八年级数学(上)综合练习(三)

合集下载

八年级数学上册综合算式专项练习题平方根与立方根的计算

八年级数学上册综合算式专项练习题平方根与立方根的计算

八年级数学上册综合算式专项练习题平方根与立方根的计算在八年级数学上册中,综合算式是非常重要的一部分内容。

而在综合算式中,平方根与立方根的计算也是一个关键的知识点。

本文将为大家提供一些关于平方根与立方根计算的专项练习题。

1. 题目一:计算下列算式的平方根(1) √169(2) √225(3) √400(4) √576(5) √100解析:(1) √169 = 13(2) √225 = 15(3) √400 = 20(4) √576 = 24(5) √100 = 102. 题目二:计算下列算式的立方根(1) ³√8(2) ³√64(3) ³√125(4) ³√216(5) ³√1000解析:(1) ³√8 = 2(2) ³√64 = 4(3) ³√125 = 5(4) ³√216 = 6(5) ³√1000 = 103. 题目三:计算下列算式(1) (√16)² + (√25)²(2) (√81)² - (√49)²(3) (√256)² ÷ (√16)²(4) (√121)² × (√9)²(5) (√400)² - (√625)²解析:(1) (√16)² + (√25)² = 16 + 25 = 41(2) (√81)² - (√49)² = 81 - 49 = 32(3) (√256)² ÷ (√16)² = 256 ÷ 16 = 16(4) (√121)² × (√9)² = 121 × 9 = 1089(5) (√400)² - (√625)² = 400 - 625 = -2254. 题目四:计算下列算式的平方根与立方根(1) √(a² + b²)(2) ³√(a³ + b³)(3) (√a) × (√b)(4) (√a) ÷ (√b)(5) ³√(a³ - b³)解析:(1) √(a² + b²):将两个数的平方相加,再开平方根(2) ³√(a³ + b³):将两个数的立方相加,再求立方根(3) (√a) × (√b):将两个数分别开平方根,再相乘(4) (√a) ÷ (√b):将两个数分别开平方根,再相除(5) ³√(a³ - b³):将两个数的立方相减,再求立方根通过以上综合算式的专项练习题,我们可以更加熟练地掌握平方根与立方根的计算方法。

八年级数学期中巩固练习卷3

八年级数学期中巩固练习卷3

A. AB = DE ,∠ B =∠ E ,∠ C =∠ F
B. AC = DF , BC = DE ,∠ C =∠ D
C. AB = EF ,∠ A =∠ E ,∠ B =∠ F
D.∠ A =∠ F ,∠ B =∠ E , AC = DE
8.下列条件中不能确定是等腰三角形的是( )
A.三条边都相等的三角形
20.已知:有一块三角形空地,若想在空地中找到一个点,使这个点到三边的距 离相等,试找出该点.(保留作图痕迹)
四、解答题(二)(共 3 小题,每小题 8 分,共 24 分)
21. 某渔船出发捕鱼遇险,救生船从基地出发,向北偏东 75°方向,以每小时 20 海里的速度前行,1 小时后接到确切信息,转向北偏西 15°加速前进,时速为 30 海里/小时,40 分钟后找到遇险船只.试求此时救生船相对基地的位置.
22.如图,在 Rt△ABC 中,∠C=90°,∠BAC:∠B=2:1,AD 是∠BAC 的角平分线, DE⊥AB 于点 E,AC=3 cm,求 BE 的长.
23.如图,△ABC,△ADE 是等边三角形,B,C,D 在同一直线上. 求证:(1)CE=AC+DC;(2)∠ECD=60°.
五、解答题(三)(共 2 小题,每小题 10 分,共 20 分)
中 A 球,则如图所示 8 个点中,可以瞄准的点有__________个.
三、解答题(一)(共 3 小题,每小题 6 分,共 18 分)
18.如图,D,E,F 分别是△ABC 三边上的点,CE=BF,△DCE 和△DBF 的面积相等, 求证:AD 平分∠BAC.
19.如图,OM 平分∠POQ,MA⊥OP,MB⊥OQ,A、B 为垂足,AB 交 OM 于点 N. 求证:∠OAB=∠OBA

八年级数学上册综合算式专项练习题分数运算

八年级数学上册综合算式专项练习题分数运算

八年级数学上册综合算式专项练习题分数运算在八年级数学上册中,分数运算是一个重要的知识点。

熟练掌握分数的四则运算,对于学生理解数学概念和解决实际问题具有重要意义。

本文将为大家提供一系列综合算式专项练习题,帮助同学们巩固分数运算的知识。

一、加法与减法1. 计算:2/3 + 1/4 = ?2. 计算:5/8 - 1/6 = ?3. 计算:3/5 + 7/10 - 1/4 = ?二、乘法与除法4. 计算:2/3 × 3/4 = ?5. 计算:5/6 ÷ 2/5 = ?6. 计算:7/8 × 1/2 ÷ 3/5 = ?三、混合运算7. 计算:2/3 + 1/2 × 3/4 - 1/6 = ?8. 计算:3/5 - (1/4 + 2/3) × 1/2 = ?9. 计算:5/8 ÷ 2/3 + 7/10 - 1/4 = ?四、综合应用10. 某电商平台上,一件衣服原价为108元,现以8折优惠出售,小明用一张优惠券再减去20元,请计算小明最终需要支付的金额。

假设优惠券可以与打折同时使用。

11. 小明学习了5天的数学课程,每天花费3小时。

他的学习计划是完成总课时的3/5,那么小明还需再学习多少天才能完成整个课程?12. 一辆汽车以每小时60公里的速度行驶,行程为180公里。

如果车辆行驶的1/4 距离是下坡路段,速度可以提高到每小时80公里。

请计算整个行程需要的时间。

通过以上一系列的综合算式专项练习题,同学们能够逐步熟悉和掌握分数运算的技巧。

在解答过程中,可以通过化简、通分、借位等方法来简化计算过程。

同时,对于与实际问题的结合,能够锻炼同学们的应用能力,帮助他们将数学知识灵活运用到生活中。

希望同学们认真完成以上练习题,并及时检查答案。

如果有任何疑惑或困难,可以向数学老师请教,或是与同学们一起进行讨论学习。

通过不断练习和巩固,相信大家能够在分数运算上取得更好的成绩,提高自己的数学能力。

八年级数学上册期末综合练习题及答案3(中考题)

八年级数学上册期末综合练习题及答案3(中考题)

八年级上期末综合练习3考号____________姓名____________总分_________________一.选择题(共12小题;每题4分;共48分)00025米;此数据用科学记数法表示为()米.A.2.5×106B.0.25×10﹣5C.25×10﹣7D.2.5×10﹣62.代数式中;分式的个数是()A.1 B.2C.3D.43.下列方程中分式方程有()个.(1)x2﹣x+;(2)﹣3=a+4;(3);(4)=1.A.1 B.2C.3D.以上都不对4.三角形的下列四种线段中一定能将三角形分成面积相等的两部分的是()A.角平分线B.中位线C.高D.中线5.用五根木棒钉成如下四个图形;具有稳定性的有()A.1个B.2个C.3个D.4个6.(2011•宜宾)分式方程的解是()A.3 B.4C.5D.无解7.(2013•贵港)关于x的分式方程的解是负数;则m的取值范围是()A.m>﹣1 B.m>﹣1且m≠0 C.m≥﹣1 D.m≥﹣1且m≠08.下列各式由左边到右边的变形中;是分解因式的是()A.m(x+y)=mx+my B.x2﹣4x+4=x(x﹣4)+4C.15x2﹣3x=3x(5x﹣1)D.x2﹣9+3x=(x+3)(x﹣3)+3x9.(2004•聊城)方程的解是()A.﹣2;B.3;C.﹣2;D.1;10.(2006•日照)已知在正方形网格中;每个小方格都是边长为1的正方形;A;B两点在小方格的顶点上;位置如图所示;点C也在小方格的顶点上;且以A;B;C为顶点的三角形面积为1;则点C的个数为()A.3个B.4个C.5个D.6个11.(2010•荆门)给出以下判断:(1)线段的中点是线段的重心(2)三角形的三条中线交于一点;这一点就是三角形的重心(3)平行四边形的重心是它的两条对角线的交点(4)三角形的重心是它的中线的一个三等分点那么以上判断中正确的有()A.一个B.两个C.三个D.四个12.(2007•玉溪)如图;AE⊥AB且AE=AB;BC⊥CD且BC=CD;请按照图中所标注的数据;计算图中实线所围成的图形的面积S是()A.50 B.62 C.65 D.68二.填空题(共6小题;每题4分;共24分)13.在代数式a;π;ab;a﹣b;;x2+x+1;5;2a;中;整式有_________个;单项式有_________个;次数为2的单项式是_________;系数为1的单项式是_________.14.要使关于x的方程有唯一的解;那么m≠_________.15.如图;在△ABC中;∠ACB=60°;∠BAC=75°;AD⊥BC于D;BE⊥AC于E;AD与BE交于H;则∠CHD= _________.16.(2014•盐都区二模)PM2.5是指大气中直径小于或等于2.5微米的颗粒物;也称为可入肺颗粒物.2.5微米等于0.0000025米;把0.000 002 5用科学记数法表示为_________.17.若关于x的分式方程无解;则m=_________.18.(2014•句容市一模)如图;在等边△ABC中;AC=3;点O在AC上;且AO=1.点P是AB上一点;连接OP;以线段OP为一边作正△OPD;且O、P、D三点依次呈逆时针方向;当点D恰好落在边BC上时;则AP 的长是_________.三.解答题(共8小题;19-20每题7分;21-24每题10分;25-26每题12分。

鲁教版(五四制)八年级数学上册第三章综合测试卷含答案

鲁教版(五四制)八年级数学上册第三章综合测试卷含答案

鲁教版(五四制)八年级数学上册第三章综合测试卷一、选择题(每题3分,共36分)1.某班5名同学的身高(单位:cm)分别为170,169,172,173,171,则这5名同学身高的平均数是()A.170 cm B.171 cmC.171.5 cm D.172 cm2.【2022·沈阳】调查某少年足球队全体队员的年龄,得到数据结果如下表:则该足球队队员年龄的众数是()A.15岁B.14岁C.13岁D.7人3.【2022·株洲】某路段的一台机动车雷达测速仪记录了一段时间内通过的机动车的车速数据如下:67,63,69,55,65,则该组数据的中位数为()A.63 B.65 C.66 D.694.若一组数据2,3,5,x的极差为6,则x的值是() A.8 B.9 C.11 D.8或-15.【母题:教材P60习题T3(2)】为筹备学校元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果做了调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是()A.中位数B.算术平均数C.加权平均数D.众数6.【2022·黄石】我市某校开展共创文明班,一起向未来的古诗文朗诵比赛活动,有10名同学参加了初赛,按初赛成绩由高到低取前5名进入决赛.如果小王同学知道了自己的成绩后,要判断能否进入决赛,他需要知道这10名同学成绩的()A.平均数B.众数C.中位数D.方差7.【母题:教材P52随堂练习T2】某校为推荐一项作品参加“科技创新”比赛,对甲、乙、丙、丁四项候选作品进行量化评分,具体成绩(百分制)如下表.如果按照创新性占60%,实用性占40%计算总成绩,并根据总成绩择优推荐,那么应推荐的作品是()A.甲B.乙C.丙D.丁8.【2022·贵阳】小红在班上做节水意识调查,收集了班上7位同学家里上个月的用水量(单位:吨)如下:5,5,6,7,8,9,10.她发现,若去掉其中两个数据后,这组数据的中位数、众数保持不变,则去掉的两个数据可能是()A.5,10 B.5,9 C.6,8 D.7,89.小明想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5,记这组新数据的方差为s12,则()A.s02>s12 B.s02=s12C.s02<s12D.无法确定10.【2022·南充】为了解“睡眠管理”落实情况,某初中学校随机调查50名学生每天平均睡眠时间(时间均保留整数),将样本数据绘制成统计图(如图),其中有两个数据被遮盖.关于睡眠时间的统计量中,与被遮盖的数据无关的是()A.平均数B.中位数C.众数D.方差11.数据3,1,x,4,5,2的众数与平均数相等,则x的值是() A.2 B.3 C.4 D.512.【2022·本溪】甲、乙两人在相同的条件下各射击10次,将每次命中的环数绘制成如图所示统计图.根据统计图得出的结论正确的是()A.甲的射击成绩比乙的射击成绩更稳定B.甲射击成绩的众数大于乙射击成绩的众数C.甲射击成绩的平均数大于乙射击成绩的平均数D.甲射击成绩的中位数大于乙射击成绩的中位数二、填空题(每题3分,共18分)13.【2022·丹东】某书店与一所中学建立帮扶关系,连续6个月向该中学赠送书籍的数量(单位:本)分别为200,300,400,200,500,550,则这组数据的中位数是________本.14.某单位招考技术人员,考试分笔试和面试两部分,笔试成绩与面试成绩按6:4记入总成绩,若小李笔试成绩为80分,面试成绩为90分,则他的总成绩为________分.15. 某同学使用计算器求20个数据的平均数时,错将其中一个数据201输入为21,那么由此求出的这组数据的平均数与实际平均数的差是________.16.【2023·淄博桓台县期中】已知一组数据5,2,x,6,4,它们的平均数是4,则这组数据的标准差为________.17.有5个从小到大排列的正整数,中位数是3,唯一的众数是8,则这5个数的平均数为________.18.某鸡腿生产公司的质检人员从两批鸡腿中各随机抽取了6个,记录相应的质量如下表,若甲、乙两个样本数据的方差分别为s甲2,s乙2,则s甲2______s乙2.(填“>”“=”或“<”)三、解答题(19~21题每题8分,其余每题14分,共66分) 19.一次数学测试结束后,学校要了解八年级(共四个班)学生的平均成绩,得知一班48名学生的平均分为85分,二班52名学生的平均分为80分,三班50名学生的平均分为86分,四班50名学生的平均分为82分.小明这样计算该校八年级数学测试的平均成绩:x=85+80+86+824=83.25(分),小明的算法正确吗?若不正确,请写出正确的计算过程.20.某单位欲从内部招聘管理人员一名,现对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩(单位:分)如下表所示:测试项目甲乙丙笔试75 80 90面试93 70 68根据录用程序,该单位组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每名职工只能推荐一人)如图,每得一票记1分.现根据实际需要,单位将笔试、面试、民主评议三项测试成绩按433的比例确定个人总成绩,那么谁将被录用?21.下表是某校八年级(1)班抽查20名学生某次数学测验的成绩统计表:成绩/分60 70 80 90 100人数/人 1 5 x y 2(1)若这20名学生成绩的平均分是82分,求x,y的值;(2)在(1)的条件下,设这20名学生本次测验成绩的众数是a,中位数是b,求a,b的值.22.“节省一分零钱,献出一份爱心,温暖世间真情”,某校倡议学生捐出一部分零花钱帮助山区儿童学习,倡议前为了解情况,校团委随机调查了本校部分学生一周的零花钱金额,并绘制了如图所示的统计图.请根据图中信息,回答下列问题:(1)所调查的学生一周的零花钱金额的众数是________元,中位数是________元;(2)求所调查的学生一周的零花钱金额的平均数;(3)若全校1 200名学生每人捐出一周零花钱金额的50%,请估计该校学生共捐款多少元.23.为了提高学生对数学的学习的兴趣,某校举行了主题为“生活中的数学”的知识竞赛活动,测试内容为20道判断题,每道题5分,满分100分,为了解八、九年级学生此次竞赛成绩的情况,分别随机在八、九年级各抽取了20名参赛学生的成绩.已知抽查得到的八年级的数据如下:80,95,75,75,90,75,80,65,80,85,75,65,70,65,85,70,95,80,75,80.为了便于分析数据,统计员对八年级数据进行了整理,得到了表一:成绩等级分数(单位:分) 学生数D等60<x≤70 5九年级成绩的平均数、中位数、优秀率如下:(分数80分以上、不含80分为优秀)(1)根据题目信息填空:a=______,c=______,m=______;(2)八年级的小宇和九年级的小乐的分数都为80分,请判断小宇、小乐在各自年级的排名哪位更靠前?请简述你的理由;(3)若九年级共有600人参加参赛,请估计九年级80分以上的人数.24.甲、乙两名队员参加射击训练,每人射击10次,成绩分别如下:平均成绩/环中位数/环众数/环 方差/环2 甲 a 7 7 1.2 乙7b8c根据以上信息,整理分析数据如下:(方差公式s 2=1n [(x 1-)2+(x 2-)2+…+(x n -)2])(1)填空:a =________;b =________;c =________; (2)从平均数和中位数的角度来比较,成绩较好的是______(填“甲”或“乙”);(3)若需从甲、乙两名队员中选择一人参加比赛,你认为选谁更加合适?请说明理由.答案一、1.B 2.C 3.B4.D【点拨】当x是最大数时,x-2=6,解得x=8;当x是最小数时,5-x=6,解得x=-1.综上所述:x的值是8或-1.5.D6.C【点拨】∵一共有10名同学参加比赛,取前5名进入决赛,∴成绩的中位数应为第5名、第6名同学成绩的平均数,如果小王的成绩大于中位数,则可以晋级,反之则不能晋级,故只需要知道10名同学成绩的中位数即可.7.B【点拨】甲的总成绩=90×60%+90×40%=90(分),乙的总成绩=95×60%+90×40%=93(分),丙的总成绩=90×60%+95×40%=92(分),丁的总成绩=90×60%+85×40%=88(分).∵93>92>90>88,∴应推荐乙.8.C【点拨】数据5,5,6,7,8,9,10的众数为5,中位数为7,若去掉其中两个数据后,这组数据的中位数、众数保持不变,则5不能去掉,7不能去掉,所以去掉可能是6,8.9.B【点拨】∵新数据是将这组数据中的每一个数都减去90所得,∴新数据与原数据的波动幅度不变,∴s02=s12.10.B【点拨】计算平均数、方差需要全部数据,故A,D不符合题意;∵50-5-11-16=18>16,∴无法确定众数分布在哪一组,故C不符合题意;从统计图可得前三组的数据共有5+11+16=32,共有50名学生,中位数为第25与26个的平均数,∴已知的数据中中位数确定,且不受后面数据的影响.11.B【点拨】根据题意,得数据3,1,x,4,5,2的平均数为(3+1+x+4+5+2)÷6=(15+x)÷6=52+x6.由题意易知数据3,1,x,4,5,2的众数为x.∵数据3,1,x,4,5,2的众数与平均数相等,∴52+x6=x,∴x=3.12.A【点拨】由图可得甲射击10次的成绩分别为5,6,6,7,5,6,6,6,7,6;乙射击10次的成绩分别为9,5,3,6,9,10,4,7,8,9.甲的成绩起伏比乙的成绩起伏小,故A正确;甲的众数是6,乙的众数是9,故B错误;甲的平均数为110×(5+6+6+7+5+6+6+6+7+6)=6,乙的平均数为110×(9+5+3+6+9+10+4+7+8+9)=7,故C错误;甲的中位数是6,乙的中位数是7.5,故D 错误.二、13.350 14.8415.-9 【点拨】求20个数据的平均数时,错将其中的一个数据201输入成21,即少加了180;则由此求出的平均数与实际平均数的差是-18020=-9. 16. 217.4.4 【点拨】根据题意可知,这5个数是1,2,3,8,8,∴平均数为1+2+3+8+85=4.4. 18.< 【点拨】∵x 甲=70+71×4+726=71(g), x 乙=70×3+71×2+736=4256(g), ∴s 甲2=16×[(70-71)2+(71-71)2×4+(72-71)2]=13,s 乙2=16×[⎝ ⎛⎭⎪⎫70-42562×3+⎝ ⎛⎭⎪⎫71-42562×2+⎝ ⎛⎭⎪⎫73-42562]=4136.∵13<4136,∴s 甲2<s 乙2.三、19.解:小明的算法不正确.该校八年级数学测试的平均成绩为85×48+80×52+86×50+82×5048+52+50+50=83.2(分).【点拨】数据总和÷数据总个数=平均数.20.解:民主评议测试成绩:甲:200×25%=50(分); 乙:200×40%=80(分); 丙:200×35%=70(分). 总成绩: 甲:75×4+93×3+50×34+3+3=72.9(分); 乙:80×4+70×3+80×34+3+3=77(分); 丙:90×4+68×3+70×34+3+3=77.4(分). ∵77.4>77>72.9, ∴丙将被录用. 21.解:(1)依题意,得 ⎩⎪⎨⎪⎧1+5+x +y +2=20,60×1+70×5+80x +90y +100×2=82×20, 整理,得⎩⎪⎨⎪⎧x +y =12,8x +9y =103, 解得⎩⎪⎨⎪⎧x =5,y =7. (2)由(1)知a =90分,b =80分. 答:众数是90分,中位数是80分. 22.解:(1)30;30 (2)所调查的学生人数为6+13+20+8+3=50,150×(10×6+20×13+30×20+50×8+100×3)=32.4(元).答:所调查的学生一周的零花钱金额的平均数是32.4元.(3)32.4×50%×1 200=19 440(元).答:估计该校学生共捐款19 440元.23.解:(1)10;77.5;25(2)八年级的小宇的排名更靠前.理由如下:因为八年级的中位数是77.5,九年级的中位数是82.5,所以八年级的小宇和九年级的小乐的分数都为80分,小宇的排名更靠前.(3)600×50%=300(人).故估计九年级80分以上的人数是300人.24.解:(1)7; 7.5;4.2(2)乙(3)选乙.理由:甲、乙两名队员的平均成绩一样,但乙成绩的中位数比甲高,众数比甲高,说明乙的高分比甲多,所以选乙更合适(答案不唯一).。

浙教版数学八年级上学期第三章 练习题(含答案)

浙教版数学八年级上学期第三章 练习题(含答案)

浙教版数学八年级上学期第三章 练习题(含答案)一、单选题(每小题3分,共30分)(共10题;共30分)1.不等式 2x −1≤3 的解集在数轴上表示正确的是( )A .B .C .D .2.不等式组 {x +2>1x +3≤5 的解集(阴影部分)在数轴上表示正确的是( )A .B .C .D .3.若a >b ,则下列各式中不正确的是A .a-3>b-3B .-3a <-3C .ab >1D .a 2>b 24.已知 x =5 是不等式 mx −4m +2≤0 的解,且 x =3 不是这个不等式的解,则实数 m 的取值范围为( ) A .m ≤−2B .m <2C .−2<m ≤2D .−2≤m <25.已知两个不等式的解集在数轴上的表示如图所示,那么这个不等式组的解集为( )A .x≥-1B .x>1C .-3<x≤-1D .x>-36.当1≤x≤2时,ax+2>0,则a 的取值范围是( )A .a >-1B .a>-2C .a>0D .a >-1且a≠07.若方程组 {3x +y =k +1x +3y =3 的解x ,y 满足 0<x +y <1 ,则k 的取值范围是( )A .−1<k <0B .−4<k <0C .0<k <8D .k >−48.若关于x 的一元一次不等式组{x −14(4a −2)≤123x−12<x +2的解集是x ≤a ,且关于y 的分式方程ay−1y−2−12−y =−3有非负整数解,则符合条件的所有整数a 的和为( )A .0B .1C .4D .79.不等式x ﹣2≤0的解集是( )A .x >2B .x <2C .x≥2D .x≤210.某种商品的进价为80元,标价为100元,后由于该商品积压,商店准备打折销售,要保证利润率不低于12.5%,该种商品最多可打( ) A .九折B .八折C .七折D .六折二、填空题(每小题4分,共24分)(共6题;共24分)11.当 x 时,代数式 5x −3 的值是正数.12.不等式组 {x −1<0x <3的解集为 . 13.若关于x 的一元一次不等式组{x −a >02x −2<1−x 有解,则a 的取值范围是 . 14.不等式组 {x −3<02x +4≥0的解集是 .15.请你写出一个满足不等式2x-1<6的正整数x 的值: .16.某商场促销,某种笔记本的售价是25元,进价是18元,商场为保证利润率不低于5%,则该笔记本最多降价 元.三、解答题(共8题,共66分)(共8题;共66分)17.解不等式组: {3x −(x −2)>42x+13>x −1 .并把它的解集在数轴上表示出来18.先化简,再求值: x 2−4x+4x+1÷(3x+1−x +1) ,请从不等式组 {5−2x ≥1x +2≥0 的整数解中选择一个合适的值代入求值.19.用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空,请问有多少辆汽车? 20.解不等式组: {x −2≤03x +2>−1,并将其解集在数轴上表示出来.21.判断以下各题的结论是否正确.(1)若 b ﹣3a <0,则b <3a ; (2)如果﹣5x >20,那么x >﹣4; (3)若a >b ,则 ac 2>bc 2; (4)若ac 2>bc 2,则a >b ;(5)若a >b ,则 a (c 2+1)>b (c 2+1).(6)若a >b >0,则 1a < 1b.22.由甲、乙两人共同完成某公园1000m2的花圃的修剪工作,甲每天能完成100m2,乙每天能完成50m2.已知甲工作x天,乙工作y天,恰好完成此次修剪任务.(1)求y与x的函数表达式;(2)如果甲、乙两人工作天数总和不超过15天,求x的取值范围;(3)设此项修剪工作花费的人工费为w元,甲人工费需260元/天,乙人工费需120元/天,在(2)的条件下,求完成此项修剪工作所需的最低人工费.23.为迎接湖南省第十四届运动会在岳阳举行,某班组织学生参加全民健身线上跳绳活动,需购买A,B两种跳绳若干.若购买3根A种跳绳和1根B种跳绳共需140元;若购买5根A种跳绳和3根B 种跳绳共需300元.(1)求A,B两种跳绳的单价各是多少元?(2)若该班准备购买A,B两种跳绳共46根,总费用不超过1780元,那么至多可以购买B种跳绳多少根?24.某玩具厂生产一种玩具,据市场调查,若按每个玩具280元销售时,每月可销售300个,若销售单价每降低1元,每月可多售出2个,据统计,每个玩具的固定成本Q(元)与月销量y(个)满足如下关系:(1)写出月销量y(个)与销售单价x(元)之间的函数关系式;(2)求每个玩具的固定成本Q(元)与月销量y(个)之间的函数关系式;(3)若每个玩具的固定成本为30元,则它占销售单价的比例是多少?(用分数表示)(4)若该厂这种玩具的月销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?答案1.C 2.D 3.C 4.A 5.A 6.A 7.B 8.A 9.D 10.A 11.x >35 12.x <1 13.a <114.﹣2≤x <3 15.1,2,3 16.6.117.解: {3x −(x −2)>4①2x+13>x −1② ,解不等式①得:x >1; 解不等式②得:x <4,所以不等式组的解集为:1<x <4, 解集在数轴上表示为:18.解: x 2−4x+4x+1÷(3x+1−x +1)= (x−2)2x+1÷3−(x+1)(x−1)x+1= (x−2)2x+1⋅x+1−(x+2)(x−2)= −x−2x+2, 解不等式组 {5−2x ≥1x +2≥0得:﹣2≤x≤2,取不等式组的整数解x =1,代入分式得: 原式= −x−2x+2 = −1−21+2= 13 .19.解:设有x 辆车,则有(4x+20)吨货物.由题意,得0<(4x+20)﹣8(x ﹣1)<8,解得:5<x <7.∵x 为正整数,∴x =6.答:有6辆汽车.20.解: {x −2≤0①3x +2>−1②,由①得:x≤2, 由②得:x >-1,∴不等式组的解为:-1<x≤2, 数轴上表示如下:21.(1)正(2)错误(3)错误(4)正(5)正(6)正22.(1)解:设根据题意,得:100x+50y=1000整理得:y=-2x+20,∴y与x的函数解析式为:y=-2x+20.(2)解:∵甲乙两队施工的总天数不超过15天,∴x+y≤15,∴x+20-2x≤15,解得:x≥5,又100x<1000,解得:x<10∴x的取值范围为5≤x<10;(3)解:根据题意得:w=260x+120y=20x+2400,∵k=20>0,∴w随x增大而增大,由(2)知:5≤x<10,∴当x=5时,w有最小值,最小值为20×5+2400=2500(元).答:最低人工费为2500元.23.(1)解:设A种跳绳的单价为x元,B种跳绳的单价为y元.根据题意得:{3x+y=1405x+3y=300,解得:{x=30y=50,答:A种跳绳的单价为30元,B种跳绳的单价为50元.(2)解:设购买B种跳绳a根,则购买A种跳绳(46−a)根,由题意得:30(46−a)+50a≤1780,解得:a≤20,答:至多可以购买B种跳绳20根.24.(1)解:依题可得:y=300+2(280﹣x)=﹣2x+860.(2)解:由表可知月销量与固定成本的乘积为常数,即Qy=9600,∴Q= 9600 y(3)解:当Q=30时,y=320=﹣2x+860,解得:x=270,则每个玩具的固定成本占销售单价的比例为30270=19(4)解:由题意知﹣2x+860≤400,解得:x≥230,∵Q= 9600y=9600−2x+860,∴当x=230时,﹣2x+860取得最大值400,此时Q取得最小值24,答:每个玩具的固定成本至少为24元,销售单价最低为230元.。

2022-2023学年苏科版八年级数学上册阶段性(3-1-6-6)综合练习题(附答案)

2022-2023学年苏科版八年级数学上册阶段性(3-1-6-6)综合练习题(附答案)

2022-2023学年苏科版八年级数学上册阶段性(3.1-6.6)综合练习题(附答案)一.选择(满分24分)1.16的算术平方根是()A.±4B.﹣4C.4D.±82.函数中y=自变量x的取值范围是()A.x≥2B.x>2C.x≠2D.x≥﹣23.下列各数:3.14,,,0,,0.020020002…(每个间隔增加一个0),π,其中无理数的个数是()A.1B.2C.3D.44.若点M在第四象限,且M到x轴的距离为1,到y轴的距离为2,则点M的坐标为()A.(1,﹣2)B.(2,1)C.(﹣2,l)D.(2,﹣l)5.设边长为1的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③1.5<a<2;④a是2的算术平方根.其中,所有正确说法的序号是()A.①④B.②③C.①②④D.①③④6.若一次函数y=kx+b,当x的值减小1,y的值就减小2,则当x的值增加2时,y的值()A.增加4B.减小4C.增加2D.减小27.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是和﹣1,则点C所对应的实数是()A.1+B.2+C.2﹣1D.2+18.如图,动点P从(0,3)出发,沿箭头所示方向运动,每当碰到长方形的边时反弹(反弹前后球的运动路线与边的夹角相等).当点P第2021次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(7,4)D.(8,3)二、填空题(满分30分)9.近似数36.90精确到位.10.已知:,,则a、b的大小关系为:a b(填“>”、“<”或“=”).11.一个正数的平方根是2a﹣2与3﹣a,则a等于.12.将52800精确到千位,可表示为.13.若点Q(m,1﹣2m)的横坐标与纵坐标互为相反数,则点P一定在第象限.14.已知点P(a﹣1,a+5)在第二象限,则a的取值范围为.15.若函数y=(m﹣3)x|m﹣2|+3是一次函数,则m的值为.16.已知两边的长分别为5,12,若要组成一个直角三角形,则第三边应该为.17.如图所示,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1,△2,△3,△4,……则△2021的直角顶点坐标为.18.已知如图,在平面直角坐标系中,x轴上的动点P(x,0)到定点A(0,2)、B(3,1)的距离分别为P A和PB,求P A﹣PB的最大值为.三.解答题(满分66分)19.计算:(1)||.(2).20.求下列式中x的值:(1)(x+3)2﹣4=0.(2)3(2x+1)3+24=0.21.已知=3,3a+b﹣1的平方根是±4,c是的整数部分,求a+2b+c的算术平方根.22.如图,△ABC在直角坐标系中.(1)点A关于Y轴的对称点坐标为(,),点C坐标为(,).(2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,画出平移后的图形,并写出A′的坐标.(3)三角形ABC的面积是多少?23.利用直尺、圆规在数轴上画出表示的点.24.已知y﹣2与x+1成正比例,当x=1时,y=﹣4.(1)求出y与x的函数关系式;(2)设点(a,2)在这个函数的图象上,求a的值;(3)若x的取值范围是0≤x≤5,求y的取值范围.25.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如,这样的式子,其实我们还可以将其进一步化简:(一)==;(二)===﹣1;以上这种化简的方法叫分母有理化.(1)请参照上面,化简=,=.(2)化简:+++…+.26.如图,在平面直角坐标系中,O为坐标原点.△ABC的边BC在x轴上,A、C两点的坐标分别为A(0,m)、C(n,0),B(﹣5,0),且(n﹣3)2+=0,点P从B 出发,以每秒2个单位的速度沿射线BO匀速运动,设点P运动时间为t秒.(1)求A、C两点的坐标;(2)连接P A,用含t的代数式表示△POA的面积;(3)当P在线段BO上运动时,是否存在一点P,使△P AC是等腰三角形?若存在,请写出满足条件的所有P点的坐标并求t的值;若不存在,请说明理由.参考答案一.选择(满分24分)1.解:∵42=16,∴16的算术平方根是4.故选:C.2.解:由题意得,x﹣2≥0,解得x≥2.故选:A.3.解:,,0是整数,属于有理数;3.14,是分数,属于有理数;无理数有0.020020002…(每个间隔增加一个0),π,共2个.故选:B.4.解:点M在第四象限,且M到x轴的距离为1,到y轴的距离为2,则点M的坐标为(2,﹣1),故选:D.5.解:∵边长为1的正方形的对角线长为a,∴a=.①a=是无理数,说法正确;②a可以用数轴上的一个点来表示,说法正确;③∵>2,2<4,∴1.5>,<2,说法错误;④a是2的算术平方根,说法正确.所以说法正确的有①②④.故选:C.6.解:∵当x的值减小1,y的值就减小2,∴y﹣2=k(x﹣1)+b=kx﹣k+b,y=kx﹣k+b+2.又y=kx+b,∴﹣k+b+2=b,即﹣k+2=0,∴k=2.当x的值增加2时,∴y=(x+2)k+b=kx+b+2k=kx+b+4,当x的值增加2时,y的值增加4.故选:A.7.解:设点C所对应的实数是x.则有x﹣=﹣(﹣1),解得x=2+1.故选:D.8.解:如图,根据题意得:P0(0,3),P1(3,0),P2(7,4),P3(8,3),P4(5,0),P5(1,4),P6(0,3),P7(3,0),…,∴点P n的坐标6次一循环.经过6次反弹后动点回到出发点(0,3),∵2021÷6=336…5,∴当点P第2021次碰到矩形的边时为第336个循环组的第5次反弹,点P的坐标为(1,4).故选:A.二、填空题(满分30分)9.解:近似数36.90精确到百分位,故答案为:百分.10.解:∵1<<2,∴a=﹣1>0,∵2<<3,∴b=2﹣<0,∴a>b,故答案为:>.11.解:根据题意得:2a﹣2+3﹣a=0,解得:a=﹣1,故答案为:﹣1.12.解:52800=5.28×104≈5.3×104.故答案为:5.3×104.13.解:∵点Q(m,1﹣2m)的横坐标与纵坐标互为相反数,∴m+1﹣2m=0,解得:m=1,则Q(1,﹣1),∴点P一定在第四象限.故答案为:四.14.解:∵点(a﹣1,a+5)在第二象限,∴,解得﹣5<a<1,则a的取值范围是﹣5<a<1.故答案为:﹣5<a<1.15.解:由题意得:|m﹣2|=1,且m﹣3≠0,解得:m=1,故答案为:1.16.解:分两种情况进行讨论:①两直角边分别为5,12,由勾股定理得第三边应该为=13,②一直角边为5,一斜边为12,由勾股定理得第三边应该为=,故答案为:13或.17.解:∵点A(﹣3,0)、B(0,4),∴AB==5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2021÷3=673……2,∴△2021的直角顶点是第673个循环组后第二个三角形的直角顶点,∵673×12=8076,8076+4+=8080,=8083,∴△2021的直角顶点的坐标为(8083,).故答案为:(8083,).18.解:由题可得,当A、B、P三点不共线时,|P A﹣PB|<AB;当A、B、P三点共线时,|P A﹣PB|=AB,∴|P A﹣PB|≤AB.又∵A(0,2)、B(3,1),∴AB==,∴P A﹣PB的最大值为,故答案为:.三.解答题(满分66分)19.解:(1)原式=9﹣2+1+﹣2=6+;(2)原式=﹣1﹣3+3=﹣1.20.解:(1)(x+3)2﹣4=0,(x+3)2=4,x+3=±2,当x+3=2时,x=﹣1,当x+3=﹣2时,x=﹣5,所以x=﹣1或﹣5;(2)3(2x+1)3+24=0,3(2x+1)3=﹣24,(2x+1)3=﹣8,2x+1=﹣2,解得x=﹣.21.解:∵=3,3a+b﹣1的平方根是±4,c是的整数部分,∴2a﹣1=9,3a+b﹣1=16,c=7,∴a=5,b=2,c=7,∴a+2b+c=16,∴a+2b+c的算术平方根是4.22.解:(1)点A关于y轴的对称点坐标为(2,﹣2),点C坐标为(0,2);故答案为:2,﹣2,0,2;(2)如图,△A′B′C′为所作;A′的坐标为(﹣3,0);故答案为(﹣3,0);(3)三角形ABC的面积=5×4﹣×3×5﹣×3×1﹣×4×2=7.23.解:如图所示:首先过O作垂线,再截取AO=2,然后连接A和表示1的点B,再以O为圆心,AB长为半径画弧,与原点右边的坐标轴的交点为.24.解:(1)由题意可得y﹣2=k(x+1),把当x=1时,y=﹣4代入得:﹣4﹣2=k(1+1),解得:k=﹣3,所以y﹣2=﹣3(x+1),故一次函数的解析式为y=﹣3x﹣1.(2)∵点(a,2)在这个函数的图象上,2=﹣3a﹣1,解得a=﹣1.(3)当x=0时,y=﹣3x﹣1=﹣1,当x=5时,y=﹣3x﹣1=﹣16,∴当0≤x≤5时,y的取值范围是﹣16≤y≤﹣1.25.解:(1)==,===﹣;故答案为:;﹣;(2)原式=+++•+==.26.解:(1)∵,∴n﹣3=0,3m﹣12=0,n=3,m=4,∴A的坐标是(0,4),C的坐标是(3,0);(2)∵B(﹣5,0),∴OB=5,①当0≤t<时,P在线段OB上,如图1,∵OP=5﹣2t,OA=4,∴△POA的面积S=×OP×AO=×(5﹣2t)×4=10﹣4t;②当t=时,P和O重合,此时△APO不存在,即S=0;③当t>时,P在射线OC上,如备用图2,∵OP=2t﹣5,OA=4,∴△POA的面积S=×OP×AO=×(2t﹣5)×4=4t﹣10;(3)P在线段BO上运动使△P AC是等腰三角形,分三种情况,①∠P AC为顶角时,即AP=AC,∴AO为△P AC中垂线,∴PO=CO=3,∴P点坐标为(﹣3,0),∴t==1s;②∠ACP为顶角时,AC=CP根据勾股定理可得,AC==5,∴PO=2或8(舍弃),∴P点坐标为(﹣2,0),∴t==1.5s;③∠APC为顶角时,AP=PC,设P A=x,根据勾股定理,在Rt△P AO中,x2=(x﹣3)2+42解得x=,∴PO=﹣3=,∴P点坐标为(﹣,0),∴t==s;综上,存在一点P(﹣3,0)、(﹣2,0)、(,0)相对应的时间分别是t=1、1.5、使△P AC是等腰三角形.。

鲁教版八年级数学上册第四章图形的平移与旋转单元综合能力提升练习题3(附答案)

鲁教版八年级数学上册第四章图形的平移与旋转单元综合能力提升练习题3(附答案)

鲁教版八年级数学上册第四章图形的平移与旋转单元综合能力提升练习题3(附答案)一.选择题(共10小题)1.汉字“王、人、木、水、口、立”中能通过单独平移组成一个新的汉字的有()A.1个B.2个C.3个D.4个2.如图,三角形ABC经过平移后得到三角形DEF,下列说法:①AB∥DE;②AD=BE;③∠ACB=∠DFE;④BC=DE.其中正确的有()A.1个B.2个C.3个D.4个3.如图,在平面直角坐标系xOy中,将四边形ABCD先向下平移,再向右平移得到四边形A1B1C1D1,已知A(﹣3,5),B(﹣4,3),A1(3,3),则B1的坐标为()A.(1,2)B.(2,1)C.(1,4)D.(4,1)4.如图,表示直线a平移得到直线b的两种画法,下列关于三角板平移的方向和移动的距离说法正确的是()A.方向相同,距离相同B.方向不同,距离不同C.方向相同,距离不同D.方向不同,距离相同5.在下列四个图案中,不能用平移变换来分析其形成过程的是()A.B.C.D.6.国旗上的四个小五角星,通过怎样的移动可以相互得到()A.轴对称B.平移C.旋转D.平移和旋转7.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A按逆时针方向旋转15°后得到△AB1C1,B1C1交AC于点D,如果AD=2,则△ABC的周长等于()A.6+2B.4+2C.12+D.6+8.如图所示的图案,其外轮廓是一个正五边形,绕它的中心旋转一定的角度后能够与自身重合,则这个旋转角可能是()A.90°B.72°C.60°D.36°9.如图,△DEC是由△ABC经过了如下的几何变换而得到的:①以AC所在直线为对称轴作轴对称,再以C为旋转中心,顺时针旋转90°;②以C为旋转中心,顺时针旋转90°得△A′B′C′,再以A′C′所在直线为对称轴作轴对称;③将△ABC向下向左各平移1个单位,再以AC的中点为中心作中心对称,其中正确的变换有()A.①②B.①③C.②③D.①②③10.有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有()A.5个B.4个C.3个D.2个二.填空题(共10小题)11.如图所示的是一块矩形ABCD的场地,AB=102m,AD=51m,从A,B两地入口的路宽都为1m,两小路汇合处的路宽为2m,其余部分种植草坪,则草坪的面积为m2.12.如图,在三角形ABC中,AD⊥BC,BC=6,AD=3,将三角形ABC沿射线BC的方向平移2个单位后,得到三角形A′B′C′,连接A′C,则三角形A′B′C的面积为.13.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.在y轴上存在一点P,连接P A,PB,使S△P AB=S四边形ABDC.则点P的坐标为.14.如图,将△ABP放在每个小正方形的边长为1的网格中,点A、B、P均落在格点上.(1)△ABP的面积等于;(2)若线段AB水平移动到A′B′,且使P A′+PB′最短,请你在如图所示的网格中,用直尺画出A′B′,并简要说明画图的方法(不要求证明).15.平移边长为1的小菱形◇可以得到美丽的“中国结”图案,如四个图案是由◇平移后得到的类似“中国结”的图案,其中第(1)个图形含边长为1的菱形2个,第(2)个图形含边长为1的菱形8个,第(3)个图形含边长为1的菱形18个,则第(n)个图形中含边长为1的菱形的个数是.16.如图,五角星也可以看作是一个三角形绕中心O旋转次得到的,每次旋转角度是.17.如图,一副三角板的三个内角分别是90°,45°,45°和90°,60°,30°,按如图所示叠放在一起(点A,D,B在同一直线上),若固定△ABC,将△BDE绕着公共顶点B 顺时针旋转α度(0<α<180),当边DE与△ABC的某一边平行时,相应的旋转角α的值为.18.在下列图形:“角、射线、线段、等腰三角形、平行四边形”中,既是轴对称图形又是旋转对称图形的为.19.如图,在△ABC中,点O是AC的中点,△CDA与△ABC关于点O中心对称,若AB =6,∠BAC=40°,则CD的长度为,∠ACD的度数为°.20.在平行四边形、等边三角形、圆、线段中,是中心对称图形的有.三.解答题(共7小题)21.如图,在Rt△ABC中,∠C=90°,∠A=33°,将△ABC沿AB方向向右平移得到△DEF.(1)试求出∠E的度数;(2)若AE=9cm,DB=2cm.请求出CF的长度.22.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),把△ABO向下平移3个单位再向右平2个单位后得△DEF.(1)直接写出A、B、O三个对应点D、E、F的坐标;(2)求△DEF的面积.23.如图,在方格纸内将△ABC水平向右平移4个单位得到△A′B′C′.(1)画出△A′B′C′;(2)画出AB边上的中线CD和高线CE;(利用网格点和直尺画图)(3)△BCD的面积为.24.为迎接全运会,体育迷小强利用网格设计了一个“火炬”图案,请你帮帮他:(1)将“火炬”图案先向右平移7格,再向上平移6格,画出平移后的图案;(2)如果图中每个小正方形的边长是1,求其中一个火炬图案的面积.25.在等腰Rt△ABC中,∠ABC=90°,AB=BC,在等腰Rt△BDE中,∠BDE=90°,BD=DE,连接AD,点F是AD的中点.(1)如图①,当点E和点F重合时,若BD=,求CD的长;(2)如图②,当点F恰好在BE上,并且AB=AD,若AG⊥BD,求证:AG=DE+CD.26.如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)图中哪两个图形成中心对称?(2)若△ADC的面积为4,求△ABE的面积.27.若点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,求a,b的值.参考答案与试题解析一.选择题(共10小题)1.汉字“王、人、木、水、口、立”中能通过单独平移组成一个新的汉字的有()A.1个B.2个C.3个D.4个【解答】解:“人”平移得到“从”,“木”平移得到“林”,“水”平移得到“淼”,“口”平移得到“品”,所以通过平移组成一个新的汉字的有4个.故选:D.2.如图,三角形ABC经过平移后得到三角形DEF,下列说法:①AB∥DE;②AD=BE;③∠ACB=∠DFE;④BC=DE.其中正确的有()A.1个B.2个C.3个D.4个【解答】解:△ABC平移到△DEF的位置,其中AB和DE,AC和DF,BC和EF是对应线段,AD、BE和CF是对应点所连的线段,则①AB∥DE,②AD=BE,③∠ACB=∠DFE均正确,④BC=DE不一定正确;故选:C.3.如图,在平面直角坐标系xOy中,将四边形ABCD先向下平移,再向右平移得到四边形A1B1C1D1,已知A(﹣3,5),B(﹣4,3),A1(3,3),则B1的坐标为()A.(1,2)B.(2,1)C.(1,4)D.(4,1)【解答】解:由A(﹣3,5),A1(3,3)可知四边形ABCD先向下平移2个单位,再向右平移6个单位得到四边形A1B1C1D1,∵B(﹣4,3),∴B1的坐标为(2,1),故选:B.4.如图,表示直线a平移得到直线b的两种画法,下列关于三角板平移的方向和移动的距离说法正确的是()A.方向相同,距离相同B.方向不同,距离不同C.方向相同,距离不同D.方向不同,距离相同【解答】解:由图和平移可得:三角板平移的方向不同,距离相同,故选:D.5.在下列四个图案中,不能用平移变换来分析其形成过程的是()A.B.C.D.【解答】解:由图可知,ACD三个图形通过平移而成,B中图案通过旋转而成.故选:B.6.国旗上的四个小五角星,通过怎样的移动可以相互得到()A.轴对称B.平移C.旋转D.平移和旋转【解答】解:四个小五角星通过旋转可以得到.故选:C.7.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A按逆时针方向旋转15°后得到△AB1C1,B1C1交AC于点D,如果AD=2,则△ABC的周长等于()A.6+2B.4+2C.12+D.6+【解答】解:∵∠ABC=90°,∠C=30°,∴∠BAC=60°,∵∠BAB1=15°,∴∠B1AD=45°,∴△AB1D是等腰直角三角形,∵AD=2,∴AB1=DB1=2,∴AB=AB1=2,∴AC=2AB=4,BC=AB=2,∴△ABC的周长=2+4+2=6+2,故选:A.8.如图所示的图案,其外轮廓是一个正五边形,绕它的中心旋转一定的角度后能够与自身重合,则这个旋转角可能是()A.90°B.72°C.60°D.36°【解答】解:∵正五边形的中心角==72°,∴绕它的中心旋转72°角度后能够与自身重合,故选:B.9.如图,△DEC是由△ABC经过了如下的几何变换而得到的:①以AC所在直线为对称轴作轴对称,再以C为旋转中心,顺时针旋转90°;②以C为旋转中心,顺时针旋转90°得△A′B′C′,再以A′C′所在直线为对称轴作轴对称;③将△ABC向下向左各平移1个单位,再以AC的中点为中心作中心对称,其中正确的变换有()A.①②B.①③C.②③D.①②③【解答】解:根据题意分析可得:△DEC可以由△ABC经过:①以AC所在直线为对称轴作轴对称,再以C为旋转中心,顺时针旋转90°得到,正确;②以C为旋转中心,顺时针旋转90°得△A′B′C′,再以A′C′所在直线为对称轴作轴对称的变化得到,正确;③将△ABC向下向左各平移1个单位,所得△DEC与原△ABC为轴对称图形,并非由旋转得到,错误.故选:A.10.有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有()A.5个B.4个C.3个D.2个【解答】解:矩形,线段、菱形是轴对称图形,也是中心对称图形,符合题意;等腰三角形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意.共3个既是轴对称图形又是中心对称图形.故选:C.二.填空题(共10小题)11.如图所示的是一块矩形ABCD的场地,AB=102m,AD=51m,从A,B两地入口的路宽都为1m,两小路汇合处的路宽为2m,其余部分种植草坪,则草坪的面积为5000m2.【解答】解:由图可知:矩形ABCD中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:102﹣2=100,宽为51﹣1=50.所以草坪的面积应该是长×宽=100×50=5000.故选:5000.12.如图,在三角形ABC中,AD⊥BC,BC=6,AD=3,将三角形ABC沿射线BC的方向平移2个单位后,得到三角形A′B′C′,连接A′C,则三角形A′B′C的面积为6.【解答】解:∵AD⊥BC,BC=6,AD=3,将三角形ABC沿射线BC的方向平移2个单位后,∴BB'=2,△ABC的高AD=△A'B'C'的高=△A'B'C的高=3,∴B'C=BC﹣BB'=6﹣2=4,∴三角形A′B′C的面积=,故答案为:613.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.在y轴上存在一点P,连接P A,PB,使S△P AB=S四边形ABDC.则点P的坐标为(0,﹣4)或(0,4).【解答】解:由平移可得,C(0,2),D(4,2),∴CD=AB=4,CD∥AB,∴四边形ABCD为平行四边形,∴四边形ABCD面积=4×2=8,又∵S△P AB=S四边形ABDC,∴△P AB的面积为8,即×AB×OP=8,∴OP=4,∴当点P在AB下方时,P(0,﹣4);当点P在AB上方时,P(0,4),故答案为:(0,﹣4)或(0,4).14.如图,将△ABP放在每个小正方形的边长为1的网格中,点A、B、P均落在格点上.(1)△ABP的面积等于2;(2)若线段AB水平移动到A′B′,且使P A′+PB′最短,请你在如图所示的网格中,用直尺画出A′B′,并简要说明画图的方法(不要求证明).【解答】解:(1)S△ABC=×2×2=2.故答案为:2;(2)如图所示,A′B′=AB==.易证△PBB′≌△HAA′,可得PB′=HA′,∴P A′+PB′=P A′+A′H=PH,∴当H、A′、P共线时,P A′+PB′的值最小,最小值=PH==故答案为:.15.平移边长为1的小菱形◇可以得到美丽的“中国结”图案,如四个图案是由◇平移后得到的类似“中国结”的图案,其中第(1)个图形含边长为1的菱形2个,第(2)个图形含边长为1的菱形8个,第(3)个图形含边长为1的菱形18个,则第(n)个图形中含边长为1的菱形的个数是2n2.【解答】解:第(1)个图形:2=2=2×12;第(2)个图形:8=2×4=2×22;第(3)个图形:18=2×9=2×32;…第(n)个图形为2n2个,故答案为:2n216.如图,五角星也可以看作是一个三角形绕中心O旋转四次得到的,每次旋转角度是72°,144°,216°,288°.【解答】解:由于有五个星,所以要由一个三角形绕中心点旋转四次,每次旋转的角度分别为等360°÷5=72°,72°×2=144°,72°×3=216°,72°×4=288°.故答案为:四,72°,144°,216°,288°.17.如图,一副三角板的三个内角分别是90°,45°,45°和90°,60°,30°,按如图所示叠放在一起(点A,D,B在同一直线上),若固定△ABC,将△BDE绕着公共顶点B顺时针旋转α度(0<α<180),当边DE与△ABC的某一边平行时,相应的旋转角α的值为45°,75°,165°.【解答】解:①如图1中,当DE∥AB时,易证∠ABD=∠D=45°,可得旋转角α=45°②如图2中,当DE∥BC时,易证∠ABD=∠ABC+∠CBD=∠ABC+∠D=75°,可得旋转角α=75°③如图3中,当DE∥AC时,作BM∥AC,则AC∥BM∥DE,∴∠CBM=∠C=90°,∠DBM=∠D=45°,∴∠ABD=30°+90°+45°=165°,可得旋转角α=165°,综上所述,满足条件的旋转角α为45°,75°,165°故答案为45°,75°,165°.18.在下列图形:“角、射线、线段、等腰三角形、平行四边形”中,既是轴对称图形又是旋转对称图形的为线段.【解答】解:线段是轴对称图形,也是中心对称图形,符合题意;等腰三角形、角是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意.射线既不是轴对称图形又不是中心对称图形,不符合题意;故既是轴对称图形又是中心对称图形的是:线段.故答案为:线段.19.如图,在△ABC中,点O是AC的中点,△CDA与△ABC关于点O中心对称,若AB =6,∠BAC=40°,则CD的长度为6,∠ACD的度数为40°.【解答】解:∵点O是AC的中点,△CDA与△ABC关于点O中心对称,∴四边形ABCD是平行四边形,∴AB=DC=6,AB∥DC,∴∠BAC=∠ACD=40°.故答案为:6,40.20.在平行四边形、等边三角形、圆、线段中,是中心对称图形的有平行四边形、圆、线段.【解答】解:在平行四边形、等边三角形、圆、线段中,是中心对称图形的有:平行四边形、圆、线段.故答案为:平行四边形、圆、线段.三.解答题(共7小题)21.如图,在Rt△ABC中,∠C=90°,∠A=33°,将△ABC沿AB方向向右平移得到△DEF.(1)试求出∠E的度数;(2)若AE=9cm,DB=2cm.请求出CF的长度.【解答】解:(1)∵在Rt△ABC中,∠C=90°,∠A=33°,∴∠CBA=90°﹣33°=57°,由平移得,∠E=∠CBA=57°;(2)由平移得,AD=BE=CF,∵AE=9cm,DB=2cm,∴AD=BE=×(9﹣2)=3.5cm,∴CF=3.5cm.22.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),把△ABO向下平移3个单位再向右平2个单位后得△DEF.(1)直接写出A、B、O三个对应点D、E、F的坐标;(2)求△DEF的面积.【解答】解:(1)∵点A(1,3),B(3,1),O(0,0),∴把△ABO向下平移3个单位再向右平移2个单位后A、B、O三个对应点D(1+2,3﹣3)、E(3+2,1﹣3)、F(0+2,0﹣3),即D(3,0)、E(5,﹣2)、F(2,﹣3);(2)△DEF的面积:3×3﹣×1×3﹣×1×3﹣×2×2=4.23.如图,在方格纸内将△ABC水平向右平移4个单位得到△A′B′C′.(1)画出△A′B′C′;(2)画出AB边上的中线CD和高线CE;(利用网格点和直尺画图)(3)△BCD的面积为4.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)如图所示,CD、CE即为所求;(3)△BCD的面积为×4×4﹣×1×3﹣×1×3﹣1=4,故答案为:424.为迎接全运会,体育迷小强利用网格设计了一个“火炬”图案,请你帮帮他:(1)将“火炬”图案先向右平移7格,再向上平移6格,画出平移后的图案;(2)如果图中每个小正方形的边长是1,求其中一个火炬图案的面积.【解答】解:(1)如图所示:(2)一个火炬图案的面积为:9+×3+(4﹣1﹣×1×2﹣×1×2)=11.5.25.在等腰Rt△ABC中,∠ABC=90°,AB=BC,在等腰Rt△BDE中,∠BDE=90°,BD=DE,连接AD,点F是AD的中点.(1)如图①,当点E和点F重合时,若BD=,求CD的长;(2)如图②,当点F恰好在BE上,并且AB=AD,若AG⊥BD,求证:AG=DE+CD.【解答】(1)解:如图1中,作CM⊥BD交BD的延长线于M.∵∠ADB=∠ABC=90°,∴∠ABD+∠CBM=90°,∠ABD+∠BAD=90°,∴∠CBM=∠BAD,在△CBM和△BAD中,,∴△CBM≌△BAD(AAS),∴BD=CM,AD=BM,∵AE=DE=BD,∴AD=2BD,BM=2BD,∴BD=DM=CM=,∴△DCM是等腰直角三角形,∴CD=CM=;(2)证明:如图②中,作CM⊥BD于M.由(1)可知△CBM≌△BAG,∴BG=CM,AG=BM,∵AB=AD,AG⊥BD,∴BG=DG,∵ED⊥BD,∴AG∥DE,∴∠GAF=∠FDE,BH=HE,∴DE=2GH,在△AHF和△DEF中,,∴△AHF≌△DEF(AAS),∴AH=DE=BD,∴AG=3BG,BM=3CM,∵BG=DG,∴DM=CM,∴△CDM是等腰直角三角形,∴DM=CD,∵AG=BM=BD+DM,∴AG=DE+CD.26.如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)图中哪两个图形成中心对称?(2)若△ADC的面积为4,求△ABE的面积.【解答】解:(1)图中△ADC和三角形EDB成中心对称;(2)∵△ADC和三角形EDB成中心对称,△ADC的面积为4,∴△EDB的面积也为4,∵D为BC的中点,∴△ABD的面积也为4,所以△ABE的面积为8.27.若点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,求a,b的值.【解答】解:∵点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,∴a﹣2=﹣(﹣1),3=﹣(2b+2),解得a=3,b=﹣。

浙教版-学年度上学期八年级数学期末综合练习试题3(含解析)

浙教版-学年度上学期八年级数学期末综合练习试题3(含解析)

2018-2019浙教版八年级上数学期末综合练习试题3姓名:__________班级:__________考号:__________题号一二三总分得分一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是()A.∠A=∠B B. AO=BO C. AB=CD D. AC=BD2.若Rt△ABC中,∠C=90°且c=13,a=12,则b=()A.11 B.8 C.5 D.33.把点A(﹣2,1)向上平移2个单位,再向右平移3个单位后得到B,点B的坐标是()A.(﹣5,3)B.(1,3) C.(1,﹣3) D.(﹣5,﹣1)4.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80° B.70° C.85° D.75°5.如图,△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于点D、E,则△ABC的周长()cmA、 6B、 7C、 8D、96.已知直线a∥b,将一块含30°的直角三角尺按如图方式放置(∠ABC=60°),其中A,C两点分别落在直线a,b上,若∠1=20°,则∠2的度数为()A. 20° B. 30° C. 40° D. 50°7.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.8.已知不等式≤<,其解集在数轴上表示正确的是()A. B.C. D.9.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118° B.119° C.120° D.121°10.如图,在△ABC中,AB=AC,点D,E分别在边BC 和AC上,若AD=AE,则下列结论错误的是()A.∠ADB=∠ACB+∠CAD B.∠ADE=∠AED C.∠CDE=∠BAD D.∠AED=2∠ECD二、填空题(本大题共6小题,每小题3分,共18分)11.如图,象棋盘上,若“将”位于点(1,-1),“车”位于点(-3,-1),则“马”位于点____________.12.在直角三角形中,一个锐角是另一个锐角的4倍,则较小锐角的度数分别为_____度.13.如图,BC∥EF,AC∥DF,添加一个条件,使得△ABC≌△DEF.14.已知P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,则(a+b)2017的值为.15.某次数学测试,共有20道选择题,评分标准:每题答对得5分,答错倒扣2分,不答得0分,某同学有两题未答,要使得分在60分以上,则该同学至少要答对________题.16.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是.三、解答题(本大题共8小题,共52分)17.某商店分两次购进 A、B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)购进所需费用(元)A B第一次30 40 3800第二次40 30 3200(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.18.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.19.如图,李伯伯承包了一块四边形的土地ABCD,他让小亮帮他测量一下这块地的面积.先量得AC的长为120米,BC的长为60米,BD的长为240米.当要测量AD的长度时,小亮说:“不用量了,我已经测得BA恰好平分∠CAB,公路AC和BC是互相垂直的,有了这些条件,就能求出这块土地的面积了.”小亮说得对吗?你会计算这块土地的面积吗?20.某校规划在一块长AD为18m,宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮。

第12章 全等三角形 人教版八年级上册数学 综合练习3份(含答案)

第12章 全等三角形 人教版八年级上册数学 综合练习3份(含答案)

第十二章全等三角形综合练习(一)一.选择题1.下列条件中,一定能确定两个等腰三角形全等的是()A.有一腰和底边对应相等的两个等腰三角形B.有一腰和一角相等的两个等腰三角形C.有一角和底边相等的两个等腰三角形D.顶角对应相等的两个等腰三角形2.如图,添加条件不能判断△ACD≌△ABE的是()A.∠AEB=∠ADC,CD=BE B.AC=AB,AD=AEC.AC=AB,∠C=∠B D.∠AEB=∠ADC,∠C=∠B3.如图,将两根钢条AB、CD的中点O连在一起,使AB、CD可以绕点O自由转动,就做成一个测量工件,则AC的长等于内槽宽BD,则判定△OBD≌△OAC的理由是()A.边边边B.角边角C.边角边D.角角边4.如图,△ABC外角∠CBD,∠BCE的平分线BF、CF相交于点F,则下列结论成立的是()A.AF平分BC B.AF⊥BC C.AF平分∠BAC D.AF平分∠BFC 5.如果一个三角形的一条边是另一条边的2倍,并且有一个角是30°,那么这个三角形的形状是()A.直角三角形B.钝角三角形C.锐角三角形D.不能唯一确定6.如图,已知△ABC的三条边和三个角六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是()A.只有乙B.只有丙C.甲和乙D.乙和丙7.如图,已知△ABE≌△ACD,下列不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE8.如图,AB⊥BD,ED⊥BD于D,AB=CD,AC=CE,下列结论:(1)BC=DE;(2)AC⊥CE;(3)∠CAE=45°,其中正确的有()A.0个B.1个C.2个D.3个9.如图,已知△ABC≌△DEF,且AB=5,BC=6,AC=7,则DF的长为()A.5 B.6 C.7 D.不能确定10.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,小明在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A.①②B.①③C.②③D.①②③二.填空题11.如图,△ABC≌△DEF,∠A=80°,∠ABC=60°,则∠F=度.12.如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,若线段AE=5,=.则S四边形ABCD13.已知:如图,AC=AE,∠1=∠2,AB=AD,若∠D=25°,则∠B的度数为.14.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(1,1)的点共有个.15.如图,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是.三.解答题16.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从下列四个条件中选择一个合适的条件,添加到已知条件中,使AB∥ED成立,并给出证明.供选择的四个条件(请从其中选择一个):①AB=ED;②∠A=∠D=90°;③∠ACB=∠DFE;④∠A=∠D.17.已知:在△ABD和△ACE中,AD=AB,AC=AE.(1)如图1,若∠DAB=∠CAE=60°,求证:BE=DC;(2)如图2,若∠DAB=∠CAE=n°,求∠DOB的度数.18.如图,△ABC中,D为BC的中点.(1)求证:AB+AC>2AD;(2)若AB=5,AC=3,求AD的取值范围.19.小明和小亮在学习探索三角形全等时,碰到如下一题:如图1,若AC=AD,BC=BD,则△ACB与△ADB有怎样的关系?(1)请你帮他们解答,并说明理由.(2)细心的小明在解答的过程中,发现如果在AB上任取一点E,连接CE、DE,则有CE=DE,你知道为什么吗?(如图2)(3)小亮在小明说出理由后,提出如果在AB的延长线上任取一点P,也有第2题类似的结论.请你帮他画出图形,并写出结论,不要求说明理由.(如图3)20.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F(1)如图1,若∠ACD=60゜,则∠AFB=;(2)如图2,若∠ACD=α,则∠AFB=(用含α的式子表示);(3)将图2中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),如图3.试探究∠AFB与α的数量关系,并予以证明.参考答案一.选择题1.解:A、有一腰和底边对应相等的两个等腰三角形,即三边对应相等,也可以判断其全等,正确;B、角与一腰,对应相等,另一腰也相等,两边与一角,不一定证全等,错误;C、底边固定,角为顶角不可证明其全等,错误;D、顶角对应相等,不可证全等,错误;故选:A.2.解:A、根据AAS可判定△ACD≌△ABE,故本选项错误;B、根据SAS可判定△ACD≌△ABE,故本选项错误;C、根据ASA可判定△ACD≌△ABE,故本选项错误;D、判定两个三角形全等时,必须有边的参与,所以添加条件∠AEB=∠ADC,∠C=∠B后,仍然不能判断△ACD≌△ABE,故本选项正确;故选:D.3.解:∵两钢条中点连在一起做成一个测量工件,∴OA′=OB,OD=OC,∵∠AOC=∠DOB,∴△OBD≌△OAC′.所以BD的长等于内槽宽AC,用的是SAS的判定定理.故选:C.4.解:作FP⊥AE于P,FG⊥BC于G,FH⊥AD于H,∵CF是∠BCE的平分线,∴FP=FG,∵BF是∠CBD的平分线,∴FH=FG,∴FP=FH,又FP⊥AE,FH⊥AD,∴AF平分∠BAC,故选:C.5.解:设△ABC中,∠A=30°,①若a=2b,则∠B<∠A(大边对大角),∴∠C=180°﹣∠A﹣∠B>180°﹣2∠A=120°,即∠C为钝角,∴△ABC是钝角三角形.②若b=2c,a2=b2+c2﹣2bc cos A=5c2﹣2c2,=5﹣2>1,可得a>c,∴∠C<∠A(大边对大角),∴∠B=180°﹣∠A﹣∠C>180°﹣2∠A=120°,即∠B为钝角,∴△ABC是钝角三角形;③c=2a,在直角三角形中30°所对的边为斜边的一半,可得∠C=90°,即△ABC是直角三角形.综上可得△ABC可为直角三角形、钝角三角形,不能为锐角三角形.故选:D.6.解:甲三角形只知道一条边长、一个内角度数无法判断是否与△ABC全等;乙三角形夹50°内角的两边分别与已知三角形对应相等,故乙与△ABC全等;丙三角形72°内角及所对边与△ABC对应相等且均有50°内角,可根据AAS判定乙与△ABC全等;则与△ABC全等的有乙和丙,故选:D.7.解:∵△ABE≌△ACD,∴AB=AC,A不合题意;∴∠BAD=∠CAE,∴∠BAE=∠CAD,B不合题意;∴BD=EC,∴BE=CD,C不合题意;∴AD=AE,∴AD=DE不正确,D符合题意;故选:D.8.证明:∵AB⊥BD,ED⊥BD,∴∠B=∠D=90°,在RT△ABC和RT△CDE中,,∴△ABC≌△CDE,∴BC=DE故(1)正确,∠ACB=∠CED,AC=CE,∵∠CED+∠ECD=90°∴∠ACB+∠ECD=90°,∴∠ACE=90°即AC⊥CE故(2)正确,∵CA=CE,∴∠CAE=∠CEA=45°故(3)正确,故选:D.9.解:∵△ABC≌△DEF,∴DF=AC=7,故选:C.10.解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故③正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD =∠COD =90°,AO =OC ,∴AC ⊥DB ,故①②正确.故选:D .二.填空题(共5小题)11.解:∵△ABC ≌△DEF ,∠A =80°,∠ABC =60°, ∴∠D =∠A =80°,∠DEF =∠ABC =60°,∵∠F +∠D +∠DEF =180°,∴∠F =40°,故答案为:40.12.解:过A 点作AF ⊥CD 交CD 的延长线于F 点,如图, ∵AE ⊥BC ,AF ⊥CF ,∴∠AEC =∠CFA =90°,而∠C =90°,∴四边形AECF 为矩形,∴∠2+∠3=90°,又∵∠BAD =90°,∴∠1=∠2,在△ABE 和△ADF 中∴△ABE ≌△ADF ,∴AE =AF =5,S △ABE =S △ADF ,∴四边形AECF 是边长为5的正方形,∴S 四边形ABCD =S 正方形AECF =52=25.故答案为25.13.解:∵∠1=∠2,∴∠BAC=∠DAE,又∵AC=AE,AB=AD,∴△ABC≌△ADE,∴∠B=∠D=25°.故答案为25°.14.解:到l1的距离是1的点,在与l1平行且与l1的距离是1的两条直线上;到l2的距离是1的点,在与l2平行且与l2的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(1,1)的点共有4个.故答案为:4.15.解:当有1点D时,有1对全等三角形;当有2点D、E时,有3对全等三角形;当有3点D、E、F时,有6对全等三角形;当有4点时,有10个全等三角形;…当有n个点时,图中有个全等三角形.故答案为:.三.解答题(共5小题)16.解:不能;选择条件①AE=BE.∵FB=CE,∴FB+FC=CE+FC,即BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF(SSS),∴∠B=∠E,∴AB∥ED.17.证明:(1)∵∠DAB=∠CAE∴∠DAB+∠BAC=∠CAE+∠BAC∴∠DAC=∠BAE,在△ADC和△ABE中,,∴△ADC≌△ABE,∴DC=BE,(2)同理得:△ADC≌△ABE,∴∠ADC=∠ABE,又∵∠DOB=180°﹣∠ODB﹣∠OBD,=180°﹣∠ODB﹣∠ABD﹣∠ABE,∴∠DOB=180°﹣∠ODB﹣∠ABD﹣∠ADC,=180°﹣∠ADB﹣∠ABD,∴∠DOB=∠DAB=n°.18.(1)证明:由BD=CD,再延长AD至E,使DE=AD,∵D为BC的中点,∴DB=CD,在△ADC和△EDB中,∴△ADC≌△EDB(SAS),∴BE=AC,在△ABE中,∵AB+BE>AE,∴AB+AC>2AD;(2)∵AB=5,AC=3,∴5﹣3<2AD<5+3,∴1<AD<4.19.解:(1)△ACB≌△ADB,理由如下:如图1,∵在△ACB与△ADB中,,∴△ACB≌△ADB(SSS);(2)如图2,∵由(1)知,△ACB≌△ADB,则∠CAE=∠DAE.∴在△CAE与△DAE中,,∴△CAE≌△DAE(SAS),∴CE=DE;(3)如图3,PC=PD.理由同(2),△APC≌△APD(SAS),则PC=PD.20.解:(1)∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中∴△ACE≌△DCB,∴∠CAE=∠CDB,∴∠AFB=∠CDB+∠CDA+∠DAE =∠CDA+∠DAE+∠BAE=∠CDA+∠DAC=180°﹣60°=120°,故答案为:120°.(2)解:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中∴△ACE≌△DCB,∴∠CAE=∠CDB,∴∠AFB=∠CDB+∠CDA+∠DAE =∠CDA+∠DAE+∠BAE=∠CDA+∠DAC=180°﹣∠ACD=180°﹣α,故答案为:180°﹣α(3)∠AFB=180﹣α,证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中∴△ACE≌△DCB,∴∠AEC=∠DBC,∴∠AFB=∠AEC+∠CEB+∠EBD=∠DBC+∠CEB+∠EBC=∠CEB+∠EBC=180°﹣∠ECB=180°﹣α,即∠AFB=180°﹣α第十二章全等三角形综合练习(二)一.选择题1.如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需()A.AB=DC B.OB=OC C.∠C=∠D D.∠AOB=∠DOC 2.如图,在△ABC和△DEC中,AB=DE.若添加条件后使得△ABC≌△DEC,则在下列条件中,不能添加的是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.∠B=∠E,∠A=∠D D.BC=EC,∠A=∠D3.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由此作法便可得△MOC≌△NOC,其依据是()A.SSS B.SAS C.ASA D.AAS4.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确5.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB6.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件①∠ADB=∠ADC,②∠B =∠C,③DB=DC,④AB=AC中选一个,则正确的选法个数是()A.1个B.2个C.3个D.4个7.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE8.如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个B.3个C.2个D.1个9.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°10.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD交BE于点F,若BF=AC,则∠ABC 等于()A.45°B.48°C.50°D.60°二.填空题11.已知△ABC≌△DEF,∠A=50°,∠B=60°,则∠F=.12.如图所示,一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动;将△MNK 的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=a.猜想此时重叠部分四边形CEMF的面积为;简述证明主要思路.13.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=°.14.在平面直角坐标系中,点A(x,y)的坐标满足方程3x﹣y=4,(1)当点A到两条坐标轴的距离相等时,点A的坐标为.(2)当点A在x轴上方时,点A的横坐标x满足条件.15.如图1,已知AB=AC,D为∠BAC的平分线上面﹣点.连接BD,CD;全等三角形的对数是.如图2.已知AB=AC,D,E为∠BAC的平分线上面两点.连接BD,CD,BE,CE;全等三角形的对数是.如图3.已知AB=AC,D,E,F为∠BAC的平分线上面三点,连接BD,CD,BE,CE,BF,CF;全等三角形的对数是.…依此规律,第n个图形中有全等三角形的对数是.三.解答题16.以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.(1)说明BD=CE;(2)延长BD,交CE于点F,求∠BFC的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.17.如图所示,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,垂足分别为E、F,且AB=CD.(1)△ABF与△CDE全等吗?为什么?(2)求证:EG=FG.18.“综合与实践”学习活动准备制作一组三角形记这些三角形的三边分别为a,b,c,用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,4,4)表示边长分别为2,4,4个单位长度的一个三角形(1)若这些三角形三边的长度为大于0且小于3的整数个单位长度,请用记号写出所有满足条件的三角形;(2)如图,AD是△ABC的中线,线段AB,AC的长度分别为2个,6个单位长度,且线段AD的长度为整数个单位长度,过点C作CE∥AB交AD的延长线于点E①求AD的长度;②请直接用记号表示△ACE.19.如图,在△ABC中,∠ACB=45°,过点A作AD⊥BC于点D,点E为AD上一点,且ED=BD.(1)求证:△ABD≌△CED;(2)若CE为∠ACD的角平分线,求∠BAC的度数.20.如图,在△ABC中,AB=AC=2,∠B=36°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=36°,DE交线段AC于点E.(1)当∠BDA=128°时,∠EDC=,∠AED=;(2)线段DC的长度为何值时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.参考答案一.选择题1.解:A、AB=DC,不能根据SAS证两三角形全等,故本选项错误;B、∵在△AOB和△DOC中,∴△AOB≌△DOC(SAS),故本选项正确;C、两三角形相等的条件只有OA=OD和∠AOB=∠DOC,不能证两三角形全等,故本选项错误;D、根据∠AOB=∠DOC和OA=OD,不能证两三角形全等,故本选项错误;故选:B.2.解:A、添加BC=EC,∠B=∠E可用SAS判定两个三角形全等,故A选项正确;B、添加BC=EC,AC=DC可用SSS判定两个三角形全等,故B选项正确;C、添加∠B=∠E,∠A=∠D可用ASA判定两个三角形全等,故C选项正确;D、添加BC=EC,∠A=∠D后是SSA,无法证明三角形全等,故D选项错误.故选:D.3.解:∵在△ONC和△OMC中,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,故选:A.4.解:(1)如图所示:过两把直尺的交点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A.5.解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;D、添加∠ACB=∠DEB,可根据ASA判定△ABC≌△DBE,故正确.故选:B.6.解:∵∠1=∠2,AD公共,①如添加∠ADB=∠ADC,利用ASA即可证明△ABD≌△ACD;②如添加∠B=∠C,利用AAS即可证明△ABD≌△ACD;③如添加DB=DC,因为SSA,不能证明△ABD≌△ACD,所以此选项不能作为添加的条件;④如添加AB=AC,利用SAS即可证明△ABD≌△ACD;故选:C.7.解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.8.解:(1)PA平分∠BAC.∵PR⊥AB,PS⊥AC,PR=PS,AP=AP,∴△APR≌△APS,∴∠PAR=∠PAS,∴PA平分∠BAC;(2)由(1)中的全等也可得AS=AR;(3)∵AQ=PR,∴∠1=∠APQ,∴∠PQS=∠1+∠APQ=2∠1,又∵PA平分∠BAC,∴∠BAC=2∠1,∴∠PQS=∠BAC,∴PQ∥AR;(4)∵PR⊥AB,PS⊥AC,∴∠BRP=∠CSP,∵PR=PS,∴△BRP不一定全等与△CSP(只具备一角一边的两三角形不一定全等).故选:B.9.解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.10.解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠BEC=90°,∴∠FBD=∠CAD,在△FDB和△CAD中,,∴△FDB≌△CDA,∴DA=DB,∴∠ABC=∠BAD=45°,故选:A.二.填空题(共5小题)11.解:∵∠A=50°,∠B=60°,又∵∠A+∠B+C=180°,∴∠C=70°,∵△ABC≌△DEF,∴∠F=∠C,即:∠F=70°.故答案为:70°.12.解:重叠部分四边形CEMF的面积为a2.证明如下:连CM,如图,∵点M为等腰直角△ABC的斜边AB的中点,∴CM=MB=MA,∴∠A=∠ACM=∠MCB=45°,∠CMA=90°,又∵△MNK为直角三角形,∴∠EMF=90°,∴∠AMF=∠EMC=90°﹣∠CMF,在△AFM和△CEM中,∴△AFM≌△CEM,∴S△AFM=S△CEM,∴重叠部分四边形CEMF的面积=S△ACM=S△ACB=××a×a=a2.故答案为:a2.13.解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故答案为:135.14.解:(1)∵点A(x,y)的坐标满足方程3x﹣y=4,点A到两条坐标轴的距离相等,∴x=±y,∴3y﹣y=4或﹣3y﹣y=4,解得:y=2或y=﹣1,∴点A的坐标为(2,2)或(1,﹣1),故答案为:(2,2)或(1,﹣1);(2)∵3x﹣y=4,∴y=3x﹣4,∵点A在x轴上方,∴y>0,即3x﹣4>0,∴x>,故答案为:x>.15.解:如图1中,∵AD是∠BAC的平分线,∴∠BAD=∠CAD.在△ABD与△ACD中,∴△ABD≌△ACD(SAS).∴图1中有1对三角形全等;同理图2中,△ABE≌△ACE,∴BE=EC,∵△ABD≌△ACD.∴BD=CD,在△BDE和△CDE中,∴△BDE≌△CDE(SSS),∴图2中有3对三角形全等;同理:图3中有6对三角形全等;由此发现:第n个图形中全等三角形的对数是.故答案为:1,3,6,.三.解答题(共5小题)16.解:(1)∵△ABC、△ADE是等腰直角三角形,∴AB=AC,∠BAD=∠EAC=90°,AD=AE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE;(2)∵△ADB≌△AEC,∴∠ACE=∠ABD,而在△CDF中,∠BFC=180°﹣∠ACE﹣∠CDF又∵∠CDF=∠BDA∴∠BFC=180°﹣∠DBA﹣∠BDA=∠DAB=90°;(3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下:∵△ABC、△ADE是等腰直角三角形∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∵∠BAC+∠CAD=∠EAD+∠CAD∴∠BAD=∠CAE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS)∴BD=CE,∠ACE=∠DBA,∴∠BFC=∠CAB=90°.17.(1)解:△ABF与△CDE全等,理由如下:∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CDE(HL);(2)证明:∵Rt△ABF≌Rt△CDE,∴BF=DE,在△DEG和△BFG中,,∴△DEG≌△BFG(AAS),∴EG=FG.18.解:(1)由三角形的三边关系得:所有满足条件的三角形为(1,1,1),(1,2,2),(2,2,2);(2)①∵CE∥AB,∴∠ABD=∠ECD,∠BAD=∠CED,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(AAS),∴AD=ED,AB=CE=2,∴AE=2AD,在△ACE中,AC﹣CE<AE<AC+CE,∴6﹣2<2AD<6+2,∴2<AD<4,∵线段AD的长度为整数个单位长度,∴AD=3;②AE=2AD=6,用记号表示△ACE为(2,6,6).19.(1)证明:∵AD⊥BC,∠ACB=45°,∴∠ADB=∠CDE=90°,△ADC是等腰直角三角形,∴AD=CD,∠CAD=∠ACD=45°,在△ABD与△CED中,,∴△ABD≌△CED(SAS);(2)解:∵CE为∠ACD的角平分线,∴∠ECD=∠ACD=22.5°,由(1)得:△ABD≌△CED,∴∠BAD=∠ECD=22.5°,∴∠BAC=∠BAD+∠CAD=22.5°+45°=67.5°.20.解:(1)∵AB=AC,∴∠C=∠B=36°,∵∠ADE=36°,∠BDA=128°,∵∠EDC=180°﹣∠ADB﹣∠ADE=16°,∴∠AED=∠EDC+∠C=16°+36°=52°,故答案为:16°;52°;(2)当DC=2时,△ABD≌△DCE,理由:∵AB=2,DC=2,∴AB=DC,∵∠C=36°,∴∠DEC+∠EDC=144°,∵∠ADE=36°,∴∠ADB+∠EDC=144°,∴∠ADB=∠DEC,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)当∠BDA的度数为108°或72°时,△ADE的形状是等腰三角形,①当DA=DE时,∠DAE=∠DEA=72°,∴∠BDA=∠DAE+∠C=72°+36°=108°;②当AD=AE时,∠AED=∠ADE=36°,∴∠DAE=108°,此时,点D与点B重合,不合题意;③当EA=ED时,∠EAD=∠ADE=36°,∴∠BDA=∠EAD+∠C=36°+36°=72°;综上所述,当∠BDA的度数为108°或72°时,△ADE的形状是等腰三角形.第十二章全等三角形综合练习(三)一.选择题1.OP是∠AOB的平分线,则下列说法正确的是()A.射线OP上的点与OA,OB上任意一点的距离相等B.射线OP上的点与边OA,OB的距离相等C.射线OP上的点与OA各点的距离相等D.射线OP上的点与OB上各的距离相等2.如图,E、B、F、C四点在一条直线上,ED=AB,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.ED∥AB B.EB=FC C.DF=AC D.∠DFE=∠C 3.有两个三角形,下列条件能判定两个三角形全等的是()A.有两条边对应相等B.有两边及一角对应相等C.有三角对应相等D.有两边及其夹角对应相等4.某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带③去,这样做根据的三角形全等判定方法为()A.S.A.S.B.A.S.A.C.A.A.S.D.S.S.S.5.如图给出了四组三角形,其中全等的三角形有()组.A.1 B.2 C.3 D.46.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S=28,DE=4,AC=△ABC6,则AB的长是()A.8 B.10 C.12 D.不能确定7.两个等腰三角形,若顶角和底边对应相等,则两个等腰三角形全等,其理由是()A.SAS B.SSS C.ASA D.ASA或AAS 8.如图,在△ABC中,∠C=90°,AD平分∠CAB,已知CD=3,BD=5,则下列结论中错误的是()A.AC=6 B.AD=7 C.BC=8 D.AB=109.如图,三条公路两两相交,现计划修建一个油库,要求油库到这三条公路的距离相等,那么选择油库的位置有()处.A.1 B.2 C.3 D.410.如图,已知EC=BF,∠A=∠D,现从下列6个条件:①AC=DF;②∠B=∠E;③∠ACB=∠DFE;④AB∥ED;⑤AB=ED;⑥DF∥AC;从中选取一个条件,以保证△ABC≌△DEF,则可选择的是()A.②③④⑥B.③④⑤⑥C.①③④⑥D.①②③④二.填空题11.如图,已知∠1=∠2,AC=AD,如果要使△ABC≌△AED,请你添加一个条件.(只添加一个条件)12.如图,在△ABC中,∠B=∠C=70°,BE=DC,BD=CF,则∠EDF的度数为.13.一个加油站点M恰好在两条公路m、n的夹角平分线上,若MN⊥m于N,MN=50m,则点M到公路n的距离是.14.如图,如果要测量池塘两端A、B间的距离,可先在地上取一个可以直接到达A、B两点的点C,连接AC并延长到D,使CD=CA;连接BC并延长到E,使CE=CB;连接DE,可得△ABC≌△DEC,依据的基本事实是,那么AB=.15.已知,如图,△ABC中,∠C=90°,点O为△ABC的三条角平分线的交点,OD垂直BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB=10cm,BC=8cm,CA=6cm,则OF=.三.解答题16.如图,在四边形ABCD中,AC平分∠BAD,且AC=BC,AB=2AD.(1)求∠ADC的度数;(2)若AB=10cm,CD=12cm,求四边形ABCD的面积.17.如图,AB⊥AD,AE⊥AC,∠E=∠C,DE=BC.求证:AD=AB.18.在数学实践课上,老师在黑板上画出如图的图形,(其中点B,F,C,E在同一条直线上).并写出四个条件:①AB=DE,②∠1=∠2.③BF=EC,④∠B=∠E,交流中老师让同学们从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题.①请你写出所有的真命题;②选一个给予证明.你选择的题设:;结论:.(均填写序号)19.如图1,我们定义:在四边形ABCD中,若AD=BC,且∠ADB+∠BCA=180°,则把四边形ABCD叫做互补等对边四边形.(1)如图2,在等腰△ABE中,AE=BE,四边形ABCD是互补等对边四边形,求证:∠ABD=∠BAC=∠AEB.(2)如图3,在非等腰△ABE中,若四边形ABCD仍是互补等对边四边形,试问∠ABD =∠BAC=∠AEB是否仍然成立?若成立,请加以证明;若不成立,请说明理由.20.如图(1),在平面直角坐标系中,AB⊥x轴于B,AC⊥y轴于C,点C(0,m),A (n,m),且(m﹣4)2+n2﹣8n=﹣16,过C点作∠ECF分别交线段AB、OB于E、F两点.(1)求A点的坐标;(2)若OF+BE=AB,求证:CF=CE;(3)如图(2),若∠ECF=45°,给出两个结论:OF+AE﹣EF的值不变;OF+AE+EF 的值不变,其中有且只有一个结论正确,请你判断出正确的结论,并加以证明和求出其值.参考答案一.选择题1.解:OP是∠AOB的平分线,射线OP上的点与OA,OB上任意一点的距离不一定相等,A错误;射线OP上的点与边OA,OB的距离相等,B正确;射线OP上的点与OA各点的距离不一定相等,C错误;射线OP上的点与OA上各点的距离不一定相等,D错误,故选:B.2.解:A、添加ED∥AB可得∠E=∠ABC,可利用ASA判定△ABC≌△DEF,故此选项不合题意;B、由EB=FC可得EF=BC,不能判定△ABC≌△DEF,故此选项符合题意;C、添加DF=AC可利用SAS判定△ABC≌△DEF,故此选项不合题意;D、添加∠DFE=∠C可利用AAS判定△ABC≌△DEF,故此选项不合题意;故选:B.3.解:∵三角形全等的判定方法有:SSS、SAS、ASA、AAS;A、B、C不能满足某一个判定方法,∴A、B、C不能判定两个三角形全等;D能判定两个三角形全等;∵D满足三角形全等的判定方法SAS,∴D能判定.故选:D.4.解:第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:B.5.解:图1可以利用AAS证明全等,图2可以利用SAS证明全等,图3可以利用SAS证明全等,图4可以利用ASA证明全等.故选:D.6.解:如图:过D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DE=4,∴DF=DE=4,=28,∵S△ABC∴AB×DE+AC×DF=28,∴×AB×4+6×4=28,∴AB=8,故选:A.7.解:一个等腰三角形,若顶角对应相等,则它们的两个底角也相等,所以根据AAS或者ASA都可以判定这两个三角形全等.故选:D.8.解:∵CD=3,BD=5,∴BC=CD+BD=3+5=8,故C正确;过点D作DE⊥AB于点E,∵AD平分∠CAB,∴CD=DE=3.在Rt△BDE中,∵BD=5,DE=3,∴BE===4.∵∠B=∠B,∠DEB=∠C,∴△BED∽△BCA,∴==,即==,解得AB=10,AC=6,故A,D正确;在Rt△ACD中,∵AC=6,CD=3,∴AD===3,故B错误.故选:B.9.解:∵有三条公路相交如图,现计划修建一个油库,要求到三条公路的距离相等,∴在角平分线的交点处.如图.故选:D.10.解:∵EC=BF,∴BC=EF;∵∠A=∠D,∠B=∠E,∴△ABC≌△DEF(AAS),故②可以;∵∠ACB=∠DFE,∴△ABC≌△DEF,故③可以;∵AB∥ED,∴∠B=∠E,∴△ABC≌△DEF,故④可以;∵DF∥AC,∴∠BCA=∠DFE,∴△ABC≌△DEF,故⑥可以;而①⑤是利用AAS,则不可以.故选:A.二.填空题(共5小题)11.解:∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,即∠CAB=∠DAE,而AC=AD,∴当AB=AE时,在△ABC和△AED中,∴△ABC≌△AED(SAS).故答案为:AB=AE.(答案不唯一)12.解:∵AB=AC,∴∠B=∠C,在△BDE和△CFD中,,∴△BDE≌△CFD(SAS);∴∠BED=∠CDF,∴∠BDE+∠CDF=∠BDE+∠BED=180°﹣∠B=110°,∴∠EDF=180°﹣110°=70°.故答案为70°13.解:因为加油站恰好位于两条公路m,n所夹角的平分线上,所以加油站到公路m和公路n的距离是相等的,即为50m,故答案为:50m14.解:在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴AB=DE,故答案为SAS,DE.15.解:连接OA、OB、OC,如图,∵点O为△ABC的三条角平分线的交点,OD垂直BC,OE⊥AC,OF⊥AB,∴OD=OE=OF,设OF =x ,则OD =OE =x ,∵S △AOC +S △BOC +S △AOB =S △ACB , ∴•x •6+•x •8+•x •10=•6•8,解得x =2, 即OF 的长为2cm .故答案为2cm .三.解答题(共5小题)16.解:(1)作CE ⊥AB 交AB 于点E ,则∠AEC =90°, ∵AC =BC ,∴CE 是AB 的垂直平分线,∴AE =BE =AB ,∵AB =2AD ,∴AE =AD =AB ,∵∠AC 平分∠BAD ,∴∠EAC =∠DAC ,在△ADC 和△AEC 中,,∴△ADC ≌△AEC ,∴∠ADC =∠AEC =90°;(2)∵CE 是AB 的垂直平分线,∴S △ACD =S △AEC ,∵AB =2AD ,CD =CE ,∴S △ACB =2S △ADC ,∴四边形ABCD 的面积=3S △ADC =3××5×12=90cm 2.17.证明:∵AB⊥AD,AE⊥AC,∴∠EAC=∠DAB=90°,即∠EAD+∠DAC=∠CAB+∠DAC.∴∠EAD=∠CAB,在△ADE和△ABC中,,∴△ADE≌△ABC(AAS),∴AD=AB.18.解:①情况一:题设:①②④;结论:③;情况二:题设①③④;结论:②;情况三:题设②③④;结论:①.②选择的题设:①③④;结论:②;理由:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠1=∠2;故答案为:①③④;②.19.解:(1)∵AE=BE,∴∠EAB=∠EBA,∵四边形ABCD是互补等对边四边形,∴AD=BC,在△ABD和△BAC中,,∴△ABD≌△BAC(SAS),∴∠ADB=∠BCA,又∵∠ADB+∠BCA=180°,∴∠ADB=∠BCA=90°,在△ABE中,∵∠EAB=∠EBA==90°﹣∠AEB,∴∠ABD=90°﹣∠EAB=90°﹣(90°﹣∠AEB)=∠AEB,同理:∠BAC=∠AEB,∴∠ABD=∠BAC=∠AEB;(2)仍然成立;理由如下:如图③所示:过点A、B分别作BD的延长线与AC的垂线,垂足分别为G、F,∵四边形ABCD是互补等对边四边形,∴AD=BC,∠ADB+∠BCA=180°,又∠ADB+ADG=180°,∴∠BCA=∠ADC,又∵AG⊥BD,BF⊥AC,∴∠AGD=∠BFC=90°,在△AGD和△BFC中,∴△AGD≌△BFC,∴AG=BF,在△ABG和△BAF中,∴△ABG≌△BAF,∴∠ABD=∠BAC,∵∠ADB+∠BCA=180°,∴∠EDB+∠ECA=180°,∴∠AEB+∠DHC=180°,∵∠DHC+∠BHC=180°,∴∠AEB=∠BHC.∵∠BHC=∠BAC+∠ABD,∠ABD=∠BAC,∴∠ABD=∠BAC=∠AEB.20.解:(1)(m﹣4)2+n2﹣8n=﹣16,即(m﹣4)2+(n﹣4)2=0,则m﹣4=0,n﹣4=0,解得:m=4,n=4.则A的坐标是(4,4);(2)∵AB⊥x轴,AC⊥y轴,A(4,4),∴AB=AC=OC=OB,∠ACO=∠COB=∠ABO=90°,又∵四边形的内角和是360°,∴∠A=90°,∵OF+BE=AB=BE+AE,∴AE=OF,∴在△COF和△CAE中,,∴△COF≌△CAE,得∴CF=CE;(3)结论正确,值为0.证明:在x轴负半轴上取点H,使OH=AE,∵在△ACE和△OCH中,,∴△ACE≌△OCH,∴∠1=∠2,CH=CE,又∵∠EOF=45°,∴∠HCF=45°,∴在△HCF和△ECF中,,∴△HCF≌△ECF,∴HF=EF,∴OF+AE﹣EF=0.。

北师大版八年级数学上册第三章综合素质评价试卷 附答案 (1)

北师大版八年级数学上册第三章综合素质评价试卷 附答案 (1)

北师大版八年级数学上册第三章综合素质评价一、选择题(每题3分,共30分)1.云南是一个神奇美丽的地方,这里有美丽的边疆、美丽的城市、美丽的村庄、美丽的风情,云南的省会城市昆明更有着四季如春的美誉,下列表示昆明市地理位置最合理的是( )A.在中国西南地区B.在云贵高原的中部C.距离北京2 600千米D.东经102°、北纬24°2.如图,科考队探测到目标位于图中阴影区域内,则目标的坐标可能是( ) A.(20,30)B.(15,-28)C.(-40,-10)D.(-35,19)例题】某镇初级中学在镇政府的南偏西60°方向上,且距离镇3.【母题:教材P54政府1 500 m,则如图所示的表示法正确的是( )4.【2023·济宁任城区校级月考】已知点A(m-1,3)与点B(2,n-1)关于x轴对称,则m+n的值为( )A.0 B.1 C.-1 D.3 5.【2023·天津中学月考】已知点A(-1,-4),B(-1,3),则( ) A.点A,B关于x轴对称B.点A,B关于y轴对称C.直线AB平行于y轴D.直线AB垂直于y轴6.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为( ) A.2 B.-4 C.-1 D.37.若点P(1,a)与点Q(b,2)关于x轴对称,则代数式(a+b)2 023的值为( ) A.-1 B.1 C.-2 D.28.【2023·常州实验中学月考】如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E 的坐标是( )A.(2,-3)B.(2,3)C.(3,2)D.(3,-2)9.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是( )A.(3,3) B.(3,-3)C.(6,-6) D.(3,3)或(6,-6)10.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2,…,第n次移动到点A n,则点A2 024的坐标是( )A.(1 011,0) B.(1 011,1) C.(1 012,0) D.(1 012,1) 二、填空题(每题3分,共24分)11.点(0,-2)在________轴上.12.点(4,5)关于x轴对称的点的坐标为__________.13.一个英文单词的字母顺序分别对应如图中的有序数对:(5,3),(6,3),(7,3),(4,1),(4,4),则这个英文单词翻译成中文为__________.14.已知点A,B,C的坐标分别为(2,4),(6,0),(8,0),则△ABC的面积是________.15.【母题:教材P71复习题T1(3)】若点P到x轴的距离为4,到y轴的距离为5,且点P在y轴的左侧,则点P的坐标为________________.16.已知点N的坐标为(a,a-1),则点N一定不在第________象限.17.【2023·苏州一中月考】如图,一束光线从点A(3,3)出发,经过y轴上的点C 反射后经过点B(1,0),则光线从点A到点B经过的路径长为________.18.【规律探索题】【2022·毕节】如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位长度,再向右平移1个单位长度,得到点A1(1,1);把点A1向上平移2个单位长度,再向左平移2个单位长度,得到点A2(-1,3);把点A2向下平移3个单位长度,再向左平移3个单位长度,得到点A3(-4,0);把点A3向下平移4个单位长度,再向右平移4个单位长度,得到点A4(0,-4),…;按此做法进行下去,则点A10的坐标为________.三、解答题(19,23,24题每题12分,其余每题10分,共66分)19.【母题:教材P60随堂练习】2023年亚运会将在杭州举行,如图是杭州李华同学家附近的一些地方.(1)根据图中所建立的平面直角坐标系,写出学校、邮局的坐标.(2)某星期日早晨,李华同学从家里出发,沿着(-2,-1)→(-1,-2)→(1,-2)→(2,-1)→(1,-1)→(1,3)→(-1,0)→(0,-1)→(-2,-1)的路线转了一圈,依次写出他路上经过的地方.(3)连接(2)中各点,所形成的路线构成了什么图形?20.已知点P (2m -6,m +2).(1)若点P 在y 轴上,则点P 的坐标为__________; (2)若点P 的纵坐标比横坐标大6,则点P 在第几象限?21.若点P ,Q 的坐标分别是(x 1,y 1),(x 2,y 2),则线段PQ 的中点坐标为⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22.如图,已知点A ,B ,C 的坐标分别为(-5,0),(3,0),(1,4),利用上述结论分别求出线段AC ,BC 的中点D ,E 的坐标,并判断DE 与AB 的位置关系.22.【2023·吉林一中月考】已知点P (2x ,3x -1)是平面直角坐标系内的点. (1)若点P 在第三象限,且到两坐标轴的距离和为11,求x 的值;(2)已知点A (3,-1),点B (-5,-1),点P 在直线AB 的上方,且到直线AB 的距离为5,求x 的值.23.如图,在平面直角坐标系中,AB∥CD∥x轴,BC∥DE∥y轴,且AB=CD=4,OA=5,DE=2,动点P从点A出发,沿A→B→C的路线运动到点C停止;动点Q从点O出发,沿O→E→D的路线运动到点D停止.若P,Q两点同时出发,且P,Q运动的速度均为每秒一个单位长度.(1)直接写出B,C,D三个点的坐标;(2)当P,Q两点出发6 s时,试求三角形POQ的面积.24.【存在性问题】已知A(-3,0),C(0,4),点B在x轴上,且AB=4.(1)求点B的坐标.(2)在y轴上是否存在点P,使得以A,C,P为顶点的三角形的面积为9?若存在,求出点P的坐标;若不存在,请说明理由.(3)在y轴上是否存在点Q,使得△ACQ是等腰三角形?若存在,请画出点Q的位置,并直接写出点Q的坐标;若不存在,请说明理由.答案一、1.D 【提示】表示昆明市地理位置最合理的是东经102°、北纬24°. 2.D 【提示】图中阴影区域在第二象限,故选D.3.A 【提示】A.镇初级中学在镇政府的南偏西60°方向上,且距离镇政府1 500 m,故本选项符合题意;B.镇初级中学在镇政府的南偏西30°方向上,且距离镇政府1 500 m,故本选项不符合题意;C.镇政府在镇初级中学的南偏西60°方向上,且距离镇初级中学1 500 m,故本选项不符合题意;D.镇政府在镇初级中学的南偏西30°方向上,且距离镇初级中学1 500 m,故本选项不符合题意.故选A.4.B 【提示】因为点A(m-1,3)与点B(2,n-1)关于x轴对称,所以m-1=2,n-1=-3,解得m=3,n=-2,所以m+n=1.5.C 【提示】把A(-1,-4),B(-1,3)在平面直角坐标系中画出,并连接AB,可知AB平行于y轴.6.C 【提示】因为直线AB∥x轴,所以A、B两点的纵坐标相等,所以-2=m -1,解得m=-1.7.A 【提示】因为P(1,a)与Q(b,2)关于x轴对称,所以b=1,a=-2,所以(a+b)2 023=(-2+1)2 023=-1.8.C 【提示】因为点A的坐标为(0,a),所以点A在该平面直角坐标系的y轴上.因为点C,D的坐标分别为(b,m),(c,m),所以点C,D关于y轴对称.因为正五边形ABCDE是轴对称图形,所以该平面直角坐标系经过点A的y轴是正五边形ABCDE的一条对称轴,所以点B,E也关于y轴对称.因为点B的坐标为(-3,2),所以点E的坐标为(3,2).9.D 【提示】因为点P到两坐标轴的距离相等,所以|2-a|=|3a+6|,所以2-a=3a+6或2-a=-(3a+6),解得a=-1或a=-4,所以点P 的坐标为 (3,3)或(6,-6).10.C 【提示】A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),A7(3,0),A8(4,0),…,2 024÷4=506,所以A2 024的坐标为(506×2,0),则A2 024的坐标是(1 012,0).二、11.y【提示】横坐标为0,所以点(0,-2)在y轴上.12.(4,-5) 【提示】因为关于x轴对称的点横坐标变,纵坐标互为相反数,所以点(4,5)关于x轴对称的点的坐标为(4,-5).13.学习【提示】根据有序数对对应的字母即可求解.14.4 【提示】把点A,B,C在平面直角坐标系中标出来,可知BC=2,△ABC的边BC上的高为4,所以△ABC的面积为12×4×2=4.15.(-5,4)或(-5,-4) 【提示】由点P到两坐标轴的距离可知,点P有4个.因为点P在y轴的左侧,所以点P的坐标为(-5,4)或(-5,-4).16.二【提示】当a>1时,a-1是正数,所以点P在第一象限,当a<1时,a-1为负数,所以点P在第三象限或第四象限.故点N一定不在第二象限.17.5 【提示】作点A关于y轴的对称点A′(-3,3),过A′作垂直于x轴于点D,连接A′,D,B构成△A′DB,所以A′D=3,DB=4,所以A′B=A′D2+BD2=5,即光线从点A到点B经过的路径长为5.18.(-1,11) 【提示】由题图可知A5(5,1);将点A5向上平移6个单位长度,再向左平移6个单位长度,可得A6(-1,7);将点A6向下平移7个单位长度,再向左平移7个单位长度,可得A7(-8,0);将点A7向下平移8个单位长度,再向右平移8个单位长度,可得A8(0,-8);将点A8向上平移9个单位长度,再向右平移9个单位长度,可得A9(9,1);将点A9向上平移10个单位长度,再向左平移10个单位长度,可得A10(-1,11).三、19.【解】(1)学校的坐标为(1,3),邮局的坐标为(0,-1).(2)商店、公园、汽车站、水果店、学校、娱乐城、邮局.(3)图略,所形成的路线构成了一条帆船图形.20.【解】(1)(0,5)(2)根据题意,得2m -6+6=m +2,解得m =2. 所以点P 的坐标为(-2,4). 所以点P 在第二象限.21.【解】由题中所给结论及点A ,B ,C 的坐标分别为(-5,0),(3,0),(1,4),得点D (-2,2),E (2,2).因为点D ,E 的纵坐标相等,且不为0, 所以DE ∥x 轴. 又因为AB 在x 轴上, 所以DE ∥AB .22.【解】(1)因为点P 在第三象限,所以点P 到x 轴的距离为1-3x ,到y 轴的距离为-2x .因为点P 到两坐标轴的距离和为11, 所以1-3x -2x =11,解得x =-2. (2)易知直线AB ∥x 轴.由点P 在直线AB 的上方且到直线AB 的距离为5,得3x -1-(-1)=5,解得x =53. 23.【解】(1)B (4,5),C (4,2),D (8,2).(2)当P ,Q 两点出发6 s 时,P 点的坐标为(4,3),Q 点的坐标为(6,0), 所以S 三角形POQ =12×6×3=9.24.【解】(1)因为点B 在x 轴上,所以设点B 的坐标为(x ,0).因为A (-3,0),AB =4, 所以|x -(-3)|=4, 解得x =-7或x =1.所以点B 的坐标为(-7,0)或(1,0).(2)在y 轴上存在点P ,使得以A ,C ,P 为顶点的三角形的面积为9.设点P 的坐标为(0,y ),当点P 在点C 的上方时,S △ACP =(y -4)×|-3|2=9,解得y =10;当点P 在点C 的下方时,S △ACP =(4-y )×|-3|2=9,解得y =-2.综上所述,点P 的坐标为(0,10)或(0,-2). (3)在y 轴上存在点Q ,使得△ACQ 是等腰三角形.如图,点Q 的坐标为(0,9)或(0,-4)或⎝⎛⎭⎪⎫0,78或(0,-1).。

八年级上数学综合练习题及答案

八年级上数学综合练习题及答案

第10题八年级上数学综合练习题一、填空题(每小题3分,共24分)1. 计算:432)2(a a =.2. 如果分式2202x xx,则x.3. 若一个多边形的内角和是外角和的3倍,则它是_______边形.4. 因式分解:2242x x .5. 分式方程211033xx x的解为.6. 已知63x yxy ,,则22x y xy______________.7. 如图,已知AC FE ,BC DE ,点A 、D 、B 、F 在一条直线上,要使△ABC ≌△FDE ,还需添加一个..条件,这个条件可以是.8. 若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是.二、单项选择题(每小题3分,共24分)9.已知点P 1(a-1,5)和P 2(2,b-1)关于x 轴对称.则2013)ab (的值为( )A.0B. 1C. -1D.(-3)201310.如图,Rt 90ABC C BAC 在△中,=,的角平分线AD 交BC 于点D ,2CD =,则点D 到AB 的距离是()A .1B .2 C .3D .4八年级数学试卷第1页(共8页)11.下列运算正确的是()A .222()a b abB .235a b abC .632a aaD .523aaa12.下列判定直角三角形全等的方法,不正确...的是()A .斜边和一锐角对应相等B .两锐角对应相等C .两条直角边对应相等D .斜边和一条直角边对应相等13.化简22)11(ba ab b a的结果是()A.ba1 B.b a1 C.baD.ab 14.如图,已知ABC △中,45ABC,4AC,H 是高AD 和BE 的交点,则线段BH 的长度为()A .6B .4C .23D .515.下面有4个汽车标志图案,其中是轴对称图形的是( )①②③④A.①②③B.②③④C.①②④D.①③④16.某厂去年产值是m 万元,今年产值是n 万元(m<n ),则今年产值比去年产值增加的百分比是()A .100nnm % B .1001m n %C .100mm n % D .10010mmn %八年级数学试卷第2页(共8页)三、解答题(17、18每题5分,19、20每题6分,共22分)DACB DCBAE H第14题第7题ACDBEF17.计算:12m2-9+23-m.18.如图,有两个74的网格,网格中每个小正方形的边长均为1,每个网格中各画有一个梯形.请在图1、图2中分别画出一条线段,同时..满足以下要求:(1)线段的一个端点为梯形的顶点,另一个端点在梯形一边的格点上;(2)将梯形分成两个图形,其中一个是轴对称图形;(3)图1、图2中分成的轴对称图形不全等.19.先化简,再求值:2121(1)1a aa a,其中a=31..八年级数学试卷第3页(共8页)20.(1)因式分解:3231827x x x. (2)计算:22()()a b a ab b.四、解答题(每小题7分,共14分)21.雨伞的中截面如图所示,伞骨AB=AC,支撑杆OE=OF,AE=31AB,AF=31AC,当O沿AD滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD与∠CAD有何关系?说明理由.八年级数学试卷第4页(共8页)图1 图2ADBEFC22.一辆汽车开往距离A 地180千米的B 地,出发后第一小时内按原计划的速度匀速行驶,一小时后加速为原来速度的1.5倍,并比原计划提前40分钟到达B 地.求汽车原计划的行驶速度.五、解答题(每小题8分,共16分)23. 如图,已知AC ⊥CB ,DB ⊥CB ,AB ⊥DE ,AB=DE ,E 是BC 的中点.(1)观察并猜想BD 和BC 有何数量关系?并证明你猜想的结论.(2)若BD=6cm ,求AC 的长.八年级数学试卷第5页(共8页)24.观察“探究性学习”小组的甲、乙两名同学进行的因式分解:甲:244xxy x y =2()(44)xxy x y (分成两组)=()4()x x y xy (直接提公因式)=()(4)x y x ;乙:2222abcbc=222(2)a bcbc (分成两组)=22()ab c (直接运用公式)=()()abc abc .请你在他们解法的启发下,完成下面的因式分解:(1)32248m mm ;(2)2229xxy y.八年级数学试卷第6页(共8页)六、解答题(每小题10分,共20分)25.已知:点O 到ABC △的两边AB AC ,所在直线的距离相等,且OB OC .(1)如图1,若点O 在边BC 上,求证:ABAC ;(2)如图2,若点O 在ABC △的内部,求证:AB AC ;(3)若点O 在ABC △的外部,ABAC 成立吗?请画图说明(不需证明).八年级数学试卷第7页(共8页)26.(1)如图(1)所示,已知120,MANAC 平分90,MAN ABCADC 。

北师大版数学八年级上册第三、四章综合练习题

北师大版数学八年级上册第三、四章综合练习题

第三、四章综合练习题一、选择题1、已知点P(0, m)在y轴的负半轴上,则点M(-m, ~m+l)在( )A.第一象限B.第二象限C.第三象限D.第四象限2、一个正比例函数的图象经过(2, -1),则它的表达式为( )1 1A.y=—2XB. y=2xC. y=-~ XD. y=~ X3、点M在X轴上侧,距离X轴5个单位长度,距离y轴3个单位长度,则点M 的坐标为( )A.(5,3)B. (-5, 3)或(5,3)C.(3.5)D. (-3, 5)或(3、5)4、在平面直角坐标系中,点P(2,-3)关于X轴的对称点的坐标是()A. (-2,3)B. (2,3)C. (-2,-3)D. (-3,2)5、笛卡尔是法国著名的数学家,他首先提出并创建了坐标的思想,引入坐标和变量的概念,平面直角坐标系很好地体现了下列哪一种数学思想?( )A.数形结合B.类比C.分类讨论D.建模6、对于一次函数y= —2x+4,下列结论错误的是()A.函数值随自变量的增大而减小B.函数的图象不经过笫三象限C.函数的图象向下平移4个单位长度得丁=一2x的图象D.函数的图象与X轴的交点坐标是(0, 4)7、在平面直角坐标系中的坐标轴上,到原点的距离为2的点有( )A. 1个B. 2个C. 3个D. 4个已知点A (x, y)是第二象限的点,且∣x∣=2, ∣y∣ = 3,则点B (_x,—y) 的坐标是( )A.(2,3)B.(2,-3)C.(-2,-3)D.(-2,3)9、在平面直角坐标系中,点(・3, 7√+l) 一定在( )A.第四象限B.第三象限C.第二象限D.第一象限10、已知点M(l, a)和点N(2, b)是一次函数y= -2x+1图象上的两点,则a与b的大小关系是( )A. d>bB. ci — bC. a<bD.以上都不对二、填空题11、___________________________________________________________ 如果直线AB平行于X轴,则点A, B的坐标之间的关系是 ___________________12、___________________________________________________________ 若点P1(m,-1)关于原点的对称点是卩2(2,兀),则m + n的值是_____________13、一次函数y= (m+2)x+l,若y随X的增大而增大,则m的取值范围是_14、将直线y=2x+l向下平移3个单位长度后所得直线的表达式是_.15、____________________________________________________ 直线y=—X与直线y=x+2与X轴围成的三角形面积是 ______________________ .16、_______________________________________________________________ 若√^z3+(b÷2)2=0,则点M(a, b)关于y轴的对称点的坐标为__________________三、解答题17、已知点A(χ-5, 2χ-4)在第一、三象限的角平分线上,求点A的坐标.18^已知一次函数y=ax+b.(1)当点P(a, b)在第二象限时,直线y =ax+b经过哪儿个象限?(2)如果ab<O,且y随X的增大而增大,则函数的图象不经过哪些象限?19、某通讯公司手机话费收费有/套餐(月租费15元,通话费每分钟0.1元) 和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为刃(元),E套餐为y2(元),月通话时间为X分钟.⑴分别表示出刃与X,y2与X的函数关系式;(2)月通话时间多长时,/, E两种套餐收费一样?(3)什么情况下/套餐更省钱?20、对于a、b定义两种新运算“*”和“□”:a*b=a+kb, a□b=ka+b (其中A■为常数,且dθ).若平面直角坐标系Xoy中的点P(a,b),有点P的坐标为(d*b, Qb)与之相对应,则称点P为点P的啧衍生点”例如:P (1, 4)的“2 衍生点”为P (Z+2×4, 2×1÷4),即P (9, 6).(1)________________________________________点P (・1, 6)的“2衍生点”P的坐标为 __________________________________ •(2)若点P的“3衍生点”P的坐标为(5, 7),求点P的坐标.第三、四章综合练习题参考答案一、选择题1、已知点P(0, m)在y轴的负半轴上,则点M(—m, ~m÷l)在(A )A.第一象限B.第二象限C.第三象限D.第四象限2、一个正比例函数的图象经过(2, -1),则它的表达式为(C)A. γ=—2XB. y=2xC. γ=—5 XD. y=* X3、点M在X轴上侧,距离X轴5个单位长度,距离y轴3个单位长度,则点M 的坐标为(D )A.(5,3)B. (一5, 3)或(5,3)C.(3.5)D. (-3, 5)或(3、5)4、在平面直角坐标系中,点P(2,-3)关于X轴的对称点的坐标是(B)A. (—2,3)B. (2,3)C. (-2,-3)D. (—3,2)5、笛卡尔是法国著名的数学家,他首先提出并创建了坐标的思想,引入坐标和变量的概念,平面直角坐标系很好地体现了下列哪一种数学思想?(A )A.数形结合B.类比C.分类讨论D.建模6、对于一次函数y= —2x+4,下列结论错误的是(D)A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=—2x的图象D.函数的图象与X轴的交点坐标是(0, 4)7、在平面直角坐标系中的坐标轴上,到原点的距离为2的点有(D)A. 1个B. 2个C. 3个D. 4个8、已知点A (x, y)是第二象限的点,且∣x∣=2, ∣y∣ = 3,则点B (—x, —y) 的坐标是(D )A.(2,3)B.(2,-3)C.(-2,-3)D.(-2,3)9、在平而直角坐标系中,点(-3, ”,+1) —定在(C )A.第四象限B.第三象限C.第二彖限D.第一象限10、已知点M(l, a)和点N(2, b)是一次函数y= -2x+1图象上的两点,贝IJa与b的大小关系是(A)A. Cc>bB. Cl = bC. a<bD.以上都不对二、填空题11、如果直线AB平行于X轴,则点A, B的坐标之间的关系是_纵坐标相等—12、若点P1(m,-1)关于原点的对称点是P2(2,n),则m + n的值是113、一次函数y= (m+2)x+l,若y随X的增大而增大,则m的取值范围是」 >一2 .14、将直线y=2x+1向下平移3个单位长度后所得直线的表达式是y=2χ-2 .15、直线y=—X与直线y=x+2与X轴围成的三角形面积是1 .16、若√a-3+(b+2)2=0,则点M(a, b)关于y轴的对称点的坐标为(一3, —三、解答题17、已知点A(χ-5, 2χ-4)在第一、三象限的角平分线上,求点A的坐标.解:由题意得x—5 = 2χ-4,解得x=-lt将X—-1代入点A的坐标可知,点A.的坐标为(一6, —6)18、已知一次函数y=ax+b.(1)当点P(a, b)在第二象限时,直线y =ax+b经过哪儿个象限?(2)如果abvθ,且y随X的增大而增大,则函数的图象不经过哪些象限?解:⑴匚点P(a, b)在第二象限,□a<0, b>0, □直线y =ax+b经过第一、二、四象限(2)□y随X的增大而增大,30, 乂□ab<O,匚b<0, □一次函数y =ax+b的图象不经过第二象限19、某通讯公司手机话费收费有/套餐(月租费15元,通话费每分钟0.1元) 和B套餐(月租费0元,通话费每分钟0.15元)两种.设/套餐每月话费为yι(元),E套餐为力(元),月通话时间为X分钟.(1)分别表示出yι与X,y2与X的函数关系式;(2)月通话时间多长时,/, B两种套餐收费一样?(3)什么情况下/套餐更省钱?解:(l)yι = 0.1x+15, yι=0.15x(2)III y1=y2得0.Ix+15=0.15x,解得x=300,即月通话时间为300分钟时, A, B两种套餐收费一样(3)当通话时间多于300分钟时,/套餐更省钱20、对于心b定义两种新运算“*”和“□”:a*b=a*b, a~lb=ka+b(其中A■为常数,且炉0).若平面直角坐标系XOy中的点P(a,b),有点P的坐标为(α*b, a∑b)与之相对应,则称点P为点P的啧衍生点”例如:P (b 4)的“2 衍生点”为P (7+2×4, 2×1÷4), BP P f (9, 6)∙(1)点P (・1, 6)的“2衍生点”P的坐标为______ .(2)若点P的“3衍生点的坐标为(5, 7),求点P的坐标.解:略。

【初中数学】人教版八年级上册专题训练(三) “三线合一”的应用(练习题)

【初中数学】人教版八年级上册专题训练(三) “三线合一”的应用(练习题)

人教版八年级上册专题训练(三)“三线合一”的应用(159)∠BAC.1.如图,已知AB=AC,BD⊥AC于点D.求证:∠DBC=12BC,点E在△ABC外.求证:2.如图,在△ABC中,AB=AC,CE⊥AE于点E,CE=12∠ACE=∠B.3.如图所示,五边形ABCDE中,AB=AE,BC=DE,∠ABC=∠AED,F是CD的中点.求证:AF⊥CD.4.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE,BE,延长AE交BC的延长线于点F,AB=BF.求证:BE⊥AE.5.如图,AD是等腰三角形ABC的底边BC上的中线,P是直线AD上任意一点.求证:BP=CP.6.如图,已知AD=AE,BD=CE,试探究AB和AC的大小关系,并说明理由.参考答案2.【答案】:过点A作AD⊥BC于点D.∵AB=AC,∴BD=12BC.又∵CE=12BC,∴BD=CE.在Rt△ABD和Rt△ACE中,AB=AC,BD=CE,∴Rt△ABD≌Rt△ACE,∴∠ACE=∠B【解析】:过点A作AD⊥BC于点D.∵AB=AC,∴BD=12BC.又∵CE=12BC,∴BD=CE.在Rt△ABD和Rt△ACE中,AB=AC,BD=CE,∴Rt△ABD≌Rt△ACE,∴∠ACE=∠B3.【答案】:连接AC,AD.在△ABC和△AED中,{AB=AE ∠ABC=∠AED BC=ED∴△ABC≌△AED(SAS),∴AC=AD(全等三角形的对应边相等).又∵△ACD中AF是CD边上的中线,∴AF⊥CD(等腰三角形底边上的高和底边上的中线重合)【解析】:连接AC,AD.在△ABC和△AED中,AB=AE,∠ABC=∠AED,BC=ED,∴△ABC≌△AED(SAS),∴AC=AD(全等三角形的对应边相等).又∵△ACD中AF是CD边上的中线,∴AF⊥CD(等腰三角形底边上的高和底边上的中线重合)4.【答案】:∵E是CD的中点,∴DE=CE.∵AD∥BC,∴∠ADE=∠FCE,∠DAE=∠CFE,∴△ADE≌△FCE,∴AE=FE.又∵AB=BF,∴BE⊥AE【解析】:∵E是CD的中点,∴DE=CE.∵AD∥BC,∴∠ADE=∠FCE,∠DAE=∠CFE,∴△ADE≌△FCE,∴AE=FE.又∵AB=BF,∴BE⊥AE5.【答案】:∵AD是等腰三角形ABC的底边BC上的中线,∴AD⊥BC,BD=CD,∴AP是线段BC的垂直平分线,∴BP=CP【解析】:∵AD是等腰三角形ABC的底边BC上的中线,∴AD⊥BC,BD=CD,∴AP是线段BC的垂直平分线,∴BP=CP6.【答案】:AB=AC.理由:因为AD=AE,所以△ADE是等腰三角形.取线段DE的中点F,连接AF,则AF既是△ADE的中线,又是底边上的高,即AF⊥DE,DF=EF.又因为BD=CE,所以BD+DF=CE+EF,即BF=CF,所以AF是线段BC的垂直平分线,根据线段垂直平分线的性质可得AB=AC【解析】:AB=AC.理由:因为AD=AE,所以△ADE是等腰三角形.取线段DE的中点F,连接AF,则AF既是△ADE的中线,又是底边上的高,即AF⊥DE,DF=EF.又因为BD=CE,所以BD+DF=CE+EF,即BF=CF,所以AF是线段BC 的垂直平分线,根据线段垂直平分线的性质可得AB=AC。

人教版数学八年级上学期期中备考综合练习(考察第十一、十二章)(三)及答案

人教版数学八年级上学期期中备考综合练习(考察第十一、十二章)(三)及答案

期中备考综合练习(考察第十一、十二章)(三)一.选择题1.在下列四组线段中,能组成三角形的是()A.2cm,6cm,9cm B.2cm,3cm,5cmC.3.4cm,2.7cm,6cm D.3cm,4cm,7cm2.如图,△ABC中,∠EFD=40°,且∠AEF=∠AFE,∠CFD=∠CDF,则∠ABC的度数为()A.95°B.100°C.105°D.110°3.在直角三角形ABC中,∠A:∠B:∠C=2:m:4,则m的值是()A.3 B.4 C.2或6 D.2或44.如图,在△ABC中,∠A=30°,∠B=50°,CD平分∠ACB,则∠ADC的度数是()A.80°B.90°C.100°D.110°5.若一个多边形的内角和是它的外角和的5倍,则这个多边形是()A.六边形B.八边形C.十边形D.十二边形6.如图,在△ABC中,∠A=38°,∠B=70°,CD是AB边上的高,CE平分∠ACB交AB 于E,DP是△CDE中CE边上的高,则∠CDP的度数是()A.75°B.74°C.73°D.72°7.如图,AD=BC,∠DAB=∠CBA,由此可得下列哪组三角形全等()A.△ABC≌△BAD B.△AOC≌△AOBC.△BOD≌△AOB D.没有三角形全等8.根据下列条件能画出唯一△ABC的是()A.AB=1,BC=2,CA=3 B.AB=7,BC=6,∠A=40°C.∠A=50°,∠B=60°,∠C=70°D.AC=3.5,BC=4.8,∠C=70°9.如图,AB∥CD,AD∥BC,AC与BD相交于点O,AE⊥BD,CF⊥BD,垂足分别是E,F.则图中共有()对全等三角形.A.5 B.6 C.7 D.810.如图,已知△ABC的周长是16,MB和MC分别平分∠ABC和∠ACB,过点M作BC 的垂线交BC于点D,且MD=4,则△ABC的面积是()A.64 B.48 C.32 D.4211.如图,将一根笔直的竹竿斜放在竖直墙角AOB中,初始位置为CD,当一端C下滑至C'时,另一端D向右滑到D',则下列说法正确的是()A.下滑过程中,始终有CC'=DD'B.下滑过程中,始终有CC'≠DD'C.若OC<OD,则下滑过程中,一定存在某个位置使得CC'=DD'D.若OC>OD,则下滑过程中,一定存在某个位置使得CC'=DD'12.已知:如图,在△ABC与△AEF中,点F在BC上,AB=AE,BC=EF,∠B=∠E,AB交EF于点D.下列结论:①∠EAB=∠FAC;②AF=AC;③FA平分∠EFC;④∠BFE =∠FAC中,正确的有()个.A.1 B.2 C.3 D.4二.填空题13.七边形ABCDEFG的内角和的度数为.14.如图所示,在△ABC中,∠A=50°,点D在△ABC的内部,并且∠DBA=∠ABC,∠DCA=∠ACB,则∠D的度数是.15.如图,AM、CM分别平分∠BAD和∠BCD,且∠B=31°,∠D=39°,则∠M=.16.如图,在△ABC中,CD平分∠ACB交AB于D,DE∥BC交AC于E,若∠ACB=60°,则∠EDC=.17.已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示,若DE=4,则DF=.18.如图,EB交AC于点M,交CF于点D,AB交FC于点N,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:①∠1=∠2;②CD=DN;③△ACN≌△ABM;④BE=CF.其中正确的结论有.(填序号)三.解答题19.已知△ABC,P是平面内任意一点(A、B、C、P中任意三点都不在同一直线上).连接PB、PC,设∠PBA=s°,∠PCA=t°,∠BPC=x°,∠BAC=y°.(1)如图,当点P在△ABC内时,①若y=70,s=10,t=20,则x=;②探究s、t、x、y之间的数量关系,并证明你得到的结论.(2)当点P在△ABC外时,直接写出s、t、x、y之间所有可能的数量关系,并画出相应的图形.20.如图所示,有一块直角三角板DEF(足够大),其中∠EDF=90°,把直角三角板DEF 放置在锐角△ABC上,三角板DEF的两边DE、DF恰好分别经过B、C.(1)若∠A=40°,则∠ABC+∠ACB=°,∠DBC+∠DCB=°∠ABD+∠ACD =°.(2)若∠A=55°,则∠ABD+∠ACD=°.(3)请你猜想一下∠ABD+∠ACD与∠A所满足的数量关系.21.如图,四边形ABCD中,∠BAD=106°,∠BCD=64°,点M,N分别在AB,BC上,将△BMN沿MN翻折得△FMN,若MF∥AD,FN∥DC.求(1)∠F的度数;(2)∠D的度数.22.如图,在△ABC中,点D是BC上一点,且AD=AB,AE∥BC,∠BAD=∠CAE,连接DE交AC于点F.(1)若∠B=70°,求∠C的度数;(2)若AE=AC,AD平分∠BDE是否成立?请说明理由.23.如图,点A,B,C,D在同一直线上,AE∥DF,CE∥BF,AE=FD.求证:AB=CD.下面是推理过程,请将下列过程填写完整:证明:∵AE∥DF,∴∠A=∠D,().∵CE∥BF,∴∠ECA=∠FBD,又∵AE=DF,∴△AEC≌△DFB(),∴AC=DB,∴AC﹣=DB﹣,()∴AB=CD.24.如图,△ABC中,AB=AC,∠EAF═∠BAC,BF⊥AE于E交AF于点F,连结CF.(1)如图1所示,当∠EAF在∠BAC内部时,求证:EF=BE+CF.(2)如图2所示,当∠EAF的边AE、AF分别在∠BAC外部、内部时,求证:CF=BF+2BE.参考答案一.选择题1.解:A、∵6+2<9,∴不能组成三角形,故本选项错误,不符合题意;B、∵2+3=5,∴不能组成三角形,故本选项错误,不符合题意;C、∵3.4+2.7>6,∴能组成三角形,故本选项正确,符合题意;D、∵3+4=7,∴不能组成三角形,故本选项错误,不符合题意;故选:C.2.解:设∠ABC=α,∴∠A+∠C=180°﹣α,∵∠AFE=∠AEF,∠CFD=∠CDF,∠A+2∠AFE=180°,∠C+2∠CFD=180°,∴2∠AFE+2∠CFD=180°+α,∴∠AFE+∠CFD=90°,∴∠EFD=180°﹣(90°)=40°,∴α=100°,∴∠ABC的度数为100°,故选:B.3.解:设∠A、∠B、∠C的度数分别为2x、mx、4x,当∠C为直角时,2x+mx=4x,解得,m=2,当∠B为直角时,2x+4x=mx,解得,m=6,故选:C.4.解:∵∠A=30°,∠B=50°,∴∠ACB=180°﹣30°﹣50°=100°(三角形内角和定义).∵CD平分∠ACB,∴∠BCD=∠ACB=×100°=50°,∴∠ADC=∠BCD+∠B=50°+50°=100°.5.解:设这个多边形的边数为n,依题意得(n﹣2)•180°=5×360°,解得n=12,∴这个多边形是十二边形,故选:D.6.解:∵∠A=38°,∠B=70°,∴∠BCA=180°﹣∠A﹣∠B=180°﹣38°﹣70°=72°,∵CE平分∠ACB,∴∠ACE=∠ACB=×72°=36°,∵CD⊥AB,∴∠ACD=90°﹣∠A=90°﹣38°=52°,∴∠DCE=∠ACD﹣∠ACE=52°﹣36°=16°,∵DP⊥CE,∴∠CDP=90°﹣∠DCE=90°﹣16°=74°.故选:B.7.解:∵在△DAB和△CBA中,∴△DAB≌△CBA(SAS),故选:A.8.解:A、AB=1,BC=2,CA=3;不满足三角形三边关系,本选项不符合题意;B、AB=7,BC=6,∠A=40°;边边角三角形不能唯一确定.本选项不符合题意;C、∠A=50°,∠B=60°,∠C=70°;角角角三角形不能唯一确定.本选项不符合题意;D、AC=3.5,BC=4.8,∠C=70°;两边夹角三角形唯一确定.本选项符合题意;9.解:∵AB∥CD,AD∥BC,∴∠ABD=∠CDB,∠ADB=∠CBD,∠BAC=∠DCA,在△ABD和△CDB中,,∴△ABD≌△CDB(ASA),同理:△ABC≌△CDA(ASA);∴AB=CD,BC=DA,在△AOB和△COD中,,∴△AOB≌△COD(AAS),同理:△AOD≌△COB(AAS);∵AE⊥BD,CF⊥BD,∴∠AEB=∠AEO=∠CFD=∠CFO=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),同理:△AOE≌△COF(AAS),△ADE≌△CBF(AAS);图中共有7对全等三角形;故选:C.10.解:连接AM,过M作ME⊥AB于E,MF⊥AC于F,∵MB和MC分别平分∠ABC和∠ACB,MD⊥BC,MD=4,∴ME=MD=4,MF=MD=4,∵△ABC的周长是16,∴AB+BC+AC=16,∴△ABC 的面积S =S △AMC +S △BCM +S △ABM==×AC ×4++ =2(AC +BC +AB )=2×16=32, 故选:C .11.解:将一根笔直的竹竿斜放在竖直墙角AOB 中,初始位置为CD ,当一端C 下滑至C '时,另一端D 向右滑到D ',可得:CD =C 'D ',A 、下滑过程中,CC '与DD '不一定相等,说法错误;B 、下滑过程中,当△OCD 与△OD 'C '全等时,CC '=DD ',说法错误;C 、若OC <OD ,则下滑过程中,不存在某个位置使得CC '=DD ',说法错误; D 、若OC >OD ,则下滑过程中,当△OCD 与△OD 'C '全等时,一定存在某个位置使得CC '=DD ',说法正确;故选:D .12.解:在△AEF 和△ABC 中,,∴△AEF ≌△ABC (SAS ),∴∠EAF =∠BAC ,AF =AC ,∠C =∠EFA ,∴∠EAB =∠FAC ,∠AFC =∠C ,∴∠EFA =∠AFC ,即FA 平分∠EFC .又∵∠AFB =∠C +∠FAC =∠AFE +∠BFE ,∴∠BFE =∠FAC .故①②③④正确.故选:D .二.填空题(共6小题)13.解:七边形ABCDEFG 的内角和的度数为:(7﹣2)×180°=900°.故答案为:900°.14.解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵∠DBA=∠ABC,∠DCA=∠ACB,∴∠DBA+∠DCA=(∠ABC+∠ACB)=26°,∴∠DBC+∠DCB=130°﹣26°=104°,∴∠D=180°﹣(∠DBC+∠DCB)=76°,故答案为:76°.15.解:根据三角形内角和定理,∠B+∠BAM=∠M+∠BCM,所以,∠BAM﹣∠BCM=∠M﹣∠B,同理,∠MAD﹣∠MCD=∠D﹣∠M,∵AM、CM分别平分∠BAD和∠BCD,∴∠BAM=∠MAD,∠BCM=∠MCD,∴∠M﹣∠B=∠D﹣∠M,∴∠M=(∠B+∠D),∵∠B=31°,∠D=39°,∴∠M=(31°+39°)=35°.故答案为:35°.16.解:如图,在△ABC中,CD平分∠ACB交AB于D,∠ACB=60°,∴∠BCD=∠DCE=∠ACB=30°.又∵DE∥BC,∴∠EDC=∠BCD=30°.故答案是:30°.17.解:作DG⊥OB于G,∵OC是∠AOB的平分线,DG⊥OB,DE⊥OA,∴DG=DE=4,在Rt△EOF中,∠AOB=60°,∴∠OFE=30°,∴DF=2DG=8,故答案为:8.18.解:①在△ABE和△ACF中,,∴△ABE≌△ACF(AAS),∴∠EAB=∠FAC,∴∠EAB﹣∠BAC=∠FAC﹣∠BAC,∴∠1=∠2.∴①正确;没有条件可以证明CD=DN,∴②错误;∵△ABE≌△ACF,∴AB=AC,在△ACN和△ABM中,,∴△ACN≌△ABM(ASA),∴③正确;∵△ABE≌△ACF,∴BE=CF,∴④正确.∴其中正确的结论有①③④.故答案为:①③④.三.解答题(共6小题)19.解:(1)①∵∠BAC=70°,∴∠ABC+∠ACB=110°,∵∠PBA=10°,∠PCA=20°,∴∠PBC+∠PCB=80°,∴∠BPC=100°,∴x=100,故答案为100.②结论:x=y+s+t.理由:∵∠A+∠ABC+∠ACB=∠A+∠PBA+∠PCA+∠PBC+∠PCB=180°,∠PBC+∠PCB+∠BPC=180°,∴∠A+∠PBA+∠PCA=∠BPC,∴x=y+s+t.(2)s、t、x、y之间所有可能的数量关系:如图1:s+x=t+y;如图2:s+y=t+x;如图3:y=x+s+t;如图4:x+y+s+t=360°;如图5:t=s+x+y;如图6:s=t+x+y;.20.解:(1)在△ABC中,∵∠A=40°,∴∠ABC+∠ACB=180°﹣40°=140°,在△DBC中,∵∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=140°﹣90°=50°;故答案为:140;90;50.(2)在△ABC中,∵∠A=55°,∴∠ABC+∠ACB=180°﹣55°=125°,在△DBC中,∵∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=125°﹣90°=35°,故答案为:35;(3)∠ABD+∠ACD与∠A之间的数量关系为:∠ABD+∠ACD=90°﹣∠A.证明如下:在△ABC中,∠ABC+∠ACB=180°﹣∠A.在△DBC中,∠DBC+∠DCB=90°.∴∠ABC+∠ACB﹣(∠DBC+∠DCB)=180°﹣∠A﹣90°.∴∠ABD+∠ACD=90°﹣∠A,故答案为:∠ABD+∠ACD=90°﹣∠A.21.解:(1)∵MF∥AD,FN∥DC,∠BAD=106°,∠BCD=64°,∴∠BMF=106°,∠FNB=64°,∵将△BMN沿MN翻折,得△FMN,∴∠FMN=∠BMN=53°,∠FNM=∠MNB=32°,∴∠F=∠B=180°﹣53°﹣32°=95°;(2)∠F=∠B=95°,∠D=360°﹣106°﹣64°﹣95°=95°.22.解:(1)∵∠B=70°,AB=AD,∴∠ADB=∠B=70°,∵∠B+∠BAD+∠ADB=180°,∴∠BAD=40°,∵∠CAE=∠BAD,∴∠CAE=40°,∵AE∥BC,∴∠C=∠CAE=40°;(2)AD平分∠BDE,理由是:∵∠BAD=∠CAE,∴∠BAD+∠CAD=∠CAE+∠CAD,即∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS)∴∠B=∠ADE,∵∠B=∠ADB,∴∠ADE=∠ADB,即AD平分∠BDE.23.证明:∵AE∥DF,∴∠A=∠D(两直线平行,内错角相等),∵CE∥BF,∴∠ECA=∠FBD,在△AEC和△DFB中∴△AEC≌△DFB(AAS),∴AC=DB,∴AC﹣BC=DB﹣BC(等式的性质),∴AB=CD,故答案为:两直线平行,内错角相等,AAS,BC,BC,等式的性质.24.证明:(1)如图,在EF上截取EH=BE,连接AH,∵EB=EH,AE⊥BF,∴AB=AH,∵AB=AH,AE⊥BH,∴∠BAE=∠EAH,∵AB=AC,∴AC=AH,∵∠EAF═∠BAC∴∠BAE+∠CAF=∠EAF,∴∠BAE+∠CAF=∠EAH+∠FAH,∴∠CAF=∠HAF,在△ACF和△AHF中,,∴△ACF≌△AHF(SAS),∴CF=HF,∴EF=EH+HF=BE+CF;(2)如图,在BE的延长线上截取EN=BE,连接AN,∵AE⊥BF,BE=EN,AB=AC,∴AN=AB=AC,∵AN=AB,AE⊥BN,∴∠BAE=∠NAE,∵∠EAF═∠BAC∴∠EAF+∠NAE=(∠BAC+2∠NAE)∴∠FAN=∠CAN,∴∠FAN=∠CAF,在△ACF和△ANF中,,∴△ACF≌△ANF(SAS),∴CF=NF,∴CF=BF+2BE.。

八年级数学上册综合练习 (3)

八年级数学上册综合练习 (3)

八上复习题三一.选择题(共6小题)1.下列分式中,是最简分式的是()A.6x4y B.x2+y2x−yC.1−xx−1D.xy+x2x2.在▱ABCD中,若∠A+∠C=80°,则∠B的度数是()A.140°B.120°C.100°D.40°3.为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,某校调查了一个班50名学生每天的睡眠时间,绘成睡眠时间条形统计图如图所示,则所调查学生睡眠时间的中位数为()A.6h B.7h C.7.5h D.8h4.如图,将三角形纸片剪掉一角得四边形,设△ABC与四边形BCDE的外角和的度数分别为α,β,则正确的是()A.α﹣β=0B.α﹣β<0C.α﹣β>0D.无法比较α与β的大小5.当m为自然数时,(4m+5)2﹣9一定能被下列哪个数整除()A.5B.6C.7D.86.如图,等腰直角三角形ABC中,∠ABC=90°,BA=BC,将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,连接CP,过点A作AH⊥CP交CP的延长线于点H,连接AP,则∠P AH的度数()A.随着θ的增大而增大B.随着θ的增大而减小C.不变D.随着θ的增大,先增大后减小二.填空题(共3小题)7.已知关于x的方程2x−3=1−mx−3有增根,则m=.8.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数是,标准差是.9.如图,在▱ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC的长为.三.解答题(共4小题)10.分解因式:(1)a2(x﹣y)﹣4(y﹣x);(2)4(x+2)(x﹣3)+25.11.先化简(3a+1−a+1)÷a2−4a+4a+1,然后从﹣2≤x≤2的范围内选择一个合适的整数作为x的值代入求值.12.如图,已知△ABC的三个顶点的坐标分别为A(﹣5,0)、B(﹣2,3)、C(﹣1,0).(1)画出△ABC关于原点O成中心对称的图形△A′B′C′;(2)将△ABC绕原点O顺时针旋转90°,画出对应的△A″B″C″,并写出点B″的坐标.13.如图,在△ABC中,AB=AC,点P是△ABC所在平面内的一点,过点P作PE∥AC交AB于点E,PF∥AB 交BC于点D,交AC于点F.(1)当点P在BC边上时,如图①所示,此时点P与点D重合,则线段AB与线段PE、PF有何关系,说明理由;(2)当点P在内部时,如图②所示,作DG∥AC交AB于G,求证:①四边形AEPF、四边形PDGE都是平行四边形;②PE+PF+PD=AB.(3)当点P在外部时,如图③所示,AB、PE、PF、PD这四条线段之间又有着怎样的数量关系?请写出你的猜想,并说明理由.。

浙江省金华市第十八中学八年级数学上册 第三章 直棱柱

浙江省金华市第十八中学八年级数学上册 第三章 直棱柱

浙江省金华市第十八中学浙教版八上数学第3章直棱柱单元综合练习卷一、选择题(每小题3分,共30分)1.一个棱柱有l2个顶点,那么它的面的个数是 ( )A.10个 B.9个 C.8个 D.7个2.下图中所示几何体的主视图是 ( )3.分析下列说法:①长方体、正方体都是棱柱;②三棱柱的侧面是三角形;③球体的三种视图均为同样大小的圆形;④直六棱柱有六个侧面,侧面均为长方形,其中正确的说法有 ( )A.1个 B.2个 C.3个 D.4个4.下面哪个图形不是正方体的展开图 ( )5.从上面看如右图所示的几何体,得到的图形是( )6.如图,在长方体的数学课本上放有一个圆柱体,则它的主视图为 ( )7.在下面的四个几何体中,它们各自的主视图与左视图可能不相同的是 ( )8.用若干个小立方块搭一个几何体,使得它的左视图和俯视图如图所示,则所搭成的几何体中小立方块最多有 ( )A.15个 B.14个 C.13个 D.12个9.如图,将一个直角三角板的斜边垂直于水平桌面,再绕斜边旋转一周,则旋转后所得几何体的俯视图是 ( )10.有一个铁制零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是 ( )二、填空题(每小题4分,共24分)11.一个正方体的表面展开图如图所示,每个面内都标注了字母,如果从正方体的右面看是面D,面C在后面,则正方体的上面是________.12.如图所示是某几何体的三视图,则该几何体的形状是________.13.如图,正方形的边长为1,以直线AB为轴将正方形旋转一周,所得圆柱的主视图的周长是________.14.在一个仓库里堆放有若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画出来(如图),则这堆货箱共有________个.15.一个底面为正方形的直棱柱的侧面展开图是一个边长为6的正方形,则它的表面积为________,体积为_________.16.如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去了7个小正方体),所得到的几何体的表面积是_____.三、解答题(共66分)17.(6分)如图是由五个相同小正方体组合而成的几何体,请画出它的俯视图.18.(6分)一个直棱柱的三视图如图,请描述这个直棱柱的形状.19.(6分)请画出如图所示的底面为正六边形(六条边都相等,六个内角都相等的六边形)的直六棱柱的俯视图.20.(8分)下图是由几块小立方块组成的几何体的俯视图,小方块中的数字表示该位置小方块的个数,请你画出这个几何体的主视图和左视图.21.(8分)一个长方体的左视图、俯视图及相关数据如图所示,求它的主视图的面积.22.(10分)有四个正方体形状的包装盒的表面展开图如图,其中有两个包装盒的表面图案排列顺序完全相同,请把它们找出来.23.(10分)从棱长为2的正方体毛坯的一角,挖去一个棱长为l的小正方体,得到一个如图所示的零件,求这个零件的表面积.24.(12分)如图是一个无盖长方体盒子的表面展开图(接口部分不计),求这个盒子的容积.参考答案1.C 2.D 3.B 4.D 5.B 6.D 7. A 8.B 9.A l0.C ll.面A l2.直三棱柱 l3.6 14.4 15.40.5 13.5 16.72 17.18.直四棱柱底面是直角梯形 l9.略20.主视图左视图21.主视图的相邻两边长为6和3 ∴主视图的面积为6×3=1822.不妨设以所在的面为下底面,各包装盒侧面图案按逆时针排列分别为:(1)(2)(3)(4)可见(3)(4)两个包装盒的图案以及排列顺序完全相同.23.经分析,可知前后几何体的表面积并没有变化∴S零件表=6×22=2424.解:高h=1cm 宽b=3cm-1cm=2cm 长a=5cm-2cm=3cm∴这个盒子的容积V=abh=6cm3。

精品 八年级数学上册 三角形认识综合题3

精品 八年级数学上册 三角形认识综合题3

19.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F 的度数.
20.已知六边形 ABCDEF,如图,它的每个内角都相等,且 AB=1,BC=CD=DE=9,求这个六边形 的周长.
21.如图,在四边形 ABCD 中,∠A=∠C=90°,作出∠B 和∠D 的平分线, 观察它们之间的关系, 作出猜想并加以说明理由.
15.在△ABC 中,∠B=20°+∠A,∠C=∠B-10°,求∠A 的度数.
16.一个多边形除了一个内角之外,其余内角之和为 2670 ,求这个内角的大小.

17.如果一个多边形的边数增加一倍, 它的内角和是 2880 , 那么原来的多边形的边数是多少?
0
18.已知从多边形一个顶点出发的所有对角线,将多边形分成三角形的个数恰好等于该多边 形所有对角线条数,求多边形内角和。
0 0
22.如图, 在六边形 ABCDEF 中, AF//CD, AB//DE, 且 A 120 ,B 80 , 求 C 和 D
0 0
的度数。
23.如果多边形恰有四个内角是钝角,那么多边形的边数共有几种可能? 其中最多是几边形? 最少是几边形?
24.一个广场地面的一部分如图所示,地面的中央是一块正六边形的地砖, 周围用正三角形 和正方形的大理石地砖拼成,从里往外共 12 层(不包括中央的正六边形地砖),每一层的外 界都围成一个多边形.若中央正六边形地砖的边长是 0.5 米, 则第 12 层的外边界所围成的 多边形的周长是多少?
1 ,则它的每一个内角都是______. 5
9.如图所示的图案是由正六边形密铺而成,黑色正六边形周围第一层有六个白色正六边形, 则第 n 层有__________个白色正六边形.

八年级数学上册综合算式专项练习题函数像绘制实例详解

八年级数学上册综合算式专项练习题函数像绘制实例详解

八年级数学上册综合算式专项练习题函数像绘制实例详解函数像绘制是数学中的一个重要概念,通过绘制函数图像可以帮助我们更好地理解函数的性质和变化规律。

在八年级数学上册中,综合算式专项练习题中有一道关于函数像绘制的题目,我们来详细解答一下。

题目:已知函数 f(x)=2x+1,求函数 f(x) 的像。

解析:要求函数 f(x) 的像,我们需要先找到函数的定义域,然后通过对每个定义域中的值求函数值,得到对应的像。

首先,我们要确定函数 f(x) 的定义域。

对于一次函数来说,它的定义域是全体实数,即 f(x) 的定义域为R。

其次,我们将定义域中的值带入函数 f(x)=2x+1 中,求得对应的函数值,即为函数 f(x) 的像。

我们以几个具体的实例来说明:例1:当 x=0 时,代入函数 f(x)=2x+1 得到 f(0)=2×0+1=1。

因此,像 f(0) 的值为 1。

例2:当 x=1 时,代入函数 f(x)=2x+1 得到 f(1)=2×1+1=3。

因此,像 f(1) 的值为 3。

例3:当 x=-1 时,代入函数 f(x)=2x+1 得到 f(-1)=2×(-1)+1=-1。

因此,像 f(-1) 的值为 -1。

通过以上的几个例子,我们可以总结出函数 f(x)=2x+1 的像为{1, 3, -1}。

在绘制函数图像时,我们可以将定义域中的每个数值对应到坐标轴上,横坐标为 x 的值,纵坐标为对应的函数值。

利用这些点,我们可以画出函数 f(x)=2x+1 的图像。

接下来,我们详细解释如何绘制函数图像。

1. 确定横纵坐标的范围:根据函数的定义域和像的值范围,决定横纵坐标轴的取值范围。

我们可以选择适当的范围,使得函数图像能够充分显示出来。

2. 绘制坐标轴:在纸上或者计算机软件上绘制一条水平的 x 轴和一条垂直的 y 轴,并标上坐标轴的刻度。

3. 绘制点:根据已知的函数值和对应的 x 值,在坐标轴上标出对应的点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学(上)综合练习(三)一、填空题1、(1)若直角三角形两直角边之比为3∶4,斜边的长为25cm ,则这个直角三角形的面积是________________;(2)在Rt △ABC 中,∠C =90°,c =34,a :b =8:15,则a =_______,b =_______.;(3)以一个直角三角形的一条直角边为边长的正方形的面积为225,以这个直角三角形的斜边为边长的正方形的面积为625,则以这个直角三角形的另一条直角边为边长的正方形的面积为____________.2、 在△ABC 中,22n m a -=,22n m b +=(m >n ),当c =__________时,∠B =90°;在△ABC 中,∠C =90,BC =12,8=-AC AB ,则AC =_________.3、 (1)在R t A B C ∆中,a 、b 、c 、分别为三条边,90B ∠=,如果3a cm =,4b cm=,c = ;(2)在R t A B C ∆中,有两边长分别为3cm 和4cm,则另一边长为4、若三角形的三边长a 、b 、c 满足ab cb a 2)(22=-+,则此三角形是______三角形5、一棵树从离地面3米处断裂,树顶落在离树根部4米处,则树高为 米.6、消防云梯的长度是34米,在一次执行任务时,它只能停在离大楼16米远的地方,则云梯能达到大楼的高度是 米.7、有一根长24 cm 的小木棒,把它分成三段,组成一个直角三角形,且每段的长度都是偶数,则三段小木棒的长度分别是________cm 、_________cm 、_________cm 。

8、在平行四边形ABCD 中,∠C = ∠B+∠D ,则∠A= 9、菱形的边长为5cm,一条对角线长为8cm ,则菱形的面 积为 ; 正方形的对角线长为4cm ,则它的面 面积 cm 2;已知菱形ABCD 中,若它的面积是12,且AC=3,则BD=___________。

13、如下图,在四边形ABCD 中,AD ∥BC ,BC >AD ,∠B 与∠C 互余,将AB ,CD 分平移到EF 和EG 的位置,则△EFG 为________三角形,若AD=2cm ,BC=8cm ,则FG=____________。

14、等边三角形是旋转对称图形,小旋转角为 度。

15、如图所示,长方体底面长为4,宽为3,高为12,求长方体对角线MN 的长为_______.16、(1)上中间图形中阴影部分的面积为 ;(2)如上右图,正方形ABCD 的面积为9cm 2,正方形DEFG 的面积为4cm 2,则图中阴影部分的面积为 cm 2。

17、用黑白两种颜色的正六边形地面砖按如图所示的规律拼成若干个图形:(1)第四个图形有白色地面砖 块;(2)第n 个图形有白色地面砖 块。

18、平行四边形ABCD 中,AB = 6cm ,AC + BD = 14 cm ,则三角形AOB 的周长为;平行四边形的周长为28,两邻边之比为3 :4,那么这个平行四边形的两邻边分别为 和 。

19、如图(左),P 是等边△ABC 内一点,△BMC 是由△BPA 旋转所得,则∠PBM = 。

20、如图(中),在梯形ABCD 中,AD = 4cm ,DE ∥AB ,△CDE 的周长为12cm ,则梯形的周长为 cm 。

21、如图(右) ,某公司举行开业一周年庆典时,准备在公司门口长 13米、高 5米的台阶上铺设红地毯.已知台阶的宽为 4米,则共需购买 平方米的红地毯. 17、如下左图,把大小相等的两个长方形拼成L 形图案,则∠FCA =____度.22、(1)如中图所示,矩形ABCD 的长为10,宽为6,点E 、F 将AC 三等分,则△BEF 的面积是(2)如右图,把一个长方形纸片沿EF 折叠后,点D 、C 分别在D ′、C ′位置,若∠EFB=65°,则∠AED ′=_________. 二、选择题( )23、分别以下列四组数为一个三角形的边长:(1)0.6、0.8、1;(2)5、12、13;(3)8、15、17;(4)4、5、6其中是能构成直角三角形的勾股数有( )。

A .4组 B .3组 C .2组 D .1组 ( )24、下列说法中,错误的是( )A. △ABC 中,若∠B =∠C -∠A ,,则△ABC 是直角三角形B. △ABC 中,a 2=(b +c )(b -c ), 则△ABC 是直角三角形 C .△ABC 中,∠A :∠B :∠C =3:4:5, 则△ABC 是直角三角形D. △ABC 中,a :b :c =3:4:5, 则△ABC 是直角三角形 ( )25、设四边形ABCD 中,∠A :∠B :∠C :∠D = 2 :2 :1 :3,则这个四边形是A 梯形B 等腰梯形C 直角梯形D 任意四边形 ( )26、如图,在平行四边形ABCD 中,CE 是∠DCB 的平分线,F 是AB 的中点,AB = 6,BC = 4,则AE :EF :FB 为A 1 :2 :3B 2 :1 :3C 3 :2 :1D 3 :1 :2初二年级 班 姓名 考号ABC D F· ABCD E图( )27、一个边长为2和3的平行四边形,当它的边长保持不变时,其内角大小可以变化,它可以变为 A 正方形 B 矩形 C 菱形 D 梯形( )28、将一圆形纸片对折后再对折,得到图7,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( )29、如图,在垂直于地面的墙上2m 的A 点斜放一个长2.5m 的梯子,由于不小心梯子在墙上下滑0.5m ,则梯子在地面上滑出的距离BB '的长度为( ). A 、0.4m B 、0.5m C 、0.6m D 、0.7m( )30、如右图是一个旋转对称图形,要使它旋转后与自身重合,至少应将它绕中心逆时针方向旋转的度数是A.30°B. 60°C.120°D.180°( )31、若直角三角形两直角边的边长分别是5和12,则斜边上的高为 A.6 B.1360 C.3013 D.6013( )32、在学习“四边形”一章时,小明的书上有一图因不小心被滴上墨水(如图),看不清所印的字,请问被墨迹遮盖了的文字应是( ) A .等边三角形 B .四边形 C .等腰梯形 D .菱形( )33、如上右图,直角△AOB 顺时针旋转后与△COD 重合,若∠AOD =127°,则旋转角度是( )34、如下左图,在水塔O 的东北方向32m 处有一抽水站A ,在水塔的东南方向24m 处有一建筑工地B ,在AB 间建一条直水管,则水管的长为A 、45cmB 、40cmC 、50cmD 、56cm( )35、如上中图,有两个边长为4cm 的正方形,其中一个正方形的顶点在另一个正方形的中心上,那么图中阴影部分的面积是 :(A) 4cm2 ;(B) 8cm2 ;(C) 16cm2 ;(D) 无法确定( )36、如上右图,一透明的直圆柱状的玻璃杯,由内部测得其底部半径为3㎝,高为8㎝,今有一支12㎝的吸管任意斜放于杯中,若不考虑吸管的粗细,则吸管露出杯口外的长度至少为 m三、解答题。

写出必要的计算过程、推演步骤或文字说明。

37、如图,在四边形ABCD 中,90C ∠=,AB=13,BC=4,CD=3,AD=12求四边形ABCD 的面积.38、.若△ABC 的三条边a 、b 、c 满足条件等式222681050a b c a b c ++=++-,试判断△ABC 的形状.39、如图,折叠矩形A B C D ,使顶点D 与B C 边上的点F 重合,已知6,10AB AD ==,求BF 、DE 的长40、如图,每个小方格都是边长为1的正方形,求图中格点四边形ABCD 的周长和面积。

BDAB东南西北O41、如图,点P为等边△ABC内的一点,PA=3,PB=4,PC=5,求APB∠的度数。

42、已知如图,平行四边形ABCD中,AC和BD交于O,过点O作EF交AD于E,交BC于F,说明:OE = OF。

43、如图,平行四边形ABCD中,E、F是对角线BD上的两点,且BE = FD,连结AE,FC,则AE = FC。

44、如图,四边形ABCD是正方形,延长BC到点E,使CE = AC,连结AE,交CD于F,求∠AFC的度数。

45、如图,田村有一口呈四边形的池塘,在它的四个角处种有一颗大核桃树,田村准备开挖池塘养鱼池,想鱼池面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘成平行四边形状,请问田村能否实现这一设想?若能,请在原图上画出图形,若不能,请说明理由。

46、如图,在梯形ABCD中,AD∥BC,AD=AB=DC,BD⊥CD,求∠C的度数。

47、如图,ABC∆中,︒=∠45ABC,BCAD⊥于D,点E在上AD,且CDDE=,求证:ACBE=48、如图,ΔACD、ΔBCE都是等边三角形,ΔNCE经过旋转后能与ΔMCB重合.请回答:⑴旋转中心是哪一点?⑵旋转了多少度?⑶若NE=10cm,则MB等于多少?49、如图,矩形ABCD的对角线AC、BD相交于点O,若把矩形ABCD用橡皮擦去一部分,变成右图,从中你发现什么现象?①请用语言表达你发现的规律;②简单说明你发现的规律的正确性。

AB C DEFABAB CDAB C DEOC D50、在通常日历牌上,可以看到一些数所满足的某些规律,下面是某年某月份的日历牌:我们在日历牌中用不同的方式选择了四个数,它们分别构成了“矩形”和“平行四边形”。

对甲种选择,我们发现14×8-7×15=7,对角线上两数的差为7;对乙种选择,我们发现9×4-3×10=6,对角线上两数积的差为6;对丙种选择,我们发现12×13-5×20=56,对角线上两数积的差为56。

这些规律是否具有一般性,请再选择其它数试试,如果你认为不具有一般性,请举反例;如果你认为具有一般性,请用代数式的运算加以说明。

51、如图,在△ABC中,D、E分别在AC、BC上,若△ADB≌△EDB≌△EDC,求∠C的度数。

52、A、B两个村庄在笔直的小河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,CD=3千米。

现要在河边CD上建一水厂向A、B两村输送自来水,铺设管道的工程费用为每千米2万元。

请你在CD上选择水厂的位置并作出点O,并求出铺设水管的总费用。

53、如图所示,某人到岛上去探宝,从A处登陆后先往东走4km,又往北走1.5km,遇到障碍后又往西走2km,再折回向北走到4.5km处往东一拐,仅走0.5km就找到宝藏。

相关文档
最新文档