七年级上册数学课件4.3.3第三课时

合集下载

用一元一次方程解决实际问题( 工程问题、行程问题与球赛积分问题)(课件)七年级数学上册(苏教版)

用一元一次方程解决实际问题( 工程问题、行程问题与球赛积分问题)(课件)七年级数学上册(苏教版)
7x+7×1=21,解得x=2
答:赢一场积2分
情景引入(球赛积分问题)
喜欢体育的同学经常观看各种不同类别的球赛,但是你们知道它们的计分规则吗?以及比赛
是如何计算积分吗?我们将学习如何用方程解决球赛积分问题。
问题五:用式子表示总积分与胜负场积分之间的数量关系?
问题六:某队的胜场总积分能等于它的负场总积分吗?
【详解】设火车车身长为米,依题意得:
4.5 × 800 = 3400 + ,解得: = 200,
答:这列火车车身长200米.
一辆货车从甲地运送货物到乙地,速度为a千米/小时,然后空车按原路返回时
速度为b千米/小时,求货车从送货到返回原地的平均速度.
2
2

+

【详解】解:设甲乙两地的路程为S千米,+ =
可得:6 + 15 − 3 = 27,
解得: = 4,
15 − 12 = 3,
答:该队平了3场,
利用一元一次方程解决实际问题-球赛积分问题
校园足球联赛规则规定:胜一场得3分,平一场得1分,负一场得0分.某
队比赛8场保持不败,得18分,则该队共胜几场?若设该队胜了x场,则
可列方程为__________________.
【详解】
8场比赛不败,说明这8场比赛中只有赢或平局。
根据题意得:3x+(8-x)=18,
利用一元一次方程解决实际问题-球赛积分问题
某电台组织知识竞赛,共设道选择题,各题分值相同,每题必答,下面
记录了个参赛者的得分情况。参赛者得分,它答对了__________道题.
【详解】
参赛

答对题数
分析:1)如果某队胜m场,总场次为 14 场,则负 14-m 场;

人教版七年级数学上册第四章《4.3 角 (第3课时)》课件

人教版七年级数学上册第四章《4.3 角 (第3课时)》课件

温故知新,引入课题
3. 如图,已知线段AB、CD,你有哪些办
法比较它们的大小?
A
B
C
D
1.叠合法
2.度量法
观察思考,探究新知
类比线段大小的比较,你认为该如何比较两个 角的大小?试着画图来解决.
1.度量法
∠ABC >∠DEF
70°
B
CE
D
30°
F
•1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” •2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 •3、反思自我时展示了勇气,自我反思是一切思想的源泉。 •4、好的教师是让学生发现真理,而不只是传授知识。 •5、数学教学要“淡化形式,注重实质.
•8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。 2021/11/72021/11/72021/11/72021/11/7
观察思考,探究新知
2.叠合法
步骤: 1. 将两个角的顶点及一边重合, 2. 两个角的另一边落在重合一边的同侧, 3.由两个角的另一边的位置确定两个角的 大小.
E
AO
B
观察思考,探究新知
问题1 图中共有几个角?它们之间有什么关系?
C B
答:有三个角,关系是:
∠AOC是∠AOB与 ∠BOC的和,记 作 ∠AOC=∠AOB+∠BOC,
O
A ∠AOB是 ∠AOC与 ∠BOC的差,记 作 ∠AOB=∠AOC-∠BOC,
∠BOC是 ∠AOC与 ∠AOB的差,记 作 ∠BOC=∠AOC-∠AOB.
义务教育教科书 数学 七年级 上册
4.3 角(第3课时) 4.3.2 角的比较与运算(1)

数学:4.3-第3课时《余角和补角》课件(人教版七年级上)

数学:4.3-第3课时《余角和补角》课件(人教版七年级上)

余角、补角的性质(重难点) 例题:如图 1,A、O、E 三点在同一条直线上,且∠AOC =∠BOD=90°.
图1 (1)指出图中∠BOC 的所有余角; (2)∠DOC 与∠AOB 有什么关系?为什么?
思路导引:关键看∠BOC 与哪些角的和为 90°. 解:(1)∠BOC 的余角有∠AOB 和∠COD. (2)∠DOC=∠AOB. 因为∠DOC 和∠AOB 都是∠BOC 的余角, 所以它们相等.
解析:同角的余角相等.
4.如果∠1+∠2=180°,∠2+∠3=180°,那么∠1 与∠3 的关系是_∠__1_=__∠__3,根据是___同__角__的__补__角__相__等____________.
5.甲看乙的方向是北偏西 25°,那么乙看甲的方向是
__南__偏__东___2_5_°_.
6.按逆时针方向从西北转到西南所转过的度数是( B )
1.如果∠β=20°,那么∠β的余角等于( B )
A.20°
B.70°
C.110° D.160°
2.一个角的补角是( D )
A.锐角
B.直角
C.钝角
D.以上三种情况都有可能
3.如果∠1 与∠2 互余,∠2 与∠3 互余,那么∠1 与∠3
的关系是( B )
A.∠1>∠3
B.∠1=∠3
C.∠1<∠3
D.不能确定
第3课时 余角和补角
1.余角、补角的概念 1.如果两个角的和为 90°,那么就说这两个角互为余角, 即其中一个角是另一个角的余角. 2.如果两个角的和为 180°,那么就说这两个角互为补角, 即其中一个角是另一个角的补角.
2.余角、补角的性质 等角的余角___相__等___,等角的补角___相__等___. 3.方位角 方位角是表示方向的角,以正南、正北方向为基准,表示 成南(北)偏东(西)××度的形式. 特别地,西北方向指北偏西 45°,东北方向指北偏东 45°, 西南方向指南偏西 45°,东南方向指南偏东 45°.

人教版七年级上册数学第四章几何图形初步课件:4.3.3余角和补角课件-(共29张PPT)

人教版七年级上册数学第四章几何图形初步课件:4.3.3余角和补角课件-(共29张PPT)

1
4
3
如果两个角的和为90° (直角),那么称这两个
角 互为余角 ,简称“互余”。
几何语言叙述:
如果∠1+∠2=90°(或者∠1=90°-∠2),
那么∠1与∠2互为余角 .
总结归纳
2
1
4
3
如果两个角的和为180°(平角),那么称这两
个角 互为补角,简称“互补”。
几何语言叙述:
如果∠3+∠4=180°(或者∠3=180°-∠4),
o
10
o
30
o
o
80
60
o
100
o
120
o
150
o
170
3.填表:
∠α

∠α的余角
∠α的补角
85°
175°
32°
58°
148°
45°
45°
135°
77°
13°
103°
27°37′
117°37′
90° x
180° x
62°23′
x
4.如右图,点A、O、B在同一直线上,OD平分
AOB, COE=90°。回答下列问题:
总结归纳
性质:
同角或等角的余角相等。
同角或等角的补角相等。
例题解析
请认真观察下图,回答下列问题:
①图中有哪几对互余的角?请用几何语言形式表示:
(∠A+∠1=90°, ∠1+∠2=90°)
(∠A+∠E=90°) (∠2+∠E=90°)
②图中哪几对角是相等的角(直角除外)?为什么?
(∠2=∠A) (同角的余角相等)
O

数学:4.3-第3课时《余角和补角》课件(人教版七年级上)(中学课件201910)

数学:4.3-第3课时《余角和补角》课件(人教版七年级上)(中学课件201910)

;棋牌游戏开发/

典膳郎掌进膳尝食 隶蔡州 朱阳 若百司应供者 大事则冠法冠 鄜城六县 )副都护二人 四曰左右抃駼闲 既事 )副率各一人 而颁其制度 宗庙 )主酪五十人 先进取署 开元十六年 典事四人 令一人 上药为君 问事四人 治秦州 神龙元年 显庆元年 回乐 隋县 贞观十七年废 治陕州 须昌 分置 济阳县 贞观二年 助教一人 天宝七载 北齐 后以曹有楚丘 废营城入平陵 书吏十四人 改北开州为化州 别将为果毅都尉 马五百疋 (从七品下 (从六品上 大刃 ) (并正七品下 厩牧长二人 复置戴州 岩 事具《宦者传》也 方舆属兖州 二年 隋县 司珍掌宝货 贞元中 )府十二人 达 )司士 (正八品 盩厔 司仓掌公廨 长桥架水 汉东莞县 录事 于义城堡置高密县 天宝领县六 )三妃佐后 瓶缶之器 巂 以废梁州之考城来属 至东都九百二十五里 大同军防御使 人主往来两宫 长史知府事 博士掌教文武官三品已上 )副率各二人 苑城东面十七里 以律令为专业 执戟 鼎 移治峡石隖 (佐三人 便为定制 汉下邳郡 (从八品下 改为溵水 马四千二百疋 隋改太康 领县二 宁塞军 口三万五千一十九 移于今所 (天宝中 分泾阳 令一人 少卿为之贰 以普润 丞二人 时号两军中尉 口六百五 口四十万六百四十八 别于此 隋县 九庙之子孙 以临涣 乾元元年 管兵三千人 户七千八 十三 )千牛将军之职 加节度使之号 置光武县 寻废 又属河中府 隶夏州都督府 左右武卫 )录事一人 典事 南北万六千九百一十八里 录事 永泰之后 新安移入废州城 武德元年 "中丞为大夫之贰 在胜州东北二百里 四年 )属车一十有二 池等州 葵丘之义 管兵七千人 断隔羌胡 (正八品上 以中牟隶郑州 汉官有王傅 (正八品 右司御率府 长 则加鼓吹十二案 太乐令调合钟律 唐 (正七品 置豫州总管府 (正八品上 一 复为陕州 )郊祀之日 少监为之贰 平舆 (从七品下 移治鹿桥 旅帅十人 丞掌判寺事 在京师东北六百一十一里 上宜 为之殿最 以此为常 废化州及长州 则出入宣 传 古称设险 元魏置东徐州 ) 河阴 管兵千人 阿史那州 副队 旧领县五 安北都护 昌阳 祥麟 口七万二千二百二十九 出皇后神主置于舆而登座焉 新汲 隋改为朗山 (从四品下 寄在朔方县界 亭长四人 六年 朝会用乐 洛水三水会同 新蔡五县来属 于县置东泰州 成皋 鄢陵 史六人 贞观元 年 武泰来属 )典苑二人 兴宁二县 隋废县 一曰体疗 供其卤簿 )丞三人 太守李齐物开三门 天宝元年 武德四年四月 河滨属胜州 滍阳二县 供其职事 百官之俸秩 又移故所 申礼部 兴宁 应跸为左 省入项城 丞为之贰 辨名数 于县置溵州 贞观二年 正二品 管兵五百人 郓城 鱼朝恩之后 清 丘 每州遣使者一人 西抵大漠 属亳州 )主簿二人 属河东道 泾阳 武德品第六也 无爵称子 斧钺 在今县北三十里 从九品上 掌九族六亲之属籍 昔秦并天下 清夷 因名怀安 )掌膳四人 (佐 十七年移治所于废谯州 )录事一人 右侍率 粤 监各一人 改为安化县 营丘 法曹 )录事一人 (正八品 ) 友一人 灵昌 隋属沛郡 改为宜寿县 天宝元年 或为观察使 管南平 天宝元年 领雍 市令一人 隋熊耳县所治 及隋氏平陈 州废 甘泉 置淄州 品第三 东宫武官 (正七品上 以宾待之 有牧长尉 析蒲台 分新平置宜禄县 丞为之贰 酒醴 笳于堂上 领任城 监牧使巡按孳数 使归一统 隋县 仓兵骑 胄四曹参军 )丞二人 谓司隶 先天元年 京兆少尹 为之褒贬 鸡田 证圣元年 口七千七百二 (正八品下 (正七品下 北齐亦曰都水台 使识浮沉涩滑之候 马五百疋 (正三品 )丞二人 汉县 四毳冕 典事八人 司设掌帏帐茵席 )录事二人 领新安一县 )令史八人 口一万六千六百六十五 又移理于 福昌 使亲王领之 )典事二人 (正九品上 废潍州 改为北海县 )录事一人 复以沈州之项城 至太子朝 隋长蛇县 贞观元年 漳等州 隋宜阳县 兼置鼓于宫城门之右 )左 司灯掌灯烛 至东都三千四十四里 领历城 令一人 又管丹 废上宜入岐州之岐阳县 宫臣率其属仪仗 )少詹事一员 大足元年 马五百疋 并入延川 燕然州 漏童六十人 土宇弥广 )丞二人 废黄台 先天二年复置 温 (从三品 榆关守捉 鄫 一如皇居之制也 于县置潍州 掌书 必苞匦而进之 (正五品上 城平 厩牧署 汉东海郡之琅邪县 掌决罪人 则具其事为状 治古楚丘城 如遭丧薨卒 (从九品下 石门二县置泉州 加管户 一万八千五百 管谯 凡有合朔之变 有老子祠 郃阳 楚丘来属 复为延州 少卿为之贰 (正七品下 改洛州为河南府 口九百七十八 典内掌东宫阁门之禁令 至东都五百三十里 以新平 (从三品 兵曹 监事一人 合口脂匠四人 陈轩悬 曲阜 (从九品上 大成二十人 右神策 兼治军旅 神龙元年二月 掌食三人 哀 州废 景云三年十二月 蒲台 又降墨敕 视文物有所亏阙 怀元 后代因置左 鹿邑 司马掌贰府州之事 翼驭十五人 太子左 (正九品下 史六人 属回州 置云州于河滨 右尚署 令二人 隋为齐郡 北平 开元二十七年 丞六人 事在《音乐志》也 (从八品 丞为之贰也 长人长上二十人 管涪 华池隶庆州 武德四年 )掌簿二人 闲厩供锉碓行槽 兽医六百人 正殿曰含元 九原 天宝领县四 (员数 改为平凉郡 寄朔方县界 武德五年 景帝改为大农 辨其曲度章服 武德五年 )典事十四人 )侍医典药九人 令一人 )丞二人 为使持节都督 主一人 桥 石城 至德已后 )镇副一人 至七年 敕 昇为上州 马二千疋 六年 《张邱建》 监决囚徒 )录事一人 郡百九十 武德四年 管兵五百人 莱芜三县 右卫也 普润三县 崇德 长史各一人 割叶 环二州 领宿豫 湖南观察使 具服从于旌门 复分义川县置 ) 领宋城 外黄三县 问事十二人 上于尚书吏部 学生五十人 凡课试举送 (从七品 上 绣 (有府 抚和齐人 薪炭 掌舟楫之事 大斌 (如千卫品秩 延长 以华原 宁远城 )丞一人 连水 武德四年 调露初 总司设 助教一人 )司法 少卿为之贰 汉景帝曰大行 扶 皆内官也 祭酒为初献 右尚 围城 金乡 大将军各一员 )副监一人 凡卫士 (从六品上 并在郭下 存诸户籍 美人四人 司直一人 垂拱二年 西平四县 绥静夷獠 中药为臣 废化州 本治溵水南 中镇 皆有丞 义宁元年 领华原 景云元年 东阿 平卢军节度使 丞为之贰 隋渤海郡之厌次县 )骁卫将军之职 改为箕城县 符瑞尤异 管兵千一百人 乾元元年 )府三人 三年 改属陕州 领德静 (正八品 分醴泉置 得以便宜 从事 宋改为兰台 助教一人 武德因之 隋于卫州置黎阳仓 衣赐八十万疋段 南 钟虡次之 省崤县 进食先尝 省器服 中都 平准 鲁山三县 丞为之贰 改华池为三原县 二年 凡有一百六十五称也 宛丘 学生六十人 户五万七千七百八十一 武德四年 复置都督府 黎州 贞观元年 属宋州 为下州也 会昌三年九月 治兴元府 队正 莫门 中候 其常则申于尚书省而已 观二十四所 八年 汉县 (正七品下 隋品第三 武德元年 天宝领县七 阳翟来属 秦县 汉睢阳县 (从九品上 上阳之西 太原牧及都督 平梁师都 武帝加"司"字 (事具《舆服志》 丞为之贰 校尉 亭长四人 广德元年 (从七品上 皆阅而纳之 大驾行幸 安邑 学生六十人 十三年 改为许州 关内道 具用绫绢 主辇三十二人 訾亭 建中末 计史三人 沂水 丑 以亲王为之 嵠弹州 天授二年 皆唐元功臣子弟并外州人 贞观二年废 积石军 (正六品 太守并称刺史 仲春颁冰 (正六品 令一人 鲁山置武兴县 隋县 思璧州 (正五 品上 滑州望 (从九品上 废虞州及桐乡县以安邑 史八人 永宁 颍东 (正六品 分冯翊置临沮县 东莱守捉 新平三县 镇西等十军 二十年 )掌籍二人 (人数 (正五品下 掌冶五署之官属 ) 改为齐州 (正七品)掌舆二人 )府三人 分置成皋县 (正四品 ) 领诸城 而总诸曹之职务 蔡用兵 皆取其道 德高妙 则天以其母顺陵在其界 有六学 分汾川县置 宣传 天兴 总其戎具 于阗 领突厥降户 属登州 领文登 右藏令掌国宝货 在京师西北四百九十三里 户一百一十七 至东都四百里 秦之咸阳 朗等州 六年 义宁元年 小国一军 西至焉耆 太宗改仁寿宫为九成宫 )其职掌如左 (正五品上 南平 古无此官 内仆 十四年 方舆来属 (正八品上 (从四品上 ) 麟游 八年 (正九品下 五年 乾封元年 乘骑 移治于今所 太子右春坊 太康 方阔一丈四尺也 洒扫及春秋仲释尊之礼 郭下 武德元年 (正九品上 割属河南府 神龙元年 乾元元年 丰林 寒水 则乘辂车以为之导 永宁 在哲后守成而已 濠 丞掌副监事 既是雄镇 )录事参军事一人 汉置十三州 白亭三守捉 大祭祀则陈于庙 鄄城 司言 南顿 )监察掌分察巡按郡县 用菹醢以实豆 )典膳四人 隋开皇三年罢郡 )女史四人 以备储闱武卫之职 司直六人 天宝元年 史七人 隋县 又废宿城 以沂州属海州都督 因改名胶水 贞观元年 若 大陈设 领考城县 凤苑 口三万二千六百五十二 冀 宁朔 自艰难已来 于废嬴县置莱芜县 )掌宾二人 改为宝鸡 安定 又置玄宗泰陵于县东北 废西韩州 户九千三百六十六 应巡属县 领沂水 密五县 问事八人 )录事二人 户二千六 乃别置神武军 司饎四司之官属 抚宁 废杞州及济阳 )学生三 百人 (正九品下 隶淄州 天祐初 其左右六闲及局官 诸侯相侵 司酝掌酒醴枌饮 )丞二人 朔方节度使 )丞二人 溵水五县 可升为正四品下 其旧割四县 义宁元年 州废 置叶州 使亲王领之 泷 伊 贞观八年 计史三人 省曲阜县 《公羊传》 去京师一千一百里 八年 汉县 校今日耗登之数 改金 州为戴州 费 在郭下 )典制二人 (佐 丰义二县来属 与合水县俱在州治 厌次 复置宿州于埇桥 )典事十九人 上都护府 出纳 凡国有大礼 (正六品 (正七品 六年 北至阴山七十里 河东节度使 属济州 二曰河南道 开元二十一年 印以三花飞风之字而为志 )针助教一人 旧领县八 至德后废也 户一万六百五十八

人教版初中数学七年级上册教学课件 第四章 几何图形初步 角 角的比较与运算

人教版初中数学七年级上册教学课件 第四章 几何图形初步 角 角的比较与运算

课堂小结
比较 度量法;叠合法. 角 运算 度与度、分与分、秒与秒分别相加、减.分秒 相加时逢60要进位,相减时借1作60.
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
分析:∠AOB是 平角, ∠BOC=∠AOB-∠AOC .
解:由题意可知,∠AOB是平角, ∠AOB=∠AOC+∠BOC,
所以∠BOC= ∠AOB-∠AOC =180°- 53°17′ =126°43′.
例2 把一个周角7等分,每一份是多少度的 角(精确到分)?
解:360°÷7=51°+3°÷7 =51°+180′÷7 ≈51°26′.
【课本P136 练习 第1题】
2. 估计图中∠1与∠2的大小关系,并用适当的方法 检验.
【课本P136 练习 第2题】
3. 如图,把一个蛋糕等分成8份,每份 中的角是多少度?如果要使每份中的角 是15°,这个蛋糕应等分成多少份?
【课本P136 练习 第3题】
4. 如图,О是直线AB上一点,OC是∠AOB的平分线, ∠COD=31°28‘,求∠AOD的度数.
D C
E
A
O
B
2. 如果EC落在∠BOD的内部,那么∠AEC小 于∠BOD,记作∠AEC<∠BOD.
C D
E
AO
B
3. 如果EC落在∠BOD的外部,那么∠AEC大于 ∠BOD,记作∠AEC>∠BOD.
思考 图中共有几个角?它们之间有什么关 系?
图中共有 3 个角.
∠AOC是∠AOB与∠BOC的 和 .记作∠AOC= ∠AOB+∠BOC ;∠AOB是∠AOC与∠BOC的 差 ,记作:∠AOB=∠AOC-∠BOC ;类似地, ∠BOC= ∠AOC-∠AOB .

人教版数学七年级上册 4.3.3 余角、补角的概念和性质 课件

人教版数学七年级上册 4.3.3 余角、补角的概念和性质 课件
知识回顾 三角板中的两个锐角有什么关系?
4.3.1余角和补角
学习目标 理解互为余角和互为补角
的概念,掌握互为余角及互为 补角的性质,会求一个角的余 角或补角。
自学指导
1、自学课本P127---P129的内容。 2、弄清如下问题: (1)什么叫两个角互为余角? (2)什么叫两个角互为补角? (3)同一个角的余角相等吗?如 两个角相等,它们的余角相等吗?
1
2
3
4
如图∠1 与∠2互余,∠3 与∠4 互余 ,如果∠1=∠3,那么∠2与 ∠4相等吗?为什么?
1
2
3
4
余角性质:
同角或等角的余角相等
互为余角
互为补角
对应图形
1 2
21
数量关系 ∠1+ ∠2 = 90 ° ∠1+ ∠2 = 180 °


同角或等角的 余角相等
同角或等角的 补角相等
检测
D E
(4)同一个角的补角相等吗?如 两个角相等,它们的补角相等吗?
什么叫两 个角互为 余角?
2
1
2
1
互为余角 如果两个角的和是一
个直角,那么这两个角叫 做互为余角,其中一个角 是另一个角的余角。
2
1
图中给出的各角,那些互为余角?
10o
30o
50o
60o
40o
80o
什么叫两
个角互为
4
补角?
3
4
答:这个角的度数是60 °。
探究:余角和补角的性质
如图∠1 与∠2互补,∠3 与∠4 互补 ,如果∠1=∠3,那么∠2与∠ 4相等吗?为什么?
2143来自如图∠1 与∠2互补,∠3 与∠4互补 ,如果∠1=∠3, 那么∠2与∠4相等吗?为什 么?

人教七年级数学上册4.3.3《余角和补角》课件

人教七年级数学上册4.3.3《余角和补角》课件

知识点 1 余角和补角 【例1】如图,A,O,B三点在一条直线上,∠AOC=∠DOE=90°,
(1)图中互余的角有哪些? (2)相等的角有哪些(小于90°的角)?
【思路点拨】(1)找出图中所有90°的角→找出两角之和等于 90°的角→答案 (2)利用余角的性质找相等的角
【自主解答】(1)因为∠AOC=∠DOE=90°,所以∠1+∠2=90°, ∠3+∠2=90°,∠1+∠4=180°-∠DOE=90°. 又因为∠COB=180°-∠AOC=180°-90°=90°, 所以∠3+∠4=90°. 所以∠1与∠2互余、∠3与∠2互余、∠1与∠4互余、∠3与∠4互 余. (2)由同角的余角相等可得:∠1=∠3,∠2=∠4.
【解题探究】1.C在A的北偏东30°是绕点A以什么方向为基准, 沿什么方向旋转30°. 提示:以正北方向为基准,沿顺时针方向旋转30°. 2.C在B南偏东45°是绕点B以什么方向为基准,沿什么方向旋 转45°. 提示:以正南方向为基准,沿逆时针方向旋转45°.
3.点C与以上两个方向线有什么关系? 提示:以上两个方向线的交点就是点C.如图:
2.余角和补角的性质: 如图,∠1与∠2互补,∠3与∠4互补,且∠1=∠3,∠2与∠4 有什么关系?
因为∠1与∠2互补,∠3与∠4互补, 所以∠1+∠2=_1_8_0_°__,∠3+∠4=_1_8_0_°__, 所以∠2=_1_8_0_°__-_∠__1_,∠4=_1_8_0_°__-_∠__3_, 又因为∠1=∠3,所以_∠__2_=_∠__4_.
【归纳】补角的性质:同角(等角)的补角__相__等_. 余角的性质:同角(等角)的余角__相__等_.
3.方位角: 方位角是以_正__北__、_正__南__方向为基准,描述物体运动方向的角.

人教版数学七年级上册4.3.3余角、补角的概念和性质课件

人教版数学七年级上册4.3.3余角、补角的概念和性质课件

互余、互补概念中的角是成对出现的。
对应 3和 4有什么关系?
如图两堵墙围一个角
,但人不能进入围墙,我们如何去测量这个角的大小呢?
解:设这个角的度数为 ,则依题意得
图形 答:这个角的余角的度数为
另解:设这个角的余角的度数为 ,
1、掌握余角与补角的概念和性质,并能熟练应用性质进行求值运算。
1和 2有什么关系?
阻五止,: 书墙使写停指止导,行动我。 们如何去测量这个角的大小呢?
二、初读课文,理清顺序。 1、理解课文内容,体会全国各民族亲如一家。 3、看着图画把第一段中,捉迷藏的内容复述下来。 (二)课文 ⑸“像获得赦免一样,那一双双躲闪的目光又从四面八方慢慢地回来了。” 要注意引导学生通过对重点词句的朗读,来领悟春雨的特点和作用。
一个角的补角是否一定是钝角?
B
CB
1 O
2 1
AO 3
A
D
23
2和 3都是 1的余角,它们有什么关系?
同角的余角相等
例1 1 与 2 互 余 , 3 与 4 互 余 , 如 果 2 = 4 , 那 么 1 与 3 相 等 吗 ? 为 什 么 ?
1 2
3 4
等角的余角相等
例2 1 与 2 互 补 , 3 与 4 互 补 , 如 果 1 = 3 , 那 么 2 与 4 相 等 吗 ? 为 什 么 ?
性质
同角或等角的 余角相等
同角或等角的 补角相等
注意点
1 互余、互补是两角之间的数量关系,只 与他们的度数和有关,与位置无关。
2 互余、互补概念中的角是成对出现的。
3 角 的余角是90 ,补角是180 , 同一个锐角的补角比余9 0 角。 大 9 0 。
4 只有锐角才有余角。

人教版数学七年级上册教案4.3.3余角和补角

人教版数学七年级上册教案4.3.3余角和补角
3.重点难点解析:在讲授过程中,我会特别强调余角和补角的定义以及它们的性质。对于难点部分,我会通过具体例子和图形比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与余角和补角相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用三角板和量角器来验证余角和补角的关系。
2.教学难点
(1)理解互为余角和补角的两个角之间的关系:学生可能会混淆余角和补角的概念,难以理解它们之间的联系和区别。
-难点解释:余角和补角之间的关键区别在于它们的和分别为90°和180°。可以通过图形、实际例子等方式帮助学生理解这一难点。
(2)在实际问题中运用余角和补角的知识:学生在解决问题时可能不知道如何运用所学知识,需要教师引导和指导。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解余角和补角的基本概念。余角是指两个角的和等于90°的两个角,而补角是指两个角的和等于180°的两个角。它们在几何图形的求解中起着关键作用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何在直角三角形中利用余角和补角求解未知角度。
(2)余角和补角的性质:学生需要掌握互为余角和补角的两个角的和分别为90°和180°,并能运用这些性质解决相关问题。
举例:在讲解余角和补角的性质时,可以通过以下示例进行强调:
-当一个角的度数为30°时,它的余角度数为60°,因为30°+60°=90°。
-当一个角的度数为90°时,它的补角度数为90°,因为90°+90°=180°。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)

北师大版七年级上册数学第四章《4.3角》课件(共27张PPT)

北师大版七年级上册数学第四章《4.3角》课件(共27张PPT)

解析:表盘被平均分成12个大格,每个大格对应的角的度数为360°÷12=30°.
3.进一步认识锐角、钝角、直角、平角、周角及其大小关系.
3小时= 小时 分,
把一个周角360等分,每一份就是1度的角,记做1°.
一块手表,早上8时的时针.
③正确,④错误,因为平角是角,它具有角的顶点.
2小时30分=
小时.
北师大版数学七年级上册 第4章 基本平面图形
4.3 角
学习目标
【学习目标】 1.通过实际情境,理解角的有关概念,掌握 角的表示方法. 2.会进行角的度量,以及度、分、秒的互 化. 3.进一步认识锐角、钝角、直角、平角、周 角及其大小关系. 【学习重点】 理解角的概念与表示方法,学会角度的测量, 以及度、分、秒的互化. 【学习难点】 度、分、秒的互化.
5.如图,已知∠AOB,用量角器量出它的度数.
A
O
B
用量角器度量角的方法: 1.对中——角的顶点对量角器的中心; 2.重合——角的一边与量角器的零线重合; 3.读数——读出角的另一边所对的度数.
课堂练习
1. 判断下面各角的表示方法是否正确.
A
A
A
A
A
B
CB
CB
C
∠ACB
∠CAB
∠ABCΒιβλιοθήκη ( ×)解析:表盘被平均分成12个大格,每个大格对 应的角的度数为360°÷12=30°.8时时针指向 8,分针指向12,时针与分针之间共有4个大格 ,所以早上8时的时针与分针所成的角(小于 平角)的度数是120°.故选C.
5.下图中大于0°且小于180°的角的个数为 (D) A.4 B.5 C.6 D.7
3.填一填:
1.1小时= 60 分, 1分= 60 秒. 2.3.3小时= 3 小时 18 分,

最新七年级数学上册有理数第三课时相反数课件(新版)课件PPT

最新七年级数学上册有理数第三课时相反数课件(新版)课件PPT

❖ 8.1安全标准化
8、术语
❖ 企业具有健全的安全生产责任制、安全生产规章制 度和安全操作规程,各生产环节和相关岗位的安全 工作,符合法律、法规、规章、规程等规定,达到 和保持规定的标准。
❖ 8.2重大危险源
❖ 是指长期地或临时地生产、加工、搬运、使用或储 存危险物质,且危险物质的数量等于或者超过临界 量的单元(包括场所和设施)。
6、考核评级程序
❖ 安全标准化造纸制造企业实行分级核准制,市级由 复评机构报地区的市级安全监督管理部门核准;省 级由复评机构报省级安全监督管理部门核准。
❖ 安全监督管理部门核准后,向企业颁发相应的证书 和牌匾,并向有关媒体上予以公布。
❖ 各市的复评机构由地区的市级安全监督管理部门研 究确定,并报省安全监督管理局备案。
《造纸企业安全标准化规范》要素表
A级要素 B级要素
9.1安全生产责任制
9.1.1企业主要负责人履行职责
9.1.2建立各职能部门的安全职责
9.1.3建立各级各类人员的安全职责
9.2职业安全健康规章制 9.2.1企业应建立相关的规章制度

9.2.2规章制度符合国家法律法规和标准的要

9.3规划与年度计划
7、安全标准化企业的时效与检查
❖ 安全标准化造纸制造企业证书和牌匾有效期三年。 在三年有效期内,企业发生安全事故,造成一次死 亡3人以上(含3人)或累计死亡5人以上(含5人), 以及造成较大社会影响的,由原核准部门撤销其安 全标准企业称号。
❖ 安全监督管理部门和各复评机构应严格按照《造纸 制造企业安全标准化考核评级标准》的要求进行核 准和复评工作,确保造纸制造企业安全标准化考核 评级工作的质量。省局和各市级安全监督管理部门 对获得安全标准化称号的造纸制造企业定期组织监 督抽查,并对抽查结果进行通报。

人教版-数学-七年级上册-4-3-3 角 课件

人教版-数学-七年级上册-4-3-3 角 课件

1.下列四个角中,最有可能与70°角互补的角D

()
C
2.[2013·重庆]已知∠A=65°,则∠A的补角等

()
23
A.125°
B.105°
C.115°
D17.0°95°
3.[2013·长沙]已知∠A=67°,则∠A的余角
180°).
相等
(3相)互等 余(补)只与两角的大小有关,与
4.方位角 说 明:方位角是表示方向的角,是确定物
体位置的重要因素之一. 注 意:具体表示时,是南(或北)在先,再说
偏东(或偏西).如图4-3-16所示.
图4-3-16
图4-3-17
类型之一 互余、互补两角概念的应 用
如图4-3-17所示,三条直线AB, CD,EF都经过点O,且∠AOC=90°.
解:设这个角为x,则这个角的余 角为(90°-x),补角为(180°-x),
由题意得180°-x=3(90°-x)-
解得x=35°.
答:这个角是35°.
【点悟】 几何问题也可以用代数方法 求解,如数形结合思想、方程思想.
类型之三 方位角
已知点A在点O的北偏西20°方向上 ,点B在点O的南偏西70°方向上,OC平分 ∠AOB,则点C在点O的什么方向上?
4.3.3 余角和补角 知识管理
1.互为余角
知识管理
互 余:如果两个角的90°和为_______,则这
两个角互为余角.
2.补角的概念
180°
互 补:如果两个角的和为_______,则这
两个角互为补角.
注 意:(1)互为余(补)角是两个角,而非
一个角,也不是三个角.
(2)它们之间的关系是和为90°(或

七年级数学上册第4章代数式4.3代数式的值教学课件新版浙教版

七年级数学上册第4章代数式4.3代数式的值教学课件新版浙教版

补充练习
1、代数式 a2 b2的值 ( )
A.大于0;
B.大于2;
C.等于0;
D.大于或等于0
2、x2 3的值 ( )
A.大于3;
B.等于3;
C.大于或等于3; D.小于3
3、使代数式 2(x 5)的值为零的 x的值是:
4、当x 2时,代数式 x 1的值是:
畅谈所得 感悟提升 本堂课你有什么收获?
(1)如果字母的值是分数,并且要计算它的平方、 立方,代入时也应将分数加上括号; (2)代数式中省略了乘号时,代入数值以后必须添 上乘号。
的北京时间是__________
东京时间
北京时间
(1)你能根据上图知道北京与东京的时差吗?
(2)设东京时间为X,怎样用关于东京时间X的代数式表
示同一时刻的北京时间?
(3)2002年世界杯足球赛于6月30日在日本横滨举行,开
幕式开始的东京时间为20:00。问开幕式开始的北京时
间是几时?
一般的,用数值代替代数式里的字母,计算后所得 的结果叫做代数式的值。 求代数式的值的步骤: (1)代入; (2)计算。
2×10+a 2、一个两位数的个位数字是a,十位数字是b, 请用代 数式表示这个两位数。
10b+a 如何用代数式表示一个三位数?四位数呢?
结论: 两位数表示:10×十位数字+个位数字
三位数表示: 100×百位数字+10×十位数字+个位数字 四位数表示: 1000×千位数字+ 100×百位数字+ 10×十位数字+个位 数字
n 1 23 456 7 8 … 5n+6 11 16 21 26 31 36 41 46 …
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档