7.2统计图的选用习题(含答案解析)
2020-2021学年苏科版八年级下册数学 7.2 统计表、统计图的选用 同步习题(含解析)
7.2统计表、统计图的选用同步习题一.选择题1.2016年11月,宜宾市某中学八年级五班同学纷纷捐出自己的零花钱,为建档立卡的贫困学生献爱心,该班第2小组8名同学捐款数额如下(单位:元):12,5,10,5,20,10,10,8.这组捐款数据中,“10”出现的频率是()A.25%B.37.5%C.30%D.32.5%2.为研究雾霾中各成分的百分比,最适合选用的统计图表是()A.表格B.扇形图C.折线图D.条形图3.某地区元月份连续七天的空气质量指数(AQI)分别为:118,96,60,82,56,69,86.为了反映这七天空气质量的变化情况,最直观的表示方法是()A.统计表B.条形统计图C.扇形统计图D.折线统计图4.小明对本班40名同学的血型情况做了调查,结果如下:血型O型A型B型AB型人数(人)1610104下面的扇形统计图中,能反映该调查结果的是()A.B.C.D.5.根据中学生睡眠不足的情况,教育部规定,初中生每天的睡眠时间应为9个小时.某同学记录了他一周的睡眠时间,并将统计结果绘制成如图所示的折线统计图,则该同学这一周的睡眠够9个小时的有()A.1天B.2天C.3天D.4天6.妈妈把一个月的支出情况,用如图所示的统计图来表示,已知一个月的总消费为6000元,则下列说法不正确的是()A.家庭生活费用所占的圆心角度数是108°B.这个月的教育费用为1200元C.这个月的医疗费用为540元D.这个月的房贷所占的圆心角度数是90°7.小明对本班同学阅读兴趣进行调查统计后,欲通过统计图来反映同学感兴趣的各类图书所占百分比,最适合的统计图是()A.条形统计图B.折线统计图C.扇形统计图D.频数直方图8.希望中学七年级四个班的学生去阳光公园义务植树,已知在每小时内,5个女生种3棵树,3个男生种5棵树,各班学生人数如图所示,则植树最多的班级是()A.七(1)班B.七(2)班C.七(3)班D.七(4)班9.温州6月8日~14日的气温折线统计图如图所示,其中实线表示当日最高气温,虚线表示当日最低气温,由图可知,这一周中温差最大的是()A.6月9日B.6月11日C.6月12日D.6月14日10.小芳给校方提供学生体育锻炼的情况报告,在校内对全校学生进行了抽样调查,每位学生只选择一项自己最喜欢的体育运动.其中,a代表最喜欢参加兵乒球运动;b代表最喜欢参加羽毛球运动;c代表最喜欢气排球运动;d代表最喜欢篮球运动,如图是她还未完成的条形统计图与扇形统计图,根据统计图所给出的信息,这个样本中最喜欢篮球运动(即d)的百分率与人数是()A.24,26%B.33,26.4%C.28,22.4%D.25,23.6%二.填空题11.如图是一,二两组同学将本组最近5次数学平均成绩.分别绘制成的折线统计图.由统计图可知组进步更大.(选填“一“或“二”)12.如图是甲、乙两公司近几年销售收入情况的折线统计图,销售收入增长速度较快的是.13.某校九年级(1)班体育委员对本班50名同学参加球类项目做了统计(每人选一种),绘制成如图所示的统计图,则该班参加乒乓球和羽毛球项目的人数总和为.14.为了解七年级学生对年级设置的4门校本课程的选修情况,年级组长对本年级所有七年级学生的课程选修数据进行收集,并绘制成如图的扇形统计图.若参加“七彩数学”的人数为120人,则参加“STEAM课程”的人数是.15.来自某综合市场财务部的报告表明,商场2014年1﹣4月份的投资总额一共是2025万元,商场2014年第一季度每月利润统计图和2014年1﹣4月份利润率统计图如下(利润率=利润÷投资金额).则商场2014年4月份利润是万元.三.解答题16.某单位食堂为1000名职工提供了A、B、C、D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查,根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)补全条形统计图;(2)扇形统计图中“B”对应扇形的圆心角的大小为°;(3)依据本次调查的结果,估计1000名职工中最喜欢C套餐的人数.17.某校数学活动小组对经过某路段的小型汽车每车乘坐人数(含驾驶员)进行了随机调查,根据每车乘坐人数,把乘坐1人、2人、3人、4人、5人的车分别记为A,B,C,D,E五类,由调查所得数据绘制了如图所示的两幅不完整的统计图.(1)本次调查的小型汽车共辆,扇形统计图中A类对应的圆心角度数为,E 类对应的圆心角度数为.(2)补全条形统计图;(3)若某时段通过该路段的小型汽车数量为5000辆,请你估计其中只乘坐1人的小型汽车数量.18.小李家准备购买一台台式电脑,小李将收集到的该地区A,B,C三种品牌电脑销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)直接写出6至11月三种品牌电脑销售总量最多的电脑品牌,以及11月份A品牌电脑的销售量;(2)11月份,其他品牌的电脑销售总量是多少台?(3)你建议小李购买哪种品牌的电脑?请写出你的理由(写出一条理由即可).参考答案一.选择题1.解:由题意,得3÷8=375.5%,故选:B.2.解:为研究雾霾中各成分的百分比,最适合选用的统计图表是扇形图,故选:B.3.解:为了反映这七天空气质量的变化情况,最直观的表示方法是用折线统计图,故选:D.4.解:依题意可得,小明同学所在的班级四种血型的人数所在扇形圆心角的度数分别是:O型:×360°=144°,选项A不符合题意;A型:×360°=90°,选项C不符合题意;B型:×360°=90°,选项D不符合题意;AB型:×360°=36°,选项A不符合题意;故选:B.5.解:由图可知,某同学周一到周日的睡眠时间分别是:6小时,8小时,7小时,7小时,9小时,10小时,8小时,则该同学这一周的睡眠够9个小时的有2天,故选:B.6.解:A.家庭生活费用所占的圆心角度数是360°×30%=108°,此选项正确,不符合题意;B.这个月的教育费用为6000×20%=1200(元),此选项正确,不符合题意;C.这个月的医疗费用为6000×15%=900(元),此选项错误,符合题意;D.这个月的房贷所占的圆心角度数是360°×25%=90°,此选项正确,不符合题意;故选:C.7.解:欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是扇形统计图.故选:C.8.解:七(1)班共植树:22×+18×=43.2(棵),七(2)班共植树:18×+20×=(棵),七(3)班共植树:13×+22×=(棵),七(4)班共植树:15×+21×=44(棵),∵>44>43.2,∴植树最多的班级是七(3)班,故选:C.9.解:由图形直观可以得出6月14日温差最大,是35﹣25=10(℃),故选:D.10.解:∵被调查的总人数为29÷23.20%=125(人),∴b类型的人数为125×26.40%=33(人),则d类型的人数为125﹣(29+33+35)=28(人),∴d类型人数所占百分比为×100%=22.4%,故选:C.二.填空题11.解:一组的成绩变化从70到90,二组的成绩变化是从70到85,所以一组进步更大.故答案为:一.12.解:从折线统计图中可以看出:甲公司2013年的销售收入为50万元,2017年约为90万元,则从2013~2017年甲公司增长了90﹣50=40万元;乙公司2013年的销售收入为50万元,2017年约为70万元,则从2013~2017年乙公司增长了70﹣50=20万元.则销售收入增长速度较快的是甲.故答案为:甲.13.解:由扇形统计图可知,参加羽毛球项目的人数所占的百分比为=20%,参加乒乓球项目的人数所占的百分比为30%,∴该班参加乒乓球和羽毛球项目的人数总和=50×(20%+30%)=25(人),故答案为:25.14.解:∵参加“七彩数学”的人数为120人,占被调查人数的30%,∴被调查的总人数为120÷30%=400(人),∴参加“STEAM课程”的人数是400×40%=160(人),故答案为:160人.15.解:该商场1月份的投资金额为:125÷20%=625(万元);该商场2月份的投资金额为:120÷30%=400(万元);该商场3月份的投资金额为:130÷26%=500(万元);该商场4月份的投资金额为:2025﹣625﹣400﹣500=500(万元);该商场4月份的利润为:500×25%=125(万元);故答案为:125.三.解答题16.解:(1)由题意知选择A套餐的人数为240×25%=60(人),∴选择C套餐的人数为240﹣(60+84+24)=72(人),补全条形统计图如下:(2)扇形统计图中“B”对应扇形的圆心角的大小为360°×=126°,故答案为:126;(3)估计1000名职工中最喜欢C套餐的人数为1000×=300(人).17.解:(1)由图象可得,本次调查的小型汽车共32÷20%=160(辆),扇形统计图中A类对应的圆心角度数为:360°×=108°,E类对应的圆心角度数为360°×=18°,故答案为:160,108°,18°;(2)B类有:160×35%=56(辆),D类有:160﹣48﹣56﹣32﹣8=16(辆),补全的条形统计图如右图所示;(3)5000×=1500(辆),答:估计其中只乘坐1人的小型汽车的有1500辆.18.解:(1)由条形统计图可得,6至11月三种品牌电脑销售总量最多的电脑品牌是B品牌,是1602台;由折线统计图可得,11月份A品牌电脑的销售量是270台;(2)由折线统计图可得,11月份B品牌电脑的销售量是234台,C品牌电脑的销售量是275台;(3)(答案不唯一)建议购买C品牌,因为C品牌11月的市场占有率最高,且6个月的月销售量最稳定;或建议购买B品牌,因为B品牌的销售总量最多,受到广大顾客的青睐.。
八年级数学下册7.2统计表统计图的选用统计图的选择“统计图”知识你知道多少素材
“统计图”知识,你知道多少一、知识结构框架图统计图能直观、有效地描述数据,从统计图中获取的有用信息,并能运用它有效地描述数据是我们形成统计观念的基础,我们学习过条形统计图、 统计图、扇形统计图,除此之外,在媒体中还可以见到一些形象的、吸引人的统计图、通过绘制统计图,可以提高同学们收集、整理、分析数据的能力。
三、例题讲解例1(08年,烟台)为了减轻学生的作业负担,烟台市教育局规定:初中学段学生每晚的作业总量不超过1.5小时.一个月后,九(1)班学习委员亮亮对本班每位同学晚上完成作业的时间进行了一次统计,并根据收集的数据绘制了下面两幅不完整的统计图,请你根据图中提供的信息,解答下面的问题:(1)该班共有多少名学生? (2)将①的条形图补充完整.(3)计算出作业完成时间在0.5~1小时的部分对应的扇形圆心角. (4)完成作业时间的中位数在哪个时间段内?(5)如果九年级共有500名学生,请估计九年级学生完成作业时间超过1.5小时的有多少人?分析:观察两个统计图,解答如下:解:(1)该班共有学生:184045=%(名). (2)如图.(3)作业完成时间在0.51 小时的部分对应的圆心角为36030108⨯=%.(4)完成作业时间的中位数落在1 1.5 小时时间段内. (5)九年级完成作业时间超过 1.5小时的有:(例1题图)① ②(例1题图)500(14530)125⨯--=%%(人).点评:读懂两个统计图的含义是解答问题的关键。
例2(08年,恩施自治州)国家教育部规定“中小学生每天在校体育活动时间不低于1小时”.为此,我州今年初中毕业生学业考试体育学科分值提高到40分,成绩记入考试总分.某中学为了了解学生体育活动情况,随机调查了720名毕业班学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”,所得的数据制成了如图例2的扇形统计图和频数分布直方图.根据图示,解答下列问题:(1)若在被调查的学生中随机选出一名学生测试其体育成绩,选出的恰好是“每天锻炼超过1小时”的学生的概率是多少?(2)“没时间”的人数是多少?并补全频数分布直方图;(3)2008年恩施州初中毕业生约为4.3万人,按此调查,可以估计2008年全州初中毕业生中每天锻炼未超过1小时的学生约有多少万人? (4)请根据以上结论谈谈你的看法.1小时的圆心角是︒90,它占整个圆的41,则每天锻炼超过1小时的学生占41,每天锻炼未超过1小时的学生占43,再根据条形统计图我们可以求得没有时间的人数720×(1-41)-120-20=400人。
7.2 统计表、统计图的选用(1)
课堂小结
通过这节课你学到了什么?
你有哪些收获?
反馈训练
• 1某校对初一300名学生数学考试作一次调查 ,在某范围内的得分率如图的扇形,则在60分 以下这一分数线中的人数为( ) • A.75 B.60 C.90 D.50
91100 25% 7690 30%
60以下 6075 25% 20%
(1)根据上面结果,你对我国这五年每10万人 受教育程度的情况有了比较清楚的了解了吗?
(2)你认为这种数据表达方式好不好?
你能设计出一个比较好的表达方式吗?
(3)小明根据上面的结果制成了下面的图表, 你能从中迅速判断出我国哪一年每10万人中具有大学 文化程度的人最多吗?此种表示方式的优点是什么?
关系?
(2)你能算出各个扇形圆心角的度数吗? 总结:扇形圆心角度数=该部分的百分比×360°.
个性展示
1·扇形统计图在表示数据上,有何特点? 很好地反映出了各部分在总体中所占的百分比.
• 2.红星村今年对农田秋季播种作物如图规划 ,且只种植这三种农作物,则该村种植的大麦 占种植所有农作物的____%.
初中数学
八年级(下册)
7.2 统计表、统计图的选用(1)
沭阳如东实验学校初二数学组
目标定向
• 1.了解扇形统计图的特点,并能够从图 中尽可能多地获取有用的信息; • 2.会制作扇形统计图,体会扇形统计 图在形象表达各分量在总量中所占份 额大小这方面所具有的优势; • 3.通过学生讨论、小组合作交流以及 动手操作等过程,培养学生观察、分 析、动手实践、归纳等能力,渗透小 组合作意识,发展学生思维.
中华人民共和国从1953年到2000年共进行了5次人 口普查.根据第2次到第5次人口普查的结果,每10万 人受教育程度的人数情况如下: 第6次人口普查 2010年全国人口总数1 370 536 875人.我国每10 万人中,具有大学文化程度约8 930人;具有高中文化 程度的14 032人;具有初中文化程度的38 788人;有 小学文化程度的26 779人.
2022-2023学年第二学期初二数学优选作业7
7.2 统计图的选用一、单选题1.在条形统计图上________,才会减少直观上的错觉.()A.横轴与纵轴都必须从0开始B.横轴与纵轴都不必从0开始C.纵轴不必从0开始,横轴必须从0开始D.横轴不必从0开始,纵轴必须从0开始2.太原某公司对某款新产品的生产成本进行调查,并绘制了如下扇形统计图,则材料费所在扇形的圆心角的度数是()A.126︒B.133.2︒C.144︒D.162︒3.要反映某地今年七月份日平均气温的变化情况,绘制()统计图比较合适.A.条形B.折线C.扇形D.复式条形4.如图,为了解六年级学生课外体育活动情况,随机调查了30名六年级学生课外体育锻炼的时间,将调查结果分为A,B,C,D四个类别,并绘制了如下条形统计图(D类别被墨水污染).若A,B,C三个类别条形的高度比为1:2:4,且B类别的人数为6,则此次调查中D类别的人数是()A.9 B.8 C.7 D.65.“双减”政策实施后,某校为了解七年级学生每天的作业完成时间的变化情况,最适合采用下列哪种统计图来进行描述()A.条形统计图B.扇形统计图C.折线统计图D.以上三种统计图都可以6.如图所示是某单位考核情况条形统计图(A、B、C三个等级),则下面的回答正确的是()A.C等级人最少,占总数的30%B.该单位共有120人C.A等级人比C等级人多10%D.B等级人最多,占总人数的237.我国近十年的人口出生率及人口死亡率如图所示.已知人口自然增长率=人口出生率—人口死亡率,下列判断错误的是()A.与2012年相比,2021年的人口出生率下降了近一半B.近十年的人口死亡率基本稳定C.近五年的人口总数持续下降D.近五年的人口自然增长率持续下降8.2020年3月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》.承德市教育局发布了“普通中小学校劳动教育状况评价指标”.为了了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到图所示的统计图表:则下列说法正确的是()A.本次调查活动共抽取300人B.m的值为129C.n的值为27D.扇形统计图中“2次”部分所对的圆心角为60°9.图1表示的是某书店今年1~5月的各月营业总额的情况,图2表示的是该书店“党史”类书籍的各月营业额占书店当月营业总额的百分比情况.若该书店1~5月的营业总额一共是182万元,某同学结合统计图分析得到如下结论:①该书店4月份的营业总额为45万元;②5月份“党史”类书籍的营业额为10.5万元;③4月份“党史”类书籍的营业额最高;④5月份“党史”类书籍的营业额最高,则上述结论中正确的是()A.④B.②③C.①②③D.①②④10.2021年开始,某省将试行“312++”的普通高考新模式,即除物理语文、数学、外语3门必选科目外,考生再从物理、历史中选1门,从化学、生物、地理、政治中选2门作为选考科目.为了帮助政治学生合理选科,某中学将高一每个学生的六门科目综合成绩按比例均缩放成5分制,绘制成雷达图.甲同学的成绩雷达图如图所示,下面叙述一定不正确的是()A.甲的物理成绩领先年级平均分最多B.甲有2个科目的成绩低于年级平均分C.甲的成绩从高到低的前3个科目依次是地理、化学、历史D.对甲而言,物理、化学、地理是比较理想的一种选科结果二、填空题11.正常的人体血压每天都是变化的,若要反映一个人血压变化情况宜采用______统计图.12.某校制定了“阅读奖励方案”,方案公布后,随机征求了100名学生的意见,并对持有三种意见的人数进行统计,绘制出如图所示统计图,则赞成该方案的学生有___人.13.某校开展“我最喜爱的一项体育运动”调查,每名学生必选且只能选一项.现随机抽查了若干名学生,并将其结果绘制成不完整的条形图和扇形图.在抽查的学生中,喜欢足球运动的人数为______.14.如图,所提供的信息不正确的是______(填序号).①七年级学生总数最多②九年级的男生数是女生数的两倍 ③女生总数比男生总数少16人④八年级的学生总数比九年级的学生总数多15.某中学共40位同学参加了演讲比赛,分段统计参赛同学的成绩,结果如下(分数为整数,满分为100分)分数段(分〕 61~70 71~80 81~90 91~100 人数51016m则m _________;若制作成扇形统计图,那么81~90分数段所对应扇形的圆心角为_________°. 16.如图是某地2月18日到23日 2.5PM 浓度和空气质量AQI 的统计图(当AQI 不大于100时称空气质量为“优良”).由图可得下列说法:①18日的 2.5PM 浓度最低;②21日的 2.5PM 浓度最高;③这六天中有4天空气质量为“优良”;④空气质量指数AQI 与 2.5PM 浓度有关.其中正确的是________(填序号即可)17.高尔基说:“书,是人类进步的阶梯”.阅读可以丰富知识,拓展视野,充实生活,给我们带来愉快.英才中学计划在各班设立图书角,为合理搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对全校学生进行抽样调查,收集整理喜爱的书籍类型(A .科普,B .文学,C .体育,D .其他)数据后,绘制出两幅不完整的统计图:小亮根据这两幅不完整的统计图得出以下五个结论:①样本容量为400 ;②类型B的人数为120人;③类型C所占百分比为30%;④类型C所对应的扇形的圆心角为126°;⑤类型D的人数是类型B的人数的13.你判断一下小亮结论中错误..的是_______ .(请填写序号)18.某电子产品店今年1~4月的电子产品销售总额如图①,其中一款平板电脑的销售额占当月电子产品销售总额的百分比如图②.根据图中信息,以下四个推断合理的是__________.(填序号)①从1月到4月,电子产品销售总额为290万元;②平板电脑2~4月的销售额占当月电子产品销售总额的百分比与1月份相比都下降了;③平板电脑4月份的销售额比3月份有所下降;④今年1~4月中,平板电脑售额最低的是3月.三、解答题19.某校在本期开展了“庆祝中国共产主义青年团成立100周年”主题阅读活动.为了解八年级学生五月份主题阅读量的情况,学校对八年级学生五月份主题阅读量进行了抽样调查,并将收集到的数据绘制成以下两幅不完整的统计图.请根据图中信息回答以下问题:(1)求本次抽查的八年级学生人数?所抽取的八年级学生五月份主题阅读量的平均数;(2)所抽取的八年级学生五月份主题阅读量的众数为____________本,中位数为____________本;(3)已知该校八年级有300名学生,请你估计该校八年级学生中,五月份主题阅读量为5本的学生人数.20.学校随机抽取部分学生就“你是否喜欢网课”进行问卷调查,并将调查结果进行统计后,绘制成如下的统计表和扇形统计图.态度非常喜欢喜欢一般不喜欢人数90 b 30 10百分比 a 35% 20%请你根据统计图表提供的信息解答下列问题:(1)该校随机抽取了____________名同学进行问卷调查;(2)求出a、b的值;(3)求在扇形统计图中“喜欢”部分扇形所对应的圆心角的度数.21.为了了解落实国家“双减”政策的情况,某校随机调查了部分学生在家完成作业的时间,按时间由短到长划分为A,B,C,D四个等级,并绘制了如下不完整的条形统计图和扇形统计图:根据以上信息,解答以下问题:(1)请将条形统计图补充完整;扇形统计图中m=,n=;(2)若该校有2800名学生,请估计全校在家完成作业时间为1小时及以下的学生有多少人?22.东北育才学校决定在学生中展开篮球、足球、排球、网球四种社团活动,为了解学生对四种社团活动的喜欢情况,随机调查了m名学生最喜欢的一种社团活动(每名学生必选且只能选择四种社团活动中的一种),并将调查结果绘制成如图的不完整的统计图表:学生最喜欢的社团活动的人数统计表社团活动学生数百分比篮球8040%足球60p排球n10%网球4020%根据图表中提供的信息,解答下列问题:(1)m=______,n=______,p=______;(2)请根据以上信息直接在图中补全条形统计图;(3)根据调查结果,请估计我校2000名学生中有多少名学生最喜欢足球社团活动.23.“十一”黄金周期间,北京故宫游园人数大幅度增加,在7天假期中每天旅游的人数较之前一天的变化情况如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):日期1日2日3日4日 5日 6日 7日 人数变化单位:万人3.2+ 0.6+ 0.3+ 0.7+1.3- 0.2+2.4-(1)请判断七天内游客人数最多的是哪天?最少的是哪天?它们相差多少万人? (2)以9月30日的游客人数为0点,请用折线统计图表示这7天的人数变化情况. 24.以下是某网络书店1-4月份关于图书销售情况的两个统计图:(1)求1月份该网络书店绘本类图书的销售额;(2)若已知4月份与1月份这两个月的绘本类图书销售额相同,请补全条形统计图①;(3)有以下两个结论:①该书店第一季度的销售总额为182万元;②该书店1-2月份绘本类图书销售额的月增长率为21%.请你判断以上两个结论是否正确,并选择一个结论说明理由.25.白色污染(White Pollution )是人们对难降解的塑料垃圾(多指塑料袋)污染环境现象的一种形象称谓.为了让全校同学感受丢弃塑料袋对环境的影响,小彬随机抽取某小区40户居民,记录了这些家庭某个月丢弃塑料袋的数量(单位:个):29 39 35 39 39 27 33 35 31 3132 32 34 31 33 39 38 40 38 4231 31 38 31 39 27 33 35 40 3829 39 35 33 39 39 38 42 37 32请根据上述数据,解答以下问题:分组划记频数A:25-30 ___________ ___________B:30~35 14C:35~40 ___________ ___________D:40~45 4合计/ 40(1)小彬按“组距为5”列出了如下的频数分布表(每组数据含最小值),请将表中空缺的部分补充完整,并补全频数分布直方图;(2)根据(1)中的直方图可以看出,这40户居民家这个月丢弃塑料袋的个数在___________组的家庭最多;(填分组序号)(3)根据频数分布表,小彬又画出了图所示的扇形统计图.请将统计图中各组占总数的百分比填在图中;(4)若该小区共有1000户居民家庭,请你估计每月丢弃的塑料袋数量不小于30个的家庭个数.26.某校举办球赛,分为若干组,其中第一组有A,B,C,D,E五个队.这五个队要进行单循环赛,即每两个队之间要进行一场比赛,每场比赛采用三局两胜制,即三局中胜两局就获胜.每场比赛胜负双方根据比分会获得相应的积分,积分均为正整数.这五个队完成所有比赛后得到如下的积分表.根据上表回答下列问题:(1)第一组一共进行了场比赛,A队的获胜场数x为;(2)当B队的总积分y=6时,上表中m处应填,n处应填;(3)写出C队总积分p的所有可能值为:.答案与解析一、单选题1.在条形统计图上________,才会减少直观上的错觉.()A.横轴与纵轴都必须从0开始B.横轴与纵轴都不必从0开始C.纵轴不必从0开始,横轴必须从0开始D.横轴不必从0开始,纵轴必须从0开始【答案】D【分析】在条形统计图上,横轴表示的事物,纵轴表示的数量,所以纵轴必须从0开始,横轴不必从0开始.【解析】根据条形图的画法,可得:纵轴必须从0开始,横轴不必从0开始.故选D.【点评】了解条形统计图的画法是关键.2.太原某公司对某款新产品的生产成本进行调查,并绘制了如下扇形统计图,则材料费所在扇形的圆心角的度数是()A.126︒B.133.2︒C.144︒D.162︒【答案】C【分析】用360︒乘以材料费所占百分比即可.【解析】解:由题意可得,材料费所在的扇形圆心角的度数°°⨯--=.360(125%35%)144故选:C.【点评】本题考查了扇形统计图圆心角度数的算法,熟练掌握圆心角度数的算法是解决本题的关键.3.要反映某地今年七月份日平均气温的变化情况,绘制()统计图比较合适.A.条形B.折线C.扇形D.复式条形【答案】B【分析】条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量多少,而且能反映数量的增减变化情况;扇形统计图反映部分与整体的关系;由此根据情况选择即可.∴绘制折线统计图比较合适;故选:B.【点评】此题考查了条形统计图、折线统计图与扇形统计图,熟练掌握统计图的相关概念是解答此题的关键.4.如图,为了解六年级学生课外体育活动情况,随机调查了30名六年级学生课外体育锻炼的时间,将调查结果分为A,B,C,D四个类别,并绘制了如下条形统计图(D类别被墨水污染).若A,B,C三个类别条形的高度比为1:2:4,且B类别的人数为6,则此次调查中D类别的人数是()A.9 B.8 C.7 D.6【答案】A【分析】设A类别的人数为x,根据比例关系得到26x=,即可求出x,计算出A、B、C三个类别人数,即可求出D类别人数.【解析】设A类别的人数为x,则B类别的人数为2x,C类别的人数为4x,∵B类别的人数为6,x∴26x=,解得:=3∴A、B、C三个类别的人数=24721++==,x x x x∴D类别的人数=30-21=9,故选:A.【点评】本题考查了条形统计图,掌握条形统计图的基本知识是解题关键.5.“双减”政策实施后,某校为了解七年级学生每天的作业完成时间的变化情况,最适合采用下列哪种统计图来进行描述()A.条形统计图B.扇形统计图C.折线统计图D.以上三种统计图都可以【答案】C【分析】条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图反映部分与整体的关系;由此根据情况选择即可.【解析】解:某校为了解七年级学生每天的作业完成时间的变化情况,采用折线统计图比较合适,故选:C.键.6.如图所示是某单位考核情况条形统计图(A、B、C三个等级),则下面的回答正确的是()A.C等级人最少,占总数的30%B.该单位共有120人C.A等级人比C等级人多10%D.B等级人最多,占总人数的23【答案】D【分析】由条形统计图可得该单位总人数和各等级的人数,从而对各选项的正误作出判断.【解析】解:由条形统计图可得该单位考核A等级40人,B等级120人,C等级20人,所以总人数为:40+120+20=180,所以B选项错误;由2011%180≈可知A错误;由40201100%20-==可知A等级比C等级人数多100%,C错误;由12021803=知B等级人数占总人数的23,又由各等级人数知B等级人数最多,所以D正确.故选D.【点评】本题考查条形统计图的应用,通过条形统计图获得有关信息并进行准确分析是解题关键.7.我国近十年的人口出生率及人口死亡率如图所示.已知人口自然增长率=人口出生率—人口死亡率,下列判断错误的是()B.近十年的人口死亡率基本稳定C.近五年的人口总数持续下降D.近五年的人口自然增长率持续下降【答案】C【分析】根据折线统计图逐项分析判断即可求解.【解析】解:A. 与2012年相比,2021年的人口出生率下降了近一半,故该选项正确,不符合题意;B. 近十年的人口死亡率基本稳定,故该选项正确,不符合题意;C. 近五年的人口总数持续上升,只是自然增长率在变小,故该选项不正确,符合题意;D. 近五年的人口自然增长率持续下降,故该选项正确,不符合题意.故选C.【点评】本题考查了折线统计图,从统计图获取信息是解题的关键.8.2020年3月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》.承德市教育局发布了“普通中小学校劳动教育状况评价指标”.为了了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到图所示的统计图表:则下列说法正确的是()A.本次调查活动共抽取300人B.m的值为129C.n的值为27D.扇形统计图中“2次”部分所对的圆心角为60°【答案】C【分析】A.根据一周劳动次数1次以下的人数和所占的百分比,即可求得本次抽取的人数;B.用总人数乘以3次的人数所占的百分比求出m的值,C.用4次及以上的人数除以总人数即可得出n的值;D.用360°乘以劳动次数为2次的人数所占的百分比即可.【解析】解:A.这次调查活动共抽取20÷10%=200(人),说法错误,不符合题意;B.m=200×43%=86,说法错误,不符合题意;C.n%=54÷200×100%=27%,即n的值为27,说法正确,符合题意;D.扇形统计图中“2次”部分所对的圆心角为:360°×20%=72°,说法错误,不符合题意.故选:C.【点评】本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.9.图1表示的是某书店今年1~5月的各月营业总额的情况,图2表示的是该书店“党史”类书籍的各月营业额占书店当月营业总额的百分比情况.若该书店1~5月的营业总额一共是182万元,某同学结合统计图分析得到如下结论:①该书店4月份的营业总额为45万元;②5月份“党史”类书籍的营业额为10.5万元;③4月份“党史”类书籍的营业额最高;④5月份“党史”类书籍的营业额最高,则上述结论中正确的是()A.④B.②③C.①②③D.①②④【答案】D【分析】用1 ~ 5月的营业总额减去其他月份的总额,求出4月份的营业额,故①正确;用5月份的营业额乘以“党史”类书籍所占的百分比即可求出,故②正确;用4月份的营业额乘以“党史”类书籍所占的百分比即可求出4月份“党史”类书籍营业额,和5月份比较,故③错误;先判断出1 - 3月份的营业总额以及“党史”类书籍的营业额占当月营业额的百分比都低于4、5月份,再由③的结论,故④正确.【解析】解:该书店4月份的营业总额是:182- (30+ 40+ 25+ 42) = 45(万元),故①正确;5月份“党史”类书籍的营业额是42 ×25% = 10.5(万元),故②正确;4月份“党史”类书籍的营业额是45 ×20% = 9(万元),10.5>9,故③错误;1一3月份的营业总额以及“党史”类书籍的营业额占当月营业额的百分比都低于4、5月份,而4月份“党史”类书籍的营业额又小于5月份“党史”类书籍的营业额,故④正确,故选:D.【点评】本题考查了的是条形统计图和折线统计图的综合运用,解题的关键是读懂统计图,从不同的统计图中得到必要的信息.10.2021年开始,某省将试行“312++”的普通高考新模式,即除物理语文、数学、外语3门必选科目外,考生再从物理、历史中选1门,从化学、生物、地理、政治中选2门作为选考科目.为了帮助政治学生合理选科,某中学将高一每个学生的六门科目综合成绩按比例均缩放成5分制,绘制成雷达图.甲同学的成绩雷达图如图所示,下面叙述一定不正确的是()A.甲的物理成绩领先年级平均分最多B.甲有2个科目的成绩低于年级平均分C.甲的成绩从高到低的前3个科目依次是地理、化学、历史D.对甲而言,物理、化学、地理是比较理想的一种选科结果【答案】C【分析】根据雷达图,判断甲各科成绩与年级平均分的高低,以及各科成绩的高低,进而可确定理想的选科组合,即可判断各选项的正误.【解析】A:由图知:甲的物理成绩领先年级平均分1.5分左右,比化学、地理要高,正确,不符合题意;B:其中有政治、历史比年级平均分低,正确,不符合题意;C:甲的成绩从高到低的前3个科目依次是地理、化学、物理或生物,错误,符合题意;D:由C知:物理、化学、地理对于甲是比较理想的一种选科结果,正确,不符合题意;故选:C.【点评】本题考查对图表数据的整合,进行判断,属于基础题.二、填空题11.正常的人体血压每天都是变化的,若要反映一个人血压变化情况宜采用______统计图.【答案】折线【分析】条形统计图的特点:能清楚的表示出数量的多少;折线统计图的特点:不但可以表示出数量的多少,而且能看出各种数量的增减变化情况;扇形统计图的特点:比较清楚地反映出部分与部分、部分与整体之间的数量关系;据此进行解答即可.【解析】解:若要反映一个人血压变化情况宜采用折线统计图;故选:C.【点评】此题考查的是统计图的选择,掌握条形、折线和扇形统计图的特点是解答的关键.12.某校制定了“阅读奖励方案”,方案公布后,随机征求了100名学生的意见,并对持有三种意见的人数进行统计,绘制出如图所示统计图,则赞成该方案的学生有___人.【答案】70【分析】首先求得赞成方案的所占百分比,然后用总人数乘以百分比即可.【解析】解:由扇形统计图可知:--=,赞成的百分比为120%10%70%⨯=人,所以100名学生中赞成该方案的学生有10070%70故答案为:70.【点评】本题考查的是扇形统计图的运用,读懂统计图并能熟练掌握扇形统计图直接反映部分占总体的百分比大小是解题的关键.13.某校开展“我最喜爱的一项体育运动”调查,每名学生必选且只能选一项.现随机抽查了若干名学生,并将其结果绘制成不完整的条形图和扇形图.在抽查的学生中,喜欢足球运动的人数为______.【答案】30【解析】解:总人数=21÷14%=150人,喜欢足球的人数=150-21-39-15-45=30(人)故答案为30.【点评】本题主要考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解答本题的关键.14.如图,所提供的信息不正确的是______(填序号).①七年级学生总数最多②九年级的男生数是女生数的两倍③女生总数比男生总数少16人④八年级的学生总数比九年级的学生总数多【答案】①③④【分析】根据条形统计图给出的数据对每一项进行分析,即可得出答案.【解析】解:①七年级学生有:8+13=21(人),八年级学生有:14+16=30(人),九年级学生有:10+20=30(人),则七年级学生总数最少,故原说法错误,符合题意;②九年级的男生数有20人,女生有10人,男生数是女生数的两倍,正确,不符合题意;③女生总人数有:8+14+10=32(人),男生总人数有:13+16+20=49(人),女生总数比男生总数少49-32=17(人),故原说法错误,符合题意;④八年级的学生总数有:14+16=30(人),九年级的学生总数有:10+20=30(人),八年级的学生总数与九年级的学生总数一样多,故原说法错误,符合题意; 所提供的信息不正确的是:①③④;故答案为:①③④.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.15.某中学共40位同学参加了演讲比赛,分段统计参赛同学的成绩,结果如下(分数为整数,满分为100分)分数段(分〕 61~70 71~80 81~90 91~100人数 5 10 16 m则m =_________;若制作成扇形统计图,那么81~90分数段所对应扇形的圆心角为_________°.【答案】 9 144【分析】利用40减去其他三个分数段的人数可得m 的值,利用360︒乘以8190~分数段的人数所占百分比即可得对应扇形的圆心角的度数.【解析】解:由表格可知,40510169m =---=,16360(100%)14440︒⨯⨯=︒, 即8190~分数段所对应扇形的圆心角为144︒,故答案为:9,144.【点评】本题考查了扇形统计图,熟练掌握统计调查的相关知识是解题关键.16.如图是某地2月18日到23日 2.5PM 浓度和空气质量AQI 的统计图(当AQI 不大于100时称空气质量为“优良”).由图可得下列说法:①18日的 2.5PM 浓度最低;②21日的 2.5PM 浓度最高;③这六天中有4天空气质量为“优良”;④空气质量指数AQI 与 2.5PM 浓度有关.其中正确的是________(填序号即可)【答案】①②③④【分析】根据折线统计图提供的信息,逐一分析,即可解答.【解析】解:由统计图可知18日的 2.5PM浓度最低,故①正确;由统计图可知21日的 2.5PM浓度最高,故②正确;由统计图可知18日,19日,20日,23日的AQI不大于100,21日和22日的AQI大于100,∴这六天中有4天空气质量为“优良”,故③正确;比较两图可知, 2.5PM浓度值越小,空气质量指数AQI越低,故④正确;故答案为:①②③④.【点评】本题考查了折线统计图,解决本题的关键是从折线统计图中获取相关信息.17.高尔基说:“书,是人类进步的阶梯”.阅读可以丰富知识,拓展视野,充实生活,给我们带来愉快.英才中学计划在各班设立图书角,为合理搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对全校学生进行抽样调查,收集整理喜爱的书籍类型(A.科普,B.文学,C.体育,D.其他)数据后,绘制出两幅不完整的统计图:小亮根据这两幅不完整的统计图得出以下五个结论:①样本容量为400 ;②类型B的人数为120人;③类型C所占百分比为30%;④类型C所对应的扇形的圆心角为126°;⑤类型D的人数是类型B的人数的13.你判断一下小亮结论中错误..的是_______ .(请填写序号)【答案】③【分析】根据A类100人占25%可计算样本容量,根据D占10%可计算类型D的人数,可得类型B的人数,根据C类140人÷总样本容量即可得所占百分比,类型C所占百分比×360°可得所对扇形的圆心角度数,根据类型B,类型D的人数即可判断⑤.【解析】100÷25%=400(人),∴样本容量为400,故①正确;类型D的人数是400×10%=40(人),∴类型B的人数为:400-100-140-40=120(人),故②正确;。
八年级数学苏科版下册课时练第7单元 《7.2 统计表、统计图的选用》(含答案解析)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练7.2统计表统计图的选用一、选择题1.小明对本班同学阅读兴趣进行调查统计后,欲通过统计图来反映同学感兴趣的各类图书所占百分比,最适合的统计图是()A.条形统计图B.折线统计图C.扇形统计图D.频数直方图2.不但可以表示数量的多少,而且能清楚地表示出数量增减变化情况的统计图是()A.扇形统计图B.条形统计图C.折线统计图D.以上都不对3.在一次慈善基金捐款活动中,某单位对捐款金额分别是人民币100元、200元、300元、400元和500元的人数进行了统计,制成如图所示的统计图.小明从该统计图中获得四条信息,其中正确的是()A.捐款金额越高,捐款的人数越少B.捐款金额为500元的人数最多C.捐款金额为400元的人数比捐款金额为200元的人数要少D.捐款金额为100元的人数最少4、某校开设了艺术、体育、劳技、书法四门拓展性课程,要求每一名学生都要选且只能选一门课.小黄同学统计了本班50名同学的选课情况,并将结果绘制成条形统计图(如图,不完全),则选书法课的人数有()A.12人B.13人C.15人D.50人5.下图是某校初中各年级人数占初中总人数的比例统计图,已知八年级有学生906人,那么七年级的学生人数是()A.3020B.906C.1208D.不能确定6、甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市的利润相同D.乙超市在9月份的利润必超过甲超市7、随着“三农”问题的解决,某农民近两年的年收入发生了明显变化.已知前年和去年的收入分别是60000元和80000元,如图是依据①②③三种农作物每种作物每年的收入占该年年收入的比例所绘制的扇形统计图.依据统计图得出的以下四个结论中正确的是()A.①的收入:去年和前年相同B.③的收入所占比例:前年的比去年的大C.去年②的收入为2.8万元D.前年年收入不止①②③三种农作物的收入8、某校开设了艺术、体育、劳技、书法四门拓展性课程,要求每一名学生都要选且只能选一门课.小黄同学统计了本班50名同学的选课情况,并将结果绘制成条形统计图(如图,不完全),则选书法课的人数有()A.12人B.13人C.15人D.50人二、填空题9、扇形统计图能清楚地表示出各部分在总体中所占的,(填“能”或“不能”)直接表示各部分的具体数量.10、某校开展了“好书伴我成长”的读书活动.为了解七年级450名学生的读书情况,随机调查了七年级50名学生本学期读书册数,并将统计数据制成了扇形统计图,则该校七年级学生读书册数等于3册的约有名.11、某班数学老师想了解学生对数学的喜欢程度,对全班50名学生进行调查,根据调查结果绘制了扇形统计图(如图所示),其中A表示“很喜欢”,B表示“一般”,C表示“不喜欢”,则该班“很喜欢”数学的学生有人.12、某校为开展“每天运动一小时”活动,对80名学生各自最喜爱的一项体育活动进行调查,制成了如图所示的扇形统计图,则在被调查的学生中,最喜爱打羽毛球的学生人数是人.13.某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人对其到校方式进行调查,并将调查结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有人.三、解答题14.北京统计信息网中,发布了2020年02季度、03季度本市农产品生产者价格指数的相关数据,如下表:解决下列问题:(1)表中a的值为,b的值为;(2)03季度与02季度相比,各项指标中变化幅度最小的是哪类产品?(3)小红说:“蔬菜/食用菌和渔业产品这两类产品的增长幅度相同”,你认为小红的说法指标名称02季度03季度增长幅度农产品生产者价格指数103.596.1﹣7.4农业产品95.293.2a谷物8890.1b蔬菜/食用菌101.997.6﹣4.3水果/坚果85.889.1 3.3饲养动物及其产品113.7100.313.4畜禽产品94.495.4 1.0牛奶92.591.0﹣1.5禽蛋96.499.1 2.7渔业产品94.598.8 4.315.小李对某班全体同学的业余兴趣爱好进行了一次调查,据采集到的数据绘制了下面的统计图表.请据图中提供的信息,解答下列问题:(1)该班共有学生人(2)在图1中,请将条形统计图补充完整;(3)在图2中,在扇形统计图中,“音乐”部分所对应的圆心角的度数度:(4)求爱好“书画”的人数占该班学生数的百分数.16在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),下图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m=,n=;(3)扇形统计图中,艺术类读物所对扇形的圆心角是度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?参考答案1.C.2.C3.D4、A5.C6、D7、C8、A9、百分比不能10、15311、1812、2813.21614.解:(1)a=93.2﹣95.2=﹣2;b=90.1﹣88=2.1;(2)根据各项指标中变化幅度的绝对值,可得畜禽产品的变化幅度最小,变化幅度为1;(3)小红的说法不正确,因为蔬菜/食用菌的增长幅度为﹣4.3,而渔业产品的增长幅度为4.3.是否正确,请说明理由.15.解:(1)该班共有学生14÷35%=40(人),(2)选择书画的人数为40﹣(14+12+4)=10(人),补全图象如答图.(3)“音乐”部分所对应的圆心角的度数为360°×12/40=108°,(4)爱好“书画”的人数占本班学生数的百分数是10/40×100%=25%.17.解:(1)200(2)40;60(3)72(4)由题意,得6000×30200=900(册),所以学校购买其他类读物900册比较合理.。
八年级下册7.2 统计图的选用同步练习(解析版)
7.2统计图的选用一、选择题(本大题共10小题,共30.0分)1.某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是( )A. 30,40B. 45,60C. 30,60D. 45,402.如图,某中学制作了300名学生选择棋类、摄影、书法、短跑四门校内课程情况的扇形统计图,从图中可以看出选择短跑的学生人数为( )A. 33B. 36C. 39D. 423.在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/ℎ)为( )A. 60B. 50C. 40D. 154.某校学生来自甲、乙、丙三个地区,其人数比为3:4:3,如图所示的扇形图表示上述分布情况.若来自甲地区有180人,则该校学生总数为( )A. 600人B. 450人C. 720人D. 360人5.某校九年级(1)班全体学生2016年初中毕业体育考试的成绩统计如下表:成绩(分)24252627282930人数(人)2566876根据上表中的信息判断,下列结论中错误的是( )A. 该班一共有40名同学B. 该班学生这次考试成绩的众数是28分C. 该班学生这次考试成绩的中位数是28分D. 该班学生这次考试成绩的平均数是28分6.蜀山区三月中旬每天平均空气质量指数(AQI)分别为:118,96,60,82,56,69,86,112,108,94,为了描述这十天空气质量的变化情况,最适合用的统计图是( )A. 折线统计图B. 频数分布直方图C. 条形统计图D. 扇形统计图7.如图所示,是甲、乙两所学校男、女生人数的扇形统计图,请你根据这两个扇形统计图确定甲、乙两所学校女生人数较多的是()A. 甲校B. 乙校C. 甲、乙两校女生人数一样多D. 无法确定8.某中学公布了该校各年级学生总人数和体育达标人数的统计图,如图.已知该校七、八、九三个年级共有学生2500人,体育达标率最高的年级是( )A. 七年级B. 八年级C. 九年级D. 无法确定9.我国五座名山的海拔高度如下表:山名泰山华山黄山庐山峨眉山海拔(米)15452155186414743099若想根据表中数据绘制统计图,以便更清楚地比较五座山的高度,最合适的是( )A. 条形统计图B. 折线统计图C. 扇形统计图D. 以上都可以10.某老师为了解学生周末学习时间的情况,在所教班级中随机抽查了10名学生,绘成如图所示的条形统计图,则估计全班学生周末的平均学生时间是( )A. 4小时B. 3小时C. 2小时D. 1小时二、填空题(本大题共6小题,共18.0分)11.一个扇形统计图中,扇形A、B、C、D的面积之比为2:3:3:4,则最大扇形的圆心角为______.12.某校征集校运会会徽,遴选出甲、乙、丙三种图案.为了解何种图案更受欢迎,随机调查了该校100名学生,其中60名同学喜欢甲图案,若该校共有2000人,根据所学的统计知识可以估计该校喜欢甲图案的学生有______人.13.某校图书管理员清理阅览室的课外书籍时,将其中甲、乙,丙三类书籍的有关数据制成如图不完整的统计图,已知甲类书有45本,则丙类书有______本.14.为了估计虾塘里海虾的数目,第一次捕捞了500只虾,将这些虾一一做上标记后放回虾塘.几天后,第二次捕捞了2000只虾,发现其中有20只虾身上有标记,则可估计该虾塘里约有________只虾.15.“手机阅读”已逐渐成了眼科病的主要病因,据调查表明在“中年人”中有“手机阅读”习惯的占比约达66%.若随机选择150名“中年人”进行调查,则估计有______人有此习惯.16.某人把50粒黄豆染色后与一袋黄豆充分混匀,从中随意抓出100粒黄豆,发现其中有5粒黄豆是染过色的,则这袋黄豆原来大约有______粒.三、解答题(本大题共4小题,共32.0分)17.某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为______,图①中m的值为______;(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.18.某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工的人数为______人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?19.某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有______人,在扇形统计图中,“乒乓球”的百分比为______%,如果学校有800名学生,估计全校学生中有______人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.20.央视“经典咏流传”开播以来受到社会广泛关注我市某校就“中华文化我传承--地方戏曲进校园”的喜爱情况进行了随机调查.对收集的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:图中A表示“很喜欢”,B表示“喜欢”、C表示“一般”,D表示“不喜欢”.(1)被调查的总人数是______人,扇形统计图中C部分所对应的扇形圆心角的度数为______;(2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有______人;(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.答案和解析1.【答案】B【解析】【分析】本题考查了扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.先求出打羽毛球学生的比例,然后用总人数×跑步和打羽毛球学生的比例求出人数.【解答】解:由题意得,打羽毛球学生的比例为:1−20%−10%−30%=40%,则跑步的人数为:150×30%=45,打羽毛球的人数为:150×40%=60.故选B.2.【答案】C【解析】解:根据题意得:300×(1−33%−26%−28%)=39(名).答:选择短跑的学生有39名.故选C.先求出选择短跑的学生所占的百分比,再乘以总人数即可.此题考查了扇形统计图,扇形统计图直接反映部分占总体的百分比大小,关键是求出选择短跑的学生所占的百分比.3.【答案】C【解析】【分析】本题主要考查众数,熟练掌握众数的定义是解题的关键.根据众数的定义求解可得.【解答】解:由条形图知,车速40km/ℎ的车辆有15辆,为最多,所以众数为40.故选C.4.【答案】A=30%,【解析】解:甲占33+4+3∴该校学生总数为180÷30%=600,故选:A.根据百分比=所占人数,计算即可;总数本题考查扇形统计图、解得的关键是熟练掌握基本知识,属于中考基础题.5.【答案】D【解析】解:A、该班人数为:2+5+6+6+8+7+6=40,故选项A正确,不符合题意要求;B、得28分的人数最多,众数为28,故选项B正确,不符合题意要求;C、第20和21名同学的成绩的平均值为中位数,中位数为:(28+28)÷2=28,故选项C正确,不符合题意要求;D、平均数为:(24×2+25×5+26×6+27×6+28×8+25×8+29×7+30×6)÷40=28.125.故选项D错误,符合题意要求.故选:D.结合表格提供数据以及众数、平均数、中位数的概念求解即可.本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.6.【答案】A【解析】解:这七天空气质量变化情况最适合用折线统计图,故选:A.根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.此题根据扇形统计图、折线统计图、条形统计图各自的特点来判断.7.【答案】D【解析】解:∵甲、乙两班的学生数不确定,∴无法比较甲、乙两班的男生多少、女生多少以及两班人数的多少,故选:D.根据扇形统计图反映部分占总体的百分比大小求解可得.本题考查的是扇形统计图的认识,掌握扇形统计图直接反映部分占总体的百分比大小是解题的关键.8.【答案】C【解析】【分析】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.分别求出七、八、九年级的学生数,再求出七、八、九年级的达标率,然后再进行进行比较即可判断.【解答】解:由扇形统计图可以看出:七年级共有学生2500×35%=875人;八年级共有学生2500×33%=825人;九年级共有学生2500×32%=800人;×100%≈93.7%;七年级的达标率为:820875八年级的达标率为:800825×100%≈97.0%; 九年级的达标率为:780800×100%=97.5%. 综上可得:九年级的达标率最高. 故选:C .9.【答案】A【解析】解:根据题意,知:要求直观比较五座山的高度,结合统计图各自的特点,应选择条形统计图. 故选:A .扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.本题主要考查统计图的选择,根据扇形统计图、折线统计图、条形统计图各自的特点来判断.10.【答案】B【解析】解:估计全班学生周末的平均学生时间是1×1+2×2+3×4+4×2+5×110=3(小时),故选:B .平均数的计算方法是求出所有数据的和,然后除以数据的总个数.本题利用加权平均数的公式即可求解.此题考查了加权平均数以及条形统计图的应用,从条形图可以很容易看出数据的大小.对于一组不同权重的数据,加权平均数更能反映数据的真实信息.11.【答案】120°【解析】解:∵扇形A ,B ,C ,D 的面积之比为2:3:3:4 ∴其所占扇形比分别为16、14、14、13 ∵16<14=14<13, ∴最大扇形的圆心角为: 360°×13=120°. 故答案为:120°.因为扇形A ,B ,C ,D 的面积之比为2:3:3:4,所以其所占扇形比分别为16、14、14、13,则最大扇形的圆心角度数可求.此题考查了扇形统计图及相关计算.圆心角的度数=360°×该部分占总体的百分比是解题关键.12.【答案】1200【解析】解:由题意得:2000×60100=1200人,故答案为:1200.用总人数乘以样本中喜欢甲图案的频率即可求得总体中喜欢甲图案的人数.本题考查了用样本估计总体的知识,解题的关键是求得样本中喜欢甲图案的频率,难度不大.13.【答案】120【解析】解:总数是:45÷15%=300(本),丙类书的本数是:300×(1−15%−45%)=300×40%=120(本)故答案为:120.根据甲类书籍有30本,占总数的15%即可求得总书籍数,丙类所占的比例是1−15%−45%,所占的比例乘以总数即可求得丙类书的本数.本题考查了扇形统计图,从扇形图上可以清楚地看出各部分数量和总数量之间的关系,正确求得书籍总数是关键.14.【答案】50000【解析】【分析】本题考查了用样本估计总体.用样本推断总体是统计中的一种重要思想.在抽样调查时,由于我们只抽取部分数据成样本,而总体是未知的,因此我们希.望寻找一个好的抽取样本的方法,使得样本能够代表总体,能客观地反映实际情况.在大多数情况下,当样本容量够大时,这种估计是比较合理的.此题中将捕捞的2000只虾看作一个样本,然后根据样本和池塘中有标记虾的数量估计池塘虾的总量.1、将捕捞的2000只虾看作一个样本,如何利用样本估计总体的数量呢⊕2、首先计算出样本中有标记的虾占样本总量的比例;3、然后根据池塘中有标记虾的数量估计池塘中虾的总量.【解答】解:第二次捕捞的的2000只虾可以看作一个样本,其中身上有标记的占样本总数的20 2000=1100.由此估计池塘里虾的数量约为:500÷1100=50000(只).故答案为50000.15.【答案】99【解析】解:根据题意知估计有此习惯的人数为150×66%=99(人),故答案为:99.用总人数乘以有“手机阅读”习惯的百分比,据此可估计总体中有此习惯的人数.本题主要考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.16.【答案】950−50=950(粒).【解析】解:50÷5100故答案为:950.100粒黄豆中有5粒黄豆被染色,说明在样本中有色的占到5%.而在总体中,有色的共有50粒,据此比例可求出有色、无色的总数,从中去掉有色的即为所求.本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.17.【答案】(1)40人,30;(2)平均数=(13×4+14×10+15×11+16×12+17×3)÷40=15(岁),16岁出现12次,次数最多,众数为16岁;按大小顺序排列,中间两个数都为15岁,中位数为15岁【解析】【分析】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.(1)频数÷所占百分比=样本容量,m=100−27.5−25−7.5−10=30;(2)根据平均数、众数和中位数的定义求解即可.【解答】解:(1)4÷10%=40(人),m=100−27.5−25−7.5−10=30;故答案为40人,30.(2)见答案.18.【答案】(1)800;(2)“剩少量”的人数为800−(400+80+40)=280人,补全条形图如下:=3500人.(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×280800【解析】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)见答案;(3)见答案.(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.19.【答案】(1)520 80(2)如图,(3)3 5【解析】解:(1)调查的总人数为20÷40%=50(人),所以喜欢篮球项目的同学的人数=50−20−10−15=5(人);“乒乓球”的百分比=1050=20%,因为800×550=80,所以估计全校学生中有80人喜欢篮球项目;故答案为5,20,80;(2)见答案;(3)画树状图为:共有20种等可能的结果数,其中所抽取的2名同学恰好是1名女同学和1名男同学的结果数为12,所以所抽取的2名同学恰好是1名女同学和1名男同学的概率=1220=35.(1)先利用跳绳的人数和它所占的百分比计算出调查的总人数,再用总人数分别减去喜欢其它项目的人数可得到喜欢篮球项目的人数,再计算出喜欢乒乓球项目的百分比,然后用800乘以样本中喜欢篮球项目的百分比可估计全校学生中喜欢篮球项目的人数;(2)画树状图展示所有20种等可能的结果数,再找出所抽取的2名同学恰好是1名女同学和1名男同学的结果数,然后根据概率公式求解,本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.20.【答案】(1)50;216°(2)见解析;(3)180(4)2 5【解析】解:(1)被调查的总人数为5÷10%=50人,扇形统计图中C部分所对应的扇形圆心角的度数为360°×3050=216°,故答案为:50、216°;(2)B类别人数为50−(5+30+5)=10人,补全图形如下:(3)估计该校学生中A类有1800×10%=180人,故答案为:180;(4)列表如下:所有等可能的结果为20种,其中被抽到的两个学生性别相同的结果数为8,∴被抽到的两个学生性别相同的概率为820=25.(1)由A类别人数及其所占百分比可得总人数,用360°乘以C部分人数所占比例可得;(2)总人数减去其他类别人数求得B的人数,据此即可补全条形图;(3)用总人数乘以样本中A类别人数所占百分比可得;(4)用树状图或列表法即可求出抽到性别相同的两个学生的概率.此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图的应用.解题时注意:概率=所求情况数与总情况数之比.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.。
八年级数学下册第7章7.2统计表统计图的选用同步练习含解析
第7章 7.2统计表、统计图的选用一、单选题(共12题;共24分)1、空气是由多种气体混合而成,为了简明扼要地说明空气的组成情况,使用的统计图最好是()A、扇形统计图B、条形统计图C、折线统计图D、频数分布直方图2、江都区三月份第一周连续七天的空气质量指数(AQI)分别为:118,96,60,82,56,69,86.则这七天空气质量变化情况最适合用哪种统计图描述()A、扇形统计图B、条形统计图C、折线统计图D、以上都不对3、能反映事物发展变化的规律和趋势的统计图是()A、条形统计图B、扇形统计图C、折线统计图D、环形统计图4、能清楚的看出每个项目的具体数量的统计图是()A、扇形统计图B、折线统计图C、条形统计图D、以上三种均可5、要清楚地表示出个部分在总体积中所占的百分比,应选择()A、条形统计图B、折线统计图C、扇形统计图D、上述3种都可以6、要反映嘉兴市一天内气温的变化情况宜采用()A、条形统计图B、扇形统计图C、折线统计图D、频数分布直方图7、为了直观地表示世界七大洲的面积各占全球陆地面积的百分比,最适合使用的统计图是()A、扇形图B、条形图C、折线图D、直方图8、记录一个人的体温变化情况,最好选用()A、条形统计图B、折线统计图C、扇形统计图D、统计表9、下列说法中不正确的是()A、要反映我市一周内每天的最低气温的变化情况宜采用折线统计图B、打开收音机正在播放TFBOYS的歌曲是必然事件C、方差反映了一组数据的稳定程度D、为了解一种灯泡的使用寿命.应采用抽样调查的办法10、能清楚地表示出各部分在总体中所占百分比的统计图是()A、条形统计图B、扇形统计图C、折线统计图D、都可以11、为了参加市中学生篮球运动会,一支校篮球队准备购买双运动鞋,各种尺码的统计如表所示,则这双运动鞋尺码的众数和中位数分别为()A、25.5cm 26 cmB、26 cm 25.5 cmC、25.5 cm 25.5 cmD、26 cm 26 cm12、空气是由多种气体混合而成的,为了简明扼要的介绍空气的组成情况,较好的描述数据,最适合使用的统计图是()A、扇形图B、条形图C、折线图D、直方图二、填空题(共6题;共8分)13、要反映一感冒病人一天的体温的变化情况,宜采用________ 统计图.14、空气是由多种气体混合而成的,为了简明扼要的介绍空气的组成情况,较好的描述数据,最适合使用的统计图是________15、某超市对今年前两个季度每月销售总量进行统计,为了更清楚地看出销售总量的总趋势是上升还是下降,应选用________ 统计图来描述数据.16、空气是由多种气体混合而成的,为了简明扼要的介绍空气的组成情况,较好的描述数据,最适合使用的统计图是________17、王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是________人.18、常用统计图的类型有:________、________、________.三、解答题(共1题;共5分)19、阅读下列材料:数学课程内容分为“数与代数”、“图形与几何”、“统计与概率”、“综合与实践”四个领域,其中“综合与实践”领域通过探讨一些具有挑战性的研究问题,给我们创造了可以动手操作、探究学习、认识数学知识间的联系、发展应用数学知识解决问题的意识和能力的机会.“综合与实践”领域在人教版七﹣九年级6册数学教材中共安排了约40课时的内容,主要有“数学制作与设计”、“数学探究与实验”、“数学调查与测量”、“数学建模”等活动类型,所占比例大约为30%,20%,40%,10%.这些活动以“课题学习”、“数学活动”和“拓广探索类习题”等形式分散于各章之中.“数学活动”几乎每章后都有2~3个,共60个,其中七年级22个,八年级19个;“课题学习”共7个,其中只有八年级下册安排了“选择方案”和“体质健康测试中的数据分析”2个内容,其他5册书中都各有1个;七上﹣九下共6册书中“拓广探索类习题”数量分别为44,39,46,35,37,23.根据以上材料回答下列问题:(1)人教版七﹣九年级数学教材中,“数学调查与测量”类活动约占多少课时;(2)选择统计表或统计图,将人教版七﹣九年级数学教材中“课题学习”、“数学活动”和“拓广探索类习题”的数量表示出来.四、综合题(共4题;共70分)20、为了让同学们了解自己的体育水平,初二1班的体育康老师对全班45名学生进行了一次体育模拟测试(得分均为整数)成绩满分为10分,成绩达到9分以上(包含9分)为优秀,成绩达到6分以上(包含6分)为合格,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表根据以上信息,解答下列问题:(1)在这次测试中,该班女生得10分的人数为4人,则这个班共有女生________人;(2)补全初二1班男生体育模拟测试成绩统计图,并把相应的数据标注在统计图上;(3)补全初二1班体育模拟测试成绩分析表;(4)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由;(5)体育康老师说,从整体看,1班的体育成绩在合格率方面基本达标,但在优秀率方面还不够理想,因此他希望全班同学继续加强体育锻炼,争取在期末考试中,全班的优秀率达到60%,若男生优秀人数再增加6人,则女生优秀人数再增加多少人才能完成康老师提出的目标?21、在一个不透明的口袋里装有若干个相同的红球,为了用估计袋中红球的数量,八(9)班学生在数学实验室分组做摸球实验:每组先将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:(1)按表格数据格式,表中的a=________;b=________;(2)请估计:当次数s很大时,摸到白球的频率将会接近________;(3)请推算:摸到红球的概率是________(精确到0.1);(4)试估算:口袋中红球有多少只?(5)解决了上面4个问题后,请你从统计与概率方面谈一条启示.22、6月5日是世界环境日,某校组织了一次环保知识竞赛,每班选25名同学参加比赛,成绩分别为A、B、C、D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将某年级的一班和二班的成绩整理并绘制成统计图.(1)把一班竞赛成绩统计图补充完整;(2)写出表中a、b、c的值:(3)请从平均数和中位数方面比较一班和二班的成绩,对这次竞赛成绩的结果进行分析.23、某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个)统计发现两班总分相等,此时有学生建议,可以通过考查数据中的其他信息作为参考,请解答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)计算两班比赛数据的方差;(4)你认为应该定哪一个班为冠军?为什么?答案解析部分一、单选题1、【答案】A【考点】统计图的选择【解析】【解答】解:为了简明扼要地说明空气的组成情况,使用的统计图最好是扇形统计图,故选:A.【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.2、【答案】C【考点】统计图的选择【解析】【解答】解:这七天空气质量变化情况最适合用折线统计图.故选:C.【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.3、【答案】C【考点】统计图的选择【解析】【解答】解:能反映事物发展变化的规律和趋势的统计图是折线图.故选C.【分析】根据统计图的特点,能反映事物发展变化的规律和趋势,选择折线统计图.4、【答案】C【考点】统计图的选择【解析】【解答】解:条形统计图能清楚地表示出每个项目的具体数目,故C符合题意.故选:C.【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.5、【答案】C【考点】统计图的选择【解析】【解答】解:要清楚地表示出个部分在总体积中所占的百分比,应选择扇形统计图,故选:C.【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.6、【答案】C【考点】统计图的选择【解析】【解答】解:要反映嘉兴市一天内气温的变化情况宜采用折线统计图,故选:C.【分析】根据统计图的特点进行分析可得:折线统计图表示的是事物的变化情况,可得答案.7、【答案】A【考点】统计图的选择【解析】【解答】解:为了直观地表示世界七大洲的面积各占全球陆地面积的百分比,最适合使用的统计图是:扇形图.故选:A.【分析】利用扇形统计图的特点:①用扇形的面积表示部分在总体中所占的百分比.②易于显示每组数据相对于总数的大小,进而得出答案.8、【答案】B【考点】统计图的选择【解析】【解答】解:根据题意,得要求直观表现一个人的体温变化情况,结合统计图各自的特点,应选择折线统计图.故选B.【分析】条形统计图能清楚地表示出每个项目的具体数目;折线统计图表示的是事物的变化情况;扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;统计图可以表示事物多个方面的情况.9、【答案】B【考点】全面调查与抽样调查,统计图的选择,随机事件,方差【解析】【解答】解:A、要反映我市一周内每天的最低气温的变化情况宜采用折线统计图,故A正确;B、打开收音机正在播放TFBOYS的歌曲是随机事件,故B错误;C、方差反映了一组数据的稳定程度,故C正确;D、为了解一种灯泡的使用寿命.应采用抽样调查的办法,故D正确;故选:B.【分析】根据统计图的特点,可判断A;根据必然事件的定义,可判断B;根据方差的性质,可判断C;根据调查方式,可判断D.10、【答案】B【考点】统计图的选择【解析】【解答】解:条形统计图能清楚地表示出每个项目的数据;折线统计图能清楚地反映事物的变化情况也能表示出每个项目的具体数目;扇形统计图直接反映部分占总体的百分比大小;故选:B.【分析】根据条形统计图和扇形统计图、折线统计图的概念判断.11、【答案】C【考点】统计表,中位数、众数【解析】【解答】解:由表可知25.5cm出现次数最多,故众数为25.5cm,一共有9个数,则其中位数为第5个数,即25.5cm,故选:C.【分析】根据众数和中位数的定义可得.【考点】统计图的选择【解析】【解答】解:根据题意,要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选A.【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.二、填空题13、【答案】折线【考点】统计图的选择【解析】【解答】解:要反映一感冒病人一天的体温的变化情况,宜采用折线统计图,故答案为:折线.【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.14、【答案】扇形统计图【考点】统计图的选择【解析】【解答】解:空气是由多种气体混合而成的,为了简明扼要的介绍空气的组成情况,较好的描述数据,最适合使用的统计图是扇形统计图,故答案为:扇形统计图.【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.15、【答案】折线【考点】统计图的选择【解析】【解答】解:根据题意,得要求清楚地表示销售总量的总趋势是上升还是下降,结合统计图各自的特点,应选用折线统计图.【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.16、【答案】扇形统计图【考点】统计图的选择【解析】【解答】解:空气是由多种气体混合而成的,为了简明扼要的介绍空气的组成情况,较好的描述数据,最适合使用的统计图是扇形统计图,故答案为:扇形统计图.【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【考点】统计表【解析】【解答】解:本班A型血的人数=40×(1﹣0.4﹣0.15﹣0.1)=14.故答案为:14.【分析】根据频数=频率×数据总数求解.18、【答案】条形统计图;扇形统计图;折线统计图【考点】统计图的选择【解析】【解答】解:常用统计图的类型有:扇形统计图、折线统计图、条形统计图.【分析】根据统计的常识填空即可.三、解答题19、【答案】解:(1)“数学调查与测量”类活动约为:40×40%=16(课时);(2)列表如图:故答案为:(1)16.【考点】统计图的选择【解析】【分析】(1)用“数学调查与测量”类活动课时数=总课时×该活动所占百分比;(2)列表可得.四、综合题20、【答案】(1)25(2)解:男生得7分的人数为:45﹣25﹣1﹣2﹣3﹣5﹣3=6,故补全的统计图如右图所示(3)解:男生得平均分是:=7.9(分),女生的众数是:8,故答案为:7.9,8(4)解:女生队表现更突出一些,理由:从众数看,女生好于男生(5)解:由题意可得,女生需增加的人数为:45×60%﹣(20×40%+6)﹣(25×36%)=4(人),即女生优秀人数再增加4人才能完成康老师提出的目标【考点】统计表,扇形统计图,条形统计图,方差【解析】【解答】解:(1)∵在这次测试中,该班女生得10分的人数为4人,∴这个班共有女生:4÷16%=25(人),故答案为:25;【分析】(1)根据扇形统计图可以得到这个班的女生人数;(2)根据本班有45人和(1)中求得得女生人数可以得到男生人数,从而可以得到得7分的男生人数,进而将统计图补充完整;(3)根据表格中的数据可以求得男生得平均成绩和女生的众数;(4)答案不唯一,只要从某一方面能说明理由即可;(5)根据题意可以求得女生优秀人数再增加多少人才能完成康老师提出的目标.21、【答案】(1)123;0.404(2)0.4(3)0.6(4)解:设红球有x个,根据题意得:=0.6,解得:x=15(5)解:用频率估计一个随机事件发生的概率【考点】统计表,利用频率估计概率【解析】【解答】解:(1)a=300×0.41=123,b=606÷1500=0.404;(2)当次数s很大时,摸到白球的频率将会接近0.40;(3)摸到红球的概率是1﹣0.4=0.6;【分析】(1)根据频率= 分别求得a、b的值即可;(2)从表中的统计数据可知,摸到白球的频率稳定在0.4左右;(3)摸到红球的概率为1﹣0.4=0.6;(4)根据红球的概率公式得到相应方程求解即可;(5)言之有理即可.22、【答案】(1)解:一班C等级的人数为25﹣6﹣12﹣5=2(人),统计图为:(2)解:一班的平均数a= (6×100+12×90+2×80+5×70)=87.6(分),b=90(分);二班A等级的人数为44%×25=11(人),B等级的人数为4%×25=1(人),C等级的人数为36%×25=9(人),D等级的人数为16%×25=4(人),d= (11×100+1×90+9×80+4×70)=87.6(分),c=100(分)(3)解:从平均数看,两班的成绩一样,但从中位数看,一班的中位数为90分,二班的中位数为80分,则二班比一班成绩好【考点】统计表,加权平均数【解析】【分析】(1)用样本容量分别减去一班中A、B、D等级的人数得到C等级的人数,然后补全一班竞赛成绩统计图;(2)先利用扇形统计图计算出二班中各等级的人数,然后利用众数、中位数和平均数的定义计算a、b、c、d的值;(3)利用平均数和中位数的意义求解.23、【答案】(1)解:甲班的优秀率=2÷5=0.4=40%;乙班的优秀率=3÷5=0.6=60%(2)解:甲班5名学生比赛成绩的中位数是97(个);乙班5名学生比赛成绩的中位数是100(个)(3)解:甲班的平均数=(89+100+96+118+97)÷5=100(个),甲班的方差S甲2=[(89﹣100)2+(100﹣100)2+(96﹣100)2+(118﹣100)2+(97﹣100)2]÷5=94乙班的平均数=(100+96+110+90+104)÷5=100(个),乙班的方差S乙2=[(100﹣100)2+(96﹣100)2+(110﹣100)2+(90﹣100)2+(104﹣100)2]÷5=46.4;∴S甲2>S乙2(4)解:乙班定为冠军.因为乙班5名学生的比赛成绩的优秀率比甲班高,中位数比甲班大,方差比甲班小,综合评定乙班踢毽子水平较好【考点】统计表,方差【解析】【分析】(1)根据优秀率=优秀人数除以总人数计算;(2)根据中位数的定义求解;(3)根据平均数和方差的概念计算.11。
【分层作业】7.2 统计图的选择(同步练习) 六年级上册数学同步课时练 (人教版,含答案)
第七单元扇形统计图7.2 统计图的选择【基础巩固】一、选择题1.要反映牛奶中水、蛋白质、脂肪等含量,用()更合适。
A.条形统计图B.折线统计图C.扇形统计图D.统计表2.妈妈要统计一个月各项开支情况,用()统计图比较合适。
A.条形B.折线C.扇形3.李经理计划制作一个统计图,清楚表示出3个商场5月份甲、乙两种商品的销售情况,制成()比较合适。
A.折线统计图B.复式折线统计图C.复式条形统计图D.扇形统计图4.野象群一路北上,引起民众的极大关注,为普及象群知识,需要绘制统计图。
下面各话题,更适合用折线统计图表示的是(),更适合用扇形统计图表示的是()。
①几头成年野象睡眠时间长短比较②野象在亚洲地区分布的百分比③三十年来野象数量增减变化情况④幼年和成年野象一天食量多少情况A.①和③B.①和④C.③和②D.②和④5.在“阳光体育节”活动中,某校对六(1)班、(2)班同学各50人参加体育活动的情况进行了调查,结果如下图所示。
下列说法中不正确的是()。
A.喜欢乒乓球的人数(1)班比(2)班少B.喜欢足球的人数(1)班比(2)班少C.喜欢羽毛球的人数(1)班比(2)班多D.喜欢篮球的人数(1)班比(2)班少二、填空题6.________统计图能清楚地看出数量增减变化的情况;只需看出各种数量的多少,应选用________统计图。
7.暑假快到了,花园社区准备号召同学们参与劳动实践活动,同学们依据自己的情况报名了相关劳动项目,主要有以下四种:A.清除小广告;B.指导垃圾分类;C.清扫单元楼道;D.捡小区垃圾。
工作人员刘阿姨根据同学们的报名情况绘制成两幅不完整的统计图。
请根据图中信息回答下列问题。
(1)这次报名共有( )名同学。
(2)报名“捡小区垃圾”的有( )名同学。
(3)“清除小广告”的报名人数占报名总人数的( )%。
8.某便利店一天共销售各种三明治40个(具体百分比如图),当天该店( )三明治的销售总额最高,最高销售总额是( )元。
苏科版八年级数学下册7.2统计表、统计图的选用同步练习(含答案)
苏科版八年级数学下册7.2统计表、统计图的选用同步练习一、单选题1.如图,某实验中学制作了学生选择象棋、曲艺、园艺、制陶四门业余课程情况的扇形统计图,从中可以看出选择制陶的学生占( )A.25%B.30%C.35%D.40%2.某中学各年级人数如图所示,根据图中的信息,下列结论不正确的是()A.七、八年级的人数相同B.九年级的人数最少C.女生人数多于男生人数D.女生人数少于男生人数3.某商品四天内每天每斤的进价与售价信息如图所示,则售出这种商品每斤利润最大的是()A.第一天B.第二天C.第三天D.第四天4.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市5.王威调查统计了他们家3月份每次打电话的通话时长,并将统计结果进行分组(每组含最小值,不含最大值) ,将分组后的结果绘制成如图所示的频数分布直方图,则下列说法中不正确的是()A.王威家3月份打电话的总频数为80次-这组的频数为15次B.王威家3月份每次打电话的通话时长在510-这组的频数最多C.王威家3月份每次打电话的通话时长在1015D.王威家3月份每次打电话的通话时长在2025-这组的频率为6%6.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A.喜欢乒乓球的人数(1)班比(2)班多B.喜欢足球的人数(1)班比(2)班多C.喜欢羽毛球的人数(1)班比(2)班多D.喜欢篮球的人数(2)班比(1)班多二、填空题7.为了了解居民对我市“五城联创”的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对“五城联创”“非常清楚”的居民约有____________人8.某校对n名学生的体育成绩统计如图所示,则n=_____人.9.如图所示显示的某市某商场日用品柜台10名售货员4月份完成销售额(单位:千元)的情况,根据统计图,我们可以计算出该柜台销售金额为5千元的有______人.10.运算能力是一项重要的数学能力.王老师为帮助学生诊断和改进运算中的问题,对全班学生进行了三次运算测试.下面的气泡图中,描述了其中5位同学的测试成绩.(气泡圆的圆心横、纵坐标分别表示第一次和第二次测试成绩,气泡的大小表示三次成绩的平均分的高低;气泡越大平均分越高.)①在5位同学中,有_____位同学第一次成绩比第二次成绩高;①在甲、乙两位同学中,第三次成绩高的是_____.(填“甲”或“乙”)11.一个扇形统计图中,某部分所对应的扇形圆心角为72°,则这部分所占总体的百分比为________.A B C D四个等12.某校组织了主题为“共建生态岛”的电子小报作品征集活动,先从中随机抽取了部分作品,按,,,级进行评分,然后根据统计结果绘制了如下两幅不完整的统计图,那么此次抽取的作品中等级为B的作品数为_________.13.如图是某国产品牌手机专卖店去年1 至5 月高清大屏手机销售额折线统计图,根据图中信息,可以判断相邻两个月销售额变化最大的差的绝对值为_______万元.14.如图是甲、乙两公司近几年销售收入情况的折线统计图,销售收入增长速度较快的是_________.15.为全面推进“新两基”工作,某县对辖区内的80所中小学上半年的工作情况进行了专项督导考核,成绩分别为A、B、C、D四等,绘制了扇形统计图(如图),则该县被考核的学校中得A等成绩的有_________ 所.三、解答题16.“安全教育”是学校必须开展的一项重要工作.某校为了了解家长和学生参与“暑期安全知识学习”的情况,进行了网上测试,并在本校学生中随机抽取部分学生进行调查.若把参与测试的情况分为4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与;D.家长和学生都未参与.根据调查情况,绘制了以下不完整的统计图.请根据图中提供的信息,解答下列问题:()1在这次抽样调查中,共调查了名学生;()2补全条形统计图,并计算扇形统计图中C类所对应扇形的圆心角的度数;()3根据抽样调查结果,估计该校3 000名学生中“家长和学生都未参与”的人数.17.“中国梦”是中华民族每个人的梦,也是每个中小学生的梦.各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符.某中学在全校800名学生中随机抽取部分学生进行调查,调查内容分为四种:A:非常喜欢,B:喜欢,C:一般,D:不喜欢被调查的同学只能选取其中的一种.根据调查结果,绘制出两个不完整的统计图(图形如下),并根据图中信息,回答下列问题:(1)本次调查中,一共调查了多少名学生?(2)条形统计图中,m=_________,n=_____________;(3)在扇形统计图中,“B:喜欢”所在扇形的圆心角的度数是多少?(4)请估计该学校800名学生中“A:非常喜欢”和“B:喜欢”经典诵读的学生共有多少人?18.今年4月,国民体质监测中心等机构开展了青少年形体测评.专家组随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对专家的测评数据作了适当处理(如果一个学生有一种以上不良姿势,我们以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问:(1)在这次形体测评中,一共抽查了____________名学生;(2)请将条形统计图补充完整;(3)如果全市有1万名初中生,那么全市初中生中,坐姿不良的学生约有____________人.19.为了弘扬中华优秀传统文化,用好汉字,某中学开展了一次“古诗词”知识竞赛,赛程共分“预赛、复赛和决赛”三个阶段,预赛由各班举行,全员参加,按统一标准评分,统计成绩后绘制成如图1和图2所示的两幅不完整“预赛成绩条形统计图”和“预赛成绩扇形统计图”,预赛前10名选手参加复赛,成绩见“前10名选手成绩统计表”(采用百分制记分,得分都为60分以上的整数).前10名选手成绩统计表(1)求该中学学生的总人数,并将图1补充完整;(2)在图2中,求“90.5~100.5分数段人数”的圆心角度数;(3)预赛前10名选手参加复赛,成绩见“前10名选手成绩统计表”,若按预赛成绩占40%,复赛成绩占60%的比例计算总成绩,并从中选出3人参加决赛,你认为选哪几号选手去参加决赛,并说明理由.20.“校园安全”受到社会的广泛关注,某校政教处对部分学生就校园安全知识的了解程度,进行了随机抽样调查,并绘制了如下两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有______名;(2)请补全折线统计图,并求出扇形统计图中“基本了解”部分所对应扇形的圆心角的大小.参考答案1.B2.D3.B4.D5.D6.C7.27008.609.610.3; 甲11.20%.12.4813.1014.甲15.5616.(1)400;(2)略;54°;(3)150名17.(1)300名;(2)60m =,90n =;(3)72︒;(4)520人18.(1)500;(2)略;(3)2000人19.(1)1200人;(2)126︒;(3)应选①④⑥号选手参加.20.(1)60;(2)图形略,“基本了解”部分所对应扇形的圆心角的大小为90°.。
八年级下册7.2 统计图的选用同步练习(解析版)
7.2统计图的选用一、选择题(本大题共10小题,共30.0分)1.某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是( )A. 30,40B. 45,60C. 30,60D. 45,402.如图,某中学制作了300名学生选择棋类、摄影、书法、短跑四门校内课程情况的扇形统计图,从图中可以看出选择短跑的学生人数为( )A. 33B. 36C. 39D. 423.在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/ℎ)为( )A. 60B. 50C. 40D. 154.某校学生来自甲、乙、丙三个地区,其人数比为3:4:3,如图所示的扇形图表示上述分布情况.若来自甲地区有180人,则该校学生总数为( )A. 600人B. 450人C. 720人D. 360人5.某校九年级(1)班全体学生2016年初中毕业体育考试的成绩统计如下表:成绩(分)24252627282930人数(人)2566876根据上表中的信息判断,下列结论中错误的是( )A. 该班一共有40名同学B. 该班学生这次考试成绩的众数是28分C. 该班学生这次考试成绩的中位数是28分D. 该班学生这次考试成绩的平均数是28分6.蜀山区三月中旬每天平均空气质量指数(AQI)分别为:118,96,60,82,56,69,86,112,108,94,为了描述这十天空气质量的变化情况,最适合用的统计图是( )A. 折线统计图B. 频数分布直方图C. 条形统计图D. 扇形统计图7.如图所示,是甲、乙两所学校男、女生人数的扇形统计图,请你根据这两个扇形统计图确定甲、乙两所学校女生人数较多的是()A. 甲校B. 乙校C. 甲、乙两校女生人数一样多D. 无法确定8.某中学公布了该校各年级学生总人数和体育达标人数的统计图,如图.已知该校七、八、九三个年级共有学生2500人,体育达标率最高的年级是( )A. 七年级B. 八年级C. 九年级D. 无法确定9.我国五座名山的海拔高度如下表:山名泰山华山黄山庐山峨眉山海拔(米)15452155186414743099若想根据表中数据绘制统计图,以便更清楚地比较五座山的高度,最合适的是( )A. 条形统计图B. 折线统计图C. 扇形统计图D. 以上都可以10.某老师为了解学生周末学习时间的情况,在所教班级中随机抽查了10名学生,绘成如图所示的条形统计图,则估计全班学生周末的平均学生时间是( )A. 4小时B. 3小时C. 2小时D. 1小时二、填空题(本大题共6小题,共18.0分)11.一个扇形统计图中,扇形A、B、C、D的面积之比为2:3:3:4,则最大扇形的圆心角为______.12.某校征集校运会会徽,遴选出甲、乙、丙三种图案.为了解何种图案更受欢迎,随机调查了该校100名学生,其中60名同学喜欢甲图案,若该校共有2000人,根据所学的统计知识可以估计该校喜欢甲图案的学生有______人.13.某校图书管理员清理阅览室的课外书籍时,将其中甲、乙,丙三类书籍的有关数据制成如图不完整的统计图,已知甲类书有45本,则丙类书有______本.14.为了估计虾塘里海虾的数目,第一次捕捞了500只虾,将这些虾一一做上标记后放回虾塘.几天后,第二次捕捞了2000只虾,发现其中有20只虾身上有标记,则可估计该虾塘里约有________只虾.15.“手机阅读”已逐渐成了眼科病的主要病因,据调查表明在“中年人”中有“手机阅读”习惯的占比约达66%.若随机选择150名“中年人”进行调查,则估计有______人有此习惯.16.某人把50粒黄豆染色后与一袋黄豆充分混匀,从中随意抓出100粒黄豆,发现其中有5粒黄豆是染过色的,则这袋黄豆原来大约有______粒.三、解答题(本大题共4小题,共32.0分)17.某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为______,图①中m的值为______;(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.18.某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工的人数为______人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?19.某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有______人,在扇形统计图中,“乒乓球”的百分比为______%,如果学校有800名学生,估计全校学生中有______人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.20.央视“经典咏流传”开播以来受到社会广泛关注我市某校就“中华文化我传承--地方戏曲进校园”的喜爱情况进行了随机调查.对收集的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:图中A表示“很喜欢”,B表示“喜欢”、C表示“一般”,D表示“不喜欢”.(1)被调查的总人数是______人,扇形统计图中C部分所对应的扇形圆心角的度数为______;(2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有______人;(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.答案和解析1.【答案】B【解析】【分析】本题考查了扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.先求出打羽毛球学生的比例,然后用总人数×跑步和打羽毛球学生的比例求出人数.【解答】解:由题意得,打羽毛球学生的比例为:1−20%−10%−30%=40%,则跑步的人数为:150×30%=45,打羽毛球的人数为:150×40%=60.故选B.2.【答案】C【解析】解:根据题意得:300×(1−33%−26%−28%)=39(名).答:选择短跑的学生有39名.故选C.先求出选择短跑的学生所占的百分比,再乘以总人数即可.此题考查了扇形统计图,扇形统计图直接反映部分占总体的百分比大小,关键是求出选择短跑的学生所占的百分比.3.【答案】C【解析】【分析】本题主要考查众数,熟练掌握众数的定义是解题的关键.根据众数的定义求解可得.【解答】解:由条形图知,车速40km/ℎ的车辆有15辆,为最多,所以众数为40.故选C.4.【答案】A=30%,【解析】解:甲占33+4+3∴该校学生总数为180÷30%=600,故选:A.根据百分比=所占人数,计算即可;总数本题考查扇形统计图、解得的关键是熟练掌握基本知识,属于中考基础题.5.【答案】D【解析】解:A、该班人数为:2+5+6+6+8+7+6=40,故选项A正确,不符合题意要求;B、得28分的人数最多,众数为28,故选项B正确,不符合题意要求;C、第20和21名同学的成绩的平均值为中位数,中位数为:(28+28)÷2=28,故选项C正确,不符合题意要求;D、平均数为:(24×2+25×5+26×6+27×6+28×8+25×8+29×7+30×6)÷40=28.125.故选项D错误,符合题意要求.故选:D.结合表格提供数据以及众数、平均数、中位数的概念求解即可.本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.6.【答案】A【解析】解:这七天空气质量变化情况最适合用折线统计图,故选:A.根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.此题根据扇形统计图、折线统计图、条形统计图各自的特点来判断.7.【答案】D【解析】解:∵甲、乙两班的学生数不确定,∴无法比较甲、乙两班的男生多少、女生多少以及两班人数的多少,故选:D.根据扇形统计图反映部分占总体的百分比大小求解可得.本题考查的是扇形统计图的认识,掌握扇形统计图直接反映部分占总体的百分比大小是解题的关键.8.【答案】C【解析】【分析】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.分别求出七、八、九年级的学生数,再求出七、八、九年级的达标率,然后再进行进行比较即可判断.【解答】解:由扇形统计图可以看出:七年级共有学生2500×35%=875人;八年级共有学生2500×33%=825人;九年级共有学生2500×32%=800人;×100%≈93.7%;七年级的达标率为:820875八年级的达标率为:800825×100%≈97.0%; 九年级的达标率为:780800×100%=97.5%. 综上可得:九年级的达标率最高. 故选:C .9.【答案】A【解析】解:根据题意,知:要求直观比较五座山的高度,结合统计图各自的特点,应选择条形统计图. 故选:A .扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.本题主要考查统计图的选择,根据扇形统计图、折线统计图、条形统计图各自的特点来判断.10.【答案】B【解析】解:估计全班学生周末的平均学生时间是1×1+2×2+3×4+4×2+5×110=3(小时),故选:B .平均数的计算方法是求出所有数据的和,然后除以数据的总个数.本题利用加权平均数的公式即可求解.此题考查了加权平均数以及条形统计图的应用,从条形图可以很容易看出数据的大小.对于一组不同权重的数据,加权平均数更能反映数据的真实信息.11.【答案】120°【解析】解:∵扇形A ,B ,C ,D 的面积之比为2:3:3:4 ∴其所占扇形比分别为16、14、14、13 ∵16<14=14<13, ∴最大扇形的圆心角为: 360°×13=120°. 故答案为:120°.因为扇形A ,B ,C ,D 的面积之比为2:3:3:4,所以其所占扇形比分别为16、14、14、13,则最大扇形的圆心角度数可求.此题考查了扇形统计图及相关计算.圆心角的度数=360°×该部分占总体的百分比是解题关键.12.【答案】1200【解析】解:由题意得:2000×60100=1200人,故答案为:1200.用总人数乘以样本中喜欢甲图案的频率即可求得总体中喜欢甲图案的人数.本题考查了用样本估计总体的知识,解题的关键是求得样本中喜欢甲图案的频率,难度不大.13.【答案】120【解析】解:总数是:45÷15%=300(本),丙类书的本数是:300×(1−15%−45%)=300×40%=120(本)故答案为:120.根据甲类书籍有30本,占总数的15%即可求得总书籍数,丙类所占的比例是1−15%−45%,所占的比例乘以总数即可求得丙类书的本数.本题考查了扇形统计图,从扇形图上可以清楚地看出各部分数量和总数量之间的关系,正确求得书籍总数是关键.14.【答案】50000【解析】【分析】本题考查了用样本估计总体.用样本推断总体是统计中的一种重要思想.在抽样调查时,由于我们只抽取部分数据成样本,而总体是未知的,因此我们希.望寻找一个好的抽取样本的方法,使得样本能够代表总体,能客观地反映实际情况.在大多数情况下,当样本容量够大时,这种估计是比较合理的.此题中将捕捞的2000只虾看作一个样本,然后根据样本和池塘中有标记虾的数量估计池塘虾的总量.1、将捕捞的2000只虾看作一个样本,如何利用样本估计总体的数量呢⊕2、首先计算出样本中有标记的虾占样本总量的比例;3、然后根据池塘中有标记虾的数量估计池塘中虾的总量.【解答】解:第二次捕捞的的2000只虾可以看作一个样本,其中身上有标记的占样本总数的20 2000=1100.由此估计池塘里虾的数量约为:500÷1100=50000(只).故答案为50000.15.【答案】99【解析】解:根据题意知估计有此习惯的人数为150×66%=99(人),故答案为:99.用总人数乘以有“手机阅读”习惯的百分比,据此可估计总体中有此习惯的人数.本题主要考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.16.【答案】950−50=950(粒).【解析】解:50÷5100故答案为:950.100粒黄豆中有5粒黄豆被染色,说明在样本中有色的占到5%.而在总体中,有色的共有50粒,据此比例可求出有色、无色的总数,从中去掉有色的即为所求.本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.17.【答案】(1)40人,30;(2)平均数=(13×4+14×10+15×11+16×12+17×3)÷40=15(岁),16岁出现12次,次数最多,众数为16岁;按大小顺序排列,中间两个数都为15岁,中位数为15岁【解析】【分析】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.(1)频数÷所占百分比=样本容量,m=100−27.5−25−7.5−10=30;(2)根据平均数、众数和中位数的定义求解即可.【解答】解:(1)4÷10%=40(人),m=100−27.5−25−7.5−10=30;故答案为40人,30.(2)见答案.18.【答案】(1)800;(2)“剩少量”的人数为800−(400+80+40)=280人,补全条形图如下:=3500人.(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×280800【解析】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)见答案;(3)见答案.(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.19.【答案】(1)520 80(2)如图,(3)3 5【解析】解:(1)调查的总人数为20÷40%=50(人),所以喜欢篮球项目的同学的人数=50−20−10−15=5(人);“乒乓球”的百分比=1050=20%,因为800×550=80,所以估计全校学生中有80人喜欢篮球项目;故答案为5,20,80;(2)见答案;(3)画树状图为:共有20种等可能的结果数,其中所抽取的2名同学恰好是1名女同学和1名男同学的结果数为12,所以所抽取的2名同学恰好是1名女同学和1名男同学的概率=1220=35.(1)先利用跳绳的人数和它所占的百分比计算出调查的总人数,再用总人数分别减去喜欢其它项目的人数可得到喜欢篮球项目的人数,再计算出喜欢乒乓球项目的百分比,然后用800乘以样本中喜欢篮球项目的百分比可估计全校学生中喜欢篮球项目的人数;(2)画树状图展示所有20种等可能的结果数,再找出所抽取的2名同学恰好是1名女同学和1名男同学的结果数,然后根据概率公式求解,本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.20.【答案】(1)50;216°(2)见解析;(3)180(4)2 5【解析】解:(1)被调查的总人数为5÷10%=50人,扇形统计图中C部分所对应的扇形圆心角的度数为360°×3050=216°,故答案为:50、216°;(2)B类别人数为50−(5+30+5)=10人,补全图形如下:(3)估计该校学生中A类有1800×10%=180人,故答案为:180;(4)列表如下:所有等可能的结果为20种,其中被抽到的两个学生性别相同的结果数为8,∴被抽到的两个学生性别相同的概率为820=25.(1)由A类别人数及其所占百分比可得总人数,用360°乘以C部分人数所占比例可得;(2)总人数减去其他类别人数求得B的人数,据此即可补全条形图;(3)用总人数乘以样本中A类别人数所占百分比可得;(4)用树状图或列表法即可求出抽到性别相同的两个学生的概率.此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图的应用.解题时注意:概率=所求情况数与总情况数之比.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.。
7.2 统计图的选用(2)
认识三种统计图的特点,并能根据实际问题选择统计图.
学习难点
根据实际问题灵活选择统计图.
教学流程
预
习
导
航
1、常用的统计图有、、.
2、只要求表示数量的多少,最好绘制成统计图.
3、据统计,近几年全世界森林面积以每年约1700万公顷的速度消失,为了预测未来20年世界森林面积的变化趋势,应选用统计图表示收集到的数据.
年份
1952
1962
1970
1980
1990
2000
国内生产总值/亿元
678
1149.3
2252.7
4517.8
18547.9
89404
5、根据下表人口增长率(2001年)完5
2.4
少儿人口比重%
21.0
39.0
老年人口比重%
12.0
4.0
1)请根据表格中的数据画出一个适合的统计图.
课题
7.2统计图的选用(2)
自主空间
学习目标
知识与技能:通过问题的方式引入三种统计图的特点.
过程与方法:在学生合作探究的基础上,体会统计图表的选取对更好地反映数据特征的作用.
情感、态度与价值观:通过练习的方式,引导学生分析统计图,从统计图中找出相关信息,培养学生分析问题、解决问题的能力,达到知识生成能力提高的目的.
2)发达国家的人口问题主要是
发展中国家的人口问题主要是
3)你认为可采取的对策分别是什么?
学习反思:
(1)指出它们各是哪种类型的统计图?
(2)你从这些统计图上能得到哪些信息?
(3)选用哪种统计图可以较为准确而迅速地反映出要表达的信息?它们各有什么特点?
三、展示交流:以下分别是2050年世界人口预测条形统计图、扇形统计图、折线图:
7.2 统计表、统计图的选用(1)
自主空间
学习 目标 学习 重点 学习 难点
教学流程
1、以整个圆代表统计项目的 ,每一统计项目分别 表示,扇 形面积占 这样的统计图称 为扇形统计图。 2、在扇形统计图中,扇形的圆心角的度数= 3、我们常用的统计图有 种,分别是 4、如下图所示,表示某地甲、乙两村土地安排情况,通过图形你能得到哪些信息? 甲村的粮食亩数比乙村粮食亩数多吗?
反对
意 见
学生
无所谓
标
问题 1) 每种意见的学生占全部调查学生的百分比是多少?请标在上面的扇形统计 图中. 2)你能算出各扇形的圆心角度数吗?填写下表 项目意见 赞 反 成 对 占总体的百分比 (精确到 1%) 扇形的圆心角 (精确到度) 360° × 70%=252°
课题
7.2 统计表、统计图的选用(1)
知识与技能:了解扇形统计图的特点,并能从图中尽可能多的获取有用的信息. 过程与方法:会制作扇形统计图. 情感、态度与价值观:通过学生讨论、小组合作交流以及动手操作等过程,培养学 生观察、分析、动手实践、归纳等能力,渗透小组合作意识,发展学生思维. 使学生明确扇形统计图的制作步骤,掌握如何画扇形统计图. 扇形统计图的制作.
预 习 导 航
水果 45%
粮食 55%
粮食 40% 水果 60%
合 作 探 究
一、 新知探究: 以整个圆代表统计项目的总体,每一统计项目分别用圆中不同的扇形表示,扇形面 积占圆面积的百分之几就代表该统计项目占总体的百分之几。这样的统计图称为扇 形统计图。 议一议: 1.上图中,各百分比与相应扇形的圆心角有什么关系? 2.你能算出各个扇形的圆心角度数吗?
集到的数据用统计表和扇形统计图表示如下. 最喜欢的球类活动 项目 人数 足球 17 篮球 44 其他 3 羽毛球 18 乒乓球 18
青岛版数学五年级上册《7.2 选择合适的统计图》同步练习(附答案)
7.2 选择合适的统计图1、要分析小明同学一个学期5个单元考试成绩是进步了还是退步了,应该选择()比较合适。
2、如果要对小明一次半期考试的语文、数学、英语、科学、品德五科成绩制成统计图进行分析对比,应该选择()比较合适。
3、医生想了解病人的体温变化情况,最好采用()统计图来表示这些数据4、在林业科学里,通常根据乔木生长期的长短将乔木分成不同的类型。
下面是我国乔木林各龄组的面积构成情况。
以上信息可以用什么统计图描述?哪种更直观些?答案:1. 折线统计图2. 条形统计图3、 折线4. 条形统计图整理乘法口诀 1. 填一填。
一共有多少棵树?加法算式:乘法算式:口诀: 2. 王奶奶加住5楼,她上一层楼需要2分钟,王奶奶从1楼回到家一共需要多少分钟?3.同学们围坐在四张餐桌旁吃饭,每张餐桌坐的人数相等,每张餐桌上放了3个碗后,每张餐桌还有1人没有碗,这四张餐桌一共坐了多少人?33.82% 33.43% 14.82% 12.03% 5.9% 0.00% 5.00%10.00% 15.00% 20.00%25.00%30.00%35.00% 40.00%幼龄林 中龄林 近熟林 成熟林 过熟林4.妈妈要扎4束花,每束花里放1枝黄花和2枝红花,妈妈一共需要多少枝花?答案提示1.3+3+3+3=12(棵)3×4=12(棵)4×3=12(棵)三四十二2. 4×2=8(分钟)或2×4=8(分钟)答:王奶奶从1楼回到家一共需要8分钟。
3.4×4=16(人)答:这四张餐桌一共坐了16人。
4.3×4=12(枝)或4×3=12(枝)答:妈妈一共需要12枝花。
人教版数学六年级上册7.2统计图的选择练习卷
人教版数学六年级上册 7.2 统计图的选择练习卷姓名 :________班级:________成绩:________小朋友,带上你一段时间的学习成就,一同来做个自我检测吧,相信你必定是最棒的!一、选择题1 .服饰厂某年生产服饰状况统计表单位:万套下半年计划产量是()。
A. 2.88 万套B. 0.48 万套C. 2 万套2 .如图是“百姓热线电话”一周内接到的热线电话状况统计图,此中对于环境保护问题的电话70 个,本周“百姓热线电话”共接热线电话()个.A. 180 B. 190 C. 2003 . 一个商场2006 年上半年收入中,家电收入占55%,针织品收入占20%,其余收入占 25%。
将此制成扇形统计图,此中表示家电收入的扇形的圆心角是()。
A.198°B.126°C.36°D.54°4 .某企业有职工700 人,元旦要举行活动,如图是分别参加活动的人数的百分比,规定每人只同意参加一项且每人均参加,则不下围棋的人共有()A. 259 人B.441 人C. 350 人D. 490 人5 . 要统计几个发展中国家人口占世界总人口的百分比, 需要用()。
A.条形统计图B.折线统计图C.扇形统计图6 . 要表示出陈老师家今年六月份各项生活支出占月总收入的百分比状况,用()统计图比较适合.A.扇形B.折线C.条形7 . 护士要把病人一周的体温丈量状况制成一张统计图,以便察看体温变化状况,应采用()统计图适合.A.条形B.折线C.扇形8 . 要反应一个城市人口变化的状况,用()统计图比较适合。
A.条形B.折线C.扇形9 .在一幅扇形统计图中,有一个扇形的面积占整个圆面积的,这个扇形的圆心角是()。
A.45°B.60°C.90°10 .表示整年均匀气温的变化状况,用以下()表示比较适合。
A.折线统计图B.单式统计表C.条形统计图D.复式统计表二、填空题11 .看图填一填。
数学六年级上册选择合适的统计图课时习题(含答案)
第七单元、扇形统计图《7.2选择合适的统计图》1.在一个圆形花坛内种了三种花(如图所示),( )能准确地表示各种花的占地面积.A.B.C.2.左边条形图是从曙光中学800名学生中帮助四川地震失学儿童捐款金额的部分抽样调查数据,扇形图是该校各年级人数比例分布图.那么该校七年级同学捐款的总数大约为( )A.870元B.4200元C.5010元D.250560元3.六年级一班40名同学上学期期末数学测试得优的有10人、良的有20人、及格的与待及格的都是5人.下面()幅图可以表示上学期期末数学测试的结果.A.B.C.4.在“阳光体育节”活动中,某校对六(1)班、六(2)班同学各50人参加体育活动的情况进行了调查,结果如下图所示.下列说法中( )是正确的.A.六(1)班喜欢乒乓球的人数比六(2)班的多 B.六(1)班喜欢足球的人数比六(2)班的多C.六(1)班喜欢羽毛球的人数比六(2)班的多 D.六(2)班喜欢篮球的人数比六(1)班的多5.为了直观反映各科成绩与总成绩的关系,选择较为合理的统计图是( )。
A.条形统计图B.折线统计图C.扇形统计图6.常用的统计图有(_______)统计图,(_______)统计图,(_______)统计图。
7.小军家2011年1月支出情况统计如下图.1、购买衣物支出为3600元,小军家这个月共支出(_______)元.2、小军家这个月水电支出(______)元.3、小军家这个月购买衣物比文化教育少支出(______)%.8.折线统计图不但可以表示______,而且能够清楚地反映出_____.9.条形统计图能直观地表示出每个项目的(________);折线统计图能直观地反映事物(________);扇形统计图能直观地表示出各部分在总体中所占的(________)。
10.要绘制一幅能反映出全校各年级男、女生人数的统计图,你认为绘制成(____)统计图较好.11.要反映某食品各种营养成分的含量,最好选用(_______________)统计图。
苏科版数学八年级下册7.2 统计表、统计图的选用同步训练含答案解析
苏科版数学八年级下册7.2 统计表、统计图的选用同步训练一、选择题1.某企业为了解职工业余爱好,组织对本企业150名职工业余爱好进行调查,制成了如图所示的扇形统计图,则在被调查的职工中,爱好旅游和阅读的人数分别是()A.45,30 B.60,40 C.60,45 D.40,452.株洲市展览馆某天四个时间段进出馆人数统计如下,则馆内人数变化最大时间段为()9:00﹣10:0010:00﹣11:0014:00﹣15:0015:00﹣16:00进馆人数50245532出馆人数30652845A.9:00﹣10:00 B.10:00﹣11:00 C.14:00﹣15:00 D.15:00﹣16:00 3.下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.2011﹣2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推断不合理的是()A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2011﹣2016年,我国与东南亚地区的贸易额逐年增长C.2011﹣2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多4.某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人5.“救死扶伤”是我国的传统美德,某媒体就“老人摔倒该不该扶”进行了调查,将得到的数据经统计分析后绘制成如图所示的扇形统计图,根据统计图判断下列说法,其中错误的一项是()A.认为依情况而定的占27%B.认为该扶的在统计图中所对应的圆心角是234°C.认为不该扶的占8%D.认为该扶的占92%6.如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是()A.2010年至2014年间工业生产总值逐年增加B.2014年的工业生产总值比前一年增加了40亿元C.2012年与2013年每一年与前一年比,其增长额相同D.从2011年至2014年,每一年与前一年比,2014年的增长率最大7.空气是混合物,为直观介绍空气各成分的百分比,最适合用的统计图是()A.折线图B.条形图C.直方图D.扇形图8.(2017•宁夏)某商品四天内每天每斤的进价与售价信息如图所示,则售出这种商品每斤利润最大的是()A.第一天B.第二天C.第三天D.第四天9.九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中,第一小组对应的圆心角度数是()A.45°B.60°C.72°D.120°10.在1﹣7月份,某种水果的每斤进价与售价的信息如图所示,则出售该种水果每斤利润最大的月份是()A.3月份B.4月份C.5月份D.6月份11.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是()年级七年级八年级九年级合格人数270262254A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少12.某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整)选修课A B C D E F 人数4060100根据图表提供的信息,下列结论错误的是()A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E、F的人数分别为80,70D.喜欢选修课C的人数最少13.某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是()A.30,40 B.45,60 C.30,60 D.45,4014.下列选项中,显示部分在总体中所占百分比的统计图是()A.扇形图B.条形图C.折线图D.直方图15.(2015•扬州)如图是某校学生参加课外兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是()A.音乐组B.美术组C.体育组D.科技组二、填空题16.(2017•新疆)某餐厅供应单价为10元、18元、25元三种价格的抓饭,如图是该餐厅某月销售抓饭情况的扇形统计图,根据该统计图可算得该餐厅销售抓饭的平均单价为元.17.(2017•上海)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是万元.18.(2017•毕节市)记录某足球队全年比赛结果(“胜”、“负”、“平”)的条形统计图和扇形统计图(不完整)如下:根据图中信息,该足球队全年比赛胜了场.19.(2017•玉林)如图是小强根据全班同学喜爱四类电视节目的人数而绘制的两幅不完整的统计图,则喜爱“体育”节目的人数是人.20.(2017•南京)如图是某市2013﹣2016年私人汽车拥有量和年增长率的统计图.该市私人汽车拥有量年净增量最多的是年,私人汽车拥有量年增长率最大的是年.三、解答题21.(2017•威海)央视热播节目“朗读者”激发了学生的阅读兴趣.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.22.(2017•衡阳)某校300名学生参加植树活动,要求每人植树2﹣5棵,活动结束后随机抽查了20名学生每人的植树量,并分为四类:A类2棵、B类3棵、C类4棵、D类5棵,将各类的人数绘制成不完整的条形统计图(如图所示),回答下列问题:(1)D类学生有多少人?(2)估计这300名学生共植树多少棵?23.(2017•贵阳)2017年6月2日,贵阳市生态委发布了《2016年贵阳市环境状况公报》,公报显示,2016年贵阳市生态环境质量进一步提升,小颖根据公报中的部分数据,制成了下面两幅统计图,请根据图中提供的信息,回答下列问题:(1)a=,b=;(结果保留整数)(2)求空气质量等级为“优”在扇形统计图中所占的圆心角的度数;(结果精确到1°)(3)根据了解,今年1~5月贵阳市空气质量优良天数为142天,优良率为94%,与2016年全年的优良率相比,今年前五个月贵阳市空气质量的优良率是提高还是降低了?请对改善贵阳市空气质量提一条合理化建议.24.(2017•台州)家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调査.(1)下列选取样本的方法最合理的一种是.(只需填上正确答案的序号)①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.(2)本次抽样调査发现,接受调査的家庭都有过期药品,现将有关数据呈现如图:①m=,n=;②补全条形统计图;③根据调査数据,你认为该市市民家庭处理过期药品最常见的方式是什么?④家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点.25.(2017•遵义)贵州省是我国首个大数据综合试验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值.为创建大数据应用示范城市,我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:(1)本次参与调查的人数有人;(2)关注城市医疗信息的有人,并补全条形统计图;(3)扇形统计图中,D部分的圆心角是度;(4)说一条你从统计图中获取的信息.26.(2017•南充)在“宏扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A﹣国学诵读”、“B﹣演讲”、“C﹣课本剧”、“D﹣书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意愿,随机调查了部分学生,结果统计如下:(1)如图,希望参加活动C占20%,希望参加活动B占15%,则被调查的总人数为人,扇形统计图中,希望参加活动D所占圆心角为度,根据题中信息补全条形统计图.(2)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?27.(2017•青岛)某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的圆心角度数是度;(2)补全条形统计图;(3)该校共有学生1200人,估计每周使用手机时间在2小时以上(不含2小时)的人数.28.(2017•海南)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为;(4)已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.29.(2017•宁波)大黄鱼是中国特有的地方性鱼类,有“国鱼”之称,由于过去滥捕等多种因素,大黄鱼资源已基本枯竭,目前,我市已培育出十余种大黄鱼品种,某鱼苗人工养殖基地对其中的四个品种“宁港”、“御龙”、“甬岱”、“象山港”共300尾鱼苗进行成活实验,从中选出成活率最高的品种进行推广,通过实验得知“甬岱”品种鱼苗成活率为80%,并把实验数据绘制成下列两幅统计图(部分信息未给出):(1)求实验中“宁港”品种鱼苗的数量;(2)求实验中“甬岱”品种鱼苗的成活数,并补全条形统计图;(3)你认为应选哪一品种进行推广?请说明理由.30.(2017•巴中)2017年5月教育部统一组织了国家义务教育阶段质量监测考试.四川省部分小学四年级学生参加了科学测试,测试成绩评定为A、B、C、D 四个等级,为了解此次科学测试成绩情况,相关部门从四川省农村、县镇、城市三类群体的学生中共抽取2000名学生的科学测试成绩进行分析,相关数据如表和图所示.A B C D等级人数类别农村a16018080县镇200182160b城市240c12248(注:等级A,B,C,D分别代表优秀、良好、合格、不合格)(1)请算出表中的a,b,c(直接填数据,不写解答过程);(2)此次抽取的2000名学生的科学测试成绩为A等级的百分率是多少?(3)若此次在四川省抽查的所有四年级学生中农村学生共有16000人,试估计抽查的农村学生科学测试成绩为D等级的大约有多少人?31.(2017•郴州)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.(1)这次调查的市民人数为人,m=,n=;(2)补全条形统计图;(2)若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.32.(2017•营口)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.33.(2017•云南)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?34.(2017•常州)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:根据统计图所提供的信息,解答下列问题:(1)本次抽样调查中的样本容量是;(2)补全条形统计图;(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.35.(2017•济宁)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.36.(2017•临沂)为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如图统计图表:学生最喜爱的节目人数统计表节目人数(名)百分比最强大脑510%朗读者15b%中国诗词大会a40%出彩中国人1020%根据以上提供的信息,解答下列问题:(1)x=,a=,b=;(2)补全上面的条形统计图;(3)若该校共有学生1000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.37.(2017•泰州)“泰微课”是学生自主学习的平台,某初级中学共有1200名学生,每人每周学习的数学泰微课都在6至30个之间(含6和30),为进一步了解该校学生每周学习数学泰微课的情况,从三个年级随机抽取了部分学生的相关学习数据,并整理、绘制成统计图如下:根据以上信息完成下列问题:(1)补全条形统计图;(2)估计该校全体学生中每周学习数学泰微课在16至30个之间(含16和30)的人数.38.(2017•扬州)“富春包子”是扬州特色早点,富春茶社为了了解顾客对各种早点的喜爱情况,设计了如右图的调查问卷,对顾客进行了抽样调查.根据统计数据绘制了如下尚不完整的统计图.根据以上信息,解决下列问题:(1)条形统计图中“汤包”的人数是,扇形统计图中“蟹黄包”部分的圆心角为°;(2)根据抽样调查结果,请你估计富春茶社1000名顾客中喜欢“汤包”的有多少人?39.(2017•盐城)“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.40.(2017•娄底)为给研究制定《中考改革实施方案》提出合理化建议,教研人员对九年级学生进行了随机抽样调查,要求被抽查的学生从物理、化学、政治、历史、生物和地理这六个选考科目中,挑选出一科作为自己的首选科目,将调查数据汇总整理后,绘制出了如图的两幅不完整的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?(2)将折线统计图补充完整;(3)我市现有九年级学生约40000人,请你估计首选科目是物理的人数.41.(2017•徐州)某校园文学社为了解本校学生对本社一种报纸四个版面的喜欢情况,随机抽查部分学生做了一次问卷调查,要求学生选出自己最喜欢的一个版面,将调查数据进行了整理、绘制成部分统计图如下:请根据图中信息,解答下列问题:(1)该调查的样本容量为,a=%,“第一版”对应扇形的圆心角为°;(2)请你补全条形统计图;(3)若该校有1000名学生,请你估计全校学生中最喜欢“第三版”的人数.42.(2017•宿迁)某校为了解八年级学生最喜欢的球类情况,随机抽取了八年级部分学生进行问卷调查,调查分为最喜欢篮球、乒乓球、足球、排球共四种情况,每名同学选且只选一项,现将调查结果绘制成如下所示的两幅统计图.请结合这两幅统计图,解决下列问题:(1)在这次问卷调查中,一共抽取了名学生;(2)请补全条形统计图;(3)若该校八年级共有300名学生,请你估计其中最喜欢排球的学生人数.43.(2017•锦州)今年市委市政府积极推进创建“全国文明城市”工作,市创城办公室为了调查初中学生对“社会主义核心价值观”内容的了解程度(程度分为:“A ﹣十分熟悉”,“B﹣了解较多”,“C﹣了解较少”,“D﹣不知道”),对我市一所中学的学生进行了随机抽样调查,根据调查结果绘制了两幅不完整的统计图如图,根据信息解答下列问题:(1)本次抽样调查了多少名学生;(2)补全条形统计图和扇形统计图;(3)求扇形统计图中“D﹣不知道”所在的扇形圆心角的度数;(4)若该中学共有2400名学生,请你估计这所中学的所有学生中,对“社会主义核心价值观”内容的了解程度为“十分熟悉”和“了解较多”的学生共有多少名?44.(2017•沈阳)某校为了开展读书月活动,对学生最喜欢的图书种类进行了一次抽样调查,所有图书分成四类:艺术、文学、科普、其他.随机调查了该校m 名学生(每名学生必选且只能选择一类图书),并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m=,n=;(2)扇形统计图中,“艺术”所对应的扇形的圆心角度数是度;(3)请根据以上信息直接在答题卡中补全条形统计图;(4)根据抽样调查的结果,请你估计该校600名学生中有多少学生最喜欢科普类图书.45.(2017•无锡)某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:时间第1天第2天第3天第4天第5天新加入人数(人)153550653 b725累计总人数(人)33533903a51565881(1)表格中a=,b=;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.46.(2017•铜仁市)某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A,B,C(A等:成绩大于或等于80分;B 等:成绩大于或等于60分且小于80分;C等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A等所在的扇形的圆心角等于度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.47.(2017•淮安)某校计划成立学生社团,要求每一位学生都选择一个社团,为了了解学生对不同社团的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个学生社团”问卷调查,规定每人必须并且只能在“文学社团”、“科学社团”、“书画社团”、“体育社团”和“其他”五项中选择一项,并将统计结果绘制了如下两个不完整的统计图表.社团名称人数文学社团18科技社团a书画社团45体育社团72其他b请解答下列问题:(1)a=,b=;(2)在扇形统计图中,“书画社团”所对应的扇形圆心角度数为;(3)若该校共有3000名学生,试估计该校学生中选择“文学社团”的人数.48.(2016•南通)某水果批发市场新进一批水果,有苹果、西瓜、桃子和香蕉四个品种,统计后将结果绘制成条形图(如图),已知西瓜的重量占这批水果总重量的40%.回答下列问题:(1)这批水果总重量为kg;(2)请将条形图补充完整;(3)若用扇形图表示统计结果,则桃子所对应扇形的圆心角为度.49.(2016•黄冈)望江中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t≤20分钟的学生记为A类,20分钟<t≤40分钟的学生记为B类,40分钟<t≤60分钟的学生记为C类,t>60分钟的学生记为D类四种.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)m=%,n=%,这次共抽查了名学生进行调查统计;(2)请补全上面的条形图;(3)如果该校共有1200名学生,请你估计该校C类学生约有多少人?50.(2016•连云港)某自行车公司调查阳光中学学生对其产品的了解情况,随机抽取部分学生进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为A、B、C、D.根据调查结果绘制了如下尚不完整的统计图.(1)本次问卷共随机调查了名学生,扇形统计图中m=.(2)请根据数据信息补全条形统计图.(3)若该校有1000名学生,估计选择“非常了解”、“比较了解”共约有多少人?51.(2016•徐州)某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题(1)该调查的样本容量为,a=%,b=%,“常常”对应扇形的圆心角为°(2)请你补全条形统计图;(3)若该校共有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?52.(2016•黄石)为了解某市初三学生的体育测试成绩和课外体育锻炼时间的情况,现从全市初三学生体育测试成绩中随机抽取200名学生的体育测试成绩作为样本.体育成绩分为四个等次:优秀、良好、及格、不及格.体育锻炼时间人数4≤x≤62≤x<4430≤x<215(1)试求样本扇形图中体育成绩“良好”所对扇形圆心角的度数;(2)统计样本中体育成绩“优秀”和“良好”学生课外体育锻炼时间表(如图表所示),请将图表填写完整(记学生课外体育锻炼时间为x小时);(3)全市初三学生中有14400人的体育测试成绩为“优秀”和“良好”,请估计这些学生中课外体育锻炼时间不少于4小时的学生人数.53.(2016•淮安)为了丰富同学们的课余生活,某学校举行“亲近大自然”户外活动,现随机抽取了部分学生进行主题为“你最想去的景点是?”的问卷调查,要求学生只能从“A(植物园),B(花卉园),C(湿地公园),D(森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.请解答下列问题:(1)本次调查的样本容量是;(2)补全条形统计图;(3)若该学校共有3600名学生,试估计该校最想去湿地公园的学生人数.54.(2016•镇江)现如今,通过微信朋友圈发布自己每天行走的步数,已成为一种时尚,“健身达人”小张为了了解他的微信朋友圈里大家的运动情况,随机抽取了部分好友进行调查,把他们6月9日那天每天行走的步数情况分为五个类别:A(0﹣4000步)(说明:“0﹣4000”表示大于等于0,小于等于4000,下同),B (4001﹣8000步),C(8001﹣12000步),D(12001﹣16000步),E(16001步及以上),并将统计结果绘制了如图1的图2两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)将图1的条形统计图补充完整;(2)已知小张的微信朋友圈里共500人,请根据本次抽查的结果,估计在他的微信朋友圈里6月9日那天行走不超过8000步的人数.。
2020--2021学年初中数学苏科版八年级下册 7.2 统计图的选用(含答案)
初中数学苏科版八年级下册7.2 统计图的选用一、单选题(本大题共10题,每题3分,共30分)1.为反映某一天气温的变化情况,最好选择()A.扇形统计图B.条形统计图C.折线形统计图D.列表2.适宜表示一组数据的变化趋势的统计图是()A.条形图B.扇形图C.折线图D.直方图3.为了解全班同学最喜爱的运动项目所占百分比,应绘制()A.条形统计图B.扇形统计图C.折线统计图D.直方图4.要直观介绍空气中各成分的百分比,最适合使用的统计图是()A.条形图B.扇形图C.折线图D.直方图5.用统计图来描述某班同学的身高情况,最合适的是A.频数分布直方图B.条形统计图C.扇形统计图D.折线统计图6.八年级(6)班一同学感冒发烧住院治疗,护士为了较直观地了解这位同学这天24h的体温和时间的关系,可选择的比较好的方法是()A.列表法B.图象法C.解析式法D.以上三种方法均可7.空气污染物主要包括可吸入颗粒物(pM10)细颗粒物(pM2.5)、臭氧、氧化硫、氮氧化物、一氧化碳六类,为了刻画每一类污染物所占的比例,最适合使用的统计图是()A.折线统计图B.条形统计图C.扇形统计图D.以上均可以8.西安市某区三月中旬每天平均空气质量指数(AQI)分别为:118,96,60,82,56,69,86,112,108,94,为了描述这十天空气质量的变化情况,最适合用的统计图是()A.折线统计图B.条形统计图C.频数分布直方图D.扇形统计图9.下图中,最能清楚地显示每组数据在总数中所占百分比的统计图是()A. B. C. D.10.在数据统计中,条形图,扇形图,折线图和直方图各有特点,下列各图中,能够很好地显示数据的变化趋势的统计图是()A. B. C.D.二、填空题(本大题共8题,每题2分,共16分)11.要表示某品牌奶粉中蛋白质、钙、维生素、糖和其他物质的含量的百分比,应该利用________统计图最好.12.我们知道,地球上海洋面积约占71% ,而陆地面积仅占29%,为了直观地表示陆地面积占整个地球面积的百分比,你认为最好选用________统计图.13.某校七年级(1)班60名学生在一次单元测试中,优秀人数是20人,在扇形统计图中,表示这部分同学的扇形圆心角是________度.14.如图是当前对生活垃圾的常见三种处理方式,本图中的有关数据宜用________统计图表示.15.随着我国人口增长速度变缓,小学入学儿童的人数逐年下降,下表显现了某地区小学儿童人数的变化情况,由此估计,从________年起,该地区小学儿童人数将不超过1600人.16.七(一)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据整理如下表(部分):若该小区有800户家庭,据此估计该小区月均用水量不超过10m3的家庭约有________户17.初一(1)班给出25分钟的时间,要求用多种方法证明某一问题,结果如表所示.用2种办法给出证明的人数最________,占总人数的百分率约为________.18.某班50名学生右眼视力的检查结果如下表:(1)视力为1.5的有________人,视力为1.0的有________人,视力小于1.0的有________人.(2)视力在1.0以上(包括1.0)的为正常,则视力正常的有________人,视力正常的人数占全班人数的________%;(3)该班学生视力情况________(选填“好”“一般”“差”).三、解答题(本大题共8题,共84分)19.已知全班有40位学生,它们有的步行,有的骑车,有的乘车来上学,根据以下信息完成统计表:20.查阅动物百科全书可以知道:喜鹊体长41~52cm,营巢于高大乔木的中上层,每次产卵5~8枚;丹顶鹤体长约140cm,营巢于周围环水的浅滩或深草丛中,每次产卵2枚;绿孔雀体长100~230cm,营巢于灌木丛、竹丛间的地面,每次产卵4~8枚;鸳鸯体长38~44cm,营巢于树洞中,每次产卵7~12枚,请用一张统计表简洁地表示上述信息,并谈谈你从这些信息中发现了什么?21.一个病人每天下午需要测量血压,下表为病人周一到周五收缩压的变化情况,该病人上周日的收缩压为160单位.问:(1)本周哪一天血压最高?哪一天最低?(2)与上周日相比,病人周五的血压是上升了还是下降了?22.下表是某种股票一周内周一至周五的收盘价(即每天交易结束时的价格):根据这张表格解答下列问题:(1)本周三的收盘价是多少?(2)若某人在上周末以10元/股购进8000股,那么他在本周末收盘时将所有股票售出,则他将获利多少?(不计交易费用)23.实验中学为了了解该校学生课外阅读情况,随机抽查了50名学生,统计他们平均每周课外阅读时间t (h).枨据时间t的长短分为A,B,C,D四类.下面是根据所抽杳的人数绘制了不完整的统计表.其中a、b、c和d是满足a<b<c<d的正整数,请解答下面的问题:50名学生平均每天课外阅读时间统计表(1)写出表格中a+b+c+d的值.并求表格中的a、b、c、d的值;(2)如果每分钟阅读200个字,每天坚持课外阅读时间为0.5h,一年(365天)能阅读多少本(10万字/本)书籍?24.随着高铁的建设,春运期间动车组发送旅客量越来越大,相关部门为了进一步了解春运期间动车组发送旅客量的变化情况,针对2014年至2018年春运期间的铁路发送旅客量情况进行了调查,过程如下. (Ⅰ)收集、整理数据请将表格补充完整:(Ⅰ)描述数据为了更直观地显示动车组发送旅客量占比的变化趋势,需要用什么图(回答“折线图”或“扇形图”)进行描述;(Ⅰ)分析数据、做出推测预估2019年春运期间动车组发送旅客量占比约为多少,说明你的预估理由.25.某班男生分成甲、乙两组进行引体向上的专项训练,已知甲组有6名男生,并对两组男生训练前,后引体向上的个数进行统计分析,得到乙组男生训练前,后引体向上的平均个数分别是6个和10个,及下面不完整的统计表和图的统计图.甲组男生训练前、后引体向上个数统计表(单位:个)(1)根据以上信息,解答下列问题:a=________,b=________,c=________;(2)甲组训练后引体向上的平均个数比训练前增长了________%;(3)你认为哪组训练效果好?并提供一个支持你观点的理由;(4)小华说他发现了一个错误:“乙组训练后引体向上个数不变的人数占到该组人数的50%,所以乙组的平均个数不可能提高4个之多.:你同意他的观点吗?说明理由.26.为确保广大居民家庭基本用水需求的同时鼓励家庭节约用水,对居民家庭每户每月用水量采用分档递增收费的方式,每户每月用水量不超过基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费.为对基本用水量进行决策,随机抽查2000户居民家庭每户每月用水量的数据,整理绘制出下面的统计表:(1)为确保70%的居民家庭每户每月的基本用水量需求,那么每户每月的基本用水量最低应确定为多少立方米?(2)若将(1)中确定的基本用水量及其以内的部分按每立方米1.8元交费,超过基本用水量的部分按每立方米2.5元交费.设x表示每户每月用水量(单位:m3),y表示每户每月应交水费(单位:元),求y与x 的函数关系式;(3)某户家庭每月交水费是80.9元,请按以上收费方式计算该家庭当月用水量是多少立方米?参考答案一、单选题1.【答案】C解:为反映某一天气温的变化情况,最好选择折线形统计图,故答案为:C.2.【答案】C解:能直观反映数据增减变化和变化趋势的是折线统计图,故答案为:C.3.【答案】B解:扇形统计图反映各个部分所占整体的百分比,因此为了解全班同学最喜爱的运动项目所占百分比,应选择扇形统计图.故答案为:B.4.【答案】B解:要直观介绍空气中各成分的百分比,最适合使用的统计图是扇形统计图,故答案为:B.5.【答案】A解:用统计图来描述某班同学的身高情况,最合适的是频数分布直方图.故答案为:A.6.【答案】B解:根据题意,可得出图像法最为直观的表示这位同学的体温变化。