电动力学 第2章 2-1

合集下载

电动力学第二章答案

电动力学第二章答案

1. 一个半径为R 的电介质球,极化强度为2/r K r P =,电容率为ε。

(1)计算束缚电荷的体密度和面密度: (2)计算自由电荷体密度; (3)计算球外和球内的电势;(4)求该带电介质球产生的静电场总能量。

解:(1)P ⋅-∇=p ρ2222/)]/1()/1[()/(r K r r K r K -=∇⋅+⋅∇-=⋅∇-=r r r)(12P P n -⋅-=p σR K R r r /=⋅==P e (2))/(00εεεε-=+=P P E D 内200)/()/(r K f εεεεεερ-=-⋅∇=⋅∇=P D 内(3))/(/0εεε-==P D E 内内rr frKRr Ve e D E 200200)(4d εεεεπερε-===⎰外外 rKRr)(d 00εεεεϕ-=⋅=⎰∞r E 外外)(ln d d 00εεεεϕ+-=⋅+⋅=⎰⎰∞r R K RR rr E r E 外内内(4)⎰⎰⎰∞-+-=⋅=R R rrr R K r r r K V W 42200222022202d 4)(21d 4)(21d 21πεεεεπεεεE D 20))(1(2εεεεπε-+=K R2. 在均匀外电场中置入半径为0R 的导体球,试用分离变量法求下列两种情况的电势:(1)导体球上接有电池,使球与地保持电势差0Φ; (2)导体球上带总电荷Q 解:(1)该问题具有轴对称性,对称轴为通过球心沿外电场0E 方向的轴线,取该轴线为极轴,球心为原点建立球坐标系。

当0R R >时,电势ϕ满足拉普拉斯方程,通解为∑++=nn n nn n P R b R a )(cos )(1θϕ 因为无穷远处 0E E →,)(cos cos 10000θϕθϕϕRP E R E -=-→ 所以 00ϕ=a ,01E a -=,)2(,0≥=n a n当 0R R →时,0Φ→ϕ所以 0101000)(cos )(cos Φ=+-∑+n nn nP R b P R E θθϕ 即: 002010000/,/R E R b R b =Φ=+ϕ所以 )2(,0,),(3010000≥==-Φ=n b R E b R b n ϕ⎩⎨⎧≤Φ>+-Φ+-=)()(/cos /)(cos 000230000000R R R R R R E R R R E θϕθϕϕ(2)设球体待定电势为0Φ,同理可得⎩⎨⎧≤Φ>+-Φ+-=)()(/cos /)(cos 000230000000R R R R R R E R R R E θϕθϕϕ当 0R R →时,由题意,金属球带电量Qφθθθϕθεϕεd d sin )cos 2cos (d 200000000R E R E S nQ R R ⎰⎰+-Φ+=∂∂-== )(40000ϕπε-Φ=R所以 00004/)(R Q πεϕ=-Φ⎩⎨⎧≤+>++-=)(4/)(cos )/(4/cos 00002300000R R RQ R R R R E R Q R E πεϕθπεθϕϕ 3. 均匀介质球的中心置一点电荷f Q ,球的电容率为ε,球外为真空,试用分离变量法求空间电势,把结果与使用高斯定理所得结果比较。

电动力学第二章

电动力学第二章


R r
y
r R l 2 Rl cos
2 2 2
2l
x -Q
求近似值:
r R 1 2l cos / R 1 2l cos R (1 ) R l cos 2 R
(l R)
同理
r R l cos
1 1 r r 2l cos 2l cos 2 2 2 2 r r r r R l cos R
1 R 2 / M 2 1 1 R 2 / M 2 1 0 P P0 lim ln 1 R 2 / M 2 1 1 R 2 / M 2 1 M 4 0 0
R2 1 R2 1 2 1 2 M 2M R02 R P P0 ln 2 ln 4 0 R 2 0 R0
2Ql cos 2QlR cos PR ( P) 2 3 3 4 0 R 4 0 R 4 0 R
x- y
平面为等势面(Z = 0的平面)。
若电偶极子放在均匀介质 中(无限大介质):
均匀介质中点电荷产生的束缚电荷分布在自由点电 荷附近,介质中电偶极子产生的势为自由偶极子与 束缚偶极子产生的势的迭加,设 Q p 为束缚电荷, 0 0 0 Q p (1 )Q Pp 2QP l ez 2Ql ez ( 1) ( 1) P
(4) W
1 dV中的 是由电荷分布 激发的电势; 2
(5)在静电场中,电场决定于电荷分布。在场内没有
独立的运动。因而场的能量就由电荷分布所决定。 (6)若全空间充满了介电常数为ε的介质,可得到电荷 分布ρ所激发的电场总能量
1 ( x) 1 ( x ) ( x) W ( x )dV dV dV r dV 2 4 r 8 与 点的距离。 式中r为 x x

电动力学-第二章练习题

电动力学-第二章练习题

第二章一、选择题1、 静电场的能量密度等于( ) A ρϕ21 B E D ⋅21 C ρϕ D E D ⋅ 2、下列函数(球坐标系a 、b 为非零常数)中能描述无电荷区电势的是( )A a 2rB a b r +3C ar(2r +b)D b ra + 3、真空中两个相距为a 的点电荷1q 和2q ,它们之间的相互作用能是( ) A a q q 0218πε B a q q 0214πε C a q q 0212πε D aq q 02132πε 4、电偶极子p 在外电场e E 中所受的力为( )A (∇⋅P )e EB —∇(⋅P e E )C (P ⋅∇)e ED (eE ⋅∇)P5、电导率为1σ和2σ,电容率为1ε和2ε的均匀导电介质中有稳恒电流,则在两导电介质面上电势的法向微商满足的关系为( ) A n n ∂∂=∂∂21ϕϕ B σϕεϕε-=∂∂-∂∂n n 1122 C nn ∂∂=∂∂2211ϕσϕσ D n n ∂∂=∂∂122211σσϕσ 6. 用点像法求接静电场时,所用到的像点荷___________ 。

A) 确实存在;B) 会产生电力线;C) 会产生电势;D) 是一种虚拟的假想电荷。

7.用分离变量法求解静电场必须要知道__________ 。

A) 初始条件;B) 电场的分布规律;C) 边界条件;D) 静磁场。

8.设区域V 内给定自由电荷分布)(x ρ,S 为V 的边界,欲使V 的电场唯一确定,则需要给定( )。

A. S φ或S n ∂∂φB. S QC. E 的切向分量D. 以上都不对9.设区域V 内给定自由电荷分布()ρx ,在V 的边界S 上给定电势s ϕ或电势的法向导数s n ϕ∂∂,则V 内的电场( )A . 唯一确定 B. 可以确定但不唯一 C. 不能确定 D. 以上都不对10.导体的静电平衡条件归结为以下几条,其中错误的是( )A. 导体内部不带电,电荷只能分布于导体表面B. 导体内部电场为零C. 导体表面电场线沿切线方向D. 整个导体的电势相等11.一个处于x ' 点上的单位点电荷所激发的电势)(x ψ满足方程( )A. 2()0x ψ∇=B. 20()1/x ψε∇=-C. 201()()x x x ψδε'∇=-- D. 201()()x x ψδε'∇=-12.对于均匀带电的球体,有( )。

电动力学二章答案

电动力学二章答案

习题二1.将一个位于真空中的带电导体球切成两半,求它们之间的排斥力.设球的半径为0R ,球的电势为0V .答案: .ˆ2200z e V F πε= 解:0004R q V πε=,0004V R q πε=,.00R V εσ=z z eV e R F ˆ2ˆ22002002πεπεσ=⋅= 2.内外半径分别为a 和b 的无限长圆柱形电容器,单位长度荷电为f λ,板间填充电导率为σ的非磁性物质.⑴证明在介质中任何一点传导电流与位移电流严格抵消.因此内部无磁场.⑵求f λ随时间的衰减规律.⑶求与轴相距为r 的地方的能量耗散功率密度.⑷求长度为l 的一段介质总的能量耗散功率,并证明它等于这段的静电能减少率. ⑵;0tf eεσλλ-=⑶22⎪⎪⎭⎫⎝⎛r f πελσ;⑷.ln 222a bl f πελσ 解:⑴r f e r D ˆ2πλ= ,.ˆ2r fe rD E πελε==.ˆ2r f f e r E J πεσλσ== .ˆ21r fD e tr t D J ∂∂=∂∂=λπ对两式求散度,并且由f D ρ=⋅∇ ,0=∂∂+⋅∇tJ ff ρ得f f tλεσλ-=∂∂,所以 0=∂∂+tDJ f 。

因为介质是非磁性的,即H Bμ=,故任意一点,任意时刻有 000=⎪⎪⎭⎫⎝⎛∂∂+=⨯∇=⨯∇t D J H B fμμ⑵由f f tλεσλ-=∂∂,解这个微分方程得 ()tf e t εσλλ-=0⑶()222/r E E J p f f πελσσ==⋅=⑷长度为l 的一段介质耗散的功率为.ln 222222a b l rldr r f baf πελσππελσ=⎪⎪⎭⎫⎝⎛⎰ 能量密度()22/,21r tw D E w f πελσ-=∂∂⋅= 长度为l 的一段介质内能量减少率为.ln 2222ab l rldr t wf baπελσπ⎰=∂∂-3.一很长的直圆筒,半径为R ,表面上带有一层均匀电荷,电荷量的面密度为σ.在外力矩的作用下,从0=t 时刻开始,以匀角加速度α绕它的几何轴转动,如图所示.⑴试求筒内的磁感应强度B;⑵试求筒内接近内表面处的电场强度E和玻印廷矢量S ;⑶试证明:进入这圆筒长为l 一段的S 的通量为⎪⎪⎭⎫⎝⎛2022B l R dt d μπ. 答案: ⑴ωσμR B 0=;⑵ωασμe eRr E r ˆˆ210⨯= ;r e r R S ˆ212320ασμ-= .解:⑴单位面电流ωσσπR lTRl i ==2 ωσμμR ei B z 00ˆ== ⑵在圆筒的横截面内,以轴线为心,r 为半径作一圆,通过这圆面积的磁通量为ωσμπR r S d B s02=⋅=Φ⎰由法拉第定律,得 .21210dtd Rr dt d r E ωσμπ-=Φ-=因为 t αω=所以ασμrR E 021-= 考虑到方向,则有z r e erR E ˆˆ210⨯=ασμ 在筒内接近表面处,z r e eR E ˆˆ2120⨯=ασμ 该处的能流密度为()()z z r R R R e R e eR H E S ˆˆˆ2120ωσασμ⨯⨯=⨯= r et R ˆ212320ασμ-= 负号表明,S 垂直于筒表面指向筒内。

电动力学 第二章 习题解答1

电动力学 第二章 习题解答1

⎛ ⎝
ε0 ⎞ ⎟ p 。 pf 和 p ′ 共同产生的电势为 ε1 ⎠ f
(1)
ϕ偶 =
pf i R p′i R p iR + = f 3 3 3 4πε 0 R 4πε 0 R 4πε1 R
2
设球面上极化电荷产生的电势为 ϕ ′ , ϕ ′ 满足: ∇
ϕ ′ = 0 。空间总电势为
ϕ = ϕ偶 + ϕ ′ =
于是
⎧ϕ1 = Φ 0 ⎪ 3 ⎨ (Φ 0 − ϕ0 ) R0 E0 R0 + 2 cos θ ⎪ϕ 2 = ϕ0 − E0 R cos θ + ⎩ R R (二)导体球上带总电荷 Q ,这时
(5) (6)
⎧ ⎪ ⎪ϕ2 R →∞ = ϕ0 − E0 R cos θ ⎪ / ⎨ϕ2 R = R0 = ϕ1 R=R0 = Φ 0 ⎪ ∂ϕ 2 Q ⎪ = ⎪− ∫∫ S ∂n dS ε0 R = R0 ⎩
⎛ ⎝
a2 ⎞ ⎛ a ⎞ ⎟ 处的电荷 ⎜ − q ⎟ 及球 r ⎠ ⎝ r ⎠
心(0,0,0)处的点电荷 ⎜
⎛a ⎞ q ⎟ 代替。这样,在点 (0,0, a + ) 处,场强 E 为 ⎝r ⎠
⎡ a r)q ⎤ ( q 1 ⎢(a r ) q ⎥ ez − − E= 4 πε 0 ⎢ a 2 (r − a ) 2 ( a − a 2 r )2 ⎥ ⎣ ⎦
球内、外电势分别为:
pf i R + ϕ′ 4πε1 R 3
⎧ bn ⎞ pf i R ⎛ n ⎪球内 : ϕ1 = 4πε R 3 + ∑ ⎜ an R + R n +1 ⎟ Pn (cos θ ) ⎠ n ⎝ ⎪ 1 ⎨ ⎪球外 : ϕ = pf i R + ⎛ c R n + d n ⎞ P (cos θ ) ∑ ⎜ n R n+1 ⎟ n 2 ⎪ 4πε1 R 3 n ⎝ ⎠ ⎩

电动力学

电动力学

4. 磁场的散度
磁场的通量
磁场的散度 S 任意
S B dS 0
S B dS V ( B)dV 0
B 0
恒定磁场的另一基本方程。
B 0J
B 0
结论: 恒定磁场 ——无源,有旋
5. 例题(p.13 例)
电流 I 均匀分布于半径为 a 的无穷长直导线内,求空
间各点磁感应强度,并由此计算磁场的旋度。
1. 介质的概念
介质
分子
原子核:正电荷 电子: 负电荷
电中性 分子电流杂乱
宏观物理量 ← 微观量的平均 (宏观无穷小 内包含 大量的微观粒子)
外场
正负电荷相对位移,极性分子取向 —— 极化
分子电流取向规则化
—— 磁化
束缚电荷(极化电荷)→ 附加电场 E’
诱导电流(磁化电流等)→ 附加磁场 B’
2. 介质的极化
r
dV
'
JdV ' JdSdl Idl
B( x)
0 4
Idl
r
r3
3. 磁场的环量和旋度
安培环路定理:
L B dl 0I 0 S J dS
磁场的旋度
L B dl S ( B) dS
S 任意
B 0J
讨论: (1) 安培环路定理的微分形式,恒定磁场的基本方程 (2) 某点磁场的旋度只与该点的电流密度有关

t
(1) 法拉第电磁感应定律的微分形式
(2) 感应电场是有旋场
(3) 感应电场是由变化磁场激发的
2. 位移电流
电荷守恒定律
J
0
非恒定电流
磁场旋度
t
B 0J
矛盾!?
B 0 J 0

郭硕鸿《电动力学》课后答案

郭硕鸿《电动力学》课后答案

郭硕鸿《电动力学》课后答案第 2 页电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:B A B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇ A A A A )()(221∇⋅-∇=⨯∇⨯A 解:(1))()()(cc A B B A B A ⋅∇+⋅∇=⋅∇B A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=cc c c B A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=(2)在(1)中令B A =得:AA A A A A )(2)(2)(∇⋅+⨯∇⨯=⋅∇,所以 A A A A A A )()()(21∇⋅-⋅∇=⨯∇⨯ 即 A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u u f u f ∇=∇d d )( , u u u d d )(A A ⋅∇=⋅∇, uu u d d )(AA ⨯∇=⨯∇ 证明: (1)z y x z u f y u f x u f u f e e e ∂∂+∂∂+∂∂=∇)()()()(zy x zuu f y u u f x u u f e e e ∂∂+∂∂+∂∂=d d d d d du uf z u y u x u u f z y x ∇=∂∂+∂∂+∂∂=d d )(d d e e e(2)z u A y u A x u A u z y x ∂∂+∂∂+∂∂=⋅∇)()()()(A zuu A y u u A x u u A z y x ∂∂+∂∂+∂∂=d d d d d du z u y u x u u A u A u A z y x z z y y x x dd)()d d d d d d (e e e e e e ⋅∇=∂∂+∂∂+∂∂⋅++=第 3 页(3)u A u A u A zu y u x u uu z y x zy x d /d d /d d /d ///d d ∂∂∂∂∂∂=⨯∇e e e Azx y y z x x y z yu u A x u u A x u u A z u u A z uu A y u u A e e e )d d d d ()d d d d ()d d d d (∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=zx y y z x x y z yu A x u A x u A z u A z u A y u A e e e ])()([])()([])()([∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=)(u A ⨯∇=3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x 的距离,r 的方向规定为从源点指向场点。

电动力学 第三版_郭硕鸿_课后答案[第2章]

电动力学  第三版_郭硕鸿_课后答案[第2章]

1. 一个半径为R 的电介质球极化强度P=K2r r电容率为(1) 计算束缚电荷的体密度和面密度(2) 计算自由电荷体密度(3) 计算球外和球内的电势(4) 求该带电介质球产生的静电场总能量解(1)2222/)11(rK r rr r K r r K P P −=⋅∇+⋅∇−=⋅∇−=⋅−∇=r r r r ρ RP P P n )(12rr r −⋅−=σ 又球外无极化电荷02=P r RK rr K n P n RRp /21=⋅=⋅=r r rr σ(2) 由公式 E D rr ε= PE D rr r +=0εεεε−=P D r r200)(rKP D f εεεεεερ−=⋅∇−=⋅∇=r r`(3)对于球外电场由高斯定理可得∫=⋅0εQs d E rr外 022002sin )(4εϕθθεεεερπ∫∫∫∫⋅−==⋅∴d drd r r KdV r E f 外r r r )(300r rεεεε−∴KRE 外同理可得球内电场20r rK E rr ⋅−εε内球外电势外外r)(rd 00εεεεϕ−⋅∴∫∞∞KRE rrrR ln)(rd rd 000rεεεεεεϕ−+−⋅⋅∫∫∞K KE E RR球内电势内外内rr r r42022020r2rrr r 2121内内内εεεεεεεεωK K K E D r r r r ⋅⋅⋅⋅⋅∴ ∫∫∫∫−⋅−⋅∴2022202)2d drd sin r r )(21d εεπεϕθθεεεωK R K V W 内内∫∫∫∫−⋅⋅−⋅=2002224200222)(2d drd sin r r 1)(21dεεεπεϕθθεεεεωRK R K V W R 外外200))(1(2εεεεπε−+=∴K R W W W 外内2 在均匀外电场中置入半径为0R 的导体球试用分离变数法球下列两种情况的电势1导体球上接有电池使球与地保持电势差;0φ2 导体球上带总电荷Q.解1当导体球上接有电池与地保持电势差0φ时以地为电势零点本问题的定解条件如下φφ内R=0R02外ϕ∇R>0R 且 =−==∞→0000cos φϕϕθϕR R R R E 外外0ϕ是未置入导体球前坐标原点的电势根据有关的数理知识可解得)cos R Ran 1n nnnn θϕ外P b ∑∞由于00cos ϕθϕ外R E R −=∞→即021210210cos )(cos cos )(cos cos a ϕθθθθθϕ+−=+++++∞→∞=+∞=∑∑R E P RbR b R b P R a R a R n n n n n n nn 外故而有)1(0),1(0,,0100>=>=−==n b n a E a a n n ϕθθϕϕcos b cos21000Rb R R E +∴外又020100000cosb cos ,0φθθϕϕφϕ=+−====R b R R E R R R R 即外外故而又有=+−=+∴0cos cos 201000000θθφϕR b R E R b 得到 20010000,)(R E b R b =−=ϕφ最后得定解问题的解为)(cos )(cos 03000000R R RR E R R R E >+−++−=θϕφϕθϕ外2当导体球上带总电荷Q 时定解问题存在的方式是=∂∂−+>∇<∇∫∞→→)(ds (Rcos )(0)(00sR 000R 0R 02020R R Q R E R R R R R 原点的电势是未置入导体球前坐标有限外外内外内外内φεφφϕϕθφφφφ解得满足边界条件的解是∑=0n n n n cos R 内θϕP a ∑=0n n1n n00cos R Rcos 外θθϕϕP b E由于∞→R 外ϕ的表达式中只出现了)1(0cos cos (1>=n b P n 项故θθθθϕϕcos b cos 21000Rb R R E +∴外又有0R R =外ϕ是一个常数导体球是静电平衡C R b R R E R R =+−==θθϕϕcos b cos 201000000外3001201000cos cos R E b R b R E ==+−∴即θθθθϕϕcos cos 230000RR E R b R E ++外 又由边界条件Q 外∫∂∂−sds rφε 004πεQ b =∴,000R 4R R Q <−∴ϕπεϕ内023000Rcos cos R 4R R E RR E Q>+外θθπεϕ3均匀介质球的中心置一点电荷f Q 球的电容率为ε球外为真空试用分离变数法求空间电势把结果与使用高斯定理所得结果比较提示空间各点的电势是点电荷f Q 的电势RQ πε4f与球面上的极化电荷所产生的电势的叠加后者满足拉普拉斯方程解一. 高斯法在球外0R R >,由高斯定理有fP f Q Q Q Q s d E =+=⋅∫总rr 0ε对于整个导体球而言束缚电荷)0=P Q 204R Q E f πε=∴r积分后得是积分常数外C C RQ .(40f +πεϕ又由于0,0=∴=∞→C R 外ϕ)(400R R RQ f >=∴πεϕ外在球内0R R <,由介质中的高斯定理∫=⋅fQ s d D r r又24,R Q E E D f πεε=∴=rrr积分后得到是积分常数内22f.(4C C RQ +πεϕ由于20f 44,0C R Q R Q f R R +==πεπεϕϕ故而有外内).(4400002R R R Q R Q C f f<−=∴πεπε)(44400f0ff R R R Q R Q RQ <−∴πεπεπεϕ内二. 分离变量法本题所求的电势是由点电荷f Q 与介质球的极化电荷两者各自产生的电势的叠加且有着球对称性因此其解可写作'4ϕπεϕ+=R Qf 由于'φ是球对称的其通解为R b a +='ϕ由于球心有f Q 的存在所以有∞→内R ϕ 即a4内RQ f πεϕ在球外有外0R ∞→ϕ 即Rb 4f 外R Q πεϕ 由边界条件得f 0fRb4a 4,0R R Q R Q R ++πεπεϕϕ即外内20f20020f 0R4b 4,RR 0R Q R R Q R πεεεπεεϕεϕε−=−∂∂∂∂即外内)11(4a),11(400f 0εεπεεπε−−=∴R Q Q b f<−>∴00f00f f 00f ,444,R4R R R Q R Q R Q R R Q πεπεπεϕπεϕ内外4 均匀介质球电容率为1ε的中心置一自由电偶极子fPr球外充满了另一种介质电容率为2ε求空间各点的电势和极化电荷分布提示同上题'431φπεφ+⋅=RR P f r r ,而'φ满足拉普拉斯方程解RR∂∂=∂∂外内φεφε21又内∑+−=∂∂l 1l 0l 31f 11l 4cos 2(0P R A R P R R πεθεφε∑−−=∂∂外l 2l 0l301f 221l (4cos 2(0P R B R P RR πεθεφε比较系数)(cos θl P B00A0030113012312113,24242R B A R B R A R ff=−−=+及επερεεπρ得)2(4)(2,)2(4)(22112113211211εεπερεεεεπερεε+−=+−=f fB R A 比较的系数)(cos 2θP 40224221,32R B A R B R A=ε及011(012=+R A ε所以0,022==B A 同理)3,2(,0L ===l B A l l 最后有)(,)2(4)(24cos )2(4)(2403211213132112131R R R RR R R R R R f f f f <+⋅−+⋅=+−+⋅εεπερεεπερθεεπερεεπερφrrr rr r内)(,)2(43)2(4)(24cos )2(4)(2403213211213122112131R R RR RRRRRRR f f f f f >+⋅=+⋅−+⋅=+−+⋅εεπρεεπερεεπερθεεπερεεπερφr r rrr r r r 外- 7 -球面上的极化电荷密度n P P n n P r,21−=σ从2指向1如果取外法线方向则nn n n p P P )])[()])[(0102内外球外φεεφεεσ∇−−∇−=−= 0)()(0102R RRR内外∂∂−+∂∂−−=φεεφεε]cos )2(4)2(2)(2)2(4cos )(6)[()2(4cos 6)(32112121321200132102θρεεπεεεεεεεπθρεεεεεεπθρεεf f f R R R ++−−−+−−−+−−= θρεεπεεεεθρεεπεεεεεεεcos )2(2)(3cos )2(4)(6)(632112103211012201f f R R +−−=+−+−=求极化偶极子l q P f r r=可以看成两个点电荷相距l 对每一个点电荷运用高斯定理就得到在每个点电荷旁边有极化电荷 ))(1(,)1(1010f P f P q q q q −−=−−=εεεε两者合起来就是极化偶极子 fP P P r r )1(1−=εε5.空心导体球壳地内外半径为R 1和R 2球中心置一偶极子Pr球壳上带电Q 求空间各点电势和电荷分布解+⋅=∞====∇→→∞→为有限值0'1'1301022332,4,0,0r r r r r P C φφπεφφφφφr r=∂∂+∂∂−+⋅====∫∑∫∑===−+013301223131212)(cos 4,),(cos εφφθπεφφφφθφQdS rdS r P r A r r P CC CP r B R r R r l ll f R r R r l l l rrφ=+++=+++CR A A R P C P R B R B R B f L L θπεθθcos 4cos cos 110210232222120即)4.3.2(0),3.2.1(0,0cos )4(,2111200L L =====+==l A l B R P R A C R B A l l f θπε∑∑+−−=−−=∂∂++−=+−=∂∂+−L L θφθπεθπεθφcos 2)1(cos 2cos 4cos 2311210231310113101R B R B P r B l r A R P P R lA R P r l l l f L l l f 又则∫∫∫====∂∂−02121210210344B R B R dS R B dS R B dS r ππφ000sin cos 4sin cos 220021310200213101=+=−+−=∂∂∫∫∫∫∫ππππϕθθθπεϕθθθπεφd d R R P d d R R P dS r f f 故∫∫==∂∂+∂∂−00134επφφQB r dS r 3101200004,4,4R P A R Q A Q B f πεπεπε−===最后有<<=>=<+⋅−⋅=)(,4)(,4)(,44421202203120310201R r R R QR r r Q R r R QR r P r r P f πεφπεφπεπεπεφr r r r 电荷分布在r R 1的面上313131104cos 4cos 2cos 1R P R P R P r f f f Pπθπθπθφεσ−=−+−=∂∂=在r R 2面上223042R Qr P πφεσ=∂∂−=6在均匀外电场0E r中置入一带均匀自由电荷f ρ的绝缘介质球ε求空间各点的电势解=∇++∑+061)(cos )('2'21φφρεφθφr P r B r A f l l l ll内外内φ是由高斯定理解得的f ρ的作用加上0E r的共同作用'0,cos →∞→−=r r r E φθφ外有限++∑∑+)(cos61)(cos cos 210θρεφθθφl l e f l l l P r c r P r B r E 内外:)0R r =外内φφ++++23022010000cos P R BR B R B R E θ ++++22020120cos 610P R c R c c R f θρε即000206R B c R f =+ερ012100R c R B R E =+20232R c R B =rr ∂∂=∂∂外内φεφε∑+−−+−=∂∂)1(cos (200l l l R P B l E rθεφ外]L +++= +=∂∂∑−202101002cos 3)(cos 3P R c c R P R lc R r f l l l f εθερθερφ内LL+−−−−2423123cos2cos PRBRBRBEεθεεθε即23RBRfερ−=3112RBECεεε−−=LL42232RBRCεε−=解方程得fRBρε303−=)6131(20εερ+−=fRC33123REREB++−=εεε123εεε+−=EC及2232CRRCεε−=即0)32(2=+RRCεε022==BC同理0==llBC LL3,2=l得<+±>+−+±22223233,cos236131(6,cos)2(3cos3cosRrrERrRrrRErRErRrEfffθεεεεερερφθεεεθερθφ内外7在一个很大的电解槽中充满电导率为2σ的液体使其中流着均匀的电流0fδ今在液体中置入一个电导率为1σ的小球求稳衡时电流和电荷分布讨论21σσ>>及12σσ>>两种情况的电流分布特点先求空间电势∇∇22外内φφ外内φφRr=因为)(Rrnn=外内δδ稳恒电流认为表面无电流堆积即nn流出流入=故rr222221外内φσφσ=并且δδ=∞→r外即θφcosrEr−=∞→外()02Ej fσ=有限内∞→rφ可以理解为在恒流时0→r的小封闭曲面流入流出这时的解即为>+−+<022121300000212,cos )2(cos ,cos 23R r rR E r E R r r E θσσσσθφθσσσφ外内求内外电场)22sin 12222(φθφθθφφφe r e r e E r rr rΦ++−=−∇=)sin (cos 23)22122(0212θθθθσσσθφφe e E e r re E r r r r rr r−+=+内内内ze E r021223σσσ+=[]θθθθσσσσθθe e r R E e e E E r r rr r r sin cos 2)2()sin (cos 212133000++−+−外[]θθθθθσσσσθθe e e rR E e e E r r r rr r r r sin cos cos 3)2()sin (cos 212133000+−+−+−−+−+30302121300cos 3)2(r E e r E R E r v v θσσσσ求电流 根据内内E j vr1σ 外外E j v v2σ 及 =⋅=r f f e r r r E rr r j E j r vr v v v5025020cos )(0θσσ得])(3[2,2335302121211000rj rrr j R j j j j f f f r rr r r r −⋅=σσσσσσσ内外内)(2cos 3)()(2121000120σσσσθεεεω−+=−=−=E E E E E nn n n f 内外8.半径为0R 的导体球外充满均匀绝缘介质ε导体球接地离球心为a 处)(0R a >置一点电荷f Q 试用分离变数法求空间各点电势证明所得结果与镜像法结果相同提示).()(cos )(1cos 211022a R P aR a aR a R rn n n>=−+=∑∞=θθ解1分离变数法由电势叠加原理球外电势''f,4φφπεφ+RQ 外是球面上感应电荷产生的电势且满足定解条件 ==>=∇=∞→00)(,00''2R r r R r 外φφφ根据分离变数法得)(,)(cos 001'R r P r B l l l l>=∑∞=+θφ ∑∞=++−+∴0122f )(cos cos 214l l l lP rB ar r a Q θθπεφ外*)(,)(cos )(cos )(14010a r P rB P a r a Q l ll ln n n f <+=∑∑∞=+∞=θθπε 又0)(cos ])(4[100=+=∑∞=+=n l l oll fR r P R B a R a Q θπεφ外即 0)(4,...,04,0410201000=+=+=++l ll f f fR B a R a Q R B a R a Q R B a Q πεπεπε,4,4,41203100aQ a R B a Q a R B a Q R B fl l l f O fπεπεπε+−=−=−=∴代入*式得解如图建立坐标系本题具有球对称性设在球内0r 处有像电荷'Q ,'Q 代替球面上感应电荷对空间电场的作用由对称性'Q 在O f Q 的连线上先令场点P 1在球面上根据边界条件有常数即=−==+fQ Q Q Q f Q Q r r r Q r Q f f'''',0将'Q 的位置选在使∆'Q P 1O∆f Q P 1O,则有常数aR r r fQ Q 0'=为达到这一目的令'Q 距圆心为r 0则 aR r a R R r 200000,==并有aQ R Q aR Q Q r r f f Q Q f0'0''−===−=常数这样满足条件的像电荷就找到了空间各点电势为).(],cos 2)(cos 2[414422020222'1a r aR r a R r aQ R ar r a Q r Qr Q fff >++−−+=+=θθπεπεπεφ外将分离变数法所得结果展开为Legend 级数可证明两种方法所求得的电势相等9接地的空心导体球的内外半径为R 1和R 2在球内离球心为a(a<R 0)处置一点电荷Q 用镜像法求电势导体球上的感应电荷有多少分布在内表面还是外表面解球外的电势及导体内电势恒为0而球内电势只要满足即可内01r =R φ因此做法及答案与上题同解略cos 2cos 2[412124121220θθπεφa R R aRR a QR Ra a R Q−+−−+=内因为球外0=φ故感应电荷集中在内表面并且为Q.R 1R 2P210.上题的导体球壳不接地而是带总电荷Q 0,或使其有确定电势0ϕ试求这两种情况的电势又问0ϕ与Q 0是何种关系时两种情况的解是相等的解由于球壳上有自由电荷Q 0并且又是导体球壳故整个球壳应该是等势体其电势用高斯定理求得为2004R Q Q πε+所以球壳内的电势将由Q 的电势像电荷aQR 1−的电势及球壳的电势叠加而成球外电势利用高斯公式就可得故>+=<++−+−−+==)(,4)].(cos 2cos 2[412001202124121220R R RQ Q R R R Q Q a R R aR R a QR Ra a R Q πεφθθπεφφ外内或>=<+−+−−+==)(,).(cos 2cos 2[41202102124121220R R r R R R a R R a R R a QR Ra a R Q φφφθθπεφφ外内当20004R Q Q πεφ+=时两种情况的解相同11在接地的导体平面上有一半径为a 的半球凸部如图半球的球心在导体平面上点电荷Q 位于系统的对称轴上并与平面相距为bb>a 试用电象法求空间电势解如图利用镜像法根据一点电荷附近置一无限大接地导体平板和一点电荷附近置一接地导体球两个模型可确定三个镜像电荷的电量和位置rb r Q Q rba r Qb a Q rb a r Q b a Q rr r−=−=−===−=33222211,,,θθθπεφcos 2cos 21cos 21[4224222220R b a ba Rb aRb b R Rb b R Q +++++−−+=O12. 有一点电荷Q 位于两个互相垂直的接地导体平面所围成的直角空间内它到两个平面的距离为a 和b 求空间电势解可以构造如图所示的三个象电荷来代替 两导体板的作用−++−+−−−+−+−=222022200)()()(1)()()(1[4b z a y x x b z a y x x Q πεφ )0,()()()(1)()()(122202220>++++−+−+++−−z y b z a y x x b z a y x x 13.设有两平面围成的直角形无穷容器其内充满电导率为的液体取该两平面为xz 面和yz 面在x 0,y 0,z 0和x 0,y 0,-z 0两点分别置正负电极并通以电流I 求导电液体中的电势解本题的物理模型是由外加电源在A B 两点间建立电场使溶液中的载流子运动形成电流I,当系统稳定时是恒定场即0=∂∂+⋅∇t j ρr 中对于恒定的电流可按静电场的方式处理于是在A 点取包围A 的包围面∫=⋅nQ s d E εr r 而又有σ⋅=⋅=∫E i s d i I rr r r }∫⋅=⇒sd E I r r σ1∴有σεεσ111I Q QI =⇒=对BQ σε1I Q Q B −=−=又在容器壁上,0=n j r即元电流流入容器壁由Ej r rσ=有0=n j r时=n E r∴可取如右图所示电像B(x 0,y 0,z 0)y14.画出函数dx的图说明)()(x P δρ∇⋅−=是一个位于原点的偶极子的电荷密度解=∞≠=0,0,0)(x x x δx x x x dx x d x ∆−∆+=→∆)()(lim )(0δδδ10)(0=≠dxx d x δ时2=∆∞−=>∆=→∆x dxx d x x 0lim )(,0x a 00δ时 +∞=∆∞−=<∆→∆xdx x d x b x 0lim )(,0)0δ15证明1)0).((1)(>=a x a ax δδ若a<0,结果如何20)(=x x δ证明1根据∑−=)(()](['kk x x x x φδφδ所以ax ax )()(δδ=2从)(x δ的定义可直接证明有任意良函数f(x),则)()(x F x x f =⋅也为良函数∫=⋅==0)()()(0x x x f dx x x x f δ16一块极化介质的极化矢量为)('x P r r 根据偶极子静电势的公式极化介质所产生的静电势为∫⋅=V dV r rx P '3'4)(πεϕr r r 另外根据极化电荷公式,)(''P n x P P P r r r r r r ⋅=⋅−∇=σρ及极化介质所产生的电势又可表为∫∫⋅+⋅∇−=S V r Sd x P dV r x P 0'''0''4)(4)(πεπεϕr r r r r 试证明以上两表达式是等同的证明∫∫∇⋅=⋅=VVdV rx P dV r r x P '''0'3'01)(41)(41r r rr r πεπεϕ 又有r P r P r P p 11)1('''∇⋅+⋅∇=∇r r r 则][41])([41'''''''''0∫∫∫∫⋅+⋅∇−=⋅∇+⋅∇−=S V V V S d r P dV r P dV r P dV r P r r r r r πεπεϕ ][41][41'0'''0∫∫∫∫+=⋅+⋅∇−=S P V P S V dS r dV rdS r n P dV r P r s rr r σρπεπε刚好是极化体电荷的总电势和极化面电荷产生的总电势之和17证明下述结果并熟悉面电荷和面偶极层两侧电势和电场的变化1 在面电荷两侧电势法向微商有跃变而电势是连续的2 在面偶极层两侧电势有跃变 P n rr ⋅=−0121εϕϕ而电势的法向微商是连续的各带等量正负面电荷密度σ±而靠的很近的两个面形成面偶极层而偶极矩密度.)lim 0l P l r rσσ→∞→=证明1如图可得,20εσss E ∆⋅=∆⋅ 022,200210=−=−=∴z z E εσεσφφεσ面z e E n r r 01112εσφ==∂∂ )(20222z e E nr −==∂∂εσφ 02211εσφφ=∂∂−∂∂∴n n 2)可得ze E r r 0εσ= 00012limlim εεσφφP n l n l E l l r r r r r r ⋅=⋅=⋅=−∴→→ 又E nE n r r =∂∂=∂∂21,φφ++z12lr.012=∂∂−∂∂∴nn φφ18.一个半径为R 0的球面在球坐标20πθ<<的半球面上电势为0ϕ在πθπ<<2的半球面上电势为0ϕ−求空间各点电势提示=−===+−=⋅⋅−⋅⋅⋅⋅⋅−+∫)(,)1()(,0)0(1)1(,12)()()(642)1(531211011偶数奇数n n P P n x P x P dx x P n n n n n n n 解=∞<=∇∇∞→→0022r r 外内外内φφφφ≤<−<≤===πθπφπθφθφ2,20,)(000f R r ∑=)(cos θφl l l P r A内 这是内φ按球函数展开的广义傅立叶级数l l r A 是展开系数∫∫⋅−+=+==−πθθθφθθφ011]sin )(cos [212]cos )(cos [21200d P l d P l f R A l R l R l ll 内内]sin )(cos sin )(cos [21220200∫∫+−+=πππθθθφθθθφd P d P l l l ])()([212100010∫∫−−+=dx x P dx x P l l l φφ ∫∫+−+=−10010)()([212dxx P dx x P l l l φ由)()1()(x P x P l ll −=−则])()()1[(2121010100∫∫+−+=+dx x P dx x P l R A l ll φ∫+−=+1010)(]1)1[(2dxx P l l φ当l 为偶数时00=ll R A当l 为奇数时有101101010012)()()12()(]1)1[(212+−+=+−+=−++∫l x P x P l dx x P l R A l l l l ll φφ ])1(642)2(531)1()1(642531)1[(2121−⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−−+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−−=−+l l l ll l φ ])1(642)2(531)1()1(642531)1[(2121−⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−++⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−=−−l l l ll l φ )12()1(642)2(531)1()11()1(642)2(531)1(210210++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=++−⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=−−l l l l ll l l l φφ则 )12()1(642)2(531)1(2100++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=−l l l R A l ll φ∑<++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=−)(),(cos ))(12()1(642)2(531)1(00210R r l P R rl l l l l l 取奇数内θφφ∑+)(cos 1θφl l lP r B 外又)12()1(642)2(531)1(])(cos [212211110++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=+=−−+∫l l l P l r B l l R l lφθφ外即∑>++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=+−)(),(cos ))(12()1(642)2(531)1(01021R r l P rR l l l l l l 为奇数外θφ。

电动力学-第二章(习题)解析

电动力学-第二章(习题)解析
使其0 与具有Q确0 何定种电关势系时0,,试两求情这况两解种相情等况。电势,又问
解:因为球壳不接地,球外电势不为零。而球内电
势可利用叠加原理,由 Q 的电势,象电荷Q 的电
势和球壳电势组成,取无穷远处为电势0点,球内电
势的定解条件为
Q
而球外电势可直接由高 斯定理求出:
[( 2
0)
2
r
(1
0)
1
r
]
|R0
30 (1 2 1(1 2
2 2
) ) R03
pf
cos
p
3 0 (1 2 ) 2 1(1 2 2 )R03
pf
cos
5、空心导体球壳的内外半径为R1和R2, 球中心置一偶极子 ,球p 壳上带电Q, 求空间各点电势和电荷分布
解:该问题具有轴对称性,对称轴为 通过球心沿 p 方向的轴线。取此线为 轴线,球心为原点建立球坐标系。取 无穷远处为电势0点。
电势0点。介质球半径为 ,球外为真空,该问题具
有球对称性。设球内外势分别用
表示。
对球外,无电荷,拉普拉斯方程。对球内可以看成点电荷与介质 球的极化电荷各自产生电势的叠加
由于球对称
使用高斯定理 在球外由高斯定理有
0 D2 • d S Qf
S
2
r
Qf
4 0r2
r0
•dr
Qf
4 0r
,
在球内由介质中高斯定理有
E2
Qf
4 0r 2
r0
(r R0 )
D1 • d S Qf D1 E1
S
E1
Qf
4r 2
r0
1
2
|R0
R0 r
Qf

《电动力学》电像法

《电动力学》电像法
• §2.3 电像法
– 电像法的概念和适用条件
–接地无限大平面导体板附近有一点电荷 – 导体球外(内)空间有一点电荷
一、电像法的概念和适用条件
1. 求解泊松方程的难度
一般静电问题可以通过求 解泊松方程或拉普拉斯方程 得到电场。但是,在许多情 况下非常困难。例如,对于 介质中、导体外存在点电荷 的情况,求解比较困难。 求解的困难主要是介质分 界面或导体表面上的电荷一 般非均匀分布的,造成电场 缺乏对称性。
a)做替代时,所研究空间的泊松方程不能被改变(即自由 点电荷位置、Q 大小不能变)。所以假想电荷必须放在 所求区域之外。 b)不能改变原有边界条件(实际是通过边界条件来确定假 想电荷的大小和位置)。 c)一旦用了假想(等效)电荷,不再考虑原来的电荷分布。 d)坐标系选择仍然根据边界形状来定。
山东大学物理学院 宗福建 10
《电动力学》第11讲
第二章 静电场(3)
§2.3 电像法
教师姓名: 宗福建 单位: 山东大学物理学院 2015年10月20日
山东大学物理学院 宗福建 1
上一讲复习
• • 1、可以均匀分区的单连通区域内静电场的唯一性 可以均匀分区的区域V,即V可以分为若干个均匀区域 Vi ,每一个区域 的介电常数为 εi 。设V内有给定的电荷分布 ρ(x)。电势 φ 在均匀区域

2 /
山东大学物理学院 宗福建
6
上一讲复习
• 在第i个导体上满足总电荷条件
Qi dS Si n
• (n为导体面的外法线)和等势面条件 φ|s= φi=常量 • 以及在V的边界S上具有给定的φ|s 或 ∂φ/∂n|s 值。
山东大学物理学院 宗福建
7
本讲主要内容

电动力学-第二章-2-3拉普拉斯方程

电动力学-第二章-2-3拉普拉斯方程
θ=0,φ=V,任何r成立 A0C0 V , B0 0,C 0 0
r→0, φ有限
B B0 0
θ=2π-α,φ=V,任何r成立 D0 0, sin 2 0
n
n
2
n 1,2,
V Anrn sin n n1
条件不全,无 法确定An
尖劈附近,r→0
V A1r1 sin1
Er
r
1A1r11 sin1
E
1 r
1A1r11 cos1
0En
0E 0 E
0
2
01 A1r11
α很小,ν1≈1/2,E和σ∝1/r1/2
n
n
2
n 1,2,
r 2
)
r
1
r 2 sin
(sin
)
1
r 2 sin 2
2 2
0
其通解为 (r, ,) R(r)Y ( ,)
Bn(1)
a
n
cos n
E0a cos
Dn(2) a n
n1
cos n
n1 nBn(1) a n1 cos n
0 E0 cos
0
(n)Dn(2) a (n1)
n 1
cos n
两边 为任意值, cos 前系数应相等( n 1,2, )
n 1
BB1(11)(1a)
E0
a
D(2) 1
a
1
0 E0 0 D1(2)a2
k2Z
0
Rr An Jn kr An Nn kr k 0 Rr Anr n Anr n k 0 Rr Aln r A k n 0
Bn cos n Bn sin n n 0
B B n 0

电动力学-复习-第二章-电磁场的基本规律

电动力学-复习-第二章-电磁场的基本规律

*
电场力服从叠加原理
真空中的N个点电荷 (分别位于 ) 对点电荷 (位于 )的作用力为
q
q1
q2
q3
q4
q5
q6
q7
*
2. 电场强度
空间某点的电场强度定义为置于该点的单位点电荷(又称试验电荷)受到的作用力,即
多层同心球壳
*
无限大平面电荷:如无限大的均匀带电平面、平板圆柱壳等。
(a)
(b)
*
例2.2.3 求真空中均匀带电球体的场强分布。已知球体半径为a ,电 荷密度为 0 。
解:(1)球外某点的场强
(2)求球体内一点的场强
( r ≥ a )
• 宏观分析时,电荷常是数以亿计的电子电荷e的组合,故可不考虑其量子化的事实,而认为电荷量q可任意连续取值。
2.1.1 电荷与电荷密度
*
1. 电荷体密度
单位:C/m3 (库仑/米3 )
根据电荷密度的定义,如果已知某空间区域V中的电荷体密度,则区域V中的总电量q为
电荷连续分布于体积V内,用电荷体密度来描述其分布
如果已知某空间曲线上的电荷线密度,则该曲线上的总电量q 为
单位: C/m (库仑/米)
*
对于总电量为 q 的电荷集中在很小区域 V 的情况,当不分析和计算该电荷所在的小区域中的电场,而仅需要分析和计算电场的区域又距离电荷区很远,即场点距源点的距离远大于电荷所在的源区的线度时,小体积 V 中的电荷可看作位于该区域中心、电量为 q 的点电荷。
第二章 电磁场的基本规律
*
2.1 电荷守恒定律 2.2 真空中静电场的基本规律 2.3 真空中恒定磁场的基本规律 2.4 媒质的电磁特性 2.5 电磁感应定律和位移电流 2.6 麦克斯韦方程组 2.7 电磁场的边界条件

《电动力学》课程教学大纲

《电动力学》课程教学大纲

《电动力学》课程教学大纲课程名称:电动力学课程类别:专业必修课适用专业:物理学考核方式:考试总学时、学分:56 学时 3.5 学分其中实验学时:0 学时一、课程性质、教学目标《电动力学》是物理学专业的专业主干课。

电动力学是理论物理学的一个重要组成部分,与理论力学、统计物理学和量子力学合称为四大力学。

电动力学在电磁学的基础上系统介绍电磁场理论的基本概念和基本方法。

课程教学内容主要涉及电磁场的基本性质、运动规律以及电磁场与带电物体之间的相互作用,对完善学生的知识体系具有重要意义。

其具体的课程教学目标为:课程教学目标1:掌握电磁运动的基本规律,加深对电磁场物质性的认识。

课程教学目标2:了解狭义相对论的时空观及有关的基本理论。

课程教学目标3:获得在本课程领域内分析和处理一些基本问题的初步能力。

课程教学目标4:为学习后继课程和独立解决实际工作中的有关问题打下必要的基础。

课程教学目标与毕业要求对应的矩阵关系注:以关联度标识,课程与某个毕业要求的关联度可根据该课程对相应毕业要求的支撑强度来定性估计,H:表示关联度高;M表示关联度中;L表示关联度低。

二、课程教学要求由于本课程是理论物理课程的一部份,因而在教材内容的选取上要注意与后续课程的衔接。

在电动力学课程中,讨论了如何从经典物理过度到相对论物理,因此,在介绍这些内容时重要的是要从物理上加以阐述,以使学生真正掌握狭义相对论的物理精髓,达到培养学生辨证思维的目的。

通过介绍如何把学过的数学知识用于解决物理问题,达到提高学生分析问题、解决问题的能力。

结合课程内容,加强学生的理论推导能力三、先修课程高等数学、矢量分析与场论、数学物理方法、电磁学。

四、课程教学重、难点重点:1.明确电动力学的知识结构和逻辑体系。

2.掌握各种不同条件下电磁场的空间分布和运动变化规律。

难点:1.电动力学属理论物理范畴.其逻辑体系是以演绎推理为主线,这与普通物理电磁学有着明显的差异。

从电磁学到电动力学的学习,在思维方式上应有较大的转变,这对初学理论物理的学生是一难点。

电动力学课程教学大纲(物理学教育专业)

电动力学课程教学大纲(物理学教育专业)

《电动力学》课程教学大纲(物理学教育专业)Electrodynamics(课程编号0431104)(学分 4 ,学时68)第一部份课程的性质与目的要求电动力学是高等师范院校本科物理学教育专业理论物理课程之一,是一般物理电磁学的后继课。

通过本课程的学习,不仅使学生对电磁现象的熟悉在电磁学唯象理论的基础上更深切一步,认清电磁场的本质,了解相对论的时空观,而且要学习理论物理学处置问题的方式,提高在本课程领域分析、解决实际问题的能力。

要求:学好先行课《电磁学》、《矢量分析》、《数学物理方式》。

第二部份课程内容和学时分派本大纲采纳从电磁现象的体会定律总结出麦克斯韦方程组,然后别离处置电磁场各类问题的体系,以维持电磁场理论的完整性。

要紧教学经典电动力学和狭义相对论。

共安排68学时,其中教学58学时,习题课10学时,打*号内容能够不讲。

考虑到先行课程《矢量分析与场论》并未开设,因此安排第0章(4学时)作为预备知识,教学矢量分析与场论的基础知识。

第0章预备知识矢量分析与场论基础(4学时)一、教学内容:矢量代数梯度、散度和旋度关于散度和旋度的一些定理∇算符运算公式曲线正交坐标系二、教学要求:(1) 明白得矢量场的大体概念;(2)把握∇算符(矢量微分算符)与函数的运算;3、教学重点、难点:重点:∇算符(矢量微分算符)的运算难点:梯度、散度和旋度的明白得第一章电磁现象的普遍规律(10+2学时)一、教学内容:电荷和电场库仑定律,高斯定理,电场的散度和旋度电流和磁场电荷守恒定律,毕奥-萨伐尔定律,磁场的散度和旋度,磁场旋度和散度公式的证明麦克斯韦方程组电磁感应定律,位移电流,麦克斯韦方程组和洛仑兹力公式介质的电磁性质介质的概念,介质的极化和磁化,介质中的麦克斯韦方程组电磁场的边值关系法向分量的跃变,切向分量的跃变电磁场的能量电磁能量守恒定律的一样形式,能量密度和能流密度表示式,电磁能量的传输二、教学要求:(1)明白得描述宏观电磁场的物理量,描述宏观电磁场的麦克斯韦方程组;(2)把握真空、介质中的麦克斯韦方程组及其麦克斯韦方程组知足的边界条件;还要把握电磁场的能量、动量表达式,和能量、动量守恒定律;(3)了解描述电磁场能量密度和麦克斯韦应力张量等概念。

电动力学复习指导

电动力学复习指导

电动力学阐述经典电动力学以矢量分析、张量分析、复变函数、格林函数、特殊函数、数学物理方程、矩阵等数学知识为工具,以库仑定律、安培-毕奥-萨伐尔定律、法拉第电磁感应定律、楞茨定律等实验定律为基础,以宏观电磁现象为研究对象,在麦克斯韦、亥姆霍兹、达朗伯、菲涅耳等科学家的研究中逐步发展起来的。

研究对象宏观电磁现象主要包括内容:电磁场的激发、辐射和传播,介质在电磁场作用下的极化和磁化,电场和电荷,电流系统的相互作用,以及电磁场和导体间的相互作用等等。

电磁场是一种运动的物质,运动的根本原因是空间中变动的电场和变动的磁场的相互激发转化。

对于电磁场的分布可以通过研究电场强度E 和磁感应强度B (电标势φ和磁矢势A )来描述。

和其他物体一样,通过能量和动量两物理量实现对电磁场运动特性的描述,在一些特殊情况下,他们也满足能量守恒和动量守恒。

描述宏观电磁现象的基本关系是:库仑定律、奥斯特定律、安培力、洛仑兹力、麦克斯韦方程组、介质的电磁性质方程、麦克斯韦方程在介质分界面上的边值关系,以及电磁场与带电物质之间能量守恒和动量守恒定律,还有电荷守恒定律。

明确电动力学的学习目的:1) 掌握电磁场的基本规律,加深对电磁场性质和时空概念的理解; 2) 获得本课程领域内分析和处理一些基本问题的初步能力,为以后解决实际问题打下基础;3)通过电磁场运动规律和狭义相对论的学习,更深刻领会电磁场的物质性,帮助我们加深辩证唯物主义的世界观。

第零章 预备知识—矢量场论复习 Preliminary Knowledge —Revise in theVector Field Theory学习电动力学前需要补充的数学知识,矢量场论部分主要包括:梯度、散度、旋度三个重要概念及其在不同坐标系中的运算公式,它们三者之间的关系。

其中包括两个重要定理:即 高斯定理(Gauss Theorem) 和斯托克斯定理(Stokes Theorem),以及二阶微分运算和算符运算的重要公式和格林定理(Green Theorem)。

电动力学课程教学大纲

电动力学课程教学大纲

电动力学课程教学大纲一、课程说明(一)课程名称、所属专业、课程性质、学分;课程名称:电动力学所属专业:理学专业课程性质:基础课学分:4(二)课程简介、目标与任务;电动力学是宏观电磁现象的经典理论,是研究电磁场的基本属性、运动规律以及它与带电物质之间相互作用的一门重要基础理论课。

电动力学是物理学科的一门重要基础理论课,是物理学的“四大力学”之一。

基本目标:1. 掌握处理电磁问题的一般理论和方法2. 学会狭义相对论的理论和方法学习目的与要求:1. 通过学习电磁运动的基本规律,加深对电磁场基本性质的理解;2. 通过学习狭义相对论理论了解相对论的时空观及有关的基本理论;3. 获得在本门课程领域内分析和处理一些基本问题的初步能力;4. 为学习后续课程和独力解决实际问题打下必要的基础。

为了达到以上目的和要求,在教材内容和课程设置中应注意以下问题:1. 由于本课程是理论物理课程的一部份,因而在要注意与研究生课程的衔接,尽量使这二者有机结合。

介绍麦克斯韦方程组的相对论形式时,本课程主要介绍物理量和方程如何从三维过渡到四维空间的表述形式。

结合科研工作,我们将从更深知识层次的广义相对论、微分几何角度来阐述狭义相对论时空观和Maxwell方程组的四维张量表述。

2. 详细阐述如何把学过的数理方程知识用于解决实际物理问题,即求解一定边界条件下静电势和磁矢势所满足的偏微分方程,达到提高学生分析和解决问题的能力。

3. 在电动力学课程中,讨论了如何从经典物理过度到相对论物理,因此,在介绍这些内容时要从相对论时空观上加以阐述,以使学生真正掌握狭义相对论的物理精髓,达到培养学生抽象思维的目的。

4. 适当介绍一些与课程相关的科研前沿知识,如A-B效应,超导体的磁通量子化,超颖材料(隐身材料),高维时空中的电磁理论(库伦定律),电磁与引力的统一(Kaluza-Klein理论),额外维与膜世界理论等以开阔学生的眼界。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接;先修课程:高等数学矢量分析、数学物理方法、电磁学关系:其中高等数学矢量分析和数学物理方法是电动力学的数学基础,电磁学是电动力学的物理基础,电动力学在电磁学的基础上系统阐述电磁场的基本理论,并进一步在狭义相对论框架下讲述电磁场的四维协变规律。

电动力学第三版pdf

电动力学第三版pdf

电动力学第三版pdf
电动力学第三版是将电动力学相关理论与应用实践相结合的一部
权威性的综合性专著。

书中分为四大部分,共13章,分别介绍了定常
电动力学、非定常电动力学、无穷连接电动机及应用以及新发展等内容。

第一部分概述了电动力学的基本概念和定义,主要包括电磁学、
磁扰研究、磁电回路的基本概念、变矩电机的动态参数计算、有源电
路的集总电子元器件以及激励系统与其功率因数及电尽头电路等知识。

第二部分主要讨论电动力学中非定常现象的原理及建模,主要内
容包括电磁输运、非定常振荡、非定常分析及控制等。

第三部分提出无穷非标准连接的电动力学模拟方法,主要包括感
应式电动机、永磁电动机、交流传动及新型电机发电机的特性、参数
及数字模拟。

第四部分是有关电动力学的应用和新发展,它介绍了电励力发动
机的范例以及应用场合等。

同时,书中也讨论了相关新发展话题,如
永磁驱动电机、智能电势研究等。

电动力学 第二章 习题解答2

电动力学 第二章 习题解答2

华中师大 陈义成
= πR2 ∫ =
2.19
π/2
0
⎛ ∂ϕ ⎞ 9π R 2σ0 2 2 ⎟ ⎜ − = i d 3 σ sin θ cos θ θ ⎟ ⎜ 0 ⎟ ⎜ ⎝ ∂r ⎠ ε0 r=R

π/2
0
sin θ cos3 θdθ
(9)
9π R 2σ0 2 4ε0
如图所示,内导体球半径为 a ,带电量为 Q ,
2
θ 项给出
A0 +

B0 =0 b
A0 = −

联立(2) 、 (3) 、 (6)式得到
Q 4πε 0b
(5)
B0 c B1 + A1b + 2 =0 2 b b
(6)
A1 =
Qc −Qca 3 B , = 1 4πε 0 (b3 − a 3 ) 4πε 0 (b3 − a 3 )
3 ⎧ ⎫ cr ⎡ ⎛ a ⎞ ⎤ ⎪1 1 ⎪ − θ 1 cos ⎢ ⎥ ⎨ − + 3 ⎬ ⎜ ⎟ 3 − r b b a r ⎝ ⎠ ⎢ ⎥ ⎪ ⎪ ⎣ ⎦ ⎩ ⎭
n=0

介质中的电势 ϕ0 当 r → ∞ 时趋于均匀电场 E0 的电势,故
ϕ0 (r , θ ) = −E0 r cos θ + ∑
n=0

bn Pn (cos θ ) r n+1
(4)
- 41 -
华中师大 陈义成
球面上 r = R 处的边值关系为
ϕi (r , θ ) = ϕ0 (r , θ )
W = − pi E0 = −
导线外面是一对称的二维径向场,因此
E0 =
λ er 2πε 0 r
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设导体表面所带电荷面密度为σ,它外面的介质电容率为ε, 在导体静电条件下得导体表面的边界条件
ϕ = 常数
∂ϕ ε =−σ ∂n
三、静电场能量
在线性介质中静电场的总能量为 W =
r 和 ∇•D = ρ
r 在静电倩形下,W可以用电势和电荷分布表出.利用 E = −∇ϕ
得到
1 E ⋅ DdV ∫ ∞ 2
A1 B A2 B
需要注意的事项:
1、上式只能确定两点的电势差,而不能确定电势的绝对值。 只有当场中任意一点的电势值确定之后,场中所有点的电势 值才能唯一地确定。 2、从势的定义式可以明显看出,电势函数 ϕ(r) 加上一个任意 常数并不改变电场的分布,所以我们可以选择任意一点的电 势值作为参考。 3、对于电荷分布在有限空间的情况下,一般都选择无穷远的 ∞ 电势值为零,即 ϕ∞ =0 ,因此 ϕ ( P0 ) = ∫ E ⋅ d l P
上式中的φ是由电荷分布ρ激发的电势.若全空间充满均匀介质, 介电常数为ε,可以得到电荷分布ρ所激发的电场总能量为
r r 式中r为x与x’点的距离 r =| x − x '|
需要说明的是:对于静电场,上面计算能量的公式成立,因为 在这种情况下,电荷分布完全决定场分布。而对于一般的情况, 例如时变场,电磁场可以相互激发,场不完全由电荷分布确定, 因此只能用场强的表达形式计算,而不能用电荷分布计算。
这是因为分界面上E有限,而且分界面两边的l和2两点又无限 接近,所以式 是连续的.

P 2
P 1
E ⋅ dl
的积分趋于零。说明,电势在分界面处
引进电势φ之后,我们就由下列方程组及边值关系决定φ
ρ ∇ ϕ = − ε ϕ1 = ϕ 2 ∂ϕ 2 ∂ϕ 1 − ε1 ε2 = −σ
2
∂n
∂n
⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭
r r E = −∇ϕ (r )
2、静电势的物理意义:
计算一个单位正电荷从一点P0 移至另一点P时电场力对它所做 的功。假设引入的这个电荷对原有的电场分布没有影响。显 然,电场力对这单位正电荷所做的功为
r r r ∫ E ⋅ d l = − ∫ ∇ ϕ ⋅ d l = − ∫ dϕ = ϕ ( P ) − ϕ ( P )
0
若真空中有一系列点电荷q1,q2,…,qn,总电场强度为
r E=∑
i
r r r 1 qi qi r r = −∇ϕ (r ) r r 3 (r − ri ' ) = −∇∑ i 4πε 0 r − ri ' 4πε 0 r − ri′
所以点电荷系的电势 其中 ϕ (r )
i
q 1 r r ϕ (r ) = ∑ r r = ∑ ϕ (r ) 4πε r − r '
∇ ϕ = −ρ / ε
2
2、电势的边值关系:
由场的边值关系 n⋅ (D2 − D1) = σ
D = εE 及
E = −∇ϕ 和
φ所满足的边值关系之一 ∂ϕ ∂ϕ ε 2 2 − ε1 1 = −σ
∂n ∂n
φ的另一边值关系可直接由

P
P 0
E ⋅ dl = ϕ(P0 ) −ϕ(P)
得到
ϕ1 = ϕ2
V 0
只要给定电荷分布,原则上可以求得电势分布。但有时电荷分布 并非完全已知,因此求解静电势问题还需进一步讨论. 注意:上面的推导实际上是选取无穷远处为电位参考点。
二、泊松方程和边值关系
1、泊松方程:
静电场可以用一标量函数的梯度来表示,这只反映了它的一部 分规律,而它的另一部分规律,则由高斯定理的微分形式决定
因此有 右边第二项是散度的体积分,可以化为面积分
面积分遍及无穷远界面,而φ∝1/r,D∝1/r2,而面积∝r2, 所以当r→∞时面积分趋近于零,因此
这公式是通过电荷分布和电势表示出来的静电场总能量. 需要注意的是:这个公式只有作为静电场总能量才有意义,不 能把ρφ/2看作是能量密度,这是由于能量是分布于电场内,而 不仅仅是在电荷分布区域内。
例1 求均匀电场E0中的电势大小分布。
例2 均匀带电的无限长直导线的电荷线密度为τ, 求电势。
例3 求带电量Q、半径为a的导体球的静电场总能量。
r ∇⋅D = ρ
在均匀各向同性介质中
r r D = εE
2
r 代入 E = −∇ϕ(r)
ρ ∇ ϕ =− 得到 ε
其中ρ为自由电荷密度。此式称为泊松(Poisson)方程。
如果在区域中不存在电荷,方程变为
∇ ϕ =0ቤተ መጻሕፍቲ ባይዱ
2
此式称为拉普拉斯(Laplace)方程。 因此,引入静电势后,就把求解静电场的问题归结为求解 静电势所满足的偏微分方程问题。
0
r
r 4、用电场强度与静电势描述静电场是完全等效的。但因 ϕ(r) 是标量函数,所以引进静电势对求解静电场更加方便.
3、电势叠加原理:
在真空中,点电荷q的电场强度为
r E=
q 1 r r r=− ∇ = −∇ϕ (r ) 4πε r 4πε r
3 0 0
q
所以点电荷电势
r ϕ (r ) =
q 4πε r
i i i i 0 i
r
为第i个点电荷单独存在时空间一点的电势
表明:点电荷系的电场中某点的电势,等于各点电荷单独存在 时的电场在该点电势的代数和,这就是电势叠加原理 , 它是电场叠加原理的直接结果。 连续的电荷分布总可看成点电荷系,因此
r 1 ρ(r' ) r ϕ(r) = ∫ r r dV' 4πε r − r'
P P P P0 P0 P0 0
即电场力对单位正电荷由P0点移到P点所做 的功等于P0点的静电势与P点静电势之差。 表明:电场力对电荷作做的功与电荷所经过 的路径无关,仅由其始点与终点的位置决定
图2-1 这正是保守力场所具有的一种特性,因此静电场是保守场。
另外一种数学表述形式为
r r r r ∫ E •dl = ∫ E •dl
ϕ 求得φ后,再利用E=−∇ 场
,求得电场E,从而决定了整个电
的分布.用这种方法求解电场分布的简单之处是φ只有一个分 量,而不像E有三个分量,因此只需解φ所适合的一个微分方程 但是需要进一步讨论的是,这种方法决定的电场是不是唯一的?
3、导体表面上的边值关系
在静电问题中,常常有一些导体存在,由于导体的特殊性质, 在导体表面上的边值关系有它自己的特点. 导体的静止条件归结为: (1) (2) (3) 导体内部不带电,电荷只能分布于导体表面上; 导体内部电场为零; 导体表面上电场必沿法线方向,因此导体表面为等势 面,整个导体为等势体.
2.1 静电场的标势及其微分方程
一、 静电势与电势叠加原理 1、标势的引入:
在电荷静止情况下,电场与磁场无关,麦氏方程组的电场部分
r ∇ × E = 0, r ∇•D = ρ
表明静电场是无旋场以及自由电荷分布ρ是电位移D的源。 这两方程连同介质的电磁性质方程是解决静电问题的基础。 由静电场的无旋性,可以引入一个标势来描述静电场
相关文档
最新文档