻,转类胡萝卜素生物合成相关酶基因花卉、蔬菜等已获推广或已取得阶段性成果。
广义的遗传工程包括细胞水平上的遗传操作(细胞工程)和分子水平上的遗传操作,即重组DNA 技术(有人称之为基因工程)。
狭义的遗传工程则专指后者。
简史重组DNA技术来源于两个方面的基础理论研究--限制性核酸内切酶(简称限制酶)和基因载体(简称载体)。
限制酶的研究可以追溯到1952年美国分子遗传学家S.E.卢里亚在大肠杆菌中所发现的一种所谓限制现象--从菌株甲的细菌所释放的噬菌体能有效地感染同重组DNA技术重组DNA技术一菌株的细菌,可是不能有效地感染菌株乙;少数被感染的菌株乙的细菌所释放的同一噬菌体能有效地感染菌株乙可是不能有效地感染菌株甲。
经过长期的研究,美国学者W.阿尔伯在1974年终于对这一现象提出了解释,认为通过噬菌体感染而进入细菌细胞的DNA分子能被细菌识别而分解,细菌本身的DNA则由于已被自己所修饰(甲基化)而免于被分解。
但有少数噬菌体在没有被分解以前已被修饰了,这些噬菌体经释放后便能有效地感染同一菌株的细菌。
被甲(或乙)这一菌株所修饰的噬菌体只能有效地感染甲(或乙),而不能有效地感染乙(或甲),说明各个菌株对于外来DNA的限制作用常常是专一性的。
通过进一步的研究发现这种限制现象是由于细菌细胞中具有专一性的限制性核酸内切酶的缘故。
重组DNA技术中所用的载体主要是质粒和温和噬菌体(见转导)两类,而在实际应用中的载体几乎都是经过改造的质粒或温和噬菌体。
英国微生物遗传学家W.海斯和美国微生物遗传学家J.莱德伯格等在1952年首先认识到大肠杆菌的F因子(见细菌接合)是染色体外的遗传因子。
1953年法国学者P.弗雷德里克等发现大肠杆菌产生大肠杆菌素这一性状为一种染色体外的大肠杆菌素因子所控制。
1957年日本学者发现了抗药性质粒。
后两类质粒都是在遗传工程中广泛应用的质粒。
重组DNA技术中广泛应用的噬菌体是大肠杆菌的温和噬菌体λ,它是在1951年由美国学者E.莱德伯格等发现的。
到70年代初,生物化学研究的进展也为重组DNA技术奠定了基??972年美国的分子生物学家P.伯格等将动物病毒SV40的DNA与噬菌体P22的DNA连接在一起,构成了第一批重组体DNA分子。
1973年美国的分子生物学家S.N.科恩等又将几种不同的外源DNA插入质粒pSC101的DNA中,并进一步将它们引入大肠杆菌中,从而开创了遗传工程的研究。
步骤和方法折叠步骤重组DNA技术一般包括四步:①获得目的基因;②与克隆载体连接,形成新的重组DNA分子;③用重组DNA分子转化受体细胞,并能在受体细胞中复制和遗传;④对转化子筛选和鉴定。
;⑤对获得外源基因的细胞或生物体通过培养,获得所需的遗传性状或表达出所需要的产物。
在具体工作中选择哪条技术路线主要取决于基因的来源、基因本身的性质和该项遗传工程的目的。
折叠方法重组DNA片段的取得主要的方法有:①利用限制酶取得具有粘性末端或平整末端的DNA片段;②用机械方法剪切取得具有平整末端的DNA片段,例如用超声波断裂双链DNA分子;③经反向转录酶的作用从mRNA获得与mRNA顺序互补的DNA单链,然后再复制形成双链DNA(cDNA)。
例如人的胰岛素和血红蛋白的结构基因都用这方法获得。
这样获得的基因具有编码蛋白质的全部核苷酸顺序,但往往与原来位置在染色体上的基因在结构上有区别,它们不含有称为内含子的不编码蛋白质的间隔顺序(见基因);④用化学方法合成DNA片段。
从蛋白质肽链的氨基酸顺序可以知道它的遗传密码。
依照这密码用化学方法可以人工合成基因。
重组DNA技术技术路线重组DNA技术技术路线DNA片段和载体的连接DNA片段和载体相连接的方法主要有四种:①粘性末端连接,每一种限制性核酸内切酶作用于DNA分子上的特定的识别顺序,许多酶作用的结果产生具有粘性末端的两个DNA片段。
例如来自大肠杆菌(Escherichia coli)的限制酶EcoRI作用于识别顺序↓…GAATTC……CTTAAG…↑(↑指示切点),产生具有粘性末端…G …CTTAA和AATTC… G…的片段。
把所要克隆的DNA和…载体DNA用同一种限制酶处理后再经DNA连接酶处理,就可以把它们连接起来。
②平整末端连接,某些限制性内切酶作用的结果产生不含粘性末端的平整末端。
例如来自副流感嗜血杆菌(Hemophilus parainfluenzae)的限制酶Hpal作用于识别顺序↓…GTTAAC……CAATTG…而产生末端为…GTT …GAA的DNA片段。
用机械剪切方法取得的DNA片段的末端也是平整的。
在某些连接酶(例如感染噬菌体T4后的大肠杆菌所产生的DNA 连接酶)的作用下同样可以把两个这样的DNA片段连接起来。
③同聚末端连接,在脱氧核苷酸转移酶(也称末端转移酶)的作用下可以在DNA的3′羧基端合成低聚多核苷酸。
如果把所需要的DNA片段接上低聚腺嘌呤核苷酸,而把载体分子接上低聚胸腺嘧啶核苷酸,那么由于两者之间能形成互补氢键,同样可以通过DNA连接酶的作用而完成DNA片段和载体间的连接。
④人工接头分子连接,在两个平整末端DNA片段的一端接上用人工合成的寡聚核苷酸接头片段,这里面包含有某一限制酶的识别位点。
经这一限制酶处理便可以得到具有粘性末端的两个DNA 片段,进一步便可以用DNA连接酶把这样两个DNA分子连接起来。
导入宿主细胞将连接有所需要的DNA的载体导入宿主细胞的常用方法有四种:①转化,用质粒作载体所常用的方法。
②转染(见转化),用噬菌体DNA作载体所用的方法,这里所用的噬菌体DNA并没有包上它的外壳。
③转导,用噬菌体作载体所用的方法,这里所用的噬菌体DNA被包上了它的外壳,不过这外壳并不是在噬菌体感染过程中包上,而是在离体情况下包上的,所以称为离体包装。
④注射,如果宿主是比较大的动植物细胞则可以用注射方法把重组DNA分子导入。
选择用以上任何一种方法连接起来的DNA中既可能包括所需要的DNA片段,也可能包括并不需要的片段,甚至包括互相连接起来的载体分子的聚合体。
所以接受这些DNA的宿主细胞中间只有一小部分是真正含有所需要的基因的。
一般通过3种方法可以取得所需要的宿主细胞:①遗传学方法,对于带有抗药性基因的质粒来讲,从被转化细菌是否由敏感状态变为抗药的状态就可以知道它有没有获得这一抗药性质粒。
一个抗药性基因中间如果接上了一段外来的DNA片段,就使获得这一质粒的细菌不再表现抗性重组DNA技术。
把一个带有两个抗性基因氨苄青霉素抗性和四环素抗性的质粒pBR322用限制酶Bam HI处理,由于Bam HI的唯一的识别位点是在四环素抗性基因中,所以经同一种酶处理的DNA分子片段就可以连接在这一基因中间。
在被转化的细菌中选择只对氨苄青霉素具有抗性而对四环素不具抗性的细菌,便可以获得带有外来DNA片段的载体的细菌。
这是一种常用的遗传学方法。
②免疫学方法和分子杂交方法,当一个宿主细胞获得了携带在载体上的基因后,细胞中往往就出现这一基因所编码的蛋白质,用免疫学方法可以检出这种细胞。
分子杂交的原理和方法同样可以用来检测这一基因的存在(见分子杂交、基因文库)。
基本工具分子手术刀--限制酶(1)主要来源:从原核生物中分离纯化。
(2)特点:专一性、高效性、作用条件温和能识别双链DNA分子的某种特定核苷酸序列,并切割两个核苷酸之间的磷酸二酯键。
(3)结果:产生粘性末端和平末端分子缝合针--DNA连接酶(1)作用:催化成磷酸二酯键。
分子运输车--载体(1)种类:质粒:是一种裸露的、结构简单的、独立于细菌拟核DNA之外的,并具有自我复制能力的很小的环状DNA分子。
噬菌体衍生物动植物病毒(2)特点:可以在受体细胞中自我复制,也可整合到细菌染色体DNA中,随着染色体DNA的复制而复制。
有多种限制酶的单一识别位点,可适于多种限制酶切割的DNA插入。
有一定的标记基因,便于重组DNA的鉴定和表达。
基因表达在构建重组体DNA分子和选择宿主细胞时,还须考虑外源基因表达的问题。
就是说要求外来的基因在宿主细胞中能准确地转录和翻译,所产生的蛋白质在宿主细胞中不被分解,而且最好还能分泌到细胞外。
为了使外源基因表达,需要在基因编码顺序的5′端有能被宿主细胞识别的启动基因顺序以及核糖体的结合顺序。
两种常用的方法能用来使外源基因在宿主细胞中顺利地表达:①在形成重组体DNA分子时在载体的启动基因顺序和核糖体结合顺序后面的适当位置上连接外源基因。
例如将兔的β-珠蛋白基因或人的成纤维细胞干扰素基因分别连接到已经处在载体上的大肠杆菌乳糖操纵子的启动基因后面,便能使它们在大肠杆菌中顺利地表达;②将外源基因插入到载体的结构基因中的适当位置上,转录和翻译的结果将产生一个融合蛋白。
这种融合蛋白质被提纯后,还要准确地将两部分分开,才能获得所需要的蛋白质。
在早期的遗传工程研究中,生长激素释放抑制因子和鼠胰岛素基因的表达都是通过将它们连接在β-半乳糖苷酶基因中的方式实现的。
应用发酵工业用大肠杆菌生产人的生长激素释放抑制因子是第一个成功的实例。
在9升细菌培养液中这种激素的产量等于从大约50万头羊的脑中提取得到的量。
这是把人工合成的基因连接到小型多拷贝质粒pBR322上,并利用乳糖操纵子β-半乳糖苷酶基因的高效率启动子,构成新的杂种质粒而实现的。
现在胰岛素、人的生长激素、人的胸腺激素α-1、人的干扰素、牛的生长激素、乙型肝炎病毒抗原和口蹄疫病毒抗原等都可用大肠杆菌发酵生产,其中有的还可在酵母或枯草杆菌中表达,这就为大规模的工业发酵开辟了新的途径。