相似 27.2(7)

合集下载

27.2相似三角形(教案)

27.2相似三角形(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相似三角形的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
5.培养学生的创新意识:鼓励学生在解决相似三角形问题时,敢于尝试新方法,勇于突破传统思维,培养创新意识。
本节课旨在使学生在学习相似三角形的过程中,全面提升学科核心素养,为未来的学习和生活打下坚实基础。
三、教学难点与重点
1.教学重点
(1)相似三角形的定义及判定方法:理解并掌握相似三角形的定义,以及SSS、SAS、ASA、AAS等判定方法,这是本节课的核心内容。
此外,在小组讨论环节,虽然学生们都能够积极参与,但在成果分享时,部分学生表达能力较弱,不能很好地将讨论成果展示出来。针对这个问题,我计划在接下来的课程中,多给予学生一些表达机会,培养他们的语言组织和表达能力。
还有一个值得注意的地方是,在课堂总结时,我发现部分学生对相似三角形在实际生活中的应用仍然感到困惑。为了让学生更好地理解这一点,我打算在下一节课引入更多生活中的实例,让学生们感受到数学知识在实际生活中的重要性。
在教学方法上,我认识到传统的讲授式教学并不能满足所有学生的需求。今后,我需要尝试更多元化的教学方法,如翻转课堂、小组合作学习等,以提高学生的学习兴趣和参与度。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解相似三角形的基本概念。相似三角形是指具有相同形状但大小不同的三角形。它们在几何学中具有重要地位,广泛应用于实际问题中。
2.案例分析:接下来,我们来看一个具体的案例。通过分析案例,展示相似三角形在实际中的应用,以及如何帮助我们解决问题。

初三九年级数学人教版 第27章 相似27.2 相似三角形27.2.1 平行线分线段成比例习题课件

初三九年级数学人教版 第27章  相似27.2  相似三角形27.2.1  平行线分线段成比例习题课件

点A,B,C,直线DF交l1,l2,l3于点D,E,F,已知
AB 1
,则
EF
=________. 2
AC 3 DE
返回
知识点 2 平行于三角形一边的直线的性质
6.平行于三角形一边的直线截其他两边(或两边的延长 线),所得的对应线段__成__比__例____.
返回
7.如图,DE∥BC,以下结论正确的是( C ) A.AE∶AC=AD∶BD B.AE∶AC=BD∶AB C.AE∶CE=AD∶BD D.AC∶CE=AD∶BD
∵S△ABD= AB·DE= BD·AH,
S△ACD= AC·DF=1 CD·AH,1
2
2

1 ,即 1 .
2
2
SVABD AB BD SVACD AC CD
AB BD AC CD
返回
返回
8.如图,AB∥CD,AC与BD相交于点O,则下列比例式 不成立的是( ) B A.OC∶OD=OA∶OB B.OC∶OD=OB∶OA C.OC∶AC=OD∶DB D.BD∶AC=OD∶OC
返回
9.(中考·兰州)如图,在△ABC中,DE∥BC,若 AD 2 ,
则 AE 等于( )
DB 3
C
求证
.
证明:A如B 图 B,D过点C作CE∥DA,交BA的延长线于点E. ∴∠1A=C∠ED,C∠2=∠3.①
∵AD是△ABC的角平分线,
∴∠1=∠2.∴∠3=∠E.
∴AC=AE.②
又∵AD∥CE,∴
.③

. AB BD
(1)上AB述证B明D过程中A,E步骤D①C ②③处的理由是什么?(写出 A两C条即DC可)
(2)用三角形内角平分线定理解答:在△ABC中,AD是角平 分线,AB=7 cm,AC=4 cm,BC=6 cm,求BD的长.

人教版初中数学九年级下册27.2:相似三角形 解答题专项

人教版初中数学九年级下册27.2:相似三角形 解答题专项

人教版九年级下册27.2相似三角形解答题专项1.如图,△ABC中,BD平分∠ABC,E为BC上一点,∠BDE=∠BAD=90°.(1)求证:BD2=BA•BE;(2)若AB=6,BE=8,求CD的长.2.如图,在正方形ABCD中,E是AD边的中点,AP⊥BE于点P,延长AP交CD于点F,连接CP.(1)求证:①BP=2AP;②PC=BC;(2)求的值.3.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若△MBN与△ABC相似,求t的值.(2)当t为何值时,四边形ACNM的面积最小?并求出最小值.4.如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)判定△ABP与△PCD是否相似,说明理由;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.5.如图,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G,若=3,求的值.6.如图,四边形ABCD内接于⊙O,AB是直径,C为的中点,延长AD、BC交于点E,连接AC、BD.(1)求证:AB=AE;(2)若AB=5,DE=2,求线段CE的长.7.如图,在平行四边形ABCD中,过点A作AE垂直BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=6,AD=8,AF=4,求AE的长.8.如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s速度向点c移动,同时动点Q从C出发以1cm/s的速度向点A移动,设它们的运动时间为t 秒.(1)根据题意知:CQ=cm,CP=cm;(用含t的代数式表示)(2)t为何值时,△CPQ与△ABC相似.9.如图,点P是菱形ABCD的对角线AC上一点,连接DP并延长,交AB于点F,交CB 的延长线于点E.求证:(1)△APB≌△APD;(2)PD2=PE•PF.10.如图,已知∠DAB=∠ECB,∠ABD=∠CBE.求证:△ABC∽△DBE.11.如图,AF,AG分别是△ABC和△ADE的高,∠BAF=∠DAG.(1)求证:△ABC∽△ADE;(2)若DE=3,,求BC的长.12.已知:如图,BF、CE分别是△ABC的边AC、AB上的高,BF与CE相交于点O,AN 是∠BAC的角平分线,交EF于点M,交BC于点N.(1)求证;△ABF∽△ACE;(2)求证:=.13.如图,在△ABC中,∠ABC=90°,F是AC的中点,过AC上一点D作DE∥AB,交BF的延长线于点E,AG⊥BE,垂足是G,连接BD,AE.(1)求证:△ABC∽△BGA;(2)若AF=5,AB=8,求FG的长;14.如图,△ABC中,D为BC边上的一点,E在AD上,过点E作直线l分别和AB、AC 两边交于点P和点Q,且EP=EQ.(1)当点P和点B重合的时候,求证:;(2)当P、Q不与A、B、C三点重合时,求证:.15.如图,△ADE∽△ABC,且=,点D在△ABC内部,连结BD、CD、CE.(1)求证:△ABD∽△ACE.(2)若CD=CE,BD=3,且∠ABD+∠ACD=90°,求DE的长.16.如图,⊙O中的弦AC、BD相交于点E.(1)求证:AE•CE=BE•DE;(2)若AE=4,CE=3,BD=8,求线段BE的长.17.如图,已知点D为△ABC内一点,点E为△ABC外一点,且满足.(1)求证:△ABD∽△ACE;(2)联结CD,如果∠ADB=90°,∠BAD=∠ACD=30°,BC=,AC=4,求CD 的长.18.如图,在△ABC中,∠C=60°,以AB为直径的半圆O分别交AC,BC于点D,E,已知⊙O的半径为2.(1)求证:△CDE∽△CBA;(2)求DE的长.19.如图,在矩形ABCD中,AB=4,BC=4,点E是AB上动点,以DE为直径的圆交对角线AC于F,EG⊥AC垂足为G.(1)求证:△EFD∽△EGA;(2)求FG的长;(3)直接写出DF+DG的最小值为.20.如图,点E在△ABC的边AB上,过点B、C、E的⊙O切AC于点C,直径CD交BE 于点F,连接BD、DE,已知∠A=∠CDE.(1)求证:∠CDB=2∠A;(2)若AC=,BD=1,求BF的长.相似三角形专项练习参考答案与试题解析一.解答题(共20小题)1.如图,△ABC中,BD平分∠ABC,E为BC上一点,∠BDE=∠BAD=90°.(1)求证:BD2=BA•BE;(2)若AB=6,BE=8,求CD的长.【解答】证明:(1)∵BD平分∠ABC,∴∠ABD=∠CBD,又∵∠BDE=∠BAD=90°,∴△ABD∽△DBE,∴,∴BD2=BA•BE;(2)∵AB=6,BE=8,BD2=BA•BE,∴BD=4,∴DE===4,∵∠BDC=∠A+∠ABD=∠BDE+∠EDC,∴∠ABD=∠CDE,∴∠CDE=∠DBC,又∵∠C=∠C,∴△BCD∽△DCE,∴,∴,∴EC=4,CD=4.2.如图,在正方形ABCD中,E是AD边的中点,AP⊥BE于点P,延长AP交CD于点F,连接CP.(1)求证:①BP=2AP;②PC=BC;(2)求的值.【解答】解:(1)证明:①∵在正方形ABCD中,E是AD边的中点,∴在Rt△EBA中,AB=2AE,∵AP⊥BE于点P,∴Rt△ABP∽Rt△EBA,∴==,∴BP=2AP.②如图,过点C作CH⊥BE于点H,则∠BCH+∠PBC=90°,又∠ABP+∠PBC=90°,∴∠BCH=∠ABP,又BC=AB,∴Rt△BCH≌Rt△ABP(AAS),∴BH=AP,又BP=2AP,∴BH=PH,又CH⊥BE,∴PC=BC.(2)如图,同(1)②可证:Rt△AFD≌Rt△BEA,∴AF=BE,在Rt△BEA中,若设AE=1,则AB=2,BE=,∵AP⊥BE于点P,∴AP•BE=AB•AE,∴AP==,则PF=AF﹣AP=BE﹣AP=﹣=,∴=.3.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若△MBN与△ABC相似,求t的值.(2)当t为何值时,四边形ACNM的面积最小?并求出最小值.【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,AC=5,∠BAC=60°,∴∠B=30°,∴AB=2AC=10,BC=5.分两种情况:①当△MBN∽△ABC时,则,即,解得:t=.②当△NBM∽△ABC时,同理可得:t=,综上所述:当t=或时,△MBN与△ABC相似;(2)过M作MD⊥BC于点D,则MD∥AC,∴△BMD∽△BAC,∴,即=,解得:MD=t.设四边形ACNM的面积为y,y=×5×5﹣(5﹣t)t=(t﹣2.5)2+.根据二次函数的性质可知,当t=2.5时,y的值最小值为.4.如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)判定△ABP与△PCD是否相似,说明理由;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.【解答】解:(1)△BAP∽△CPD,理由如下:∵AB=AC,∴∠ABC=∠ACB,∵∠APC=∠ABC+∠BAP,∴∠APD+∠DPC=∠ABC+∠BAP,又∵∠APD=∠B,∴∠DPC=∠BAP,∴△BAP∽△CPD;(2)∵PD∥AB,∴∠APD=∠BAP,又∵∠APD=∠B,∴∠BAP=∠B=∠C,又∵∠B=∠B,∴△ABC∽△PBA,∴,∴,∴BP=.5.如图,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G,若=3,求的值.【解答】解:如图,过点E作EH∥AB交BG于点H,则有△ABF∽△EHF,∴,∴AB=3EH.∵四边形ABCD是平行四边形,∴AB∥CD,又∵EH∥AB,∴EH∥CD,CD=AB=3HE,又∵E为BC中点,∴EH为△BCG的中位线,∴CG=2EH,∴==.6.如图,四边形ABCD内接于⊙O,AB是直径,C为的中点,延长AD、BC交于点E,连接AC、BD.(1)求证:AB=AE;(2)若AB=5,DE=2,求线段CE的长.【解答】证明:(1)∵C为的中点,∴=,∴∠BAC=∠CAD,∵AB是直径,∴∠BCA=90°=∠ACE,∴∠E=∠ABC,∴AB=AE;(2)∵AB=AE=5,∠ACB=90°,∴CE=BC=EB,∵四边形ABCD是圆内接四边形,∴∠ABC+∠ADC=180°,又∵∠ADC+∠EDC=180°,∴∠EDC=∠ABC,又∵∠E=∠E,∴△EDC∽△EBA,∴,∴,∴EC=.7.如图,在平行四边形ABCD中,过点A作AE垂直BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=6,AD=8,AF=4,求AE的长.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,AD=BC,∴∠ADE=∠DEC,∠B+∠C=180°,∵∠AFB=∠B,∠AFE+∠AFD=180°,∴∠C=∠AFD,∴△ADF∽△DEC;(2)∵△ADF∽△DEC,∴,∴,∴DE=12,∵AE2=DE2﹣AD2=144﹣64=80,∴AE=4.8.如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s速度向点c移动,同时动点Q从C出发以1cm/s的速度向点A移动,设它们的运动时间为t 秒.(1)根据题意知:CQ=t cm,CP=(4﹣2t)cm;(用含t的代数式表示)(2)t为何值时,△CPQ与△ABC相似.【解答】解:(1)经过t秒后,CQ=t,CP=4﹣2t,故答案为:t;(4﹣2t).(2)设经过t秒后两三角形相似,则可分下列两种情况进行求解,①若Rt△ABC∽Rt△QPC则,即,解得t=1.2;②若Rt△ABC∽Rt△PQC则,即,解得t=;由P点在BC边上的运动速度为2cm/s,Q点在AC边上的速度为1cm/s,可求出t的取值范围应该为0<t<2,验证可知①②两种情况下所求的t均满足条件.答:要使△CPQ与△CBA相似,运动的时间为1.2或秒.9.如图,点P是菱形ABCD的对角线AC上一点,连接DP并延长,交AB于点F,交CB 的延长线于点E.求证:(1)△APB≌△APD;(2)PD2=PE•PF.【解答】证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠BAC=∠DAC,在△ABP和△ADP中,,∴△ABP≌△ADP(SAS);(2)∵△ABP≌△ADP,∴PB=PD,∠ADP=∠ABP,∵AD∥BC,∴∠ADP=∠E,∴∠E=∠ABP,又∵∠FPB=∠EPB,∴△EPB∽△BPF,∴,∴PB2=PE•PF,∴PD2=PE•PF.10.如图,已知∠DAB=∠ECB,∠ABD=∠CBE.求证:△ABC∽△DBE.【解答】证明:∵∠DAB=∠ECB,∠ABD=∠CBE,∴△ABD∽△CBE,∴=,即,∵∠ABC=∠ABD+∠DBC,∠DBE=∠DBC+CBE,∵,∠ABC=∠DBE,∴△ABC∽△DBE.11.如图,AF,AG分别是△ABC和△ADE的高,∠BAF=∠DAG.(1)求证:△ABC∽△ADE;(2)若DE=3,,求BC的长.【解答】(1)证明:∵AF,AG分别是△ABC和△ADE的高,∴AF⊥BC,AG⊥DE,∴∠AFB=90°,∠AGD=90°,∴∠BAF+∠B=90°,∠DAG+∠ADG=90°,∵∠BAF=∠DAG,∴∠B=∠ADG,又∵∠EAD=∠BAC,∴△ABC∽△ADE;(2)解:∵△ADE∽△ABC,∴,∵,BC=3,∴,∴BC=.12.已知:如图,BF、CE分别是△ABC的边AC、AB上的高,BF与CE相交于点O,AN 是∠BAC的角平分线,交EF于点M,交BC于点N.(1)求证;△ABF∽△ACE;(2)求证:=.【解答】解:(1)证明:∵BF、CE分别是△ABC的边AC、AB上的高,∴BF⊥AC,CE⊥AB,∴∠AFB=∠AEC=90°,又∵∠CAE=∠BAF,∴△ABF∽△ACE;(2)证明:∵△ABF∽△ACE,∴=,∴=,又∵∠EAF=∠CAB,∴△EAF∽△CAB,∴=①,∠AEF=∠ACB,∵AN是∠BAC的角平分线,∴∠EAM=∠CAN,∴△EAM∽△CAN,∴=②,由①②可得:=.13.如图,在△ABC中,∠ABC=90°,F是AC的中点,过AC上一点D作DE∥AB,交BF的延长线于点E,AG⊥BE,垂足是G,连接BD,AE.(1)求证:△ABC∽△BGA;(2)若AF=5,AB=8,求FG的长;【解答】解:(1)∵∠ABC=90°,F是AC的中点,∴BF=AC=AF,∴∠F AB=∠FBA,∵AG⊥BE,∴∠AGB=90°,∴∠ABC=∠AGB,∴△ABC∽△BGA;(2)∵AF=5,∴AC=2AF=10,BF=5,∵△ABC∽△BGA,∴=,∴BG==,∴FG=BG﹣BF=﹣5=.14.如图,△ABC中,D为BC边上的一点,E在AD上,过点E作直线l分别和AB、AC 两边交于点P和点Q,且EP=EQ.(1)当点P和点B重合的时候,求证:;(2)当P、Q不与A、B、C三点重合时,求证:.【解答】证明:(1)如图,过点Q作QF∥BC交AD于F,∴△FQE∽△DPE,∴=,又∵QE=EP,∴BD=FQ,EF=DE,∵QF∥CD,∴△AFQ∽△ADC,∴,∴,∴;(2)如图,过点Q作QF∥BC交AD于F,过点P作PH∥BC交AD于H,∴QF∥PH,∴△FQE∽△HPE,∴,又∵QE=EP,∴PH=FQ,EF=HE,∵FQ∥BC,∴△AQF∽△ACD,∴,∵PH∥BC,∴△APH∽△ABD,∴,∴===.15.如图,△ADE∽△ABC,且=,点D在△ABC内部,连结BD、CD、CE.(1)求证:△ABD∽△ACE.(2)若CD=CE,BD=3,且∠ABD+∠ACD=90°,求DE的长.【解答】证明:(1)∵△ADE∽△ABC,∴,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△ABD∽△ACE;(2)∵△ABD∽△ACE,∴,∠ABD=∠ACE,又∵BD=3,∴CE=2,∴CD=CE=2,∵∠ABD+∠ACD=90°,∴∠ACD+∠ACE=90°,∴∠DCE=90°,∴DE=CD=2.16.如图,⊙O中的弦AC、BD相交于点E.(1)求证:AE•CE=BE•DE;(2)若AE=4,CE=3,BD=8,求线段BE的长.【解答】(1)证明:由圆周角定理得,∠A=∠B,∠D=∠C,∴△ADE∽△BCE,∴=,∴AE•CE=BE•DE;(2)解:由(1)得,AE•CE=BE•DE,则4×3=BE×(8﹣BE),解得,BE1=2,BE2=6,即线段BE的长为2或6.17.如图,已知点D为△ABC内一点,点E为△ABC外一点,且满足.(1)求证:△ABD∽△ACE;(2)联结CD,如果∠ADB=90°,∠BAD=∠ACD=30°,BC=,AC=4,求CD 的长.【解答】证明:(1)∵,∴△ABC∽△ADE,∴∠BAC=∠DAE,∴∠BAD=∠CAE,又∵,∴△ABD∽△ACE;(2)如图,∵△ABD∽△ACE,∴∠ADB=∠AEC=90°,∠BAD=∠CAE=30°,∴CE=AC=2,AE=CE=2,∠ACE=60°,∴∠DCE=∠ACD+∠ACE=90°,∵,∴=,∴DE=3,∴CD===.18.如图,在△ABC中,∠C=60°,以AB为直径的半圆O分别交AC,BC于点D,E,已知⊙O的半径为2.(1)求证:△CDE∽△CBA;(2)求DE的长.【解答】(1)证明:∵∠ADE+∠B=180°,∠ADE+∠CDE=180°,∴∠CDE=∠B,而∠DCE=∠BCA,∴△CDE∽△CBA;(2)连接BD,如图,∵AB为直径,∵∠BDC=90°,∠C=60°,∴BC=2CD,∵△CDE∽△CBA;∴==,∴DE=AB=×4=2.19.如图,在矩形ABCD中,AB=4,BC=4,点E是AB上动点,以DE为直径的圆交对角线AC于F,EG⊥AC垂足为G.(1)求证:△EFD∽△EGA;(2)求FG的长;(3)直接写出DF+DG的最小值为2.【解答】解:(1)∵以DE为直径的圆交对角线AC于F,∴∠EAG=∠EDF,∠EFD=90°,∵EG⊥AC垂足为G,∴∠EGA=90°=∠EFD,∴△EFD∽△EGA;(2)∵在矩形ABCD中,AB=4,BC=4,∴∠EAD=90°=∠EFD,∴tan∠EAG===,∴在三角形EGA中,sin∠EAG==,∵∠EGF=∠EAD=90°,∵DE为圆的直径,∴∠GFE=∠ADE,∴△EGF∽△EAD,∴==,∵DA=BC=4,∴FG=2;(3)过点G作GM⊥AD于点M,如下图所示:设AE=2x,∵∠EAG=30°,∴∠GAM=60°,∴EG=x,GA=x,∴在直角三角形GAM中,AM=x,GM=x,∵AD=BC=4,∴MD=4﹣x,∴在直角三角形GMD中,GD2=GM2+MD2,∴GD2=x2+16+x2﹣4x=3x2﹣4x+16,∵在直角三角形AED中,直径ED=,∵在直角三角形EFD中,∠EDF=∠EAG=30°,∴DF=×ED,∴DF2=3x2+12,∵当DF=DG时,DF+DG取最小值,∴3x2﹣4x+16=3x2+12,∴x=,∴DF=,DG=,∴DF+DG取最小值为2.故答案为:2.20.如图,点E在△ABC的边AB上,过点B、C、E的⊙O切AC于点C,直径CD交BE 于点F,连接BD、DE,已知∠A=∠CDE.(1)求证:∠CDB=2∠A;(2)若AC=,BD=1,求BF的长.【解答】解:(1)证明:∵AC是⊙O的切线,∴AC⊥CF,∴∠ACF=90°,∴∠A+∠AFC=90°,∴∠A+∠BCD+∠ABC=90°,又∠CDE=∠ABC,∠A=∠CDE,∴2∠A+∠BCD=90°,∵CD是⊙O的直径,∴∠CBD=90°,∴∠BCD+∠CDB=90°,∴∠CDB=2∠A;(2)过C作CH⊥AB于H,交BD的延长线于G,如图:∵∠DCH+∠ACH=90°,∠A+∠ACH=90°,∴∠DCH=∠A,又∵∠CDB=2∠A;∴∠CDB=2∠DCH,∴∠G=∠DCH,∴CD=DG.∵BD=1,BC=,在Rt△BCD中,CD=,∴DG=3,∴BG=BD+DG=4,CG=,∴cos∠G=,∴cos∠A=,又cos∠A=,∴AH=AC•cos∠A=,AF=,∵∠A=∠CDE,∠ABC=∠CDE,∴∠A=∠ABC,∴AC=BC,∴AB=2AH=,∴BF=AB﹣AF=.。

27.2相似三角形1相似三角形的判定用三边比例关系判定三角形相似(教案)

27.2相似三角形1相似三角形的判定用三边比例关系判定三角形相似(教案)
然而,我也注意到在小组讨论中,有些学生过于依赖同伴,自己思考不足。在今后的教学中,我需要更加关注这部分学生,鼓励他们独立思考,提高问题解决能力。此外,对于教学难点,我可能需要设计更多有针对性的练习和解释,以帮助学生克服困难。
在总结回顾环节,学生们对今天所学的知识有了整体的认识,但仍有个别学生表示对某些部分理解不够透彻。这提醒我,在后续的教学中,要关注学生的个体差异,尽量让每个学生都能跟上教学进度。
3.重点难点解析:在讲授过程中,我会特别强调三边比例关系判定相似的两个重点:三组对应边的比例相等和两组对应边的比例相等且夹角相等。对于难点部分,我会通过具体的图形和例子来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过测量边长和角度来判断两个三角形是否相似。
b.如果两个三角形中有两组对应边的比例相等,并且夹角相等,即a/ b = c/ d,且∠A = ∠C或∠B = ∠D,则这两个三角形相似。
二、核心素养标
本节课的核心素养目标旨在培养学生的以下能力:
1.空间观念:通过探究相似三角形的判定,使学生能够理解和运用空间图形的性质,发展空间想象力和直觉思维能力。
2.抽象概括能力:引导学生从具体实例中抽象出相似三角形的判定方法,提高他们的逻辑推理和概括能力。
3.数据分析观念:培养学生通过观察、分析三角形边长数据,运用三边比例关系解决问题的能力,增强数据分析观念。
4.数学应用意识:将相似三角形的判定应用于解决实际问题,让学生体会数学与现实生活的联系,提高数学应用意识。
-重点知识点举例:
a.如果两个三角形的三组对应边的比例相等,即a/ b = c/ d = e/ f,则这两个三角形相似。

第27章《相似》好题集(36):27.2 相似三角形

第27章《相似》好题集(36):27.2 相似三角形

第27章《相似》好题集(36):27.2相似三角形第27章《相似》好题集(36):27.2 相似三角形解答题781.已知BD,CE是△ABC的高,BD•AC_________AB•CE(用两种方法).782.如图,在正方形网格上有△A1B1C1、△A2B2C2,这两个三角形相似吗如果相似,△A1B1C1和△A2B2C2的面积比=_________.783.如图,在平行四边形ABCD中,过顶点A的直线AF交CD于E点,交BC的延长线于F点.(1)则△ADE_________△FBA;(2)若E点为CD中点,则的值为_________.784.已知梯形ABCD中,AB∥CD,AC与BD交于O点,AB=2cm,CD=4cm,S△AOB=1cm2.则△COD的面积是_________cm2,△AOD的面积是_________cm2.785.如图,已知AB:AD=BC:DE=AC:AE,则∠ABD与∠ACE的关系_________.786.如图,在△ABC中,矩形DEFG,G、F在BC上,D、E分别在AB、AC上,AH⊥BC交DE于M,DG:DE=1:2,BC=12 cm,AM=8 cm,则矩形长为_________cm,宽为_________cm.787.如图,在△ABC中,D是AC上的一点,已知AB2=AD•AC,∠ABD=35°,则∠C=_________度.788.如图所示,在△ABC中,AM与BN相交于D,BM=3MC,AD=DM,则BD:DN的值为_________.789.(2010•宁德)我们知道当人的视线与物体表面互相垂直时的视觉效果最佳.如图是小明站在距离墙壁1.60米处观察装饰画时的示意图,此时小明的眼睛与装饰画底部A处于同一水平线上,视线恰好落在装饰画中心位置E 处,且与AD垂直.已知装饰画的高度AD为0.66米,求:(1)装饰画与墙壁的夹角∠CAD=_________度(精确到1°);(2)装饰画顶部到墙壁的距离DC=_________米(精确到0.01米).790.(2009•陕西)小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m(点A、E、C在同一直线上).已知小明的身高EF是1.7m,楼高AB是_________m(结果精确到0.1m).791.(2009•德城区)亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M,颖颖的头顶B及亮亮的眼睛A恰在一条直线上时,两人分别标定自己的位置C,D.然后测出两人之间的距离CD=1.25m,颖颖与楼之间的距离DN=30m(C,D,N在一条直线上),颖颖的身高BD=1.6m,亮亮蹲地观测时眼睛到地面的距离AC=0.8m.住宅楼的高度为_________米.792.(2007•玉溪)如图所示,一段街道的两边缘所在直线分别为AB,PQ,并且AB∥PQ.建筑物的一端DE所在的直线MN⊥AB于点M,交PQ于点N.小亮从胜利街的A处,沿着AB方向前进,小明一直站在点P的位置等候小亮.(1)请你在图中画出小亮恰好能看见小明时的视线,以及此时小亮所在位置(用点C标出);(2)已知:MN=20 m,MD=8 m,PN=24 m,求(1)中的点C到胜利街口的距离CM=_________m.793.(2005•济南)如图,在一个长40m、宽30m的长方形小操场上,王刚从A点出发,沿着A⇒B⇒C的路线以3m/s的速度跑向C地.当他出发4s后,张华有东西需要交给他,就从A地出发沿王刚走的路线追赶.当张华跑到距B地2m的D处时,他和王刚在阳光下的影子恰好重叠在同一条直线上.此时,A处一根电线杆在阳光下的影子也恰好落在对角线AC上.(1)求他们的影子重叠时,两人相距_________米.(DE的长)(2)求张华追赶王刚的速度是_________m/s(精确到0.1m/s).794.如图,小龙要测量楼的顶层一根旗杆的顶端距地面的距离.他在地面上放置一面镜子,若小龙的眼睛距镜面中心点2米,镜面中心点距离小龙的脚1.2米,距离大楼底部12米,这根旗杆的顶端距地面的距离为_________米.795.如图,阳光通过窗口照到室内,在地面上留下一段亮区.已知亮区一边到窗下的墙脚距离CE=3.6m,窗高AB=1.2m,窗口底边离地面的高度BC=1.5m,亮区ED的长为_________m.796.一位同学想利用树影测树高AB.在某一时刻测得1m的竹竿的影长为0.7m,但当他马上测树影时,发现影子不全落在地上,一部分落在了附近的﹣幢高楼上(如图).于是他只得测出了留在墙上的影长CD为1.5m,以及地面部分上的影长BD为4.9m.树高是_________米.797.有一块两直角边长分别为3cm和4cm的直角三角形铁皮,要利用它来裁剪一个正方形,有两种方法:一种是正方形的一边在直角三角形的斜边上,另两个顶点在两条直角边上,如图(1);另一种是一组邻边在直角三角形的两直角边上,另一个顶点在斜边上,如图(2).两种情形下正方形的面积哪个大?_________(填(1)或(2)即可).798.如图所示,AD、BC为两路灯,身高相同的小明、小亮站在两路灯杆之间,两人相距6.5m,小明站在P处,小亮站在Q处,小明在路灯C下的影长为2m,已知小明身高1.8m,路灯BC高9m.①小亮在路灯D下的影长为_________m;②建筑物AD的高为_________m.799.小明同学向利用影长测量学校旗杆的高度,在某一时刻,旗杆的投影一部分在地面上,另一部分在某座建筑物的墙上,测得其长度分别为9.6米和2米(如图),在同一时刻测得1米长的标杆影长为1.2米,学校旗杆的高度为_________米;800.数学兴趣小组的同学们想利用树影测量树高.课外活动时他们在阳光下测得一根长为1米的竹竿的影子是0.9米,但当他们马上测量树高时,发现树的影子不落在地面上,有一部分影子落在教学楼的台阶上,且影子的末端刚好落在最后一级台阶的上端C处.同学们认为继续量也可以求出树高,他们测得落在地面的影长为1.1米,台阶总的高度为1.0米,台阶水平总宽度为1.6米(每级台阶的宽度相同).树高为_________米.(假设两次测量时太阳光线是平行的)801.如图,一油桶高AE为1m,桶内有油,一根木棒AB长为1.2m,从桶盖的小口(A)处斜插入桶内,一端插到桶底,另一端与小口(A)齐平,抽出木棒,量得棒上未浸油部分AC长为0.48m.桶内油面的高度DE=_________m.802.某校九年级同学在一次数学实践活动中,去测量学校的树高,小明这一组的测量方法如下:如图,在B处竖一标杆AB,已知标杆AB=2.5m,小明站在点F处,眼睛E目测标杆顶部A与树顶C正好在同一视线上,(点F,B,D也在同一直线上).这一组其他同学量得标杆到树的水平距离BD=3.6m,小明到标杆的水平距离FB=2m,小明的目高(眼睛到脚底的距离)EF=1.5m.根据这些数据,可知树CD的高度为_________米.803.已知:如图,一人在距离树21米的点A处测量树高,将一长为2米的标杆BE在与人相距3米处垂直立于地面,此时,观察视线恰好经过标杆顶点E及树的顶点C,此树的高是_________米.804.如图,在水平桌面上的两个“E”,当点P1,P2,O在一条直线上时,在点O处用①号“E”(大“E”)测得的视力与用②号“E”(小“E”)测得的视力效果相同.(1)△P1D1O与△P2D2O相似吗?_________.(2)图中b1,b2,l1,l2满足怎样的关系式;(3)若b1=3.2cm,b2=2cm,①号“E”的测量距离l1=8m,要使得测得的视力相同,则②号“E”的测量距离l2应为_________m.805.如图,电线杆上有一盏路灯O,电线杆与三个等高的标杆整齐划﹣地排列在马路的﹣侧,AB、CD、EF是三个标杆,相邻的两个标杆之间的距离都是2 m,已知AB、CD在灯光下的影长分别为BM=1.6 m,DN=0.6m.(1)请画出路灯O的位置和标杆EF在路灯灯光下的影子.(2)标杆EF的影长为_________m.806.如图,某测量工作人员与标杆顶端F、电视塔顶端在同一直线上,已知此人眼睛距地面1.6米,标杆为3.2米,且BC=1米,CD=5米,电视塔的高ED=_________米.807.如图,灯泡在圆桌的正上方,当距桌面2m时,圆桌的影子的直径为2.8m,在仅仅改变圆桌的高度,其他条件不变的情况下,圆桌的桌面再上升_________米,其影子的直径变为3.2m.808.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米.(1)一个实际或现实的问题只有数学化后,才有可能用数学的思想方法解决.请你认真读题,画出示意图,并在示意图上标注必要的字母和数字.(2)利用示意图,树的高度是_________米.809.小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平地面上放一面平面镜,镜子与教学大楼的距离EA=21米.当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC=1.6米.教学大楼的高度AB是_________米(注意:根据光的反射定律:反射角等于入射角).810.新域广场省政府办公楼前,五星红旗在空中飘扬,同学们为了测出旗杆的高度,设计了三种方案,方案一:在地上放一块平面镜,使人能在镜中刚好能看到旗杆顶.如图(1),测得BO=60米;OD=3.4米,CD=1.7米;方案二:在晴天观测人和旗杆的影子,如图(2),测得CD=1米,FD=0.6米,EB=18米;方案三:伸直手臂,在手中竖直拿一刻度尺,眼睛通过刻度尺观测旗杆顶端和旗杆底端,如图(3)所示,并测得BD=90米,EG=0.2米,此人的臂长为0.6米.请你任选其中的一种方案.(1)其运用的物理知识为光是直线传播的.(2)利用同学们实测的数据,旗杆的高度为_________米.第27章《相似》好题集(36):27.2 相似三角形参考答案与试题解析解答题781.已知BD,CE是△ABC的高,BD•AC=AB•CE(用两种方法).=,=ACCE=782.如图,在正方形网格上有△A1B1C1、△A2B2C2,这两个三角形相似吗如果相似,△A1B1C1和△A2B2C2的面积比=4:1.,,783.如图,在平行四边形ABCD中,过顶点A的直线AF交CD于E点,交BC的延长线于F点.(1)则△ADE∽△FBA;(2)若E点为CD中点,则的值为.,根据784.已知梯形ABCD中,AB∥CD,AC与BD交于O点,AB=2cm,CD=4cm,S△AOB=1cm2.则△COD的面积是4cm2,△AOD的面积是2cm2.=,=,785.如图,已知AB:AD=BC:DE=AC:AE,则∠ABD与∠ACE的关系相等.786.如图,在△ABC中,矩形DEFG,G、F在BC上,D、E分别在AB、AC上,AH⊥BC交DE于M,DG:DE=1:2,BC=12 cm,AM=8 cm,则矩形长为8cm,宽为4cm.=,即=787.如图,在△ABC中,D是AC上的一点,已知AB2=AD•AC,∠ABD=35°,则∠C=35度.788.如图所示,在△ABC中,AM与BN相交于D,BM=3MC,AD=DM,则BD:DN的值为7:1.AB,所以,所以,即EF=ABED=AB AB=AB,所以789.(2010•宁德)我们知道当人的视线与物体表面互相垂直时的视觉效果最佳.如图是小明站在距离墙壁1.60米处观察装饰画时的示意图,此时小明的眼睛与装饰画底部A处于同一水平线上,视线恰好落在装饰画中心位置E 处,且与AD垂直.已知装饰画的高度AD为0.66米,求:(1)装饰画与墙壁的夹角∠CAD=12度(精确到1°);(2)装饰画顶部到墙壁的距离DC=0.14米(精确到0.01米).CAD=AD=0.33ABE==,790.(2009•陕西)小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m(点A、E、C在同一直线上).已知小明的身高EF是1.7m,楼高AB是20.0m(结果精确到0.1m).791.(2009•德城区)亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M,颖颖的头顶B及亮亮的眼睛A恰在一条直线上时,两人分别标定自己的位置C,D.然后测出两人之间的距离CD=1.25m,颖颖与楼之间的距离DN=30m(C,D,N在一条直线上),颖颖的身高BD=1.6m,亮亮蹲地观测时眼睛到地面的距离AC=0.8m.住宅楼的高度为20.8米.792.(2007•玉溪)如图所示,一段街道的两边缘所在直线分别为AB,PQ,并且AB∥PQ.建筑物的一端DE所在的直线MN⊥AB于点M,交PQ于点N.小亮从胜利街的A处,沿着AB方向前进,小明一直站在点P的位置等候小亮.(1)请你在图中画出小亮恰好能看见小明时的视线,以及此时小亮所在位置(用点C标出);(2)已知:MN=20 m,MD=8 m,PN=24 m,求(1)中的点C到胜利街口的距离CM=16m.793.(2005•济南)如图,在一个长40m、宽30m的长方形小操场上,王刚从A点出发,沿着A⇒B⇒C的路线以3m/s的速度跑向C地.当他出发4s后,张华有东西需要交给他,就从A地出发沿王刚走的路线追赶.当张华跑到距B地2m的D处时,他和王刚在阳光下的影子恰好重叠在同一条直线上.此时,A处一根电线杆在阳光下的影子也恰好落在对角线AC上.(1)求他们的影子重叠时,两人相距米.(DE的长)(2)求张华追赶王刚的速度是 3.7m/s(精确到0.1m/s).m=BE==2﹣=m794.如图,小龙要测量楼的顶层一根旗杆的顶端距地面的距离.他在地面上放置一面镜子,若小龙的眼睛距镜面中心点2米,镜面中心点距离小龙的脚1.2米,距离大楼底部12米,这根旗杆的顶端距地面的距离为16米.,故,即,解得CD==≈795.如图,阳光通过窗口照到室内,在地面上留下一段亮区.已知亮区一边到窗下的墙脚距离CE=3.6m,窗高AB=1.2m,窗口底边离地面的高度BC=1.5m,亮区ED的长为 1.6m.796.一位同学想利用树影测树高AB.在某一时刻测得1m的竹竿的影长为0.7m,但当他马上测树影时,发现影子不全落在地上,一部分落在了附近的﹣幢高楼上(如图).于是他只得测出了留在墙上的影长CD为1.5m,以及地面部分上的影长BD为4.9m.树高是8.5米.=,797.有一块两直角边长分别为3cm和4cm的直角三角形铁皮,要利用它来裁剪一个正方形,有两种方法:一种是正方形的一边在直角三角形的斜边上,另两个顶点在两条直角边上,如图(1);另一种是一组邻边在直角三角形的两直角边上,另一个顶点在斜边上,如图(2).两种情形下正方形的面积哪个大?(2)(填(1)或(2)即可).=5=,cm=,=x==,,y=798.如图所示,AD、BC为两路灯,身高相同的小明、小亮站在两路灯杆之间,两人相距6.5m,小明站在P处,小亮站在Q处,小明在路灯C下的影长为2m,已知小明身高1.8m,路灯BC高9m.①小亮在路灯D下的影长为 1.5m;②建筑物AD的高为12m.799.小明同学向利用影长测量学校旗杆的高度,在某一时刻,旗杆的投影一部分在地面上,另一部分在某座建筑物的墙上,测得其长度分别为9.6米和2米(如图),在同一时刻测得1米长的标杆影长为1.2米,学校旗杆的高度为10米;800.数学兴趣小组的同学们想利用树影测量树高.课外活动时他们在阳光下测得一根长为1米的竹竿的影子是0.9米,但当他们马上测量树高时,发现树的影子不落在地面上,有一部分影子落在教学楼的台阶上,且影子的末端刚好落在最后一级台阶的上端C处.同学们认为继续量也可以求出树高,他们测得落在地面的影长为1.1米,台阶总的高度为1.0米,台阶水平总宽度为1.6米(每级台阶的宽度相同).树高为4米.(假设两次测量时太阳光线是平行的)801.如图,一油桶高AE为1m,桶内有油,一根木棒AB长为1.2m,从桶盖的小口(A)处斜插入桶内,一端插到桶底,另一端与小口(A)齐平,抽出木棒,量得棒上未浸油部分AC长为0.48m.桶内油面的高度DE=0.6m.==802.某校九年级同学在一次数学实践活动中,去测量学校的树高,小明这一组的测量方法如下:如图,在B处竖一标杆AB,已知标杆AB=2.5m,小明站在点F处,眼睛E目测标杆顶部A与树顶C正好在同一视线上,(点F,B,D也在同一直线上).这一组其他同学量得标杆到树的水平距离BD=3.6m,小明到标杆的水平距离FB=2m,小明的目高(眼睛到脚底的距离)EF=1.5m.根据这些数据,可知树CD的高度为 4.3米.803.已知:如图,一人在距离树21米的点A处测量树高,将一长为2米的标杆BE在与人相距3米处垂直立于地面,此时,观察视线恰好经过标杆顶点E及树的顶点C,此树的高是14米.804.如图,在水平桌面上的两个“E”,当点P1,P2,O在一条直线上时,在点O处用①号“E”(大“E”)测得的视力与用②号“E”(小“E”)测得的视力效果相同.(1)△P1D1O与△P2D2O相似吗?相似.(2)图中b1,b2,l1,l2满足怎样的关系式;(3)若b1=3.2cm,b2=2cm,①号“E”的测量距离l1=8m,要使得测得的视力相同,则②号“E”的测量距离l2应为5 m.,即=.)∵且=805.如图,电线杆上有一盏路灯O,电线杆与三个等高的标杆整齐划﹣地排列在马路的﹣侧,AB、CD、EF是三个标杆,相邻的两个标杆之间的距离都是2 m,已知AB、CD在灯光下的影长分别为BM=1.6 m,DN=0.6m.(1)请画出路灯O的位置和标杆EF在路灯灯光下的影子.(2)标杆EF的影长为0.4m.,同理得806.如图,某测量工作人员与标杆顶端F、电视塔顶端在同一直线上,已知此人眼睛距地面1.6米,标杆为3.2米,且BC=1米,CD=5米,电视塔的高ED=11.2米.807.如图,灯泡在圆桌的正上方,当距桌面2m时,圆桌的影子的直径为2.8m,在仅仅改变圆桌的高度,其他条件不变的情况下,圆桌的桌面再上升0.25米,其影子的直径变为3.2m.(,=808.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米.(1)一个实际或现实的问题只有数学化后,才有可能用数学的思想方法解决.请你认真读题,画出示意图,并在示意图上标注必要的字母和数字.(2)利用示意图,树的高度是11.8米.809.小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平地面上放一面平面镜,镜子与教学大楼的距离EA=21米.当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC=1.6米.教学大楼的高度AB是13.44米(注意:根据光的反射定律:反射角等于入射角).810.新域广场省政府办公楼前,五星红旗在空中飘扬,同学们为了测出旗杆的高度,设计了三种方案,方案一:在地上放一块平面镜,使人能在镜中刚好能看到旗杆顶.如图(1),测得BO=60米;OD=3.4米,CD=1.7米;方案二:在晴天观测人和旗杆的影子,如图(2),测得CD=1米,FD=0.6米,EB=18米;方案三:伸直手臂,在手中竖直拿一刻度尺,眼睛通过刻度尺观测旗杆顶端和旗杆底端,如图(3)所示,并测得BD=90米,EG=0.2米,此人的臂长为0.6米.请你任选其中的一种方案.(1)其运用的物理知识为光是直线传播的.(2)利用同学们实测的数据,旗杆的高度为30米.(相似三角形对应高的比等于相似比)菁优网 ©2010-2012 菁优网参与本试卷答题和审题的老师有:Linaliu ;CJX ;lanyan ;zcx ;智波;MMCH ;疯跑的蜗牛;zhehe ;ln_86;399462;zxw ;星期八(排名不分先后)菁优网2012年12月14日。

《相似三角形的性质》精品ppt课件

《相似三角形的性质》精品ppt课件
1.根据你的猜想和证明,你发现相似三角形的对应 中线、对应角平分线、对应高各有什么性质?请你用文 字、图形和符号语言分别描述出来.
结论1:相似三角形的对应中线、对应角平分线、 对应高的比都等于相似比.
生成与挖掘
A A′
B
EF D
A
C
B'
E′ F′ D' C′
若 ABC∽A'B'C', 相似比为k,两个三角形的对应高、 对应中线、对应角平分线分别是 AD和A'D' 、AE 和 A'E、'
形的角平分线也扩大为原来的5倍;( √ )
(2)一个三角形各边长扩大为原来的9倍,这个三角
形的面积也扩大为原来的9倍.( Χ )
《相似三角形的性质》精品实用课件 (PPT优 秀课件 )
《相似三角形的性质》精品实用课件 (PPT优 秀课件 )
例题与练习
例1 如图,在△ABC 和△DEF 中, AB=2DE ,
所以 AD = AB . A' D' A' B'
同理
BE AB B' E' = A' B' .
所以
《相似三角形的性质》精品实用课件 (PPT优 秀课件 )
AD BE A' D' = B' E' .
《相似三角形的性质》精品实用课件 (PPT优 秀课件 )
例题与练习
练习2:
3.在一张复印出来的纸上,一个三角形的一条边由原 图中的2 cm变成了6 cm,放缩比例是多少?这个三角 形的面积发生了什么变化?
即证明
AD A' D '
AB A' B '

27.2.2相似三角形应用举例(一)课件(共15张PPT)

27.2.2相似三角形应用举例(一)课件(共15张PPT)
中 AB=10, A′B′=5, BC=12, 那么
B′C′=__________?
A
B
C
A′
B′
C′
因为△ABC∽△A′B′C′,
所以 AB BC
,
AB BC
所以BC BC AB AB
12 5 6 10
WXQ
胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古 代七大奇观之一”。塔的4个斜面正对东南西北四个方向, 塔基呈正方形,每边长约230多米。据考证,为建成大金 字塔,共动用了10万人花了20年时间.原高146.59 米,但由于经过几千年的风吹雨打,顶端被风化吹蚀.所以高 度有所降低 。
1.8 x 3 60 x 601.8
3 x 36
答:楼高36米.
WXQ
给我一个支点我可以撬起整个地球!
---阿基米德
2.如图,铁道口的栏杆短臂长1m,长臂长16m,当
短臂端点下降0.5m时,长臂端点升高 8 m。
B
16m
C
0.5m ┛ 1mO
A
(第WX1Q 题)


D
WXQ
例2 为了估算河的宽度,我们可以在河
C
E
A
┏ 0.8m
5m D
10m WXQ


B
2.数学兴趣小组测校内一棵树高,有以下 两种方法:
方法一:如图,把镜子放在离树(AB)8M点E处 ,然后沿着直线BE后退到D,这时恰好在镜子里 看到树梢顶点A,再用皮尺量得DE=2.8M,观察 者目高CD=1.6M;
A
A
C
C
D
E
B
WXQ
B
2.数学兴趣小组测校内一棵树高,有 以下两种方法:

27.2相似三角形综合训练练习人教版2024—2025学年九年级下册

27.2相似三角形综合训练练习人教版2024—2025学年九年级下册

27.2相似三角形综合训练练习人教版2024—2025学年九年级下册一、填空1.已知==,且a +b ﹣2c=6,则a 的值为2.如图,E 为▱ABCD 的边AB 延长线上的一点,且BE :AB=2:3,连接DE 交BC于点F ,则CF :AD= .3.如图,已知AB ∥CD ,AD 与BC 相交于点O .若=,AD=10,则AO= .4.如图,△ABC 中,点D 、E 分别在边AB 、BC 上,DE ∥AC .若BD=4,DA=2,BE=3,则EC= .5.如图,DE ∥AB ,AC=3AD ,S △ABC =5,则△CED 的面积是 .6.如图,∠B=∠ACD=90°,BC ∥AD ,若AC=6,AD=10,则AB= .7.两个相似三角形的最短边分别是5cm 和3cm ,它们的周长之差是12cm ,那么小三角形的周长为 .8.如图,在△ABC 中,点D 是边AB 上的一点,∠ADC=∠ACB ,AD=2,BD=6,则边AC 的长为9.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为10.如图,AB ∥GH ∥CD ,点H 在BC 上,AC 与BD 交于点G ,AB=2,CD=3,则GH 的长为 .11.如图,梯形ABCD 中,AB ∥CD ,∠B=∠C=90°,点F 在BC 边上,AB=8,CD=2,BC=10,若△ABF 与△FCD 相似,则CF 的长为 .第2题第5题 第6题第8题第10题 第9题 第11题12.如图,△ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是△ABC 的面积的 .13.如图所示,正方形ABCD 边长是2,BE=CE ,MN=1,线段MN 的端点M 、N 分别在CD 、AD 上滑动,当DM= 时,△ABE 与以D 、M 、N 为顶点的三角形相似.14.如图,在边长为10cm 的正方形ABCD 中,P 为AB 边上任意一点(P 不与A 、B 两点重合),连结DP ,过点P 作PE ⊥DP ,垂足为P ,交BC 于点E ,则BE 的最大长度为 cm .15.一块直角三角板ABC 按如图放置,顶点A 的坐标为(0,1),直角顶点C 的坐标为(﹣3,0),∠B=30°,则点B 的坐标为 .二、解答题1.如图,平行四边形ABCD ,AE ⊥BC 交点E ,连接DE ,F 为DE 上一点,且∠AFE=∠B=60°.(1)求证:△ADF ∽△DEC ;(2)若AE=3,AD=4,求EF 的长.第14题第13题 第12题2.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,过点D作DH⊥AB于H,交AO于G,连接OH.(1)求证:AG•GO=HG•GD;(2)若AC=8,BD=6,求DG的长.3.如图,在平面直角坐标系中,二次函数y=(x﹣a)(x﹣3)(0<a<3)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上?若能,求出a的值;若不能,请说明理由.4.在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.5.如图,平面直角坐标系中,矩形OABC的顶点A、C分别在x轴和y轴的正半轴上,反比例函数y=在第一象限的图象分别交矩形OABC的边AB、BC边点于E、F,已知BE=2AE,四边形的OEBF的面积等于12.(1)求k的值;(2)若射线OE对应的函数关系式是y=,求线段EF的长;(3)在(2)的条件下,连结AC,试证明:EF∥AC.6.如图,正方形ABCD的边长为10,点E、F分别在边BC、CD上,且∠EAF=45°,AH⊥EF于点H,AH=10,连接BD,分别交AE、AH、AF于点P、G、Q.(1)求△CEF的周长;(2)若E是BC的中点,求证:CF=2DF;(3)连接QE,求证:AQ=EQ.。

九年级数学下册第27章相似27.2相似三角形2相似三角形应用举例第1课时习题课件新人教版

九年级数学下册第27章相似27.2相似三角形2相似三角形应用举例第1课时习题课件新人教版

【解析】∵DE∥AB,∴∠A=∠E,∠B=∠D,
∴△ABC∽△EDC,∴ B C 即A B .
DC ED
∴AB=870 m.
290 AB . 10 30
答:湖两岸的距离AB是870 m.
【想一想错在哪?】如图,某一时刻,身高为1.6 m的小明站 在离墙1 m的地方,发现自己在太阳光下的影子有一部分在地 面上,另一部分在墙上,墙上的部分影子长为0.2 m,同时他 又量得附近一棵大树的影子长为10 m,求这棵大树的高度.
【互动探究】求灯罩的半径时,还有什么方法?
提示:利用相似三角形的性质,得到MN=4 r,在Rt△OMN中应用
3
勾股定理列方程求解.
【总结提升】利用相似三角形测量物体高度的一般步骤 1.画出示意图,利用平行光线、影子、标杆等构造相似三角形. 2.测量与表示未知量的线段相对应的边长,以及另外一组对应 边的长度. 3.利用相似三角形的性质列出包括以上四个量的比例式,解出 未知量. 4.检验并得到答案.
知识点 2 应用相似三角形测量宽度 【例2】如图,为了估算河的宽度,我们可以在河对岸选定一个 目标作为点A,再在河的这一边选点B和C,使AB⊥BC,然后,再 选点E,使EC⊥BC,用视线确定BC和AE的交点D.此时如果测得 BD=110 m,DC=55 m,EC=52 m,求两岸间的大致距离AB.
x 30
路灯甲的高为9 m. 答案:9
3.如图,铁道口的栏杆短臂长1 m,长臂长16 m.当短臂端点 下降0.5 m时,长臂端点升高____m(杆的宽度忽略不计).
【解析】设长臂上升的高度为x m,根据题意得 0 .5 1 ,
x 16
解得x=8. 答案:8
4.如图,小明为了测量一高楼MN的高,在离N点20 m的A处放了 一个平面镜,小明沿NA后退到C点,正好从镜中看到楼顶M点, 若AC=1.5 m,小明的眼睛离地面的高度为1.6 m,请你帮助小 明计算一下楼房的高度(精确到0.1 m).

九年级数学下册第二十七章相似27.2相似三角形3相似三角形应用举例作业课件新版新人教版

九年级数学下册第二十七章相似27.2相似三角形3相似三角形应用举例作业课件新版新人教版

6.(2020·上海)《九章算术》中记载了一种测量井深的方法.如图所示, 在井口B处立一根垂直于井口的木杆BD,从木杆的顶端D观察井水水岸C, 视线DC与井口的直径AB交于点E,如果测得AB=1.6米,BD=1米,BE= 0.2米,那么井深AC为_________7米.
7.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时, 他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸 边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延 长线上选择点D,竖起标杆DE,使得点E与点C,A共线. 已知:CB⊥AD,ED⊥AD,测得BC=1 m,DE=1.5 m,BD=8.5 m.测 量示意图如图所示.请根据相关测量信息,求河宽AB的长度.
解:设 BN 的长为 x 米,则 BM=x+1.1+2.8-1.5=(x+2.4)米.由题 意,得∠CND=∠ANB,∠CDN=∠ABN=90°,∴△CND∽△ANB, ∴CADB =DBNN .同理,△EMF∽△AMB,∴AEFB =BFMM .∵EF=CD, ∴DBNN =BFMM ,即1x.1 =x+1.52.4 .解得 x=6.6,∵CADB =DBNN ,∴A1.B6
解:∵BC⊥AD,DE⊥AD,∴BC∥DE,∴△ABC∽△ADE,∴BDCE =AADB ,∴11.5 =ABA+B8.5 ,解得 AB=17 m.经检验,AB=17 是 分式方程的解.答:河宽 AB 的长度为 17 m.
8.如图,某同学用自制的直角三角形纸板DEF测量树的高度AB,他 调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直 线上.已知纸板的两条直角边DE=40 cm,EF=20 cm,测得边DF离 地面的高度AC=1.5 m,CD=8 m,则树高AB是( D ) A.4米 B.4.5米 C.5米 D.5.5米

人教版 九年级下册数学第二十七章:相似 27.2 相似三角形教案设计

人教版 九年级下册数学第二十七章:相似    27.2  相似三角形教案设计

相似三角形一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●了解相似三角形的概念,会准确找出两个相似三角形的对应边、对应角。

●探索两个三角形相似的条件,会选择恰当的方法识别两个三角形相似。

●探索相似三角形的性质,能运用性质进行有关计算。

●通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题。

●培养合情推理和数学说理能力。

重点:●掌握相似三角形的判定定理,会运用判定定理判定两个三角形相似;运用三角形相似的知识计算不能直接测量物体的长度和高度;相似三角形和相似多边形的周长、面积的性质的理解与运用。

难点:●相似三角形判定方法的运用;灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题);探索证明相似多边形面积的性质。

学习策略:对于本知识点的学习,应由低到高处理好以下几个方面的问题:●先识记并理解相似三角形的判定方法。

●灵活运用三角形的判定方法,进行证明或计算。

●学会由实际问题构建实际三角形,利用相似三角形解决实际问题。

●结合三角形的判定方法,从本质上去理解相似三角形的性质,在实际应用中加深体会相似三角形的性质。

二、学习与应用“凡事预则立,不预则废”。

科学地预习才能使我们上课听讲更有目的性和针对性。

知识回顾——复习学习新知识之前,看看你的知识贮备过关了吗?(一)相似图形的概念我们把的图形称为相似图形(similar figures).(二)成比例线段对于四条线段a b c d 、、、,如果其中两条线段的比(即它们长度的比)与另两条线段的比 ,如a c b d =(即ad bc =),我们就说这四条线段是成比例线段,简称比例线段(proportional segments).(三)相似多边形(similar polygons)(1)相似多边形的特征:相似多边形的对应 相等,对应 相等.(2)相似多边形的识别:如果两个多边形的对应 相等,对应 相等,那么这两个多边形相似.(四)判定两个三角形全等的方法有(简写形式)、 、 、 。

人教版九年级数学下册教案:27.2 相似三角形的判定

人教版九年级数学下册教案:27.2 相似三角形的判定

27.2 相似三角形的判定教学设计一、教材分析本节内容是相似一章的重点内容,既是全等三角形的继续,也为后面研究三角函数做铺垫,同时也是中考的考点,因此必须熟练掌握三角形相似的判定。

二、学情分析学生已经学过三角形全等的相关知识,学习了相似三角形及三角形相似的第一个判定。

这位探究三角形相似的条件做好了知识上的准备,使学生能主动参与本节课的探究。

三、教学目标1、知识与技能:掌握“三边成比例的两个三角形相似”和“两边成比例且夹角相等的两个三角形相似”的判定方法;能够运用三角形相似的条件解决简单的问题.2、过程与方法:经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力.3、情感、态度与价值观:培养学生敢于实践、勇于发现、大胆探索、合作创新的精神.四、教学重难点【重点】三角形相似的判定方法:1、三边成比例的两个三角形相似;2、两边成比例且夹角相等的两个三角形相似。

【难点】三角形相似的判定方法的证明及运用。

五、教学过程(一)创设情境,引入新课师:上节课我们是如何判定三角形相似的?根据相似三角形的定义,三角分别相等、三边成比例的两个三角形叫做相似三角形。

那么,两个三角形至少要满足哪些条件就相似呢?能否类比两个三角形全等的条件寻找判定两个三角形相似的条件呢?今天这节课我们就一起来探索三角形相似的条件.设计意图:通过对旧知的复习和回顾,激发学生的学习兴趣,学生通过思考能更好地复习图形相似的有关知识,为学习新知识提供基础.(二)探究新知,自主学习问题1.如图,在△ABC 与△,如果满足,那么能否判定这两个三角形相似? 师生活动:画图探究。

师生引导学生任意画一个三角形ABC ,取一个便于操作的值k ,得到△的三边长,再做出△。

指导学生把画好的三角形剪下,比较它们的对应角是否相等,判断这两个三角形是否相似。

(三)问题探究,发现事实1、问题2 怎样证明“三边成比例的两个三角形相似”呢?师生活动:(1)学生结合图形写出已知、求证并交流。

初中数学第27章相似(27.1~27.2.1)水平测试(含答案)

初中数学第27章相似(27.1~27.2.1)水平测试(含答案)

第27章 相似(27.1〜27. 2)水平测试(时间45分钟满分100分)班级 _____________________ 学号 _______ 姓名 _______________ 得分—一、选择题(本大题共10小题,每小题3分,共30分)1. 下列图形不一定相似的是(A )A.所有的矩形B.所有的等腰直角三角形C.所有的等边三角形D.所有边数相等的正多边形2. D 、E 分别是ZkABC 边 AB 、AC 上的一点,且厶ADE^AABC,若 AD 二2, BD 二4,则 AADE 与A ABC 的相似比是(B )A. 1 : 2B. 1 : 3C. 2 : 3D. 3 : 23. 如图,ZAPD=90° , AP=PB=BC=CD,则下列结论成立的是(C )A. APAB S APCAB. APAB S APDAC. A ABC^ A DBAD. A ABC<^ A DCA4. 如图所示,点E 是OABCD 的边BC 延长线上的一点,AE 与CD 相交于点F,则图中相似 三角形共有(C )A. 2对B. 3对 (第3题)5. △ABC S AA I BC,相似比为 2 : 3,的相似比为(B ) A. 1 B. ?5 67. 如图,P 是RtAABC 的斜边BC 上异于B 、C 的一点,过点P 做直线截A ABC.使截得的三 角形与△ ABC 相似,满足这样条件的直线共有(C )A ・1条 B. 2条 C. 3条 D. 4条8. 如图,若A 、B. C 、P 、Q 、甲.乙、丙.丁都是方格纸中的格点,为使△ PQR-AABC,AAxB t Cx^AAACc,相似比为 5: 4,则厶ABCs △免BCC. 4对D. 5对B C (第4题) 6. 如图,在大小为4X4的正方形网格中,是相似三角形的是(B )则点R应是甲、乙、丙、丁四点中的(C )9如图'点M在比上’点"在"上’心,零筒下列结论正确的是(B)(第6题)(第7题)(第8题)10.将一个矩形纸片ABCD沿AD和BC的中点的连线对折,要使矩形AEFB与原矩形相似,则原矩形的长和宽的比应为(C )A. 2: 1 B・、/J:l C・y/2 :\D・ 1: 1二、填空题(本大题共4小题,每小题3分,共12分)11・A ABC的三边长为、任,V1O ,2, ADEF的两边为1和如果△ ABC<^ ADEF,则ADEF 的笫三边长为“。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似27.2(7)
1.如图,已知⊙O的直径AB=2,直线m与⊙O相切于点A,P为⊙O上一动点(与点A、点B不重合),PO的延长线与⊙O相交于点C,过点C的切线与直线m相交于点D.(1)求证:△APC∽△COD.(2)设AP=x,OD=y,试用含x的代数式表示y.(3)试探索x为何值时,△ACD是一个等边三角形
2.如图,△ABC内接于⊙O,AD是△ABC的边BC上的高,AE是⊙O的直径,连接BE,△ABE与△ADC相似吗?请证明你的结论
3.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC,DE交AB于点F.(1)求证:∠PFD=∠OCP;(2)求证:PF•PO=PB•PA
4.如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且PC2=PE•PO.(1)求证:PC是⊙O的切线;(2)若OE= AE/2=1,求证∠PCA=∠B,并求sin∠PCA的值
5.如图,已知AB是⊙O的直径,AC与⊙O相切于点A,CO交⊙O于点D,BD的延长线交AC于点E,求证:AB•CD=AC•AE
6.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:∠PCB=∠A;(2)求证:PC是⊙O的切线;(3)若点M是弧AB的中点,CM交AB于点N,求证:AM2=MN•MC
7.已知:如图,BE是⊙O的直径,CB与⊙O相切于点B,OC∥DE交⊙O于点D,CD的延长线与BE的延长线交于A点.(1)求证:AC是⊙O的切线;(2)若AD=4,CD=6,求tan∠ADE的值
8.如图,A、B为⊙O上的点,AC是弦,CD是⊙O的切线,C为切点,AD⊥CD于点D。

若AC为∠BAD的平分线。

求证:(1)AB为⊙O的直径(2)AC2=AB·AD
,两点,OM为⊙O1的切线,切点为M,圆心O1的坐标为(2,0),二次函数9.如图,已知半径为1的⊙O1与x轴交于A B
,两点.(1)求二次函数的解析式;(2)求切线OM的函数解析式;(3)线段OM上是否存y=-x2+bx+c的图象经过A B
在一点P,使得以P,O,A为顶点的三角形与△OO1M相似.若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由
10.如图,在△ABC中,∠C=90°,AC=3,BC=4.0为BC边上一点,以0为圆心,OB为半径作半圆与BC边和AB边分别交于点D、点E,连接DE.(1)当BD=3时,求线段DE的长;(2)过点E作半圆O的切线,当切线与AC边相交时,设交点为F.求证:△FAE是等腰三角形
相似27.2(7)答案
1.(1)证明:∵PC 是⊙O 的直径,CD 是⊙O 的切线,∴∠PAC=∠OCD=90°,∴PA ∥OD ,∴∠P=∠DOC ,∴△APC ∽△COD .
(2)解:由△APC ∽△COD ,得:AP :PC=OC :OD ∴x :2=1:y ,∴y=2/x .(3)解:若△ACD 是一个等边三角形,则∠2.解:△ABE 与△ADC 相似.证明:在△ABE 与△ADC 中,∵AE 是⊙O 的直径,∴∠ABE=90°,∵AD 是△ABC 的边BC 上的高,∴∠ADC=90°,∴∠ABE=∠ADC ,又∵同弧所对的圆周角相等,∴∠BEA=∠DCA ,∴△ABE ∽△ADC
3.解:(1)证明:∵AE=AC ,∠CDE=∠AOC ,又∠CDE=∠P+∠PFD ,∠AOC=∠P+∠OCP ,∴∠PFD=∠OCP .(2)解:在△PDF 与△POC 中,∠P=∠P ,∠PFD=∠OCP ,故△PDF ∽△POC ,∴PF :PC=PD :PO ,∴PF •PO=PD •PC ,∵PD •PC=PB •PA ,∴PF •PO=PB •PA
4.(1)证明:连接OC ,∵PC2=PE •PO ,∴PC /PO=PE /PC ,∵∠P=∠P ,∴△PCO ∽△PEC ,∴∠PCO=∠PEC ,∵CD ⊥AB ,∴∠PEC=90°,∴∠PCO=90°,且OC 为半径,∴PC 是⊙O 的切线.
(2)解:∵PC 是⊙O 的切线,AB 为⊙O 的直径,∴∠BCA=∠PCO=90°,∴∠BCO=∠PCA ,又∵OB=OC ,∴∠BCO=∠B ,∴∠PCA=∠B ,∵OE=AE /2=1,∴OE=1,AE=2,OC=OB=OA=3,BE=4,∵CD ⊥AB ,∴EC 2=OC 2-OE 2=32-12=2
2,∴BC 2=CE 2+BE 2=(22)2+42=24,∴sin ∠PCA=sin ∠B=CE /BC=22:26=3/3
5.证明:连接AD ,∵AB 是⊙O 的直径,∴AD ⊥BE .∵AC 是⊙O 的切线,∴∠EAD=∠B .∵BO=DO ,∴∠B=∠ODB=∠EDC ,∴∠EAD=∠EDC .又∠C=∠C ,∴△ACD ∽△DCE ,∴AC /CD=AD /DE ;在Rt △AEB 中,AD ⊥BE ,∠EAD=∠B ,∴△AED ∽△BEA ,∴AD /ED=AB /AE ,∴AB /AE=AC /CD .∴AB •CD=AC •AE
6.证明:(1)∵OA=OC ,∴∠A=∠ACO ,∴∠∠COB=2∠A ,∵∠COB=2∠PCB ,∴∠PCB=∠A ;
(2)∵OA=OC ,∴∠A=∠ACO .又∵∠COB=2∠A ,∠COB=2∠PCB ,∴∠A=∠ACO=∠PCB .又∵AB 是⊙O 的直径,∴∠ACO+∠OCB=90°.∴∠PCB+∠OCB=90°.即OC ⊥CP ,∵OC 是⊙O 的半径.∴PC 是⊙O 的切线;
(3)连接MA ,MB ,∵点M 是弧AB 的中点,∴弧AM=弧MB ∴∠BCM=∠ABM (同圆中,相等的弧所对的圆周角相等),∴
△MBN ∽△MCB .∴BM 2=MN •MC .∴AM 2=MN •MC
7.解:(1)证明:连接OD .∵CB 是⊙O 的切线,∴∠CBO=90°,∵ED ∥OC ,∴∠DEO=∠COB ,∠EDO=∠DOC ;∵OD=OE , ∴∠ODE=∠OED ,∴∠DOC=∠COB ;∵OC=OC ,OD=OB ,∴△CDO ≌△CBO ;∴∠CDO=∠CBO=90°,∴AC 是⊙O 的切线.
(2)∵AC ,BC 是⊙O 的切线,∴CD=CB=6,∠DCO=∠OCB ;∵∠ABC=90°,AC=10,BC=6,∴AB=8;∵ED ∥OC ,∴∠ADE=∠DCO ,∴∠ADE=∠OCB ;∵∠A=∠A ,∠ADO=∠ABC=90°,∴△ADO ∽△ABC ,∴AD /OD=AB /BC ,∴OD=3;∴tan ∠ADE=tan ∠OCB=1/2.
8.证明:(1)连接BC ,AC 平分∠BAD ,∴∠DAC=∠CAB .又CD 切⊙O 于点C ,∴∠ACD=∠B (弦切角定理).∵AD ⊥CD ,∴∠ACD+∠DAC=90°.即∠B+∠CAB=90°,∴∠BCA=90°.∴AB 是⊙O 的直径(90°圆周角所对弦是直径).
(2)∵∠ACD=∠B ,∠DAC=∠CAB ,∴△ACD ∽△ABC .∴AB :AC=AC :AD .∴AC 2=AB •AD
9.解:(1)∵圆心的坐标为O1(2,0),⊙O1半径为1,∴A (1,0),B (3,0),∵二次函数y=-x2+bx+c 的图象
经过点A ,B ,∴可得方程组-1+B+C=0,-9+3B+C=0,解得:B=4,C=-3,∴二次函数解析式为y=-x 2+4x-3.
(2)过点M 作MF ⊥X 轴,垂足为F .∵OM 是⊙O1的切线,M 为切点,∴O 1M ⊥OM (圆的切线垂直于经过切点的半径).在RT △OO1M 中,sin ∠O 1OM=O 1M /OO 1=1/2,∵∠O1OM 为锐角,∴∠O 1OM=30°,∴OM=OO 1•cos30°=3,在RT △MOF 中,OF=OM •cos30°=32.MF=OMsin30°=3/2.∴点M 坐标为(3/2,
2
3),设切线OM 的函数解析式为y=kx (k ≠0),由题意可知 23=3 k /2,∴k=33,∴切线OM 的函数解析式为y=3
3x
(3)两个,①过点A 作AP1⊥x 轴,与OM 交于点P1,可得Rt △AP 1O ∽Rt △MO 1O
(两角对应相等两三角形相似),P 1A=OA •tan ∠AOP 1=33,∴P1(1,3
3); ②过点A 作AP2⊥OM ,垂足为,过P2点作P2H ⊥OA ,垂足为H .可得Rt △OP2A ∽Rt △O1MO (两角对应相等两三角形相似),在Rt △OP 2A 中,∵OA=1,∴P 2=OA •cos30°=23,在Rt △OP 2H 中,OH=OP 2•cos ∠AOP 2=3/4,P 2H=OP 2•sin ∠AOP2=4
3,
P2(3/4,43),∴符合条件的P 点坐标有(1,33),(3/4,4
3)
10. (1)解:∵∠C=90°,AC=3,BC=4,∴AB=5,∵DB 为直径,∴∠DEB=∠C=90°,又∵∠B=∠B ,∴△DBE ∽△ABC ,∴ED :AC=BD :AB ,即DE :3=3:5,∴DE=1.8;
(2)证法一:连接OE ,∵EF 为半圆O 的切线,∴∠DEO+∠DEF=90°,∴∠AEF=∠DEO ,∵△DBE ∽△ABC ,∴∠A=∠EDB ,又∵∠EDO=∠DEO ,∴∠AEF=∠A ,∴△FAE 是等腰三角形;
证法二:连接OE ∵EF 为切线,∴∠AEF+∠OEB=90°,∵∠C=90°,∴∠A+∠B=90°,∵OE=OB ,∴∠OEB=∠B ,∴∠AEF=∠A ,∴△FAE 是等腰三角形。

相关文档
最新文档