2020秋北师大版八年级数学上册第一章勾股定理同步测试
2020年北师大版八年级数学上学期第一章 勾股定理 单元训练卷 (含答案)
第一章勾股定理一.选择题(共10小题)1.以下列各组数据为边长作三角形,能组成直角三角形的是()A.3,5,3 B.5,12,13 C.7,24,26 D.8,15,162.下列条件不能判定△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5 B.∠C=∠A﹣∠BC.a:b:c=3:4:5 D.a2=b2﹣c23.满足下列条件的三角形中,是直角三角形的是()A.三边长的平方之比为3:4:5B.三内角之比为3:4:5C.三边长之比为5:12:13D.三内角之比为5:12:134.若直角三角形的两边长分别为a,b,且满足a2﹣6a+9+|b﹣4|=0,则该直角三角形的第三边长的平方为()A.25 B.7 C.25或7 D.25或165.如图,一只蚂蚁从长为2cm、宽为2cm,高是3cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()cm.A.3 B.2 C.5 D.76.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD 交CD于点E,交CB于点F,则CF的长是()A.1.5 B.1.8 C.2 D.2.57.正方形ABCD的边长为1,其面积记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为S2,…按此规律继续下去,则S2019的值为()A.B.C.D.8.我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.9.《九章算术》是我国古代的数学名著,书中的“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺.问折者高几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部3尺远,问折断处离地面的高度是多少?设折断后离地面的高度为x尺,则可列方程为()A.x2﹣3=(10﹣x)2B.x2﹣32=(10﹣x)2C.x2+3=(10﹣x)2D.x2+32=(10﹣x)210.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于()A.2 B.4 C.6 D.8二.填空题(共10小题)11.已知直角三角形三边长分别为3,4,m,则m=.12.△ABC中,AB=15,AC=13,高AD=12.则△ABC的面积为.13.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=,c=.14.在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为.15.已知:如图,四边形ABDC,AB=4,AC=3,CD=12,BD=13,∠BAC=90°.则四边形ABDC的面积是.16.如图,“赵爽弦图”由4个全等的直角三角形所围成,在Rt△ABC中,AC=b,BC=a,∠ACB=90°,若图中大正方形的面积为42,小正方形的面积为5,则(a+b)2的值为.17.如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m 处,旗杆折断之前的高度是.18.一个直角三角形的两条直角边长为6和8,则它的斜边上的高是.19.如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是cm.20.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为尺.三.解答题(共4小题)21.如图,C地到A,B两地分别有笔直的道路CA,CB相连,A地与B地之间有一条河流通过,A,B,C三地的距离如图所示.(1)如果A地在C地的正东方向,那么B地在C地的什么方向?(2)现计划把河水从河道AB段的点D引到C地,求C,D两点间的最短距离.22.某地区为了开发农业,决定在公路上相距25km的A、B两站之间E点修建一个土特产加工基地,使E点到C、D两村的距离相等,如图,DA⊥AB于点A,CB⊥AB于点B,DA =15km,CB=10km,求土特产加工基地E应建在距离A站多少km的地方?23.如图,一个放置在地面上的长方体,长为15cm,宽为10cm,高为20cm,点B与点C 的距离为5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?24.学校要对如图所示的一块地ABCD进行绿化,已知AD=4米,CD=3米,AD⊥DC,AB=13米,BC=12米.(1)若连接AC,试证明:△ABC是直角三角形;(2)求这块地的面积.参考答案与试题解析一.选择题(共10小题)1.以下列各组数据为边长作三角形,能组成直角三角形的是()A.3,5,3 B.5,12,13 C.7,24,26 D.8,15,16 【分析】找出每个选项中的两个较小的数,求他们的平方和,再求这组数据中最大数的平方,比较两个数是否相等,若相等,就能构成直角三角形,不相等就不能构成直角三角形.【解答】解:A、32+32≠52,不能构成直角三角形;B、52+122=132,能构成直角三角形;C、72+242≠262,不能构成直角三角形;D、82+152≠162,不能构成直角三角形;故选:B.2.下列条件不能判定△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5 B.∠C=∠A﹣∠BC.a:b:c=3:4:5 D.a2=b2﹣c2【分析】根据三角形内角和定理判断A、B;根据勾股定理的逆定理判断C、D.【解答】解:A、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形,故本选项符合题意;B、∵∠C=∠A﹣∠B,∴∠A=∠B+∠C,∴∠A=90°,∴△ABC是直角三角形,故本选项不符合题意;C、设a=3k,则b=4k,c=5k,∵(3k)2+(4k)2=(5k)2,∴△ABC是直角三角形,故本选项不符合题意;D、∵a2=b2﹣c2,∴a2+c2=b2,∴△ABC是直角三角形,故本选项不符合题意;故选:A.3.满足下列条件的三角形中,是直角三角形的是()A.三边长的平方之比为3:4:5B.三内角之比为3:4:5C.三边长之比为5:12:13D.三内角之比为5:12:13【分析】根据三角形内角和定理和勾股定理的逆定理判定是否为直角三角形.【解答】解:A、三边不符合勾股定理的逆定理,所以此三角形不是直角三角形;B、根据三角形内角和公式,求得各角分别为45°,60°,75°,所以此三角形不是直角三角形;C、52+122=132,符合勾股定理的逆定理,所以此三角形是直角三角形;D、根据三角形内角和公式,求得各角分别为30°,72°,78°,所以此三角形不是直角三角形.故选:C.4.若直角三角形的两边长分别为a,b,且满足a2﹣6a+9+|b﹣4|=0,则该直角三角形的第三边长的平方为()A.25 B.7 C.25或7 D.25或16【分析】根据非负数的性质列出方程求出a、b的值,根据勾股定理即可得到结论.【解答】解:∵a2﹣6a+9+|b﹣4|=0,﹣4|=0,∴(a﹣3)2,b﹣4=0,∴a=3,b=4,∴直角三角形的第三边长==5,或直角三角形的第三边长==,∴直角三角形的第三平方为25或7,故选:C.5.如图,一只蚂蚁从长为2cm、宽为2cm,高是3cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()cm.A.3 B.2 C.5 D.7【分析】先将图形展开,再根据两点之间线段最短,再由勾股定理求解即可.【解答】解:如图(1),AB==;如图(2),AB==5.故选:C.6.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD 交CD于点E,交CB于点F,则CF的长是()A.1.5 B.1.8 C.2 D.2.5【分析】连接DF,由勾股定理求出AB=5,由等腰三角形的性质得出CE=DE,由线段垂直平分线的性质得出CF=DF,由SSS证明△ADF≌△ACF,得出∠ADF=∠ACF=∠BDF=90°,设CF=DF=x,则BF=4﹣x,在Rt△BDF中,由勾股定理得出方程,解方程即可.【解答】解:连接DF,如图所示:∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB==5,∵AD=AC=3,AF⊥CD,∴CE=DE,BD=AB﹣AD=2,∴CF=DF,在△ADF和△ACF中,,∴△ADF≌△ACF(SSS),∴∠ADF=∠ACF=90°,∴∠BDF=90°,设CF=DF=x,则BF=4﹣x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4﹣x)2,解得:x=1.5;∴CF=1.5;故选:A.7.正方形ABCD的边长为1,其面积记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为S2,…按此规律继续下去,则S2019的值为()A.B.C.D.【分析】根据等腰直角三角形的性质可得出S2+S2=S1,写出部分S n的值,根据数的变化找出变化规律S n=()n﹣1,依此规律即可得出结论.【解答】解:在图中标上字母E,如图所示.∵正方形ABCD的边长为1,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察,发现规律:S1=12=1,S2=S1=,S3=S2=,S4=S3=,…,∴S n=()n﹣1.当n=2019时,S2019=()2019﹣1=()2018,故选:B.8.我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.9.《九章算术》是我国古代的数学名著,书中的“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺.问折者高几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部3尺远,问折断处离地面的高度是多少?设折断后离地面的高度为x尺,则可列方程为()A.x2﹣3=(10﹣x)2B.x2﹣32=(10﹣x)2C.x2+3=(10﹣x)2D.x2+32=(10﹣x)2【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10﹣x)尺,利用勾股定理解题即可.【解答】解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+32=(10﹣x)2.故选:D.10.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于()A.2 B.4 C.6 D.8【分析】根据面积的差得出a+b的值,再利用a﹣b=2,解得a,b的值代入即可.【解答】解:∵AB=10,EF=2,∴大正方形的面积是100,小正方形的面积是4,∴四个直角三角形面积和为100﹣4=96,设AE为a,DE为b,即4×ab=96,∴2ab=96,a2+b2=100,∴(a+b)2=a2+b2+2ab=100+96=196,∴a+b=14,∵a﹣b=2,解得:a=8,b=6,∴AE=8,DE=6,∴AH=8﹣2=6.故选:C.二.填空题(共10小题)11.已知直角三角形三边长分别为3,4,m,则m=5或.【分析】由于不知道m为斜边还是直角边,故应分两种情况进行讨论.【解答】解:当m为斜边时:32+42=m2,解得:m1=5,m2=﹣5(不符合题意);当m为直角边时:32+m2=42,解得:m1=,m2=﹣(不符合题意).故第三边长m为5或.故答案是:5或.12.△ABC中,AB=15,AC=13,高AD=12.则△ABC的面积为24或84 .【分析】分两种情况:三角形ABC为锐角三角形;三角形ABC为钝角三角形,根据AD 垂直于BC,利用垂直的定义得到三角形ABD与三角形ADC为直角三角形,利用勾股定理分别求出BD与DC,由BD+DC=BC或BD﹣DC=BC求出BC,利用三角形的面积公式即可求出三角形ABC的面积.【解答】解:分两种情况考虑:①当△ABC为锐角三角形时,如图1所示,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,AB=15,AD=12,根据勾股定理得:BD==9,在Rt△ADC中,AC=13,AD=12,根据勾股定理得:DC==5,∴BC=BD+DC=9+5=14,则S△ABC=BC•AD=84;②当△ABC为钝角三角形时,如图2所示,∵AD⊥BC,∴∠ADB=90°,在Rt△ABD中,AB=15,AD=12,根据勾股定理得:BD==9,在Rt△ADC中,AC=13,AD=12,根据勾股定理得:DC==5,∴BC=BD﹣DC=9﹣5=4,则S△ABC=BC•AD=24.综上,△ABC的面积为24或84.故答案为:24或84.13.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=84 ,c=85 .【分析】认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个数为从3开始连续的奇数,第二、三个数为连续的自然数;进一步发现第一个数的平方是第二、三个数的和;最后得出第n组数为(2n+1),(),(),由此规律解决问题.【解答】解:在32=4+5中,4=,5=;在52=12+13中,12=,13=;…则在13、b、c中,b==84,c==85.14.在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为42或32 .【分析】本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD 的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD 的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32故答案是:42或32.15.已知:如图,四边形ABDC,AB=4,AC=3,CD=12,BD=13,∠BAC=90°.则四边形ABDC的面积是36 .【分析】连接BC,根据勾股定理可求得BC的长.根据勾股定理的逆定理可得到△BCD 也是直角三角形,从而求得△ABC与△BCD的面积和即得到了四边形ABDC的面积.【解答】解:连接BC,∵∠A=90°,AB=4,AC=3∴BC=5,∵BC=5,BD=13,CD=12∴BC2+CD2=BD2∴△BCD是直角三角形∴S四边形ABCD=S△BCD+S△ABC=×4×3+×5×12=36,故答案为:3616.如图,“赵爽弦图”由4个全等的直角三角形所围成,在Rt△ABC中,AC=b,BC=a,∠ACB=90°,若图中大正方形的面积为42,小正方形的面积为5,则(a+b)2的值为79 .【分析】根据图形表示出小正方形的边长为(b﹣a),再根据四个直角三角形的面积等于大正方形的面积减去小正方形的面积求出2ab,然后利用完全平方公式整理即可得解.【解答】解:由图可知,(b﹣a)2=5,4×ab=42﹣5=37,∴2ab=37,(a+b)2=(b﹣a)2+4ab=5+2×37=79.故答案为79.17.如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m 处,旗杆折断之前的高度是18m.【分析】根据勾股定理两个直角边的平方和等于斜边的平方.此题要求斜边和直角边的长度,解直角三角形即可.【解答】解:旗杆折断后,落地点与旗杆底部的距离为12m,旗杆离地面5m折断,且旗杆与地面是垂直的,所以折断的旗杆与地面形成了一个直角三角形.根据勾股定理,折断的旗杆为=13m,所以旗杆折断之前高度为13m+5m=18m.故答案为18m.18.一个直角三角形的两条直角边长为6和8,则它的斜边上的高是 4.8 .【分析】首先根据题意求出斜边的长,再根据三角形的面积公式即可求出斜边上的高.【解答】解:∵直角三角形的两直角边长为6和8,斜边长为:=10,三角形的面积=×6×8=24,设斜边上的高为x,则x•10=24,解得x=4.8.故答案为:4.8.19.如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是15 cm.【分析】根据题意,可以画出长方体的展开图,根据两点之间线段最短和勾股定理,可以解答本题.【解答】解:如右图所示,点A到B的最短路径是:cm,故答案为:15.20.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为57.5 尺.【分析】根据题意可知△ABF∽△ADE,根据相似三角形的性质可求AD,进一步得到井深.【解答】解:如图,依题意有△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=0.4:5,解得AD=62.5,∴BD=AD﹣AB=62.5﹣5=57.5(尺).故答案为57.5.三.解答题(共4小题)21.如图,C地到A,B两地分别有笔直的道路CA,CB相连,A地与B地之间有一条河流通过,A,B,C三地的距离如图所示.(1)如果A地在C地的正东方向,那么B地在C地的什么方向?(2)现计划把河水从河道AB段的点D引到C地,求C,D两点间的最短距离.【分析】(1)根据勾股定理得到逆定理得到△ABC是直角三角形,于是得到B地在C地的正北方向;(2)作CD⊥AB于D,则CD的长是C,D两地的最短距离,根据三角形的面积公式列方程即可得到结论.【解答】解:(1)∵BC2+AC2=62+82=102=AB2,∴△ABC是直角三角形,∴B地在C地的正北方向;(2)作CD⊥AB于D,则CD的长是C,D两地的最短距离,∵△ABC是直角三角形,∴S△ABC=AB•CD=AC•BC,∴C,D两点间的最短距离===4.8km,答:C,D两点间的最短距离是4.8km.22.某地区为了开发农业,决定在公路上相距25km的A、B两站之间E点修建一个土特产加工基地,使E点到C、D两村的距离相等,如图,DA⊥AB于点A,CB⊥AB于点B,DA =15km,CB=10km,求土特产加工基地E应建在距离A站多少km的地方?【分析】设AE=x千米,则BE=(25﹣x)千米,再根据勾股定理得出DA2+AE2=BE2+BC2,进而可得出结论.【解答】解:设AE=x千米,则BE=(25﹣x)千米,在Rt△DAE中,DA2+AE2=DE2,在Rt△EBC中,BE2+BC2=CE2,∵CE=DE,∴DA2+AE2=BE2+BC2,∴152+x2=102+(25﹣x)2,解得,x=10千米.答:基地应建在离A站10千米的地方.23.如图,一个放置在地面上的长方体,长为15cm,宽为10cm,高为20cm,点B与点C 的距离为5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?【分析】画出长方体的侧面展开图,根据勾股定理求出AB的长即可.【解答】解:如图所示,根据勾股定理得,AB==25cm.答:需要爬行的最短距离是25cm.24.学校要对如图所示的一块地ABCD进行绿化,已知AD=4米,CD=3米,AD⊥DC,AB=13米,BC=12米.(1)若连接AC,试证明:△ABC是直角三角形;(2)求这块地的面积.【分析】(1)连接AC ,先利用勾股定理求出AC ,再根据勾股定理的逆定理判定△ABC 是直角三角形,(2)根据△ABC 的面积减去△ACD 的面积就是所求的面积.【解答】解:(1)∵AD =4,CD =3,AD ⊥DC由勾股定理可得:AC ===5,又∵AC 2+BC 2=52+122=132=AB 2 ,∴△ABC 是直角三角形;﹣(2)△ABC 的面积﹣△ACD 的面积=×5×12﹣×3×4═24(m 2)所以这块地的面积是24平方米.1、老吾老以及人之老,幼吾幼以及人之幼。
北师大版数学八年级上册第1章勾股定理 检测卷 (含答案)
第1章检测卷勾股定理(时间:100分钟满分:120分)题号一二三总分得分一、选择题(每小题3分,共30分)1.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是 ( )A.∠A+∠B=∠CB.∠A:∠B:∠C=1:2:3C.a²=c²−b²D. a:b:c=3:4:62.下列各组数中,不能作直角三角形三边长的是 ( )A.3,4,5B.5,12,13C.7,24,25D.7,9,133.若直角三角形的三边长为6,8,m,则m²的值为 ( )A.10B.100C.25D.100 或284.如图,D为△ABC的边BC上一点,已知AB=13,AD=12,AC=15,BD=5,则BC的长为( )A.13B.14C.15D.165.将一根长为25 cm的筷子置于底面直径为5cm,高为12 cm的圆柱形水杯中,设筷子露在杯子外的长为h cm,则 h的取值范围是 ( )A.12≤h≤13B.11≤h≤12C.11≤h≤13D.10≤h≤126.如图,高速公路上有A,B两点相距10km,点 C,D 为两村庄,已知DA=4km,CB=6km. DA⊥AB于点A,CB ⊥AB于点B,现要在AB上建一个服务站E,使得C,D两村庄到E站的距离相等,则EA的长是( )A. 4kmB. 5kmC.6kmD.7 km7.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了步路(假设2步为1米),却踩伤了花草( )A.1B.2C.3D.48.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为 ( )A.0.7 米B.1.5米C.2.2 米D.2.4米9.在我国古代数学著作《九章算术》的第九章《勾股》中记载了这样的一个问题:“今天有开门去阔(kǔn)一尺,不合二寸,问门广几何?”意思是:如图,推开两扇门(AD 和BC),门边缘 D,C 两点到门槛AB的距离是1 尺(1尺=10寸),两扇门的间隙CD为2寸,那么门的宽度(两扇门的宽度和)AB为 ( )A.101 寸B.100寸C.52寸D.96寸10.如图,圆柱形容器高为18 cm,底面周长为24 cm,在杯内壁离杯底4 cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm 与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B 处的最短距离为( )A.13cmB.12 cmC.16 cmD.20cm二、填空题(每小题3分,共15 分)11.三个正方形如图摆放,其中两个正方形的面积分别为S₁=25,S₂=144,则第三个正方形的面积为S₃=.12.如图,∠C=90°,AB=12,BC=3,CD=4,AD=13,则∠ABD=.13.一直角三角形的两边长分别为4和5,明明以第三边为正方形的一边,画了个正方形,则明明画的这个正方形的面积等于 .14.如图,每个小正方形的边长都为1,则△ABC的三边长a,b,c的大小关系是 .(用“>”连接)15.如图为一个三级台阶,每一级台阶的长、宽、高分别是50cm,30cm,10cm,A 和B是这个台阶的两个相对的端点,A点上有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶面爬到 B 点,最短路线的长是 cm.三、解答题(本大题共8个小题,共75分)16.(8分)有一朵荷花,花朵高出水面1尺,一阵大风把它吹歪,使花朵刚好落在水面上,此时花朵离原位置的水平距离为3尺,此水池的水深有多少尺?17.(8分)如图所示的一块草坪,已知AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块草坪的面积.18.(8 分)如图,在长方形ABCD 中,AB=3cm,AD=9cm,,将此长方形折叠,使点 B 与点 D 重合,折痕为 EF,求△ABE的面积.19.(9 分)如图,在△ABC中,D 是BC 上一点,若AB=10,BD=6,AD=8,AC=17.(1)求 DC 的长;(2)求△ABC的面积.20.(9分)如图,长方体中AB=BB′=2,AD=3,,一只蚂蚁从A点出发,在长方体表面爬到C′点,求蚂蚁怎样走最短,最短路径是多少.21.(10分)如图,牧童在A 处放羊,其家在B 处,A,B 到河岸的距离分别为AC=400m,BD=200m,C,D间的距离为800 m,牧童从A处把羊牵到河边饮水后再回家,试问:羊在何处饮水所走路程最短?在图中画出最短路径并求出最短路径的长度是多少.22.(11 分)如图,在△ABC中,∠C=90°,AB=5cm,BC=3cm..若点 P 从点 A出发,以每秒2cm的速度沿A→C→B→A运动,设运动时间为ts(t⟩0).(1)当点P在AC上,且满足.PA=PB时,求t的值;(2)若点 P 恰好在∠BAC的平分线上,求t的值.23.(12分)勾股定理神秘而美妙,它的证法多样,其中的巧妙各有不同,其中的“面积法”给了小聪灵感,他惊喜地发现:当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明勾股定理.下面是小聪利用图1 证明勾股定理的过程.将两个全等的直角三角形按图1所示的方式摆放,其中∠DAB=90°.试说明:a²+b²=c².解:连接DB,过点D作DF⊥BC,,交 BC的延长线点于点 F,则DF=EC=b−a.因为S四边形ADCB =SACD+SABC=12b2+12ab,S四边形ADCB =SABD+SDCB=12c2+12a(b−a).所以12b2+12ab=12c2+12a(b−a).所以a²+b²=c².请参照上述方法,回答下面的问题.将两个全等的直角三角形按图2所示的方式摆放,其中∠DAB=90°.试说明:a²+b²=c².第1章检测卷勾股定理1. D2. D3. D4. B5. A6. C7. D8. C9. A 10. D 11.16912.90° 13.41或9 14. c>a>b 1 5.13016.解:设水深x尺,那么荷花径的长为(x+1)尺.由勾股定理得x²+3²=(x+1)².解得x=4.答:水池的水深有4 尺.17.解:如图,连接AC,则在Rt△ADC中,AC²=AD²+CD²=12²+9²=225,所以AC=15.在△ABC中,.AB²=1521.因为AC²+BC²=15²+36²=1521,所以AB²=AC²+BC².所以△ABC是直角三角形,∠ACB=90°.所以SABC −SAcD=12AC⋅BC−12AD⋅CD=12×15×36−12×12×9=270-54=216(m²).答:这块草坪的面积是216平方米.18.解:因为四边形ABCD 是长方形,所以∠A=90°.设BE=x cm.由折叠的性质可得DE=BE=x cm.所以AE=AD-DE=(9-x) cm.在Rt△ABE中,BE²=AE²+AB²,所以x²=(9−x)²+3².解得x=5.所以DE=BE=5cm,AE=4 cm.所以SABE =12AB⋅AE=12×3×4=6(cm2).19.解:(1)因为在△ABD中,.AB=10,BD=6,AD=8,所以AB²=100,BD²+AD²=36+64=100.所以AB²=BD²+AD².所以△ABD是直角三角形.所以AD⊥BC,即∠ADC=90°.在Rt△ADC中,AD=8,AC=17,由勾股定理得DC²=17²−8²=225,所以DC=15.(2)SABC =12AD⋅BC=12AD⋅(BD+DC)=84.20.解:①如图1,把长方体沿.A→A′→D′→C′→C→D→A剪开,则成长方形ACC'A',宽为AA′=BB′=2,长为AD+DC=AD+AB=5.连接AC',则点A,C,C'构成直角三角形,由勾股定理得AC′²= (AD+DC)²+DD′²=5²+2²=29.②如图2,把长方体沿. A→A ′→B ′→C ′→D ′→D→A 剪开,则成长方形ADC'B',宽为AD=3,长为 DD ′+D ′C ′=BB ′+AB =4.连接AC',则点A,D,C'构成直角三角形,由勾股定理得 AC ′²=AD²+(DD ′+D ′C ′)=3²+4²=25.因为25<29,所以最短路径是5.21.解:作点 B 关于 CD 的对称点 B',连接AB'交 CD 于点 P,连接PB,此时PA+PB 的值最小,最小值为AB'的长.过点 A 作AE⊥B'B 交B'B 的延长线于点 E.在 Rt△AED'中,因为AE=CD=800 m,B'E=AC +B'D =AC +BD=400+200=600(m),所以 AB ′²=AE²+B ′E²=800²+600².所以 AB ′=1000m.即最短路程的长度是1 000 m.22.解:(1)因为AB=5cm,BC =3cm,∠C=90°,所以由勾股定理得 AC²=AB²−BC²=5²−3²=16,所以 A C=4 cm.当PA=PB =2t cm 时,PC=(4-2t) cm.在 Rt△PCB 中,由勾股定理得 PC²+BC²=PB².即 (4−2t )²+3²=(2t )².解得 t =2516.所以PA=PB 时,t 的值为 2516.(2)当点 P 在∠BAC 的平分线上时,如图,过点 P 作 PE⊥AB 于点 E.此时BP=(7-2t) cm,PE=PC=(2t-4) cm,BE=5-4=1(cm),其中0<t<3.5.在 Rt△BEP 中,由勾股定理得 PE²+BE²=BP².即 (2t−4)²+1²=(7−2t )²,解得 t =83.当t=6时,点P 与点A 重合,也符合条件.所以点 P 恰好在∠BAC 的平分线上时,t 的值为 83或6.23.解:连接BD,过点B 作BF⊥DE,交DE 的延长线于点 F,易知BF=b-a.因为S CBED =S ABC +S ABD +S BDE =12ab +12c 2+ 12a (b−a ),S ACBED =S ACBE +S ADE =12b (a +b )+12ab,所以12ab +12c 2+12a (b−a )=12b (a +b )+12ab.所以 a²+b²=c².。
2019-2020学年北师大版八年级数学上册 第一章 勾股定理 单元测试题(有答案)
第一章勾股定理单元测试题一.选择题(共10小题,每小题3分,共30分)1.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果EF=4,AH=12,那么AB等于()A.30 B.25 C.20 D.152.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是()A.B.C.D.3.如图,在Rt△ABC中,∠ACB=90°,正方形AEDC,BCFG的面积分别为25和144,则AB的长度为()A.13 B.169 C.12 D.54.如图所示,正方形ABGF和正方形CDBE的面积分别是100和36,则以AD为直径的半圆的面积是()A.4πB.8πC.12πD.16π5.下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.1,2,3 B.4,6,8 C.6,8,10 D.13,14,156.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件中不能说明△ABC是直角三角形的是()A.a=32,b=42,c=52B.a=9,b=12,c=15C.∠A:∠B:∠C=5:2:3 D.∠C﹣∠B=∠A7.下列各组数据中,能做为直角三角形三边长的是()A.1、2、3 B.3、5、7 C.32、42、52D.5、12、138.下列各组数据中,不是勾股数的是()A.3,4,5 B.5,7,9 C.8,15,17 D.7,24,259.如图,学校有一块长方形草地,有极少数人为了避开拐角走“捷径”,在草地内走出了一条“路”,他们仅仅少走了()米路,却踩伤了花草.A.1 B.2 C.5 D.1210.如图所示,有一个高18cm,底面周长为24cm的圆柱形玻璃容器,在外侧距下底1cm 的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是()A.16cm B.18cm C.20cm D.24cm二.填空题(共8小题,每小题3分,共24分)11.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如下图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为.12.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C的面积和是9,则正方形D的边长.13.已知,点O为数轴原点,数轴上的A,B两点分别对应﹣3,3,以AB为底边作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为.=.14.如图,在△ABC中,BC=5,AC=12,AB=13,则S△ABC15.如图所示的网格是正方形网格,则∠PAB+∠PBA=°(点A,B,P是网格线交点).16.探索勾股数的规律:观察下列各组数:(3,4,5),(5,12,13),(7,24,25),(9,40,41)…,请写出第6个数组:.17.如图,一木杆在离地面1.5m处折断,木杆顶端落在离木杆底端2m处,则木杆折断之前的高为(m).18.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为dm.三.解答题(共7小题,共66分)19.如图是边长为1的正方形网格,下面是勾股定理的探索与验证过程,请补充完整:∵S1=,S2=,S3=,∴S1+S2=S3.即2+ 2=2.20.如图,在正方形网格中,每个小正方形的边长都是1,点A、B、C、D都在格点上.(1)线段AB的长是;(2)在图中画出一条线段EF,使EF的长为,并判断AB、CD、EF三条线段的长能否成为一个直角三角形三边的长?说明理由.21.如图,一块铁皮(图中阴影部分),测得AB=3,BC=4,CD=12,AD=13,∠B=90°.求阴影部分的面积.22.已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现 A=B2,求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:23.学校要对如图所示的一块地ABCD进行绿化,已知AD=4米,CD=3米,AD⊥DC,AB =13米,BC=12米.(1)若连接AC,试证明:△ABC是直角三角形;(2)求这块地的面积.24.小王与小林进行遥控赛车游戏,小王的赛车从点C出发,以4米秒的速度由西向东行驶,同时小林的赛车从点B出发,以3米秒的速度由南向北行驶(如图).已知赛车之间的距离小于或等于25米时,遥控信号会产生相互干扰,AC=40米,AB=30米.(1)出发3秒钟时,遥控信号是否会产生相互干扰?(2)出发几秒钟时,遥控信号将会产生相互干扰?25.如图,长方体的底面积为30cm2,长、宽、高的比为3:2:1,则:(1)这个长方体的长、宽、高分别是多少?(2)长方体的表面积和体积分别是多少?(3)若一只蚂蚁从顶点A沿长方体表面爬行到顶点B,直接写出从点A爬行到点B 的最短路程是cm.参考答案与试题解析一.选择题1.解:∵△ABH≌△BCG,∴BG=AH=12,∵四边形EFGH都是正方形,∴HG=EF=4,∴BH=16,∴在直角三角形AHB中,由勾股定理得到:AB===20.故选:C.2.解:“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示:故选:B.3.解:AB==13,故选:A.4.解:∵在Rt△ABD中,∠ADB=90°,AB2=100,BD2=36,∴AD2=100﹣36=64,∴AD=8,∴以AD为直径的半圆的面积是π(AD)2=πAD2=8π.故选:B.5.解:A、12+22=5≠32,故不能组成直角三角形,错误;B、42+62≠82,故不能组成直角三角形,错误;C、62+82=102,故能组成直角三角形,正确;D、132+142≠152,故不能组成直角三角形,错误.故选:C.6.解:A、∵92+162≠252,∴不能构成直角三角形,故选项正确;B、∵92+122=152,∴能构成直角三角形,故选项错误;C、∵∠A:∠B:∠C=5:2:3,∠A+∠B+∠C=180°,∴最大角∠A=90°,∴能构成直角三角形,故选项错误;D、∵∠C﹣∠B=∠A,∴∠C=∠B+∠A,∴最大角∠C=90°,∴能构成直角三角形,故选项错误.故选:A.7.解:A、12+22≠32,所以以1、2、3为边不能组成直角三角形,故本选项不符合题意;B、32+52≠72,所以以3、5、7为边不能组成直角三角形,故本选项不符合题意;C、(32)2+(42)2≠(52)2,所以以32、42、52为边不能组成直角三角形,故本选项不符合题意;D、52+122=132,所以以5、12、13为边能组成直角三角形,故本选项符合题意;故选:D.8.解:A、32+42=52,能构成直角三角形,是整数,故选项错误;B、52+72≠92,不能构成直角三角形,故选项正确;C、82+152=172,构成直角三角形,是正整数,故选项错误;D、72+242=252,能构成直角三角形,是整数,故选项错误.故选:B.9.解:由题意可得,直角三角形的斜边为:=5,则他们仅仅少走了3+4﹣5=2(米).故选:B.10.解:如图展开后连接SF,求出SF的长就是捕获苍蝇充饥的蜘蛛所走的最短路径,过S作SE⊥CD于E,则SE=BC=×24=12cm,EF=18﹣1﹣1=16cm,在Rt△FES中,由勾股定理得:SF===20(cm),答:捕获苍蝇充饥的蜘蛛所走的最短路径的长度是20cm.故选:C.二.填空题11.解:如图所示:∵(a+b)2=21,∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5,故答案为:512.解:根据勾股定理的几何意义得:SD =SA+SB+SC=9,可知,D的边长为=3.故答案为:3.13.解:∵△ABC为等腰三角形,OA=OB=3,∴OC⊥AB,在Rt△OBC中,OC===,∵以O为圆心,CO长为半径画弧交数轴于点M,∴OM=OC=,∴点M对应的数为±.故答案为:.14.解:由于AB2=BC2+AC2,∴△ABC是直角三角形,∴∠C=90°,=×12×5=30,∴S△ABC故答案为:3015.解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠PAB+∠PBA=45°,故答案为:45.16.解:∵①3=2×1+1,4=2×12+2×1,5=2×12+2×1+1;②5=2×2+1,12=2×22+2×2,13=2×22+2×2+1;③7=2×3+1,24=2×32+2×3,25=2×32+2×3+1;④9=2×4+1,40=2×42+2×4,41=2×42+2×4+1;⑤11=2×5+1,60=2×52+2×5,61=2×52+2×5+1,则⑥13=2×6+1,2×62+2×6=84,2×62+2×6+1=85,故答案为:13,84,85.17.解:∵一木杆在离地面1.5m处折断,木杆顶端落在离木杆底端2m处,∴折断的部分长为=2.5,∴折断前高度为2.5+1.5=4(m).故答案为:4.18.解:三级台阶平面展开图为长方形,长为20dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25(dm).故答案为:25.三.解答题19.解:∵S1=4,S2=9,S3=13,∴S1+S2=S3.即 AC2+BC2=AB2.故答案为:4,9,13,AC,BC,AB.20.解:(1)线段AB的长是:=;故答案为:;(2)如图所示:EF即为所求,AB、CD、EF三条线段的长能成为一个直角三角形三边的长理由:∵AB2=()2=5,DC2=8,EF2=13,∴AB2+DC2=EF2,∴AB、CD、EF三条线段的长能成为一个直角三角形三边的长.21.解:如图,连接AC.∵△ABC 中,∠B =90°,AB =3,BC =4,∴AC ==5.∵CD =12,AD =13,AC =5,∴AC 2+CD 2=AD 2,∴△ACD 是直角三角形,∴S 阴影=S △ACD ﹣S △ABC =×5×12﹣×3×4=30﹣6=24.22.解:A =(n 2﹣1)2+(2n )2=n 4﹣2n 2+1+4n 2=n 4+2n 2+1=(n 2+1)2, ∵A =B 2,B >0,∴B =n 2+1,当2n =8时,n =4,∴n 2+1=42+1=17;当n 2﹣1=35时,n 2+1=37.故答案为:17;3723.解:(1)∵AD =4,CD =3,AD ⊥DC由勾股定理可得:AC ===5,又∵AC 2+BC 2=52+122=132=AB 2 ,∴△ABC 是直角三角形;﹣(2)△ABC 的面积﹣△ACD 的面积=×5×12﹣×3×4═24(m 2) 所以这块地的面积是24平方米.24.解:(1)出发3秒钟时,CC1=12米,BB1=9米,∵AC=40米,AB=30米,∴AC1=28,AB1=21,∴B1C1==35>25,∴出发3秒钟时,遥控信号不会产生相互干扰;(2)设出发t秒钟时,遥控信号将会产生相互干扰,根据题意得,(40﹣4t)2+(30﹣3t)2=252,解得:t=5,t=15(不合题意舍去),答:出发5秒钟时,遥控信号将会产生相互干扰.25.解:(1)设长方体的高为xcm,则长为3xcm,宽为2xcm,由题意得3x•2x=30,解得x=,则3x=3,2x=2.答:这个长方体的长、宽、高分别是3cm、2cm、cm.(2)长方体的表面积为:(3×2+3×+2×)×2 =(30+15+10)×2=110(cm2),长方体的体积为:3×2×=30.答:长方体的表面积是110cm2,体积是30cm3;(3)展开前面上面由勾股定理得AB2=(2+)2+(3)2=90;所以最短路径的长为AB==3(cm).故答案为3.。
北师大版八年级数学上册第一章勾股定理测试题(含答案)
八年级上北师大版第一章勾股定理测试题(一)一、选择题(每小题3分,共30分)1. 下列各组中,不能构成直角三角形的是 ( ).(A )9,12,15 (B )12,16,20 (C )16,30,32 (D )9,40,412. 如图1,直角三角形ABC 的周长为24,且AB :BC=5:3,则AC= ( ).(A )6 (B )8 (C )10 (D )123. 已知:如图2,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中△ABE 的面积为( ). (A )9 (B )3 (C )49 (D )29 4. 如图3,在△ABC 中,AD ⊥BC 与D ,AB=17,BD=15,DC=6,则AC 的长为( ).(A )11 (B )10 (C )9 (D )85. 若三角形三边长为a 、b 、c ,且满足等式ab c b a 2)(22=-+,则此三角形是( ).(A )锐角三角形 (B )钝角三角形 (C )等腰直角三角形 (D )直角三角形6. 直角三角形两直角边分别为5、12,则这个直角三角形斜边上的高为 ( ).(A )6 (B )8.5 (C )1320 (D )1360 7. 高为3,底边长为8的等腰三角形腰长为 ( ).(A )3 (B )4 (C )5 (D )68. 一只蚂蚁沿直角三角形的边长爬行一周需2秒,如果将直角三角形的边长扩大1倍,那么这只蚂蚁再沿边长爬行一周需 ( ).(A )6秒 (B )5秒 (C )4秒 (D )3秒9. 我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图1所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 、b ,那么2)(b a + 的值为 ( ). (A )49 (B )25 (C )13 (D )110. 如图5所示,在长方形ABCD 中,E 、F 分别是AB 、BC 上的点,且BE=12,BF=16,则由点E 到F 的最短距离为 ( ).(A )20 (B )24 (C )28 (D )32二、填空题(每小题3分,共30分)11. 写出两组直角三角形的三边长.(要求都是勾股数)12. 如图6(1)、(2)中,(1)正方形A 的面积为.(2)斜边x=.13. 如图7,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于.14. 四根小木棒的长分别为5cm ,8cm ,12cm ,13cm ,任选三根组成三角形,其中有个直角三角形.15. 如图8,有一块直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 的长为.三、简答题(50分)16.(8分)如图9,AB=4,BC=3,CD=13,AD=12,∠B=90°,求四边形ABCD 的面积.17.(8分)如图10,方格纸上每个小正方形的面积为1个单位.(1)在方格纸上,以线段AB 为边画正方形并计算所画正方形的面积,解释你的计算方法.(2)你能在图上画出面积依次为5个单位、10个单位、13个单位的正方形吗?18.(8分)如图12,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶5000米.飞机每小时飞行多少千米?21.(8分)如图14,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米.(1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?一、选择题1.C2.B3.C4.B5.D6.D7.C8.C9.A 10.A二、填空题11.略 12.(1)36,(2)13 13. 2π 14. 1 15. 3三、简答题16. 在Rt △ABC 中,AC=54322=+. 又因为22213125=+,即222CD AC AD =+.所以∠DAC=90°.所以125214321⨯⨯+⨯⨯=+=∆∆ABC Rt ACD Rt ABCD S S S 四边形=6+30=36. 17.略18. 如图12,在Rt △ABC 中,根据勾股定理可知,BC=30004000500022=-(米).3000÷20=150米/秒=540千米/小时.所以飞机每小时飞行540千米.20. (1)10;(2)4条21. (1)7米;(2)不是.设滑动后梯子的底端到墙的距离为x米,得方程,2)422=x,解得x=15,所以梯子向后滑动了8米.-24(25-。
2020秋北师大版八年级数学上第一、二章检测题含答案
B A八年级数学上第一章《勾股定理》一、选择题1.在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( ) A .26 B .18 C .20 D .212.将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形( ) A . 可能是锐角三角形 B . 不可能是直角三角形 C . 仍然是直角三角形 D . 可能是钝角三角形3.△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,AB =8,BC =15,CA =17,则下列结论不正确的是( )A .△ABC 是直角三角形,且AC 为斜边B .△ABC 是直角三角形,且∠ABC =90° C .△ABC 的面积是60D .△ABC 是直角三角形,且∠A =60°4.等边三角形的边长为2,则该三角形的面积为( )A .4 3B . 3C .2 3D .3 5.已知a 、b 、c 是三角形的三边长,如果满足(a -6)2+|b -8|+c -10=0,则三角形的形状是( ) A .底与边不相等的等腰三角形 B .等边三角形 C .钝角三角形 D .直角三角形6.一艘轮船以16海里∕小时的速度从港口A 出发向东北方向航行,同时另一轮船以12海里∕小时从港口A 出发向东南方向航行,离开港口3小时后,则两船相距( ) A .36 海里 B .48 海里 C .60海里 D .84海里7.一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为( ) A .4 B .8 C .10 D .128.如图中字母A 所代表的正方形的面积为( ) A .4 B .8 C .16 D .649.一直角三角形的一条直角边长是7cm ,另一条直角边与斜边长的和是49cm ,则斜边的长( ) A .18cm B .20cm C .24cm D .25cm10.在△ABC 中,AB =12cm , BC =16cm , AC =20cm , 则△ABC 的面积是( ) A .96cm² B .120cm² C .160cm² D .200cm² 11.适合下列条件的△ABC 中, 直角三角形的个数为( )①a =13,b =14,c =15; ②a =6,∠A =45°; ③∠A =32°,∠B =58°;④a =7,b =24,c =25;⑤a =2,b =2,c =4.A .2个B .3个C .4个D .5个12.如图:有一圆柱,它的高等于8cm ,底面直径等于4cm(取π=3)在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面与A 相对的B 点处的食物,需要爬行的最短路程大约.( ) A .10cm B .12cmC .19mD .20cmA289 225(8题图)3220BA13.若△ABC 中,AB =13,AC =15,高AD =12,则BC 的长为( ) A .14 B .4 C .14或4 D .以上都不对 二.填空题14.木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面(填“合格”或“不合格”) ;15.将长为10米的梯子斜靠在墙上,若梯子的上端到墙的底端的距离为8米,则梯子的底端到墙的底端的距离为 ;16.等腰△ABC 的底边BC 为16,底边上的高AD 为6,则腰长AB 的长为 ; 17.如图,∠C =∠ABD =90°,AC =4,BC =3,BD =12,,则AD = ;18.如图,小红欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达B 点200m ,结果他在水中实际游了520m ,则该河流的宽度为 。
北师大版八年级上册数学第一章勾股定理测试卷(附答案)
13.在
中, ∠ , ∠ , ∠ 的对边分别是 、 、 ,若 2 + 2 = 25, 2 − 2 = 7 ,又 = 5 ,则
最大边上的高为________.
14.如图,H 是△ABC 内一点,BH⊥CH,AH=6,CH=3,BH=4,D、E、F、G 分别是 AB、AC、CH、BH 的 中点,则四边形 DEFG 的周长是________.
理由如下:连接 OD. ∵OA=OD ∴∠ODA=∠A 又∵∠BDE=∠A ∴∠ODA=∠BDE ∵AB 是⊙O 直径 ∴∠ADB=90° 即∠ODA+∠ODB=90° ∴∠BDE+∠ODB=90° ∴∠ODE=90° ∴OD⊥DE ∴DE 与⊙O 相切; (2)∵R=5, ∴AB=10, 在 Rt△ABC 中
BC 中,∠ABC=90°,以 AB 为直径的⊙O 与 AC 边交于点 D,过点 D 的直线交 BC 边于点 E, ∠BDE=∠A. (1)判断直线 DE 与⊙O 的位置关系,并说明理由. (2)若⊙O 的半径 R=5,tanA=34 , 求线段 CD 的长.
15.已知 △
,
延长线于 G,连接
= , ⊥ ,点 F 在 上,作 ⊥ , ∠ = 2∠ , = = 2 ,则
,直线 交 于 E,交 的长为________.
三、解答题(共 7 题;共 55 分)
16.如图,在△ABC 中,AD 是 BC 边上的高,tanC=
1 2
,AC=3
5 ,AB=4,求△ABC 的周长.
19.如图,一个梯子 AB 长 2.5 米,顶端 A 靠在墙 AC 上,这时梯子下端 B 与墙角 C 距离为 1.5 米,梯子滑动 后停在 DE 的位置上,测得 BD 长为 0.2 米,求梯子顶端 A 下落了多少米?
2022-2023学年北师大版八年级数学上册《第1章勾股定理》单元同步练习题(附答案)
2022-2023学年北师大版八年级数学上册《第1章勾股定理》单元同步练习题(附答案)一.选择题1.如图,一木杆在离地面4m的A处折断,木杆顶端落在离木杆底端3m的B处,则木杆折断之前的长度为()A.6m B.7m C.8m D.9m2.如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形.若图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是()A.4B.8C.12D.163.如图,△ABC中,AB=AC=5,BC=6,AD⊥BC,AC边上中线BE交AD于点O,则△BCE的面积为()A.8B.7C.6D.54.下列各组数中为勾股数的是()A.1,2,3B.2,3,4C.,,D.3,4,55.下列条件中,不能判定△ABC是直角三角形的是()A.∠A=∠B+∠C B.a:b:c=3:4:5C.a2=(b+c)(b﹣c)D.∠A:∠B:∠C=1:1:4二.填空题6.如图,四边形ABCD中,AB⊥BC,AB=4,BC=3,AD=12,CD=13,则四边形ABCD 的面积是.7.如图是“勾股树”的部分图,其中最大的正方形的边长为7cm,则正方形A,B,C,D 的面积之和为cm2.8.如图,Rt△ABC中,∠ACB=90°,以AC、BC为直径作半圆S1和S2,且S1+S2=2π,则AB的长为.9.如图,《九章算术》中有这样一道古题:今有一竖直着的木柱,在木柱的上端系有绳索,绳索从木柱的上端顺木柱下垂后堆在地面的部分有三尺(绳索比木柱长3尺),牵着绳索退行,在距木柱底部8尺(BC=8)处时而绳索用尽,则木柱长为尺.10.如图,在Rt△ABC中,∠A=90°,BD平分∠ABC交AC于点D,且AB=4,BD=5,则点D到BC的距离为.11.如图,BD是△ABC的角平分线,AB=15,BC=9,AC=12,则BD2的值为.12.如图,圆柱形容器高为22cm,底面周长为30cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm且与蜂蜜相对的点A处,为了吃蜂蜜,蚂蚁从外壁A处沿着最短路径爬到内壁B处,它爬行的最短距离是cm.13.相垂直的四边形叫做“垂美”四边形,如图,“垂美”四边形ABCD,对角线AC、BD 交于点O.若AD=3,BC=5,AB2+CD2=.14.如图所示,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=4,BC=9,则BD的长为.三.解答题15.疫情期间,老师出了一道题让学生交流,请你帮他们完成解答过程.如图,在△EFG中,EF=15,FG=14,EG=13,求△EFG的面积.16.在△ABC中,∠ACB=90°,AB=10,BC=6,点P从点A出发,以每秒2个单位长度的速度沿折线A﹣B﹣C运动.设点P的运动时间为t秒(t>0).(1)求斜边AB上的高;(2)①当点P在BC上时,PC=;(用含t的代数式表示)②若点P在∠BAC的角平分线上,求t的值.17.如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发,以每秒2cm的速度沿折线A→C→B→A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.18.如图,AD=4,CD=3,AB=13,BC=12,求△ABC的面积.19.有一块田地的形状和尺寸如图所示,求出它的面积是多少.20.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D 两村到E站的距离相等,则:(1)E站应建在距A站多少千米处?(2)DE和EC垂直吗?说明理由.参考答案一.选择题1.解:∵一棵垂直于地面的大树在离地面4m处折断,树的顶端落在离树杆底部3m处,∴折断的部分长为:=5,∴折断前高度为5+4=9(米).故选:D.2.解:由题意可得,小正方形的边长为3﹣1=2,∴小正方形的周长为2×4=8,故选:B.3.解:∵AB=AC=5,∴△ABC是等腰三角形,∵BC=6,AD⊥BC,∴CD=BC=3,∴AD=4,∴S△ABC==12,∵AC边上中线BE交AD于点O,∴S△BCE=S△ABC=6.故选:C.4.解:A、∵12+22≠32,∴不是勾股数,不符合题意;B、∵22+32≠42,∴不是勾股数,不符合题意;C、∵不是正整数,∴不是勾股数,不符合题意;D、∵32+42=52,∴是勾股数,符合题意.故选:D.5.解:A.∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,故本选项不符合题意;B.∵a:b:c=3:4:5,32+42=52,∴a2+b2=c2,∴△ABC是直角三角形,故本选项不符合题意;C.∵a2=(b+c)(b﹣c),∴a2+c2=b2,∴△ABC是直角三角形,故本选项不符合题意;D.∵∠A:∠B:∠C=1:1:4,∠A+∠B+∠C=180°∴最大角∠C=×180°=120°,∴△ABC不是直角三角形,故本选项符合题意;故选:D.二.填空题6.解:如图,连接AC,在△ABC中,AB⊥BC,AB=4,BC=3,∴AC=5.在△ADC中,AD=12,CD=13,AC=5.∵122+52=132,即AD2+AC2=CD2,∴△ADC是直角三角形,且∠DAC=90°,∴S四边形ABCD=S△ABC+S△ADC=AB•BC+AC•AD=×4×3+×5×12=6+30=36.故答案为:36.7.解:如图,∵所有的三角形都是直角三角形,所有的四边形都是正方形,∴正方形A的面积=a2,正方形B的面积=b2,正方形C的面积=c2,正方形D的面积=d2,又∵a2+b2=x2,c2+d2=y2,∴正方形A、B、C、D的面积和=(a2+b2)+(c2+d2)=x2+y2=72=49cm2.故答案为:49.8.解:由勾股定理得,AC2+BC2=AB2,∴=π(AC2+BC2)=2π,∴AC2+BC2=16,∴AB=4,故答案为:4.9.解:设木柱长为x尺,根据题意得:AB2+BC2=AC2,则x2+82=(x+3)2,解得:x=.答:木柱长为尺.故答案为:.10.解:过点D作DE⊥BC于E,在Rt△ABD中,AB=4,BD=5,则AD=3,∵BD平分∠ABC,∠A=90°,DE⊥BC,∴DE=AD=3,即点D到BC的距离为3,故答案为:3.11.解:∵AB=15,BC=9,AC=12,∴BC2+AC2=92+122=152=AB2,∴∠C =90°,过D 作DE ⊥AB 于E ,∵BD 是△ABC 的角平分线,∴DE =CD ,设DE =CD =x ,∵S △ABC =S △ABD +S △BCD ,∴AC •BC =AB •DE +BC •CD ,∴×12×9=×15x +×9x ,∴x =,∴CD =,∴BD 2=4405, 故答案为:4405.12.解:如图:将杯子侧面展开,作A 关于EF 的对称点A ′,则AF +BF 为蚂蚁从外壁A 处到内壁B 处的最短距离,即A ′B 的长度, ∵A ′B =25(cm ),∴蚂蚁从外壁A 处到内壁B 处的最短距离为25cm ,故答案为:25.13.解:∵BD⊥AC,∴∠COB=∠AOB=∠AOD=∠COD=90°,在Rt△COB和Rt△AOB中,根据勾股定理得,BO2+CO2=CB2,OD2+OA2=AD2,∴BO2+CO2+OD2+OA2=9+25,∵AB2=BO2+AO2,CD2=OC2+OD2,∴AB2+CD2=34.故答案为:34.14.解:∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DC=DE=4,∴BD=BC﹣CD=9﹣4=5.故答案为:5.三.解答题15.解:如图,过点E作EH⊥FG于点H,在Rt△EFH和Rt△EGH中,由勾股定理可得:EH2=EF2﹣FH2,EH2=EG2﹣GH2,∴EG2﹣GH2=EF2﹣FH2,设FH=x,则GH=14﹣x,∵EF=15,FG=14,EG=13,∴132﹣(14﹣x)2=152﹣x2,解得:x=9,∴EH=12,∴S△EFG=×FG•EH=×14×12=84,∴△EFG的面积为84.16.解:(1)在△ABC中,∠ACB=90°,AB=10,BC=6,∴AC=8,设边AB上的高为h,则,∴,∴.答:斜边AB上的高为.(2)①当点P在BC上时,点P的运动长度为AB+BP=2t,∴PC=AB+BC﹣(AB+BP)=10+6﹣2t=16﹣2t.故答案为:16﹣2t.②若点P在∠BAC的角平分线上时,过点P作PD⊥AB,如图:∵AP平分∠BAC,PC⊥AC,PD⊥AB,∴PD=PC.由①知:PC=16﹣2t,BP=2t﹣10,∴PD=16﹣2t,在Rt△ACP和Rt△ADP中,,∴Rt△ACP≌Rt△ADP(HL).∴AD=AC=8,又∵AB=10,∴BD=2.在Rt△BDP中,由勾股定理得:22+(16﹣2t)2=(2t﹣10)2,解得:.17.解:(1)连接PB,∵∠ACB=90°,AB=10cm,BC=6cm,∴AC=8(cm),∵CP2+BC2=PB2,∵P A=PB=2tcm,∴(8﹣2t)2+62=(2t)2,∴t=;(2)当点P在∠BAC的平分线上时,如图,过点P作PE⊥AB于点E,此时BP=(14﹣2t)cm,PE=PC=(2t﹣8)cm,BE=10﹣8=2(cm),在Rt△BEP中,PE2+BE2=BP2,即:(2t﹣8)2+22=(14﹣2t)2,解得:t=,当t=12时,点P与A重合,也符合条件,∴当t=或12时,点P恰好在∠BAC的平分线上.18.解:∵AD=4,CD=3,∠ADC=90°,∴AC=5,在△ABC中,AC=5,AB=13,BC=12,∵52+122=132,∴AC2+BC2=AB2,即△ABC为直角三角形,且∠ACB=90°,∴△ABC的面积=5×12÷2=30.19.解:连接AC,在Rt△ACD中,AC为斜边,已知AD=4,CD=3,则AC=5,∵AC2+BC2=AB2,∴△ABC为直角三角形,∴S四边形ABCD=S△ABC﹣S△ACD=AC•CB﹣AD•DC=24,答:该四边形面积为24.20.解:(1)∵使得C,D两村到E站的距离相等.∴DE=CE,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2=BE2+BC2,设AE=x,则BE=AB﹣AE=(25﹣x),∵DA=15km,CB=10km,∴x2+152=(25﹣x)2+102,解得:x=10,∴AE=10km.∴BE=15km.(2)DE和EC垂直,理由如下:在△DAE与△EBC中,,∴△DAE≌△EBC(SAS),∴∠DEA=∠ECB,∠ADE=∠CEB,∠DEA+∠D=90°,∴∠DEA+∠CEB=90°,∴∠DEC=90°,即DE⊥EC.。
最新2019-2020年度北师大版八年级数学上册《勾股定理》单元测试卷及解析-精品试题
《第1章勾股定理》一、选择题1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.2,3,4 B.3,4,5 C.6,8,10 D.5,12,132.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的()A.1倍B.2倍C.3倍D.4倍3.下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是()A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,64.在一个直角三角形中,若斜边的长是13,一条直角边的长为12,那么这个直角三角形的面积是()A.30 B.40 C.50 D.605.下列四组数:①5,12,13;②7,24,25;③3a,4a,5a(a>0);④32,42,52.其中可以构成直角三角形的边长有()A.1组B.2组C.3组D.4组6.三个正方形的面积如图,当B=144、C=169时,则A的值为()A.313 B.144 C.169 D.257.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,其中斜边上的高为()A.6cm B.8.5cm C.cm D.cm8.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm二、填空题:9.如图,直角三角形中未知边的长度x= .10.三角形的三边长分别是15,36,39,这个三角形是三角形.11.如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是米.12.如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是cm.三、解答题:13.有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线,已知门宽4尺,求竹竿高与门高.14.如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?15.如图,一架长2.5米的梯子,斜靠在竖直的墙上,这时梯子底端离墙0.7米,为了安装壁灯,梯子顶端离地面2米,请你计算一下,此时梯子底端应再向远离墙的方向拉多远?参考答案与试题解析一、选择题1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.2,3,4 B.3,4,5 C.6,8,10 D.5,12,13【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.【解答】解:A、∵22+32≠42,∴此三角形不是直角三角形,符合题意;B、∵32+42=52,∴此三角形是直角三角形,不合题意;C、62+82=102,∴此三角形是直角三角形,不合题意;D、52+122=132,∴此三角形是直角三角形,不合题意.故选:A.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的()A.1倍B.2倍C.3倍D.4倍【考点】勾股定理.【分析】利用相似三角形的对应边成比例,运用勾股定理就可以解决.【解答】解:设直角三角形的直角边为a、b,斜边为c,直角边扩大2倍后为2a,2b,那么据勾股定理得原来c2=a2+b2,现在的斜边.即斜边扩大到原来的2倍,故选B.【点评】本题考查了勾股定理和相似三角形的性质,关键是根据相似三角形的对应边成比例解答.3.下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是()A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,6【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理得到答案.【解答】解:因为32+42=25 52=25,所以32+42=52,所以能构成直角三角形的是C.故选C.【点评】本题考查了直角三角形的判定的运用.4.在一个直角三角形中,若斜边的长是13,一条直角边的长为12,那么这个直角三角形的面积是()A.30 B.40 C.50 D.60【考点】勾股定理.【分析】首先根据勾股定理,得另一条直角边的长,进而就可以求出直角三角形的面积.【解答】解:另一直角边长是:=5.则直角三角形的面积是×12×5=30.故选A.【点评】熟练运用勾股定理由直角三角形的两条边求出第三边;直角三角形的面积等于两条直角边的乘积的一半.5.下列四组数:①5,12,13;②7,24,25;③3a,4a,5a(a>0);④32,42,52.其中可以构成直角三角形的边长有()A.1组B.2组C.3组D.4组【考点】勾股定理的逆定理.【分析】求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:①52+122=132,能构成直角三角形;②72+242=252,能构成直角三角形,能构成直角三角形;③(3a)2+(4a)2=(5a)2,能构成直角三角形;④(32)2+(42)2≠(52)2,不能构成直角三角形.故可以构成直角三角形的边长有3组.故选C.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.6.三个正方形的面积如图,当B=144、C=169时,则A的值为()A.313 B.144 C.169 D.25【考点】勾股定理.【分析】根据a2+b2=c2,结合B=144、C=169,可求出a2的值,继而可得出A的值.【解答】解:由题意可得:a2+b2=c2,解得:a2=25,即A的值为25.故选D.【点评】此题考查了勾股定理的正方形的关键,关键是根据图形得出a2+b2=c2,题目出的很好,注意掌握勾股定理的表达式.7.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,其中斜边上的高为()A.6cm B.8.5cm C.cm D.cm【考点】勾股定理.【分析】根据勾股定理求出斜边AB的长,再根据直角三角形面积的两种不同求法列出关于CD的方程即可求解.【解答】解:∵在Rt△ABC中,AC=5cm,BC=12cm,∴AB===13cm;∴S△ABC=×5×12=30cm2;∴×13CD=30,解得CD=cm.故选C【点评】本题考查了勾股定理和三角形的面积公式,巧妙利用直角三角形两种面积求法是解题的关键.8.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在RT△DEB中利用勾股定理解决.【解答】解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DEDE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选B.【点评】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键,学会转化的思想去思考问题.二、填空题:9.如图,直角三角形中未知边的长度x= .【考点】勾股定理.【分析】根据勾股定理直接解答即可.【解答】解:根据勾股定理可得:52+32=x2,解得:x=或﹣(舍去).故答案为:.【点评】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.即如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.本题难度不大,注意细心运算即可.10.三角形的三边长分别是15,36,39,这个三角形是直角三角形.【考点】勾股定理的逆定理.【分析】根据勾股定理逆定理,三角形两短边的平方和等于长边的平方,即可得出其为直角三角形.【解答】解:∵152+362=392,∴可得三角形为直角三角形.【点评】熟练掌握勾股定理逆定理的应用.11.如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是12 米.【考点】勾股定理的应用.【专题】应用题.【分析】梯子和建筑物之间可构成直角三角形,梯子长为斜边,梯子的底端离建筑物的距离为一直角边,运用勾股定理可将另一直角边求出,即梯子可以到达建筑物的高度.【解答】解:∵直角三角形的斜边长为15m,一直角边长为9m,∴另一直角边长==12m,故梯子可到达建筑物的高度是12m.故答案为:12.【点评】本题的关键是建立数学模型,使实际问题转化为数学问题,进行求解.12.如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是10 cm.【考点】平面展开-最短路径问题.【分析】此题最直接的解法,就是将圆柱展开,然后利用两点之间线段最短解答.【解答】解:底面圆周长为2πr,底面半圆弧长为πr,即半圆弧长为:×2π×=6(cm),展开得:∵BC=8cm,AC=6cm,根据勾股定理得:AB==10(cm).故答案为:10.【点评】此题主要考查了立体图形的展开和两点之间线段最短,解题的关键是根据题意画出展开图,表示出各线段的长度.三、解答题:13.有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线,已知门宽4尺,求竹竿高与门高.【考点】勾股定理的应用.【专题】应用题.【分析】根据题中所给的条件可知,竹竿斜放就恰好等于门的对角线长,可与门的宽和高构成直角三角形,运用勾股定理可求出门高.【解答】解:设门高为x尺,则竹竿长为(x+1)尺,根据勾股定理可得:x2+42=(x+1)2,即x2+16=x2+2x+1,解得:x=7.5,故:门高7.5尺,竹竿高=7.5+1=8.5尺.【点评】本题考查勾股定理的运用,正确运用勾股定理,将数学思想运用到实际问题中是解答本题的关键,难度一般.14.如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?【考点】勾股定理的应用.【分析】设旗杆在离底部x米的位置断裂,在直角三角形中利用勾股定理即可得出关于x的一元二次方程,解方程求出x的值,此题得解.【解答】解:设旗杆在离底部x米的位置断裂,在给定图形上标上字母如图所示.∵AB=x,AB+AC=16,∴AC=16﹣x.在Rt△ABC中,AB=x,AC=16﹣x,BC=8,∴AC2=AB2+BC2,即(16﹣x)2=x2+82,解得:x=6.故旗杆在离底部8米的位置断裂.【点评】本题考查了勾股定理的应用,解题的关键是利用勾股定理得出关于x的一元二次方程.本题属于基础题,难度不大,解决该题型题目时,构建直角三角形,利用勾股定理表示出三边关系是关键.15.如图,一架长2.5米的梯子,斜靠在竖直的墙上,这时梯子底端离墙0.7米,为了安装壁灯,梯子顶端离地面2米,请你计算一下,此时梯子底端应再向远离墙的方向拉多远?【考点】勾股定理的应用.【专题】探究型.【分析】在Rt△DCE中利用勾股定理求出CE的长即可解答【解答】解:在Rt△DCE中,∵DE=AB=2.5m,CD=2m,∴CE===1.5m.∴BE=CE﹣BC=1.5﹣0.7=0.8m.答:梯子底端B应再向左拉0.8m.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.。
北师大版八年级上册数学第一章 勾股定理 同步测试卷(含答案)
北师大版八年级上册数学第一章勾股定理同步测试卷一、选择题(每题3分,共30分)1.把一个直角三角形的两直角边长同时扩大到原来的3倍,则斜边长扩大到原来的( )A.2倍B.3倍C.4倍D.5倍2.如图,▱ABCD的对角线AC,BD交于点O,AC⊥AB,AB=√5,且AC:BD=2:3,那么AC的长为()A. 2√5B. √5C. 3D. 43.下面四组线段能够组成直角三角形的是( )A.2,3,4B.3,4,5C.6,7,8D.7,8,94.如图,阴影部分是一个长方形,则长方形的面积是( )A.3 cm2B.4 cm2C.5 cm2D.6 cm25.满足下列条件的△ABC,不是直角三角形的为( )A.∠A=∠B-∠C B.∠A∶∠B∶∠C=1∶1∶2C.b2=a2-c2 D.a∶b∶c=2∶3∶46.如图,直线L上有三个正方形a,b,c,若a,c的面积分别为1和9,则b 的面积为()A.8B. 9C. 10D. 117.如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C 处捕食,则它爬行的最短距离是( )A .π+13B .23C .2432π+ D .213π+ 8.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1 m,当它把绳子的下端拉开5 m 后,发现下端刚好接触地面,则旗杆的高为 ( )A.8 mB.10 mC.12 mD.14 m9.已知直角三角形的斜边长为5 cm ,周长为12 cm ,则此三角形的面积是( )A .12 cm 2B .6 cm 2C .8 cm 2D .10 cm 210.如图:在△ABC 中,CE 平分∠ACB ,CF 平分∠ACD ,且EF ∥BC 交AC 于M ,若CM=5,则CE 2+CF 2等于( )A .75B .100C .120D .125二.填空题(共8小题,满分32分)11.已知△ABC 的三边长为a 、b 、c ,满足a+b=10,ab=18,c=8,则此三角 形为 三角形.12.在Rt△ABC中,已知两边长为5、12,则第三边的长为______ .13.如图所示,小明将一张长为20 cm,宽为15 cm的长方形纸剪去了一角,量得AB=3 cm,CD=4 cm,则剪去的直角三角形的斜边长为.c-b=0,14.已知a,b,c是△ABC的三边长,且满足关系式(a2-c2-b2)2+||则△ABC的形状为____________.15.如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为.16.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B 沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,CB′的长为______.17.如图所示,在一棵树上的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘A处,另一只猴子爬到树顶C后直接跃到A处,距离以直线计算,若两只猴子所经过的距离相等, 则这棵树高米.18.在一根长90 cm的灯管上缠满了彩色丝带,已知可近似地将灯管看成圆柱体,且底面周长为4 cm,彩色丝带均匀地缠绕了30圈(如图为灯管的部分示意图),则彩色丝带的总长度为__________.三、解答题19.(8分)如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=2,求△ABC 的面积.20.(10分)方格纸中小正方形的顶点叫格点.点A和点B是格点,位置如图.(1)在图1中确定格点C使△ABC为直角三角形,画出一个这样的△ABC;(2)在图2中确定格点D使△ABD为等腰三角形,画出一个这样的△ABD;(3)在图2中满足题(2)条件的格点D有个.21.如图所示,将一个长方形纸片ABCD沿对角线AC折叠.点B 落在E点,AE交DC 于F点,已知AB=8cm,BC=4cm.求折叠后重合部分的面积.22.如图,一根12 m的电线杆AB用铁丝AC,AD固定,现已知用去的铁丝AC=15 m,AD=13 m,又测得地面上B,C两点之间的距离是9 m,B,D两点之间的距离是5 m,则电线杆和地面是否垂直,为什么?23.(12分)为了绿化环境,我县某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要200元,问总共需投入多少元?24.(14分)阅读理解:我们知道在直角三角形中,有无数组勾股数,例如:5、12、13;9、40、41;…但其中也有一些特殊的勾股数,例如:3、4、5;是三个连续正整数组成的勾股数.解决问题:①在无数组勾股数中,是否存在三个连续偶数能组成勾股数?答:,若存在,试写出一组勾股数:.②在无数组勾股数中,是否还存在其它的三个连续正整数能组成勾股数?若存在,求出勾股数,若不存在,说明理由.③在无数组勾股数中,是否存在三个连续奇数能组成勾股数?若存在,求出勾股数,若不存在,说明理由.答案提示1.B2. D3.B4.C5.D6. C 7.C. 8.C 9.B 10.B.11.直角.12.13或√11913.20 cm14.等腰直角三角形15.8 516. 2或√1017.1518.150 cm 19.解:∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt △ADB 中,∵∠B+∠BAD=90°,∠B=45°,∴∠B=∠BAD=45°,∴BD=AD=2,在Rt △ADC 中,∵∠C=30°,∴AC=2AD=22,∴CD=()()622222=-,BC=BD+CD=2+6, ∴S △ABC =21×BC ×AD=21×(2+6)×2=1+3. 20.解:(1)(2)如图所示:(3)在图2中满足题(2)条件的格点D 有4个.故答案是:4.21. 解:∵四边形ABCD 是矩形,∴∠D =∠B =90∘,AD =BC ,∵将一个长方形纸片ABCD 沿对角线AC 折叠,∴BC =CE ,∠B =∠E ,∴AD =CE ,∠D =∠E ,在△EFC 和△DFA 中,{∠E =∠D∠EFC =∠DFA CE =AD,∴△EFC ≌△DFA ,∴DF =EF ,AF =CF ,设FC =x ,则DF =8−x ,在RT △ADF 中,DF 2+AD 2=AF 2,即(8−x)2+16=x 2,解得:x =5,即CF =5cm ,∴折叠后重合部分的面积=12CF ×AD =10cm 2.22.解:垂直.理由如下:因为AB =12 m ,AC =15 m ,BC =9 m ,所以AC 2=BC 2+AB 2.所以∠CBA =90°.又因为AD =13 m ,AB =12 m ,BD =5 m ,所以AD 2=BD 2+AB 2.所以∠ABD =90°,因此电线杆和地面垂直.23.解:(1)连接BD ,在Rt △ABD 中,BD 2=AB 2+AD 2=32+42=52,在△CBD 中,CD 2=132,BC 2=122,而122+52=132,即BC 2+BD 2=CD 2,∴∠DBC=90°,则S 四边形ABCD =S △BAD +S △DBC =21•AD •AB+21DB •BC=21×4×3+21×12×5=36; (2)所以需费用36×200=7200(元).24.解:①存在三个连续偶数能组成勾股数,如6,8,10,故答案为:存在;6,8,10;②答:不存在,理由是:假设在无数组勾股数中,还存在其它的三个连续正整数能组成勾股数,设这三个正整数为n﹣1,n,n+1,则(n﹣1)2+n2=(n+1)2,(5分)n 1=4,n2=0(舍),当n=4时,n﹣1=3,n+1=5,∴三个连续正整数仍然是3,4,5,∴不存在其它的三个连续正整数能组成勾股数;③答:不存在,理由是:在无数组勾股数中,存在三个连续奇数能组成勾股数,设这三个奇数分别为:2n﹣1,2n+1,2n+3(n>1的整数),(2n﹣1)2+(2n+1)2=(2n+3)2,n 1=27,n2=﹣21,∴不存在三个连续奇数能组成勾股数;。
2020年北师大版数学八年级上册第1章 勾股定理 单元测试题 (含答案)
第1章勾股定理单元测试卷一.选择题(共10小题)1.下列各组数①1,2,,②1,2,,③3,4,5,④5,12,13,其中能构成直角三角形的有A.1组B.2组C.3组D.4组2.下列长度的三条线段能组成直角三角形的是A.5,11,12B.5,12,13C.4,5,6D.,2,3.已知中,,,边上的高,则的长是A.21B.15C.6D.21或94.已知,,为的内角,,所对应的边,满足下列条件的三角形不是直角三角形的是A.,,B.C.D.5.如图,在中,,,,则斜边上的高的长是A.4.8B.5C.D.66.如图,以直角三角形的一条直角边和斜边为一边作正方形和,它们的面积分别为9平方厘米和25平方厘米,则直角三角形的面积为A.6平方厘米B.12平方厘米C.24平方厘米D.3平方厘米7.如图,用4个相同的直角三角形与一个小正方形拼成的大正方形,若图中直角三角形较短的直角边长是5,小正方形的边长是7,则大正方形的面积是A.121B.144C.169D.1968.如图,在的方格中,小正方形的边长是1,点、、都在格点上,则边上的高为A.B.C.D.9.如图,正方体的棱长为2,为一条棱的中点.已知蚂蚁沿正方体的表面从点出发,到达点,则它运动的最短路程为A.B.4C.D.510.如图,一个梯子斜靠在一竖直的墙上,测得米.若梯子的顶端沿墙面向下滑动2米,这时梯子的底端在水平的地面也恰好向外移动2米,则梯子的长度为A.10米B.6米C.7米D.8米二.填空题(共8小题)11.直角三角形一直角边的长是3,斜边长是5,则此直角三角形的面积为.12.如图一根竹子长为16米,折断后竹子顶端落在离竹子底端8米处,折断处离地面高度是米.13.如图,在四边形中,,,,则.14.一颗参天大树,树干周长为3米,地上有一根常青藤恰好绕了它5圈,藤尖离地面20米高.那么,这根常青藤至少有米.15.如图,已知直角中,是斜边上的高,,,则.16.如图,点,把线段分割成,和,若以,,为边的三角形是一个直角三角形,则称点,是线段的“勾股分割点”.已知点,是线段的“勾股分割点”,若,,则的长为.17.如图是一株美丽的勾股树,其作法为:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直边形为边,分别向外作两个正方形,计为②.依此类推若正方形①的面积为16,则正方形③的面积是.18.如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,,,将四个直角三角形中边长为3的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长(图中实线部分)是.三.解答题(共7小题)19.如图,在中,,,是延长线上一点,,.求证:.20.已知港口与灯塔之间相距20海里,一艘轮船从港口出发,沿方向以每小时4海里的速度航行,4小时到达处,测得两处相距12海里,若轮船沿原方向按原速度继续航行2小时到达小岛处,此时船与灯塔之间的距离为多少海里?21.在四边形中,,,,,.(1)说明;(2)求四边形的面积.22.如图,一架长的梯子斜靠在一竖直墙上,这时为.(1)求的长度;(2)如果梯子底端沿地面向外移动到达点,那么梯子顶端下移多少?23.如图,某地方政府决定在相距的两站之间的公路旁点,修建一个土特产加工基地,且、两村到点的距离相等,已知于,于,,,那么基地应建在离站多少千米的地方?24.如图1,一架云梯斜靠在一竖直的墙上,云梯的顶端距地面15米,梯子的长度比梯子底端离墙的距离大5米.(1)这个云梯的底端离墙多远?(2)如图2,如果梯子的顶端下滑了,那么梯子的底部在水平方向滑动了多少米?25.如图,将直角三角形分割成一个正方形和两对全等的直角三角形,直角三角形中,,,,,正方形中,(1)小明发明了求正方形边长的方法:由题意可得,因为,所以,解得(2)小亮也发现了另一种求正方形边长的方法:利用可以得到与、、的关系,请根据小亮的思路完成他的求解过程:(3)请结合小明和小亮得到的结论验证勾股定理.参考答案一.选择题(共10小题)1.下列各组数①1,2,,②1,2,,③3,4,5,④5,12,13,其中能构成直角三角形的有A.1组B.2组C.3组D.4组【解答】解:①,能构成直角三角形的三边长.②,能构成直角三角形的三边长.③,能构成直角三角形的三边长.④,能构成直角三角形的三边长.故其中能构成直角三角形的有4组.故选:.2.下列长度的三条线段能组成直角三角形的是A.5,11,12B.5,12,13C.4,5,6D.,2,【解答】解:、,不能组成直角三角形;、,能组成直角三角形;、,不能组成直角三角形;、,不能组成直角三角形.故选:.3.已知中,,,边上的高,则的长是A.21B.15C.6D.21或9【解答】解:如图所示,在中,,,;在中,,,,当在三角形的内部时,如图1,;当在三角形的外部时,如图2,.的长是21或9.故选:.4.已知,,为的内角,,所对应的边,满足下列条件的三角形不是直角三角形的是A.,,B.C.D.【解答】解:、,是直角三角形,不符合题意;、设,,,,是直角三角形,不符合题意;、,,不是直角三角形,符合题意;、,,,是直角三角形,不符合题意;故选:.5.如图,在中,,,,则斜边上的高的长是A.4.8B.5C.D.6【解答】解:,,,,,,解得:.故选:.6.如图,以直角三角形的一条直角边和斜边为一边作正方形和,它们的面积分别为9平方厘米和25平方厘米,则直角三角形的面积为A.6平方厘米B.12平方厘米C.24平方厘米D.3平方厘米【解答】解:根据勾股定理可得直角三角形的另一边长为:(厘米),可得这个直角三角形的面积为:(平方厘米).故选:.7.如图,用4个相同的直角三角形与一个小正方形拼成的大正方形,若图中直角三角形较短的直角边长是5,小正方形的边长是7,则大正方形的面积是A.121B.144C.169D.196【解答】解:直角三角形较短的直角边长是5,小正方形的边长是7,直角三角形的较长直角边,直角三角形斜边长,大正方形的边长是13,大正方形的面积是.故选:.8.如图,在的方格中,小正方形的边长是1,点、、都在格点上,则边上的高为A.B.C.D.【解答】解:的面积:,,设边上的高为,由题意得:,,故选:.9.如图,正方体的棱长为2,为一条棱的中点.已知蚂蚁沿正方体的表面从点出发,到达点,则它运动的最短路程为A.B.4C.D.5【解答】解:如图,它运动的最短路程,故选:.10.如图,一个梯子斜靠在一竖直的墙上,测得米.若梯子的顶端沿墙面向下滑动2米,这时梯子的底端在水平的地面也恰好向外移动2米,则梯子的长度为A.10米B.6米C.7米D.8米【解答】解:由题意得:米,米,米,设米,则米,由题意得:,解得:,(米,故选:.二.填空题(共8小题)11.直角三角形一直角边的长是3,斜边长是5,则此直角三角形的面积为6.【解答】解:直角三角形一直角边的长是3,斜边长是5,另一条直角边为,此直角三角形的面积为:,故答案为:6.12.如图一根竹子长为16米,折断后竹子顶端落在离竹子底端8米处,折断处离地面高度是6米.【解答】解:设竹子折断处离地面米,则斜边为米,根据勾股定理得:解得:.折断处离地面高度是6米,故答案为:6.13.如图,在四边形中,,,,则.【解答】解:在中,,,则由勾股定理得到:.在中,,,由勾股定理得到:.所以.故答案为:.14.一颗参天大树,树干周长为3米,地上有一根常青藤恰好绕了它5圈,藤尖离地面20米高.那么,这根常青藤至少有25米.【解答】解:根据题意得,这根常青藤至少有(米,故答案为:25米.15.如图,已知直角中,是斜边上的高,,,则 2.4.【解答】解:在中,,,,.故答案为:2.4.16.如图,点,把线段分割成,和,若以,,为边的三角形是一个直角三角形,则称点,是线段的“勾股分割点”.已知点,是线段的“勾股分割点”,若,,则的长为或.【解答】解:当是斜边时,,,,当为斜边时,,,,故答案为:或.17.如图是一株美丽的勾股树,其作法为:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直边形为边,分别向外作两个正方形,计为②.依此类推若正方形①的面积为16,则正方形③的面积是4.【解答】解:第①个正方形的面积为16,第②个正方形的面积为8,第③个正方形的面积为4,故答案为:4.18.如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,,,将四个直角三角形中边长为3的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长(图中实线部分)是.【解答】解:依题意,设“数学风车”中的四个直角三角形的斜边长为,则所以所以风车的外围周长为.故答案为.三.解答题(共7小题)19.如图,在中,,,是延长线上一点,,.求证:.【解答】证明:,,,又,,,是直角三角形,且,.20.已知港口与灯塔之间相距20海里,一艘轮船从港口出发,沿方向以每小时4海里的速度航行,4小时到达处,测得两处相距12海里,若轮船沿原方向按原速度继续航行2小时到达小岛处,此时船与灯塔之间的距离为多少海里?【解答】解:在中,,,,,是直角三角形.是直角三角形,在中,,,.答:船与灯塔之间的距离为海里.21.在四边形中,,,,,.(1)说明;(2)求四边形的面积.【解答】解:(1)在中,由勾股定理得:,在中,,,,是直角三角形,.(2)四边形的面积.22.如图,一架长的梯子斜靠在一竖直墙上,这时为.(1)求的长度;(2)如果梯子底端沿地面向外移动到达点,那么梯子顶端下移多少?【解答】解:(1)在中,;(2)设梯子的端下滑到,如图,,在中,,梯子顶端下移.23.如图,某地方政府决定在相距的两站之间的公路旁点,修建一个土特产加工基地,且、两村到点的距离相等,已知于,于,,,那么基地应建在离站多少千米的地方?【解答】解:设,则解得答:基地应建在离站的地方.24.如图1,一架云梯斜靠在一竖直的墙上,云梯的顶端距地面15米,梯子的长度比梯子底端离墙的距离大5米.(1)这个云梯的底端离墙多远?(2)如图2,如果梯子的顶端下滑了,那么梯子的底部在水平方向滑动了多少米?【解答】解:(1)根据题意可得米,米,由勾股定理,可得:解得:,答:这个云梯的底端离墙20米远;(2)由(1)可得:米,根据题意可得:米,米,由勾股定理,可得:,米,答:梯子的底部在水平方向滑动了4米.25.如图,将直角三角形分割成一个正方形和两对全等的直角三角形,直角三角形中,,,,,正方形中,(1)小明发明了求正方形边长的方法:由题意可得,因为,所以,解得(2)小亮也发现了另一种求正方形边长的方法:利用可以得到与、、的关系,请根据小亮的思路完成他的求解过程:(3)请结合小明和小亮得到的结论验证勾股定理.【解答】解:(2)因为所以.答:与、、的关系为.(3)根据(1)和(2)得:.即化简得.1、学而不思则罔,思而不学则殆。
2020年秋北师大版八年级数学上册第一章勾股定理单元测试卷
2020年秋北师大版八年级数学上册第一章勾股定理单元测试卷解析版一、单选题(共10题;共20分)1.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,下列条件中不能说明△ABC 是直角三角形的是( )A. a =32 , b =42 , c =52B. a =9,b =12,c =15C. ∠A :∠B :∠C =5:2:3D. ∠C ﹣∠B =∠A2.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,CD ⊥AB 于D ,则CD 的长是( )A. 5B. 7C. 125D. 2453.如图,已知正方形B 的面积为144,正方形C 的面积为169,那么正方形A 的面积为( )A. 313B. 144C. 169D. 254.如图,一竖直的木杆在离地面4米处折断,木杆顶端落在地面离木杆底端3米处,木杆折断之前的高度为( ).A. 7米B. 8米C. 9米D. 12米5.为了迎接新年的到来,同学们做了许多拉花布置教室,准备举办新年晚会,大林搬来一架高为2.5米的木梯,准备把拉花挂到2.4米的墙上,开始梯脚与墙角的距离为1.5米,但高度不够.要想正好挂好拉花,梯脚应向前移动(人的高度忽略不计)( )A. 0.7米B. 0.8米C. 0.9米D. 1.0米6.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,AE 平分∠BAC ,ED ⊥AB ,则ED 的长( )A. 3B. 4C. 5D. 67.如图,△ABC 的顶点A,B,C 在边长为1的正方形网格的格点上,BD ⊥AC 于点D,则BD 的长为 ( )A. 165B. 45C. 85D. 2458.在△ABC 中,AB =13 cm ,AC =20 cm ,BC 边上的高为12 cm ,则△ABC 的面积是( )A. 126cm 2 或66cm 2B. 66cm 2C. 120cm 2D. 126cm 29.如图,在△ABC 中,AC=BC ,∠ACB=90°,点D 在BC 上,BD=6,DC=2,点P 是AB 上的动点,则PC+PD 的最小值为( )A. 8B. 10C. 12D. 1410.在矩形纸片ABCD 中,AB=6,AD=10.如图所示,折叠纸片,使点A 落在BC 边上的A ′处,折痕为PQ . 当点A ′在BC 边上移动时,折痕的端点P 、Q 也随之移动.若限定点P 、Q 分别在AB 、AD 边上移动,则点A ′在BC 边上可移动的最大距离为( )A. 8cmB. 6cmC. 4cmD. 2cm二、填空题(共8题;共24分)11.图中阴影部分是一个正方形,则此正方形的面积为________cm 2.12.如图,圆柱的底面半径为24,高为7π,蚂蚁在圆柱侧面爬行,从点A爬到点B的最短路程是________.13.如图,将一张矩形纸片对折两次,然后剪下一个角,将剪下的部分展开,得到一个四边形根据图中所给数据,剪下部分展开得到的四边形的面积为________.14.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为6cm,则正方形A,B,C,D的面积之和为________cm2。
2023-2024学年八年级数学上册《第一章 勾股定理的应用》同步练习题附带答案-北师大版
2023-2024学年八年级数学上册《第一章勾股定理的应用》同步练习题附带答案-北师大版学校:___________班级:___________姓名:___________考号:___________一、选择题1.梯子的底端离建筑物6米,10米长的梯子可以到达建筑物的高度是()A.6米B.7米C.8米D.9米2.一个长方形抽屉长3cm,宽4cm,贴抽屉底面放一根木棒,那么这根木棒最长(不计木棒粗细)可以是()A.4cm B.5cm C.6cm D.7cm3.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m4.《九章算术》是我国古代数学的经典著作,书中有一个“折竹抵地”问题:“今有竹高丈,末折抵地,问折者高几何?”意思是:一根竹子,原来高一丈(一丈为十尺),虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子根部三尺远,问:原处还有多高的竹子?()A.4尺B.4.55尺C.5尺D.5.55尺5.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果大正方形的面积41,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为()A.25 B.41 C.62 D.816.如图,斜坡BC的长度为4米.为了安全,决定降低坡度,将点C沿水平距离向外移动4米到点A,使得斜坡AB的长度为4√3米,则原来斜坡的水平距离CD的长度是()米.A.2 B.4 C.2√3D.67.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A处出发先往东走8km,又往北走2km,遇到障碍后又往西走3km,再向北走到6km处往东拐,仅走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.20km B.14km C.11km D.10km8.如图,OP=1,过点P作PP1⊥OP且PP1=1,得OP1=√2;再过点P,作P1P2⊥OP1且P1P2=1,得OP2=√3;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2…依此法继续作下去,得OP2021=()A.√2023B.√2022C.√2021D.√2020二、填空题9.一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方向航行,经过1.5小时后,它们相距海里.10.如图是某路口处草坪的一角,当行走路线是A→C→B时,有人为了抄近道而避开路的拐角∠ACB(∠ACB=90°),于是在草坪内走出了一条不该有的捷径路AB.某学习实践小组通过测量可知,AC的长约为6米,BC的长约为8米,为了提醒居民爱护草坪,他们想在A,B处设立“踏破青白可惜,多行数步无妨”的提示牌.则提示牌上的“多行数步”是指多行米.11.在平静的湖面上,有一朵荷花高出水面半尺,忽然一阵强风吹来把荷花垂直拉到水里且荷花恰好落在水面.花在水平方向上离开原来的位置2尺远,则这个湖的水深是尺.12.如图,一个长方体铁盒的长,宽,高分别是8 cm,6 cm,24 cm,-根长28 cm的木棒完全装进这个盒子里.(填“能”或“不能”)13.如图,山坡上,树甲从点A处折断,其树顶恰好落在另一棵树乙的根部C处,已知AB=4m,BC =10m,已知两棵树的水平距离为6m,则树甲原来高.三、解答题14.如图,小旭放风筝时,风筝挂在了树上,他先拉住风筝线,垂直于地面,发现风筝线多出1米;把风筝线沿直线BC向后拉5米,风筝线末端刚好接触地面,求风筝距离地面的高度AB.15.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度(滑轮上方的部分忽略不计).16.某地一楼房发生火灾,消防队员决定用消防车上的云梯救人如图(1).如图(2),已知云梯最多只能伸长到15m(即AB=CD=15m),消防车高3m,救人时云梯伸长至最长,在完成从12m(即BE=12m)高的B处救人后,还要从15m(即DE=15m)高的D处救人,这时消防车从A处向着火的楼房靠近的距离AC为多少米?(延长AC交DE于点O,AO⊥DE点B在DE上,OE的长即为消防车的高3m)17.如图,在笔直的公路AB旁有一座山,为方便运输货物现要从公路AB上的D处开凿隧道修通一条公路到C处,已知点C与公路上的停靠站A的距离为15km,与公路上另一停靠站B的距离为20km,停靠站A、B之间的距离为25km,且CD⊥AB.(1)求修建的公路CD的长;(2)若公路CD修通后,一辆货车从C处经过D点到B处的路程是多少?18.台风是一种自然灾害,它在以台风中心为圆心,一定长度为半径的圆形区域内形成极端气候,有极强的破坏力.如图,监测中心监测到一台风中心沿监测点B与监测点A所在的直线由东向西移动,已知点C为一海港,且点C与A,B两点的距离分别为300km、400km,且∠ACB=90°,过点C作CE⊥AB于点E,以台风中心为圆心,半径为260km的圆形区域内为受影响区域,台风的速度为25km/h.(1)求监测点A与监测点B之间的距离;(2)请判断海港C是否会受此次台风的影响,若受影响,则台风影响该海港多长时间?若不受影响,请说明理由.参考答案1.C2.B3.C4.B5.D6.A7.D8.B9.3010.411.3.7512.不能13.(4+6√5)m14.解:设AB=x米,则AC=(x+1)米由图可得,∠ABC=90°,BC=5米在Rt△ABC中AB2+BC2=AC2即x2+52=(x+1)2解得x=12答:风筝距离地面的高度AB为12米.15.解:如图设旗杆高度为x米,则AC=AD=x(m),AB=(x−2)(m)而BC=8m 在Rt△ABC中AB2+BC2=AC2,即(x−2)2+82=x2解得:x=17(m)即旗杆的高度为17m.16.解:在 Rt △ABO 中∵∠AOB =90° AB =15m ,OB =12−3=9 (m ) ∴AO =√AB 2−OB 2=√152−92=12 (m )在 Rt △COD 中∵∠COD =90°,CD =15m ,OD =15−3=12 (m ) ∴OC =√CD 2−OD 2=√152−122=9 (m )∴AC =OA −OC =3 (m )答:消防车从原处向着火的楼房靠近的距离 AC 为 3m .17.(1)解:∵AC=15km ,BC=20km ,AB=25km152+202=252∴△ACB 是直角三角形,∠ACB=90°∵12AC ×BC=12AB ×CD∴CD=AC ×BC ÷AB=12(km ).故修建的公路CD 的长是12km ;(2)解:在Rt △BDC 中,BD= √BC 2−CD 2=16(km )一辆货车从C 处经过D 点到B 处的路程=CD+BD=12+16=28(km ). 故一辆货车从C 处经过D 点到B 处的路程是28km .18.(1)解:在RtΔABC 中,AC =300km ,BC =400km ∴AB =√AC 2+BC 2=√3002+4002=500(km )答:监测点A 与监测点B 之间的距离为500km ;(2)解:海港C 受台风影响理由:∵∠ACB =90°,CE ⊥AB∴S ΔABC =12AC ⋅BC =12CE ⋅AB ∴300×400=500CE∴CE =240km∵以台风中心为圆心周围260km 以内为受影响区域∴海港C 会受到此次台风的影响以C 为圆心,260km 长为半径画弧,交AB 于D ,F则DE =EF =260km 时,正好影响C 港口在RtΔCDE 中∵ED =√CD 2−CE 2=√2602−2402=100(km )∴DF =200km∵台风的速度为25千米/小时∴200÷25=8(小时).答:台风影响该海港持续的时间为8小时.。
北师大版八年级数学上册第一章《勾股定理》测试卷(含答案)
北师大版八年级数学上册第一章《勾股定理》测试卷(含答案)一、选择题(共8 小题,4*8=32)1. 在直角三角形中,若勾为3,股为4,则弦为( )A .5B .6C .7D .82. 在ΔABC 中,∠A,∠B,∠C 的对边分别是a,b,c,若∠A+∠C =90°,则下列等式中成立的是( )A .a2+b2 =2c2B .b2+c2 =a2C .a2+c2 =b2D .c2-a2 =b23. 若ΔABC 的三边a ,b,c 满足(a-b)2+|a2+b2-c2 | =0,则ΔABC 是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形4. 如图,在某次海上编队演习中,两艘航母护卫舰从同一港口O 同时出发,一号舰沿南偏西30°方向以12 海里/小时的速度航行,二号舰以16 海里/小时的速度航行,离开港口 1.5 小时后它们分别到达相距30 海里的A ,B 两点,则二号舰航行的方向是( )A .南偏东30°B .北偏东30°C .南偏东60°D .南偏西60°5. 一架250cm 的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm,如果梯子顶端沿墙下滑40cm,那么梯足将向外滑动( )A. 150cmB. 90cmC. 80cmD. 40cm6. 如图,长为12 cm 的橡皮筋放置在直线l 上,固定两端A 和B ,把中点C 竖直向上拉升4.5 cm 至点D 处,则拉长后橡皮筋的长为( )A .20 cmB .18 cmC .16 cmD .15 cm67. 如图所示,圆柱高8 cm,底面圆的半径为π cm,一只蚂蚁从点A 爬到点B 处吃蜂蜜,则要爬行的最短路程是( )A .20 cmB .10 cmC .14 cmD .无法确定8. 有下面的判断:①△ABC 中,a2+b2≠c2 ,则ΔABC 不是直角三角形。
北师大版八年级数学上册 第1章 勾股定理 章节测试卷 (含解析)
第1章《勾股定理》章节测试卷一.选择题(共10小题,满分30分,每小题3分)1.在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.古希腊哲学家柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17…若此类勾股数的勾为2m(m≥3,m为正整数),则其弦(结果用含m的式子表示)是( )A.4m2−1B.4m2+1C.m2−1D.m2+12.如图,五个正方形放在直线MN上,正方形A、C、E的面积依次为3、5、4,则正方形B、D 的面积之和为()A.11B.14C.17D.203.观察下列各方格图中阴影部分所示的图形(每个方格的边长为1),如果将它们沿方格边线或对角线剪开后无缝拼接,不能拼成正方形的是()A.B.C.D.4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )A.2.2米B.2.3米C.2.4米D.2.5米5.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,AD为∠BAC的平分线,将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,则DE的长为()A.2B.52C.5D.2546.如图,三角形纸片ABC中,点D是BC边上一点,连接AD,把△ABD沿着直线AD翻折,得到△AED,DE交AC于点G,连接BE交AD于点F.若DG=EG,AF=4,AB=5,△AEG的面积为92,则BD2的值为()A.13B.12C.11D.107.图中不能证明勾股定理的是()A. B.C.D.8.如图,将有一边重合的两张直角三角形纸片放在数轴上,纸片上的点A表示的数是-2,AC=BC=BD=1,若以点A为圆心,AD的长为半径画弧,与数轴交于点E(点E位于点A右侧),则点E表示的数为()A.3B.−2+3C.−1+3D.−39.如图,一个底面周长为24cm,高为5cm的圆柱体,一只蚂蚁沿侧表面从点A到点B所经过的最短路线长为()A.12cm B.13cm C.25cm D.26cm10.勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带.数学家欧几里得利用下图验证了勾股定理.以直角三角形ABC的三条边为边长向外作正方形ACHI,正方形ABED,正方形BCGF,连接BI,CD,过点C作CJ⊥DE于点J,交AB于点K.设正方形ACHI 的面积为S1,正方形BCGF的面积为S2,矩形AKJD的面积为S3,矩形KJEB的面积为S4,下列结论中:①BI⊥CD;②S1∶S△ACD=2∶1;③S1-S4=S3-S2;④S1S4=S3S2,正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)11.小明将4个全等的直角三角形拼成如图所示的五边形,添加适当的辅助线后,用等面积法建立等式证明勾股定理.小明在证题中用两种方法表示五边形的面积,分别是S1= ,S2= .12.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离 km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使CD=13,则AD 的长为 km.13.如图,图1是第七届国际数学教育大会(ICME−7)会徽图案、它是由一串有公共顶点O的直角三角形(如图2)演化而成的.如果图2中的OA1=A1A2=A2A3=⋅⋅⋅=A7A8=1,若S1代表△A1OA2的面积,S2代表△A2OA3的面积,以此类推,则S10的值为.14.把由5个小正方形组成的十字形纸板(如图1)剪开,以下剪法中能够将剪成的若干块拼成一个大正方形的有(填写序号).15.如图,在△ABC中,∠C=90°,BC=16cm,AC=12cm,点E是BC的中点,动点P从A 点出发以每秒1cm的速度沿A→C→B运动,设点P运动的时间是t秒,那么当t=,△APE的面积等于12.16.已知△ABC中,AC=8,AB=41,BC边上的高AG=5,D为线段AC上的动点,在BC上截取CE=AD,连接AE,BD,则AE+BD的最小值为.三.解答题(共7小题,满分52分)17.(6分)如图,在△ABC中,AD为BC边上的中线,AB=3,AC=5,AD=2,求证:AD⊥AB.18.(6分)如图,∠AOB=90°,OA=8m,OB=3m,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的路程与机器人行走的路程相等,那么机器人行走的路程BC是多少?19.(8分)以3,4,5为边长的三角形是直角三角形,称3,4,5为勾股数组,记为(3,4,5),类似地,还可得到下列勾股数组:(5,12,13),(7,24,25)等.(1)根据上述三组勾股数的规律,写出第四组勾股数组;(2)用含n(n为正整数)的数学等式描述上述勾股数组的规律,并证明.20.(8分)现有一个长、宽、高分别为5dm、4dm、3dm的无盖长方体木箱(如图,AB=5dm,BC=4dm,AE=3dm).(1) 求线段BG的长;(2) 现在箱外的点A处有一只蜘蛛,箱内的点C处有一只小虫正在午睡,保持不动.请你为蜘蛛设计一种捕虫方案,使得蜘蛛能以最短的路程捕捉到小虫.(木板的厚度忽略不计)21.(8分)如图,在△ABC中,∠ACB=90°,AC=6,BC=8.(1)如图(1),把△ABC沿直线DE折叠,使点A与点B重合,求BE的长;(2)如图(2),把△ABC沿直线AF折叠,使点C落在AB边上G点处,请直接写出BF的长.22.(8分)如图1,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形如图2.(1)你能在3×3方格图(图3)中,连接四个格点(网格线的交点)组成面积为5的正方形吗?若能,请用虚线画出.(2)你能把十个小正方形组成的图形纸(图4),剪开并拼成正方形吗?若能,请仿照图2的形式把它重新拼成一个正方形.(3)如图,是由两个边长不等的正方形纸片组成的一个图形,要将其剪拼成一个既不重叠也无空隙的大正方形,则剪出的块数最少为________块.请你在图中画出裁剪线,并说明拼接方法.23.(8分)公元3世纪初,我国学家赵爽证明勾定理的图形称为“弦图”.1876年美国总统Garfeild用图1(点C、点B、点C′三点共线)进行了勾股定理的证明.△ACB与△BC′B′是一样的直角三角板,两直角边长为a,b,斜边是c.请用此图1证明勾股定理.拓展应用l:如图2,以△ABC的边AB和边AC为边长分别向外作正方形ABFH和正方形ACED,过点F、E分别作BC的垂线段FM、EN,则FM、EN、BC的数量关系是怎样?直接写出结论 .拓展应用2:如图3,在两平行线m、n之间有一正方形ABCD,已知点A和点C分别在直线m、n 上,过点D作直线l∥n∥m,已知l、n之间距离为1,l、m之间距离为2.则正方形的面积是 .答案解析一.选择题1.D【分析】根据题意得2m为偶数,设其股是a,则弦为a+2,根据勾股定理列方程即可得到结论.【详解】解:∵m为正整数,∴2m为偶数,设其股是a,则弦为a+2,根据勾股定理得,(2m)2+a2=(a+2)2,解得a=m2−1,∴弦是a+2=m2−1+2=m2+1,故选:D.2.C【分析】如图:由题意可得∠ABC=∠ACE=∠CDE=90°,S=AB2=3,S C=DE2=5,S B=AC2,AAC=CE,再根据全等三角形和勾股定理可得S B=S C+S A=5+3=8,同理可得S D=S C+ S E=5+4=9,最后求正方形B、D的面积之和即可.【详解】解:如图:由题意可得:∠ABC=∠ACE=∠CDE=90°,S=AB2=3,S C=DE2=5,S B=AC2,AC=CEA∴∠BAC+∠ACB=90°,∠DCE+∠ACB=90°,∴∠BAC=∠DCE,∴△ABC≅△CDE,∴DE=BC,∵∠ABC=90°,∴AC2=BC2+AB2,∴AC2=DE2+AB2,即S B=S C+S A=5+3=8,同理:S=S C+S E=5+4=9;D∴S+S B=8+9=17.D故选C.3.C【分析】根据网格的特点分别计算阴影部分的面积即可求得拼接后的正方形的边长,根据网格的特点能否找到构成边长的格点即可求解.【详解】解:A. 阴影部分面积为4,则正方形的边长为2,故能拼成正方形,不符合题意;B.阴影部分面积为10,则正方形的边长为10,∵12+32=10,故能拼成正方形,不符合题意;C.阴影部分面积为11,则正方形的边长为11,根据网格的特点不能构造出11的边,故不能拼成正方形,符合题意D. 阴影部分面积为13,则正方形的边长为13,∵22+32=13,故能拼成正方形,不符合题意;故选C.4.A【分析】将梯子斜靠在墙上时,形成的图形看做直角三角形,根据勾股定理,直角边的平方和等于斜边的平方,可以求出梯子的长度,再次利用勾股定理即可求出梯子底端到右墙的距离,从而得出答案.【详解】如图,在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,AB2=AC2+BC2∴AB2=0.72+ 2.42= 6.25在Rt△A‘BD中,∵∠A’BD=90°,A’D=2米,BD2+A'D2=A'B2∴BD2+22= 6.25∴BD2= 2.25∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米即小巷的宽度为2.2米,故答案选A5.B【分析】根据勾股定理求得BC,进而根据折叠的性质可得AE=AC,可得BE=2,设DE=x,表示出BD,DE,进而在Rt△BDE中,勾股定理列出方程,解方程即可求解.【详解】解:∵在Rt△ABC中,∠ABC=90°,AB=3,AC=5,∴BC=AC2−A B2=52−32=4,∵将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,∴AE=AC,设DE=x,则DC=DE=x,BD=BC−CD=4−x,BE=AE−AB=5−3=2,在Rt△BDE中,BD2+BE2=DE2,即(4−x)2+22=x2,解得:x=52,即DE的长为52故选:B.6.A【分析】首先根据SAS证明△BAF≌△EAF可得AF⊥BE,根据三角形的面积公式求出AD,根据勾股定理求出BD即可.【详解】解:由折叠得,AB=AE,∠BAF=∠EAF,在△BAF和△EAF中,{AB=AE∠BAF=∠EAFAF=AF,∴△BAF≌△EAF(SAS),∴BF=EF,∴AF⊥BE,又∵AF=4,AB=5,∴BF=AB2−A F2=3,在△ADE中,EF⊥AD,DG=EG,设DE边上的高线长为h,∴S△ADE =12AD⋅EF=12DG⋅h+12EG⋅h,即S△ADG +S△AEG=12AD⋅EF,∵S△AEG =12⋅GE⋅h=92,S△ADG=S△AEG,∴S△ADG +S△AEG=92+92=9,∴9=12AD⋅3,∴AD=6,∴FD=AD−AF=6−4=2,在Rt△BDF中,BF=3,FD=2,∴BD2=BF2+FD2=32+22=13,故选:A.7.A【分析】根据各个图象,利用面积的不同表示方法,列式证明结论a2+b2=c2,找出不能证明的那个选项.【详解】解:A选项不能证明勾股定理;B选项,通过大正方形面积的不同表示方法,可以列式(a+b)2=4×12ab+c2,可得a2+b2 =c2;C选项,通过梯形的面积的不同表示方法,可以列式(a+b)22=2×12ab+12c2,可得a2+b2=c2;D选项,通过这个不规则图象的面积的不同表示方法,可以列式c2+2×12ab=a2+b2+2×12ab,可得a2+b2=c2.故选:A.8.B【详解】根据勾股定理得:AB=2,AD=3,∴AE=3,∴OE=2−3,∴点E表示的数为−2+3.故答案为:B.9.B【分析】先将圆柱圆的侧面沿着点A所在的棱线剪开,得到长方形,得到AC=5cm,BC=242=12 cm,由此即可以利用勾股定理求出蚂蚁爬行的最短路线AB的长.【详解】如图,沿着点A所在的棱线剪开,此时AC=5cm,BC=242=12cm,∴蚂蚁爬行的最短路线AB=AC2+BC2=52+122=13cm,故选:B.10.D【分析】利用正方形的性质证明△ABI≌△ADC,得出∠AIB=∠ACD,即可得出∠CNI=∠NAI,即可判断①,利用△ABI≌△ADC,即可求出△ABI的面积,即可判断②,由勾股定理和S3+S4=S▱ABED,即可判断③,由③S1-S4=S3-S2,两边平方,根据勾股定理可得AC2−B C2=AK2−B K2,然后计算S12+S42−(S22+S32)=0,即可判断④.【详解】解:∵四边形ACHI和四边形ABED为正方形,∴AI=AC,AD=AB,∠CAI=∠BAD=90°,∵∠BAI=∠BAC+∠CAI,∠DAC=∠BAC+∠BAD,∴∠BAI=∠DAC,∴△ABI≌△ADC(SAS),∴∠AIB=∠ACD,∵∠CNI=∠CAI=90°,∴BI⊥CD,故①正确;∵S△ACD=S△AIB=12×AI×AC,S正方形ACHI=S1=AI×AC,∴S1:S△ACD=2:1,故②正确;∵S1=AC2,S2=BC2,S3+S4=S正方形ADEB=AB2,AC2+BC2=AB2,∴S1+S2=S3+S4,∴S1-S4=S3-S2,故③正确;∵ S1-S4=S3-S2,∴S12+S42−2S1S4=S22+S32−2S2S3,∵S1=AC2,S2=BC2,S3=AK•KJ= AK•AB,S4=BK•KJ=BK•AB,∴S12+S42=AC4+AB2BK2,S22+S32=BC4+AK2AB2,∵AB2=AC2+ BC2,AC2=AK2+CK2,BC2=BK2+CK2,∴AC2−A K2=BC2−B K2,即AC2−B C2=AK2−B K2,∴S12+S42−(S22+S32)=AC4+AB2BK2−(BC4+AK2AB2)=AC4−B C4+AB2(BK2−A K2)=(AC2+BC2)(AC2−B C2)−A B2(AC2−B C2) =AB2(AC2−B C2)−AB2(AC2−B C2)=0,∴S1•S4=S2•S3,故④正确,二.填空题11.c2+ab a2+b2+ab【详解】解:如图所示:S1=c2+12ab×2=c2+ab,S2=a2+b2+12ab×2=a2+b2+ab.故答案为c2+ab,a2+b2+ab.12. 20 13【分析】(1)根据两点的纵坐标相同即可得出AB的长度;(2)过C作AB的垂线交AB于点E,连接AD,构造方程解出即可.【详解】(1)根据A、B两点的纵坐标相同,得AB=12−(−8)=20故答案为:20(2)如图:设AD=a,根据点A、B的纵坐标相同,则AE=12,CE=1−(−17)=18由ΔADE是直角三角形,得:(CE−CD)2+AE2=a2∴52+122=a2故答案为:13 13.102【分析】利用勾股定理依次计算出OA2=2,OA3=3,OA4=4=2,.. OA n=n,然后依据计算出前几个三角形的面积,然后依据规律解答求得S10即可.【详解】由题意得:OA2=OA12+A1A22=12+12=2,OA3=OA22+A2A32=12+(2)2=3,OA4=OA32+A3A42=12+(3)2=4=2,∴OAn=n,∴OA10=10,∴S10=12OA10⋅A10A11=12×10×1=102,故答案为:102.14.①③【分析】设小正方形的边长为1,则5个小正方形的面积为5,进而可知拼成的大正方形的边长为5,再根据所画虚线逐项进行拼接,看哪种剪法能拼成边长为5的正方形即可.【详解】解:按照①中剪法,在外围四个小正方形上分别剪一刀然后放到相邻的空处,可拼接成边长为5的正方形,符合题意;如下图所示,按照③中剪法,通过拼接也可以得到边长为5的正方形,符合题意;按照②中剪法,无法拼接成边长为5的正方形,不符合题意;故选①③.故答案为:①③.15.3或18或22【分析】分当点P在线段AB上运动时,当点P在线段BC上运动且在点E的右边时和当点P在线段BC上运动且在点E的左边时三种情况讨论,即可求出t的值.【详解】解:∵∠C=90°,BC=16cm,AC=12cm,∴AB=AC2+BC2=162+122=20,∵点E是BC的中点,∴CE=BE=12BC=8cm,S△ACE=S△ABE=12S△ABC=12×12×12×16=48cm2.当点P在线段AC上运动时,∵△APE的面积等于12,即S△APE =14S△ACE,∴AP=14AC=3,∴t=3÷1=3秒;当点P在线段BC运动时上且在点E的右边时,,如图2所示,同理可知BP=14BE=2cm,∴t=(12+8+2)÷1=22秒;当点P在线段BC上运动且在点E的左边时,如图3所示,同理可知CP=12CE=2cm,∴t=(12+8−2)÷1=18秒;故答案为∶3或18或22.16.13【分析】通过过点A 作GC 的平行线AN ,并在AN 上截取AH =AC ,构造全等三角形,得到当B ,D ,H 三点共线时,可求得AE +BD 的最小值;再作垂线构造矩形,利用勾股定理求解即可.【详解】如图,过点A 作GC 的平行线AF ,并在AF 上截取AH =AC ,连接DH ,BH .则∠HAD =∠C .在△ADH 和△CEA 中,{AD =CE ,∠HAD =∠C ,AH =CA ,∴△ADH≌△CEA(SAS),∴DH =AE ,∴AE +BD =DH +BD ,∴当B ,D ,H 三点共线时,DH +BD 的值最小,即AE +BD 的值最小,为BH 的长.∵AG ⊥BG ,AB =41,AG =5,∴在Rt △ABG 中,由勾股定理,得BG =AB 2−A G 2=(41)2−52=4.如图,过点H 作HM ⊥GC ,交GC 的延长线于点M ,则四边形AGMH 为长方形,∴HM =AG =5,GM =AH =AC =8,∴在Rt △BMH 中,由勾股定理,得BH =BM 2+HM 2=(4+8)2+52=13.∴AE+BD的最小值为13.故答案为:13.三.解答题17.证明:如图,延长AD至点E,使得AD=DE,连接CE,∵AD为BC边上的中线,∴BD=DC,又∵AD=DE,∠ADB=∠EDC,∴△ABD≌△ECD,∴AB=EC=3,∠BAD=∠E,又∵AE=2AD=4,AC=5,∴AC2=AE2+CE2,∴∠E=90°∴∠BAD=∠E=90°∴AD⊥AB.18.解:∵小球滚动的速度与机器人行走的速度相等,∴BC=AC,设BC=AC=x m,则OC=(8-x)m,在Rt△BOC中,∵OB2+OC2=BC2,.∴32+(8-x)2=x2,解得x=7316∴机器人行走的路程BC为73m.1619.(1)解:第一组勾股数的第一个数为3=2×1+1,第二个数为4=2×1×(1+1),第三个数为4=2×(1+1)+1,第二组勾股数的第一个数为5=2×2+1,第二个数为12=2×2×(2+1),第三个数为12=2×2×(2+1)+1,第三组勾股数的第一个数为7=2×3+1,第二个数为24=2×3×(3+1),第三个数为25=2×3×(3+1)+1,所以第四组勾股数组的第一个数为2×4+1=9,第二个数为2×4×(4+1)=40,第三个数为2×4×(4+1)+1=41,∴第四组勾股数组为(9,40,41);(2)解:由(1)可知:第n组勾股数为(2n+1,2n2+2n,2n2+2n+1),证明:∵(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+4n+1,(2n2+2n+1)2=(2n2+2n+1)(2n2+2n+1)=4n4+4n3+2n2+4n3+4n2+2n+2n2+2n+1=4n4+8n3+8n2+4n+1∴(2n+1)2+(2n2+2n)2=(2n2+2n+1)220.解:(1)如图,连接BG.在直角△BCG中,由勾股定理得到:BG=BC2+GC2=42+32=5(dm),即线段BG的长度为5dm;(2)①把ADEH展开,如图此时总路程为(3+3+5)2+42=137②把ABEF展开,如图此时的总路程为(3+3+4)2+52=125=55③如图所示,把BCFGF展开,此时的总路程为(3+3)2+(5+4)2=117由于117<125<137,所以第三种方案路程更短,最短路程为117.21.(1)解:∵直线DE是对称轴,∴AE=BE,∵AC=6,BC=8,设AE=BE=x,则CE=8−x在Rt△ACE中,∠C=90°,∴AC2+CE2=AE2,∴62+(8−x)2=x2,,解得x=254∴BE=254(2)解:∵直线AF是对称轴,∴AC=AG,CF=CG,∵AC=6,BC=8,设CF=CG=x,则BF=8−x,∴在Rt△ACB中,∠C=90°,AB=AC2+BC2=62+82=10,∴BG=AB−AG=4,在Rt△BGF中,∠BGF=90°,∴GF2+BG2=BF2,∴x2+42=(8−x)2,解得x=3,∴BF=8−3=5.22.解:(1)能,如图所示,正方形ABCD即为所求;(2)能,如图所示,正方形ABCD即为所求;(3)如图所示,在AB上截取AM=BE,连接DM、MF,DM、FM即为裁剪线,将△DAM拼接△DCH处,使DA与DC重合,将△MEF拼接至△HGF处,使ME和HG重合,EF与FG 重合,得到正方形DMFH,∴剪出的块数最少为5块,故答案为:5.23.如图:∵点C、点B、点B′三点共线,∠C=∠C′=90°,∴四边形ACC′B′是直角梯形,∵△ACB与△BC′B′是一样的直角三角板,∴Rt△ACB≌Rt△BC′B′,∴∠CAB=∠C′BB′,AB=BB′,∴∠CBA+∠C′BB’=90°∴△ABB′是等腰直角三角形,,所以S梯形ACC′B′=(AC+B′C′)•CC′÷2=(a+b)22S △ACB =12AC ⋅BC =12ab ,S △BC ′B ′=12ab ,S △ABB ′=12c 2,所以(a +b)22=12ab +12ab +12c 2,a 2+2ab+b 2=ab+ab+c 2,∴a 2+b 2=c 2;拓展1.过A 作AP ⊥BC 于点P ,如图2,则∠BMF =∠APB =90°,∵∠ABF =90°,∴∠BFM+∠MBF =∠MBF+∠ABP ,∴∠BFM =∠ABP ,在△BMF 和△ABP 中,{∠BFM =∠ABP ∠BMF =∠APB =900BF =AB,∴△BMF ≌△ABP (AAS ),∴FM =BP ,同理,EN =CP ,∴FM+EN =BP+CP ,即FM+EN =BC ,故答案为FM+EN =BC ;拓展2.过点D 作PQ ⊥m ,分别交m 于点P ,交n 于点Q ,如图3,则∠APD =∠ADC =∠CQD =90°,∴∠ADP+∠DAP =∠ADP+∠CDQ =90°,∴∠DAP =∠CDQ ,在△APD 和△DQC 中,{∠DAP =∠CDQ ∠APD =∠DQC AD =DC,∴△APD ≌△DQC (AAS ),∴AP =DQ =2,∵PD =1,∴AD 2=22+12=5,∴正方形的面积为 5,故答案为5.。
北师大版2020年八年级上册第1章《勾股定理》综合测试卷含答案
北师大版2020年八年级上册第1章《勾股定理》综合测试卷满分:120分姓名:___________班级:___________考号:___________题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.以下各组数为三角形的三条边长,其中不能构成直角三角形的是()A.3,4,5B.6,8,10C.1,1,2D.5,12,132.如图,以直角三角形的一条直角边和斜边为一边作正方形M和N,它们的面积分别为9cm2和25cm2,则直角三角形的面积为()A.6cm2B.12cm2C.24cm2D.3cm23.在一个直角三角形中,两直角边长分别为a,b,斜边为c,那么()A.a2+b2>c2B.a2+b2<c2C.a2+b2=c2D.a2+b2≠c24.甲乙两艘客轮同时离开港口,航行的速度都是每分钟40m,甲客轮用15分钟到达点A,乙客轮用20分钟到达点B,若A、B两点的直线距离为1000m,甲客轮沿着北偏东30°的方向航行,则乙客轮的航行方向可能是()A.南偏东60°B.南偏西60°C.北偏西30°D.南偏西30°5.如图,一架云梯25米,斜靠在一面墙上,梯子底端离墙7米,如果梯子的顶端下滑4米,那么梯子的底部在水平方向上滑动了()A.4米B.6米C.8米D.10米6.如图:一个长、宽、高分别为4cm、3cm、12cm的长方体盒子能容下的最长木棒长为()A.11cm B.12cm C.13cm D.14cm7.如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM =5,则CE2+CF2等于()A.75B.100C.120D.1258.如图,在△ABC中,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F,AC =13,AD=12,BC=14,则AE的长等于()A.5B.6C.7D.9.△ABC中,AB=17,AC=10,高AD=8,则△ABC的周长是()A.54B.44C.36或48D.54或3310.如图是一个6×6的正方形网格,每个小正方形的顶点都是格点,Rt△ABC的顶点都是图中的格点,其中点A、点B的位置如图所示,则点C可能的位置共有()A.9个B.8个C.7个D.6个二.填空题(共6小题,满分24分,每小题4分)11.已知△ABC的三边的长分别是AB=5、BC=4、AC=3,那么∠C=.12.在Rt△ABC中,斜边BC=10,则AB2+AC2的值是.13.如图,每个小正方形的边长都为1,则△ABC的三边长a,b,c的大小关系是(用“>”连接).14.已知一个三角形工件尺寸(单位dm)如图所示,则高h=dm.15.如图,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短的直角边长为a,较长的直角边长为b,那么a+b的值为.16.如图所示,已知△ABC中,∠B=90°,BC=16cm,AC=20cm,点P是△ABC边上的一个动点,点P从点A开始沿A→B→C→A方向运动,且速度为每秒4cm,设出发的时间为t(s),当点P在边CA上运动时,若△ABP为等腰三角形,则运动时间t=.三.解答题(共8小题,满分66分)17.(7分)如图,在△ABC中,CD⊥AB于点D,BC=6,AC=8,AB=10.求CD的长.18.(7分)如图,在四边形ABCD中,AB=13,BC=3,CD=4,DA=12,∠ADB=90°,求四边形ABCD的面积.19.(8分)在△ABC中,已知∠C=90°,a:b=3:4,c=20,求:(1)a、b的值;(2)S△ABC.20.(8分)如图,每个小正方形的边长为1.(1)求BC与CD的长;(2)求证:∠BCD=90°.21.(8分)八年级(2)班的小明和小亮同学学了“勾股定理”之后,为了测得图中风筝的高度CE,他们进行了如下操作:①测得BD的长为15米(注:BD⊥CE);②根据手中剩余线的长度计算出风筝线BC的长为25米;③牵线放风筝的小明身高1.6米.(1)求风筝的高度CE.(2)过点D作DH⊥BC,垂足为H,求BH、DH.22.(8分)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2.求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图,填写下表中B的值;直角三角形三边n2﹣12n B勾股数组Ⅰ8勾股数组Ⅱ3523.(8分)阅读下列内容:设a,b,c是一个三角形的三条边的长,且a是最长边,我们可以利用a,b,c三条边长度之间的关系来判断这个三角形的形状:①若a2=b2+c2,则该三角形是直角三角形;②若a2>b2+c2,则该三角形是钝角三角形;③若a2<b2+c2,则该三角形是锐角三角形.例如:若一个三角形的三边长分别是4,5,6,则最长边是6,62=36<42+52,故由③可知该三角形是锐角三角形,请解答以下问题:(1)若一个三角形的三边长分别是7,8,9,则该三角形是三角形.(2)若一个三角形的三边长分别是5,12,x,且这个三角形是直角三角形,求x的值.24.(12分)观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、32+42=52,能组成直角三角形,故此选项错误;B、62+82=102,能组成直角三角形,故此选项错误;C、12+12≠22,不能组成直角三角形,故此选项正确;D、52+122=132,能组成直角三角形,故此选项错误;故选:C.2.解:根据勾股定理可得直角三角形的另一边长为:=4(厘米),可得这个直角三角形的面积为:×4=6(平方厘米).故选:A.3.解:∵在Rt△ACB中,∠C=90°,AC=b,AB=c,BC=a,∴由勾股定理得:a2+b2=c2,故选:C.4.解:如图:∵甲乙两艘客轮同时离开港口,航行的速度都是每分钟40m,甲客轮用15分钟到达点A,乙客轮用20分钟到达点B,∴甲客轮走了40×15=600(m),乙客轮走了40×20=800(m),∵A、B两点的直线距离为1000m,∴6002+8002=10002,∴∠AOB=90°,∵甲客轮沿着北偏东30°的方向航行,∴乙客轮沿着南偏东60°的方向航行,故选:A.5.解:由题意知AB=DE=25米,BC=7米,AD=4米,∵在直角△ABC中,AC为直角边,∴AC==24米,已知AD=4米,则CD=24﹣4=20(米),∵在直角△CDE中,CE为直角边∴CE==15(米),BE=15米﹣7米=8米.故选:C.6.解:∵侧面对角线BC2=32+42=52,∴CB=5m,∵AC=12m,∴AB==13(m),∴空木箱能放的最大长度为13m,故选:C.7.解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=100.故选:B.8.解:∵AD⊥BC,∴∠ADC=∠ADB=90°,∵AD=12,AC=13,∴DC===5,∵BC=14,∴BD=14﹣5=9,由勾股定理得:AB==15,过点E作EG⊥AB于G,∵BF平分∠ABC,AD⊥BC,∴EG=ED,在Rt△BDE和Rt△BGE中,∵,∴Rt△BDE≌Rt△BGE(HL),∴BG=BD=9,∴AG=15﹣9=6,设AE=x,则ED=12﹣x,∴EG=12﹣x,Rt△AGE中,x2=62+(12﹣x)2,x=,∴AE=.故选:D.9.解:分两种情况:①如图1所示:∵AD是BC边上的高,∴∠ADB=∠ADC=90°,∴BD===15,CD===6,∴BC=BD+CD=15+6=21;此时,△ABC的周长为:AB+BC+AC=17+10+21=48.②如图2所示:同①得:BD=15,CD=6,∴BC=BD﹣CD=15﹣6=9;此时,△ABC的周长为:AB+BC+AC=17+10+9=36.综上所述:△ABC的周长为48或36.故选:C.10.解:如图所示:,共9个点,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:∵△ABC中,AB=5、BC=4、AC=3,∴AB2=BC2+AC2,∴△ABC是直角三角形,∴∠C=90°.故答案为:90°.12.解:在Rt△ABC中,∵斜边BC=10,∴AB2+AC2=BC2=100,故答案是:100.13.解:由勾股定理可得:a=,b=,c=,∴c>a>b.故答案为:c>a>b.14.解:过点A作AD⊥BC于点D,则AD=h,∵AB=AC=5dm,BC=6dm,∴AD是BC的垂直平分线,∴BD=BC=3dm.在Rt△ABD中,AD=dm,即h=4(dm).答:h的长为4dm.故答案为:4.15.解:根据勾股定理可得a2+b2=13,四个直角三角形的面积是:ab×4=13﹣1=12,即:2ab=12,则(a+b)2=a2+2ab+b2=13+12=25,则a+b=5.故答案为:5.16.解:如图,过点B作BH⊥AC于H.∵∠ABC=90°,AC=20,BC=16,∴AB===12,∵BH⊥AC,∴S△ABC=•AC•BH=•AB•BC,∴BH==,∴AH===,当BA=BP1时,AH=HP1=,∴AB+BC+AP1=20+16+12﹣=,此时t=,当AB=AP2时,AB+BC+CP2=20+16+12﹣12=36,此时t=9,当AP3=BP3时,AB+BC+CP3=20+16+12﹣10=38,此时t=,综上所述,满足条件的t的值为或9或.三.解答题(共8小题,满分66分)17.解:∵在△ABC中,BC=6,AC=8,AB=10,∴BC2+AC2=AB2,∴∠ACB=90°,∵由三角形的面积公式得:AC×BC=AB×CD,∴6×8=10×CD,解得:CD=4.8.18.解:在Rt△ABD中,BD2=AB2﹣AD2,∴BD2=132﹣122=25,又∵BC2+CD2=32+42=25,∴BC2+CD2=BD2,∴∠BCD=90°,∴.19.解:(1)如图所示:∵a:b=3:4,∴设a=3x,b=4x,由勾股定理得:c=5x,∵c=20,解得:x=4,∴a=12,b=16;(2)S△ABC=×12×16=96.20.解:(1)由题意可知,BC=CD==;(2)证明:连接BD.∵BD==,BC=CD=;∴BC2+CD2=BD2,∴△BCD是直角三角形,即∠BCD=90°.21.解:(1)在Rt△CDB中,由勾股定理,得(米).所以CE=CD+DE=20+1.6=21.6(米);(2)由得,在Rt△BHD中,.22.解:A=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,当2n=8时,n=4,∴n2﹣1=42﹣1=15,n2+1=42+1=17;当n2﹣1=35时,n=±6(负值舍去),∴2n=2×6=12,n2+1=37.直角三角形三边n2﹣12n B勾股数组Ⅰ15817勾股数组Ⅱ351237故答案为:15,17;12,37.23.解:(1)∵72+82=113,92=81,∴92<72+82,∴该三角形是锐角三角形,故答案为:锐角;(2)当最长边是12时,x==;当最长边是x时,x==13,即x=13或.24.(1)解:这个公式是完全平方公式:(a+b)2=a2+2ab+b2;理由如下:∵大正方形的边长为a+b,∴大正方形的面积=(a+b)2,又∵大正方形的面积=两个小正方形的面积+两个矩形的面积=a2+b2+ab+ab=a2+2ab+b2,∴(a+b)2=a2+2ab+b2;故答案为:(a+b)2=a2+2ab+b2;(2)证明:∵△ABC≌△CDE,∴∠BAC=∠DCE,∵∠ACB+∠BAC=90°,∴∠ACB+∠DCE=90°,∴∠ACE=90°;(3)证明:∵∠B=∠D=90°,∴∠B +∠D =180°,∴AB ∥DE ,即四边形ABDE 是梯形, ∴四边形ABDE 的面积=(a +b )(a +b )=ab +c 2+ab ,整理得:a 2+b 2=c 2.1、最困难的事就是认识自己。
新版北师大版2020年八年级数学上册第一章勾股定理检测题
第一章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.将直角三角形的三边长同时扩大2倍,得到的三角形是( C )A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形2.在△ABC中,∠C=90°,c2=2b2,则两直角边a,b的关系是( C )A.a<b B.a>bC.a=b D.以上三种情况都有可能3.在△ABC中,若a=n2-1,b=2n,c=n2+1,则△ABC是( D )A.锐角三角形 B.钝角三角形 C.等腰三角形 D.直角三角形4.如果梯子的底端离建筑物5米,那么13米长的梯子可以达到建筑物的高度是( A ) A.12米 B.13米 C.14米 D.15米5.如图,字母B所代表的正方形的面积是( C )A.12 B.13 C.144 D.194错误!,第6题图) ,第7题图),第8题图)6.如图,在一块长BC=4 m,宽AB=3 m的长方形草坪上,顶点A,B,C,D处各居住着一只蚂蚁,居住在顶点A处的蚂蚁准备拜访居住在B点,D点两处的蚂蚁,当它拜访结束时,它的行程最少为( B )A.7 m B.8 m C.9 m D.10 m7.如图,在Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使点A与BC的中点D重合,折痕为MN,则线段BN的长为( C )A.53B.52C.4 D.58.如图,在由单位正方形组成的网格图中标有AB,CD,EF,GH四条线段,其中能构成一个直角三角形三边的线段是( B )A.CD,EF,GH B.AB,EF,GH C.AB,CD,GH D.AB,CD,EF9.若△ABC的三边长a,b,c满足(a-b)2+|a2+b2-c2|=0,则△ABC是( C )A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形10.在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是( C )A.42 B.32 C.42或32 D.37或33二、填空题(每小题3分,共18分)11.(2017·通州区期中)若8,a,17是一组勾股数,则a=__15__.12.若直角三角形的两直角边长为a ,b ,且满足a 2-6a +9+|b -4|=0,则该直角三角形的斜边长为__5__.13.一个三角形的三边长分别是12 cm ,16 cm ,20 cm ,则这个三角形的面积是__96__cm 2. 14.如图,一块砖的宽AN =5 cm ,长ND =10 cm ,CD 上的点B 距地面的高BD =8 cm .地面上A 处的一只蚂蚁要到B 处吃食,需要爬行的最短路径是__17__cm.,第14题图) ,第15题图),第16题图)15.如图,有两条互相垂直的街道a 和b ,a 路上有一小商店A ,b 路上有一批发部B.小商店主人每次进货都沿着A —O —B 路线到达B 处,然后原路返回.已知A ,B 两处距十字路口O 的距离分别为600米、800米,如果小商店主人重新选一条最近的路线,那么往返一趟最多可比原来少走__800__米.16.如图,在直线l 上依次摆放着七个正方形.已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=__4__.三、解答题(共72分)17.(6分)如图,在△ABC 中,AB =AC =13,BC =10,求△ABC 的面积.解:作AH⊥BC 于H.∵AB =AC ,∴BH =CH =5,∴AH =12,∴S △ABC =12BC·AH =6018.(6分)如图,在四边形ABCD 中,∠A =∠D=90°,AB =CD =24 cm ,AD =BC =50 cm ,点E 是AD 上一点,且AE∶ED=9∶16,试猜想∠BEC 是锐角、钝角还是直角?并证明你的猜想.解:∠BEC 是直角.理由如下:∵AD =50,AE ∶ED =9∶16,∴AE =18,DE =32,∴BE 2=AB 2+AE 2=900,CE 2=DE 2+DC 2=1600,BE 2+DE 2=2500=BC 2,∴∠BEC 是直角19.(7分)如图,在正方形网格中,每个小正方形的边长都为1.(1)正方形①的面积S 1=__9__cm 2,正方形②的面积S 2=__16__cm 2,正方形③的面积S 3=__25__cm 2;(2)S 1,S 2,S 3之间存在什么关系?(3)猜想:如果Rt △ABC 的三边BC ,AC ,AB 的长分别为a ,b ,c ,那么它们之间存在什么关系?解:(2)S 1+S 2=S 3 (3)a 2+b 2=c 220.(8分)如图所示的一块地,已知AD =4 m ,CD =3 m ,AD ⊥DC ,AB =13 m ,BC =12 m ,求这块地的面积.解:连接AC ,在Rt △ACD 中,AC 2=32+42=52.因为AC 2+BC 2=52+122=132=AB 2,所以△ABC 为直角三角形,所以这块地的面积为12×5×12-12×3×4=24(m 2)21.(8分)学校要征收一块土地,形状如图所示,∠B =∠D=90°,AB =20米,BC =15米,CD =7米,土地价格为1000元/平方米,请你计算学校征收这块地需要多少钱?解:连接AC.在△ABC 中,∠B =90°,AB =20,BC =15,由勾股定理得AC 2=AB 2+BC 2=202+152=625.在△ADC 中,∠D =90°,CD =7,由勾股定理得AD 2=AC 2-CD 2=625-72=576,∴AD =24.∴四边形的面积为12AB·BC +12CD·AD =234(平方米).234×1000=234000(元).答:学校征收这块地需要234000元22.(8分)如果△ABC的三边分别为a,b,c,且满足a2+b2+c2+50=6a+8b+10c,判断△ABC的形状.解:由a2+b2+c2+50=6a+8b+10c可得(a-3)2+(b-4)2+(c-5)2=0,∴a=3,b =4,c=5.∵32+42=52,∴a2+b2=c2,∴△ABC为直角三角形,且c为斜边23.(9分)如图,在△ABC中,AD,AE分别是BC边上的高和中线,AB=9 cm,AC=7 cm,BC=8 cm,求DE的长.解:设DE=x cm,则BD=(4+x)cm,CD=(4-x)cm,由勾股定理得92-(4+x)2=72-(4-x)2,解得x=2,∴DE=2 cm24.(10分)如图,甲、乙两船从港口A同时出发,甲船以16海里/时的速度沿北偏东40°的方向航行,乙船沿南偏东50°的方向航行,3小时后,甲船到达C岛,乙船到达B 岛,若C,B两岛相距60海里,问乙船的航速是多少?解:由题意得∠CAB=90°,AC=48,BC=60,由勾股定理得AB2+AC2=BC2,即AB2+482=602,∴AB=36,36÷3=12(海里/时),即乙船的航速是12海里/时25.(10分)如图,等腰△ABC 的底边长为8 cm ,腰长为5 cm ,一动点P 在底边上从B 向C 以0.25 cm /s 的速度移动,请你探究:当P 运动几秒时,P 点与顶点A 的连线PA 与腰垂直.解:共两种情况.情况一:P 点与顶点A 的连线PA 与腰AC 垂直,如图①,作AD⊥BC ,垂足为点D.显然BD =DC =12BC =4 cm ,在Rt △ADC 中,AC =5 cm.由勾股定理可得AD =3 cm.在Rt △ADP 中,AP 2=PD 2+AD 2,设BP =x ,则PD =(4-x )cm.代入AP 2=PD 2+AD 2,得AP 2=(4-x )2+32①,要使△ACP 为直角三角形,必须满足PC 2=AP 2+AC 2,所以AP 2=PC 2-AC 2=(8-x )2-52②.由①②得(4-x )2+32=(8-x )2-52,解得x =74,74÷0.25=7(s );情况二:P 点与顶点A的连线AP 与腰AB 垂直,如图②,作AD⊥BC ,垂足为点D.显然BD =DC =12BC =4 cm.在Rt △ADB 中,AB =5 cm ,由勾股定理可得AD =3 cm.在Rt △ADP 中,AP 2=PD 2+AD 2,设BP =x ,则PD =(x -4) cm ,得AP =(x-4)2+32①,要使△ABP 为直角三角形,必须满足PB 2=AP 2+AB 2,所以AP 2=PB 2-AB 2=x 2-52②.由①②得(x -4)2+32=x 2-52.解得x =254,254÷0.25=25(s ).综上可得,点P 运动7 s 或25 s 时,P 点与顶点A 的连线PA 与腰垂直1、在最软入的时候,你会想起谁。
2019-2020年新北师版初中数学八年级上册第一章勾股定理测试题(1).doc
第一章勾股定理测试题2一、选择题1. 一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为A 4B 6 8 D 102. 如图,在中,,垂足为,则BD的长为AB 2D 33. 一个圆桶底面直径为24c,高32c,则桶内所能容下的最长木棒为A 20 cB 50 c40 c D 45 c4. 如图,是台阶的示意图已知每个台阶的宽度都是20c,每个台阶的高度都是10c,连接AB,则AB等于A 120cB 130c140c D 150c5. 如果一个直角三角形的两边分别是2、5,那么第三边的平方是A 21B 26 29 D 21或296. 直角三角形的一直角边长是12,斜边长是15,则另一直角边是A 8B 9 10 D 117. 如图,已知在中,、E为垂足,下列结论正确的是ABD8. 已知一直角三角形的木板,三边的平方和为,则斜边长为A 30cB 80c90c D 120c9. 如图,四边形ABD的对角线A与BD互相垂直,若AB=3B=4D=5,则AD的长为AB 4D10. 如图,图中每个四边形都是正方形,字母A所代表的正方形的面积为A 4B 816D 6411. 如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两直角边长分别为3c和5c,则小正方形的面积为A B 2 3 D12. 如图所示,的顶点A、B、在边长为1的正方形格的格点上,于点D,则BD的长为ABD二、解答题13. 如图,在中,边上的中线求A的长.14. 市政广场前有块形状为直角三角形的绿地如图所示,其中为广场整体布局考虑,现在将原绿地扩充成等腰三角形,且扩充所增加的部分要求是以A 为直角边的直角三角形请求出扩充建设后所得等腰三角形绿地的周长.15. 如图是“赵爽弦图”,其中、、和是四个全等的直角三角形,四边形ABD和EFGH都是正方形,根据这个图形的面积关系,可以证明勾股定理设,取.正方形EFGH的面积为______,四个直角三角形的面积和为______;求的值.。
第1章勾股定理 同步达标测试题 2023-2024学年北师大版八年级数学上册
2023-2024学年北师大版八年级数学上册《第1章勾股定理》同步达标测试题(附答案)一、单选题(满分32分)1.以下数组中,其中是勾股数的是()A.2.5,6,6.5B.9 ,40 ,41C.1 ,√2,1 D.2 ,3 ,42.斜边为17cm,一条直角边长为15cm的直角三角形的面积为()A.60cm2B.30cm2C.90cm2D.120cm23.直角三角形中一直角边的长为10,另两边长为连续偶数,则直角三角形的周长为()A.49 B.17 C.60 D.不能确定4.三个正方形的面积如图,正方形A的边长为()A.8 B.36 C.64 D.65.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,按图中所示方法将△BCD沿BD折叠,使点C落在边AB上的点C′处,那么线段AD的长为()A.6 B.5 C.4 D.36.已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为()A.21 B.6 C.21或6 D.21或97.如图,在Rt△ABC中,∠ACB=90°,AB=8,以AC和BC为底边分别向外作等腰直角△AFC和等腰直角△BEC,若△AFC的面积为S1,△BCE的面积为S2,则S1+S2的值为()8.如图,今年的冰雪灾害中,一棵大树在离地面9米处折断,树的顶端落在离树杆底部12米处,那么这棵树折断之前的高度是()A.9米B.12米C.15米D.24米二、填空题(满分40分)9.在Rt△ABC中,AB=8,BC=26,则以AC为边的正方形的面积为.10.若一个三角形的三边长分别是6、8、a,如果这个三角形是直角三角形,则a2=.11.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为.12.如图所示,有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的底面A点处有一只小蚂蚁,它想吃到上底面上与A点相对的C点处的食物,沿圆柱侧面爬行的最短路程是.(π取3)13.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3 dm、2 dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是dm.14.如图,沿AE折叠长方形ABCD,使D点落在BC边的点F处,若AB=12cm,BC =13cm,则FC的长度是.15.如图,在△ABC中,∠ACB=90°,BC=8,BE=4,AE=AC,求AE的长.解题思路:设AE=AC=x,根据勾股定理,得AC2+BC2=AB2,可列方程为.16.如图,要在河边l上修建一个水泵站,分别向A村和B村送水,已知A村、B村到河边的距离分别为2 km和7 km,且AB两村庄相距13 km,则铺设水管的最短长度是km.三、解答题(满分48分)17.如图,在△ABC中,∠ACB=90°,AB=10cm,BC=6cm,CD⊥AB交AB于点D,求:(1)AC的长.(2)△ABC的面积.(3)CD的长.18.如图是某“飞越丛林”俱乐部最近打造的一款项目的示意图,BC段和垂直于地面的AB段均由不锈钢管材打造,两段总长度为26m,矩形CDEF为一木质平台的主视图.经过测量得CD=1m,AD=15m,请求出立柱AB段的长度.19.如图1所示,一架梯子AB长10米,顶端A靠在墙AC上,这时梯子下端B与墙角C的距离为6米,梯子底部向右滑动后停在DE的位置上(如图2所示),测得DB的长为2米,求梯子顶端A下落了多少米.20.台风是一种自然灾害,它以台风中心为圆心在周围上百千米范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向AB由A行驶向B,已知点C为海港,且点C与直线l上的两点A,B的距离分别为AC=300km,BC=400km,又AB=500km,以台风中心为圆心周围260km以内为受影响区域.已知台风运动速度为72km/h.(1)求∠ACB的度数;(2)求海港C到直线AB的最短距离;21.如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE.(1)求证:△ABC≌△DCE;(2)连接AE,当BC=5,AB=12,时,求AD的长.22.Rt△ABC中,∠BAC=90°,AD⊥BC,垂足为D,BE平分∠ABC,交AC于点E,交AD于点F.(1)图1,求证:AF=AE;(2)图2,过点F作FG∥BC交AC于点G,FM∥AC交BC于点M.求证:AF=CG.(3)在(2)的条件下,若BDAB =35,求的GCFD值.参考答案 1.解:A 选项,2.5 ,6.5 不是正整数,不符合题意;B 选项,92=81 ,402=1600 ,412=1681 ,92+402=412符合题意;C 选项,√2不是正整数 , 不符合题意;D 选项,22=4 ,32=9 ,42=16 ,22+32≠42不符合题意;故选:B .2.解:由题意得:这个直角三角形的另一条直角边长为√172−152=8(cm ), 则这个直角三角形的面积为12×8×15=60(cm 2),故选:A .3.解:设另一直角边为x ,则斜边为x +2,根据勾股定理得:(x +2)2=x 2+102,解得x =24,∴直角三角形的周长为10+24+26=60,故C 正确.故选:C .4.解:设正方形A 的边长为x ,根据图形可知x 2+64=100.解得x =6(负值舍去)故选:D .5.解:∵∠C =90°,AC =8,BC =6,∴AB =10.根据折叠的性质,BC =BC ′,CD =DC ′,∠C =∠AC ′D =90°.∴AC ′=10-6=4.在△AC ′D 中,设DC ′=x ,则AD =8-x ,根据勾股定理得(8−x )2=x 2+42.解得x =3.∴AD=8-x=5.故选B .6.解:如图所示,于是折断前树的高度是15+9=24(米).故选D.9.解:当AC边为斜边时:AC2=AB2+BC2=82+262=740,当AC边为直角边时:AC2=BC2−AB2=262−82=612,故答案为:612或740.10.解:当8为直角边时,由勾股定理可得:a2=62+82=100;当8为斜边时,由勾股定理可得:a2=82−62=28,故答案为:100或28.11.解:设BN=x,由折叠的性质可得DN=AN=9−x,∵D是BC的中点,∴BD=3,在Rt△BND中,x2+32=(9−x)2,解得x=4.故线段BN的长为4.故答案为:4.12.解:如图,展开圆柱的半个侧面是矩形,则AC即为最短路程(两点之间线段最短).由题意可知,这个矩形中,AD等于圆柱的底面周长的一半,即为3π=9厘米,CD等于圆柱的高,即为12厘米,则AC=√AD2+CD2=√92+122=15(厘米),即沿圆柱侧面爬行的最短路程是15厘米,故答案为:15厘米.13.解:展开图为:则AC=20dm,BC=3×3+2×3=15(dm),在Rt△ABC中,AB=√AC2+BC2=√202+152=25(dm).所以蚂蚁所走的最短路线长度为25 dm.故答案为:25.14.解:根据题意得:△ADE≌△AFE,∴AF=AD=13cm,在Rt△ABF中,AF=13cm,AB=12cm,∴BF=√132−122=5cm,∴FC=BC﹣BF=8cm.故答案为8cm.15.解:设AE=AC=x,∵∠ACB=90°,BC=8,BE=4,AE=AC,根据勾股定理,得AC2+BC2=AB2,即x2+82=(x+4)2,故答案为:x2+82=(x+4)2.16.解:作点A关于河边所在直线l的对称点D,连接DB交l于P,则点P为水泵站的位置,此时,(P A+PB)的值最小,即所铺设水管最短,最小值为DB的长;过B点作l的垂线,过D作l的平行线,设这两线交于点C,过A作AE⊥BC于E,则四边形ADCE和四边形AMNE都是矩形,∴EN=AM=2,EC=AD=2+2=4,DC=AE,即梯子顶端A下落了2米.20.解:(1)在ΔACB中,AC=300km,BC=400km,AB=500km ∵AC2+BC2=AB2∴ΔACB为Rt△,∴∠ACB=90∘(2)如图,作CG⊥AB∵SΔACB=AC⋅BC2又∵SΔACB=AB⋅CG2∴AC×BC=AB×CG∵AC=300km,BC=400km,AB=500km=240km∴CG=AC×BCAB故海港C到直线AB的最短距离为240km(3)会影响设DC=EC=260km在RtΔDGC中,DG2=DC2−CG2∵CG=240km,DC=260km∴DG=√2602−2402=100km同理可得:EG=100km∵DE=EG+DG∴DE=200km∵s=vt∵s=200km,v=72km/h∴t=259h故受到影响时间为259h21.(1)解:证明:∵点A,C,D依次在同一直线上,且AB∥DE.∴∠BAC=∠EDC又∵AC=DE,∠B=∠DCE=90°,在△ABC和△DCE中,{∠B=∠DCE=90°∠BAC=∠EDCAC=DE∴△ABC≌△DCE(AAS).(2)∵△ABC≌△DCE∴BC=EC,AC=DE,AB=CD,在Rt△ABC中,AB=12,BC=5,根据勾股定理可得AC=√AB2+BC2=√122+52=13,∴AD=AC+CD=13+12=25.答:AD的长是25.22.(1)证明:∵BE平分∠ABC,∴∠ABE=∠CBE,∵AD⊥BC,∴∠ADB=90°,∴∠AFE=∠BFD=90°-∠CBE,∵∠AEB=90°-∠ABE,∴∠AFE=∠AEF,∴AE=AF;(2)证明:∵FG∥BC,FM∥AC,∴四边形FMCG为平行四边形,∴FM=CG,∵FM∥CG,∴∠C=∠FMB,∵AD⊥BC,∴∠ADC=90°,∴∠DAC+∠C=90°,又∵∠BAF+∠DAC=90°,∴∠C=∠BAF,∴∠BAF=∠FMB,又∵∠ABF=∠MBF,BF=BF,∴△ABF≌△MBF(AAS),∴AF=FM,∴AF=CG;(3)解:如图2,过点F作FH⊥AB于点H,∵BF平分∠ABC,FD⊥BM,FH⊥AB,∴FD=FH,又∵BF=BF,∴△BDF≌△BHF(HL),∴BD=BH,设BD=3a,AB=5a,则AH=AB-BH=2a,∴AD=√AB2−BD2=4a设DF=HF=x,∴AF=4a-x,∵HA2+HF2=F A2,∴(2a)2+x2=(4a-x)2,∴x=32a,即DF=32a,∴AF=4a−x=4a−32a=52a,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020秋北师大版八年级数学上册
第一章勾股定理同步测试
一、选择题(本大题共10小题,共30分)
1.在△ABC中,AB=10,AC=2√10,BC边上的高AD=6,则另一边BC等于( )
A. 10 B. 8 C. 6或10 D. 8或10
2.下列各组线段能构成直角三角形的一组是( )
A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,6
3.如图,有四个三角形,各有一边长为6,一边长为8,若第三边分别为6,8,10,12,则面积最大的三角形是()
A. B.C.D.
4.一个木工师傅测量了一个等腰三角形木板的腰、底边和高的长,但他把这三个数据与其他的数据弄混了,请你帮他找出来,是( )
A.13,12,12 B.12,12,8 C.13,10,12 D.5,8,4
5.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC 于点D,则BD的长为()
A.4
5√5B.2
3
√5C.2
5
√5D.4
3
√3
6.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向
上拉升3cm至D点,则橡皮筋被拉长了()
A.2cm B.3cm C.4cm D.5cm
7.如图,在ΔABC中,AB=AC=10,AD⊥BC于点D,若AD=6,则ΔABC的周长是( ) A.36 B.40 C.38 D.32
8.若△ABC的三边长a,b,c满足(a-b)(a2+b2-c2)=0,则△ABC是( ) A.等腰三角形B.直角三角形
C.等边三角形D.等腰三角形或直角三角形
9.如图,将一根长为24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形
水杯中,设筷子露在杯子外面的长度为hcm,则h的取值范围是( )
A.12cm≤h≤19cm B.12cm≤h≤13cm
C.11cm≤h≤12cm D.5cm≤h≤12cm
10.如图所示,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,
两船相距( )
A.25海里 B.30海里 C.35海里 D.40海里
二、填空题(本大题共8小题,共32分)
11.如图,有一块田地的形状和尺寸如图所示,则它的面积为___ .
12.如图所示,李明从家出发向正北方向走了1200米,接着向正东方向走到离家2000米远的地方,这时,李明向正东方向走了米.
13.如图,在Rt△ABC中,∠B=90°,AB=3 cm,AC=5 cm,将△ABC折叠,使点C与点A重合,得折痕DE,则△ABE的周长等于________.
14.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在
同一直线上.若AB=2,则CD= .
15.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为______.
16.如图,是一长方形公园,若某人从景点A走到景点C,则至少要走米.
17.红方侦察员小马的正前方400 m处有一条东西走向的公路,突然发现一辆蓝方汽车在公路上行驶,他拿出红外线测距仪测得汽车与他相距400 m,10 s 后又测得汽车与他相距500 m,则蓝方汽车的速度是_______m/s.
18.观察以下几组勾股数,并寻找规律:
①3,4,5;
②5,12,13;
③7,24,25;
④9,40,41;…
18.请你写出有以上规律的第⑤组勾股数:.
三、计算题(本大题共6小题,共58分)
19.(8分)如图,已知在四边形ABCD中,∠A=90°,AB=2cm,AD=5cm,CD=5cm,BC=4cm,求四边形ABCD的面积.
19.(10分)如图所示,某人欲垂直横渡一条河,由于水流的影响,他实际上岸地点C偏离了想要到达的点B 140米(即BC=140米),其结果是他在水中实际游了500米(即AC=500米),求该河的宽度(即AB).
21. (10分)如图,一架长为5米的梯子AB斜靠在与地面OM垂直的墙ON上,梯子底端距离墙ON有3米.
(1)求梯子顶端与地面的距离OA的长.
(2)若梯子顶点A下滑1米到C点,求梯子的底端向右滑到D的距离.
22.(10分)如图,四边形ABCD是边长为a的正方形,点E在CD上,DE=b,AE =c,延长CB至点F,使BF=b,连接AF,试利用此图说明勾股定理.
23.(10分)如图,在长方形ABCD中,DC=5 cm,在DC上存在一点E,沿直线AE把△AED折叠,使点D恰好落在BC边上,设落点为F,若△ABF的面积为
30 cm2,求△ADE的面积.
24.(10分)如图所示,某住宅社区在相邻两楼之间修建一个上方是一个半圆,下方是长方形的仿古通道,现有一辆卡车装满家具后,高4米,宽2.8米,求这辆送家具的卡车能否通过这个通道.
答案提示
1.C 2.A 3.C.4.C 5.A
6.A. 7.A 8.D 9. C 10.D 11. 24
12.1600
13.7 cm
14.3﹣1.
15.15. 10
16.16.370
17.30
18.11、60、61.
19.解:连接BD.
∵∠A=90°,AB=2cm,AD=5,
∴根据勾股定理可得BD=3,
又∵CD=5,BC=4,
∴CD2=BC2+BD2,
∴△BCD是直角三角形,
∴∠CBD=90°,
∴S
四边形ABCD =S
△ABD
+S
△BCD
=
2
1
AB•AD+
2
1
BC•BD=
2
1
×2×5+
2
1
×4×3=5+6(cm2).
20.解析:把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决.
解:在RtΔABC中,AB2+BC2=AC2,所以AB2+1402=5002,解得AB=480.故该河的宽度AB 为480米.
21. 解:(1)AO =√52−32=4米;
(2)OD =√52−(4−1)2=4米,BD =OD −OB =4−3=1米.
22.解:在△ADE 和△ABF 中,
⎩⎨⎧AD =AB =a ,∠D =∠ABF ,DE =BF =b , 所以△ADE ≌△ABF. 所以AE =AF =c ,∠DAE =∠BAF , S △ADE =S △ABF . 所以∠EAF =∠EAB +∠BAF =∠EAB +∠DAE =∠DAB =90°, S 正方形ABCD =S 四边形AECF . 连接EF ,易知S 四边形AECF =S △AEF +S △ECF =12[c 2+(a -b)(a +b)]=12(a 2+c 2-b 2),S 正方形ABCD =a 2, 所以12(a 2+c 2-b 2)=a 2. 所以a 2+b 2=c 2. 23.解:由折叠可知AD =AF ,DE =EF.
由S △ABF =12BF ·AB =30 cm 2,
AB =DC =5 cm ,得BF =12 cm.
在Rt △ABF 中,由勾股定理,得AF =13 cm ,所以BC =AD =AF =13 cm. 设DE =x cm ,则EC =(5-x)cm ,
EF =x cm ,FC =13-12=1(cm).
在Rt△ECF中,由勾股定理,得EC2+FC2=EF2,即(5-x)2+12=x2,解
得x=13
5
.
所以S
△ADE =
1
2
AD·DE=
1
2
×13×
13
5
=16.9 (cm2).
24.解析:如图所示,卡车能否通过,关键是车高4米与AC的比较,BC为2.6米,只需求AB,在直角三角形OAB中,半径OA为2米,车宽的一半为DC=OB=1.4米,运用勾股定理求出AB即可.
解:如图所示,过直径的中点O作直径的垂线,交下底边于点D,如图所示,在RtΔABO中,由题意知OA=2,DC=OB=1.4,所以AB2=22-1.42=2.04,因为
4-2.6=1.4,1.42=1.96,2.04>1.96,所以卡车可以通过.。