物理化学
物理化学知识点(全)
第二章热力学第一定律内容摘要热力学第一定律表述热力学第一定律在简单变化中的应用 热力学第一定律在相变化中的应用 热力学第一定律在化学变化中的应用 一、热力学第一定律表述U Q W ∆=+ dU Q W δδ=+适用条件:封闭系统的任何热力学过程 说明:1、amb W p dV W '=-+⎰2、U 是状态函数,是广度量W 、Q 是途径函数 二、热力学第一定律在简单变化中的应用----常用公式及基础公式 过 程WQΔUΔH理想气体自由膨胀理想气体等温可逆-nRTln (V 2/V 1); -nRTln (p 1/p 2) nRTln (V 2/V 1);nRTln (p 1/p 2)0 0等 容任意物质0 ∫nCv.mdT ∫nCv.mdT ΔU+V Δp 理想气体 0 nCv.m △T nCv.m △T nCp.m △T 等 压任意物质-P ΔV ∫nCp.mdT ΔH -p ΔV Qp 理想气体-nR ΔT nCp.m △TnCv.m △T nCp.m △T 理 想 气 体 绝 热过 程 Cv.m(T 2-T 1);或nCv.m △TnCp.m △T可逆 (1/V 2γ-1-1/ V 1γ-1)p 0V 0γ/(γ-1)2、基础公式热容 C p .m =a+bT+cT 2 (附录八) ● 液固系统----Cp.m=Cv.m ● 理想气体----Cp.m-Cv.m=R ● 单原子: Cp.m=5R/2 ● 双原子: Cp.m=7R/2 ● Cp.m / Cv.m=γ理想气体• 状态方程 pV=nRT• 过程方程 恒温:1122p V p V = • 恒压: 1122//V T V T = • 恒容: 1122/ / p T p T =• 绝热可逆: 1122 p V p V γγ= 111122 T p T p γγγγ--=111122 TV T V γγ--= 三、热力学第一定律在相变化中的应用----可逆相变化与不可逆相变化过程1、 可逆相变化 Q p =n Δ相变H m W = -p ΔV无气体存在: W = 0有气体相,只需考虑气体,且视为理想气体ΔU = n Δ相变H m - p ΔV2、相变焓基础数据及相互关系 Δ冷凝H m (T) = -Δ蒸发H m (T)Δ凝固H m (T) = -Δ熔化H m (T) Δ凝华H m (T) = -Δ升华H m (T)(有关手册提供的通常为可逆相变焓)3、不可逆相变化 Δ相变H m (T 2) = Δ相变H m (T 1) +∫Σ(νB C p.m )dT 解题要点: 1.判断过程是否可逆;2.过程设计,必须包含能获得摩尔相变焓的可逆相变化步骤;3.除可逆相变化,其余步骤均为简单变化计算.4.逐步计算后加和。
物理化学的知识点总结
物理化学的知识点总结一、热力学1. 热力学基本概念热力学是研究能量转化和传递规律的科学。
热力学的基本概念包括系统、环境、热、功、内能、焓、熵等。
2. 热力学第一定律热力学第一定律描述了能量守恒的原理,即能量可以从一个系统转移到另一个系统,但总能量量不变。
3. 热力学第二定律热力学第二定律描述了能量转化的方向性,熵的增加是自然界中不可逆过程的一个重要特征。
4. 热力学第三定律热力学第三定律表明在绝对零度下熵接近零。
此定律是热力学的一个基本原理,也说明了热力学的某些现象在低温下会呈现出独特的特性。
5. 热力学函数热力学函数是描述系统状态和性质的函数,包括内能、焓、自由能、吉布斯自由能等。
二、化学热力学1. 热力学平衡和热力学过程热力学平衡是指系统各个部分之间没有宏观可观察的能量传输,热力学过程是系统状态发生变化的过程。
2. 能量转化和热力学函数能量转化是热力学过程中的一个重要概念,热力学函数则是描述系统各种状态和性质的函数。
3. 热力学理想气体理想气体是热力学研究中的一个重要模型,它通过状态方程和理想气体定律来描述气体的性质和行为。
4. 热力学方程热力学方程是描述系统热力学性质和行为的方程,包括焓-熵图、温度-熵图、压力-体积图等。
5. 反应焓和反应熵反应焓和反应熵是化学热力学研究中的重要参数,可以用来描述化学反应的热力学过程。
三、物质平衡和相平衡1. 物质平衡物质平衡是研究物质在化学反应和物理过程中的转化和分配规律的一个重要概念。
2. 相平衡相平衡是研究不同相之间的平衡状态和转化规律的一个重要概念,包括固相、液相、气相以及其之间的平衡状态。
3. 物质平衡和相平衡的研究方法物质平衡和相平衡的研究方法包括热力学分析、相平衡曲线的绘制和分析、相平衡图的绘制等。
四、电化学1. 电解质和电解电解质是能在水溶液中发生电离的化合物,电解是将电能转化为化学能或反之的过程。
2. 电化学反应和电势电化学反应是在电化学过程中发生的化学反应,电势是描述电化学系统状态的一个重要参数。
物理化学简介
• 概论
•物质的聚集状态
气体 V 受 T、p 的影响很大 V 受T、p 的影响较小 (又称凝聚态)
液体
固体
•联系 p、V、T 之间关系的方程称为状态方程 •本章中主要讨论气体的状态方程 理想气体 气体的讨论 实际气体
29
§1.1 理想气体状态方程
1. 理想气体状态方程 低压气体定律: (1)波义尔定律(R.Boyle,1662): pV = 常数 ( n ,T 一定)
解:M甲烷 = 16.04×10-3 kg · -1 mol
m pM ρ V RT 200 103 16.04 103 k g m 3 8.315 (25 273.15) 1.294k g m 3
33
§1.1 理想气体状态方程
2.理想气体模型
(1)分子间力
•相互作用 相互吸引—范德华力(趋向力,诱导力,色散力) 相互排斥—分子间电子云、原子核间排斥力
25
0.3 物理量的表示及运算
3. 量值计算
物理化学的公式中均表示成量方程式的形式, 而在对量的数学运算中,有时涉及数值方程式。
[例如] 计算25℃,100kPa下理想气体的摩尔体积Vm =? •用量方程式运算
RT 8.315J m ol1 K 1 (273.15 25) K Vm 3 p 100 10 Pa
什么叫物理化学
3. 充分重视实验事实
在物理化学研究中, 在物理化学研究中 , 由于其研究 对象的特殊性( 化学现象) 对象的特殊性 ( 化学现象 ) , 所 以应当充分重视实验事实的重要 性.
例如,在化学平衡规律的研究, 例如,在化学平衡规律的研究,物质性 质与外界条件的关系, 质与外界条件的关系,各种物理化学常 数的测定等,除常用的化学方法以外, 数的测定等,除常用的化学方法以外, 更多采用物理手段(例如电磁学, 更多采用物理手段(例如电磁学,光学 等方法)进行实验测试. 等方法)进行实验测试.
三,物理化学与其他化学课程的联系 所谓"四大化学" 无机,有机,分析, 所谓"四大化学"(无机,有机,分析, 物化) 物化),它们均有各自的特殊研究对象 和目的. 和目的. 物理化学是研究化学过程中普遍性的更 物理化学是研究化学过程中普遍性的更 本质的内在规律性,无机化学, 本质的内在规律性,无机化学,有机化 学和分析化学在解决具体问题时, 学和分析化学在解决具体问题时,常常 需利用物理化学知识和方法. 需利用物理化学知识和方法.
2. 化学反应进行的速度和机理
化学反应的速度有多快, 化学反应的速度有多快,反应过程究竟 是如何进行的(即反应的机理) 是如何进行的(即反应的机理),外界 条件(如浓度,温度,催化剂等) 条件(如浓度,温度,催化剂等)对反 应速度,机理有何影响,如何控制反应 应速度,机理有何影响, 的进行( 的进行(快,慢控制). 慢控制) 这些问题的研究, 这些问题的研究,属于物理化学的另一 化学动力学(在下册) 个分支 化学动力学(在下册).
若这种预测能为多方面的实践所证 则这种假说就成为理论或学说. 实,则这种假说就成为理论或学说. 物理化学中的许多理论模型就是这 样得到的. 样得到的.
物理化学的主要内容包括
物理化学的主要内容包括
:
1. 动力学:运动的原理,能的定义,熵的概念,热力学,动力学等。
2. 化学平衡:溶液的溶解度、能量障碍及改变,静态及动态平衡,平
衡常数及平衡常数的改变,萃取平衡,反应化学平衡,皿热反应等。
3. 电离和离子竞争:电解反应、离子竞争、活性空穴及电荷构型的调节,吸附反应及calvin- wheeler竞争,体系电荷分布及滴定反応等。
4. 化学催化:催化原理及作用机制,原位及连续催化,非权衡催化反
应的特性,络合催化,分子催化等。
5. 固体表面和电场:表面状态及表面电荷,消散电荷谱,电场及偏振,极化材料及表面电荷型复合物等。
6. 分子量和热力学:分子量及其热力学特性,热力学不平衡性及能量
分配,分子结构,热量放射,热电材料等。
物理化学试题及答案
物理化学试题及答案一、选择题(每题2分,共20分)1. 根据热力学第一定律,下列哪种情况下系统与外界无能量交换?A. 系统对外做功B. 系统吸收热量C. 系统与外界无功交换D. 系统与外界无热交换2. 在理想气体状态方程 PV=nRT 中,下列哪个变量与气体的体积成反比?A. 温度B. 压力C. 气体的摩尔数D. 气体的常数R3. 根据玻尔理论,氢原子的能级跃迁时,会伴随哪种现象?A. 电子的轨道半径变化B. 电子的自旋方向变化C. 电子的质子数变化D. 电子的轨道周期变化4. 根据热力学第二定律,下列哪种情况是不可能发生的?A. 自然界中的热能自发地从低温物体传递到高温物体B. 气体自发膨胀C. 热机的效率达到100%D. 热机的效率小于100%5. 在化学动力学中,反应速率常数与下列哪个因素无关?A. 反应物的浓度B. 反应的活化能C. 温度D. 催化剂6. 根据分子间作用力理论,下列哪种分子间作用力最强?A. 范德华力B. 氢键C. 离子键D. 共价键7. 在电解质溶液中,离子的迁移率与下列哪个因素有关?A. 离子的电荷数B. 离子的半径C. 离子的浓度D. 离子的摩尔质量8. 根据吉布斯自由能变化(ΔG)的定义,下列哪种情况下反应是自发的?A. ΔG > 0B. ΔG < 0C. ΔG = 0D. ΔG 无法确定9. 在相变过程中,下列哪种相变是不可逆的?A. 固体到液体B. 液体到气体C. 气体到固体D. 固体到气体10. 根据勒夏特列原理,下列哪种情况可以增加反应的平衡常数?A. 增加反应物的浓度B. 降低反应物的浓度C. 升高反应体系的温度D. 降低反应体系的温度答案:1-5 DBBCC;6-10 DBBBD二、填空题(每空1分,共10分)1. 根据热力学第一定律,能量守恒可以表示为ΔU = ____ + W。
2. 理想气体的内能只与____有关。
3. 根据玻尔理论,氢原子的能级公式为 E_n = - ____ / n^2。
结构化学物理化学
结构化学物理化学结构化学物理化学是研究物质的分子结构和物理化学性质的学科。
它通过对物质的组成和结构进行分析和研究,揭示物质的物理性质和化学反应机理,为实现物质的功能设计和制备提供理论基础和指导。
本文将从分子结构、物理性质和化学反应机理三个方面介绍结构化学物理化学的基本概念和研究方法。
分子结构是物质的基本组成单位,也是物质性质的基础。
结构化学物理化学通过实验和理论研究,揭示了不同物质的分子结构。
例如,通过光谱学和X射线衍射等实验手段,可以确定有机分子的化学键类型和空间构型,从而推断分子的立体结构。
通过分子力场计算和量子化学计算等理论方法,可以预测和优化分子的结构。
分子结构的研究有助于理解物质的性质和反应机理。
物理性质是物质在物理条件下所表现出的特征。
结构化学物理化学通过实验和理论研究,揭示了物质的物理性质与其分子结构之间的关系。
例如,通过测量物质的熔点、沸点、密度、折射率等物理性质,可以了解物质的分子间相互作用力和分子运动方式。
通过分子动力学模拟和量子力学计算等理论方法,可以预测和解释物质的物理性质。
物理性质的研究有助于揭示物质的宏观性质和应用特性。
化学反应机理是物质在化学条件下发生变化的过程。
结构化学物理化学通过实验和理论研究,揭示了化学反应的机理和动力学。
例如,通过反应动力学实验和理论模拟,可以确定化学反应的速率方程和活化能。
通过红外光谱、质谱和核磁共振等实验手段,可以探测和鉴定反应中的中间体和过渡态。
化学反应机理的研究有助于优化化学反应条件和提高反应效率。
结构化学物理化学的研究方法包括实验和理论两个方面。
实验方法主要包括光谱学、热分析、电化学、表面分析和物理性质测量等。
理论方法主要包括分子力场计算、量子化学计算、分子动力学模拟、反应动力学模拟和电子结构计算等。
实验和理论相互结合,可以更全面地揭示物质的结构和性质,为物质的功能设计和制备提供理论基础和指导。
总结起来,结构化学物理化学是研究物质的分子结构和物理化学性质的学科。
物理化学总分 -回复
物理化学总分-回复物理化学总分:物理化学是研究物质的性质及其变化规律的科学,它是化学中的一门重要分支。
在物理化学的学习过程中,我们需要了解和掌握一系列的基础知识和实验技能。
本文将从物理化学的基本概念、主要内容和实验技巧三个方面,一步一步回答关于物理化学总分的问题。
一、物理化学的基本概念物理化学(Physical Chemistry)是将物理学与化学相结合的学科,它研究的是物质的基本性质、物质与能量的相互关系以及物质的组成和变化规律。
物理化学主要包括热力学、量子化学、统计力学和动力学等内容。
热力学是研究物质能量转化和能量转移的学科,它主要关注物质在不同条件下的热力学性质,如温度、压力和能量等。
热力学通过研究物质的热力学函数和热力学过程的定性和定量关系,揭示了物质在不同能量状态下的变化规律。
量子化学是研究微观领域的学科,它主要关注原子和分子的量子力学性质。
量子化学通过求解薛定谔方程来描述原子和分子的行为,并通过计算方法和模型来预测化学反应和化学性质。
量子化学的发展对于理论和计算化学的发展具有重要意义。
统计力学是研究物质组成和热力学性质之间关系的学科,它通过统计方法和概率模型描述了大量微观粒子的行为规律。
统计力学的研究可以帮助我们理解物质的宏观性质,如熵、热容和相变等。
动力学是研究物质变化速率和反应机制的学科,它可以揭示物质的化学反应过程中的速率规律和反应途径。
动力学通过实验数据和理论模型来研究物质的反应速率和反应机理,为实验和工业应用提供了理论支持。
二、物理化学的主要内容物理化学的主要内容包括热力学、量子化学、统计力学和动力学等。
这些内容相互关联、相互支撑,构成了物理化学的基础理论体系。
热力学是物理化学的基础,它研究物质的能量和热力学性质。
热力学通过热力学函数和热力学过程的关系,描述了物质在不同条件下的热现象。
热力学不仅揭示了物质热力学性质的基本规律,还为工程和实验提供了指导原则。
量子化学是研究微观粒子行为的学科,它可以预测原子和分子的光谱性质和反应行为。
物理化学
第二章
热力学第一定律
主要内容 2.1 基本概念 2.2 热力学第一定律 恒容热、 2.3 恒容热、恒压热与焓 2.4 体积功的计算 2.5 各种过程热的计算 2.6 化学反应热 2.7 气体的节流膨胀
第二章 热力学第一定律
本章基本要求
♣ 理解系统与环境、状态、过程、状态函数与途径函数等 理解系统与环境、状态、过程、 基本概念,了解可逆过程的概念。 基本概念,了解可逆过程的概念。 掌握热力学第一定律文字表述和数学表达式。 ♣ 掌握热力学第一定律文字表述和数学表达式。 ♣ 理解功、热、热力学能、焓、热容、标准态、摩尔相变 理解功、 热力学能、 热容、标准态、 标准摩尔反应焓、标准摩尔生成焓、 焓、标准摩尔反应焓、标准摩尔生成焓、标准摩尔燃烧焓 等概念。 等概念。 变化、 ♣ 掌握热力学第一定律在纯 p V T 变化、在相变化及化学 变化中的应用,掌握计算各种过程的功、 变化中的应用,掌握计算各种过程的功、热、热力学能变 焓变的方法。 、焓变的方法。
1) 机械平衡(mechanical (1) 机械平衡(mechanical equilibrium)
体系内部各处压力相等,同时与环境的压力相等。 体系内部各处压力相等,同时与环境的压力相等。如果体 系与环境被刚壁隔开,则可以不考虑环境的压力。 系与环境被刚壁隔开,则可以不考虑环境的压力。
(2) 热平衡 ) 热平衡(thermal equilibrium)
T=f(p,V) p=f(T,V) V=f(p,T)
例如,理想气体的状态方程可表示为: 例如,理想气体的状态方程可表示为:
pV=nRT
第二章 热力学第一定律
一、基本概念 热力学平衡态
在没有外界条件的影响下, 在没有外界条件的影响下,如果系统中所有状态函数均不 随时间而变化,则系统处于热力学平衡态, 随时间而变化,则系统处于热力学平衡态,它同时要满足下列 四种平衡: 四种平衡:
物理化学公式大全
物理化学公式大全物理化学是研究物质的物理性质和化学性质之间的关系的学科。
以下是一些在物理化学中常用的公式:1.热力学方程:-理想气体状态方程:PV=nRT其中P为气体压强,V为气体体积,n为气体摩尔数,R为气体常数,T为气体温度。
-内能变化公式:ΔU=q+w其中ΔU为系统内能变化,q为系统吸取或放出的热量,w为系统对外界做的功。
-能量守恒定律:ΔE=q+w其中ΔE为系统总能量变化,q为系统吸取或放出的热量,w为系统对外界做的功。
2.动力学方程:-反应速率公式:r=k[A]^m[B]^n其中r为反应速率,k为反应速率常数,[A]和[B]分别为反应物A和B的浓度,m和n为反应物的反应级数。
- Arrhenius 公式:k = A * e^(-Ea/RT)其中 k 为反应速率常数,A 为 Arrhenius 常数,Ea 为活化能,R为气体常数,T 为反应温度。
3.量子力学方程:- 波函数公式:Ψ = Σcnφn其中Ψ 为波函数,cn 为系数,φn 为基态波函数。
- Schroedinger 方程:HΨ = EΨ其中H为哈密顿算符,Ψ为波函数,E为能量。
4.热力学方程:- 熵变公式:ΔS = q_rev / T其中ΔS 为系统熵变,q_rev 为可逆过程吸放热量,T 为温度。
- Gibbs 自由能公式:ΔG = ΔH - TΔS其中ΔG 为 Gibbs 自由能变化,ΔH 为焓变化,ΔS 为熵变化,T 为温度。
5.电化学方程:- Nerst 方程:E = E° - (RT / nF) * ln(Q)其中E为电池电势,E°为标准电势,R为气体常数,T为温度,n为电子数,F为法拉第常数,Q为电化学反应的反应物浓度比。
- Faraday 定律:nF = Q其中n为电子数,F为法拉第常数,Q为电荷数。
以上公式只是物理化学中的一小部分,这里列举的是一些常见的、基本的公式,实际上物理化学领域有非常多的公式和方程可供使用。
物理化学的定义
第0章绪论§0.1 物理化学的定义、形成和发展1. 物理化学的定义化学变化种类繁多,但从本质上说都是原子或原子团的重新组合。
在原子或原子团重新组合的过程中,总是伴随着温度、压力、体积等物理性质的变化和热效应、光效应、电效应等物理现象的发生;反过来,物理性质的变化和物理效应对化学反应发生、进行和限度均可产生重要的影响。
科学发展的经验证明,深入探讨化学现象和物理现象之间的关系,是揭示化学变化规律的重要途径。
物理化学便是借助化学现象和物理现象之间的联系,利用物理学原理和数学手段研究化学现象基本规律的学科。
2. 物理化学的形成和发展俄国科学家罗蒙诺索夫(M. V. Lomomnocov,1771~1765)在十八世纪中叶首先使用了“物理化学”这个名词,但物理化学学科是在1804年道尔顿(J. Dalton, 1766~1844)提出原子论、1811年阿佛伽德罗(A. A vogadro,1776~1886)建立分子论、以及热力学第一定律、第二定律建立并应用于化学过程之后才得以形成。
一般认为,1887年德国科学家奥斯瓦尔德(W. Ostwald,1853~1932)和荷兰科学家范霍夫(J. H. van't Hoff, 1852~1911)创办《物理化学杂志》是物理化学成为一个学科的标志。
进入二十世纪后,随着现代物理学、数学、计算机科学的进展和现代测试方法的大量涌现,物理化学的各个领域均取得了突飞猛进的发展。
量子力学的创立和发展,使物理化学的研究由宏观进入微观领域;飞秒激光技术和交叉分子束技术的出现,使化学动力学的研究由静态扩展到动态;不可逆过程热力学理论、耗散结构理论、协同理论及突变理论的提出,使化学热力学的研究由平衡态转向非平衡态;低能离子散射、离子质谱、X-射线、紫外光电子能谱等技术的发展,促进了界面化学、催化科学的研究;而共振电离光谱、原子力显微镜和扫描隧道显微镜等技术的发展,促进了纳米材料和纳米结构的研究。
物理化学
热力学第一定律1、热力学第一定律:△U=Q+W2、体积功:(1)气体向真空膨胀:W=0(2)气体恒外压膨胀:W=—P外*△V(3)外压比内压差无限小膨胀:W=—∫p*dV 若气体为理想气体时,W=—nRTln(p1/p2)=—nRTln(v2/v1)(4)可逆相变的体积功:W=—nRT3、定容及定压下的热:(焓)△H=△U+△(PV)4、定压下:Q=△H=nCp,m*△T定容下:Q=△U=nCv,m*△T (Cp,m=Cv,m+R)5、理想气体的绝热过程:pV^γ=常数(γ=Cp,m/Cv,m)6、实际气体的节流膨胀(等焓膨胀)△H=07、定容与定压反应热:△H=△U+RT△n (Qp=Qv+RT△n)8、反应进度ζ:ζ=(n2-n1)/v9、任意一反应的反应焓等于产物生成焓之和减去反应物生成焓之和任意一反应的反应焓等于反应物燃烧焓之和减去产物燃烧焓之和10、反应焓与温度的关系(基尔霍夫方程):△H2-△H1=△Cp(T2-T1)热力学第二定律1、克劳休斯不等式:△S>=Q/T2、卡诺热机的效率:η=(T2-T1)/T23、定温过程的熵变:△S=nRln(p1/p2)4、定压熵变:△S=nCp,m*ln(T2/T1)5、定容熵变:△S=nCv,m*ln(T2/T1)6、绝热可逆过程为等熵过程(△S=0)7、定温定容系统:亥姆霍兹函数A=U—TS8、定温定压系统:吉布斯函数G=H—TS=A+pV (可逆相变:△G=0)9、热力学函数之间的关系:dU=TdS-p*dVdH=TdS+VdpdA=-SdT-p*dVdG=-SdT+Vdp10、吉布斯-亥姆霍兹公式:(△G/T2)-(△G/T1)=△H(1/T2-1/T1)。
什么是物理化学
什么是物理化学
物理化学是一门研究物理和化学之间相互关系的学科,它涉及到物质的性质、结构、状态以及能量等方面的研究。
物理化学在很大程度上依赖于实验,通过实验手段来探索和验证物理化学规律。
物理化学的发展可以追溯到19世纪初,当时科学家们开始注意到化学反应过程中的一些物理现象,如热量、电能等。
随着科学技术的不断进步,物理化学得到了迅猛发展,研究领域也逐渐拓展。
物理化学的主要研究内容包括:
1.物质的结构与性质:研究物质的组成、构造、性质以及它们之间的相互关系。
这包括原子、分子和晶体等的基本结构,以及物质在不同条件下的性质表现。
2.化学反应:研究化学反应的机理、动力学、热力学等方面。
这有助于揭示反应过程中物质的转化规律,以及能量的转换和传递。
3.能量与物质转化:研究物质在不同形式间的能量转换,如化学能、热能、电能等。
这涉及到能量守恒定律的应用,以及能量高效利用的技术创新。
4.材料科学:研究材料的制备、性能、应用及其与物理、化学原理的联系。
这包括新型材料的研发,以及材料在工程、生物、能源等领域的应用。
5.环境与催化:研究环境污染的成因、监测、治理技术,以及催化剂的作用原理和应用。
这有助于解决当今社会面临的环境问题,以
及提高化学工业的绿色化水平。
物理化学在科学技术的发展中发挥着重要作用,为人类社会的进步提供了有力支持。
通过研究物理化学原理,我们可以更好地理解和利用自然界中的物质和能量,为人类的可持续发展创造条件。
物理化学公式
物理化学主要公式及使用条件1.气体混合物(1) 组成摩尔分数 y B (或x B ) = ∑AA B /n n体积分数/y B m,B B *=V ϕ∑*AVy Am,A式中∑AA n 为混合气体总的物质的量。
Am,*V 表示在一定T ,p 下纯气体A 的摩尔体积。
∑*AAm,A Vy 为在一定T ,p 下混合之前各纯组分体积的总和。
(2) 摩尔质量∑∑∑===BBBB B BB mix //n M n m M y M式中 ∑=BB m m 为混合气体的总质量,∑=BB n n 为混合气体总的物质的量。
上述各式适用于任意的气体混合物。
(3) V V p p n n y ///B B B B*=== 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。
*BV 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。
2.道尔顿定律 p B = y B p ,∑=BB p p上式适用于任意气体。
对于理想气体 V RT n p /B B =第二章 热力学第一定律1. 热力学第一定律的数学表示式W Q U +=∆或 'amb δδδd δdU Q W Q p V W =+=-+ 规定系统吸热为正,放热为负。
系统得功为正,对环境作功为负。
式中 p amb 为环境的压力,W ’为非体积功。
上式适用于封闭体系的一切过程。
2. 焓的定义式3. 焓变(1) )(pV U H ∆+∆=∆式中)(pV ∆为pV 乘积的增量,只有在恒压下)()(12V V p pV -=∆在数值上等于体积功。
(2) 2,m 1d p H nC T ∆=⎰此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。
4. 热力学能(又称内能)变此式适用于理想气体单纯pVT 变化的一切过程。
(有相变或化学变化时,T 不变,但理想气体的热力学能改变值不为0)5. 恒容热和恒压热V Q U =∆p Q H =∆ (d 0,'0)p W ==6. 热容的定义式 (1)定压热容和定容热容δ/d (/)p p p C Q T H T ==∂∂δ/d (/)V V V C Q T U T ==∂∂(2)摩尔定压热容和摩尔定容热容,m m /(/)p p p C C n H T ==∂∂ ,m m /(/)V V V C C n U T ==∂∂pVU H +=2,m 1d V U nC T∆=⎰上式分别适用于无相变变化、无化学变化、非体积功为零的恒压或恒容过程。
物理化学ppt课件
热力学第二定律与熵增原理
总结词
热力学第二定律是指在一个封闭系统中,熵(即系统的混乱度)永远不会减少,只能增加或保持不变 。
详细描述
热力学第二定律是热力学的另一个基本定律,它表明在一个封闭系统中,熵(即系统的混乱度)永远 不会减少,只能增加或保持不变。这意味着能量转换总是伴随着熵的增加,这也是为什么我们的宇宙 正在朝着更加混乱和无序的方向发展。
03
化学平衡与相平衡
化学平衡条件与平衡常数
化学反应的平衡条件
当化学反应达到平衡状态时,正逆反 应速率相等,各组分浓度保持不变。
平衡常数
平衡常数表示在一定条件下,可逆反 应达到平衡状态时,生成物浓度系数 次幂的乘积与反应物浓度系数次幂的 乘积的比值。
相平衡条件与相图分析
相平衡条件
相平衡是指在一定温度和压力下 ,物质以不同相态(固态、液态 、气态)存在的平衡状态。
色谱分析技术
色谱法的原理
色谱法是一种基于不同物 质在固定相和移动相之间 的分配平衡,实现分离和 分析的方法。
色谱法的分类
根据固定相的不同,色谱 法可分为液相色谱、气相 色谱、凝胶色谱等。
色谱法的应用
色谱法在物理化学实验中 广泛应用于分析混合物中 的各组分含量、分离纯物 质等。
质谱分析技术
质谱法的原理
05
物理化学在环境中的应用
大气污染与治理
1 2 3
大气污染概述
大气污染是指人类活动向大气中排放大量污染物 ,导致空气质量恶化,对人类健康和生态环境造 成危害的现象。
主要污染物
大气中的主要污染物包括颗粒物、二氧化硫、氮 氧化物等,这些污染物会对人体健康和环境产生 严重影响。
治理措施
针对大气污染,采取了多种治理措施,包括工业 污染源控制、机动车污染控制、城市绿化等。
物理化学
二.一些基本过过程的 S , G, A的计算公式 W f 0
基本过程
S
V nRIn 2 V1
G
nRTIn P2 P1
A
A PdV V nRT dV nRTln 1 V V2
dV
T
③
dU T S dT S dV PdV TV VT T S P dV ④ dT T S T V VT
[
] [ ]
比较①与④对应系数应相等-------叫系数比较法
U V T S V T P P T
U T
V
1
T
U
V
这时要分别证
U V
T
?
U T
V
?
用前面介绍的二种方法在选一种证明,代入上式可得。现在证的例题都是 不符合特征变量,如果符合特征变量, 如: U
S
V
T ,直接用对应系数关系可得。
例题2:证明
C P CV T P
V T T
(1)全微分到偏微分法
从基本关系式 定温,对V微分
U V
dU TdS PdV
T
全微分
T S
V
T
P
偏微分 S
V
不易测量
T
由Maxwell关系
P T S V
V
T
U
V
T
T P
T
V
P
物理化学公式大全
物理化学公式大全物理化学是研究物质及其性质与能量变化之间关系的学科。
在物理化学的学习与研究过程中,掌握一些重要的公式是十分关键的。
下面是物理化学公式的大全,帮助你更好地理解和运用这些公式。
1. 热力学公式1.1 热力学第一定律dU = dq + dw其中,dU表示系统内能的变化,dq表示系统吸收的热量,dw表示系统对外界所做的功。
1.2 热力学第二定律(卡诺循环)η = 1 - Tc / Th其中,η表示卡诺循环的热效率,Tc表示循环过程中的低温热源温度,Th表示循环过程中的高温热源温度。
1.3 熵变ΔS = ∫dq / T其中,ΔS表示熵变,dq表示吸收的热量,T表示温度。
2. 电化学公式2.1 奥姆定律I = U / R其中,I表示电流强度,U表示电压,R表示电阻。
2.2 法拉第定律I = nFv其中,I表示电流强度,n表示电离物质的摩尔数,F表示法拉第常数,v表示电离的速率。
2.3 电解质溶液中浓度的关系c = n / V其中,c表示溶液的浓度,n表示溶质的物质的量,V表示溶液的体积。
3. 量子化学公式3.1 玻尔模型电子能级En = - 13.6 / n²其中,En表示第n个电子能级的能量。
3.2 库仑势能E = - (Z × e²) / (4πε₀r)其中,E表示两个带电粒子之间的库仑势能,Z表示电荷的量子数,e表示元电荷,ε₀表示真空介电常数,r表示两个带电粒子的距离。
4. 动力学公式4.1 反应速率常数k = A × e^(-Ea / RT)其中,k表示反应速率常数,A表示指前因子,Ea表示活化能,R 表示气体常数,T表示温度。
4.2 阿伦尼乌斯方程k = Z × f(ΔE)其中,k表示反应速率常数,Z表示碰撞频率,f(ΔE)表示碰撞激活因子,ΔE表示碰撞能量。
5. 其他公式5.1 时间-位移关系x = v₀t + 1/2at²其中,x表示位移,v₀表示初始速度,t表示时间,a表示加速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理化学课程教案第五章相平衡§5.1 引言相:系统内物理和化学性质完全均匀的一部分称为相。
相与相之间有明显的界面,从宏观上讲,越过界面时,性质将发生突变。
关于气,液,固的相的说明(固溶体)。
热力学对相平衡研究的应用根据热力学的结论:“在达到相平衡时,任一组分在各相的化学势相等”,可以推出一定的系统最多可以平衡的相数,在一定的范围内可以自由变化的强度性质(温度,压力,浓度等)——相律。
相律:相平衡系统中,组分数,相数,和自由度数之间关系的规律。
相律只能告诉“数目”,不能告诉“数值”。
自由度:在不引起新相生成和原来的相消失的条件下,在一定的条件下可以自由变化的强度性质的数目(以水为例说明之)。
相图:用点,线,面等表示的多相平衡体系中相与强度性质变化关系的几何图形称为相图。
多相平衡体研究的意义:理论意义,实际意义。
如:盐的提纯,反应产物的提纯,新材料的研究与开发(金属材料与陶瓷材料)。
§5.2多相系统平衡的一般条件在由一个多相构成的系统中,相和相之间没有任何限制,每个相都是相互敞开的,有物质的交换,热和功的传递。
热力学平衡一个热力学系统,如诸性质不随时间而改变,则系统处于热力学平衡状态。
热力学平衡实际上包括了热平衡,力学平衡,相平衡和化学平衡。
(1)热平衡:指系统的各部分没有热的传递。
(2)力学平衡:指系统的各部分没有因力的作用而变生形变。
(3)相平衡:系统中不会发生新相的生成和旧相的消失。
(4)化学平衡:系统中不会发生净的化学反应过程。
热力学平衡的条件相平衡的条件:在一定的条件下,相平衡的条件为任一种物质在每一相的化学势相等。
热平衡的条件:设系统有α,β两相,在内能及体积不变的条件下,有δQ的热从α相传至β相,由于βαS S S +=。
d S = d S α + d S β如热量的传递过程是在平衡的条件下进行的,则0=dS0=+-=βαδδT Q T Q dS则有 βαT T =即热平衡的条件为各相的温度相等。
力学平衡条件:设系统的温度为T ,体积为V ,在T ,V 不变的条件下,如α相膨胀了dV α,β相收缩了dV α,如果这个过程是在平衡的条件下进行的,则ββααdV p dV p dF -=则有 βαp p =即多相平衡的力学条件为各相的压力相等。
化学平衡条件:化学平衡条件将在化学平衡一章中讨论。
§5.3 相 律多相平衡系统中组分数,相数,和自由度数之间关系的规律为相律。
系统中组分数,相数,和自由度数的含义和求算组分数:能够详尽描述系统所需的最少的独立的物种数(c )(1) 如果系统中物种数为s , 且这些物质之间没有化学反应,则c = s 。
(2) 如果在个物质之间,存在R 个独立的化学反应,由于每个化学反应都存在一个平衡常数,将有关物质的浓度(活度)联系起来的关系式,则存在化学反应的限定条件,此时c = s -R(3) 如果在一些物质之间的浓度存在固定的比例关系的数目为R ‘(浓度限制条件),则 c = s – R – R ’浓度限制条件的具体说明:以 2 NH 3 = N 2 + 3 H 2为例说明之使用浓度限制条件应注意的问题:(1) R ‘为体系中为固定关系的等式的数目。
(2) 有些分解反应(CaCO 3 (s) = CaO (s)(+ CO 2 (g)),虽然体系中CaO 和CO 2有简单的比例关系,但它们不在同一相中,它们的浓度无固定的比例关系,浓度限制条件不能使用, 再以NH 4CI = NH 3 (g )+ HCI (g) 为例,如系统中有水存在,浓度限制条件不能使用。
系统中物种数随考虑问题的角度的不同而不同,但系统的组分数是相同的。
自由度数:在不引起新相生成和旧相消失的条件下,可在一定条件下变化的独立变数的数目。
相律的推导设:体系的组分数为c,体系中有个Φ相,同时设每一组分在任一相中都存在,要对体系进行详尽描述,有cΦ个浓度变量,但在任一相中的c个浓度变量中,只有(c-1)个是独立的,这样,决的浓度变数中只有Φ(c-1)个是独立的。
这样总的浓度变数为Φ(c-1)在达到平衡时,由相平衡的条件,任一组分有各相的化学势相等每个组分有Φ-1个等式,c个组分共有c(Φ-1)个等式,所以独立的浓度变数应为Φ(c-1)-c(Φ-1) = c-Φ除了浓度变数以外,还有温度,压力等强度变数,这们体系的独立的变数,即自由度数应为f = c-Φ+ nn为除了浓度变数以外,其它的强度性质的数目,一般的情况下,只考虑T,p时,则n = 2,此时f = c–Φ+ 2有时,将温度或压力固定,此时f * = c–Φ+ 1,称为条件自由度。
上边这些关于自由度的数学式就是相律的数学表达式。
例:例1.求下列情况下系统的组分数和自由度数:(1)固体NaCl, KCl, NaNO3, KNO3的混合物与水振荡达成平衡。
(2)固体NaCl, KNO3的混合物与水振荡达成平衡。
例2.Na2CO3(S)和H2O(l)可以生成三种化合物:Na2CO3·H2O, Na2CO3·7H2O , Na2CO3·10H2O ,求(1)在大气压下,与Na2CO3水溶液和冰平衡共存的含水盐最多有几种?(2)在298K时,与水蒸气平衡共存的含水盐最多有几种?§ 5.4单组分系统的相平衡单组分系统的相律由相律 2+Φ-=c f对单组分系统 Φ-=+Φ-=321f可知 0=f 时,3=Φ,是单组分系统中可以同时共存的最多的相数。
Φ = 1 时,2=f ,是单组分体系中可以具有的最大自由度数。
相图:用点线面等几何图形表示的体系的相的变化的图形。
物系点:相图中表示的系统状态(,,p T 组成)的点。
相点:相图中表示一相的状态(,,p T 组成)的点为相点。
单组分系统的两相平衡—Clapeyron 方程在一定的温度和压力()T p ,下,某物质的两相达成平衡, 如果温度改变为dT T +,则压力也会改变为dp p +, 用下图表示可以证明,两相平衡的条件为摩尔吉布斯自由能相等)2()1(,m m G G p T → )2()2()1()1(,m m m m dG G dG G dp p dT T +→+++由热力学的基本公式 ()dp V dT S dP V dT S m m m m 2)2()1()1(+-=+-()()()()m m m m m m V T H V V S S dT dp ∆∆=--=1212 m m V H ∆∆,为1mol 物质由相(1)到相(2)转变时摩尔焓和摩尔体积的变化。
上式称为克拉贝龙方程,对任何物质的两相平衡都可应用。
1. 对气液的两相平衡P RT V V H H m vap m m vap m ≈∆=∆∆=∆,22RT H dT np d p RT H dT dp mvap m vap ∆=∆= 或 该公式称为克劳修斯—-克拉贝龙方程,积分后可以得到液体的蒸气压与温度的关系式,如假设蒸发热与温度无关(温度变化范围不大时可作此近似)对上式作定积分 C T R H nP m vap +∆-=1或 C T B nP +-= 对上式作不定积分 )11(2112T T R H P P nm vap -∆=在实验上, 经常用上式计算一些物质的蒸发热。
关于蒸发热, 有一个近似的公式可以作为参考:1188--⋅⋅=∆mol K J T H b m vap此式适用于没有分子缔合的液体。
2. 对于气固两相的平衡, 可以得到类似的公式, 只是将m vap H ∆换成m f u s H ∆即可。
外压与蒸气压的关系---不活泼气体对蒸气压的影响液体的蒸气压在温度确定时有一定的数值。
但如果温度不变, 在液面上有其它气体(如空气存在时),其外压为液体的蒸气压与气体的压力之和, 这时液体的蒸气压就不同于液体单独存在时的蒸气压。
设:在温度为T 时,纯液体的蒸气压为p , 如果的液面上充以惰性气体,使液面上的压力增大,则液面上液体的蒸气压也会增大。
注:惰性气体在液体中不溶,液面上的蒸气压为蒸气的压力和惰性气体的压力之和由气液两相的平衡条件 m g m g G G ).(),(=))(,,())(,,(,l p T G g p T G p T g m g m g ***=)()(,,l dG g dG dp p T m m e g =+* e m g m dp l V dp g V )()(=将气体看作理想气体,液体的摩尔体积不随时间变化。
⎰⎰**=e g g G p p e m g p p g dp l V dp p RT )( []**-=g e m g g p p l V p p n RT )(这就是说,液体的蒸气压随外压的增大而增大。
水的相图下图为根据实验测定的水的相图水 的相 图(图中的临界点应为647K )1.图中三条实线把整个平面分成三个部分,分别是气,液,固三相区,在三个面上,1=Φ,()p T f ,2=。
.2. 三条实线分别为g -l, s -l 和g -s 两相平衡线(2=Φ,或者说()p T f 或1=,OA 线为g -l 平衡线,只能延长到水的临界点(647K ,2.2×107Pa ),OB 线为g -s 平衡线。
OC 线为s -l 固液平衡线,OC 线向上延长时,会出现不同的相(不同晶型的冰)。
OD 线为OA 线的延长线,是过冷水和水气的介稳平衡线,表示过冷水的蒸气压于温度的关系。
OD 线在OB 线之上,过冷水的蒸气压比处于同温度下的冰的蒸气压大,所以过冷水是处于不稳定状态。
各条两相平衡线的斜率符合贝拉克龙方程(m m f V T H dT dp ∆∆=)。
3.O 点是三条线的交点,称为三相点,在此点,Pa p K T f 2.610,16.273,0===。
水的三相点和冰点的区别:水的冰点为273.15K ,这是因为:(1)在大气压下,由于水中溶入了空气,由于依数性的关系,使冰点下降了0.0024K ,(2)空气压力的增大使冰点下降了0.0074K (m m f V T H dT dp ∆∆=)这两种效应为0.0024 + 0.00747≈0.01K ,所以水的冰点为273.15K (0℃)。
硫的相图§5.5 二组分系统的相图其及应用 本节的基本内容:一、双液系二、固液体系1. 有简单的低共熔混合物的固液体2. 形成稳定的化合物3. 形成不稳定的化合物4. 完全互溶的固溶体5. 部分互溶的固溶体二组分体系的相律Φ-=Φ-+==4222f c体系中最多可以共存的相数 4m a x =Φ最大自由度数3max =f 为了把二组分体系的相图画在平面上, 常固定一个变量, 此时3max =Φ, 2max =f .理想的二组分液态混合物—完全互溶的双液系两种结构相似的化合物,可以任意的比例混合,构成完全互溶的双液系,有时可以构成理想液态混合物。