2016-2017年河南省郑州市高二上学期期末数学试卷(文科)与解析
2016-2017学年高二上学期期末考试数学文试卷 Word版含答案
2016-2017学年高二上学期期末考试数学文试卷试卷满分:150分考试时间:120分钟一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9. 命题“x ∃∈R ,使得2250x x ++=”的否定是______________________.10. 如果直线032=-+y ax 与20x y -=垂直,那么a 等于_______.11. 已知双曲线2213y x -=,则双曲线的离心率为______;渐近线方程为_____________ .12. 一个直三棱柱的三视图如图所示,则该三棱柱的体积为_________.13. 如图,在四边形ABCD 中,1AD DC CB ===, AB =,对角线AC 将ACD △沿AC 所在直线翻折,当AD BC ⊥时,线段BD 的长度 为______.ABCD正(主)视图 侧(左)视图14. 学完解析几何和立体几何后,某同学发现自己家碗的侧面可以看做抛物线的一部分曲线围绕其对称轴旋转而成,他很想知道抛物线的方程,决定把抛物线的顶点确定为原点,对称轴确定为x 轴,建立如图所示的平面直角坐标系,但是他无法确定碗底中心到原点的距离,请你通过对碗的相关数据的测量以及进一步的计算,帮助他求出抛物线的方程.你需要测量的数据是_________________________(所有测量数据用小写英文字母表示),算出的抛物线标准方程为___________. 三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)如图,四棱锥P ABCD -的底面是正方形,侧棱PA ⊥底面ABCD ,E 是PA 的中点. (Ⅰ)求证://PC 平面BDE ; (Ⅱ)证明:BD CE ⊥.16.(本小题满分13分)已知圆C 经过)1,1(),3,1(-B A 两点,且圆心在直线x y =上. (Ⅰ)求圆C 的方程;(Ⅱ)设直线l 经过点)2,2(-,且与圆C 相交所得弦长为32,求直线l 的方程.17.(本小题满分13分)如图,在平面ABCD 中,⊥AB 平面ADE ,CD ⊥平面ADE ,ADE △是等边三角形,22AD DC AB ===,,F G 分别为,AD DE 的中点. (Ⅰ)求证: EF ⊥平面ABCD ; (Ⅱ)求四棱锥E ABCD -的体积;(Ⅲ)判断直线AG 与平面BCE 的位置关系,并加以证明.A BCDPE EDAB CGF18.(本小题满分13分)过椭圆2212x y +=右焦点F 的直线l 与椭圆交于两点,C D ,与直线2=x 交于点E .(Ⅰ)若直线l 的斜率为2,求||CD ;(Ⅱ)设O 为坐标原点,若:1:3ODE OCE S S ∆∆=,求直线l 的方程. 19.(本小题满分14分)如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,90BAC ∠=︒,2AB AC ==,1AA =,M N 分别为BC 和1AA 的中点,P 为侧棱1BB 上的动点.(Ⅰ)求证:平面APM ⊥平面11BBC C ;(Ⅱ)若P 为线段1BB 的中点,求证://CN 平面AMP ; (Ⅲ)试判断直线1BC 与PA 能否垂直. 若能垂直,求出PB 的值;若不能垂直,请说明理由.20.(本小题满分14分)已知抛物线22y x =,两点(1,0)M ,(3,0)N . (Ⅰ)求点M 到抛物线准线的距离;(Ⅱ)过点M 的直线l 交抛物线于两点,A B ,若抛物线上存在一点R ,使得,,,A B N R 四点构成平行四边形,求直线l 的斜率.NA MPCBA 1 C 1B 1北京市西城区2016 — 2017学年度第一学期期末试卷高二数学(文科)参考答案及评分标准2017.1一、选择题:本大题共8小题,每小题5分,共40分.1. A ;2.D ;3. C ;4. C ;5. D ;6. A ;7. B ;8. D. 二、填空题:本大题共6小题,每小题5分,共30分.9. 对任意x ∈R ,都有0522≠++x x ; 10. 1; 11. 2;y =; 12. 4;14. 碗底的直径m ,碗口的直径n ,碗的高度h ;2224n my x h-=.注:一题两空的题目,第一空2分,第二空3分.三、解答题:本大题共6小题,共80分. 15.(本小题满分13分)解: (Ⅰ)连结AC 交BD 于O ,连结OE ,因为四边形ABCD 是正方形,所以O 为AC 中点. 又因为E 是PA 的中点,所以//PC OE , ………3分 因为PC ⊄平面BDE ,OE ⊂平面BDE ,所以//PC 平面BDE . ……………6分 (Ⅱ)因为四边形ABCD 是正方形,所以BD AC ⊥. ……8分因为PA ⊥底面ABCD ,且BD ⊂平面ABCD , 所以PA BD ⊥. ……………10分又因为AC PA A =I ,所以BD ⊥平面PAC , ……………12分 又CE ⊂平面PAC ,所以BD CE ⊥. ……………13分16.(本小题满分13分)ABCDPE O解:(Ⅰ)设圆C 的圆心坐标为),(a a ,依题意,有2222)1()1()3()1(-++=-+-a a a a , ……………2分即22451a a a -+=+,解得1=a , ……………4分所以222(11)(31)4r =-+-=, ……………5分 所以圆C 的方程为4)1()1(22=-+-y x . ……………6分 (Ⅱ)依题意,圆C 的圆心到直线l 的距离为1. ……………8分所以直线2x =符合题意. ……………9分 当直线l 斜率存在时,设直线l 方程为)2(2-=+x k y , 即022=---k y kx , 则11|3|2=++k k , ……………11分解得43k =-, ……………12分 所以直线l 的方程为)2(342--=+x y ,即0234=-+y x , ……………13分综上,直线l 的方程为2x = 或0234=-+y x .17.(本小题满分13分)(Ⅰ)证明:因为F 为等边ADE △的边AD 的中点,所以 EF AD ⊥. ……………2分 因为⊥AB 平面ADE ,⊂AB 平面ABCD 所以平面ADE ⊥平面ABCD . ……………4分 所以EF ⊥平面ABCD . ……………5分 (Ⅱ)解:因为⊥AB 平面ADE ,CD ⊥平面ADE , 所以//AB CD ,90ADC ∠=,四边形ABCD 是直角梯形, ……………7分 又22AD DC AB ===, 所以1(21)232ABCD S =⋅+⋅=梯形,……………8分又EF =所以13E ABCDABCD V S EF -=⋅=……………9分 (Ⅲ)结论: 直线//AG 平面BCE .证明: 取CE 的中点H ,连结,GH BH , 因为G 是DE 的中点,所以//GH DC ,且 GH =12DC . ……………11分 DABCGFHE所以//GH AB ,且1GH AB ==,所以四边形ABHG 为平行四边形,//AG BH , ……………12分 又⊄AG 平面BCE ,⊂BH 平面BCE .所以//AG 平面BCE . ……………13分18.(本小题满分13分)解:(Ⅰ)由已知,1=c ,)0,1(F ,直线l 的方程为22-=x y . ……………1分设11(,)C x y ,22(,)D x y ,联立⎩⎨⎧-==+222222x y y x ,消y 得291660x x -+=, ……………3分91621=+x x ,9621=x x , ……………4分 所以||CD = ……………5分9==. ……………6分 (Ⅱ)依题意,设直线l 的斜率为k (0≠k ),则直线l 的方程为)1(-=x k y ,联立⎩⎨⎧-==+kkx y y x 2222,消y 得0)22(4)212222=-+-+k x k x k (, ……………7分2221214k k x x +=+……①, 22212122k k x x +-=……②……………8分 因为:1:3ODE OCE S S =△△,所以 :1:3DE CE =, 3CE DE =,所以 1223(2)x x -=-,整理得 2134x x -=……③ ……………10分由①③得 212121k x k -=+,2223121k x k +=+, ……………11分 代入②,解得1±=k , ……………12分 所以直线l 的方程为1y x =-或1y x =-+. ……………13分19.(本小题满分14分)(Ⅰ)证明:由已知,M 为BC 中点,且AB AC =,所以AM BC ⊥. ……………1分又因为11//BB AA ,且1AA⊥底面ABC , 所以1BB ⊥底面ABC .NA MPCBA 1 C 1B 1 Q所以1BB AM ⊥, ……………3分 所以AM ⊥平面11BBC C .所以平面AMP ⊥平面11BBC C .……………5分 (Ⅱ)证明:连结BN ,交AP 于Q ,连结MQ ,NP .因为,N P 分别为11,AA BB 中点,所以//AN BP ,且AN BP =.所以四边形ANPB 为平行四边形, ……………7分Q 为BN 中点,所以MQ 为CBN △的中位线,所以//CN MQ . ……………8分 又CN ⊄平面AMP ,MQ ⊂平面AMP ,所以//CN 平面AMP . ……………9分 (Ⅲ) 解:假设直线1BC 与直线PA 能够垂直,又因为1BC AM ⊥,所以⊥1BC 平面APM ,所以1BC PM ⊥. ……………10分 设PB x =,x ∈.当1BC PM ⊥时,11BPM BC B ∠=∠,所以Rt PBM △∽11Rt B C B △,所以111C B PB MB BB =. ……………12分因为111MB C B BB ===,解得3x =. ……………13分 因此直线1BC 与直线PA 不可能垂直. ……………14分20.(本小题满分14分)解:(Ⅰ)由已知,抛物线22y x =的准线方程为12x =-. ……………2分 所以,点M 到抛物线准线的距离为131()22--=. ……………4分(Ⅱ)设直线:(1)l y k x =-,11(,)A x y ,22(,)B x y ,由2(1),2y k x y x=-⎧⎨=⎩得2222(22)0k x k x k -++=, ……………5分 所以212222k x x k++=,121x x =. ……………6分 ①,N R 在直线AB 异侧,,,,A B N R 四点构成平行四边形,则,AB NR 互相平分. 所以,12R N x x x x +=+,12R N y y y y +=+,所以,22223R k x k +=+,222R k x k-=. 12122(2)R y y y k x x k=+=+-=. ……………8分将(,)R R x y 代入抛物线方程,得22R R y x =,即222422k k k -=⨯,解得0k =,不符合题意. ……………10分 ②若,N R 在直线AB 同侧,,,,A B N R 四点构成平行四边形,则,AR BN 互相平分. 所以,12R N x x x x +=+,12R N y y y y +=+,所以,213R x x x =-+,21R y y y =-. ……………12分 代入抛物线方程,得22121()2(3)y y x x -=-+,又2112y x =,2222y x =,所以2222121()2(3)22y y y y -=-+,注意到212y y =-=-,解得211y =,11y =±. ……………13分当11y =时,112x =,2k =-;当11y =-时,112x =,2k =.所以2k =±. ……………14分。
河南省高二上学期期末考试数学试题(解析版)
一、单选题1.直线的倾斜角为( ) 50x +=A . B .C .D .30︒60︒120︒150︒【答案】D【分析】求出直线的斜率,然后根据斜率的定义即可求得倾斜角.【详解】直线可化为 50x +=y x =则斜率,满足, tan k α==α0180α≤<︒所以倾斜角为. 150︒故选:D2.下列有关数列的说法正确的是( )A .数列1,0,,与数列,,0,1是相同的数列 1-2-2-1-B .如果一个数列不是递增数列,那么它一定是递减数列C .数列0,2,4,6,8,…的一个通项公式为 2n a n =D ,…的一个通项公式为n a =【答案】D【分析】根据数列的定义和表示方法,逐一判断,即可得到本题答案.【详解】对于选项A ,数列1,0,-1,-2与数列-2,-1,0,1中的数字排列顺序不同,不是同一个数列,故A 错误;对于选项B ,常数数列既不是递增数列,也不是递减数列,故B 错误; 对于选项C ,当时,,故C 错误;1n =120a =≠对于选项D ,因为123a a a =====4a ==…,所以数列的一个通项公式为D 正确. n a =故选:D3.已知直线l 过点且方向向量为,则l 在x 轴上的截距为( ) ()3,4-()1,2-A . B .1C .D .51-5-【答案】A【分析】先根据方向向量求得直线的斜率,然后利用点斜式可求得直线方程,再令,即2k =-0y =可得到本题答案.【详解】因为直线的方向向量为,所以直线斜率, l ()1,2-2k =-又直线过点,所以直线方程为,即, l ()3,4-42(3)y x -=-+220x y ++=令,得,所以在x 轴上的截距为-1. 0y ==1x -l 故选:A4.已知,“直线与平行”是“”的( )m ∈R 1:0l mx y +=22:910l x my m +--=3m =±A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C【分析】根据平行的成比例运算即可求解.【详解】直线与平行1:0l mx y +=22:910l x my m +--=则, 210=91m m m ≠--所以, 29m =解得,3m =±经检验,均符合题意, 3m =±故选:C.5.已知等差数列中,,是函数的两个零点,则{}n a 5a 14a 232()=--x x x f 381116a a a a +++=( ) A .3 B .6C .8D .9【答案】B【分析】由等差数列的性质进行计算即可.【详解】由已知,函数的两个零点,即方程的两根,, 232()=--x x x f 2320x x --=1x 2x ∴, 51412331a a x x -+=+=-=∵数列为等差数列, {}n a ∴, 3168115143a a a a a a +=+=+=∴. 3811166a a a a +++=故选:B.6.已知圆关于y 轴对称的圆与直线相切,则m 的值为( )221:230C x y x ++-=2C x m =A .B .3C .或3D .1或1-1-3-【答案】C【分析】先求出关于y 轴对称的圆的标准方程,然后利用圆心到切线的距离等于半径,列出方2C 程求解,即可得到本题答案.【详解】由圆,可得标准方程,圆心为,半径, 221:230C x y x ++-=22(1)4x y ++=(1,0)-2r =故关于轴对称的圆的圆心为,半径,则其标准方程为, y 2C (1,0)2r =22(1)4x y -+=又因为圆与直线相切,所以圆心到切线的距离等于半径, 2C x m =即,解得或. 12m -=1m =-3m =故选:C7.已知数列满足,且,则数列的前项和为( ) {}n a 13n n a a +=11a =-{}2n a n +5A . B . C . D .151-91-91151【答案】B【分析】由等比数列的定义判断出数列为等比数列,再使用分组求和法求解即可. {}n a 【详解】∵数列满足,且, {}n a 13n n a a +=11a =-∴数列是首项为,公比为的等比数列,{}n a 1-3∴,11133n n n a --=-⨯=-∴数列的前项和为,{}2n a n +5()()()()()01234532343638310S =-++-++-++-++-+()()0123433333246810=-----+++++()()51132105132-⨯-+⨯=+-12130=-+.91=-故选:B.8.已知椭圆过点且与双曲线有相同焦点,则椭圆的离心率22221(0)x y a b a b +=>>()3,2-22132x y -=为( )A B C D 【答案】C【分析】由题可得,,联立方程可求得,然后代入公式,即225a b -=22941a b +=22,a b e =可求得本题答案.【详解】因为椭圆与双曲线有相同焦点,所以椭圆两个焦点分别为22132x y -=12(F F ,则①, 2225c a b =-=又椭圆过点,所以②, ()3,2P -22941a b +=结合①,②得,,2215,10a b ==所以, e ==故选:C9.已知圆与圆的公共弦长为2,则m 的值为221:2220C x y x y +-+-=222:20(0)C x y mx m +-=>( )A B .C D .332【答案】A【分析】根据圆的圆心和半径公式以及点到直线的距离公式,以及公共线弦方程的求法即可求解. 【详解】联立和, 222220x y x y +-+-=2220x y mx +-=得,由题得两圆公共弦长,(1)10m x y -+-=2l =圆的圆心为,半径, 221:2220C x y x y +-+-=(1,1)-r 2=圆心到直线(1,1)-(1)10m x y -+-=,===平方后整理得,, 2230m -=所以 m m =故选:A.10.“斐波那契数列”又称黄金分割数列,指的是这样一个数列:1,1,2,3,5,8,13,…,即斐波那契数列满足,,设其前n 项和为,若,则{}n a 121a a ==21++=+n n n a a a n S 2021S m =2023a =( ) A . B .mC .D .1m -1m +2m 【答案】C【分析】由斐波那契数列满足,归纳可得,令{}n a 12121,1,n n n a a a a a --===+21m m a S +=+2021m =,即可求得本题答案.【详解】因为斐波那契数列满足, {}n a 12121,1,n n n a a a a a --===+所以,321a a a =+, 432211a a a a a =+=++, 5433211a a a a a a =+=+++……, 21122111m m m m m m m a a a a a a a a S ++--=+=++++++=+ 则. 2023202111a S m =+=+故选:C11.如图,在直四棱柱中,底面ABCD 是边长为2的正方形,,M ,N 分1111ABCD A B C D -13D D =别是,AB 的中点,设点P 是线段DN 上的动点,则MP 的最小值为( )11B CA B C D 【答案】D【分析】建立空间直角坐标系,设出点的坐标,根据两点距离公式表示,利用二次函数求值P MP 域,即可得到本题答案.【详解】以点为坐标原点,分别以所在直线为轴,轴,轴,建立如图所示的空D 1,,DA DC DD x y z 间直角坐标系.因为底面ABCD 是边长为2的正方形,,所以, 13D D =(1,2,3)M ∵点在平面上,∴设点的坐标为,P xOy P ()[],,0,0,1x y y ∈∵在上运动,∴,∴,∴点的坐标为, P DN 2AD x y AN==2x y =P (2,,0)y y==∵,∴当时, 取得最小值. []0,1y ∈45y =MP 故选:D12.已知双曲线C :l 与C 相交于A ,B 两2221(0)y x b b-=>点,若线段的中点为,则直线l 的斜率为( ) AB ()1,2NA .B .1CD .21-【答案】B【分析】先利用题目条件求出双曲线的标准方程,然后利用点差法即可求出直线的斜率.l 【详解】因为双曲线的标准方程为,2221(0)y x b b-=>所以它的一个焦点为,一条渐近线方程为, (,0)c 0bx y -=所以焦点到渐近线的距离,化简得,解得,d =2222(1)b c b =+22b =所以双曲线的标准方程为,2212y x -=设,所以①,②, 1122(,),(,)A x y B x y 221112y x -=222212y x -=①-②得,,222212121()()02x x y y ---=化简得③,121212121()()()()02x x x x y y y y +--+-=因为线段的中点为,所以, AB ()1,2N 12122,4x x y y +=+=代入③,整理得, 1212x x y y -=-显然,所以直线的斜率. 1212,x x y y ≠≠l 12121y y k x x -==-故选:B二、填空题13.已知A (1,-2,11)、B (4,2,3)、C (x ,y ,15)三点共线,则xy=___________. 【答案】2.【详解】试题分析:由三点共线得向量与共线,即,,AB AC ABk AC = (3,4,8)(1,2,4)k x y -=-+,解得,,∴. 124348x y -+==-12x =-4y =-2xy =【解析】空间三点共线.14.已知抛物线的焦点为F ,直线与抛物线交于点M ,且,则22(0)x py p =>2x =2MF =p =_______. 【答案】2【分析】先求点的纵坐标,然后根据抛物线的定义,列出方程,即可求得的值.M p 【详解】把代入抛物线标准方程,得,2x =22(0)x py p =>2(2,)M p 根据抛物线的定义有,,化简得,,解得. 222p MF MH p==+=244p p +=2p =故答案为:215.已知点,点为圆上的任意一点,点在直线上,其中为坐标原(1,1)--P M 22:1C x y +=N OP O点,若恒成立,则点的坐标为______.|||MP MN =N【答案】11,22⎛⎫-- ⎪⎝⎭【分析】设和的坐标,由,列等式,利用点在圆上,点在直线上,NM |||MP MN =M N OP 化简得恒成立的条件,求得点的坐标.N 【详解】易知直线的方程为,由题意可设,OP 0x y -=00(,)N x x 设,则可得,由,可得(,)M x y ''221x y ''+=||||MP MN 22222200||(1)(1)||()()MP x y MN x x y x ''+++==''-+-, 2002()322()12x y x x y x ''++=''-+++则,化简得,2002()322()12x y x x y x ''''⎡⎤++=-+++⎣⎦200(24)()41x x y x ''++=-即,[]00(12)2()(12)0x x y x ''+++-=若恒成立,则,解得,故.|||MP MN =0120x +=012x =-11,22N ⎛⎫-- ⎪⎝⎭故答案为:11,22⎛⎫-- ⎪⎝⎭16.已知双曲线C :的左、右焦点分别为,,其中与抛物线的22221(0,0)x y a b a b-=>>1F 2F 2F 28y x =焦点重合,点P 在双曲线C 的右支上,若,且,则的面积为122PF PF -=1260F PF ∠=︒12F PF △_______. 【答案】【分析】结合题目条件与余弦定理,先算出的值,然后代入三角形的面积公式12PF PF ⋅,即可得到本题答案. 1212121sin 2F PF S PF PF F PF =⋅∠A 【详解】由双曲线右焦点与抛物线的焦点重合,可得,所以, 2F 28y x =2(2,0)F 124F F =设,则,1122,PF r PF r ==122r r -=因为,所以, 22212121212||||2cos F F PF PF PF PF F PF =+-⋅⋅∠22121212162r r r r +-⨯=则,解得,21212()16r r r r -+=1212r r =所以,. 12121sin 602F PF S r r =︒=A故答案为:三、解答题17.已知数列满足,且点在直线上.{}n a 11a =111,n n a a +⎛⎫⎪⎝⎭2y x =+(1)求数列的通项公式;{}n a (2)设,求数列的前n 项和. 1n n n b a a +={}n b n T 【答案】(1) 121n a n =-(2) 21nn + 【分析】(1)先求出数列的通项公式,从而可得到数列的通项公式;1n a ⎧⎫⎨⎬⎩⎭{}n a (2)根据(1)中数列的通项公式,可写出数列的通项公式,再利用裂项相消的方法即可{}n a {}n b 求得前n 项和.n T 【详解】(1)由题意得,即, 1112n n a a +=+1112n n a a +-=所以数列是首项为,公差为2的等差数列,1n a ⎧⎫⎨⎬⎩⎭111a =故,即. 1112(1)21n n n a a =+-=-121n a n =-(2)由(1)知,11111(21)(21)22121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭所以1111111112323522121n T n n ⎛⎫⎛⎫⎛⎫=⨯-+⨯-++⨯- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭ 111111123352121n n ⎛⎫=⨯-+-++- ⎪-+⎝⎭. 111221n ⎛⎫=- ⎪+⎝⎭21n n =+18.已知的顶点坐标分别是,,. ABC A ()3,0A ()1,2B ()1,0C -(1)求外接圆的方程;ABC A (2)若直线l :与的外接圆相交于M ,N 两点,求. 3480x y +-=ABC A MCN ∠【答案】(1) 22(1)4x y -+=(2) 60MCN ∠=︒【分析】(1)设出圆的一般方程,代入点,求出方程组的解,即可得到本题答案; ,,A B C (2)先求出圆心到直线的距离,即可得到,然后求出,即可得到本题答MN 30PMN ∠=︒MPN ∠案.【详解】(1)设圆的一般方程为:,, 220x y Dx Ey F ++++=22(40)D E F +->代入点得,(3,0),(1,2),(1,0)A B C -,解得,9+30142010D F DEF D F +=⎧⎪++++=⎨⎪-+=⎩203D E F =-⎧⎪=⎨⎪=-⎩所以圆的一般方程为:, 22230x y x +--=标准方程为:.22(1)4x y -+=(2)圆心到直线的距离,(1,0)P :3480l x y +-=d 又因为,在等腰中,, 2PM =PMN A 30PMN ∠=︒所以圆心角,则.260120MPN ∠=⨯︒=︒60MCN ∠=︒19.如图所示,在四棱锥中,平面ABCD ,,,且P ABCD -PA ⊥AD BC ∥AB BC ⊥,.1AB AP BC ===2AD =(1)求证:平面;CD ⊥PAC (2)若E 为PC 的中点,求与平面所成角的正弦值.PD AED 【答案】(1)证明见解析【分析】(1)先证,,由此即可证得平面; AC CD ⊥PA CD ⊥CD ⊥PAC (2)建立空间直角坐标系,求出,平面的一个法向量为,然后利用公(0,2,1)PD =- AED ()1,0,1n =- 式,即可求得本题答案. sin cos ,n PD n PD n PDθ⋅==⋅ 【详解】(1)作,垂足为,易证,四边形为正方形.CF AD ⊥F ABCF 所以,又1CF AF DF ===CD ==AC ==因为,所以.222AC CD AD +=AC CD ⊥因为平面,平面,所以.PA ⊥ABCD CD ⊂ABCD PA CD ⊥又,平面,平面,所以平面.AC PA A ⋂=AC ⊂PAC PA ⊂PAC CD ⊥PAC(2)以点为坐标原点,以所在的直线分别为x 轴,y 轴,z 轴,建立如图所示的空间A ,,AB AD AP 直角坐标系,则,,,,. ()0,0,0A ()0,0,1P ()1,1,0C ()0,2,0D 111,,222E ⎛⎫ ⎪⎝⎭则,,. (0,2,0)AD = (0,2,1)PD =- 111(,,)222AE = 设平面的法向量为,AED (),,n x y z = 由,得, 00n AE n AD ⎧⋅=⎪⎨⋅=⎪⎩ 11102220x y z y ⎧++=⎪⎨⎪=⎩令,可得平面的一个法向量为.1z =AED ()1,0,1n =- 设与平面所成角为,PD AED θ则sin cos ,n PD n PD n PDθ⋅====⋅ 20.已知抛物线:()的焦点为,过上一点向抛物线的准线作垂线,垂足C 22y px =0p >F C P 为,是面积为.Q PQF △(1)求抛物线的方程;C (2)过点作直线交于,两点,记直线,的斜率分别为,,证明:()1,0M -l C A B FA FB 1k 2k .120k k +=【答案】(1)24y x =(2)证明见解析【分析】(1)由等边三角形的面积可以求出边的长,再求出中的长,即可求出QF Rt FQN A FN 的值,从而求出抛物线的标准方程;p (2)设过的直线方程,与抛物线方程联立,借助,坐标表示,化简证明即可.M A B 12k k +【详解】(1)如图所示,的面积 PQF △1sin 602PQF S PQ PF =︒A ∴, 4PF PQ QF ===设准线与轴交于点,则在中,, x N Rt FQN A 906030FQN ∠=︒-︒=︒∴, 122p FN QF ===∴抛物线的方程为.C 24y x =(2)由题意知,过点的直线l 的斜率存在且不为,()1,0M -0∴设直线的方程为:(),l l ()1y k x =+0k ≠直线的方程与抛物线的方程联立,得,消去y 整理得, l C 2(1)4y k x y x=+⎧⎨=⎩,()2222240k x k x k +-+=当,即时,设,, ()2242440k k ∆=-->()()1,00,1k ∈-⋃()11,A x y ()22,B x y 则,, 212224k x x k =-+-121=x x 由第(1)问知,,()1,0F ∴直线的斜率,直线的斜率, FA 1111y k x =-FB 2221y k x =-∴. ()()()()()()()()()12112121212121221121011111111x x k x x y y k x k x x k k x x x x x -++--+=+===------+∴原命题得证.21.已知数列满足,且.{}n a 12n n a a +=12314++=a a a (1)求的通项公式;{}n a (2)设,数列的前n 项和为,若对任意的,不等式2n n b n a =⋅{}n b n T n *∈N ()2224844n n T n n λ++-≥-恒成立,求实数λ的取值范围.【答案】(1)2n n a =(2) 3,128⎡⎫+∞⎪⎢⎣⎭【分析】(1)由,可得数列为等比数列,公比,代入到,算出12n n a a +={}n a 2q =12314++=a a a ,即可得到本题答案;1a (2)根据错位相减的方法求得,然后将不等式,逐步等价转化为n T ()2224844n n T n n λ++-≥-,再利用单调性求出的最大值,即可得到本题答案. 2112n n λ-≥2112n nn c -=【详解】(1)因为,所以是公比为2的等比数列, 12n n a a +={}n a 所以,故,1231112414a a a a a a ++=++=12a =故.2n n a =(2),1222n n n b n n +=⋅=⋅则,23411222322n n T n +=⨯+⨯+⨯++⨯ 所以,()345121222321222n n n n n T ++⨯+⨯+⨯++-⨯+⨯= 两式相减得,,()()2234122221222222212412n n n n n n T n n n ++++--=++++-⋅=-⋅=-⋅-- 因此. 2(1)24n n T n +=-⋅+由,可得,所以, ()2224844n n T n n λ++-≥-222844n n n n λ+⋅≥-2112nn λ-≥该式对任意的恒成立,则. n *∈N max2112n n λ-⎛⎫≥ ⎪⎝⎭令,则, 2112n n n c -=()1112111211132222n n n n n n n n c c ++++----=-=当时,,即数列递增,当时,,即数列递减,6n ≤10n n c c +->{}n c 7n ≥10n n c c +-<{}n c所以当时,, 7n =()max 3128n c =所以实数λ的取值范围是. 3,128⎡⎫+∞⎪⎢⎣⎭22.已知椭圆M :的短轴长为. 22221(0)x y a b a b +=>>(1)求椭圆M 的方程;(2)若过点的两条直线分别与椭圆M 交于点A ,C 和B ,D ,且共线,求直线AB 的()1,1Q -,AB CD 斜率.【答案】(1)22193x y +=(2) 13【分析】(1)由短轴长可求出可求出,由此即可求得本题答案; 23b =29a =(2)设点,因为共线,可设()()()()11223344,,,,,,,A x y B x y C x y D x y ,AB CD ,AQ QC BQ QD λλ== ,可得,,代入椭圆方程,然后相减,即可得到本题答案. 13131(1)x x y y λλλλ+-⎧=⎪⎪⎨-+-⎪=⎪⎩24241(1)xx y y λλλλ+-⎧=⎪⎪⎨-+-⎪=⎪⎩【详解】(1)因为短轴长为,b =23b =因为离心率,所以,可得, e 2222213c b a a =-=2213b a =29a =所以椭圆M 的方程为. 22193x y +=(2)设.()()()()11223344,,,,,,,A x y B x y C x y D x y 设,则,即, AQ QC λ= 13131(1)1(1)x x y y λλ-=-⎧⎨--=+⎩13131(1)x x y y λλλλ+-⎧=⎪⎪⎨-+-⎪=⎪⎩代入椭圆方程,得, ()()22112211193x y λλλλ+-++⎡⎤⎡⎤⎣⎦⎣⎦+=即① ()()221141211993x y λλλ+⎛⎫-+-=- ⎪⎝⎭同理可得② ()()222241211993x y λλλ+⎛⎫-+-=- ⎪⎝⎭由②-①,得, 11229393x y x y -=-所以,()12123y y x x -=-所以直线AB 的斜率. 121213y y k x x -==-【点睛】思路点睛:把共线这个条件,转化为,是解决此题的关键. ,AB CD ,AQ QC BQ QD λλ==。
学年上学期高二数学(文科)参考答案
依题设得椭圆的方程为
x2 y2 1, 4
ห้องสมุดไป่ตู้
直线 AB、EF 的方程分别为 x 2 y 2, y kx ( k 0)
y kx 由 x2 消去 y 得 2 y 1 4
故 x2 x1
(1 4k 2 ) x 2 4
2 1 4k 2
, y2 y1
10 3 ]. 3
19. 解:(Ⅰ)由S n 2an 2知 S n 1 2an 1 2
S n S n 1 2 an an 1 an 即an 2an 1 而S1 2a1 2a1 2 数列an 为等比数列,且an 2n 6分
(Ⅱ)由(Ⅰ)可得bn log 2 an n cn Tn
bn n n 7分 an 2
1 2 3 n 2 3 n 2 2 2 2 1 1 2 3 n Tn 2 3 4 n 1 9分 2 2 2 2 2 1 1 1 1 1 n Tn Tn 2 3 n n 1 2 2 2 2 2 2 1 1 n Tn 1 n n 1 11分 2 2 2 1 n Tn 2 n 1 n 12分 2 2
2k 1 4k 2
,
由 ED 6 DF 知 x0 x1 6( x2 x0 ) 得 x0 由 D 在 AB 上,知 x0 2kx0 2 ,得 x0
1 5 10 . (6 x2 x1 ) x2 7 7 7 1 4k 2
2 . 1 2k
20. 解(Ⅰ)设捕捞 n 年后开始盈利,盈利为 y 万元,则
y 50n (12n
河南省郑州市高二数学上学期期末考试(文)扫描版 新人教版
参考答案一、选择题 BBACC DCBCC DB二、填空题 13. 2 ; 14. 22 ; 15. 9 ; 16. 56 .三、解答题17.解答:由已知可得p 真,q 假 , ………………………2分p 为真命题,则10<<c ,……………………… 4分q 为假命题,则08162≤-=∆c c .又 0>c ,得 102c <≤. ………………………7分 因为p 真q 假,则:01,10.2c c <<⎧⎪⎨<≤⎪⎩ 得210≤<c . ……………………… 9分 综上:210≤<c 即为所求. ……………………… 10分18.解:在△ABD 中,设BD = x ,则BDA AD BD AD BD BA ∠⋅⋅-+=cos 2222,……………………… 2分即2227510cos60,x x =+-………………………4分整理得: 02452=--x x .解之:81=x ,32-=x (舍去),……………………… 6分 由正弦定理,得:BCDBD CDB BC ∠=∠sin sin , ……………………… 8分 ∴0030sin 135sin 8=BC =24(km ). 答:两景点B 与C 的距离约为24km . ………………………12分19.解答:设11A B x =,易知114000B C x=, ………………………2分 4000(20)(8)S x x=++8000041608(0)x x x=++>.………………………6分 800004160841605760S x x x x=++≥+=.………………………9分 当且仅当800008100x x x ==即时取等号 . ………………………11分 ∴要使公园所占面积最小,休闲区A 1B 1C 1D 1的长为100米、宽为40米.………………………………………………………………………12分20.解:(1)'2()369f x x x =-++, ……………………… 2分令'2()03690f x x x <-++<即,解得3x >或1x <- . ………………………4分再令'2()03690f x x x >-++>即,解得13x -<<.所以该函数的单调递减区间为(,1)-∞-、(3,)+∞;单调递增区间为(1,3)-. ……… 6分(2)令'()0f x =,得到1x =-或3x =,由上表可知,最小值为(1)54f d -=-=-,所以1d =.………………………10分 则最大值为28)3(=f ,所以函数f (x )的最大值为28. ………………………12分21.解:(1)由题意得,11311,3.a d a d a d a d +=⎧⎨+=⎩ 解得1,2=-=d d .(舍去) ………………………2分3221=-=a d 时.3)2()2(32,2381nn n n b n a --=-⋅=-=∴- . ………………………4分 (2)3)2()382(nn n n b a --=. 3)2()382(3)2()3822(32)382(2nn n S -⋅-++-⋅-⋅+-⋅-= , ① 3)2()382(3)2()3822(3)2()382(2132+-⋅-++-⋅-⋅+-⋅-=-n n n S . ②…………7分 ① -② 得3)2()382(3)2(3)2(3)2(2943132+-⋅--⎥⎦⎤⎢⎣⎡-++-+-+=n n n n S 3)2()1(342+--+=n n . ………………………10分 9)2)(1(942+--+=∴n n n S . ………………………12分22.解:(1)由题设知:512c a ab ⎧=⎪⎪⎨⎪=⎪⎩又222a b c =+,将,5c a b a ==代入, 得到:222205a a a+=,即425a =,所以25a =,24b =. 故椭圆方程为22154x y +=. ………………………4分 (2)由(1)知((0,2)A B ,PQ AB k k ∴== ∴设直线l的方程为y b =+,………………………6分由22,154y x b x y ⎧=+⎪⎪⎨⎪+=⎪⎩ 得2285200x b ++-=,设P (x 1,y 1),Q (x 2,y 2),则212125208b x x x x -+=⋅=, ………………………8分1212121)1))y y x x x x ∴-=--=-, 221221)()(||y y x x PQ -+-=∴====, ………………………10分 解之,245b =(验证判别式为正),所以直线l 的方程为552552±=x y .…………12分。
高二数学上学期期末试卷(文科含解析)
高二数学上学期期末试卷(文科含解析)单元练习题是所有考生最大的需求点,只有这样才能保证答题的准确率和效率,以下是店铺为您整理的关于高二数学上学期期末试卷(文科含解析)的相关资料,供您阅读。
高二数学上学期期末试卷(文科含解析)数学试卷(文科)一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于常数m、n,“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.命题“所有能被2整除的数都是偶数”的否定是( )A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数3.已知椭圆上的点P到椭圆一个焦点的距离为7,则P到另一焦点的距离为( )A.2B.3C.5D.74.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q5.若双曲线的离心率为,则其渐近线的斜率为( )A.±2B.C.D.6.曲线在点M( ,0)处的切线的斜率为( )A. B. C. D.7.若椭圆(a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点,则抛物线ay=bx2的焦点坐标为( )A.( ,0)B.( ,0)C.(0, )D.(0, )8.设z1,z2是复数,则下列命题中的假命题是( )A.若|z1|=|z2|,则B.若,则C.若|z1|=|z2|,则D.若|z1﹣z2|=0,则9.已知命题“若函数f(x)=ex﹣mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( )A.否命题“若函数f(x)=ex﹣mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=ex﹣mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上不是增函数”是真命题10.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( )A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件11.设a>0,f(x)=ax2+bx+c,曲线y=f(x)在点P(x0,f(x0))处切线的倾斜角的取值范围为,则P到曲线y=f(x)对称轴距离的取值范围为( )A. B. C. D.12.已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1A.3B.4C.5D.6二、填空题:本大题共4小题,每小题5分,共20分.13.设复数,那么z• 等于.14.f(x)=x3﹣3x2+2在区间上的最大值是.15.函数f(x)=lnx﹣f′(1)x2+5x﹣4,则f(1)= .16.过抛物线x2=2py(p>0)的焦点F作倾斜角为45°的直线,与抛物线分别交于A、B两点(A在y轴左侧),则 = .三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知z是复数,z+2i和均为实数(i为虚数单位).(Ⅰ)求复数z;(Ⅱ)求的模.18.已知集合A={x|(ax﹣1)(ax+2)≤0},集合B={x|﹣2≤x≤4}.若x∈B是x∈A的充分不必要条件,求实数a的取值范围.19.设椭圆的方程为,点O为坐标原点,点A,B分别为椭圆的右顶点和上顶点,点M在线段AB上且满足|BM|=2|MA|,直线OM的斜率为 .(Ⅰ)求椭圆的离心率;(Ⅱ)设点C为椭圆的下顶点,N为线段AC的中点,证明:MN⊥A B.20.设函数,其中a为实数.(1)已知函数f(x)在x=1处取得极值,求a的值;(2)已知不等式f′(x)>x2﹣x﹣a+1对任意a∈(0,+∞)都成立,求实数x的取值范围.21.已知椭圆C1:的离心率为,且椭圆上点到椭圆C1左焦点距离的最小值为﹣1.(1)求C1的方程;(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l 的方程.22.已知函数f(x)=lnx﹣a(x﹣1)2﹣(x﹣1)(其中常数a∈R).(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)当x∈(0,1)时,f(x)<0,求实数a的取值范围.高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于常数m、n,“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】先根据mn>0看能否得出方程mx2+ny2=1的曲线是椭圆;这里可以利用举出特值的方法来验证,再看方程mx2+ny2=1的曲线是椭圆,根据椭圆的方程的定义,可以得出mn>0,即可得到结论.【解答】解:当mn>0时,方程mx2+ny2=1的曲线不一定是椭圆,例如:当m=n=1时,方程mx2+ny2=1的曲线不是椭圆而是圆;或者是m,n都是负数,曲线表示的也不是椭圆;故前者不是后者的充分条件;当方程mx2+ny2=1的曲线是椭圆时,应有m,n都大于0,且两个量不相等,得到mn>0;由上可得:“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的必要不充分条件.故选B.2.命题“所有能被2整除的数都是偶数”的否定是( )A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数【考点】命题的否定.【分析】根据已知我们可得命题“所有能被2整除的数都是偶数”的否定应该是一个特称命题,根据全称命题的否定方法,我们易得到结论.【解答】解:命题“所有能被2整除的数都是偶数”是一个全称命题其否定一定是一个特称命题,故排除A,B结合全称命题的否定方法,我们易得命题“所有能被2整除的数都是偶数”的否定应为“存在一个能被2整除的整数不是偶数”故选:D3.已知椭圆上的点P到椭圆一个焦点的距离为7,则P到另一焦点的距离为( )A.2B.3C.5D.7【考点】椭圆的简单性质.【分析】由椭圆方程找出a的值,根据椭圆的定义可知椭圆上的点到两焦点的距离之和为常数2a,把a的值代入即可求出常数的值得到P到两焦点的距离之和,由P到一个焦点的距离为7,求出P到另一焦点的距离即可.【解答】解:由椭圆,得a=5,则2a=10,且点P到椭圆一焦点的距离为7,由定义得点P到另一焦点的距离为2a﹣3=10﹣7=3.故选B4.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q【考点】四种命题间的逆否关系.【分析】由命题P和命题q写出对应的¬p和¬q,则命题“至少有一位学员没有降落在指定范围”即可得到表示.【解答】解:命题p是“甲降落在指定范围”,则¬p是“甲没降落在指定范围”,q是“乙降落在指定范围”,则¬q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”或“甲没降落在指定范围,乙降落在指定范围”或“甲没降落在指定范围,乙没降落在指定范围”三种情况.所以命题“至少有一位学员没有降落在指定范围”可表示为(¬p)V(¬q).故选A.5.若双曲线的离心率为,则其渐近线的斜率为( )A.±2B.C.D.【考点】双曲线的简单性质.【分析】由双曲线的离心率为,可得,解得即可.【解答】解:∵双曲线的离心率为,∴ ,解得 .∴其渐近线的斜率为 .故选:B.6.曲线在点M( ,0)处的切线的斜率为( )A. B. C. D.【考点】利用导数研究曲线上某点切线方程.【分析】先求出导函数,然后根据导数的几何意义求出函数f(x)在x= 处的导数,从而求出切线的斜率.【解答】解:∵∴y'==y'|x= = |x= =故选B.7.若椭圆(a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点,则抛物线ay=bx2的焦点坐标为( )A.( ,0)B.( ,0)C.(0, )D.(0, )【考点】双曲线的简单性质;椭圆的简单性质;抛物线的简单性质.【分析】根据椭圆 (a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点,得到a,b的关系式;再将抛物线ay=bx2的方程化为标准方程后,根据抛物线的性质,即可得到其焦点坐标.【解答】解:∵椭圆(a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点∴2a2﹣2b2=a2+b2,即a2=3b2, = .抛物线ay=bx2的方程可化为:x2= y,即x2= y,其焦点坐标为:(0, ).故选D.8.设z1,z2是复数,则下列命题中的假命题是( )A.若|z1|=|z2|,则B.若,则C.若|z1|=|z2|,则D.若|z1﹣z2|=0,则【考点】复数代数形式的乘除运算;命题的真假判断与应用.【分析】利用特例判断A的正误;复数的基本运算判断B的正误;复数的运算法则判断C的正误;利用复数的模的运算法则判断D的正误.【解答】解:若|z1|=|z2|,例如|1|=|i|,显然不正确,A错误.B,C,D满足复数的运算法则,故选:A.9.已知命题“若函数f(x)=ex﹣mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( )A.否命题“若函数f(x)=ex﹣mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=ex﹣mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上不是增函数”是真命题【考点】四种命题间的逆否关系.【分析】先利用导数知识,确定原命题为真命题,从而逆否命题为真命题,即可得到结论.【解答】解:∵f(x)=e x﹣mx,∴f′(x)=ex﹣m∵函数f(x)=ex﹣mx在(0,+∞)上是增函数∴ex﹣m≥0在(0,+∞)上恒成立∴m≤ex在(0,+∞)上恒成立∴m≤1∴命题“若函数f(x)=ex﹣mx在(0,+∞)上是增函数,则m≤1”,是真命题,∴逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上不是增函数”是真命题∵m≤1时,f′(x)=ex﹣m≥0在(0,+∞)上不恒成立,即函数f(x)=ex﹣mx在(0,+∞)上不一定是增函数,∴逆命题“若m≤1,则函数f(x)=ex﹣mx在(0,+∞)上是增函数”是真命题,即B不正确故选D.10.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( )A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】因为“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.再据命题的真假与条件的关系判定出“不便宜”是“好货”的必要条件.【解答】解:“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.所以“好货”⇒“不便宜”,所以“不便宜”是“好货”的必要条件,故选B11.设a>0,f(x)=ax2+bx+c,曲线y=f(x)在点P(x0,f(x0))处切线的倾斜角的取值范围为,则P到曲线y=f(x)对称轴距离的取值范围为( )A. B. C. D.【考点】直线的图象特征与倾斜角、斜率的关系.【分析】先由导数的几何意义,得到x0的范围,再求出其到对称轴的范围.【解答】解:∵过P(x0,f(x0))的切线的倾斜角的取值范围是,∴f′(x0)=2ax0+b∈,∴P到曲线y=f(x)对称轴x=﹣的距离d=x0﹣(﹣ )=x0+∴x0∈[ ,].∴d=x0+ ∈.故选:B.12.已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1A.3B.4C.5D.6【考点】利用导数研究函数的极值;根的存在性及根的个数判断.【分析】由函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,可得f′(x)=3x2+2ax+b=0有两个不相等的实数根,必有△=4a2﹣12b>0.而方程3(f(x))2+2af(x)+b=0的△1=△>0,可知此方程有两解且f(x)=x1或x2.再分别讨论利用平移变换即可解出方程f(x)=x1或f(x)=x2解得个数.【解答】解:∵函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,∴f′(x)=3x2+2ax+b=0有两个不相等的实数根,∴△=4a2﹣12b>0.解得 = .∵x1∴ , .而方程3(f(x))2+2af(x)+b=0的△1=△>0,∴此方程有两解且f(x)=x1或x2.不妨取00.①把y=f(x)向下平移x1个单位即可得到y=f(x)﹣x1的图象,∵f(x1)=x1,可知方程f(x)=x1有两解.②把y=f(x)向下平移x2个单位即可得到y=f(x)﹣x2的图象,∵f(x1)=x1,∴f(x1)﹣x2<0,可知方程f(x)=x2只有一解.综上①②可知:方程f(x)=x1或f(x)=x2.只有3个实数解.即关于x 的方程3(f(x))2+2af(x)+b=0的只有3不同实根.故选:A.二、填空题:本大题共4小题,每小题5分,共20分.13.设复数,那么z• 等于 1 .【考点】复数代数形式的乘除运算.【分析】直接利用复数的代数形式的混合运算化简求解即可.【解答】解:复数,那么z• = = =1.故答案为:1.14.f(x)=x3﹣3x2+2在区间上的最大值是 2 .【考点】利用导数求闭区间上函数的最值.【分析】求出函数的导函数,令导函数为0,求出根,判断根是否在定义域内,判断根左右两边的导函数符号,求出最值.【解答】解:f′(x)=3x2﹣6x=3x(x﹣2)令f′(x)=0得x=0或x=2(舍)当﹣10;当0所以当x=0时,函数取得极大值即最大值所以f(x)的最大值为2故答案为215.函数f(x)=lnx﹣f′(1)x2+5x﹣4,则f(1)= ﹣1 .【考点】导数的运算.【分析】先求出f′(1)的值,代入解析式计算即可.【解答】解:∵f(x)=lnx﹣f′(1)x2+5x﹣4,∴f′(x)= ﹣2f′(1)x+5,∴f′(1)=6﹣2f′(1),解得f′(1)=2.∴f(x)=lnx﹣2x2+5x﹣4,∴f(1)=﹣1.故答案为:﹣1.16.过抛物线x2=2py(p>0)的焦点F作倾斜角为45°的直线,与抛物线分别交于A、B两点(A在y轴左侧),则 = .【考点】抛物线的简单性质.【分析】点斜式设出直线l的方程,代入抛物线方程,求出A,B 两点的纵坐标,利用抛物线的定义得出 = ,即可得出结论.【解答】解:设直线l的方程为:x=y﹣,A(x1,y1),B(x2,y2),由x=y﹣,代入x2=2py,可得y2﹣3py+ p2=0,∴y1= p,y2= p,从而, = = .故答案为: .三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知z是复数,z+2i和均为实数(i为虚数单位).(Ⅰ)求复数z;(Ⅱ)求的模.【考点】复数求模;复数的基本概念.【分析】(Ⅰ)设z=a+bi,分别代入z+2i和,化简后由虚部为0求得b,a的值,则复数z可求;(Ⅱ)把z代入,利用复数代数形式的乘除运算化简,代入模的公式得答案.【解答】解:(Ⅰ)设z=a+bi,∴z+2i=a+(b+2)i,由a+(b+2)i为实数,可得b=﹣2,又∵ 为实数,∴a=4,则z=4﹣2i;(Ⅱ) ,∴ 的模为 .18.已知集合A={x|(ax﹣1)(ax+2)≤0},集合B={x|﹣2≤x≤4}.若x∈B是x∈A的充分不必要条件,求实数a的取值范围.【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义,转化为集合的关系进行求解.【解答】解:(1)a>0时,,若x∈B是x∈A的充分不必要条件,所以,,检验符合题意;┅┅┅┅┅┅┅(2)a=0时,A=R,符合题意;┅┅┅┅┅┅┅(3)a<0时,,若x∈B是x∈A的充分不必要条件,所以,,检验不符合题意.综上.┅┅┅┅┅┅┅19.设椭圆的方程为,点O为坐标原点,点A,B分别为椭圆的右顶点和上顶点,点M在线段AB上且满足|BM|=2|MA|,直线OM的斜率为 .(Ⅰ)求椭圆的离心率;(Ⅱ)设点C为椭圆的下顶点,N为线段AC的中点,证明:MN⊥AB.【考点】椭圆的简单性质.【分析】(1)通过题意,利用 =2 ,可得点M坐标,利用直线OM 的斜率为,计算即得结论;(2)通过中点坐标公式解得点N坐标,利用×( )=﹣1,即得结论.【解答】(Ⅰ)解:设M(x,y),已知A(a,0),B(0,b),由|BM|=2|MA|,所以 =2 ,即(x﹣0,y﹣b)=2(a﹣x,0﹣y),解得x= a,y= b,即可得,┅┅┅┅┅┅┅所以,所以椭圆离心率;┅┅┅┅┅┅┅(Ⅱ)证明:因为C(0,﹣b),所以N ,MN斜率为,┅┅┅┅┅┅┅又AB斜率为,所以×( )=﹣1,所以MN⊥AB.┅┅┅┅┅┅┅20.设函数,其中a为实数.(1)已知函数f(x)在x=1处取得极值,求a的值;(2)已知不等式f′(x)>x2﹣x﹣a+1对任意a∈(0,+∞)都成立,求实数x的取值范围.【考点】利用导数研究函数的极值.【分析】(1)求出f′(x),因为函数在x=1时取极值,得到f′(1)=0,代入求出a值即可;(2)把f(x)的解析式代入到不等式中,化简得到,因为a>0,不等式恒成立即要,求出x的解集即可.【解答】解:(1)f′(x)=ax2﹣3x+(a+1)由于函数f(x)在x=1时取得极值,所以f′(1)=0即a﹣3+a+1=0,∴a=1(2)由题设知:ax2﹣3x+(a+1)>x2﹣x﹣a+1对任意a∈(0,+∞)都成立即a(x2+2)﹣x2﹣2x>0对任意a∈(0,+∞)都成立于是对任意a∈(0,+∞)都成立,即∴﹣2≤x≤0于是x的取值范围是{x|﹣2≤x≤0}.21.已知椭圆C1:的离心率为,且椭圆上点到椭圆C1左焦点距离的最小值为﹣1.(1)求C1的方程;(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l 的方程.【考点】椭圆的简单性质.【分析】(1)运用椭圆的离心率和最小距离a﹣c,解方程可得a= ,c=1,再由a,b,c的关系,可得b,进而得到椭圆方程;(2)设出直线y=kx+m,联立椭圆和抛物线方程,运用判别式为0,解方程可得k,m,进而得到所求直线的方程.【解答】解:(1)由题意可得e= = ,由椭圆的性质可得,a﹣c= ﹣1,解方程可得a= ,c=1,则b= =1,即有椭圆的方程为 +y2=1;(2)直线l的斜率显然存在,可设直线l:y=kx+m,由,可得(1+2k2)x2+4kmx+2m2﹣2=0,由直线和椭圆相切,可得△=16k2m2﹣4(1+2k2)(2m2﹣2)=0,即为m2=1+2k2,①由,可得k2x2+(2km﹣4)x+m2=0,由直线和抛物线相切,可得△=(2km﹣4)2﹣4k2m2=0,即为km=1,②由①②可得或,即有直线l的方程为y= x+ 或y=﹣ x﹣ .22.已知函数f(x)=lnx﹣a(x﹣1)2﹣(x﹣1)(其中常数a∈R).(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)当x∈(0,1)时,f(x)<0,求实数a的取值范围.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(Ⅰ)求出函数的导数,通过讨论a的范围求出函数的单调区间即可;(Ⅱ)根据(Ⅰ)通过讨论a的范围,确定出满足条件的a的范围即可.【解答】解:(Ⅰ)f(x)=lnx﹣a(x﹣1)2﹣(x﹣1),(x>0),f′(x)=﹣,①a<﹣时,0<﹣ <1,令f′(x)<0,解得:x>1或00,解得:﹣∴f(x)在递减,在递增;②﹣﹣或00,解得:1∴f(x)在递减,在递增;③ ,f′(x)=﹣≤0,f(x)在(0,1),(1+∞)递减;④a≥0时,2ax+1>0,令f′(x)>0,解得:01,∴f(x)在(0,1)递增,在(1,+∞)递减;(Ⅱ)函数恒过(1,0),由(Ⅰ)得:a≥﹣时,符合题意,a<﹣时,f(x)在(0,﹣ )递减,在递增,不合题意,故a≥﹣ .。
河南省郑州市2017-2018学年高二上学期期末数学试卷(文科) Word版含解析
河南省郑州市2017-2018学年高二上学期期末数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)抛物线x2=2y的焦点坐标是()A.B.C.(1,0)D.(0,1)2.(5分)设a,b∈R,则a>b是(a﹣b)b2>0的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.(5分)不等式x2+2014x﹣2015>0的解集为()A.{x|﹣2015<x<1} B.{x|x>1或x<﹣2015}C.{x|﹣1<x<2015} D.{x|x<﹣1或x>2015}4.(5分)等差数列{a n}的前n项和为S n,且S3=6,a3=0,则公差d等于()A.﹣1 B.1C.2D.﹣25.(5分)如图所示,为了测量某障碍物两侧A,B间的距离,给定下列四组数据,不能确定A,B间距离的是()A.α,a,b B.α,β,a C.a,b,γD.α,β,b6.(5分)下列关于星星的图案构成一个数列,该数列的一个通项公式是()A.a n=n2﹣n+1 B.a n=C.a n=D.a n=7.(5分)设变量x,y满足约束条件:,则目标函数z=2x+3y的最小值为()A.6B.7C.8D.238.(5分)已知a>0,b>0,且2是2a与b的等差中项,则的最小值为()A.B.C.2D.49.(5分)已知点(2,1)和(﹣1,3)在直线3x﹣2y+a=0的两侧,则a的取值范围是()A.﹣4<a<9 B.﹣9<a<4 C.a<﹣4或a>9 D.a<﹣9或a>410.(5分)已知各项为正的等比数列{a n}中,a4与a14的等比中项为,则2a7+a11的最小值为()A.16 B.8C.D.411.(5分)已知f(x)=x2+2xf′(1),则f′(0)等于()A.0B.﹣2 C.﹣4 D.212.(5分)已知方程=k在(0,+∞)上有两个不同的解α,β(α<β),则下面结论正确的是()A.s inα=﹣αcosβB.s inα=αcosβC.c osα=βsinβD.sinβ=βsinα二、填空题(共4小题,每小题5分,满分20分)13.(5分)“∃x<0,有x2>0”的否定是.14.(5分)若2、a、b、c、9成等差数列,则c﹣a=.15.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,若sinA=sinC,B=30°,b=2,则边c=.16.(5分)现有甲、乙两人相约到登封爬嵩山,若甲上山的速度为v1,下山的速度为v2(v1≠v2),乙上山和下山的速度都是(甲、乙两人中途不停歇且下山时按原路返回),则甲、乙两人上下山所用的时间t1、t2的大小关系为.三、解答题(共6小题,满分70分)17.(10分)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n的最大值.18.(12分)p:关于x的不等式x2+2ax+4>0,对一切x∈R恒成立.q:抛物线y2=4ax的焦点在(1,0)的左侧,若p或q为真,p且q为假,求实数a的取值范围.19.(12分)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且b=2csinB(1)求角C的大小;(2)若c2=(a﹣b)2+6,求△ABC的面积.20.(12分)汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素.某市的一条道路在一个限速为40km/h的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相撞了.事后现场勘查测得甲车刹车距离刚好12m,乙车刹车距离略超过10m.又知甲、乙两种车型的刹车距离S(m)与车速x(km/h)之间分别有如下关系:S甲=0.1x+0.01x2,S乙=0.05x+0.005x2.问:甲、乙两车有无超速现象?21.(12分)已知函数f(x)=e x﹣2x(e为自然对数的底数)(1)求函数f(x)的单调区间(2)若存在使不等式f(x)<mx成立,求实数m的取值范围.22.(12分)已知圆C:x2+y2=3的半径等于椭圆E:+=1(a>b>0)的短半轴长,椭圆E的右焦点F在圆C内,且到直线l:y=x﹣的距离为﹣,点M是直线l与圆C的公共点,设直线l交椭圆E于不同的两点A(x1,y1),B(x2,y2).(Ⅰ)求椭圆E的方程;(Ⅱ)求证:|AF|﹣|BF|=|BM|﹣|AM|.河南省郑州市2014-2015学年高二上学期期末数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)抛物线x2=2y的焦点坐标是()A.B.C.(1,0)D.(0,1)考点:抛物线的简单性质.专题:计算题.分析:根据抛物线的定义可得,x2=2py(p>0)的焦点坐标(0,)可直接求解解答:解:根据抛物线的定义可得,x2=2y的焦点坐标(0,)故选B.点评:本题主要考查了抛物线的简单的性质,属于基础试题.2.(5分)设a,b∈R,则a>b是(a﹣b)b2>0的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:规律型.分析:结合不等式的性质,利用充分条件和必要条件的定义进行判断.解答:解:当a>b,b=0时,不等式(a﹣b)b2>0不成立.若(a﹣b)b2>0,则b≠0,且a﹣b>0,∴a>b成立.即a>b是(a﹣b)b2>0的必要不充分条件.故选:B.点评:本题主要考查充分条件和必要条件的判断,利用不等式的性质是解决本题的关键,比较基础.3.(5分)不等式x2+2014x﹣2015>0的解集为()A.{x|﹣2015<x<1} B.{x|x>1或x<﹣2015}C.{x|﹣1<x<2015} D.{x|x<﹣1或x>2015}考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:把不等式化为(x+2015)(x﹣1)>0,求出解集即可.解答:解:不等式x2+2014x﹣2015>0可化为(x+2015)(x﹣1)>0,解得x<﹣2015或x>1;∴不等式的解集为{x|x>1或x<﹣2015}.故选:B.点评:本题考查了一元二次不等式的解法与应用问题,是基础题目.4.(5分)等差数列{a n}的前n项和为S n,且S3=6,a3=0,则公差d等于()A.﹣1 B.1C.2D.﹣2考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由题意结合等差数列的性质和求和公式可得a2的值,进而可得公差d.解答:解:∵等差数列{a n}的前n项和为S n,且S3=6,a3=0,∴S3=a1+a2+a3=3a2=6,∴a2=2,∴公差d=a3﹣a2=0﹣2=﹣2故选:D点评:本题考查等差数列的求和公式和通项公式,属基础题.5.(5分)如图所示,为了测量某障碍物两侧A,B间的距离,给定下列四组数据,不能确定A,B间距离的是()A.α,a,b B.α,β,a C.a,b,γD.α,β,b考点:解三角形的实际应用.专题:应用题;解三角形.分析:给定α,a,b,由正弦定理,β不唯一确定,故不能确定A,B间距离.解答:解:给定α,a,b,由正弦定理,β不唯一确定,故不能确定A,B间距离.故选:A.点评:本题考查解三角形的实际应用,考查学生的计算能力,比较基础.6.(5分)下列关于星星的图案构成一个数列,该数列的一个通项公式是()A.a n=n2﹣n+1 B.a n=C.a n=D.a n=考点:数列递推式.专题:规律型.分析:由图中所给的星星个数:1,1+2,1+2+3,…,1+2+3+…+n;得出数列第n项,即通项公式.解答:解析:从图中可观察星星的构成规律,n=1时,有1个;n=2时,有3个;n=3时,有6个;n=4时,有10个;∴a n=1+2+3+4+…+n=.答案:C点评:这是一个简单的自然数求和公式,由观察得出猜想,一般不需要证明.考查学生的观察猜想能力.7.(5分)设变量x,y满足约束条件:,则目标函数z=2x+3y的最小值为()A.6B.7C.8D.23考点:简单线性规划的应用.专题:不等式的解法及应用.分析:本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件.画出满足约束条件的可行域,再用角点法,求出目标函数的最小值.解答:解:画出不等式.表示的可行域,如图,让目标函数表示直线在可行域上平移,知在点B自目标函数取到最小值,解方程组得(2,1),所以z min=4+3=7,故选B.点评:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.8.(5分)已知a>0,b>0,且2是2a与b的等差中项,则的最小值为()A.B.C.2D.4考点:基本不等式;等差数列.专题:不等式的解法及应用.分析:利用等差中项及基本不等式的性质即可求出答案.解答:解:∵2是2a与b的等差中项,∴2a+b=4,又∵a>0,b>0,∴=,当且仅当2a=b=2,即a=1,b=2时取等号,∴.故选B.点评:充分理解基本不等式及其变形是解题的关键.9.(5分)已知点(2,1)和(﹣1,3)在直线3x﹣2y+a=0的两侧,则a的取值范围是()A.﹣4<a<9 B.﹣9<a<4 C.a<﹣4或a>9 D.a<﹣9或a>4考点:直线的斜率.专题:直线与圆.分析:由点(2,1)和(﹣1,3)在直线3x﹣2y+a=0的两侧,把两点的坐标代入3x﹣2y+a 所得的值异号,由此列不等式求得a的范围.解答:解:∵点(2,1)和(﹣1,3)在直线3x﹣2y+a=0的两侧,∴(3×2﹣2×1+a)(﹣1×3﹣2×3+a)<0,即(a+4)(a﹣9)<0.解得﹣4<a<9.故选:A.点评:本题考查了简单的线性规划,考查了二元一次不等式所表示的平面区域,是基础题.10.(5分)已知各项为正的等比数列{a n}中,a4与a14的等比中项为,则2a7+a11的最小值为()A.16 B.8C.D.4考点:等比数列的通项公式.专题:计算题;等差数列与等比数列.分析:由各项为正的等比数列{a n}中,a4与a14的等比中项为,知a4•a14=(2)2=8,故a7•a11=8,利用均值不等式能够求出2a7+a11的最小值.解答:解:∵各项为正的等比数列{a n}中,a4与a14的等比中项为,∴a4•a14=(2)2=8,∴a7•a11=8,∵a7>0,a11>0,∴2a7+a11≥2=2=8.故选B.点评:本题考查等比数列的通项公式的应用,是中档题.解题时要认真审题,仔细解答.11.(5分)已知f(x)=x2+2xf′(1),则f′(0)等于()A.0B.﹣2 C.﹣4 D.2考点:导数的运算.专题:导数的概念及应用.分析:把给出的函数求导得其导函数,在导函数解析式中取x=1可求2f′(1)的值.解答:解:由f(x)=x2+2xf′(1),得:f′(x)=2x+2f′(1),取x=1得:f′(1)=2×1+2f′(1),所以,f′(1)=﹣2.所以f′(x)=2x﹣4故f′(0)=2f′(1)=﹣4,故选:C.点评:本题考查了导数运算,解答此题的关键是理解原函数解析式中的f′(1),在这里f′(1)只是一个常数,此题是基础题.12.(5分)已知方程=k在(0,+∞)上有两个不同的解α,β(α<β),则下面结论正确的是()A.s inα=﹣αcosβB.s inα=αcosβC.c osα=βsinβD.sinβ=βsinα考点:根的存在性及根的个数判断.专题:计算题;作图题;函数的性质及应用;导数的综合应用.分析:由题意,方程=k可化为|sinx|=kx,作函数y=|sinx|与y=kx的图象,从而可求得y′|x=β=﹣cosβ,即k=﹣cosβ,从而可得=﹣cosβ,化简即可.解答:解:在(0,+∞)上,方程=k可化为|sinx|=kx,作函数y=|sinx|与y=kx的图象如下,在x=β时,==k,又∵在x=β处直线与y=|sinx|相切,∴y′|x=β=﹣cosβ,故k=﹣cosβ,则=﹣cosβ,即sinα=﹣αcosβ;故选A.点评:本题考查了导数的几何意义的应用及方程的根与函数图象的关系应用,同时考查了数形结合的思想应用,属于中档题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)“∃x<0,有x2>0”的否定是∀x<0,有x2≤0.考点:的否定.分析:对特称的否定是一个全称,对一个全称的否定是全称,即:对“∃x∈A,P(X)”的否定是:“∀x∈A,¬P(X)”;对“∀x∈A,P(X)”的否定是:“∃x∈A,¬P(X)”,由此不难得到对“∃x<0,有x2>0”的否定.解答:解:∵对“∃x∈A,P(X)”的否定是:“∀x∈A,¬P(X)”∴对“∃x<0,有x2>0”的否定是“∀x<0,有x2≤0”故答案为:∀x<0,有x2≤0点评:对“∃x∈A,P(X)”的否定是:“∀x∈A,¬P(X)”;对“∀x∈A,P(X)”的否定是:“∃x∈A,¬P(X)”,即对特称的否定是一个全称,对一个全称的否定是全称14.(5分)若2、a、b、c、9成等差数列,则c﹣a=.考点:等差数列的性质.专题:等差数列与等比数列.分析:由等差数列的性质可得2b=2+9,解之可得b值,再由等差中项可得a,c的值,作差即可得答案.解答:解:由等差数列的性质可得2b=2+9,解得b=,又可得2a=2+b=2+=,解之可得a=,同理可得2c=9+=,解得c=,故c﹣a=﹣==故答案为:点评:本题考查等差数列的性质和通项公式,属基础题.15.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,若sinA=sinC,B=30°,b=2,则边c=2.考点:正弦定理;余弦定理.专题:解三角形.分析:在△ABC中,由正弦定理求得a=c,结合余弦定理,即可求出c的值解答:解:∵在△ABC中,sinA=sinC∴a= c又∵B=30°,由余弦定理,可得:cosB=cos30°===解得c=2故答案为:2.点评:本题考查的知识点是正弦定理和余弦定理,熟练掌握定理是解题的关键,属于中档题.16.(5分)现有甲、乙两人相约到登封爬嵩山,若甲上山的速度为v1,下山的速度为v2(v1≠v2),乙上山和下山的速度都是(甲、乙两人中途不停歇且下山时按原路返回),则甲、乙两人上下山所用的时间t1、t2的大小关系为t1>t2.考点:有理数指数幂的化简求值.专题:计算题;函数的性质及应用.分析:由题意,甲用的时间t1=+=S;乙用的时间t2=2×=;从而作差比较大小即可.解答:解:由题意知,甲用的时间t1=+=S•;乙用的时间t2=2×=;∴t1﹣t2=S﹣=S(﹣)=S>0;故t1>t2;故答案为:t1>t2.点评:本题考查了有理指数幂的化简求值,属于基础题.三、解答题(共6小题,满分70分)17.(10分)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n的最大值.考点:等差数列的前n项和;等差数列的通项公式.专题:计算题;等差数列与等比数列.分析:(Ⅰ)运用等差数列的通项公式,列出方程,解得首项和公差,即可得到通项公式;(Ⅱ)运用前n项和的公式,配方,结合二次函数的最值,即可得到.解答:解:(Ⅰ)由a n=a1+(n﹣1)d,及a3=5,a10=﹣9得,,解得,数列{a n}的通项公式为a n=11﹣2n.(Ⅱ)由(1)知.因为.所以n=5时,S n取得最大值25.点评:本题考查等差数列的通项公式和前n项和公式的运用,考查解方程组和二次函数的最值的求法,属于基础题.18.(12分)p:关于x的不等式x2+2ax+4>0,对一切x∈R恒成立.q:抛物线y2=4ax的焦点在(1,0)的左侧,若p或q为真,p且q为假,求实数a的取值范围.考点:复合的真假.专题:计算题;简易逻辑.分析:先分别求出p,q为真时实数a的取值范围,再由p或q为真,p且q为假,可知p 和q一真一假,从而解得.解答:解:设g(x)=x2+2ax+4,由于关于x的不等式x2+2ax+4>0对一切x∈R恒成立,故△=4a2﹣16<0,∴﹣2<a<2.又∵抛物线y2=4ax的焦点在(1,0)的左侧,∴a<1.a≠0.又由于p或q为真,p且q为假,可知p和q一真一假.(1)若p真q假,则∴1≤a<2;或a=0.(2)若p假q真,则∴a≤﹣2.综上可知,所求实数a的取值范围为1≤a<2,或a≤﹣2.或a=0.点评:本题考查了复合的真假性的应用,属于基础题.19.(12分)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且b=2csinB(1)求角C的大小;(2)若c2=(a﹣b)2+6,求△ABC的面积.考点:余弦定理;正弦定理.专题:解三角形.分析:(1)已知等式利用正弦定理化简,根据sinB不为0求出sinC的值,由C为锐角求出C的度数即可;(2)利用余弦定理列出关系式,把cosC的值代入并利用完全平方公式变形,结合已知等式求出ab的值,再由sinC的值,利用三角形面积公式求出三角形ABC面积即可.解答:解:(1)由正弦定理==,及b=2csinB,得:sinB=2sinCsinB,∵sinB≠0,∴sinC=,∵C为锐角,∴C=60°;(2)由余弦定理得:c2=a2+b2﹣2abcosC=a2+b2﹣ab=(a﹣b)2+ab,∵c2=(a﹣b)2+6,∴ab=6,则S△ABC=absinC=.点评:此题考查了正弦、余弦定理,三角形面积公式,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.20.(12分)汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素.某市的一条道路在一个限速为40km/h的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相撞了.事后现场勘查测得甲车刹车距离刚好12m,乙车刹车距离略超过10m.又知甲、乙两种车型的刹车距离S(m)与车速x(km/h)之间分别有如下关系:S甲=0.1x+0.01x2,S乙=0.05x+0.005x2.问:甲、乙两车有无超速现象?考点:函数模型的选择与应用.专题:函数的性质及应用.分析:由题意列出不等式组,分别求解两种车型的事发前的车速,判断它们是不是超速行驶,即可得到结论.解答:解:由题意知,对于甲车,有0.1x+0.01x2=12.即x2+10x﹣1200=0,…(2分)解得x=30或x=﹣40(x=﹣40不符合实际意义,舍去).…(4分)这表明甲车的车速为30km/h.甲车车速不会超过限速40km/h.…(6分)对于乙车,有0.05x+0.005x2>10,即x2+10x﹣2000>0,…(8分)解得x>40或x<﹣50(x<﹣50不符合实际意义,舍去).…(10分)这表明乙车的车速超过40km/h,超过规定限速.…(12分)点评:本题的考点是函数模型的选择与应用,考查不等式模型的构建,考查利用数学知识解决实际问题.解题的关键是利用函数关系式构建不等式.21.(12分)已知函数f(x)=e x﹣2x(e为自然对数的底数)(1)求函数f(x)的单调区间(2)若存在使不等式f(x)<mx成立,求实数m的取值范围.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(Ⅰ)先求出函数的导数,令f′(x)=0,解得x=ln2,从而求出函数的单调区间;(Ⅱ)问题转化为求的最小值.令,通过求导得到函数g(x)的最小值,从而求出m的范围.解答:解:(Ⅰ)f′(x)=e x﹣2,令f′(x)=0,即e x﹣2=0,解得x=ln2,x∈(﹣∞,ln2)时,f′(x)<0,x∈(ln2,+∞)时,f′(x)>0,∴f(x)的单调递减区间为(﹣∞,ln2),单调递增区间为(ln2,+∞).(Ⅱ)由题意知使f(x)<mx成立,即使成立;所以的最小值.令,,所以g(x)在上单调递减,在上单调递增,则g(x)min=g(1)=e﹣2,所以m∈(e﹣2,+∞).点评:本题考查了函数的单调性,函数的最值问题,考查了导数的应用,考查转化思想,是一道中档题.22.(12分)已知圆C:x2+y2=3的半径等于椭圆E:+=1(a>b>0)的短半轴长,椭圆E的右焦点F在圆C内,且到直线l:y=x﹣的距离为﹣,点M是直线l与圆C的公共点,设直线l交椭圆E于不同的两点A(x1,y1),B(x2,y2).(Ⅰ)求椭圆E的方程;(Ⅱ)求证:|AF|﹣|BF|=|BM|﹣|AM|.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(Ⅰ)设点F(c,0)(c>0),由已知条件得,圆C的半径等于椭圆E的短半轴长,由此能求出椭圆方程.(Ⅱ)由圆心O到直线l的距离为,得,由已知条件推导出|AF|+|AM|=2,|BF|+|BM|=2,由此能证明|AF|﹣|BF|=|BM|﹣|AM|.解答:(Ⅰ)解:设点F(c,0)(c>0),则F到直线l的距离为,即,…(2分)因为F在圆C内,所以,故c=1;…(4分)因为圆C的半径等于椭圆E的短半轴长,所以b2=3,椭圆方程为.…(6分)(Ⅱ)证明:因为圆心O到直线l的距离为,所以直线l与圆C相切,M是切点,故△AOM为直角三角形,所以,又,得,…(7分),又,得,…(9分)所以|AF|+|AM|=2,同理可得|BF|+|BM|=2,…(11分)所以|AF|+|AM|=|BF|+|BM|,即|AF|﹣|BF|=|BM|﹣|AM|.…(12分)点评:本题考查椭圆方程的求法,考查两组线段差相等的证明,解题时要认真审题,注意点到直线的距离公式的合理运用.。
河南高二上学期期末数学试题(解析版) (2)
一、单选题1.若的展开式中的常数项为-20,则a =( ) 6a x x ⎛⎫+ ⎪⎝⎭A .2B .-2C .1D .-1 【答案】D【分析】由题意利用二项展开式的通项公式,求的展开式的常数项. 【详解】已知的展开式中的通项公式为:,令,求得:,6a x x ⎛⎫+ ⎪⎝⎭6621r r r r T C a x -+=⋅⋅620r -=3r =可得展开式的常数项为:,解得:. 63320C a ⋅-=1a =-故选:D.2.设某医院仓库中有10盒同样规格的X 光片,已知其中有5 盒、3盒、2盒依次是甲厂、乙厂、丙厂生产的.且甲、乙、丙三厂生产该种X 光片的次品率依次为,现从这10盒中任取一111,,101520盒,再从这盒中任取一张X 光片,则取得的X 光片是次品的概率为( )A .0.08B .0.1C .0.15D .0.2 【答案】A【分析】利用条件概率公式即可求解.【详解】以A 1,A 2,A 3分别表示取得的这盒X 光片是由甲厂、乙厂、丙厂生产的,B 表示取得的X 光片为次品,P =,P =,P =, ()1A 510()2A 310()3A 210P =,P =,P =; ()1|B A 110()2|B A 115()3|B A 120则由全概率公式,所求概率为P =P +P +P()B ()()11|A P B A ()()22|A P B A ()()33|A P B A =×+×+×=0.08. 510110310115210120故选:A3.的值等于0121834521C C C C ++⋯++A .7351B .7355C .7513D .7315【答案】D 【详解】原式等于,故选D.433344452122......7315C C C C C ++++==4.已知向量,向量,则向量在向量上的投影向量为( )()2a =12b ⎛= ⎝ a b A . B . C . D .)()(14⎛ ⎝【答案】A【分析】根据投影向量的公式求解即可【详解】在上投影向量 a b)212a b a b b b⋅=⋅===r r r r r r 故选:A5.曲率半径可用来描述曲线上某点处的弯曲变化程度,曲率半径越大则曲线在该点处的弯曲程度越小.已知椭圆:()上点处的曲率半径公式为C 22221x y a b+=0a b >>()00,P x y .若椭圆上所有点相应的曲率半径的最大值是最小值的8倍,则椭圆的离3222220044x y R a b a b ⎛⎫=+ ⎪⎝⎭C C 心率为( )A .BCD12【答案】C【分析】根据曲率半径的定义可判断何时曲率半径最大,合适曲率半径最小,再由题设可得基本量的关系,从而可求离心率.【详解】因为曲率半径越大则曲线在该点处的弯曲程度越小,故椭圆在处曲率半径最小,则,而椭圆在处曲率半径最大, (),0a ±2minb R a =()0,b ±则,因为,所以,所以,2max a R b =max min 8R R =228a b b a =⨯2a b =e =故选:C.6.已知抛物线的焦点为, 点为抛物线上一点,点,则的最小2:4C y x =F PC ()2,2A PA PF +值为 ( )A B .2 C D .3【答案】D【分析】求出抛物线C 的准线l 的方程,过A 作l 的垂线段,结合几何意义及抛物线定义即可得解.【详解】抛物线的准线l :,显然点A 在抛物线C 内,过A 作AM ⊥l 于M ,交抛2:4C y x ==1x -物线C 于P ,如图,在抛物线C 上任取不同于点P 的点,过作于点N ,连PF ,AN ,, P 'P 'P N l '⊥,P A P F ''由抛物线定义知,,||||||||||||||||||||PA PF PA PM AM AN P A P N P A P F ''''+=+=<<+=+于是得,即点P 是过A 作准线l 的垂线与抛物线C 的交点时,min (||||)||2(1)3PA PF AM +==--=取最小值,PA PF +所以的最小值为3.PA PF +故选:D7.中国空间站的主体结构包括天和核心舱、问天实验舱和梦天实验舱,假设空间站要安排甲,乙,丙,丁4名航天员开展实验,其中天和核心舱安排2人,问天实验舱与梦天实验舱各安排1人,则甲乙两人安排在同一个舱内的概率为( )A .B .C .D . 16141312【答案】A 【分析】分别求出所有的安排情况,再求甲乙两人安排在同一个舱内的情况,最后用古典概率公式可求解.【详解】从甲,乙,丙,丁4名航天员中任选两人去天和核心舱,剩下两人去剩下两个舱位,则有种可能,2242=62=12C A ⋅⨯要使得甲乙在同一个舱内,由题意,甲乙只能同时在天和核心舱,在这种安排下,剩下两人去剩下两个舱位,则有种可能. 22=2A所以甲乙两人安排在同一个舱内的概率. 21126P ==故选:A 8.现要安排六名志愿者去四个不同的场馆参加活动,每名志愿者只能去一个场馆.且每个场馆最少安排一名志愿者,则不同的分配方法有( )A .种B .种 10201280C .种D .种15601680【答案】C【分析】先对志愿者进行分组,然后安排到四个场馆,由此计算出正确答案.【详解】根据题意,若名志愿者以形式分为四个服务小组,6"2,2,1,1"共有种分配方法; 22464422C C A 1080A ⨯=若名志愿者以形式分为四个服务小组,6"3,1,1,1"共有种分配方法.3464C A 480⨯=故共有种分配方法.10804801560+=故选:C9.已知圆,圆,,分别为圆和圆上的动221:2440C x y x y ++++=222:4210C x y x y +-++=M N 1C 2C 点,为直线上的动点,则的最小值为( )P :2l y x =+MP NP+A .B . CD333-3【答案】A【解析】分析圆与圆的圆心和半径,求出与圆关于直线对称的圆,再设圆上的点1C 2C 1C l C 'C '与圆上点对称,分析可得原问题可以转化为到圆和圆上的动点距离之和最小值问M '1C M P C '2C 题,据此分析可得答案.【详解】圆,即,圆心为,半径, 221:2440C x y x y ++++=()()22121x y +++=()1,2--1R =圆,即,圆心为,半径, 222:4210C x y x y +-++=()()22214x y -++=()2,1-2r =设点关于直线对称的点为()1,2--:2l y x =+(),a b 则 ,解得:, 21121222b a b a +⎧=-⎪⎪+⎨--⎪=+⎪⎩41a b =-⎧⎨=⎩圆关于直线对称的圆为圆,其圆心为,半径,则其方程为1C :2l y x =+C '()4,1-1R '=, ()()22411x y ++-=设圆上的点与圆上点对称,则有,C 'M '1C M PM PM '=原问题可以转化为到圆和圆上的动点距离之和最小值问题,P C '2C连接,与直线交于点,此时点是满足最小的点,2C C 'l P P PN PM '+此时,即的最小值为,233PN PM C C ''+=-=MP NP +3故选:A .【点睛】关键点点睛:本题考查直线与圆的位置关系,涉及圆与圆关于直线的对称问题,解答本题的关键是求出圆直线对称的圆的方程,原问题可以转化为到圆1C :2l y x =+()()22411x y ++-=P 和圆上的动点距离之和最小值问题.C '2C 10.为排查新型冠状病毒肺炎患者,需要进行核酸检测.现有两种检测方式:(1)逐份检测;(2)混合检测:将其中k 份核酸分别取样混合在一起检测,若检测结果为阴性,则这k 份核酸全为阴性,因而这k 份核酸只要检一次就够了,如果检测结果为阳性,为了明确这k 份核酸样本究竟哪几份为阳性,就需要对这k 份核酸再逐份检测,此时,这k 份核酸的检测次数总共为次.假1k +设在接受检测的核酸样本中,每份样本的检测结果是阴性还是阳性都是独立的,并且每份样本是阳性的概率都为,若,运用概率统计的知识判断下面哪个p 值能使得混合检测方式()01p p <<10k =优于逐份检测方式.(参考数据:)( )lg 0.7940.1≈-A .0.1B .0.3C .0.4D .0.5【答案】A【分析】计算混合检测方式,样本需要检测的总次数的期望,又逐份检测方式,样本需要Y ()E Y 检测的总次数,知,利用求解可得p 的范围,即可得出选项. X ()10E X =()()E Y E X <【详解】设混合检测方式,样本需要检测的总次数Y 可能取值为1,11.,, ()()1011P Y p ==-()()101111P Y p ==--故Y 的分布列为: Y1 11 P()101p -()1011p --()()()()10101011111111101E Y p p p ∴=⨯-+⨯--=-⨯⎦-⎡⎤⎣设逐份检测方式,样本需要检测的总次数X ,则()10E X =要使得混合检测方式优于逐份检测方式,需()()E Y E X <即,即,即 ()101110110p -⨯-<()101110p ->0.1011p -->又,lg 0.7940.1≈-,lg0.7941010.794p >=∴-,.0.79.140206p ∴=<-00.206p <<∴故选:A.二、多选题11.已知在直三棱柱中,底面是一个等腰直角三角形,且,E 、F 、G 、111ABC A B C -1AB BC BB ==M 分别为的中点.则( )1111B C A B AB BC ,,,A .与平面B .与所成角为 1GB 11ACC A 1AB 1BC 3πC .平面EFBD .平面⊥平面 1//A M 1AB C 1A MC 【答案】BCD【分析】建系,利用坐标法,根据线面角,线线角的向量求法可判断AB ,根据线面平行的判定定理可判断C ,利用线面垂直的判定定理先证平面,可得,再证平面BC ⊥11ABB A 1BC AB ⊥1AB ⊥,然后根据面面垂直的判定定理即得.1A BC 【详解】如图1,建立空间之间坐标系,设,则有:2AB =,()()()()()()110,2,00,0,02,0,00,1,02,0,20,0,2A B C G C B ,,,,, ∴,,,,,()10,1,2GB =- ()2,2,0AC =- ()10,0,2CC = ()12,0,2BC = ()10,2,2AB =- 设平面ACC 1A 1的法向量为(),,n x y z = 则有,令x =1,则, 122020n AC x y n CC z ⎧⋅=-=⎪⎨⋅==⎪⎩ ()1,1,0n =r 则,111cos ,n GB n GB n GB ⋅=== ∴与平面,A 错误; 1GB 11ACC A∵, 1111111cos ,2BC AB BC AB BC AB ⋅=== ∴AB 1与BC 1所成角的余弦值为,则夹角为,B 正确; 12π3如图2:连接,设,连接OF ,1EF BE B M ,,1BE B M O =E 、M 分别为的中点,则且,11B C BC ,1//B E BM 1B E BM =∴为平行四边形,则O 为的中点,1EMBB 1MB 又∵F 为的中点,则,11A B 1//OF A M平面EFB ,平面EFB ,OF ⊂1A M Ë∴平面EFB ,C 正确;1//A M 由题可知平面即为平面,1A MC 1A BC 由题意可得:,1BC AB BC BB ⊥⊥,又,平面, 1AB BB B Ç=AB ,1BB ⊂11ABB A ∴平面,BC ⊥11ABB A 平面,则,1AB ⊂11ABB A 1BC AB ⊥又∵为正方形,则,11ABB A 11A B AB ⊥又,平面,1BC A B B ⋂=,BC 1A B ⊂1A BC 所以平面,平面,1AB ⊥1A BC 1AB ⊂1AB C ∴平面⊥平面,即平面⊥平面,D 正确.1AB C 1A BC 1AB C 1A MC 故选:BCD .12.月光石不能频繁遇水,因为其主要成分是钾钠硅酸盐.一块斯里兰卡月光石的截面可近似看成由半圆和半椭圆组成,如图所示,在平面直角坐标系,半圆的圆心在坐标原点,半圆所在的圆过椭圆的右焦点,椭圆的短轴与半圆的直径重合.若直线与半圆交于点A ,与半椭圆()3,0F ()0y t t =>交于点B ,则下列结论正确的是( )A B .点关于直线的对称点在半圆上 F 12y x =C .面积的最大值是 ABF △)914D .线段AB 长度的取值范围是(0,3+【答案】ACD【分析】由题意可求出半圆和椭圆的方程,即可求得椭圆离心率,判断A ;求出关于直线F的对称点即可判断B ;设坐标,表示出面积,利用基本不等式求得其最大值,12y x =,A B ABF △判断C ;结合半圆的半径以及椭圆的长半轴长,可确定线段AB 长度的取值范围,判断D ;【详解】由题意得半圆的方程为,()22+90x y x =≤设椭圆的方程为, ()222210,0x y a b x a b+=>>≥所以 ,所以, 33b c =⎧⎨=⎩218a =a =所以椭圆的方程为. ()2210189x y x +=≥A .椭圆的离心率是,故A 正确; c e a ===B .设关于直线的对称点为, ()3,0F 12y x =(),m n 可得且, 23n m =--113222m n +=⨯解得,即对称点为, 912,55m n ==912,55⎛⎫ ⎪⎝⎭因为半圆的方程为,()22+90x y x =≤所以对称点为不在半圆上,故B 错误; 912,55⎛⎫ ⎪⎝⎭C .由题得面积, ABF △1||2S AB t =⨯设,())22111,,9,03A x t x t x t ∴+=∴=<<设 ()22222,,1,189x t B x t x ∴+=∴所以,||AB =所以12S t t =⨯=,当且仅当时等号成立,故C 正确; )914≤=t =D .当时,时,,0t →||3AB →+3t →||0AB →所以线段AB 长度的取值范围是,故D 正确;(0,3+故选:ACD.三、填空题13.已知双曲线的一条渐近线方程为,且其右焦点为,则双()2222:10,0x y C a b a b-=>>43y x =()5,0曲线的标准方程为__________.C 【答案】 221916x y -=【分析】依题意可得,,即可求出、的值,从而得解. 43b a =5c =a b 【详解】双曲线的渐近线方程为, ()2222:10,0x y C a b a b-=>>43y x =可得,其右焦点为,可得,又, 43b a =()5,05c =222c a b =+解得,,3a =4b =则双曲线的方程为:. C 221916x y -=故答案为:. 221916x y -=14.如图,一个三棱柱形容器中盛有水,且侧棱.若侧面AA 1B 1B 水平放置时,液面恰好过112AA =AC ,BC ,A 1C 1,B 1C 1的中点.当底面ABC 水平放置时,液面高为__________.【答案】9【分析】先根据条件将水的实际体积算出,再根据棱柱的体积公式即可算出当底面ABC 水平放置时,液面高度.【详解】设的面积为x ,底面ABC 水平放置时,液面高为hABC A 则水的体积为 1121294V x x x =-⨯=当底面ABC 水平放置时,水的体积为,解得9V x h x =⋅=9h =故答案为:9 15.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取两瓶,若取的两瓶中有一瓶是蓝色,则另一瓶是红色或黑色的概率为____________.【答案】 67【分析】设事件为“一瓶是蓝色”,事件为“另一瓶是红色”,事件为“另一瓶是黑色”,事件A B C D为“另一瓶是红色或黑色”,可得,利用条件概率公式可求得所求事件的概率.D B C =⋃【详解】设事件为“一瓶是蓝色”,事件为“另一瓶是红色”,事件为“另一瓶是黑色”,事件A B C D 为“另一瓶是红色或黑色”,则,且与互斥,D B C =⋃B C 又,,, ()11223225710C C C P A C +==()122515C P AB C ==()11222525C C P AC C ==故. ()()()()()()()()()67P AB P AC P D A P B C A P B A P C A P A P A =⋃=+=+=故答案为:. 67【点睛】方法点睛:求条件概率的常用方法: (1);()()()P AB P B A P A =(2);()()()n AB P B A n A =(3)转化为古典概型求解.四、双空题16.已知的展开式中前三项的二项式系数之和为46,_____;展开式中系数()2nn x *⎫+∈⎪⎭N n =最大的项________. 【答案】 9925376x -【分析】由题意得:,得,又二项式的展开式通项为:()0121C C C 1462n n n n n n -++=++=9n =,得即可解决. 9192C rrrr T x -+⎛⎫=⋅⋅ ⎪⎝⎭11991199C 2C 2C 2C 2r r r r r r r r --++⎧⋅≥⋅⎨⋅≥⋅⎩【详解】由题意得:,解得:或,()0121C C C 1462n n n n n n -++=++=9n=10-因为,n *∈N 所以(舍去),从而, 10n =-9n =因为二项式的展开式通项为:, 9192C rrrr T x -+⎛⎫=⋅⋅ ⎪⎝⎭所以系数为,要求其最大值,9C 2rr⋅所以只要满足,即, 11991199C 2C 2C 2C 2r r r r r r r r --++⎧⋅≥⋅⎨⋅≥⋅⎩()()()()()()119!9!22!9!1!10!9!9!22!9!1!8!r r r r r r r r r r r r -+⎧⋅≥⋅⎪---⎪⎨⎪⋅≥⋅⎪-+-⎩解得:, 172033r ≤≤因为, r ∈N 所以,6r =所以系数最大项为69362792C 5376T x x -⎛⎫== ⎪⎝⎭故答案为:9;925376x -五、解答题17.在平面直角坐标系中,已知圆:.xOy C 22(1)(2)9x y ++-=(1)若直线:恒过圆内一定点,求过点的最短弦所在直线的方程; l 10kx y k -+-=C M M (2)从圆外一点向圆引一条切线,切点为,且有,求的最小值. C ()11,P x y C Q PQ PO=PQ 【答案】(1); 210x y --=【分析】(1)首先求出直线所过定点,然后分析出最短弦与垂直,求出斜率,写出直l ()1,1M CM 线即可;(2)根据题意得到,即,即,化简22||9PQ PC =-22||9PO PC =-22221111(1)(2)9x y x y +=++--得到的轨迹方程为,求出点到上述直线的距离即为 最小值. P 220x y --=O PO 【详解】(1)直线的方程变形为,l ()()110k x y -+-=令,解得,1010x y -=⎧⎨-=⎩11x y =⎧⎨=⎩所以无论取何值,直线过定点, k l ()1,1M 又因为圆的圆心,C ()1,2C -因为过点的最短弦与垂直,且直线CM 的斜率, M CM 211112CM k -==---所以最短弦所在直线的斜率为,2故最短弦的直线方程为,即;()121y x -=-210x y --=(2)由于,2222||||9PC PQ r PQ =+=+所以,22||9PQ PC =-又,PQ PO =所以,22||9PO PC =-所以,化简得,22221111(1)(2)9x y x y +=++--11220x y --=所以点的轨迹方程为, P 220x y --=因为,PQ PO =所以取得最小值,即取得最小值, PQ PO点到直线的距离 O 220x y --=d即的最小值为.PQ 18.甲,乙,丙三名同学相约一起打乒乓球,已知丙与甲,乙比赛,丙每局获胜的概率分别为,23,每局比赛的结果互不影响,若乙,丙采用“三局两胜制”进行比赛,丙获胜的概率为()01p p <<. 295p (1)求的值;p (2)在甲,乙两名同学中用抽签法随机选择一名同学与丙进行一局比赛,求丙获胜的概率.【答案】(1)35(2) 1930【分析】(1)分情况,丙获胜有两种可能:丙前两局连胜,或者前两局乙,丙各胜一局且第三局丙胜,再根据独立事件的概率公式及互斥事件的概率公式计算可得; (2)根据全概率公式计算可得.【详解】(1)由题知,乙,丙进行比赛,丙每局获胜的概率为,若乙,丙采用“三局两()01p p <<胜制”进行比赛,丙获胜有两种可能:丙前两局连胜,概率为;或者前两局乙,丙各胜一局21=p p 且第三局丙胜,概率为,所以丙获胜的概率为,计算得1222(1)p p p =-C 2122C (1)p p p +-=295p p =. 35(2)设事件为:甲与丙进行比赛,事件为:乙与丙进行比赛,事件为:丙比赛获胜,则1A 2A B ,,,,所以()112P A =()212P A =()123P A B =()235P A B =.()()()()()1122121319==232530P B P A P B A P A P B A =+⨯+⨯19.甲、乙两名工人加工同一种零件,两人每天加工的零件数相同,所得次品数分别为,,且X Y 和的分布列如下表:X YX 0 1 2P 35 110 310Y 012P1231015试对这两名工人的技术水平进行比较. 【答案】乙的技术更稳定.【分析】根据分布列分别求甲和乙的期望和方差,再进行比较. 【详解】【解】工人甲生产出次品数的均值和方差分别为 X ,()3130120.751010E X =⨯+⨯+⨯=.()()()()22231300.710.720.70.8151010D X =-⨯+-⨯+-⨯=工人乙生产出次品数的均值和方差分别为 Y ,()1310120.72105E Y =⨯+⨯+⨯=.()()()()22213100.710.720.70.612105D Y =-⨯+-⨯+-⨯=由知,两人生产出次品的平均数相同,技术水平相当,但,可见乙的技()()E X E Y =()()D X Y D >术更稳定.20.如图,在四棱锥中,平面平面,是P ABCD -PAD ⊥,2,4,ABCD PA AD BD AB ====BD的平分线,且.ADC ∠BD BC ⊥(1)若点为棱的中点,证明:平面;E PC BE A PAD (2)已知二面角的大小为,求平面和平面的夹角的余弦值. P AB D --60 PBD PCD 【答案】(1)证明见解析.(2). 35【分析】(1)延长交于点,连接,证明即可;,CB DA F PF BE PF ∥(2)以的中点为为原点 ,建立空间直角坐标系,用向量法解决问题.AD O 【详解】(1)延长交于点,连接, ,CB DA F PF 在中,CDF A 是的平分线,且, BD Q ADC ∠BD BC ⊥是等腰三角形,点是的中点,∴CDF A B CF 又是的中点,E PC ,BE PF ∴∥又平面平面,PF ⊂,PAD BE ⊄PAD 直线平面.∴BE A PAD(2)在中,, ABD △2,4,AD BD AB ===则,即,90BAD ∠=BA AD ⊥由已知得, 60,8BDC BDA CD ∠∠=== 又平面平面平面 PAD ⊥,ABCD BA ⊂ABCD 所以平面,即,BA ⊥PAD BA PA ⊥所以以为二面角的平面角,PAD ∠P AB D --所以,60PAD ∠= 又,所以为正三角形,2PA AD ==PAD A 取的中点为,连,则平面 AD O OP ,OP AD OP ⊥⊥,ABCD 如图建立空间直角坐标系,则,()()()()(1,0,0,1,,5,,1,0,0,A B C D P --所以,(()(),2,,4,DP BD DC ==--=- 设分别为平面和平面的法向量,则()()111222,,,,,m x y z n x y z ==PBD PCD ,即,取,则,00m DP m BD ⎧⋅=⎨⋅=⎩1111020x x ⎧+=⎪⎨--=⎪⎩11y =-)1,1m =-- ,即,取,则,00n DP n DC ⎧⋅=⎨⋅=⎩2222040x x ⎧=⎪⎨-+=⎪⎩21y=)1n =- 所以.3cos ,5m n m n m n ⋅==⋅则平面和平面所成夹角的余弦值为.PBD PCD 3521.甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪80元,每单抽成4元;乙公司无底薪,40单以内(含40单)的部分每单抽成6元,超出40单的部分每单抽成7元,假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其50天的送餐单数,得到如下频数表: 甲公司送餐员送餐单数频数表: 送餐单数 38 39 40 41 42 天数 101510105乙公司送餐员送餐单数频数表:送餐单数 38 39 40 41 42 天数 51010205若将频率视为概率,回答下列两个问题:(1)记乙公司送餐员日工资为(单位:元),求的分布列和数学期望;X X (2)小王打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为小王作出选择,并说明理由.【答案】(1)详见解析;(2)推荐小王去乙公司应聘,理由见解析.【解析】(1)本题首先可以设乙公司送餐员送餐单数为,然后依次求出、、a 38a =39a =40a =、、时的工资以及概率,即可列出的分布列并求出数学期望;41a =42a =X p X (2)本题可求出甲公司送餐员日平均工资,然后与乙公司送餐员日平均工资进行对比,即可得出结果.【详解】(1)设乙公司送餐员送餐单数为, a 当时,,; 38a =386228X =⨯=515010p ==当时,,; 39a =396234X =⨯=101505p ==当时,,; 40a =406240X =⨯=101505p ==当时,,; 41a =40617247X =⨯+⨯=202505p ==当时,,, 42a =40627254X =⨯+⨯=515010p ==故的所有可能取值为、、、、, X 228234240247254故的分布列为:XX 228 234 240 247 254P 110 15 1525110故. 11121()228234240247254241.81055510E X =⨯+⨯+⨯+⨯+⨯=(2)甲公司送餐员日平均送餐单数为:,380.2390.3400.2410.2420.139.7⨯+⨯+⨯+⨯+⨯=则甲公司送餐员日平均工资为元,80439.7238.8+⨯=因为乙公司送餐员日平均工资为元,, 241.8238.8241.8<所以推荐小王去乙公司应聘. 【点睛】关键点点睛:(1)求分布列的关键是根据题意确定随机变量的所有可能取值和取每一个值时的概率,然后列成表格的形式后即可,(2)根据统计数据做出决策时,可根据实际情况从平均数、方差等的大小关系作出比较后得到结论.22.已知点,点M 是圆A :上任意一点,线段MB 的垂直平分线交半径MA()10B ,()22116x y ++=于点P ,当点M 在圆A 上运动时,记P 点的轨迹为E . (1)求轨迹E 的方程;(2)作轴,交轨迹E 于点Q (Q 点在x 轴的上方),直线与轨迹E 交于BQ x ⊥():,l x my n m n =+∈R C 、D (l 不过Q 点)两点,若CQ 和DQ 关于直线BQ 对称,试求m 的值.【答案】(1)22143x y +=(2) 2m =【分析】(1)利用椭圆定义即可求得轨迹E 的方程;(2)先将直线的方程与轨迹E 的方程联立,再利用设而不求的方法表示,进而得到l 0CQ DQ k k +=的关系式,从而求得m 的值.m n 、【详解】(1)圆的圆心,半径,()22:116A x y ++=()1,0A -4r =点为线段的垂直平分线与半径的交点,,P MB MA PM PB ∴=,42PA PB PA PM AM AB ∴+=+==>=点的轨迹是以、为焦点的椭圆,设其方程为,P ∴E A B ()222210x y a b a b +=>>则,,所以,,24a =22c =2a =1c =b =因此,轨迹的方程为.E 22143x y +=(2)设、,轴,点在轴的上方,()11,C x y ()22,D x y BQ x ⊥ Q x 将代入方程,可得,则, 1x =22143x y +=32y =±31,2Q ⎛⎫ ⎪⎝⎭联立可得, 223412x my n x y =+⎧⎨+=⎩()2223463120m y mny n +++-=,可得,()()222236123440m n m n ∆=-+->2234n m <+由韦达定可得,. 122634mn y y m +=-+212231234n y y m -=+因为、关于直线对称,则,CQ DQ BQ 0CQ DQ k k +=则,()()1212211233332201101122y y x y x y x x --⎛⎫⎛⎫+=⇒--+--= ⎪ ⎪--⎝⎭⎝⎭又,,11x my n =+22x my n =+则,()12123213302my y n m y y n ⎛⎫+--+-+= ⎪⎝⎭即, 222312362133034234n mn m n m n m m -⎛⎫⎛⎫⋅+--⋅--+= ⎪ ⎪++⎝⎭⎝⎭化简得: ,即()2328440m n m n +--+=()()23220m m n -+-=则或,2m =3220m n +-=当时,,3220m n +-=312n m =-此时,直线的方程为,l 331122x my m m y ⎛⎫=+-=-+ ⎪⎝⎭直线过点,不合题意.l 31,2Q ⎛⎫⎪⎝⎭综上所述,.2m =。
2016-2017学年高二上学期期末数学试卷(文科) Word版含解析
2016-2017学年高二上学期期末试卷(文科数学)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的.)1.△ABC的内角A,B,C的对边分别为a,b,c,若c=,b=,B=120°,则c等于()A.B.2 C.D.2.在△ABC中,已知a2=b2+c2+bc,则角A为()A.B.C.D.或3.在等比数列{an }中,a2=8,a5=64,则公比q为()A.2 B.3 C.4 D.84.设Sn 是等差数列{an}的前n项和,已知a2=3,a6=11,则S7等于()A.13 B.49 C.35 D.635.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.606.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是()A.B.C.D.7.如果等差数列{an }中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14 B.21 C.28 D.358.如图所示,程序据图(算法流程图)的输出结果为()A.B.C.D.9.在△ABC中,已知∠A=60°,AB:AC=8:5,面积为10,则AB=()A.8 B.6 C.5 D.1010.关于x的不等式x2+x+c>0的解集是全体实数的条件是()A.c<B.c≤C.c>D.c≥11.设变量x、y满足约束条件,则目标函数z=2x+y的最小值为()A.2 B.3 C.4 D.912.如图,测量河对岸的旗杆高AB时,选与旗杆底B在同一水平面内的两个测点C与D.测得∠BCD=75°,∠BDC=60°,CD=2米,并在点C测得旗杆顶A的仰角为60°,则旗杆高AB 为()A.10米B.2米C.米D.米二、填空题:(本大题共4小题,每小题5分,共20分.把答案填在题中横线上.)13.设集合,则A∩B= .14.在﹣1和7中间插入三个数,使得这五个数成单调递增的等差数列,则这三个数为.15.在单调递增的等比数列{an }中,a1•a9=64,a3+a7=20,求a11= .16.当x>﹣1时,函数y=x+的最小值是.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)若,c=5,求b.18.已知不等式ax2+bx﹣1<0的解集为{x|﹣1<x<2}.(1)计算a、b的值;(2)求解不等式x2﹣ax+b>0的解集.19.等比数列{an }中,已知a1=2,a4=16(Ⅰ)求数列{an}的通项公式;(Ⅱ)若a3,a5分别为等差数列{bn}的第3项和第5项,试求数列{bn}的通项公式及前n项和Sn.20.为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.41.6 0.5 1.8 0.62.1 1.1 2.5 1.2 2.7 0.5(Ⅰ)分别计算两种药的平均数,从计算结果看,哪种药的疗效更好?(Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?25.动物园要建造一个长方形虎笼,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36m长网的材料,当虎笼的长、宽各设计为多少时,可使虎笼面积最大?最大面积为多少?(2)若使虎笼的面积为32m2,则虎笼的长、宽各设计为多少时,可使围成虎笼所用的钢筋网总长最小?26.电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时的间频率分布表(时间单位为:分):将日将收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?2016-2017学年高二上学期期末试卷(文科数学)参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的.)1.△ABC的内角A,B,C的对边分别为a,b,c,若c=,b=,B=120°,则c等于()A.B.2 C.D.【考点】正弦定理.【分析】根据题意,由正弦定理可得=,变形可得c=•sinC,代入数据计算可得答案.【解答】解:根据题意,△ABC中,c=,b=,B=120°,由正弦定理可得: =,即c=•sinC=,即c=;故选:D.2.在△ABC中,已知a2=b2+c2+bc,则角A为()A.B.C.D.或【考点】余弦定理.【分析】根据余弦定理表示出cosA,然后把已知的等式代入即可求出cosA的值,由A的范围,根据特殊角的三角函数值即可得到A的度数.【解答】解:由a2=b2+c2+bc,则根据余弦定理得:cosA===﹣,因为A∈(0,π),所以A=.故选C3.在等比数列{an }中,a2=8,a5=64,则公比q为()A.2 B.3 C.4 D.8【考点】等比数列的通项公式.【分析】题目给出了a2=8,a5=64,直接利用等比数列的通项公式求解q.【解答】解:在等比数列{an }中,由,又a2=8,a5=64,所以,,所以,q=2.故选A.4.设Sn 是等差数列{an}的前n项和,已知a2=3,a6=11,则S7等于()A.13 B.49 C.35 D.63【考点】等差数列的前n项和.【分析】首先根据已知条件建立方程组求出首项与公差,进一步利用等差数列前n项和公式求出结果.【解答】解:等差数列{an }中,设首项为a1,公差为d,,解得:d=2,a1=1,所以:故选:B5.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.60【考点】频率分布直方图.【分析】由已知中的频率分布直方图,我们可以求出成绩低于60分的频率,结合已知中的低于60分的人数是15人,结合频数=频率×总体容量,即可得到总体容量. 【解答】解:∵成绩低于60分有第一、二组数据, 在频率分布直方图中,对应矩形的高分别为0.005,0.01, 每组数据的组距为20则成绩低于60分的频率P=(0.005+0.010)×20=0.3, 又∵低于60分的人数是15人,则该班的学生人数是=50.故选:B .6.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( )A .B .C .D .【考点】等可能事件的概率.【分析】从5个小球中选两个有C 52种方法,列举出取出的小球标注的数字之和为3或6的有{1,2},{1,5},{2,4}共3种,根据古典概型公式,代入数据,求出结果.本题也可以不用组合数而只通过列举得到事件总数和满足条件的事件数.【解答】解:随机取出2个小球得到的结果数有C 52=种取出的小球标注的数字之和为3或6的结果为{1,2},{1,5},{2,4}共3种,∴P=,故选A7.如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7=( ) A .14 B .21 C .28 D .35【考点】等差数列的性质;等差数列的前n 项和. 【分析】由等差数列的性质求解. 【解答】解:a 3+a 4+a 5=3a 4=12,a 4=4,∴a 1+a 2+…+a 7==7a 4=28故选C8.如图所示,程序据图(算法流程图)的输出结果为()A.B.C.D.【考点】程序框图.【分析】根据所给数值执行循环语句,然后判定是否满足判断框中的条件,一旦不满足条件就退出循环,从而到结论.【解答】解:由程序框图知,循环体被执行后S的值依次为:第1次S=0+,第2次S=+,第3次S=++,此时n=8不满足选择条件n<8,退出循环,故输出的结果是S=++=.故选C.9.在△ABC中,已知∠A=60°,AB:AC=8:5,面积为10,则AB=()A.8 B.6 C.5 D.10【考点】余弦定理;正弦定理.【分析】由已知可得:AC=AB,进而利用三角形面积公式即可计算得解AB的值.【解答】解:∵AB:AC=8:5,可得:AC=AB,又∵∠A=60°,面积为10=AB•AC•sinA=AB ×AB ×,∴解得:AB=8. 故选:A .10.关于x 的不等式x 2+x+c >0的解集是全体实数的条件是( )A .c <B .c ≤C .c >D .c ≥ 【考点】二次函数的性质.【分析】由判别式小于零,求得c 的范围.【解答】解:关于x 的不等式x 2+x+c >0的解集是全体实数的条件是判别式△=1﹣4c <0,解得 c >, 故选:C .11.设变量x 、y 满足约束条件,则目标函数z=2x+y 的最小值为( )A .2B .3C .4D .9【考点】简单线性规划的应用.【分析】本题主要考查线性规划的基本知识,先画出约束条件的可行域,再求出可行域中各角点的坐标,将各点坐标代入目标函数的解析式,分析后易得目标函数Z=2x+y 的最小值.【解答】解:设变量x 、y 满足约束条件,在坐标系中画出可行域△ABC ,A (2,0),B (1,1),C (3,3), 则目标函数z=2x+y 的最小值为3, 故选B12.如图,测量河对岸的旗杆高AB时,选与旗杆底B在同一水平面内的两个测点C与D.测得∠BCD=75°,∠BDC=60°,CD=2米,并在点C测得旗杆顶A的仰角为60°,则旗杆高AB 为()A.10米B.2米C.米D.米【考点】解三角形的实际应用.【分析】在△CBD中根据三角形的内角和定理,求出∠CBD=180°﹣∠BCD﹣∠BDC=45°,从而利用正弦定理求出BC.然后在Rt△ABC中,根据三角函数的定义加以计算,可得旗杆AB的高度.【解答】解:∵△BCD中,∠BCD=75°,∠BDC=60°,∴∠CBD=180°﹣∠BCD﹣∠BDC=45°,在△CBD中,CD=2米,根据正弦定理可得BC==米,∵Rt△ABC中,∠ACB=60°,∴AB=BC•tan∠ACB=•tan60°=3,即旗杆高,3米.故选:D.二、填空题:(本大题共4小题,每小题5分,共20分.把答案填在题中横线上.)13.设集合,则A∩B= (3,4).【考点】交集及其运算.【分析】先利用解分式不等式化简集合B,再根据两个集合的交集的意义求解A∩B.【解答】解:A={x|x>3},B={x|<0}={x|1<x<4},∴A∩B=(3,4),故答案为:(3,4).14.在﹣1和7中间插入三个数,使得这五个数成单调递增的等差数列,则这三个数为1,3,5 .【考点】等差数列的通项公式.【分析】设插入的三个数为a,b,c,则﹣1,a,b,c,7五个数成单调递增的等差数列,利用等差数列的性质能求出这三个数.【解答】解:在﹣1和7中间插入三个数,使得这五个数成单调递增的等差数列,设插入的三个数为a,b,c,则﹣1,a,b,c,7五个数成单调递增的等差数列,∴a1=﹣1,a5=﹣1+4d=7,解得d=2,∴a=﹣1+2=1,b=﹣1+2×2=3,c=﹣1+2×3=5,∴这三个数为1,3,5.故答案为:1,3,5.15.在单调递增的等比数列{an }中,a1•a9=64,a3+a7=20,求a11= 64 .【考点】等比数列的通项公式.【分析】由已知得a3,a7是方程x2﹣20x+64=0的两个根,且a3<a7,从而求出a3=4,a7=16,再由等比数列通项公式列方程组求出首项和公比,由此能求出a11.【解答】解:∵单调递增的等比数列{an}中,a 1•a9=64,a3+a7=20,∴a3•a7=a1•a9=64,∴a3,a7是方程x2﹣20x+64=0的两个根,且a3<a7,解方程x2﹣20x+64=0,得a3=4,a7=16,∴,解得,∴a 11=a 1q 10=2×()10=64.故答案为:64.16.当x >﹣1时,函数y=x+的最小值是 1 .【考点】基本不等式在最值问题中的应用. 【分析】变形利用基本不等式的性质即可得出. 【解答】解:∵x >﹣1,∴函数y=x+=(x+1)+﹣1≥﹣1=1,当且仅当x+1=,且x >﹣1,即x=0时等号成立,故函数y 的最小值为1. 故答案为:1.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.) 17.设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a=2bsinA (Ⅰ)求B 的大小;(Ⅱ)若,c=5,求b .【考点】正弦定理的应用;余弦定理的应用.【分析】(1)根据正弦定理将边的关系化为角的关系,然后即可求出角B 的正弦值,再由△ABC 为锐角三角形可得答案.(2)根据(1)中所求角B 的值,和余弦定理直接可求b 的值. 【解答】解:(Ⅰ)由a=2bsinA ,根据正弦定理得sinA=2sinBsinA ,所以,由△ABC 为锐角三角形得.(Ⅱ)根据余弦定理,得b 2=a 2+c 2﹣2accosB=27+25﹣45=7.所以,.18.已知不等式ax 2+bx ﹣1<0的解集为{x|﹣1<x <2}. (1)计算a 、b 的值;(2)求解不等式x 2﹣ax+b >0的解集. 【考点】一元二次不等式的解法.【分析】(1)根据不等式ax 2+bx ﹣1<0的解集,不等式与方程的关系求出a 、b 的值; (2)由(1)中a 、b 的值解对应不等式即可.【解答】解:(1)∵不等式ax 2+bx ﹣1<0的解集为{x|﹣1<x <2}, ∴方程ax 2+bx ﹣1=0的两个根为﹣1和2,将两个根代入方程中得,解得:a=,b=﹣;(2)由(1)得不等式为x 2﹣x ﹣>0, 即2x 2﹣x ﹣1>0,∵△=(﹣1)2﹣4×2×(﹣1)=9>0,∴方程2x 2﹣x ﹣1=0的两个实数根为:x 1=﹣,x 2=1;因而不等式x 2﹣x ﹣>0的解集是{x|x <﹣或x >1}.19.等比数列{a n }中,已知a 1=2,a 4=16 (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .【考点】等差数列与等比数列的综合.【分析】(I )由a 1=2,a 4=16直接求出公比q 再代入等比数列的通项公式即可.(Ⅱ)利用题中条件求出b 3=8,b 5=32,又由数列{b n }是等差数列求出.再代入求出通项公式及前n 项和S n .【解答】解:(I )设{a n }的公比为q 由已知得16=2q 3,解得q=2∴=2n(Ⅱ)由(I)得a3=8,a5=32,则b3=8,b5=32设{bn}的公差为d,则有解得.从而bn=﹣16+12(n﹣1)=12n﹣28所以数列{bn}的前n项和.20.为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.41.6 0.5 1.8 0.62.1 1.1 2.5 1.2 2.7 0.5(Ⅰ)分别计算两种药的平均数,从计算结果看,哪种药的疗效更好?(Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?【考点】众数、中位数、平均数;茎叶图.【分析】(Ⅰ)利用平均数的计算公式即可得出,据此即可判断出结论;(Ⅱ)利用已知数据和茎叶图的结构即可完成.【解答】解:(Ⅰ)设A药观测数据的平均数据的平均数为,设B药观测数据的平均数据的平均数为,则=×(0.6+1.2+2.7+1.5+2.8+1.8+2.2+2.3+3.2+3.5+2.5+2.6+1.2+2.7+1.5+2.9+3.0+3.1+2.3+2.4)=2.3.×(3.2+1.7+1.9+0.8+0.9+2.4+1.2+2.6+1.3+1.4+1.6+0.5+1.8+0.6+2.1+1.1+2.5+1.2+2.7+0.5)=1.6.由以上计算结果可知:.由此可看出A药的效果更好.(Ⅱ)根据两组数据得到下面茎叶图:从以上茎叶图可以看出,A药疗效的试验结果有的叶集中在2,3上.而B药疗效的试验结果由的叶集中在0,1上.由此可看出A药的疗效更好.25.动物园要建造一个长方形虎笼,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36m长网的材料,当虎笼的长、宽各设计为多少时,可使虎笼面积最大?最大面积为多少?(2)若使虎笼的面积为32m2,则虎笼的长、宽各设计为多少时,可使围成虎笼所用的钢筋网总长最小?【考点】基本不等式在最值问题中的应用.【分析】(1)设每间虎笼的长、宽,利用周长为36m,根据基本不等式,即可求得面积最大值时的长、宽;(2)设每间虎笼的长、宽,利用面积为32m2,根据周长的表达式,利用基本不等式,即可求得周长最小值时的长、宽.【解答】解:(1)设虎笼长为x m,宽为y m,则由条件,知x+2y=36.设每间虎笼的面积为S,则S=xy.由于x+2y≥2=2,∴2≤36,得xy≤162,即S≤162.当且仅当x=2y时等号成立.由解得故每间虎笼长为18 m,宽为9 m时,可使面积最大,面积最大为162m2.(2)由条件知S=xy=32.设钢筋网总长为l,则l=x+2y.∵x+2y≥2=2=16,∴l=x+2y≥48,当且仅当x=2y时,等号成立.由解得故每间虎笼长8m,宽4m时,可使钢筋网总长最小.26.电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时的间频率分布表(时间单位为:分):将日将收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?【考点】独立性检验.【分析】(I)根据所给的频率分布直方图得出数据列出列联表,再代入公式计算得出X方,与3.841比较即可得出结论;(II)由题意,列出所有的基本事件,计算出事件“任选3人,至少有1人是女性”包含的基本事件数,即可计算出概率.【解答】解:(I)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而2×2列联表如下:…3分将2×2列联表中的数据代入公式计算,得X2===≈3.03因为3.03<3.841,所以没有理由认为“体育迷”与性别有关…6分(II)由频率分布直方图知,“超级体育迷”为5人,从而一切可能结果所的基本事件空间为Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b 2),(b1,b2)}其中ai 表示男性,i=1,2,3,bi表示女性,i=1,2…9分Ω由10个基本事件组成,而且这些基本事件的出现是等可能的.用A表示事件“任选3人,至少有1人是女性”.则A={(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)}事件A有7个基本事件组成,因而P(A)=…12分。
2016-2017年河南省豫东三县联考高二第一学期数学期末试卷(文科)及 解析
一、选择题(共 12 题,每题 5 分,共 60 分.在每小题给出的四个选项中,只 有一个符合题目要求) 1. (5 分)已知 a<b<0,则下列不等式正确的是( A.a2<b2 B. C.2a<2b ) D.ab<b2 )
(1)求椭圆 C 的方程; (2)设直线 y=x+1 与椭圆 C 交于 A,B 两点,求 A,B 两点间的距离. 21. (12 分)设函数 f(x)=lnx﹣x (Ⅰ)求函数 f(x)的单调区间; (Ⅱ)求函数 y=f(x)的极值. 22. (12 分)已知 a>0,b>0 且 + =1, (1)求 ab 最小值; (2)求 a+b 的最小值.
D.p 假 q 假
4. (5 分)设变量 x、y 满足约束条件
,则目标函数 z=2x+y 的最小值为
( A.2
) B.3 C.4 ,b=4 ,则 B 等于( D.9 )
5. (5 分)在△ABC 中,A=60°,a=4 A.B=45°或 135° C.B=45°
B.B=135° D.以上答案都不对 )
=1 的焦点为 F1(﹣5,0) ,F2(5,0) ,则双曲线的
第 1 页(共 14 页)
渐近线方程为( A.3x±4y=0
) B.4x±3y=0 C.4x±5y=0 ) C. (0 , ) D. (0, ) 的 D.5x±4y=0
9. (5 分)函数 y=2x2 的焦点坐标为( A. ( ) B. (1,0)
10. (5 分)两个正数 1、9 的等差中项是 a,等比中项是 b,则曲线 离心率为( A. ) B. C. D. 与
11. (5 分)已知椭圆的长轴长是短轴长的 A. B.
河南省郑州市高二上学期期末数学试卷
河南省郑州市高二上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016高一下·南平期末) 不等式(x﹣3)(x+2)<0的解集为()A . (﹣3,2)B . (﹣2,3)C . [﹣3,2)D . (﹣∞,﹣2)∪(3,+∞)2. (2分) (2019高二下·哈尔滨月考) 命题“若 ,则且”的否命题为()A . 若 ,则且B . 若 ,则或C . 若 ,则且D . 若 ,则或3. (2分) (2016高一上·浦东期中) 设a,b∈R,ab≠0,给出下面四个命题:①a2+b2≥﹣2ab;②≥2;③若a<b,则ac2<bc2;④若.则a>b;其中真命题有()A . 1B . 2C . 3D . 44. (2分)若平面α、β的法向量分别为=(2,﹣3,5),=(﹣3,1,﹣4),则()A . α∥βB . α⊥βC . α、β相交但不垂直D . 以上均不正确5. (2分)对于常数、,“”是“方程的曲线是椭圆”的()A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件6. (2分) (2018高二上·临汾月考) 圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为()A .B .C .D .7. (2分)(2014·辽宁理) 已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A . 若m∥α,n∥α,则m∥nB . 若m⊥α,n⊂α,则m⊥nC . 若m⊥α,m⊥n,则n∥αD . 若m∥α,m⊥n,则n⊥α8. (2分) (2016高二上·右玉期中) 在正方体ABCD﹣A1B1C1D1中,M为DD1的中点,O为底面ABCD的中心,P为棱A1B1上任意一点,则直线OP与直线AM所成的角是()A .B .C .D .9. (2分)已知数列满足则的最小值为()A .B .C .D .10. (2分) (2016高一下·雅安期末) 在正方体ABCD﹣A1B1C1D1中,平面A1B1CD与平面ABCD所成二面角为()A .B .C .D .二、填空题 (共8题;共9分)11. (1分) (2018高二上·寻乌期末) 若,则________.12. (1分) (2016高二上·西湖期中) 如图,一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径相等,这时圆柱、圆锥、球的体积之比为________.13. (1分) (2019高一上·兴仁月考) 若,则 ________.14. (1分)已知三棱锥O﹣ABC,点G是△ABC的重心.设=,=,=,那么向量用基底{,,}可以表示为________15. (1分) (2017高三下·淄博开学考) 若某几何体的三视图如图所示,则此几何体的体积是________.16. (2分) (2017高一上·海淀期中) 已知△ABC是边长为2的正三角形,O、D分别为边AB、BC的中点,则① =________;②若,则x+y=________.17. (1分) (2017高二上·中山月考) 已知一个动圆与圆C:相内切,且过点A(4,0),则这个动圆圆心的轨迹方程是________.18. (1分)如图1,在矩形ABCD中,AB=2BC,E、F分别是AB、CD的中点,现在沿EF把这个矩形折成一个直二面角A﹣EF﹣C(如图2),则在图2中直线AF与平面EBCF所成的角的大小为________.三、解答题 (共4题;共20分)19. (5分)(2017·湖南模拟) 已知关于x的不等式|x﹣a|<b的解集为{x|2<x<4}.(Ⅰ)求实数a,b的值;(Ⅱ)设实数x,y,z 满足 + + =1,求x,y,z的最大值和最小值.20. (5分) (2017高三上·徐州期中) 设x,y均为正数,且x>y,求证:2(x﹣y﹣1)+ ≥1.21. (5分) (2017高二下·南昌期末) 如图,在三棱柱ABC﹣A1B1C1中,底面△ABC是等边三角形,侧面AA1B1B 为正方形,且AA1⊥平面ABC,D为线段AB上的一点.(Ⅰ)若BC1∥平面A1CD,确定D的位置,并说明理由;(Ⅱ)在(Ⅰ)的条件下,求二面角A1D﹣C﹣BC1的余弦值.22. (5分)(2017·黑龙江模拟) 如图,在棱台ABC﹣FED中,△DEF与△ABC分别是棱长为1与2的正三角形,平面ABC⊥平面BCDE,四边形BCDE为直角梯形,BC⊥CD,CD=1,N为CE中点,.(Ⅰ)λ为何值时,MN∥平面ABC?(Ⅱ)在(Ⅰ)的条件下,求直线AN与平面BMN所成角的正弦值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共4题;共20分)19-1、20-1、21-1、第11 页共11 页。
2016-学年河南省郑州市高二期末数学试卷
2016-2017学年河南省郑州市高二(上)期末数学试卷(文科)(共18页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2016-2017学年河南省郑州市高二(上)期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)不等式>1的解集为()A.(﹣∞,1)B.(0,1)C.(1,+∞)D.(0,+∞)2.(5分)△ABC中,若a=1,b=2,sinA=,则sinB=()A.B.C.D.3.(5分)等比数列{a n}中,a2+a4=20,a3+a5=40,则a6=()A.16 B.32 C.64 D.1284.(5分)两座灯塔A和B与海洋观测站C的距离分别是akm和2akm,灯塔A在观测站C的北偏东20°,灯塔B在观测站C的南偏东70°,则灯塔A与灯塔B之间的距离为()A.akm B.2akm C.akm D.akm5.(5分)“a>b“是“a3>b3”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件6.(5分)函数f(x)=﹣x3+3x2+9x+a,x∈[﹣2,2]的最小值为﹣2,则f(x)的最大值为()A.25 B.23 C.21 D.207.(5分)等差数列{a n}的前n项和为S n,若a1000+a1018=2,则S2017=()A.1008 B.1009 C.2016 D.20178.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知a=2,c=4,cosA=,则b=()A.2B.2C.4 D.69.(5分)已知直线y=x+k与曲线y=e x相切,则k的值为()A.e B.2 C.1 D.010.(5分)过y2=4x的焦点作直线交抛物线于A,B两点,若O为坐标原点,则•=()A.﹣1 B.﹣2 C.﹣3 D.不确定11.(5分)在△ABC中,若BC=2,A=60°,则•有()A.最大值﹣2 B.最小值﹣2 C.最大值2D.最小值2 12.(5分)圆O的半径为定长,A是平面上一定点,P是圆上任意一点,线段AP的垂直平分线l和直线OP相交于点Q,当点P在圆上运动时,点Q的轨迹为()A.一个点B.椭圆C.双曲线D.以上选项都有可能二、填空题:本大题共4小题,每小题5分,共20分)13.(5分)若命题P:∀x∈R,2x+x2>0,则¬P为.14.(5分)若x,y满足,则z=x+2y的取值范围为.15.(5分)数列{a n}满足a1=1,a2=2,且a n+2=(n∈N*),则a i=.16.(5分)已知F为双曲线C:﹣=1的左焦点,A(1,4),P是C右支上一点,当△APF周长最小时,点F到直线AP的距离为.三、解答题:本大题共6小题,共70分.解答写出文字说明、证明过程或演算过程.17.(10分)已知{a n}是等差数列,{b n}是等比数列,且b2=2,b3=4,a1=b1,a8=b4.(Ⅰ)求{a n}的通项公式;(Ⅱ)设c n=a n+b n,求数列{c n}的前n项和.18.(12分)在△ABC中,a,b,c分别为角A,B,C的对边,a2﹣c2=b2﹣,a=6,sinB=.(Ⅰ)求角A的正弦值;(Ⅱ)求△ABC的面积.19.(12分)已知p:函数f(x)=lg(x2﹣2x+a)的定义域为R;q:对任意实数x,不等式4x2+ax+1>0成立,若“p∨q”为真,“p∧q”为假,求实数a的取值范围.20.(12分)S n为数列{a n}的前n项和,已知a n>0,a n2+a n=2S n.(Ⅰ)求{a n}的通项公式;(Ⅱ)若b n=,求数列{b n}的前n项和T n.21.(12分)已知函数f(x)=lnx.(Ⅰ)y=kx与f(x)相切,求k的值;(Ⅱ)证明:当a≥1时,对任意x>0不等式f(x)≤ax+﹣1恒成立.22.(12分)在圆x2+y2=3上任取一动点P,过P作x轴的垂线PD,D为垂足,=动点M的轨迹为曲线C.(1)求C的方程及其离心率;(2)若直线l交曲线C交于A,B两点,且坐标原点到直线l的距离为,求△AOB面积的最大值.2016-2017学年河南省郑州市高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)不等式>1的解集为()A.(﹣∞,1)B.(0,1) C.(1,+∞)D.(0,+∞)【分析】不等式可化为x(x﹣1)<0,即可得到不等式>1的解集.【解答】解:不等式可化为x(x﹣1)<0,∴0<x<1,∴不等式>1的解集为(0,1),故选B.【点评】本题考查不等式的解法,考查学生转化问题的能力,正确转化是关键.2.(5分)△ABC中,若a=1,b=2,sinA=,则sinB=()A.B.C.D.【分析】利用正弦定理求得sinB的值.【解答】解:△ABC中,若a=1,b=2,sinA=,则由正弦定理可得=,即=,∴sinB=,故选:A.【点评】本题主要考查正弦定理的应用,属于基础题.3.(5分)等比数列{a n}中,a2+a4=20,a3+a5=40,则a6=()A.16 B.32 C.64 D.128【分析】由等比数列通项公式列出方程组,求出首项和公差,由此能求出a6.【解答】解:∵等比数列{a n}中,a2+a4=20,a3+a5=40,∴,解得a=2,q=2,∴a6=2×25=64.故选:C.【点评】本题考查等比数列的第6项的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.4.(5分)两座灯塔A和B与海洋观测站C的距离分别是akm和2akm,灯塔A在观测站C的北偏东20°,灯塔B在观测站C的南偏东70°,则灯塔A与灯塔B之间的距离为()A.akm B.2akm C.akm D.akm【分析】先根据题意确定∠ACB的值,再由勾股定理可直接求得|AB|的值.【解答】解:根据题意,△ABC中,∠ACB=180°﹣20°﹣70°=90°∵AC=akm,BC=2akm,∴由勾股定理,得AB=akm,即灯塔A与灯塔B的距离为akm,故选:C.【点评】本题给出实际应用问题,求海洋上灯塔A与灯塔B的距离.着重考查了三角形内角和定理和运用勾股定理解三角形等知识,属于基础题.5.(5分)“a>b“是“a3>b3”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件【分析】根据不等式的性质结合充分条件和必要条件的定义进行判断.【解答】解:由a3>b3得a>b,则“a>b“是“a3>b3”的充要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,根据不等式的关系是解决本题的关键.比较基础.6.(5分)函数f(x)=﹣x3+3x2+9x+a,x∈[﹣2,2]的最小值为﹣2,则f (x)的最大值为()A.25 B.23 C.21 D.20【分析】先将f(x)的各极值与其端点的函数值比较,其中最大的一个就是最大值,最小的一个就是最小值,再根据条件求出a的值,最小值即可求得.【解答】解:求导函数可得f′(x)=﹣3x2+6x+9=﹣3(x+1)(x﹣3)令f′(x)=﹣3x2+6x+9=0,解得x=﹣1或3∵x∈[﹣2,﹣1)时,f′(x)<0,函数单调减,x∈(﹣1,2]时,f′(x)>0,函数单调增,∴函数在x=﹣1时,取得最小值,在x=﹣2或x=2时,函数取得最大值,∵f(﹣1)=﹣5+a=﹣2,∴a=3,∴f(﹣2)=2+a=5,f(2)=22+a=25,函数的最大值为25,故选:A.【点评】本题考查了利用导数求闭区间上函数的最值,解题的关键是利用导数工具,确定函数的最值,属于中档题.7.(5分)等差数列{a n}的前n项和为S n,若a1000+a1018=2,则S2017=()A.1008 B.1009 C.2016 D.2017【分析】由等差数列的性质得a1+a2017=2由此能求出结果【解答】解:∵等差数列{a n}的前n项和为S n,a1000+a1018=2,∴a1+a2017=2,∴S2017=(a1+a2017)=2017.故选:D【点评】本题考查等差数列的前2017项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.8.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知a=2,c=4,cosA=,则b=()A.2B.2C.4 D.6【分析】由已知利用余弦定理即可计算得解.【解答】解:∵a=2,c=4,cosA=,∴由余弦定理a2=b2+c2﹣2bccosA,可得:20=b2+16﹣2×,∴整理可得:3b2﹣16b﹣12=0,解得:b=6或﹣(舍去).故选:D.【点评】本题主要考查了余弦定理在解三角形中的应用,属于基础题.9.(5分)已知直线y=x+k与曲线y=e x相切,则k的值为()A.e B.2 C.1 D.0【分析】设切点为(x0,y0),求出切线斜率,利用切点在直线上,代入方程,即可得到结论.【解答】解:设切点为(x0,y0),则y0=e x0,∵y′=(e x)′=e x,∴切线斜率k=e x0,又点(x0,y0)在直线上,代入方程得y0=k+x0,即e x0=e x0 +x0,解得x0=0,k=1,故选:C.【点评】本题考查切线方程,考查导数的几何意义,考查学生的计算能力,属于中档题.10.(5分)过y2=4x的焦点作直线交抛物线于A,B两点,若O为坐标原点,则•=()A.﹣1 B.﹣2 C.﹣3 D.不确定【分析】可得出抛物线y2=4x的焦点为(1,0),并画出图形,根据题意可设AB的方程为x=ky+1,联立抛物线方程消去x便得到y2﹣4ky﹣4=0,从而得出y1y2=﹣4,然后可设,这样便可求出的值.【解答】解:抛物线y2=4x的焦点坐标为(1,0),如图:设直线AB的方程为x=ky+1,代入y2=4x 消去x得:y2﹣4ky﹣4=0;∴y1y2=﹣4;设,则:.故选C.【点评】考查抛物线的标准方程,过定点且斜率不为0的直线方程的设法,韦达定理,以及向量数量积的坐标运算.11.(5分)在△ABC中,若BC=2,A=60°,则•有()A.最大值﹣2 B.最小值﹣2 C.最大值2D.最小值2【分析】可先画出图形,根据BC=2,A=60°,对两边平方,进行数量积的运算即可得到,从而得出,这样便可求出,从而得出正确选项.【解答】解:如图,;∴,且BC=2,A=60°;∴;即;∴;∴有最小值﹣2.故选B.【点评】考查向量加法的几何意义,向量数量积的运算及计算公式,不等式a2+b2≥2ab的运用,以及不等式的性质.12.(5分)圆O的半径为定长,A是平面上一定点,P是圆上任意一点,线段AP的垂直平分线l和直线OP相交于点Q,当点P在圆上运动时,点Q的轨迹为()A.一个点B.椭圆C.双曲线D.以上选项都有可能【分析】结合双曲线的定义及圆与直线的相关性质,推导新的结论,熟练掌握双曲线的定义及圆与直线的性质是解决问题的关键.【解答】解:∵A为⊙O外一定点,P为⊙O上一动点线段AP的垂直平分线交直线OP于点Q,则QA=QP,则QA﹣QO=QP﹣QO=OP=R,即动点Q到两定点O、A的距离差为定值,根据双曲线的定义,可知点Q的轨迹是:以O,A为焦点,OP为实轴长的双曲线故选:C.【点评】双曲线是指与平面上两个定点的距离之差的绝对值为定值的点的轨迹,也可以定义为到定点与定直线的距离之比是一个大于1的常数的点之轨迹.二、填空题:本大题共4小题,每小题5分,共20分)13.(5分)若命题P:∀x∈R,2x+x2>0,则¬P为∃x0>0,2+x02≤0.【分析】根据全称命题的否定是特称命题即可得到结论.【解答】解:命题是全称命题,则¬p为:∃x0>0,2+x02≤0,故答案为:∃x0>0,2+x02≤0【点评】本题主要考查含有量词的命题的否定,比较基础.14.(5分)若x,y满足,则z=x+2y的取值范围为[0,].【分析】画出约束条件的可行域,利用目标函数的几何意义,求解范围即可.【解答】解:x,y满足,不是的可行域如图:z=x+2y化为:y=﹣+,当y=﹣+经过可行域的O时目标函数取得最小值,经过A时,目标函数取得最大值,由,可得A(,),则z=x+2y的最小值为:0;最大值为:=.则z=x+2y的取值范围为:[0,].故答案为:[0,].【点评】本题考查的知识点是简单线性规划的应用,其中利用角点法是解答线性规划类小题最常用的方法,一定要掌握.15.(5分)数列{a n}满足a1=1,a2=2,且a n+2=(n∈N*),则a i= 1.【分析】利用a1=1,a2=2,且a n+2=(n∈N*),可得a n+3=a n.即可得出.【解答】解:∵a1=1,a2=2,且a n+2=(n∈N*),∴a3==﹣3,a4==1,a5==2,…,∴a n=a n.+3则a i=33(a1+a2+a3)+a1=0+1=1.故答案为:1.【点评】本题考查了数列递推关系、数列的周期性,考查了推理能力与计算能力,属于中档题.16.(5分)已知F为双曲线C:﹣=1的左焦点,A(1,4),P是C右支上一点,当△APF周长最小时,点F到直线AP的距离为.【分析】设双曲线的右焦点为F′(4,0),由题意,A,P,F′共线时,△APF 周长最小,求出直线AP的方程,即可求出点F到直线AP的距离.【解答】解:设双曲线的右焦点为F′(4,0),由题意,A,P,F′共线时,△APF周长最小,直线AP的方程为y=(x﹣4),即4x+3y﹣16=0,∴点F到直线AP的距离为=,故答案为:【点评】本题考查双曲线的方程与性质,考查点到直线的距离公式,属于中档题.三、解答题:本大题共6小题,共70分.解答写出文字说明、证明过程或演算过程.17.(10分)已知{a n}是等差数列,{b n}是等比数列,且b2=2,b3=4,a1=b1,a8=b4.(Ⅰ)求{a n}的通项公式;(Ⅱ)设c n=a n+b n,求数列{c n}的前n项和.【分析】(I)利用等差数列与等比数列的通项公式即可得出.(II)利用等差数列与等比数列的求和公式即可得出.【解答】解:(Ⅰ)∵{b n}是等比数列,且b2=2,b3=4,∴q=2,b1=1.所∴a1=b1=1,a8=b4=23=8.∴8=1+7d,解得公差d=1.∴a n=1+(n﹣1)=n.(Ⅱ)由(I)可知:b n=2n﹣1,c n=a n+b n=n+2n﹣1.∴{c n}的前n项和=(1+2+…+n)+(1+2+22+…+2n﹣1)=+=+2n﹣1.【点评】本题考查了等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.18.(12分)在△ABC中,a,b,c分别为角A,B,C的对边,a2﹣c2=b2﹣,a=6,sinB=.(Ⅰ)求角A的正弦值;(Ⅱ)求△ABC的面积.【分析】(Ⅰ)由已知利用余弦定理可求cosA,进而利用同角三角函数基本关系式可求sinA的值.(Ⅱ)由已知利用正弦定理可求b的值,代入已知可求c的值,利用三角形面积公式即可计算得解.【解答】(本题满分为12分)解:(Ⅰ)a2﹣c2=b2﹣,①可得cosA==,….(3分)所以sinA==.…..(6分)(Ⅱ)因为:asinB=bsinA,a=6,sinA=,sinB=,所以:解得b=8,…..(8分)因为:a=6,b=8,代入①,可得:c=10或,…..(10分)所以:S△ABC=bcsinA=24或.…..(12分)【点评】本题主要考查了余弦定理,同角三角函数基本关系式,正弦定理,三角形面积公式在解三角形中的应用,考查了转化思想,属于基础题.19.(12分)已知p:函数f(x)=lg(x2﹣2x+a)的定义域为R;q:对任意实数x,不等式4x2+ax+1>0成立,若“p∨q”为真,“p∧q”为假,求实数a的取值范围.【分析】若“p∨q”为真,“p∧q”为假,则p,q一真一假,进而可得实数a的取值范围.【解答】解:当P真时,f(x)=lg(x2﹣2x+a)的定义域为R,有△=4﹣4a<0,解得a>1.…..(2分)当q真时,对任意实数x,不等式4x2+ax+1>0成立,所以△=a2﹣16<0,解得﹣4<a<4 …..(4分)又因为“p∨q”为真,“p∧q”为假,所以p,q一真一假,…..(6分)当p真q假时,,解得a≥4…..(8分)当p假q真时,,解得:﹣4<a≤1…..(10分)所以实数a的取值范围是(﹣4,1]∪[4,+∞).…..(12分)【点评】本题以命题的真假判断与应用为载体,考查了复合命题,对数函数的图象和性质,不等式恒成立问题,难度中档.20.(12分)S n为数列{a n}的前n项和,已知a n>0,a n2+a n=2S n.(Ⅰ)求{a n}的通项公式;(Ⅱ)若b n=,求数列{b n}的前n项和T n.【分析】(I)利用递推关系、等差数列的通项公式即可得出.(II)b n===,利用“裂项求和”方法即可得出.【解答】解:(Ⅰ)∵a n2+a n=2S n,∴=2S n+1,两式子相减得:(a n+1+a n)(a n+1﹣a n)=a n+1+a n,∵a n>0,∴a n+1﹣a n=1,令n=1得=2S1=2a1,解得a1=1∴数列{a n}是首项为1,公差为1的等差数列,∴a n=1+(n﹣1)=n.(Ⅱ)∵b n===,∴T n=+++…++=﹣.【点评】本题考查了数列递推关系、等差数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.21.(12分)已知函数f(x)=lnx.(Ⅰ)y=kx与f(x)相切,求k的值;(Ⅱ)证明:当a≥1时,对任意x>0不等式f(x)≤ax+﹣1恒成立.【分析】(Ⅰ)求出函数的导数,设出切点坐标,求出k的值即可;(Ⅱ)问题转化为ax+﹣lnx≥1恒成立,当a≥1时,记h(x)=ax+﹣lnx,根据函数的单调性求出h(x)的最小值,从而证出结论即可.【解答】(Ⅰ)解:由f(x)=lnx,得:f′(x)=,设切点坐标为(x0,y0),则,解得:k=…..(5分)(Ⅱ)证明:只需证f(x)﹣g(x)≥1,即ax+﹣lnx≥1恒成立,当a≥1时,记h(x)=ax+﹣lnx,则在(0,+∞)上,h(x)≥1,h′(x)=,…..(9分)∵a≥1,x>0,∴ax+a﹣1>0,x∈(0,1)时,h′(x)<0,h(x)单调递减;x∈(1,+∞)时,h′(x)>0,h(x)单调递增∴h(x)min=h(1)=2a﹣1,∵a≥1,∴2a﹣1≥1,即h(x)≥1恒成立…..(12分)【点评】本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用,是一道中档题.22.(12分)在圆x2+y2=3上任取一动点P,过P作x轴的垂线PD,D为垂足,=动点M的轨迹为曲线C.(1)求C的方程及其离心率;(2)若直线l交曲线C交于A,B两点,且坐标原点到直线l的距离为,求△AOB面积的最大值.【分析】(1)由=得x0=x,y0=y,即可得到椭圆的方程及其离心率;(2)由于已知坐标原点O到直线l的距离为,故求△AOB面积的最大值的问题转化为求线段AB的最大值的问题,由弦长公式将其表示出来,再判断最值即可得到线段AB的最大值.【解答】解:(Ⅰ)设M(x,y),P(x0,y0),由=得x0=x,y0=y …..(2分)因为x02+y02=3,所以x2+3y2=3,即=1,其离心率e=.…..(4分)(Ⅱ)当AB与x轴垂直时,|AB|=.(5分)②当AB与x轴不垂直时,设直线AB的方程为y=kx+m,A(x1,y1),B(x2,y2),由已知,得.(6分)把y=kx+m代入椭圆方程,整理得(3k2+1)x2+6kmx+3m2﹣3=0,∴x1+x2=,x1x2=(7分)∴k≠0,|AB|2=(1+k2)(x2﹣x1)2=3+≤4,当且仅当9k2=,即k=时等号成立,此时|AB|=2.(10分)当k=0时,|AB|=.(11分)综上所述:|AB|max=2,此时△AOB 面积取最大值=(12分)【点评】本题考查直线与圆锥曲线的综合问题,解答本题关键是对直线AB的位置关系进行讨论,可能的最值来,本题由于要联立方程求弦长,故运算量比较大,又都是符号运算,极易出错,做题时要严谨认真.利用弦长公式求弦长,规律固定,因此此类题难度降低不少,因为有此固定规律,方法易找,只是运算量较大.21。
2016—2017学年郑州市下期期末考试高二数学(文)试题卷
2016—2017学年下期期末考试高二数学(文)试题卷第I 卷(选择题)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个答案中,只有一项是符合题目要求的) 1. 若复数1212,23z i z i =+=+,设12z z +的实部和虚部分别为,m n ,则m n +=( ) A. 8 B. 7 C. 6 D. 5 2. 下列变量是相关关系的是( )A. 正方体的棱长和体积B. 角的弧度和它的正弦值C. 日照时间与水稻的亩产量D. 人的身高和视力 3.(选修4—4:坐标系与参数方程)极坐标系中,2,3A π⎛⎫- ⎪⎝⎭对应的直角坐标为( )A. (1,B.)1- C. (- D. ()(选修4—5:不等式选讲)对于函数()()1,0f x x x x=--<,则有( ) A. ()min 2f x = B. ()max 2f x = C. ()min 2f x =- D. ()max 2f x =- 4. 下面对相关系数r 描述正确的是( ) A. 0r >表明两个变量负相关 B.1r >表明两个变量正相关C. r 只能大于零D. r 越接近0,两个变量相关关系越弱5. 2014年5月12日,国家统计局公布了《2013农民工监测调查报告》,报告显示:我国农民工收入持续快速增长. 某地区农民工人均月收入增长率如图1,并将人均月收入绘制成如图2的不完整的条形统计图.根据以上统计图来判断以下说法错误的是( ) A. 2013年农民工人均月收入的增长率为10% B. 小明看了统计图后说:“农民工2012年的人均月收入比2011年的少了” C. 2011年农民工人均月收入是2205元D. 2009年到2013年这五年中2013年农民工人均月收入最高6. 用反证法证明数学命题时首先应该做出与命题结论相矛盾的假设. 否定“自然数,,a b c 中恰有一个是偶数”时,正确的假设为( )A. 自然数,,a b c 都是奇数B. 自然数,,a b c 都是偶数C. 自然数,,a b c 中至少有两个偶数D. 自然数,,a b c 中至少有两个偶数或者都是奇数 7.(选修4—4:坐标系与参数方程)极坐标cos 4πρθ⎛⎫=-⎪⎝⎭表示的曲线是( ) A. 双曲线 B. 椭圆 C. 抛物线 D. 圆(选修4—5:不等式选讲)若关于x 的不等式1x x a +-<()a R ∈的解集为∅,则a 的取值范围是( ) A. 1a > B. 1a ≥ C. 1a < D. 1a ≤8. 已知复数23420172i i i i i z i+++++=+…,则复数z 的共轭复数z 在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 9. 六个面都是平行四边形的四棱柱称为平行六面体. 如图甲,在平行四边形ABCD 中,()22222AC BD AB AD +=+,那么在图乙中所示的平行六面体1111ABCD A B C D -中,22221111AC BD CA DB +++等于( )A. ()22212AB AD AA ++B. ()22213AB AD AA ++ C. ()22214AB AD AA ++ D. ()224AB AD + 10. 已知x 与y 之间的几组数据如下表:x1 2 3 4 5 6 y21334假设根据上表数据所得线性回归直线方程为ˆˆˆybx a =+. 若某同学根据上表中前两组数据()1,0和()2,2求得的直线方程为''y b x a =+,则以下结论正确的是( )A. ˆˆ','bb a a >> B. ˆˆ','b b a a >< C. ˆˆ','bb a a <> D. ˆˆ','b b a a << 11. 执行如图所示的程序框图后,输出的值为4,则p 的取值范围( )A.715816p <≤ B. 3748p <≤ C. 1516p > D. 715816p ≤< 12.设()21f x x bx c a=-+,不等式()0f x <的解集为()1,3-,若()()271f t f t +>+,则实数t 的取值范围是( )A. ()1,2-B. ()3,3-C. ()2,3D. ()1,3-第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分) 13. 若复数sin1cos1z i =︒+︒,则z = .14. 设正数,a b 不相等,则下面四个数2,2a b ab a b ++中,最小的是 . 15. 观察下列等式:231111222⨯=-⨯,2231411112223232⨯+⨯=-⨯⨯⨯,23141122232⨯+⨯⨯⨯ 33511134242+⨯=-⨯⨯,……由以上等式推测到一个一般的结论:对于*n N ∈,23141122232⨯+⨯⨯⨯+…()2112n n n n ++⨯=+ .16. 一名法官在审理一起珠宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”. 经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是 . 三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤)17. 已知关于复数z 的方程()230z i z m i -+++=有实根1z 和虚根22z i =+,求实数m 的和1z 的值.18. 共享单车进驻城市,绿色出行引领时尚. 某市有统计数据显示,2016年该市共享单车用户年龄登记分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示.若将共享单车用户按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用单车用户”,使用次数为5次或不足5次的称为“不常使用单车用户”.已知在“经常使用单车用户”中有56是“年轻人”.(I )现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,建立下列22⨯列联表:(II )根据上述列联表的独立性检验,判断能有多大把握可以认为经常使用共享单车与年龄有关?附独立性检验临界值表其中,()()()()()22n ad bc K a b c d a c c d -=++++,n a b c d =+++19. 选修4—4:坐标系与参数方程已知曲线()22281:211k x k C k y k ⎧=⎪+⎪⎨-⎪=⎪+⎩(k 为参数)和直线2cos :1sin x t l y t θθ=+⎧⎨=+⎩(t 为参数) (I )将曲线C 的方程化为普通方程;(II )设直线l 与曲线C 交于,A B 两点,且()2,1P 为弦AB 的中点,求弦AB 所在的直线方程. 选修4—5:不等式选讲已知函数()124f x x x =-+-.(I )求()f x 的最小值; (II )若()21f x a >-对任意的实数x 成立,求实数a 的范围.20. 某医学院读书协会欲研究昼夜温差大小与患感冒人数多少之间的关系,该协会分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下表所示数据.该协会确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.21. 选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为31x ty t=-⎧⎨=+⎩(t 为参数). 在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线:4C πρθ⎛⎫=-⎪⎝⎭. (I )求直线l 的普通方程和曲线C 的直角坐标方程; (II )求曲线C 上的点到直线l 的距离的最大值.选修4—5:不等式选讲 设函数()()820f x x x m m x=++->. (I )求证:()8f x ≥恒成立;(II )求使得不等式()110f >成立的实数m 的取值范围.22. 若正数,,a b c 满足1a b c ++=. (I )求ab bc ca ++的最大值;(II )求证:22212a b c b c c a a b ++≥+++.2016—2017学年度郑州市高中二年级数学(文科)下期期末考试参考答案 一、选择题:(本大题共12小题,每小题5分,共60分)1-5 ACADB 6-10 DDDCC 11-12 BB二、填空题:(本大题共4小题,每小题5分,共20分) 13.1; 14.2;aba b +15.()11;12nn -+16.乙. 三、解答题:(本大题共6小题,共70分,解答应写文字说明、证明过程或演算步骤) 17.解::将22z i =+代入方程2(3)0z i z m i -+++=得:2(2i)(3)(2i)0i m i +-++++=即34(55)m 0i i i +-+++=,解得2m =……5分设1()z a a R =∈,则2(3)20a i a i -+++=即2(32)(1)0aa a i -++-=,所以1a =…..10分18.解:(Ⅰ)建立使用共享单车与年龄的2×2列联表如下:…5分(II )由(Ⅰ)知:100,=20,=60,=20ab c d =,∴22200(100206020)1208016040K ⨯⨯-⨯=⨯⨯⨯≈2.083>2.072……10分即有85%的把握可以认为经常使用共享单车与年龄有关…12分 19.选修4-4:坐标系与参数方程解:(I )由221)1(2k k y +-=,得21212k y ++-=,即21212k y +=+…………2分又218k k x +=,两式相除得42+=y x k …4分代入218k k x +=,得x y xy x =+++⨯2)42(1428,整理得141622=+y x ,即为C 的普通方程……6分 (II )将⎩⎨⎧+=+=θθsin 1cos 2t y t x 代入141622=+y x , 整理得08)sin 8cos 4()cos sin 4(222=-+++t t θθθθ…7分由P 为AB 的中点,则224cos 8sin 04sin cos θθθθ+=+…9分 ∴0sin 2cos =+θθ,即21tan -=θ,故)2(211:--=-x y l AB……11分即221+-=x y ,所以所求的直线方程为042=-+y x …12分19.解:选修4-5:不等式选讲(I )因为53,1()3,1235,2x x f x x x x x -≤⎧⎪=--<<⎨⎪-≥⎩………3分所以当x =2时,min ()1f x =…………………6分(II )由题得min ()21f x a >-即121a >-,解得01a <<…………………12分20.解:(Ⅰ)由数据求得…2分分分 所以y 关于x 的线性回归方程为分 (Ⅱ)当10x =时,同样,当6x =时,所以,该协会所得线性回归方程是理想的.………12分 21.选修4-4:坐标系与参数方程 解: (I)由3,1,=-⎧⎨=+⎩x t y t 消去t 得40+-=x y ,所以直线l 的普通方程为40+-=x y ………3分由4⎛⎫=- ⎪⎝⎭πρθcos cos sin sin 2cos 2sin 44⎫=+=+⎪⎭ππθθθθ,得22cos 2sin =+ρρθρθ将222,cos ,sin =+==ρρθρθx y x y 代入上式,得曲线C 的直角坐标方程为2222+=+x y x y ,即()()22112-+-=x y ………6分(II) 设曲线C上的点为()1,1ααP ,则点P 到直线l的距离为d……8分当sin 14⎛⎫+=- ⎪⎝⎭πα时, max =d所以曲线C 上的点到直线l 的距离的最大值为…12分选修4-5:不等式选讲解:(Ⅰ)由0m >,有………3分,8282=⨯≥m m当且仅当82m m =时取等号. 所以()8f x ≥恒成立. …………6分(Ⅱ)()()811210m mf m =+->+, 当120m -<,即12m >时, ()()8811221m m m f m+--=+=, 由()110f >,得8210m m+>,化简得2540m m -+>,解得1m <或4m >,所以112m <<或4m >……9分当120m -≥,即102m <≤时, ()()88111222f m m m m=++-=+-, 由()110f >,得82210m m +->,此式在102m <≤时恒成立…11分 综上,实数m 的取值范围是()0,1(4,)+∞…12分22.解:(I )因为222ab c ab bc ca ++≥++……3分所以所以13ab bc ca ++≤, 即ab bc ca ++的最大值为13,当且仅当13a b c ===取等号…6分(II)因为2,4a b c a b c ++≥+……9分同理得24b c a b c a ++≥=+,24c a b c a b ++≥+.所以,三个式子相加得:2221.22a b c a b c b c c a a b ++++≥=+++……12 分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年河南省郑州市高二(上)期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)不等式>1的解集为()A.(﹣∞,1)B.(0,1)C.(1,+∞)D.(0,+∞)2.(5分)△ABC中,若a=1,b=2,sinA=,则sinB=()A.B.C.D.3.(5分)等比数列{a n}中,a2+a4=20,a3+a5=40,则a6=()A.16B.32C.64D.1284.(5分)两座灯塔A和B与海洋观测站C的距离分别是akm和2akm,灯塔A 在观测站C的北偏东20°,灯塔B在观测站C的南偏东70°,则灯塔A与灯塔B之间的距离为()A.akm B.2akm C.akm D.akm5.(5分)“a>b“是“a3>b3”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件6.(5分)函数f(x)=﹣x3+3x2+9x+a,x∈[﹣2,2]的最小值为﹣2,则f(x)的最大值为()A.25B.23C.21D.207.(5分)等差数列{a n}的前n项和为S n,若a1000+a1018=2,则S2017=()A.1008B.1009C.2016D.20178.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知a=2,c=4,cosA=,则b=()A.2B.2C.4D.69.(5分)已知直线y=x+k与曲线y=e x相切,则k的值为()A.e B.2C.1D.010.(5分)过y2=4x的焦点作直线交抛物线于A,B两点,若O为坐标原点,则•=()A.﹣1B.﹣2C.﹣3D.不确定11.(5分)在△ABC中,若BC=2,A=60°,则•有()A.最大值﹣2B.最小值﹣2C.最大值2D.最小值2 12.(5分)圆O的半径为定长,A是平面上一定点,P是圆上任意一点,线段AP的垂直平分线l和直线OP相交于点Q,当点P在圆上运动时,点Q的轨迹为()A.一个点B.椭圆C.双曲线D.以上选项都有可能二、填空题:本大题共4小题,每小题5分,共20分)13.(5分)若命题P:∀x∈R,2x+x2>0,则¬P为.14.(5分)若x,y满足,则z=x+2y的取值范围为.15.(5分)数列{a n}满足a1=1,a2=2,且a n+2=(n∈N*),则a i=.16.(5分)已知F为双曲线C:﹣=1的左焦点,A(1,4),P是C右支上一点,当△APF周长最小时,点F到直线AP的距离为.三、解答题:本大题共6小题,共70分.解答写出文字说明、证明过程或演算过程.17.(10分)已知{a n}是等差数列,{b n}是等比数列,且b2=2,b3=4,a1=b1,a8=b4.(Ⅰ)求{a n}的通项公式;(Ⅱ)设c n=a n+b n,求数列{c n}的前n项和.18.(12分)在△ABC中,a,b,c分别为角A,B,C的对边,a2﹣c2=b2﹣,a=6,sinB=.(Ⅰ)求角A的正弦值;(Ⅱ)求△ABC的面积.19.(12分)已知p:函数f(x)=lg(x2﹣2x+a)的定义域为R;q:对任意实数x,不等式4x2+ax+1>0成立,若“p∨q”为真,“p∧q”为假,求实数a的取值范围.20.(12分)S n为数列{a n}的前n项和,已知a n>0,a n2+a n=2S n.(Ⅰ)求{a n}的通项公式;(Ⅱ)若b n=,求数列{b n}的前n项和T n.21.(12分)已知函数f(x)=lnx.(Ⅰ)y=kx与f(x)相切,求k的值;(Ⅱ)证明:当a≥1时,对任意x>0不等式f(x)≤ax+﹣1恒成立.22.(12分)在圆x2+y2=3上任取一动点P,过P作x轴的垂线PD,D为垂足,=动点M的轨迹为曲线C.(1)求C的方程及其离心率;(2)若直线l交曲线C交于A,B两点,且坐标原点到直线l的距离为,求△AOB面积的最大值.2016-2017学年河南省郑州市高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)不等式>1的解集为()A.(﹣∞,1)B.(0,1)C.(1,+∞)D.(0,+∞)【分析】不等式可化为x(x﹣1)<0,即可得到不等式>1的解集.【解答】解:不等式可化为x(x﹣1)<0,∴0<x<1,∴不等式>1的解集为(0,1),故选:B.2.(5分)△ABC中,若a=1,b=2,sinA=,则sinB=()A.B.C.D.【分析】利用正弦定理求得sinB的值.【解答】解:△ABC中,若a=1,b=2,sinA=,则由正弦定理可得=,即=,∴sinB=,故选:A.3.(5分)等比数列{a n}中,a2+a4=20,a3+a5=40,则a6=()A.16B.32C.64D.128【分析】由等比数列通项公式列出方程组,求出首项和公差,由此能求出a6.【解答】解:∵等比数列{a n}中,a2+a4=20,a3+a5=40,∴,解得a=2,q=2,∴a6=2×25=64.故选:C.4.(5分)两座灯塔A和B与海洋观测站C的距离分别是akm和2akm,灯塔A 在观测站C的北偏东20°,灯塔B在观测站C的南偏东70°,则灯塔A与灯塔B之间的距离为()A.akm B.2akm C.akm D.akm【分析】先根据题意确定∠ACB的值,再由勾股定理可直接求得|AB|的值.【解答】解:根据题意,△ABC中,∠ACB=180°﹣20°﹣70°=90°∵AC=akm,BC=2akm,∴由勾股定理,得AB=akm,即灯塔A与灯塔B的距离为akm,故选:C.5.(5分)“a>b“是“a3>b3”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【分析】根据不等式的性质结合充分条件和必要条件的定义进行判断.【解答】解:由a3>b3得a>b,则“a>b“是“a3>b3”的充要条件,故选:A.6.(5分)函数f(x)=﹣x3+3x2+9x+a,x∈[﹣2,2]的最小值为﹣2,则f(x)的最大值为()A.25B.23C.21D.20【分析】先将f(x)的各极值与其端点的函数值比较,其中最大的一个就是最大值,最小的一个就是最小值,再根据条件求出a的值,最小值即可求得.【解答】解:求导函数可得f′(x)=﹣3x2+6x+9=﹣3(x+1)(x﹣3)令f′(x)=﹣3x2+6x+9=0,解得x=﹣1或3∵x∈[﹣2,﹣1)时,f′(x)<0,函数单调减,x∈(﹣1,2]时,f′(x)>0,函数单调增,∴函数在x=﹣1时,取得最小值,在x=﹣2或x=2时,函数取得最大值,∵f(﹣1)=﹣5+a=﹣2,∴a=3,∴f(﹣2)=2+a=5,f(2)=22+a=25,函数的最大值为25,故选:A.7.(5分)等差数列{a n}的前n项和为S n,若a1000+a1018=2,则S2017=()A.1008B.1009C.2016D.2017【分析】由等差数列的性质得a1+a2017=2由此能求出结果【解答】解:∵等差数列{a n}的前n项和为S n,a1000+a1018=2,∴a1+a2017=2,∴S2017=(a1+a2017)=2017.故选:D.8.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知a=2,c=4,cosA=,则b=()A.2B.2C.4D.6【分析】由已知利用余弦定理即可计算得解.【解答】解:∵a=2,c=4,cosA=,∴由余弦定理a2=b2+c2﹣2bccosA,可得:20=b2+16﹣2×,∴整理可得:3b2﹣16b﹣12=0,解得:b=6或﹣(舍去).故选:D.9.(5分)已知直线y=x+k与曲线y=e x相切,则k的值为()A.e B.2C.1D.0【分析】设切点为(x0,y0),求出切线斜率,利用切点在直线上,代入方程,即可得到结论.【解答】解:设切点为(x0,y0),则y0=e x0,∵y′=(e x)′=e x,∴切线斜率k=e x0,又点(x0,y0)在直线上,代入方程得y0=k+x0,即e x0=e x0 +x0,解得x0=0,k=1,故选:C.10.(5分)过y2=4x的焦点作直线交抛物线于A,B两点,若O为坐标原点,则•=()A.﹣1B.﹣2C.﹣3D.不确定【分析】可得出抛物线y2=4x的焦点为(1,0),并画出图形,根据题意可设AB 的方程为x=ky+1,联立抛物线方程消去x便得到y2﹣4ky﹣4=0,从而得出y1y2=﹣4,然后可设,这样便可求出的值.【解答】解:抛物线y2=4x的焦点坐标为(1,0),如图:设直线AB的方程为x=ky+1,代入y2=4x消去x得:y2﹣4ky﹣4=0;∴y1y2=﹣4;设,则:.故选:C.11.(5分)在△ABC中,若BC=2,A=60°,则•有()A.最大值﹣2B.最小值﹣2C.最大值2D.最小值2【分析】可先画出图形,根据BC=2,A=60°,对两边平方,进行数量积的运算即可得到,从而得出,这样便可求出,从而得出正确选项.【解答】解:如图,;∴,且BC=2,A=60°;∴;即;∴;∴有最小值﹣2.故选:B.12.(5分)圆O的半径为定长,A是平面上一定点,P是圆上任意一点,线段AP的垂直平分线l和直线OP相交于点Q,当点P在圆上运动时,点Q的轨迹为()A.一个点B.椭圆C.双曲线D.以上选项都有可能【分析】结合双曲线的定义及圆与直线的相关性质,推导新的结论,熟练掌握双曲线的定义及圆与直线的性质是解决问题的关键.【解答】解:∵A为⊙O外一定点,P为⊙O上一动点线段AP的垂直平分线交直线OP于点Q,则QA=QP,则QA﹣QO=QP﹣QO=OP=R,即动点Q到两定点O、A的距离差为定值,根据双曲线的定义,可知点Q的轨迹是:以O,A为焦点,OP为实轴长的双曲线故选:C.二、填空题:本大题共4小题,每小题5分,共20分)13.(5分)若命题P:∀x∈R,2x+x2>0,则¬P为∃x0∈R,2+x02≤0.【分析】根据全称命题的否定是特称命题即可得到结论.【解答】解:命题是全称命题,则¬p为:∃x0∈R,2+x02≤0,故答案为:∃x0∈R,2+x02≤014.(5分)若x,y满足,则z=x+2y的取值范围为[0,] .【分析】画出约束条件的可行域,利用目标函数的几何意义,求解范围即可.【解答】解:x,y满足,不是的可行域如图:z=x+2y化为:y=﹣+,当y=﹣+经过可行域的O时目标函数取得最小值,经过A时,目标函数取得最大值,由,可得A(,),则z=x+2y的最小值为:0;最大值为:=.则z=x+2y的取值范围为:[0,].故答案为:[0,].15.(5分)数列{a n}满足a1=1,a2=2,且a n+2=(n∈N*),则a i=1.【分析】利用a1=1,a2=2,且a n+2=(n∈N*),可得a n+3=a n.即可得出.【解答】解:∵a1=1,a2=2,且a n+2=(n∈N*),∴a3==﹣3,a4==1,a5==2,…,=a n.∴a n+3则a i=33(a1+a2+a3)+a1=0+1=1.故答案为:1.16.(5分)已知F为双曲线C:﹣=1的左焦点,A(1,4),P是C右支上一点,当△APF周长最小时,点F到直线AP的距离为.【分析】设双曲线的右焦点为F′(4,0),由题意,A,P,F′共线时,△APF周长最小,求出直线AP的方程,即可求出点F到直线AP的距离.【解答】解:设双曲线的右焦点为F′(4,0),由题意,A,P,F′共线时,△APF 周长最小,直线AP的方程为y=(x﹣4),即4x+3y﹣16=0,∴点F到直线AP的距离为=,故答案为:三、解答题:本大题共6小题,共70分.解答写出文字说明、证明过程或演算过程.17.(10分)已知{a n}是等差数列,{b n}是等比数列,且b2=2,b3=4,a1=b1,a8=b4.(Ⅰ)求{a n}的通项公式;(Ⅱ)设c n=a n+b n,求数列{c n}的前n项和.【分析】(I)利用等差数列与等比数列的通项公式即可得出.(II)利用等差数列与等比数列的求和公式即可得出.【解答】解:(Ⅰ)∵{b n}是等比数列,且b2=2,b3=4,∴q=2,b1=1.所∴a 1=b1=1,a8=b4=23=8.∴8=1+7d,解得公差d=1.∴a n=1+(n﹣1)=n.(Ⅱ)由(I)可知:b n=2n﹣1,c n=a n+b n=n+2n﹣1.∴{c n}的前n项和=(1+2+…+n)+(1+2+22+…+2n﹣1)=+=+2n﹣1.18.(12分)在△ABC中,a,b,c分别为角A,B,C的对边,a2﹣c2=b2﹣,a=6,sinB=.(Ⅰ)求角A的正弦值;(Ⅱ)求△ABC的面积.【分析】(Ⅰ)由已知利用余弦定理可求cosA,进而利用同角三角函数基本关系式可求sinA的值.(Ⅱ)由已知利用正弦定理可求b的值,代入已知可求c的值,利用三角形面积公式即可计算得解.【解答】(本题满分为12分)解:(Ⅰ)a2﹣c2=b2﹣,①可得cosA==,….(3分)所以sinA==.…..(6分)(Ⅱ)因为:asinB=bsinA,a=6,sinA=,sinB=,所以:解得b=8,…..(8分)因为:a=6,b=8,代入①,可得:c=10或,…..(10分)所以:S△ABC=bcsinA=24或.…..(12分)19.(12分)已知p:函数f(x)=lg(x2﹣2x+a)的定义域为R;q:对任意实数x,不等式4x2+ax+1>0成立,若“p∨q”为真,“p∧q”为假,求实数a的取值范围.【分析】若“p∨q”为真,“p∧q”为假,则p,q一真一假,进而可得实数a的取值范围.【解答】解:当P真时,f(x)=lg(x2﹣2x+a)的定义域为R,有△=4﹣4a<0,解得a>1.…..(2分)当q真时,对任意实数x,不等式4x2+ax+1>0成立,所以△=a2﹣16<0,解得﹣4<a<4 …..(4分)又因为“p∨q”为真,“p∧q”为假,所以p,q一真一假,…..(6分)当p真q假时,,解得a≥4…..(8分)当p假q真时,,解得:﹣4<a≤1…..(10分)所以实数a的取值范围是(﹣4,1]∪[4,+∞).…..(12分)20.(12分)S n为数列{a n}的前n项和,已知a n>0,a n2+a n=2S n.(Ⅰ)求{a n}的通项公式;(Ⅱ)若b n=,求数列{b n}的前n项和T n.【分析】(I)利用递推关系、等差数列的通项公式即可得出.(II)b n===,利用“裂项求和”方法即可得出.【解答】解:(Ⅰ)∵a n2+a n=2S n,∴=2S n+1,两式子相减得:(a n+1+a n)(a n+1﹣a n)=a n+1+a n,∵a n>0,∴a n+1﹣a n=1,令n=1得=2S1=2a1,解得a1=1∴数列{a n}是首项为1,公差为1的等差数列,∴a n=1+(n﹣1)=n.(Ⅱ)∵b n===,∴T n=+++…++=﹣.21.(12分)已知函数f(x)=lnx.(Ⅰ)y=kx与f(x)相切,求k的值;(Ⅱ)证明:当a≥1时,对任意x>0不等式f(x)≤ax+﹣1恒成立.【分析】(Ⅰ)求出函数的导数,设出切点坐标,求出k的值即可;(Ⅱ)问题转化为ax+﹣lnx≥1恒成立,当a≥1时,记h(x)=ax+﹣lnx,根据函数的单调性求出h(x)的最小值,从而证出结论即可.【解答】(Ⅰ)解:由f(x)=lnx,得:f′(x)=,设切点坐标为(x0,y0),则,解得:k=…..(5分)(Ⅱ)证明:只需证ax+﹣lnx≥1恒成立,当a≥1时,记h(x)=ax+﹣lnx,则在(0,+∞)上,h(x)≥1,h′(x)=,…..(9分)∵a≥1,x>0,∴ax+a﹣1>0,x∈(0,1)时,h′(x)<0,h(x)单调递减;x∈(1,+∞)时,h′(x)>0,h(x)单调递增∴h(x)min=h(1)=2a﹣1,∵a≥1,∴2a﹣1≥1,即h(x)≥1恒成立…..(12分)22.(12分)在圆x2+y2=3上任取一动点P,过P作x轴的垂线PD,D为垂足,=动点M的轨迹为曲线C.(1)求C的方程及其离心率;(2)若直线l交曲线C交于A,B两点,且坐标原点到直线l的距离为,求△AOB面积的最大值.【分析】(1)由=得x0=x,y0=y,即可得到椭圆的方程及其离心率;(2)由于已知坐标原点O到直线l的距离为,故求△AOB面积的最大值的问题转化为求线段AB的最大值的问题,由弦长公式将其表示出来,再判断最值即可得到线段AB的最大值.【解答】解:(Ⅰ)设M(x,y),P(x0,y0),由=得x0=x,y0=y …..(2分)因为x02+y02=3,所以x2+3y2=3,即=1,其离心率e=.…..(4分)(Ⅱ)当AB与x轴垂直时,|AB|=.(5分)②当AB与x轴不垂直时,设直线AB的方程为y=kx+m,A(x1,y1),B(x2,y2),由已知,得.(6分)把y=kx+m代入椭圆方程,整理得(3k2+1)x2+6kmx+3m2﹣3=0,∴x1+x2=,x1x2=(7分)∴k≠0,|AB|2=(1+k2)(x2﹣x1)2=3+≤4,当且仅当9k2=,即k=时等号成立,此时|AB|=2.(10分)当k=0时,|AB|=.(11分)综上所述:|AB|max=2,此时△AOB面积取最大值=(12分)赠送—高中数学知识点【1.3.1】单调性与最大(小)值 (1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作yxomax ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.。