高一必修一数学函数定义域值域专题训练图文稿
(word完整版)高一必修一数学函数的定义域、值域专题训练(打印版)(精)
函数定义域、值域专题教案与练习一、函数的定义域1函数定义域的求解方法求函数的定义域主要是通过解不等式(组)或方程来获得•一般地,我们约定:如果不加说明,所谓函数的定义域就是自变量使函数解析式有意义的实数的集合.(1 )若• 是整式,则定义域为全体实数.(2 )若是分式,则定义域为使分母不为零的全体实数. _(3 )若是偶次根式,则定义域为使被开方式为非负的全体实数.(4 )若为对数式,则定义域为真数大于零的全体实数。
(5 )若为复合函数,则定义域由复合的各基本的定义域所组成的不等式组确定•如:' 的定义域为,则复合函数的定义域应由不等式'••解出.(5 )由实际问题确定的函数,其定义域由自变量的实际意义确定.2•求函数定义域的常见问题:(1)若已知函数解析式比较复杂,求定义域时通常根据各种条件列不等式组求解;(2)由’' 的定义域,求复合函数'的问题,实际上是已知中间变量"一•豉吒的值域,求自变量的取值范围问题;(3 )对含有字母参数的函数,求其定义域时注意对字母参数的一切允许值分类讨论;(4)若是实际问题除应考虑解析式有意义外,还应使实际问题有意义.二、求函数的值域常用方法(1)观察法:通过对函数解析式的简单变形,利用熟知的基本函数值域求解;(2)单调性法:利用函数的单调性求解(3)换元法:通过对函数解析式进行适当换元,可以将复杂的函数化归为几个简单的函数, 从而利用基本函数的取值范围求函数的值域。
三、初等函数:指数函数、对数函数、幕函数的定义域、值域1.指数函数:儿以…:歸八朋 f,定义域:一:;;值域::2.对数函数:/:用―■吟fl二,定义域:淞轻产沁;值域: 宀 '3.幕函数:’'( ■,其定义域、值域随的取值而不同,但在’都有意义。
四、例题分析/(A) = ^2 X* I I f -—例1:求函数' ■'的定义域。
人教版高中数学必修一知识点与典型习题——第二部分-函数(含答案)
2015-2016高一上学期期末复习知识点与典型例题人教数学必修一 第二部分 函数1、函数的定义域、值域2、判断相同函数3、分段函数4、奇偶性5、单调性1.定义域 值域(最值) 1.函数()()3log 3f x x =++的定义域为____________________ 2.函数22()log (23)f x x x 的定义域是( )(A) [3,1] (B) (3,1) (C) (,3][1,)-∞-+∞ (D) (,3)(1,)-∞-+∞3.2()23,(1,3]f x x x x =-+∈-的值域为____________________ 4.若函数21()2f x x x a =-+的定义域和值域均为[1,](1)b b >,求a 、b 的值.2.函数相等步骤:1、看定义域是否相等; 2、看对应关系(解析式)能否化简到相同1.下列哪组是相同函数?2(1)(),()x f x x g x x ==(2)()()f x x g x ==,2(3)()2lg ,()lg f x x g x x ==(4)(),()f x x g x ==3.分段函数基本思路:分段讨论 (1)求值问题1.24(),(5)(1)4xx f x f f x x ⎧<==⎨-≥⎩已知函数则_______________ 2.设函数211()21x x f x x x⎧+≤⎪=⎨>⎪⎩,则=))3((f f ______________(2)解方程1.2log ,11(),()1,12x x f x f x x x >⎧==⎨-≤⎩已知函数则的解为_________________2.已知⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x = .(3)解不等式1.21,0(),()1,0x f x f x x x x ⎧>⎪=>⎨⎪≤⎩已知函数则的解集为__________________2.2log ,0(),()023,0x x f x f x x x >⎧=>⎨+≤⎩已知函数则的解集为__________________(4)作图、求取值范围(最值)1.24-x ,0()2,012,0x f x x x x ⎧>⎪==⎨⎪-<⎩已知函数.(1)作()f x 的图象;(2)求2(1)f a +,((3))f f 的值;(3)当43x -≤<,求()f x 的取值集合(5)应用题(列式、求最值)1.为方便旅客出行,某旅游点有50辆自行车供租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出去的自行车就增加3辆,为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得), (1)求函数f(x)的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?4.函数的单调性(1)根据图像判断函数的单调性——单调递增:图像上升 单调递减:图像下降 1.下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+ B.y =.1()2xy = D .1y x x=+2.下列函数中,在其定义域内为减函数的是( )A .3y x =- B .12y x = C .2y x = D .2log y x =(2)证明函数的单调性步骤——取值、作差12()()f x f x -、变形、定号、下结论 1.已知函数11()(0,0)f x a x a x=->>. (1)求证:()f x 在(0,)+∞上是单调递增函数;(2)若()f x 在1[,2]2上的值域是1[,2]2,求a 的值.(3)利用函数的单调性求参数的范围1.2()2(1)2(2]f x x a x =+-+-∞在,上是减函数,则a 的范围是________2.若函数⎪⎩⎪⎨⎧<-≥-=2,1)21(,2,)2()(x x x a x f x 是R 上的单调递减函数,则实数a 的取值范围为( )A .)2,(-∞B .]813,(-∞ C .)2,0( D .)2,813[3.讨论函数223f(x)x ax =-+在(2,2)-内的单调性(4)利用函数的单调性解不等式1.()f x 是定义在(0,)+∞上的单调递增函数,且满足(32)(1)f x f -<,则实数x 的取值范围是( ) A . (,1)-∞ B . 2(,1)3 C .2(,)3+∞ D . (1,)+∞ 2.2()[1,1](1)(1)f x f m f m m --<-若是定义在上的增函数,且,求的范围(5)奇偶性、单调性的综合1.奇函数f(x)在[1,3]上为增函数,且有最小值7,则它在[-3,-1]上是____函数,有最___值___. 2.212()(11)()125ax b f x f x +=-=+函数是,上的奇函数,且. (1)确定()f x 的解析式;(2)用定义法证明()f x 在(1,1)-上递增;(3)解不等式(1)()0f t f t -+>.3.f(x)是定义在( 0,+∞)上的增函数,且()()()xf f x f y y=-(1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .5.函数的奇偶性(1)根据图像判断函数的奇偶性奇函数:关于原点对称;偶函数:关于y 轴对称 例:判断下列函数的奇偶性① y=x ³ ② y=|x|(2)根据定义判断函数的奇偶性一看定义域是否关于原点对称;二看()f x -与()f x 的关系1.设函数)(x f 和)(x g 分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ) A .)()(x g x f +是偶函数 B .)()(x g x f -是奇函数 C .)()(x g x f +是偶函数 D .)()(x g x f -是奇函数 2.已知函数()log (1)log (1)(01)a a f x x x a a =+-->≠且 (1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明。
必修一 数学 定义域,值域,解析式 求法,例题,习题(含答案)
函数的定义域(1)函数的定义域就是使得这个函数关系式有意义的实数的全体构成的集合(2)求函数定义域的注意事项☉分式分母不为零; ☉偶次根式的被开方数大于等于零;☉零次幂的底数不为零; ☉实际问题对自变量的限制若函数由几个式子构成,求其定义域时要满足每个式子都要有意义(取“交集”)。
(3)抽象复合函数定义域的求法☉已知y=f (x )的定义域是A ,求y=f (g (x ))的定义域,可通过解关于g (x )∈A 的不等式,求出x 的范围☉已知y=f (g (x ))的定义域是A ,求y=f (x )的定义域,可由x ∈A ,求g (x )的取值范围(即y=g (x )的值域)。
例1.函数()1f x x =- 的定义域为 ( ) A. (-∞,4) B. [4,+∞) C. (-∞,4] D. (-∞,1)∪(1,4] 【答案】D 【解析】要使解析式有意义需满足:40{10x x -≥-≠,即x 4≤且1x ≠所以函数()f x =的定义域为(-∞,1)∪(1,4] 故选:D例2.函数y =( )A. {|11}x x x ≥≤-或B. {|11}x x -≤≤C. {1}D. {-1,1}【答案】D 【解析】函数y 可知: 2210{ 10x x -≥-≥,解得: 1x =±.函数y =的定义域为{-1,1}.故选D.例3.已知函数()21y f x =-的定义域为()2,2-,函数()f x 定义域为__________.【答案】[]1,3-【解析】由函数()21y f x =-的的定义域为(−2,2),得: 2113x -≤-≤,故函数f (x )的定义域是[]1,3-.例4.若函数()y f x =的定义域为[]0,2,则函数()()21f xg x x =-的定义域是( )A. [)0,1B. []0,1C. [)(]0,11,4⋃ D. ()0,1 【答案】A函数()y f x =的定义域是[]0,2, 022{10x x ≤≤∴-≠,解不等式组:01x ≤<,故选A.例5.已知函数()1y f x =+的定义域是[]2,3-,则()2y f x =的定义域是( ) A. []1,4- B. []0,16 C. []2,2- D. []1,4【答案】C 【解析】解:由条件知: ()1f x +的定义域是[]2,3-,则1x 14-≤+≤,所以214x -≤≤,得[]x 2,2∈-例6.已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( )A .[]052, B. []-14, C. []-55, D. []-37,【答案】A 【解析】523,114,1214,02x x x x -≤≤-≤+≤-≤-≤≤≤例7.函数y =的定义域为___________.【答案】[]3,4-【解析】要使函数有意义,则2120x x +-≥,即2120x x --≤,即34x -≤≤,故函数的定义域为[]3,4-,故答案为[]3,4-.函数值域定义:对于函数y=f (x ),x ∈A 的值相对应的y 值叫函数值,函数值得集合{f (x )|x ∈A }叫做函数的值域。
高一数学上册第一章函数及其表示知识点及练习题(含答案)
函数及其表示(一)知识梳理1.映射的概念设B A 、是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,则称f 是集合A 到集合B 的映射,记作f(x).2.函数的概念(1)函数的定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对A 中的 任意数 x ,在集合B 中都有 唯一确定 的数y 和它对应,则这样的对应关系叫做从A 到B 的一个函数,通常记为___y=f(x),x ∈A(2)函数的定义域、值域在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值, 对于的函数值的集合所有的集合构成值域。
(3)函数的三要素: 定义域 、 值域 和 对应法则3.函数的三种表示法:图象法、列表法、解析法(1).图象法:就是用函数图象表示两个变量之间的关系;(2).列表法:就是列出表格来表示两个变量的函数关系;(3).解析法:就是把两个变量的函数关系,用等式来表示。
4.分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。
(二)考点分析考点1:判断两函数是否为同一个函数如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。
考点2:求函数解析式方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法;(3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f1.2函数及其表示练习题(2)一、选择题1. 判断下列各组中的两个函数是同一函数的为( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x =()F x = ⑸21)52()(-=x x f ,52)(2-=x x f .A. ⑴、⑵B. ⑵、⑶C. ⑷D. ⑶、⑸2. 函数()y f x =的图象与直线1x =的公共点数目是( )A. 1B. 0C. 0或1D. 1或23. 已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( )A. 2,3B. 3,4C. 3,5D. 2,54. 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A. 1B. 1或32C. 1,32或 D.5. 为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移, 这个平移是( )A. 沿x 轴向右平移1个单位B. 沿x 轴向右平移12个单位 C. 沿x 轴向左平移1个单位 D. 沿x 轴向左平移12个单位 6. 设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( ) A. 10 B. 11 C. 12 D. 13二、填空题1. 设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 . 2. 函数422--=x x y 的定义域 . 3. 若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 .4.函数0y =_____________________. 5. 函数1)(2-+=x x x f 的最小值是_________________.三、解答题1.求函数()f x =.2. 求函数12++=x x y 的值域.3. 12,x x 是关于x 的一元二次方程22(1)10x m x m --++=的两个实根,又2212y x x =+,求()y f m =的解析式及此函数的定义域.4. 已知函数2()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值.参考答案(2)一、选择题 1. C 2. C 3. D 4. D∴2()3,12,f x x x x ===-<<而∴ x =5. D 平移前的“1122()2x x -=--”,平移后的“2x -”, 用“x ”代替了“12x -”,即1122x x -+→,左移 6. B [][](5)(11)(9)(15)(13)11f f f f f f f =====.二、 1.(),1-∞- 当10,()1,22a f a a a a ≥=-><-时,这是矛盾的; 当10,(),1a f a a a a<=><-时; 2. {}|2,2x x x ≠-≠且 240x -≠3. (2)(4)y x x =-+- 设(2)(4)y a x x =+-,对称轴1x =, 当1x =时,max 99,1y a a =-==-4. (),0-∞ 10,00x x x x -≠⎧⎪<⎨->⎪⎩ 5. 54- 22155()1()244f x x x x =+-=+-≥-. 三、 1. 解:∵10,10,1x x x +≠+≠≠-,∴定义域为{}|1x x ≠-2. 解: ∵221331(),244x x x ++=++≥∴y ≥,∴值域为)+∞ 3. 解:24(1)4(1)0,30m m m m ∆=--+≥≥≤得或,222121212()2y x x x x x x =+=+-224(1)2(1)4102m m m m =--+=-+∴2()4102,(03)f m m m m m =-+≤≥或.4. 解:对称轴1x =,[]1,3是()f x 的递增区间,max ()(3)5,335f x f a b ==-+=即min ()(1)2,32,f x f a b ==--+=即∴3231,.144a b a b a b -=⎧==⎨--=-⎩得。
最新《高一数学必修1》函数的概念、定义域、值域练习题(含答案)
函数的概念、定义域、值域练习题班级:高一(3)班 姓名: 得分:一、选择题(4分×9=36分)1.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f (x )→y =12xB .f (x )→y =13xC .f (x )→y =23x D .f (x )→y =x2.函数y =1-x 2+x 2-1的定义域是( )A .[-1,1]B .(-∞,-1]∪[1,+∞)C .[0,1]D .{-1,1}3.已知f (x )的定义域为[-2,2],则f (x 2-1)的定义域为( )A .[-1,3]B .[0,3]C .[-3,3]D .[-4,4]4.若函数y =f (3x -1)的定义域是[1,3],则y =f (x )的定义域是( )A .[1,3]B .[2,4]C .[2,8]D .[3,9]5.函数y =f (x )的图象与直线x =a 的交点个数有( )A .必有一个B .一个或两个C .至多一个D .可能两个以上6.函数f (x )=1ax 2+4ax +3的定义域为R ,则实数a 的取值范围是( ) A .{a |a ∈R }B .{a |0≤a ≤34}C .{a |a >34}D .{a |0≤a <34}7.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y 与营运年数x (x ∈N )为二次函数关系(如图),则客车有营运利润的时间不超过( )年.A .4B .5C .6D .78.(安徽铜陵县一中高一期中)已知g (x )=1-2x ,f [g (x )]=1-x 2x 2(x ≠0),那么f ⎝⎛⎭⎫12等于( )A .15B .1C .3D .30 9.函数f (x )=2x -1,x ∈{1,2,3},则f (x )的值域是( )A .[0,+∞)B .[1,+∞)C .{1,3,5}D .R二、填空题(4分)10.某种茶杯,每个2.5元,把买茶杯的钱数y (元)表示为茶杯个数x (个)的函数,则y =________,其定义域为________.(5分)11.函数y =x +1+12-x的定义域是(用区间表示)________. 三、解答题(5分×3=15分)12.求下列函数的定义域.(1)y =x +1x 2-4; (2)y =1|x |-2;(3)y =x 2+x +1+(x -1)0.(10分×2=20分)13.(1)已知f (x )=2x -3,x ∈{0,1,2,3},求f (x )的值域.(2)已知f (x )=3x +4的值域为{y |-2≤y ≤4},求此函数的定义域.(10分×2=20分)14.(1)已知f (x )的定义域为 [ 1,2 ] ,求f (2x -1)的定义域;(2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;1.2.1 函数的概念答案一、选择题1.[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C. 2.[答案] D[解析] 使函数y =1-x 2+x 2-1有意义应满足⎩⎪⎨⎪⎧1-x 2≥0x 2-1≥0,∴x 2=1,∴x =±1. 3.[答案] C[解析] ∵-2≤x 2-1≤2,∴-1≤x 2≤3,即x 2≤3,∴-3≤x ≤ 3.4.[答案] C[解析] 由于y =f (3x -1)的定义域为[1,3],∴3x -1∈[2,8],∴y =f (x )的定义域为[2,8]。
高一数学的函数定义域、值域和单调性、奇偶性练习题精编版
高一数学函 数 练 习 题一、求函数的定义域 1、 求下列函数的定义域:⑴221533x x y x --=+- ⑵211()1x y x -=-+ ⑶021(21)4111y x x x =+-+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥ ⑸ 262x y x -=+ ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ 245y x x =-++ ⑽ 2445y x x =--++ ⑾12y x x =--三、求函数的解析式系1、已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, 3()(1)f x x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间: ⑴ 223y x x =++ ⑵223y x x =-++ ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236xy x -=+的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( )⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, 33()g x x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
高一数学必修一函数定义域值域解析式求法综合练习
函数定义域、值域、解析式综合练习一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为 ;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y = ⑹ 225941x x y x +=-+⑺31y x x =-++ ⑻2y x x =-⑼y = ⑽4y =⑾y x =6、已知函数222()1x ax b f x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f x g x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236x y x -=+的递减区间是 ;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( )⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x = ⑸21)52()(-=x x f , 52)(2-=x x f 。
《高一数学必修1》函数的概念、定义域、值域练习题(含答案)
函数的概念、定义域、值域练习题班级:高一(3)班 姓名: 得分:一、选择题(4分×9=36分)1.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f (x )→y =12xB .f (x )→y =13x C .f (x )→y=23x D .f (x )→y =x 2.函数y =1-x 2+x 2-1的定义域是( ) A .[-1,1] B .(-∞,-1]∪[1,+∞) C .[0,1]D .{-1,1}3.已知f (x )的定义域为[-2,2],则f (x 2-1)的定义域为( )A .[-1,3]B .[0,3]C .[-3,3]D .[-4,4]4.若函数y =f (3x -1)的定义域是[1,3],则y =f (x )的定义域是( )A .[1,3]B .[2,4]C .[2,8]D .[3,9]5.函数y =f (x )的图象与直线x =a 的交点个数有( )A .必有一个B .一个或两个C .至多一个D .可能两个以上6.函数f (x )=1ax 2+4ax +3的定义域为R ,则实数a 的取值范围是( )A .{a |a ∈R }B .{a |0≤a ≤34}C .{a |a >34}D .{a |0≤a <34}7.某汽车运输公司购置了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y 与营运年数x (x ∈N )为二次函数关系(如图),则客车有营运利润的时间不超过( )年.A .4B .5C .6D .78.(安徽铜陵县一中高一期中)已知g (x )=1-2x ,f [g (x )]=1-x 2x 2(x ≠0),那么f ⎝ ⎛⎭⎪⎪⎫12等于( ) A .15 B .1 C .3D .309.函数f (x )=2x -1,x ∈{1,2,3},则f (x )的值域是( )A .[0,+∞)B .[1,+∞)C .{1,3,5}D .R二、填空题(4分)10.某种茶杯,每个2.5元,把买茶杯的钱数y(元)表示为茶杯个数x(个)的函数,则y=________,其定义域为________.(5分)11.函数y=x+1+12-x的定义域是(用区间表示)________.三、解答题(5分×3=15分)12.求下列函数的定义域.(1)y=x+1x2-4;(2)y=1|x|-2;(3)y=x2+x+1+(x-1)0.(10分×2=20分)13.(1)已知f(x)=2x-3,x∈{0,1,2,3},求f(x)的值域.(2)已知f(x)=3x+4的值域为{y|-2≤y≤4},求此函数的定义域.(10分×2=20分)14.(1)已知f(x)的定义域为[ 1,2 ] ,求f (2x-1)的定义域;(2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;1.2.1 函数的概念答案一、选择题 1.[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C.2.[答案] D[解析] 使函数y =1-x 2+x 2-1有意义应满意⎩⎪⎨⎪⎧1-x 2≥0x 2-1≥0,∴x 2=1,∴x =±1.3.[答案] C[解析] ∵-2≤x 2-1≤2,∴-1≤x 2≤3,即x 2≤3,∴-3≤x ≤ 3.4.[答案] C[解析] 由于y =f (3x -1)的定义域为[1,3],∴3x -1∈[2,8],∴y =f (x )的定义域为[2,8]。
高一数学《函数的定义域值域》练习题(精选文档)
高一数学《函数的定义域值域》练习题函数值域、定义域、解析式专题一、函数值域的求法 1、直接法: 例1:求函数2610y x x =++的值域。
例2:求函数1y x =+的值域。
2、配方法:例1:求函数242y x x =-++([1,1]x ∈-)的值域。
例2:求 函 数]2,1[x ,5x 2x y 2-∈+-= 的 值域。
例3:求函数2256y x x =-++的值域。
3、分离常数法:例1:求函数125x y x -=+的值域。
例2:求函数122+--=x x xx y 的值域.例3:求函数132x y x -=-得值域.4、换元法:例1:求函数212y x x =+-的值域。
例2: 求 函 数1x x y -+=的 值 域。
5、函数的单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域。
例1:求函数12y x x=--的值域.例2:求函数()x x x f -++=11的值域. 例3:求 函 数1x 1x y --+=的 值 域。
6、数型结合法:函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法.当函数解析式具有某种明显的几何意义(如两点间距离,直线的斜率、截距等)或当一个函数的图象易于作出时,借助几何图形的直观性可求出其值域。
...文档交流 仅供参考... 例1:求函数|3||5|y x x =++-的值域。
7、非负数法根据函数解析式的结构特征,结合非负数的性质,可求出相关函数的值域。
例1、(1)求函数216x y -=的值域。
(2)求函数1322+-=x x y 的值域.二、函数定义域例1:已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域.例2:若()f x 的定义域为[]35-,,求()()(25)x f x f x ϕ=-++的定义域.例3:求下列函数的定义域:① 21)(-=x x f ;②23)(+=x x f ;③ xx x f -++=211)( 例4:求下列函数的定义域:④ 14)(2--=x x f⑤②2143)(2-+--=x x x x f⑥373132+++-=x x y ④xx x x f -+=0)1()(三、解析式的求法 1、配凑法例1:已知 :23)1(2+-=+x x x f ,求f(x);例2 :已知221)1(x x xx f +=+ )0(>x ,求 ()f x 的解析式。
高一数学必修一函数的定义域和值域强化训练
(1) (2)
例2.求函数 的值域(反解法)
例3.求函数 的值域(配方换元法)
例4.求函数 的值域(不等式法)
例5.画出函数 的图像,并根据其图像写出该函数的值域。(图像法)
练习:
1.求下列函数的值域:
(1) (2)
(3) (4)
2.求下列函数的值域:
(1) (2) (3)
6.能画单调函数的图像并根据图像判断函数的增减性,求函数的最值
7.理解掌握判断函数的奇偶性的方法
了解映射的定义,明确函数与映射的异同之处
教学内容
1.函数概念是如何定义的,什么是映射?举例说明函数、映射以及它们之间的区别
2.思考:对于不同的函数如:① ② ③ ④ ⑤
的定义域如何确定
3.通常表示函数的方法有:
(4) ;
(5)
例.奇偶性的应用
1.已知 是奇函数,且 。
(1)求实数 的值;
(2)判断函数 在 上的单调性,并加以证明。
2.已知函数 ,则当 为何值时, 是奇函数?
练习:
1.已知 是奇函数,且 时, 求 时,求 的解析式。
1、函数y=-x2-4x+1,x∈[-3,3]的值域是_______
2、函数y=x2-x(-1≤x≤4,x∈Z)的值域是_______
4、函数解析式:
例1、已知 ,求 的解析式。(换元法)
例2.设二次函数 的最小值等于4,且 ,求 的解析式。(待定系数法)
练习:
1.已知 ,求 。
2、已知 是一次函数,且 ,求 的解析式。
3、求函数 的值域。
5、单调性:
例1.证明: 在 上是减函数。(定义法)
2.证明:函数 在 上是减函数
《高一数学必修1》函数的概念、定义域、值域练习题(含答案)
函数的概念、定义域、值域练习题班级:高一(3)班 姓名: 得分:一、选择题(4分×9=36分)1.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f (x )→y =xB .f (x )→y =xC .f (x )→y =xD .f (x )→y =121323x2.函数y =+的定义域是( )1-x 2x 2-1A .[-1,1] B .(-∞,-1]∪[1,+∞)C .[0,1]D .{-1,1}3.已知f (x )的定义域为[-2,2],则f (x 2-1)的定义域为( )A .[-1,] B .[0,]C .[-,]D .[-4,4]33334.若函数y =f (3x -1)的定义域是[1,3],则y =f (x )的定义域是( )A .[1,3] B .[2,4]C .[2,8]D .[3,9]5.函数y =f (x )的图象与直线x =a 的交点个数有( )A .必有一个 B .一个或两个C .至多一个D .可能两个以上6.函数f (x )=的定义域为R ,则实数a 的取值范围是( )1ax 2+4ax +3A .{a |a ∈R } B .{a |0≤a ≤}C .{a |a >}D .{a |0≤a <}3434347.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y 与营运年数x (x ∈N )为二次函数关系(如图),则客车有营运利润的时间不超过( )年.A .4 B .5C .6D .78.(安徽铜陵县一中高一期中)已知g (x )=1-2x ,f [g (x )]=(x ≠0),那么f 等于( )1-x 2x 2(12)A .15B .1C .3D .309.函数f (x )=,x ∈{1,2,3},则f (x )的值域是( )2x -1A .[0,+∞) B .[1,+∞)C .{1,,}D .R35二、填空题(4分)10.某种茶杯,每个2.5元,把买茶杯的钱数y (元)表示为茶杯个数x (个)的函数,则y =________,其定义域为________.(5分)11.函数y =+的定义域是(用区间表示)________. x +112-x 三、解答题(5分×3=15分)12.求下列函数的定义域.(1)y =x +; (2)y =;(3)y =+(x -1)0.1x 2-41|x |-2x 2+x +1(10分×2=20分)13.(1)已知f (x )=2x -3,x ∈{0,1,2,3},求f (x )的值域.(2)已知f (x )=3x +4的值域为{y |-2≤y ≤4},求此函数的定义域.(10分×2=20分)14.(1)已知f (x )的定义域为 [ 1,2 ] ,求f (2x -1)的定义域;(2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;1.2.1 函数的概念答案一、选择题1.[答案] C[解析] 对于选项C ,当x =4时,y =>2不合题意.故选C.832.[答案] D[解析] 使函数y =+有意义应满足Error!,∴x 2=1,∴x =±1.1-x 2x 2-13.[答案] C[解析] ∵-2≤x 2-1≤2,∴-1≤x 2≤3,即x 2≤3,∴-≤x ≤.334.[答案] C[解析] 由于y =f (3x -1)的定义域为[1,3],∴3x -1∈[2,8],∴y =f (x )的定义域为[2,8]。
(word完整版)高一数学必修一函数专题
高一数学必修一函数专题(教师版)一.函数的奇偶性.(1)具有奇偶性的函数的定义域的特征:定义域必须关于原点对称!为此确定函数的奇偶性时,务必先判定函数定义域是否关于原点对称•(2)确定函数奇偶性的常用方法(若所给函数的解析式较为复杂,应先化简,再判断其奇偶性):①定义法;f(x) f( x) 0②利用函数奇偶性定义的等价形式:f( x) 1( f(x) 0).f (x)③图像法:奇函数的图象关于原点对称;偶函数的图象关于y轴对称.(3)函数奇偶性的性质:①奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反•②若f (x)为偶函数,贝U f( x) f (x) f (| x |).③若奇函数f(x)定义域中含有0,则必有f(0) 0.④奇函数的图象关于原点对称;偶函数的图象关于y轴对称.二.函数的单调性1. 函数单调性的定义:(1)如果函数f x对区间D内的任意x-! ,x2,当x1 x2时都有f % f x2,则f x在D内是增函数;当x1 x2时都有f为f x2,则f x在D内是减函数.(2)设函数y f (x)在某区间D内可导,若f X 0,则y f (x)在D内是增函数;若f x 0,则y f (x)在D内是减函数.2•单调性的定义的等价形式:(1)设x1 ,x2 a,b,那么匚勺——^-x^ 0 f x在a,b上是增函数;x1 x2(2) --------------------------------------- 设x1 ,x2 a,b,那么f x2 0 f x 在a,b 上是减函数;x1 x23.证明或判断函数单调性的方法:(1) 定义法:设元作差变形判断符号给出结论•其关键是作差变形,为了便于判断差的符号,通常将差变成因式连乘积、平方和等形式,再结合变量的范围,假设的两个变量的大小关系及不等式的性质作出判断;⑵复合函数单调性的判断方法:即“同增异减”法,即内层函数和外层函数的单调性相同,则复合函数为增函数;若相反,则复合函数为减函数•解决问题的关键是区分好内外层函数,掌握常用基本函数的单调性;(3)图象法:利用数形结合思想,画出函数的草图,直接得到函数的单调性;(4)导数法:利用导函数的正负来确定原函数的单调性,是最常用的方法.(5)利用常用结论判断:①奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内有相反的单调性;②互为反函数的两个函数具有相同的单调性;③在公共定义域内,增函数f(x)增函数g(x)是增函数;减函数f(x)减函数g(x)是减函数;增函数f (x)减函数g(x)是增函数;减函数f (x)增函数g(x)是减函数;④复合函数法:复合函数单调性的特点是同增异减,特别提醒:求单调区间时,勿忘定义域,三.函数的周期性.(1)类比“三角函数图像”得:①若y f (x)图像有两条对称轴x a,x b(a b),则y f (x)必是周期函数,且一周期为T 2|a b| ;②若y f (x)图像有两个对称中心A(a,O), B(b,O)(a b),则y f(x)是周期函数,且一周期为T 2|a b| ;③如果函数y f (x)的图像有一个对称中心A(a,O)和一条对称轴x b(a b),则函数y f(x)必是周期函数,且一周期为T 4|a b| ;(2)由周期函数的定义“函数f(x)满足f x f a x (a 0),则f(x)是周期为a的周期函数”得:函数f (x)满足 f x f a x,则f(x)是周期为2a的周期函数。
高中数学必修一-专题三-函数的定义域与值域(含详解).docx
专题三函数的定义域和值域一.选择题(共12小题)1.函数f(J二応的定义域是( )A. ( - 1, +00)B. ( 一1, 1) U (1, +8) C・[一1, +00) D. [ - 1, 1)U (1, +oo)2.已知函数f (x)二换的定义域为(1, 2),则函数f(X?)的定义域是()A. (1, 2) B・(1, 4) C. R D・(一伍,-1) U (1, ^2)3. 已知函数f (x)二圻孑的定义域是R,则实数a 的取值范围是()ax +ax~3A. a>丄B・ - 12VaW0 C・ - 12<a<0 D・ aW丄3 34. 集合A二{x|0WxW4}, B二{y|0WyW2},下列不能表示从A到B的函数的是5. 下列图形中,不能表示以x为自变量的函数图象的是()A./°►x x^y=2 x C.C6. 下列函数与函数y二x相等的是()._ 2A・尸(换)2 B.尸存C・尸(饭)$ D.宀下列四组函数,表示同一函数的是(f (x)二J X 2-4‘ £(X )二2f(x)二x, g(x)仝—X{1, V3> B ・(-8, 0] C ・[1, +8) D. R10・若函数y=7ax 2+2ax+3的值域为〔0,+°°),则a 的取值范围是( )A. (3, +8) B ・[3, +8) C ・(-8, 0] U [3, +00)D.(・8,0)U[3, + oo )11. 二次函数 f (x) =x 2 - 4x+l (xe [3, 5])的值域为( )A ・[-2, 6]B ・[一3, +8)C ・[-3, 6]D ・[一 3, - 2] 12. 若函数f(x)=1/-2x+4的定义域、值域都是[2, 2b],则()乙A. b=2B. bG [1, 2]C. be (1, 2) D ・ b 二 1 或 b 二2二. 填空题(共4小题)13. 函数f (x)二(3-2X _ * $的定义域为 _______ ,值域为 _______ ・ 14. 函数f(x)二JI3+佑忑-1的定义域是 __________ .15. 函数y=Vkx 2-4kx+k+6的定义域为R ,则k 的取值范围 _________ 16. 函数f(x)二的值域为 ______________ ・三. 解答题(共6小题)A. ①B-A. f(x)二g Cx) =xB. C. D. f (x) = |x+l | , g (x) =4x+l, -X-1, X-l9. 己知函数 f (x) =V2x-l ,xe {1, 2, 3}.则函数f (x)的值域是( )A. ②③④C. ①③④D.17.求下列函数的定义域:(1)尸厶+8&3-x;(2) 18・已知函数f (x)1+x2(1) 求 f (1) +f (2) +f (3) +f (丄)+f (丄)的值;2 3(2) 求f (x)的值域.19. 已知函数y=V x2+6inx+in+8的定义域为R,求实数m的取值范围.220. 当x>0吋,求函数yz:3+x+x的值域.1+x21-已知函数f (x)二"*+3+』2 '(1)求函数的定义域;(2)求f(-3), f(春)的值.322.求函数f(X)=x2+ x - 2 | , xe [0, 4]的值域.专题三(2)函数的概念参考答案与试题解析一.选择题(共12小题)1. 函数f(£二仮石占的定义域是( )A. ( - 1, +8)B.(・ 1, 1) U (1, +8) C・[一1, +8) D. [ - 1, 1) U (1, +8)【分析】由根式内部的代数式大于等于0,且分式的分母不为0联立不等式组求解.【解答】解:由卩+1空0,解得x^_i且X"Ix-lT^O・・・函数f(£二頁石的定义域是[-1,1)U (1, +oo)・故选:D.【点评】本题考查函数的定义域及其求法,是基础的计算题.2. 已知函数f (x)二仄的定义域为(1, 2),则函数f(X?)的定义域是( )A. (1, 2) B・(1, 4) C. R D・(一典,-1) U (1, ^2)【分析】由已知函数的定义域可得1<X2<2,求解不等式组得答案.【解答】解:・・•数f (x)二换的定义域为(1, 2),・・・由1<X2<2,得- V2<x< - 1或1 <x<“^・即函数f 2)的定义域是(-辺,-1) U (1,V2). 故选:D.【点评】本题考查函数的定义域及其求法,关键是掌握该类问题的求解方法,是基础题.3.已知函数f (x)二圻孑的定义域是R,则实数a的取值范围是( )ax +ax~3A. a>丄B・一12VaW0 C・-12<a<0 D・ aW丄3 3【分析】由函数f (x)二申*一1的定义域是R,表示函数的分母恒不为零,即ax+ax~3方程ax2+ax - 3=0无解,根据-•元二次方程根的个数与判断式△的关系,我们易得数a的取值范围.f曲工o【解答】解:由护0或2,、/-4aX (-3X0可得-12VaW0,故选:B.【点评】求函数的定义域时要注意:(1)当函数是由解析式给岀时,其定义域是使解析式有意义的自变量的取值集合.(2)当函数是由实际问题给岀时,其定义域的确定不仅要考虑解析式有意义,还要有实际意义(如长度、面积必须大于零、人数必须为自然数等).(3)若一函数解析式是由几个函数经四则运算得到的,则函数定义域应是同时使这几个函数有意义的不等式组的解集•若函数定义域为空集,则函数不存在.(4)对于(4)题要注意:①对在同一对应法则f下的量"x〃"x+a〃"x - 所要满足的范围是一样的;②函数g(X)中的自变量是x,所以求g (x)的定义域应求g (x)中的x的范围.4.集合A二{x|0WxW4}, B二{y|0WyW2},下列不能表示从A到B的函数的是A. f:B・ f: x->y=2 x C・ f:D・巳【分析】根据函数的定义分别进行判断即可.【解答】解:C的对应法则是f: xTy二Zx,可得f (4)二邑B,不满足映射的定 3 3义,故C的对应法则不能构成映射.故C的对应f中不能构成A到B的映射.故选:C.【点评】本题给岀集合A、B,要求我们找出从A到B的映射的个数,着重考查了映射的定义及其判断的知识,属于基础题.5. 下列图形中,不能表示以x为自变量的函数图象的是( )【分析】利用函数定义,根据X取值的任意性,以及y的唯一性分别进行判断. 【解答】解:B中,当x>0吋,y有两个值和x对应,不满足函数y的唯一性,A, C, D满足函数的定义,故选:B.【点评】本题主要考查函数的定义的应用,根据函数的定义和性质是解决本题的关键.6. 下列函数与函数y二x相等的是()._ 2A・尸(依)2 B・尸F C・y=(Vx)3 D・尸*■【分析】已知函数的定义域是R,分别判断四个函数的定义域和对应关系是否和己知函数一致即可.【解答】解:A.函数的定义域为{x|xNO},两个函数的定义域不同.B. 函数的定义域为R, y=|x|,对应关系不一致.C. 函数的定义域为R,两个函数的定义域和对应关系相同,是同一函数.D. 函数的定义域为{x|xHO},两个函数的定义域不同.故选:C.【点评】本题主要考查判断两个函数是否为同一函数,判断的标准是判断函数的定义域和对应关系是否一致,否则不是同一函数.7. 如图所示,可表示函数图象的是()【分析】利用函数的定义分别对四个图象进行判断.【解答】解:由函数的定义可知,对定义域内的任何一个变化x,在有唯一的一 个变量y 与x 对应.则由定义可知①③④,满足函数定义.但②不满足,因为②图彖中,当x>0时,一个x 对应着两个y,所以不满足函数 取值的唯一性.所以不能表示为函数图象的是②. 故选:C.【点评】木题主要考查了函数的定义以及函数的应用.要求了解,对于一对一, 多对一是函数关系,一对多不是函数关系.&下列四组函数,表示同一函数的是()A ・ f(x)二g (X )二x氏 f(x)二厶2-4‘ £(X )二V7巨依R2C ・ f(x)二x, g(x)^—X「/、 | | /、 fx+1, X 》-1D. f (x) = |x+l |,g (x)=< l^-x-1, x-1【分析】根据两个函数的定义域相同,对应关系也相同,判断它们是同一函数. 【解答】解:对于A, f (x)二{尹二|x|,与g (x) =x 的对应关系不同,.••不是 同一函数;对于 B, f (x)二J*2-4(x$2 或 xW - 2),与 g (x)二代巨厶-2=厶2-4(x$2) 的定义域不同, ・•・不是同一函数;2对于C, f (x) =x (xWR),与g (x) =—=x (xHO)的定义域不同,・••不是同一A.①B.②③④C.①③④D.②函数;对于D, f (x) =|x+l|=f X+1, xjl ,与(X)二< x+1, 的定义域相同,l^-X-1 , x\ ~1 [~x~l, x<. -1对应关系也相同,是同一函数.故选:D.【点评】本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.9.已知函数f (x) =V2x-l,xe {1, 2, 3}.则函数f (x)的值域是( )A. {1,品、B・(一8, o] C・[1, +8) D. R【分析】直接由已知函数解析式求得函数值得答案.【解答】解:f (x) =V2x-l,xe {1, 2, 3},当x=l 时,f (1) =1;当x=2 时,f (2) =V3;当x=3 时,f (3)二祈.・・・函数f (x)的值域是{1,岳V5).故选:A.【点评】木题考查函数值域的求法,是基础的计算题.10・若函数y=7ax2+2ax+3的值域为+°°),则a的取值范围是( ) A. (3, +°°) B. [3, +°°) C・(-g, 0] U [3, +°°) D・(一oo, Q) U [3, + 8 )【分析】由题意:函数y是一个复合函数,值域为[0, +°° ),则函数f(x)=ax2+2ax+3 的值域要包括0.即最小值要小于等于0.【解答】解:由题意:函数y=V ax2+2ax+3是一个复合函数,要使值域为[0, +8),则函数f (x) =ax2+2ax+3的值域要包括0,即最小值要小于等于0・(a>0 = ( a>0则有:(f(-l)<0 ta-2a+3<0解得:a^3 所以a的取值范围是[3, +°°).故选:B.【点评】本题考查了复合函数的值域的求法,通过值域来求参数的问题.属于基础题.二次函数 f (x) =x2 - 4x+l (xe [3, 5])的值域为( )A・[一2, 6] B・[一3, +8) C・[一3, 6] D. [ - 3, - 2]【分析】利用二次函数的单调性即可求解值域.【解答】解:函数f (x) =x2 - 4x+l,其对称轴x=2,开口向上,Vxe [3, 5],・•・函数f (x)在[3, 5]单调递增,当x=3时,f (x)取得最小值为-2.当x=5时,f(X)取得最小值为6・••二次函数 f (x) =x2 - 4x+l (xe [3, 5])的值域为[・2, 6]. 故选:A.【点评】本题考查二次函数的单调性求解最值问题,属于函数函数性质应用题, 较容易.12.若函数f(x)二丄x2-2x+4的定义域、值域都是[2, 2b],则( )乙A. b=2B. be [1, 2] C・ be (1, 2) D・ b二 1 或b二2【分析】根据二次函数的性质建立关系解得b的值.【解答】解:函数仏)二知2-2X+4乙其对称轴x=2,・•・函数f (x)在定义域[2, 2b]是递增函数,且2b>2,即b>l.那么:f (2b) =2b即2b=— x 4b2 " 4b+42解得:b=2故选:A.【点评】本题考查了定义域、值域的关系,利用二次函数的性质,属于基础题.二.填空题(共4小题)13.函数f (x)二寸3-b-/的定义域为[一3, 1],值域为[0, 2]【分析】根据函数的定义域和值域的定义进行求解即可.【解答】解:要使函数有意义,则3-2X-X2^0,即X2+2X - 3W0,解得故函数的定义域为[-3, 1],设t=3 - 2x - x2,贝!J t=3 - 2x - x2= - (x+1) ?+4,则0WtW4,即0W五W2,即函数的值域为[0, 2],故答案为:[-3, 1], [0, 2]【点评】木题主要考查函数定义域和值域的求解,利用换元法结合一元二次函数的性质是解决本题的关键.14. 函数f (x) = Vl_x +Vx+3T的定义域是[- 3, 1] •【分析】根据使函数的解析式有意义的原则,结合偶次根式的被开方数必须不小于0,我们可以构造关于自变量x的不等式组,解不等式组,可得答案.【解答】解:要使函数f(x)二石+后-1的解析式有意义自变量x须满足(id。
高一数学《函数的定义域值域》练习题解析版之欧阳数创编
高一数学《函数的定义域值域》练习题1.已知)(,11)11(22x f x x x x f 则+-=+-的解析式可取为( )A .21xx +B .212x x+-C .212xx +D .21x x +-2.函数]1,0[)1(log )(2在++=x a x f a 上的最大值和最小值之和为a ,则a 的值为( )A.41B .21C .2D .43.函数y = )A .[1,)+∞B .23(,)+∞C .23[,1]D .23(,1]4.设函数,2)2(),0()4(.0,2,0,0,)(2-=-=-⎩⎨⎧>≤≤++=f f f x x x c bx x x f 若则关于x的方程x x f =)(解的个数为( )A .1B .2C .3D .45、函数)1(log 221-=x y 的定义域为( )A 、[)(]2,11,2 --B 、)2,1()1,2( --C 、[)(]2,11,2 --D 、)2,1()1,2( -- 6、设函数⎪⎩⎪⎨⎧≥--<+=1,141,)1()(2x x x x x f ,则使得1)(≥x f 的自变量x的取值范围为( )A 、(][]10,02, -∞-B 、(][]1,02, -∞-C 、(][]10,12, -∞-D 、[)[]10,10,2 -7.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文,,,a b c d 对应密文2,2,23,4.a b b c c d d +++例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为()(A )7,6,1,4 (B )6,4,1,7 (C )4,6,1,7 (D )1,6,4,78.函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =_______。
苏教版数学高一必修1试题 函数的概念、定义域、值域和图象
2.1.1函数的概念、定义域、值域和图象 “神舟七号”载人航天飞船离地面的距离随时间的变化而变化;上网费用随着上网的时间变化而变化;近几十年来,出国旅游人数日益增多,考古学家推算古生物生活的年代……这些问题如何描述和研究呢?基础巩固1.下列各图中,不可能表示函数y =f (x )的图象的是( )答案:B2.下列四组中,f (x )与g (x )表示同一个函数的是( )A .f (x )=4x 4,g (x )=(4x )4B .f (x )=x ,g (x )=3x 3C .f (x )=1,g (x )=⎩⎪⎨⎪⎧ 1x >0,1x <0D .f (x )=x 2-4x +2,g (x )=x -2解析:选项A 、C 、D 中两个函数的定义域不相同.答案:B3.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,且f (a )+f (1)=0,则a =( ) A .-3 B .-1C .1D .3解析:当a >0时,f (a )+f (1)=2a +2=0⇒a =-1,与a >0矛盾;当a ≤0时,f (a )+f (1)=a +1+2=0⇒a =-3,适合题意.答案:A4.定义域在R 上的函数y =f (x )的值域为,则函数y =f (x +a )的值域为( )A .C .答案:C5.已知f (x )=⎩⎪⎨⎪⎧x 2,x >0,f x +1,x ≤0,则f (2)+f (-2)的值为( ) A .6 B .5C .4D .2解析:f (2)=22=4,f (-2)=f (-2+1)=f (-1)=f (-1+1)=f (0)=f (0+1)=f (1)=12=1, ∴f (2)+f (-2)=4+1=5.答案:B6.函数y =x +1x 的定义域为________.解析:利用解不等式组的方法求解.要使函数有意义,需⎩⎪⎨⎪⎧ x +1≥0,x ≠0,解得⎩⎪⎨⎪⎧x ≥-1,x ≠0. ∴原函数的定义域为{x |x ≥-1且x ≠0}.答案:{x |x ≥-1且x ≠0}7.函数f (x )=11-2x 的定义域是________解析:由1-2x >0⇒x <12. 答案:⎩⎨⎧⎭⎬⎫x ⎪⎪x <128.已知f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1.若f (f (0))=4a ,则实数a =________.解析:∵f (0)=2,f (f (0))=f (2)=4+2a .∴4+2a =4a ⇒a =2.答案:29.已知函数f (x )的定义域为,则f (x +2)的定义域是________,值域是________.解析:∵f (x )的定义域为,∴0≤x +2≤1,∴-2≤x ≤-1.即f (x +2)的定义域为.答案:10.对于每一个实数x ,设f (x )是y =4x +1,y =x +2和y =-2x +4三个函数中的最小值,则f (x )的最大值是________.解析:在同一坐标系中作出如下图象:图中实线部分为f (x ),则A 的纵坐标为f (x )的最大值,∴f (x )max =83.答案:8311.方程x 2-|x |+a -1=0有四个相异实根,求实数a 的取值范围.解析:原方程可化为x 2-|x |-1=-a ,画出y =x 2-|x |-1的图象.∵x ≥0时,y =⎛⎫- ⎪⎝⎭21x 2-54. x <0时,y =⎛⎫+ ⎪⎝⎭21x 2-54. 由图象可知,只有当-54<-a <-1时,即a ∈⎝⎛⎭⎫1,54时,方程才有四个相异实根. ∴a 的取值范围是⎝⎛⎭⎫1,54.能力提升12.下列函数中,不满足f (2x )=2f (x )的是( )A .f (x )=|x |B .f (x )=x -|x |C .f (x )=x +1D .f (x )=-x解析:∵|2x |=2|x |,∴A 满足;2x -|2x |=2(x -|x |)∴B 满足;-2x =2(-x ),∴D 满足;2x +1≠2(x +1);∴C 不满足.答案:C13.(2013·全国卷)已知f (x )的定义域为(-3,0),则函数f (2x -1)的定义域为( )A .(-1,1) B.⎝⎛⎭⎫-1,12C .(-1,0) D.⎝⎛⎭⎫12,1解析:∵f (x )的定义域(-3,0),∴-3<2x -1<0⇒-1<x <12. 答案:B14.如左下图所示,液体从一圆锥形漏斗漏入圆柱形桶中,H 是圆锥形漏斗中液面下降的距离,则H 与下降时间t (分钟)的函数关系用图象表示只可能是( )答案:B15.已知函数f (x )=x 21+x 2,那么f (1)+f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+f (4)+f ⎝⎛⎭⎫14=______.解析:f (x )=x 21+x 2,f ⎝⎛⎭⎫1x =1x 2+1, f (x )+f ⎝⎛⎭⎫1x =1.∴f (1)+f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+f (4)+f ⎝⎛⎭⎫14=12+1+1+1=72. 答案:7216.已知函数f (3x +2)的定义域是(-2,1),则函数f (x 2)-f ⎝⎛⎭⎫x +23的定义域为________解析:∵f (3x +2)的定义域为(-2,1),∴-2<x <1,∴-4<3x +2<5.∴⎩⎪⎨⎪⎧-4<x 2<5,-4<x +23<5. ∴-5<x < 5.答案:(-5,5)17.已知a ∈⎝⎛⎦⎤-12,0,函数f (x )的定义域是(0,1],求g (x )=f (x +a )+f (x -a )+f (x )的定义域.解析:由题设得 ⎩⎪⎨⎪⎧ 0<x +a ≤1,0<x -a ≤1,0<x ≤1,即⎩⎪⎨⎪⎧ -a <x ≤1-a ,a <x ≤1+a ,0<x ≤1,∵-12<a ≤0,∴0≤-a <12,1≤1-a <32,12<1a ≤1. ∴不等式组的解集为-a <x ≤1+a .∴g (x )的定义域为(-a,1+a ].18.已知m ,n ∈N *,且f (m +n )=f (m )·f (n ),f (1)=2.求f 2f 1+f 3f 2+…+f 2012f 2011的值.解析:∵f (1)=2,f (m +n )=f (m )·f (n )(m ,n ∈N *),∴对于任意x ∈N *,有f (x )=f (x -1+1)=f (x -1)·f (1)=2f (x -1).∴f x f x -1=2,则f 2f 1+f 3f 2+…+f 2 012f 2 011=2+2+…+2=2 011×2=4 022.。
高一数学人教版必修一函数定义域-值域-解析式的经典题目
其中能表示为 M 到N 的函数关系的有 2、求下列函数的定义域:设函数y=f(x)的定义域为] 0, 1L 求下列函数的定义域1(1) y=f(3x);(2)y=f(-);X1 1(3)y=f( x ■ -) ■ f (x _3);⑷y=f(x+a)+f(x-a).3 33、已知函数 f (x) =3 x 2— 5 x + 2,求 f(3) , f(—上2) , f (a 1)。
4、下列函数中哪个与函数 y =x 是同一个函数?(1) y =(坂)2 ;(2) y = 3x 3 ;y |o w y €},从M 到N 有4种对应如下图所示:f (X )= . X 1 +1 2 —X.8.判断函数f(x)=5.给出下列两个条件:(1 ) f( ..x +1)=x+2 、.x ;(2)f(x) 为二次函数且 f(0)=3,f(x+2)-f(x)=4x+2.试分别求出f(x)的解析式.变式训练2:求下列函数的值域: (1)y=兴;(2)y =|x|2变式训练(X )是一次函数,且满足3f ( x+1)-2f(x-1) =2x+17,求 f (x );(2) 已知 f (x )满足 2f (x )+f ( 1) x=3x ,求 f (x )6求下列函数的值域:(1)2y = X —XX 2 _x 1(2)y=x-(3)y=7-若函数f(x) =1x2-x+a的定义域和值域均为[1, b ] (b > 1),求a、b 的值..8.判断函数f(x)=1. ②③2.解•••当 X + 1 > 0 且 2 — X 丰 0,___ 1即x >— 1且X 工2时,根式..X 1和分式同时有意义2—x这个函数的定义域是 { X |x >— 1且X 丰2}解:(1) O W 3X W 1,故 o w X W 1 ,y=f(3x)的定义域为]0, 2 :33(2 )仿(1)解得定义域为[1, +R ).1 1(3) 由条件,y 的定义域是f (x W )与(x —三)定义域的交集.3 3 丄311》/,—43333 列出不等式组 0 込::;1 <1 一 3__ 1 一 0空——<1-3 - 故 y=f (x-f (x -3)的定义域为3,2 .(4)由条件得 兰 x+a <1_ 兰 x _a <1 r+a,即0w a w 2时,定义域为丨a ,1-a 】;a3,即-丄w a wo 时,定义域为]-a,1+a :.—a M +a,2综上所述:当0W a w 1时,定义域为]a , 1-a ];当-丄w a <0时,定义域为]22-a , 1+a ]3.解:f (3)=3 X 32— 5X 3 + 2=14;f ( - '、2) =3 X (一 -• 2 )2 — 5 X (— , 2 ) + 2=8 + 5、. 2 ; f (a 1) =3( a + 1)2— 5(a +1)+2=3 a 2 + a 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一必修一数学函数定义域值域专题训练
Company number【1089WT-1898YT-1W8CB-9UUT-92108】
函数定义域、值域专题教案与练习一、函数的定义域
1.函数定义域的求解方法
求函数的定义域主要是通过解不等式(组)或方程来获得.一般地,我们约定:如果不加说明,所谓函数的定义域就是自变量使函数解析式有意义的实数的集合.(1)若)
f是整式,则定义域为全体实数.
(x
(2)若)
f是分式,则定义域为使分母不为零的全体实数.
(x
(3)若)
f是偶次根式,则定义域为使被开方式为非负的全体实数.
(x
(4)若)
(x
f为对数式,则定义域为真数大于零的全体实数。
(5)若)
f为复合函数,则定义域由复合的各基本的定义域所组成的不等式组确
(x
定.如:)
[b
a,则复合函数)]
f的定义域为]
,
(x
a≤
g
(
≤)
g
(
x
[x
f的定义域应由不等式b 解出.
(5)由实际问题确定的函数,其定义域由自变量的实际意义确定.
2.求函数定义域的常见问题:
(1)若已知函数解析式比较复杂,求定义域时通常根据各种条件列不等式组求解;(2)由)
[x
g
f的问题,实际上是已知中间变量
(
y=的定义域,求复合函数)]
(x
f
g
u=的值域,求自变量x的取值范围问题;
(x
)
(3)对含有字母参数的函数,求其定义域时注意对字母参数的一切允许值分类讨论;
(4)若是实际问题除应考虑解析式有意义外,还应使实际问题有意义.
二、求函数的值域常用方法
(1)观察法:通过对函数解析式的简单变形,利用熟知的基本函数值域求解;(2)单调性法:利用函数的单调性求解
(3)换元法:通过对函数解析式进行适当换元,可以将复杂的函数化归为几个简单的函数,从而利用基本函数的取值范围求函数的值域。
三、初等函数:指数函数、对数函数、幂函数的定义域、值域
1.指数函数:)1,0()(≠>=a a a x f x ,定义域:R x ∈;值域:),0()(+∞∈x f ;
2.对数函数:)1,0(log )(≠>=a a x x f a ,定义域:),0(+∞∈x ;值域:R x f ∈)(
3.幂函数:αx x f =)(()R ∈α,其定义域、值域随α的取值而不同,但在),0(+∞∈x 都有意义。
四、例题分析
例1:求函数x
x
x x f 1
2112)(-
-+
+=的定义域。
例2:求函数2
1)2lg()1ln()(-
++-+=x x x x f 的定义域。
例3:已知函数)(x f 的定义域为)4,1(,求函数)(log 2x f 的定义域; 变式:已知函数)2(x f 的定义域为)4,1(,求函数)(x f 的定义域。
例4:已知函数52)(2+-=x x x f ,求:⑴在R 上的值域;⑵)3,1(-∈x 上的值域;
变式1:⑴求函数522
2+-=x x y 的值域;⑵)52(log 22
1+-=x x y 的值域;⑶5
22+-=x x y 的值域。
变式2:求函数x x y -+=12的值域。
例:1.求下列函数的定义域:
(1)2
322---=x x x
y (2)x x y -⋅-=11
(3)x
y --=
113 (4)2253x x y -+-=
(5)()⎪⎩⎪
⎨⎧--=x
x x x f 2341 (6)t 是时间,距离()t t f 360-=
2.已知函数()x f 的定义域是[-3,0],求函数()1+x f 的定义域。
3.若函数()3
1
23
++-=mx mx x x f 的定义域是R ,求m 的取值范围。
练习:
1.求下列函数的定义域:
(1)()142
--=x x f ; (2)()2
14
32-+--=
x x x x f
(3)()x
x f 11111++
=
; (4)()()x
x x x f -+=
1
2.已知()x f 的定义域为[]1,0,求函数()⎪⎭
⎫
⎝
⎛
+
+=342x f x f y 的定义域。
三、函数值和函数的值域
例1、求下列函数的值域:(观察法)
(1)2
41
5+-=x x y (2)123422--+-=x x x x y
例2.求函数3
27
4222++-+=x x x x y 的值域(反解法)
例3.求函数12--=x x y 的值域(配方换元法)
例4.求函数()22
415≥+-=
x x x y 的值域(不等式法)
例5.画出函数[]5,1,642∈+-=x x x y 的图像,并根据其图像写出该函数的值域。
(图像法)
练习:
1.求下列函数的值域:
(1)23+=x y (2)x x f -+=42)( (3)1+=x x y (4)x
x y 1+=
2.求下列函数的值域:
(1)242-+-=x x y (2)12++=x x y (3)
3
22122+-+-=x x x x y
五、练习巩固 1.函数)13lg(13)(2++-=
x x
x x f 的定义域是
A ),3
1(+∞- B )1,3
1(- C )3
1,31(- D )3
1,(--∞ 2.下列函数中,值域是(0,+∞)的是
A 13+-=x x y
B )0(12>+=x x y
C 12
++=x x y D 2
1-
=x y
3.设⎩⎨⎧>≤=0
,ln 0
,)(x x x e x g x 则=)]([x g g __ _____ 。
4.函数x x y 21-+=的值域为 ,函数x x y 21--=的值域
是 。
5.已知函数322++=x x y ,根据所给定义域,求其值域.
(1)R x ∈; (2)}0|{≥∈x x x ; (3)]2,2[-∈x ; (4)}2,1,0,1,2{--∈x 。
6.求下列函数的值域:⑴322
++=x x y ;⑵3
22)2
1(++=x x y ;⑶)32(log 22++=x x y 。