2 圆的对称性
《圆的对称性》圆圆的对称性
艺术家们也经常利用圆形的对称性来创作美丽的艺术作品,例如旋转对称的图案、镜像对称的图案等。
艺术创作
02
CHAPTER
圆的轴对称性
轴对称性是一种几何属性,指的是一个图形关于某一直线(称为“对称轴”)对称,即图形上的任意点到对称轴的距离相等,且在对称轴的两侧有相对应的点。
对称轴是一条直线,它把图形划分成两个部分,其中一个部分相对于对称轴折叠后能够与另一个部分重合。
感谢您的观看。
04
CHAPTER
圆的旋转对称性
旋转对称性是指一个图形在旋转一定角度后,仍然保持不变的形状和大小。
旋转对称轴是一条通过图形中心的直线,将图形旋转特定角度后,图形上的点与旋转前的点重合。
圆在绕其中心旋转任意角度时,其形状和大小均保持不变。
圆上任意一点在绕圆心旋转一定角度后,都会与原来的点重合。
雕塑中的应用
许多生物形状都表现出圆的对称性,如人的身体、树叶等。这种对称性有助于保持生物体的平衡,使其在运动时更加流畅、自然。
在天体运动中,圆的对称性也非常重要。例如,地球的自转和公转都是以圆形轨道进行的,这种圆形运动方式使得天体能够更加稳定地运动,避免了不必要的震动和变化。
生物形状
天体运动
THANKS
圆是一个具有轴对称性的图形,它的对称轴是经过圆心的任意一条直线。
圆上的任意一点到对称轴的距离相等,且在对称轴的两侧有相对应的点。
圆沿着对称轴折叠后,两侧的点能够完全重合。
通过圆的轴对称性,我们可以很容易地找到圆上任意一点的对称点,以及通过旋转和翻转等变换得到新的图形。
圆的轴对称性也是证明一些几何定理的重要工具,例如,利用圆的轴对称性可以证明圆中的垂径定理和切线长定理等。
苏教版九年级数学(上)《2.2圆的对称性(2)》教学设计-优质教案
OCDA2.总结 垂径定理:数学语言(符号)表述: 板书垂径定理的内容活动意图:本环节要注重学生在活动中的思考,鼓励学生有条理地表达自己的思考过程,积累数学活动经验,本环节采用学生自主探索与合作交流的方法,通过学生的探究、归纳得出垂径定理性质。
环节三:运用新知 教师活动4例1.如图,以点O 为圆心的两个同心圆中,大圆的弦AB 交小圆于点C 、D 。
线段AC 与BD 相等吗?为什么?例2:如图,已知在⊙O 中,弦AB 的长为8㎝,圆心O 到AB 的距离为3㎝,求⊙O 的半径。
变式:在半径为5㎝的⊙O 中,有长为8㎝的弦AB ,求点O 到AB 的距离。
想一想:若点P 是AB 上的一动点,你能写出OP 的范围吗?学生活动4(1)例1需要学生通过添加辅助线解决问题,教师引导学生得出添加辅助线常用的方法.(2)学生独立分析,老师板书,写出证明过程.例2是例1的延伸,要求学生在课堂作业纸上完成,并请一名学生上黑板板演并关注证明过程是否规范.变式:生生互动完成!想一想:学生合作完成,并交流展示,教师引导归纳活动意图:本环节依据学生的实际情况及他们的心理特点,设计了包括例1在内的有梯度的,循序渐进的与物理、代数相关的变式题组训练二,让学生尝试。
采用学生自主探索与合作交流的方法,通过学生的探究体验垂径定理性质的应用。
环节四:课堂小结OABOFEDCBA7.板书设计 2.2圆的对称性(2)垂径定理:例题板书:(略)学生板书:(略)数学语言(符号)表述:8.作业与拓展学习设计1.过⊙O内一点P,最长的弦为10cm,最短的弦长为8cm,则OP的长为 .2.⊙O中,直径AB ⊥弦CD于点P ,AB=10cm,CD=8cm,则OP的长为 cm.3.⊙O的弦AB为103cm,所对的圆心角为120°,则圆心O到这条弦AB的距离为___4.已知:如图,⊙O的直径AB与弦CD相交于点E,AE=1,BE=5, AEC=45°,求CD的长。
苏科版2022年九年级数学上册 《圆的对称性》教材预习辅导讲义(附解析)
2.2 圆的对称性圆的对称性圆是轴对称图形,过圆心的任意一条直线都是它的对称轴;圆是中心对称图形,圆心是它的对称中心. 【点拨】圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合. 弧、弦、圆心角的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.【点拨】(1)一个角要是圆心角,必须具备顶点在圆心这一特征; (2)注意关系中不能忽视“同圆或等圆”这一前提. (3)圆心角的度数与它所对的弧的度数相等. 垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 【点拨】(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段. 垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【例题1】已知:如图,⊙O 中弦AB CD .求证:AD=BC .看例题,涨知识教材知识总结【例题2】如图,在⊙O 中,弧AB =弧AC ,∠A =120°,求∠ABC 的度数.【例题3】如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若BE =5,CD =6,求AE 的长.【例题4】如图,在O 中,AB 是直径,弦EF ∥AB .(1)请仅用无刻度.....的直尺画出劣弧EF 的中点P ;(保留作图痕迹,不写作法) (2)在(1)的条件下,连接OP 交EF 于点Q ,10AB =,6EF =,求PQ 的长度.一、单选题1.下列说法正确的是()①平分弧的直径垂直平分弧所对的弦②平分弦的直径平分弦所对的弧③垂直于弦的直线必过圆心④垂直于弦的直径平分弦所对的弧A.②③B.①③C.②④D.①④2.如图,在⊙O中,弦AB的长为8cm,M是AB上任意一点,且OM的最小值为3,则⊙O的半径为()A.4cm B.5cm C.6cm D.8cm3.下列命题是真命题的是()A.在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧也相等B.平分弦的直径垂直于弦C.一组对边平行且一组对角相等的四边形是平行四边形D.两条直线被第三条直线所截,内错角相等4.如图,CD为⊙O的直径,弦AB CD⊥,垂足为E,1CE=,10AB=,则CD的长为()A.20 B.24 C.25 D.265.如图,在O中,⊥OD AB于点D,AD的长为3cm,则弦AB的长为()A.4cm B.6cm C.8cm D.10cm课后习题巩固一下6.如图,AB是O的直径,弦CD AB⊥于点E,如果20CD=,那么线段OE的长为()AB=,16A.4 B.6 C.8 D.97.如图,AB为圆O的一弦,且C点在AB上.若6BC=,AB的弦心距为3,则OC的长度为何?AC=,2()A.3 B.4 C11D138.如图,AB是O的直径,OD垂直于弦AC于点D,DO的延长线交O于点E.若42DE=,AC=4则BC的长是()A.1 B2C.2 D.49.如图,⊙O在△ABC三边上截得的弦长相等,即DE=FG=MN,∠A=50°,则∠BOC=()A.100°B.110°C.115°D.120°10.如图,在半径为5的A 中,弦BC ,DE 所对的圆心角分别是BAC ∠,DAE ∠.若6DE =,180BAC DAE ∠+∠=︒,则弦BC 的弦心距为( ).A 41B 34C .4D .3二、填空题11.在⊙O 中,弦AB =16cm ,弦心距OC =6cm ,那么该圆的半径为__cm .12.如图,AB 为⊙O 的弦,半径OC ⊥AB 于E ,AB =8,CE =2,则⊙O 的半径为_____.13.已知⊙O 的半径为6cm ,弦AB =6cm ,则弦AB 所对的圆心角是________度.14.如图,在O 中,AB BC CD ==,连接AC ,CD ,则AC __2CD (填“>”,“ <”或“=” ).15.如图,AB ,CD 是O 的直径,弦CE AB ,CE 所对的圆心角为40°,则AOC ∠的度数为______.16.如图,A 、B 、C 、D 为⊙O 上的点,且 AB BC CD ==.若∠COD =40°,则∠ADO =______度.三、解答题17.如图,O的弦AB、CD相交于点E,且AB CD=.求证:BE DE=.18.如图,在⊙O中,直径AB=10,弦AC=8,连接BC.(1)尺规作图:作半径OD交AC于E,使得点E为AC中点;(2)连接AD,求三角形OAD的面积.∠,求19.如图,已知AB是O的直径,P是AO上一点,点C、D在直径两侧的圆周上,若PB平分CPD 证:劣弧BC与劣弧BD相等.20.如图,已知弓形的弦长AB=8,弓高CD=2(CD⊥AB并经过圆心O).求弓形所在⊙O的半径r的长.21.如图,正方形ABCD 内接于⊙O , AM DM =,求证:BM =CM .22.如图,AB 为圆O 的直径,点C 在圆O 上.(1)尺规作图:在BC 上求作一点E ,使OE AC ∥(不写作法,只保留作图痕迹); (2)探究OE 与AC 的数量关系.23.如图,在⊙O 中,AB 、AC 是互相垂直且相等的两条弦,OD ⊥AB ,OE ⊥AC ,垂足分别为D 、E . (1)求证:四边形ADOE 是正方形; (2)若AC=2cm ,求⊙O 的半径.24.如图,在扇形AOB 中,90AOB ∠=︒,C 、D 是AB 上两点,过点D 作DE OC ∥交OB 于E 点,在OD 上取点F ,使OF DE =,连接CF 并延长交OB 于G 点. (1)求证:OCF DOE ≌△△; (2)若C 、D 是AB 的三等分点,23=OA ①求OGC ∠;②请比较GE 和BE 的大小.2.2 圆的对称性解析教材知识总结圆的对称性圆是轴对称图形,过圆心的任意一条直线都是它的对称轴;圆是中心对称图形,圆心是它的对称中心.【点拨】圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.弧、弦、圆心角的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.【点拨】(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意关系中不能忽视“同圆或等圆”这一前提.(3)圆心角的度数与它所对的弧的度数相等.垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.【点拨】(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(4)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(5)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(6)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【例题1】已知:如图,⊙O中弦AB CD=.求证:AD=BC.【答案】见解析【分析】先根据等弦所对的劣弧相等得到AB CD=,从而得到AD AB BD CD BD BC=-=-=,再由等弧所对的弦相等即可得到AD BC=.【解析】证明:∵AB=CD,∴AB CD=,∴AD AB BD CD BD BC=-=-=,∴AD BC=.【例题2】如图,在⊙O中,弧AB=弧AC,∠A=120°,求∠ABC的度数.【答案】30°【分析】根据同圆中,相等的弧所对的弦相等,再根据等腰三角形的性质即可求解.【解析】解:∵在⊙O中,弧AB=弧AC,∴AB=AC,∵∠A=120°,∴∠ABC=()1801203012⨯︒-︒=︒.【例题3】如图,AB是⊙O的直径,弦CD⊥AB于点E,若BE=5,CD=6,求AE的长.看例题,涨知识【答案】95【分析】如图,连接OC ,设OE x =,由垂径定理知132CE CD ==,5OC BE OE x =-=-,在Rt OCE 中,由勾股定理知222CE OC OE =-,解出x 的值,由2AE BE OE =-,计算求解即可. 【解析】解:如图,连接OC ,设OE x =由垂径定理知132CE CD ==5OC BE OE x =-=-在Rt OCE 中,由勾股定理知222CE OC OE =- ∴()22235x x =-- 解得85x =92525AE BE OE x =-=-=∴AE 的长为95.【例题4】如图,在O 中,AB 是直径,弦EF ∥AB .(1)请仅用无刻度.....的直尺画出劣弧EF的中点P;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接OP交EF于点Q,10AB=,6EF=,求PQ的长度.【答案】(1)见解析;(2)1【分析】(1)如图,连接BE,AF,BE交AF于C,作直线OC交EF于点P,点P即为所求.(2)利用垂径定理结合勾股定理求得OQ=4,进一步计算即可求解.【解析】(1)解:如图中,点P即为所求.(2)解:连接OF,由作图知OP⊥EF,EQ=QF=12EF=3,∵AB=10,∴OF=OP=12AB=5,∴OQ222254OF QF-=-,∴PQ= OP-OQ=1,∴PQ的长度为1.一、单选题1.下列说法正确的是()①平分弧的直径垂直平分弧所对的弦课后习题巩固一下②平分弦的直径平分弦所对的弧③垂直于弦的直线必过圆心④垂直于弦的直径平分弦所对的弧A.②③B.①③C.②④D.①④【答案】D【分析】根据垂径定理及其推论进行判断.【解析】解:根据垂径定理,①正确;②错误.平分弦(不是直径)的直径平分弦所对的弧;③错误.垂直于弦且平分弦的直线必过圆心;④正确.故选:D.2.如图,在⊙O中,弦AB的长为8cm,M是AB上任意一点,且OM的最小值为3,则⊙O的半径为()A.4cm B.5cm C.6cm D.8cm【答案】B【分析】根据垂线段最短知,当OM⊥AB时,OM有最小值.根据垂径定理和勾股定理求解.【解析】解:根据垂线段最短知,当OM⊥AB时,OM有最小值,此时,由垂径定理知,点M是AB的中点,AB=4,连接OA,AM=12由勾股定理知,OA2=OM2+AM2.即OA2=42+32,解得:OA=5.所以⊙O的半径是5cm.故选:B.3.下列命题是真命题的是()A.在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧也相等B.平分弦的直径垂直于弦C.一组对边平行且一组对角相等的四边形是平行四边形D.两条直线被第三条直线所截,内错角相等【答案】C【分析】利用圆的有关性质、垂径定理、平行四边形的判定方法及平行线的性质分别判断后即可确定正确的选项.【解析】A 、在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧不一定相等,故原命题错误,是假命题,不符合题意;B 、平分弦(不是直径)的直径垂直于弦,故原命题错误,是假命题,不符合题意;C 、如图,四边形ABCD ,AB ∥CD ,∠A=∠C ,∵AB ∥CD ,∴∠A +∠D =180°,又∵∠A =∠C ,∴∠C +∠D =180°,∴AD ∥BC ,∴四边形ABCD 是平行四边形,故一组对边平行且一组对角相等的四边形是平行四边形,正确,是真命题,符合题意;D 、两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,不符合题意.故选:C .4.如图,CD 为⊙O 的直径,弦AB CD ⊥,垂足为E ,1CE =,10AB =,则CD 的长为( )A .20B .24C .25D .26【答案】D 【分析】连接OA ,设圆的半径为x ,则OE =x -1,由垂径定理可得AB ⊥CD ,AE =5,Rt △OAE 中由勾股定理建立方程求解即可;【解析】如图,连接OA ,设圆的半径为x ,则OE =x -1,由垂径定理可得AB ⊥CD ,AE =BE =12AB =5,Rt △OAE 中,OA 2=AE 2+OE 2,x 2=25+(x -1)2,解得:x =13,,∴CD =26, 故选: D .5.如图,在O 中,⊥OD AB 于点D ,AD 的长为3cm ,则弦AB 的长为( )A .4cmB .6cmC .8cmD .10cm【答案】B 【分析】根据垂径定理求出AD =BD =3cm 即可.【解析】解:∵AB 为非直径的弦,⊥OD AB ,∴AD =BD =3cm ,∴AB =AD +BD =6cm .故选B .6.如图,AB 是O 的直径,弦CD AB ⊥于点E ,如果20AB =,16CD =,那么线段OE 的长为( )A .4B .6C .8D .9【答案】B 【分析】连接OD ,那么OD =OA =12AB ,根据垂径定理得出DE =12CD ,然后在Rt △ODE 中,根据勾股定理求出OE .【解析】解:如图,∵弦CD ⊥AB ,垂足为E∴CE =DE =1116822CD =⨯=, ∵OA 是半径∴OA =11201022AB =⨯=, 在Rt △ODE 中,OD =OA =10,DE =8,22221086OE OD DE =--=,故选:B .7.如图,AB 为圆O 的一弦,且C 点在AB 上.若6AC =,2BC =,AB 的弦心距为3,则OC 的长度为何?( )A .3B .4C 11D 13【答案】D 【分析】作⊥OD AB 于点D ,由垂径定理得4AD BD ==,Rt OCD △中勾股定理即可求解.【解析】解:作⊥OD AB 于点D ,如图所示,由题意可知:6AC =,2BC =,3OD =, 8AB ∴=,4AD BD∴==,2CD∴=,在Rt OCD△中22223213OC OD CD∴+=+故选:D.8.如图,AB是O的直径,OD垂直于弦AC于点D,DO的延长线交O于点E.若42AC=4DE=,则BC的长是()A.1 B2C.2 D.4【答案】C【分析】根据垂径定理求出OD的长,再根据中位线求出BC=2OD即可.【解析】设OD=x,则OE=OA=DE-OD=4-x.∵AB是O的直径,OD垂直于弦AC于点,42AC=∴1222AD DC AC===∴OD是△ABC的中位线∴BC=2OD∵222OA OD AD=+∴222(4)(22)x x-=+,解得1x=∴BC=2OD=2x=2故选:C9.如图,⊙O在△ABC三边上截得的弦长相等,即DE=FG=MN,∠A=50°,则∠BOC=()A.100°B.110°C.115°D.120°【答案】C【分析】过点O 作OP ⊥AB 于点P ,OQ ⊥AC 于点Q ,OK ⊥BC 于点K ,由于DE =FG =MN ,所以弦的弦心距也相等,所以OB 、OC 是角平分线,根据∠A =50°,先求出180130ABC ACB A ∠+∠=︒-∠=︒,再求出,进而可求出∠BOC .【解析】解:过点O 作OP ⊥AB 于点P ,OQ ⊥AC 于点Q ,OK ⊥BC 于点K ,∵DE =FG =MN ,∴OP =OK =OQ ,∴OB 、OC 平分∠ABC 和∠ACB , 12OBC ABC ∴∠=∠,12OCB ACB ∠=∠, ∵∠A =50°,∴180130ABC ACB A ∠+∠=︒-∠=︒,∴1122OBC OCB ABC ACB ∠+∠=∠+∠ ()12ABC ACB =∠+∠ 65=︒,∴∠BOC =()180OBC OCB ︒-∠+∠18065=-︒115=︒故选:C .10.如图,在半径为5的A 中,弦BC ,DE 所对的圆心角分别是BAC ∠,DAE ∠.若6DE =,180BAC DAE ∠+∠=︒,则弦BC 的弦心距为( ).A41B 34C.4 D.3【答案】D【分析】作AH⊥BC于H,作直径CF,连接BF,先利用等角的补角相等得到∠DAE=∠BAF,再利用圆心角、弧、弦的关系得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,则AH为△CBF的中位线,然后根据三角形中位线性质得到AH=12BF=3.【解析】作AH⊥BC于H,作直径CF,连接BF,如图,∵∠BAC+∠EAD=180°,而∠BAC+∠BAF=180°,∴∠DAE=∠BAF,∴DE BF=,∴DE=BF=6,∵AH⊥BC,∴CH=BH,而CA=AF,∴AH为△CBF的中位线,∴AH=12BF=3,故选:D.二、填空题11.在⊙O中,弦AB=16cm,弦心距OC=6cm,那么该圆的半径为__cm.【答案】10【分析】根据题意画出相应的图形,由OC垂直于AB,利用垂径定理得到C为AB别的中点,由AB的长求出BC的长,再由弦心距OC的长,利用勾股定理求出OB的长,即为圆的半径.【解析】解:如图所示:过点O作OC AB⊥于点C,∵AB=16cm,OC⊥AB,∴BC=AC12=AB=8cm,6OC cm=,在Rt△BOC中,2210.OB OC BC cm∴=+故答案为:10.12.如图,AB为⊙O的弦,半径OC⊥AB于E,AB=8,CE=2,则⊙O的半径为_____.【答案】5【分析】如图,连接OA,设OA=r.在Rt△AOE中,根据OA2=OE2+AE2,构建方程即可解决问题;【解析】解:如图,连接OA,设OA=r.∵OC⊥AB,∴AE=EB=4,∠AEO=90°,在Rt△AOE中,∵OA2=OE2+AE2,∴r2=42+(r﹣2)2,∴r=5,故答案为:5.13.已知⊙O的半径为6cm,弦AB=6cm,则弦AB所对的圆心角是________度.【答案】60【分析】连接OA、OB,可证得△OAB是等边三角形,由此得解.【解析】如图,连接OA、OB,∵OA=OB=AB=6,∴△OAB是等边三角形∴∠AOB=60°故弦AB所对的圆心角的度数为60°.故答案为:60.14.如图,在O中,AB BC CD==,连接AC,CD,则AC__2CD(填“>”,“ <”或“=” ).【答案】<【分析】根据AB BC CD==推出AB=BC=CD,利用三角形三边关系得到答案【解析】解:∵AB BC CD==,AB BC CD∴==,<+,AC AB BCAC CD∴<,2故答案为:<.∠的度数为______.15.如图,AB,CD是O的直径,弦CE AB,CE所对的圆心角为40°,则AOC【答案】70°【分析】连接OE,由弧CE的所对的圆心角度数为40°,得到∠COE=40°,根据等腰三角形的性质和三角形的内角和定理可求出∠OCE ,根据平行线的性质即可得到∠AOC 的度数.【解析】解:连接OE ,如图,∵弧CE 所对的圆心角度数为40°,∴∠COE =40°,∵OC =OE ,∴∠OCE =∠OEC ,∴∠OCE =(180°-40°)÷2=70°,∵CE //AB ,∴∠AOC =∠OCE =70°,故答案为:70°.16.如图,A 、B 、C 、D 为⊙O 上的点,且 AB BC CD ==.若∠COD =40°,则∠ADO =______度.【答案】30【分析】先根据圆心角定理可得40AOB BOC COD ∠=∠=∠=︒,从而可得120AOD ∠=︒,再根据等腰三角形的性质即可得.【解析】解:∵AB BC CD ==,40COD ∠=︒,∴40AOB BOC COD ∠=∠=∠=︒,∴120AOD ∠=︒, 又OA OD =,∴1(180)302ADO OAD AOD ∠=∠=︒-∠=︒, 故答案为:30.三、解答题17.如图,O 的弦AB 、CD 相交于点E ,且AB CD =.求证:BE DE =.【答案】详见解析【分析】由弧、弦、圆心角的关系进行证明,结合等角对等边,即可得到结论成立.【解析】证明:AB CD=,CAB D∴=,AB AC CD AC∴-=-,即AD BC=,B D∴∠=∠,BE DE∴=;18.如图,在⊙O中,直径AB=10,弦AC=8,连接BC.(1)尺规作图:作半径OD交AC于E,使得点E为AC中点;(2)连接AD,求三角形OAD的面积.【答案】(1)见解析;(2)10【分析】(1)过点O作OD⊥AC,交AC于点E,交⊙O于点D;(2)由题意可得OD=5,由(1)得:OE⊥AC,点E为AC中点,继而可得118422AE AC==⨯=,然后根据三角形的面积公式即可求得答案.【解析】(1)解:如图,点E即为所求;(2)解:如图,连接AD,∵⊙O的直径是10,∴OD=5,由(1)得:OE⊥AC,点E为AC中点,∴118422AE AC==⨯=,∴11541022OADS OD AE=⋅=⨯⨯=.19.如图,已知AB是O的直径,P是AO上一点,点C、D在直径两侧的圆周上,若PB平分CPD∠,求证:劣弧BC与劣弧BD相等.【答案】见详解【分析】过点O分别作OE⊥PC,OF⊥PD,垂足分别为E、F,连接OC、OD,由题意易得OE=OF,然后可得BOC BOD∠=∠,进而问题可求证.【解析】证明:过点O分别作OE⊥PC,OF⊥PD,垂足分别为E、F,连接OC、OD,如图所示:∵PB 平分CPD ∠,∴OE =OF ,∵OC =OD ,∴EOC FOD △≌△(HL ),∴C D ∠=∠,∴BOC BOD ∠=∠,∴BC BD =.20.如图,已知弓形的弦长AB =8,弓高CD =2(CD ⊥AB 并经过圆心O ).求弓形所在⊙O 的半径r 的长.【答案】r =5.【分析】先由垂径定理得AD =4,由于OD =r -2,则利用勾股定理得到62+(r -2)2=r 2,然后解方程即可.【解析】CD AB ⊥并经过圆心O ,∴118422AD BD AB ===⨯=,2OD OC CD r =-=-, 在Rt △OAD 中,2224(2)r r +-=,解得r =5.21.如图,正方形ABCD 内接于⊙O , AM DM =,求证:BM =CM .【答案】见解析【分析】根据圆心距、弦、弧之间的关系定理解答即可.【解析】证明:∵四边形ABCD是正方形,∴AB=CD,∴AB CD=,∵AM DM=,∴AB AM CD DM+=+,即BM CM=,∴BM=CM.22.如图,AB为圆O的直径,点C在圆O上.∥(不写作法,只保留作图痕迹);(1)尺规作图:在BC上求作一点E,使OE AC(2)探究OE与AC的数量关系.【答案】(1)见解析;(2)AC=2OE【分析】(1)过点O作OE⊥BC即可.(2)利用三角形中位线定理证明即可.【解析】(1)如图所示,点E即为所求的点.(2)结论:AC=2OE.理由:由作图得:OE⊥BC∴BE=CE,即点E为BC的中点,∴OE为△ABC的中位线,∴AC=2OC.23.如图,在⊙O中,AB、AC是互相垂直且相等的两条弦,OD⊥AB,OE⊥AC,垂足分别为D、E.(1)求证:四边形ADOE是正方形;(2)若AC=2cm,求⊙O的半径.【答案】(1)见解析;2cm【分析】(1)根据AC ⊥AB ,OD ⊥AB ,OE ⊥AC ,可得四边形ADOE 是矩形,由垂径定理可得AD=AE ,根据邻边相等的矩形是正方形可证;(2)连接OA ,由勾股定理可得.【解析】(1)证明:∵AC ⊥AB ,OD ⊥AB ,OE ⊥AC ,∴四边形ADOE 是矩形,12AD AB =,12AE AC =, 又∵AB=AC ,∴AD=AE ,∴四边形ADOE 是正方形.(2)解:如图,连接OA ,∵四边形ADOE 是正方形,∴112OE AE AC ===cm , 在Rt △OAE 中,由勾股定理可得:22+2OA OE AE , 即⊙O 2cm .24.如图,在扇形AOB 中,90AOB ∠=︒,C 、D 是AB 上两点,过点D 作DE OC ∥交OB 于E 点,在OD 上取点F ,使OF DE =,连接CF 并延长交OB 于G 点.(1)求证:OCF DOE ≌△△; (2)若C 、D 是AB 的三等分点,23=OA①求OGC ∠; ②请比较GE 和BE 的大小.【答案】(1)证明见解析(2)①∠OGC=90°;②BE>GE【分析】(1)先由平行线得出∠COD=∠ODE,再用SAS证△OCF≌△DOE即可;(2)①先由C、D是AB的三等分点,∠AOB=90°,求得∠AOC=∠COD=∠BOD=30°,由(1)知△OCF≌△DOE,所以∠OCF=∠DOE=30°,即可由三角形内角和求解;②由①∠OGC=90°,∠OCF=∠DOE=30°,利用直角三角形的性质和勾股定理即可求得3OG OF=2,又∠OCF=∠COF=30°,所以CF=OF,又由△OCF≌△DOE,所以OE=CF=OF=2,即可求得23GE= 232BE=,再比较即可得出结论;=OC,【解析】(1)解:∵DE AB2AC∴∠COD=∠ODE,∵OC=OD,OF=DE,∴△OCF≌△DOE(SAS);(2)解:①∵C、D是AB的三等分点,∠AOB=90°,∴∠AOC=∠COD=∠BOD=30°,∵△OCF≌△DOE,∴∠OCF=∠DOE=30°,∵∠COG=∠COD+∠DOB=60°,∴∠OGC=90°.②∵23===,OA OC OB∴3OG又∵∠DOE=30°,∴OF=2,∵∠OCF=∠COF=30°,∴CF=OF,∵△OCF≌△DOE,∴OE=CF=OF=2,∴23GE OE OG=-=232=-=,BE OB OE∵3340-,BE GE=>∴BE>GE.。
北师大版九年级数学下册:3.2《圆的对称性》教案
北师大版九年级数学下册:3.2《圆的对称性》教案一. 教材分析北师大版九年级数学下册3.2《圆的对称性》是一节概念性较强的课程。
本节课主要让学生了解圆的对称性,掌握圆是轴对称图形,以及圆有无数条对称轴等特点。
通过学习,使学生能运用圆的对称性解决一些实际问题。
二. 学情分析九年级的学生已经掌握了八年级数学中关于对称轴、对称图形等基本知识,他们对轴对称图形有了一定的认识。
但圆的对称性较为抽象,学生需要通过实例来更好地理解和掌握。
三. 教学目标1.知识与技能:让学生理解圆的对称性,掌握圆是轴对称图形,以及圆有无数条对称轴等特点。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:圆的对称性,圆是轴对称图形,圆有无数条对称轴。
2.难点:理解圆的对称性与轴对称图形的关系。
五. 教学方法1.情境教学法:通过实例和问题情境,引发学生的思考和探索。
2.引导发现法:教师引导学生发现圆的对称性,培养学生独立思考的能力。
3.合作交流法:学生在小组内进行讨论和交流,分享学习心得和解决问题的方法。
六. 教学准备1.教具准备:多媒体课件、圆规、直尺、练习题等。
2.教学环境:教室布置成有利于学生思考和交流的环境。
七. 教学过程1.导入(5分钟)教师通过展示生活中的圆对称现象,如圆形的钱币、圆桌、圆形的图案等,引导学生关注圆的对称性。
提问:这些圆形的物品有什么共同特点?学生回答后,教师总结:圆的对称性。
2.呈现(10分钟)教师利用多媒体课件展示圆的对称性,让学生观察和思考。
呈现圆的轴对称图形,引导学生发现圆有无数条对称轴。
同时,让学生尝试画出圆的对称轴,并观察圆的对称轴的特点。
3.操练(10分钟)教师提出问题:如何判断一个图形是否是圆的对称图形?让学生在小组内进行讨论和交流,总结出判断方法。
北师大版数学九年级下册3.2《圆的对称性》教案
北师大版数学九年级下册3.2《圆的对称性》教案一. 教材分析北师大版数学九年级下册3.2《圆的对称性》是本册教材中的重要内容,主要让学生了解圆的对称性质,掌握圆的对称性的应用。
本节课的内容对于学生来说比较抽象,但与生活实际息息相关,有利于激发学生的学习兴趣,培养学生的抽象思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念,如圆的半径、直径等,并了解了一些基本的平面几何知识。
但是,对于圆的对称性的理解和应用,还需要进一步的引导和培养。
因此,在教学过程中,要注重启发学生思考,引导学生发现圆的对称性,并学会运用圆的对称性解决实际问题。
三. 教学目标1.知识与技能:让学生理解圆的对称性质,学会运用圆的对称性解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的抽象思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和克服困难的决心。
四. 教学重难点1.重点:圆的对称性质的理解和应用。
2.难点:圆的对称性质在实际问题中的灵活运用。
五. 教学方法采用问题驱动法、合作学习法、案例教学法等,充分调动学生的积极性,引导学生主动探究,合作交流,提高学生的抽象思维能力和解决问题的能力。
六. 教学准备1.教具:黑板、粉笔、多媒体教学设备等。
2.学具:学生每人一本教材,一份练习题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的圆对称现象,如圆形的挂钟、圆形的脸谱等,引导学生发现圆的对称性质,激发学生的学习兴趣。
2.呈现(10分钟)教师通过讲解和演示,向学生介绍圆的对称性质,如圆的任何一条直径所在的直线都是圆的对称轴,圆的任何一点关于圆心都有对称点等。
同时,引导学生发现圆的对称性质与生活的密切关系。
3.操练(10分钟)学生分组讨论,每组设计一个具有圆对称性质的图案,并利用圆规和直尺进行绘制。
通过实践活动,加深学生对圆的对称性质的理解。
《2.2圆的对称性》作业设计方案-初中数学苏科版12九年级上册
《圆的对称性》作业设计方案(第一课时)一、作业目标本作业设计旨在通过《圆的对称性》的学习,使学生掌握圆的基本性质和对称性特点,能够运用所学知识解决实际问题,并培养学生的逻辑思维能力和空间想象能力。
二、作业内容1. 基础知识巩固(1)复习圆的基本概念,如圆心、半径、直径等。
(2)掌握圆的对称性质,包括对称轴和对称点等。
(3)理解并掌握圆的基本公式,如周长和面积的计算。
2. 技能训练(1)通过绘制圆形图案,观察并分析其对称性特点。
(2)通过实例练习,让学生应用圆的对称性知识解决实际问题。
(3)掌握使用尺规作图法作图技巧,在草稿纸上尝试完成作图。
3. 综合运用(1)以圆为基础元素设计几何图案,探讨图案中包含的数学关系。
(2)小组合作完成一份小课题报告,如“生活中的圆及其对称性应用”等。
三、作业要求1. 学生在完成作业过程中需认真思考、仔细分析,并确保答案的准确性。
2. 作业中涉及到的公式和计算过程需详细写出,不能出现大量省略步骤的情况。
3. 绘画和作图需使用尺规工具,保持图形的准确性和美观性。
4. 小组作业需确保每位成员都参与讨论和编写,最终由小组长汇总并提交完整的报告。
5. 作业需按时提交,不得拖延或提前完成。
四、作业评价1. 教师将根据学生的完成情况、答案的准确性和解题思路的清晰度进行评价。
2. 对于基础知识的掌握情况,教师将通过学生的答题过程和结果进行评估。
3. 对于技能训练部分,教师将关注学生的作图技巧和实际问题的解决能力。
4. 综合运用部分的评价将注重学生的创新思维和合作能力。
五、作业反馈1. 教师将对学生的作业进行批改,并及时反馈给学生,指出存在的问题和不足。
2. 对于学生的疑问和困惑,教师将提供指导和帮助,确保学生能够理解并改正错误。
3. 教师将根据学生的作业情况,调整教学进度和教学方法,以提高教学效果。
4. 对于表现优秀的学生,教师将给予表扬和鼓励,激发学生的学性和动力。
作业设计方案(第二课时)一、作业目标本作业设计旨在巩固学生在《圆的对称性》这一课中所学的知识,通过实际操作和思考,加深学生对圆的基本性质、对称性的理解,并能够灵活运用这些知识解决实际问题。
2 圆的对称性 第1课时
A′ B B′ B′
A′ B
O
·
A
O
·
A
A B 与 A ' B ' 重合,AB与A′B′重合. 因此
所以 AB A ' B ',
A B A ' B '.
【归纳】
定理:在同圆或等圆中,相等的圆心角所对的
弧相等,所对的弦相等. A B A′
●
A
O
B B′
可推出
●
O
A′
●
O′
由条件: ①∠AOB=∠A′OB′
●
B
C
(2、3题图)
归纳:在圆中有长度不等的弦,直径是圆中最长的弦.
ABBC, AC 4.如图,弧有:______________ ACB BAC ABC
A B O
●
⌒ 劣弧有: AB
⌒ BC
⌒ 优弧有: ACB
BAC
⌒
你知道优弧与劣弧的区别么?
C )
5.判断:半圆是弧,但弧不一定是半圆.(
通过本课时的学习,需要我们掌握: 1.了解圆的轴对称性和中心对称性; 2.理解弦,直径,弧,半圆,优弧,劣弧,半圆,等圆, 等弧等与圆有关的概念; 3.掌握同圆或等圆中,两条弦、两条弧,两个圆心角, 两条弦心距之间的关系.
1.判断下列说法的正误:
(1)弦是直径.(
(2)半圆是弧.(
)
) ) ) ) ) )
②AB=A′B′
⌒
⌒
B′
③AB=A′B′
同样,我们可以得到: 在同圆或等圆中,如果两条弧相等,那么它 们所对的圆心角相等,所对的弦也相等.
在同圆或等圆中,如果两条弦相等,那么它
2.2《圆的对称性》.2《圆的对称性》教学设计
三数第二章 2.2 圆的对称性第一课时镇江市京口中学丁息珍 212000【教材简解】本节内容是学生在小学学过的一些圆的知识以及学习本册教材第五章第一节圆的有关概念的基础上,进一步探索和圆有关的性质。
本节课教学是研究圆的旋转不变性出发,探究圆心角、弧、弦之间的关系,在探究过程中通过师生动手操作、折叠、旋转圆的图片,引导学生的观察、探索、发现图形的特征,总结规律,建立新知。
同时也为进行圆的计算和作图提供了方法和依据。
所以这节内容是本章的重点也是全章的基础,更是学好本章的关键。
【目标预设】1、经历探索圆的中心对称性、旋转不变性及有关性质的过程。
2、理解圆心角、弧、弦之间相等关系定理。
3、能运用所学知识进行证明相关问题,会用所学知识对图形、数量条件进转化。
4、通过学生动手实践、合作交流、互助学习,培养学生自主探索寻找规律得出结论的学习意识。
【重点和难点】教学重点:理解圆的中心对称性及有关性质教学难点:运用圆心角、弧、弦之间的关系解决有关问题。
【设计理念】本节课的设计完全采取学生小组合作探究的方式进行。
《课标》要求学生“做数学”,在做的活动中通过小组合作的方式,尝试与他们交流中获益,并学会尊重他人的看法,在数学活动中感受他人的思维方式和思维过程,以改进自己在认知方面的单一性,促进每一个学生的发展。
充分体现学生的课堂参与性与教师的指导性。
【设计思路】利用课件创设活动让学生亲身参与,由此来引导学生对问题的思考,并逐步掌握解决问题的关键。
本课的设计内容分为以下几个部分:1、创设情境,导入新课2、合作交流,解读探究3、尝试应用,巩固提高4、巩固练习5、小结,教师质疑6、布置作业【教学过程】一、情境创设什么是中心对称图形?圆是中心对称图形吗?结论:圆是________________图形,_______是它的对称中心。
设计意图:问题提出后,有些同学在列举时会举出圆是中心对称图形,但是对于圆具有旋转不性缺乏感性认识。
北师大版数学九年级下册3.2《圆的对称性》说课稿
北师大版数学九年级下册3.2《圆的对称性》说课稿一. 教材分析《圆的对称性》这一节的内容是北师大版数学九年级下册第三章第二节的内容。
本节课的主要内容是让学生了解圆的对称性,包括圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线,以及圆的对称性在实际问题中的应用。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对轴对称图形和中心对称图形有了初步的认识。
但是,对于圆的对称性的理解还需要进一步的引导和培养。
因此,在教学过程中,我将会以学生的已有知识为基础,通过实例和问题,引导学生深入理解圆的对称性。
三. 说教学目标1.知识与技能:学生能够理解圆的对称性,知道圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线。
2.过程与方法:通过观察、思考、交流等活动,学生能够发现圆的对称性,并能够运用圆的对称性解决实际问题。
3.情感态度与价值观:学生能够培养对数学的兴趣,提高对几何图形的审美能力。
四. 说教学重难点1.教学重点:学生能够理解圆的对称性,知道圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线。
2.教学难点:学生能够发现圆的对称性,并能够运用圆的对称性解决实际问题。
五. 说教学方法与手段在本节课的教学过程中,我将采用问题驱动法和实例教学法。
通过提出问题,引导学生思考和探索,从而发现圆的对称性。
同时,我会利用多媒体教学手段,展示相关的几何图形和实例,帮助学生更好地理解和掌握圆的对称性。
六. 说教学过程1.导入:通过提出问题,引导学生思考和探索圆的对称性。
2.新课导入:介绍圆的对称性,让学生了解圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线。
3.实例讲解:通过展示相关的实例,让学生深入理解圆的对称性。
4.练习与讨论:让学生进行相关的练习,并通过讨论交流,巩固对圆的对称性的理解。
5.总结与拓展:总结本节课的主要内容,并进行拓展,引导学生思考圆的对称性在实际问题中的应用。
15-第三章2圆的对称性
︵
︵
∠BOD=∠COD,∴BD =CD .∵OB=OC,∴△BOC是等腰三角形.又∵OA平
分∠BOC,∴OA⊥BC,即AD⊥BC.故①②③④均正确,因而选D. 答案 D
2 圆的对称性
栏目索引
题型一 运用圆心角、弧、弦之间的关系求角的度数
例1
(2019四川内江资中一模)如图3-2-2,AB,CD是☉O的直径,
(2)PE=PF.
证明 (1)如图,连接PO,
︵
︵
∵ PA=PB ,∴∠POC=∠POD.
∵C,D分别是半径OA,OB的中点,∴OC=OD.
又∵PO=PO,∴△PCO≌△PDO,∴PC=PD.
∴∠AEC=∠AOC+∠OAB=75°,
∴∠ACE=∠AEC,∴AE=AC,∴AE=CD.
2 圆的对称性
栏目索引
4.如图3-2-7,已知AB,CD是☉O的直径,DF∥AB交☉O于点F,BE∥DC交☉O
于点E.
(1)求证:BE=DF;
(2)写出图中4组不同的且相等的劣弧(不要求证明).
图3-2-7
解析 (1)证明:连接OE,OF.
圆是以圆心为对称中心的中心对称图形,实际上,一个圆绕着它的圆心旋转任意一个角度,都 能与原来的图形重合,这种性质称为旋转不变性.圆的中心对称性是其旋转不变性的一个特 例
2 圆的对称性
例1 下列说法正确的是 ( ) A.每一条直径都是圆的对称轴 B.圆的对称轴是唯一的 C.圆的对称轴一定经过圆心 D.圆的对称轴与对称中心重合
证明 如图,连接AG.
∵AB=AG,∴∠AGB=∠B.
∵四边形ABCD为平行四边形,
∴AD∥BC.
∴∠EAD=∠B,∠FAG=∠AGB,
九年级数学北师大版初三下册--第三单元3.2《圆的对称性》课件
归纳
知2-导
1.在同圆或等圆中,相等的圆心角所对的弧相等,所对 的弦相等.
2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦 中有一组量相等,那么它们所对应的其余各组量都分 别相等.
(来自教材)
知2-讲
例2 下列命题中,正确的是( C ) ①顶点在圆心的角是圆心角;
形、圆、等腰三角形,这些图形中只是轴对称图
形的有( A )
A.1个
B.2个
C.3个
D.4个
知1-练
4 【2017·黄石】下列图形中既是轴对称图形,又是 中心对称图形的是( D )
知2-导
知识点 2 圆心角与所对的弧、弦之间的关系
在同圆或等圆中,如果两个圆心角所对的弧相等,那 么它们所对的弦相等 吗?这两个圆心角相等吗?你是怎 么想的?
②相等的圆心角所对的弧也相等;
③在等圆中,圆心角不等,所对的弦也不等.
A.①和②
B.②和③
C.①和③
D.①②③
知2-讲
导引:①根据圆心角的定义知,顶点在圆心的角是圆心角, 故正确;②缺少条件,必须是在同圆或等圆中,相等 的圆心角所对的弧才相等,故错误;③根据弧、弦、 圆心角之间的关系定理,可知在等圆中,若圆心角相 等,则所对的弦相等,若圆心角不等,则所对的弦也 不等,故正确.
总结
知2-讲
本题考查了对弧、弦、圆心角之间的关系的理解,对于 圆中的一些易混易错结论应结合图形来解答.特别要注 意:看是否有“在同圆或等圆中”这个前提条件.
知2-练
1 下面四个图形中的角,是圆心角的是( D )
知2-练
2 如图,AB为⊙O的弦,∠A=40°,则A︵B所对的 圆心角等于( C ) A.40° B.80° C.100° D.120°
圆的对称性2
已知 AB = CD 你能得到什么结论?
(可以添加线段)
.A .B
... O
..ห้องสมุดไป่ตู้
CD
(1)线段AB=5cm,CD=5cm,两条线段相等吗? (2)AB的长为5cm,CD的长为5cm,两条弧相 等吗? (3)“弧相等”指什么相等?
(1)弧的弯曲程度可以用度数来刻画,那 么弧的度数是怎么定义的呢?什么是1度的 弧? (2)10 的弧所对的圆心角的的度数是多少? 反过来呢? (3)700的弧所对的圆心角的度数是 多少? (4)n0的弧所对的圆心角的度数是多 少?
1. 如图4-15,在⊙O中,已知弦AB所对的劣弧
为圆的
1 3
,⊙O的半径为R,求弦AB的长。
...O
A
B
已知⊙O的半径为R,弦AB长为 R, 试求弧AB的度数。
2. 如图4-16,已知AB,CD为 ⊙O的两条直径, 弦CE∥AB,∠BOD=1100,求弧CE的度数。
D A
E
O
B C
(1)了解了10的弧的意义;
(2)知道了圆心角的度数与它所 对弧的度数相等的关系。
大演草:习题5.3第1,2,3(画图)
27.1.2圆的对称性
圆心角、弧、弦之间的关系定理
• 在同圆 或等圆 中,相等的圆心角所对的弧相等,所对
的弦相等.
上由面条这件句: 话如没有“在同圆或
等①圆∠中AO”B=的∠条A′件O,′这B′个结论还
不会一可成定推立.出举吗出?反例②:⌒AB=A⌒′B′B D
如图,∠AOB=∠C③ODA,B=AO′B′
但AB CD,⌒AB ⌒CD.
点,试确定四边形OACB的形状.
C
B
解:四边形OACB是菱形.
理由是:连接OC,则有OA=OB=OC. A
O
∵C是AB的中点,∴AC=BC.
又∵∠AOB=120°, ∴∠AOC=∠BOC=60°,
∴△AOC与△BOC都是等边三角形.
∴OA=OB=AC=BC.∴四边形OACB是菱形.
3.判断下列说法是否正确:
2.圆是中心对称图形,其对称中心是圆心.
3.在同圆或等圆中,如果①两个圆心角,②两条弧, ③两条弦,④两条弦心距中,有一组量相等,那么 它们所对应的其余各组量都分别相等.
6.大(用于两半个圆字的母弧表叫示做)优. 弧,如图记作:A⌒DB
(用三个字母表示).
圆的对称性
平行四边形绕对角线交点O旋转
O
180度后与原来的平行四边形重合.
所以平行四边形是中心对称图形. O是旋转中心.
O
●
问题:
圆是中心对称图形吗?对称中心在哪里?
圆是中心对称图形,对称中心为圆心.
在两张透明的纸上,分别作半径相等的⊙O和
AC
A
(O′)
B
●O
A′
B′
拓展与深化
在同圆或等圆中,如果轮换下面各组条件:
①两个圆心角,②两条弧,③两条弦, 你能得出什么 结论?与同伴交流你的想法和理由.
圆的对称知识点总结
圆的对称知识点总结一、基本概念圆是平面上所有点到一个固定点的距离都相等的集合。
这个固定点叫做圆心,相等的距离叫做半径。
圆通常用一个大写字母表示圆心,用一个小写字母r表示半径。
二、对称性圆具有很强的对称性,主要表现在以下几个方面:1. 中心对称:圆的中心是对称轴,圆上的每一个点关于圆心都有对称点。
2. 旋转对称:以圆心为中心,任意角度旋转圆都不变。
3. 轴对称:圆上的任意一条直径都是圆的轴对称线,即圆上的任意一点与圆心连线的垂直平分线。
三、对称性的运用圆的对称性在数学、几何学和物理学等领域都有着广泛的应用。
在几何学中,圆的对称性在解题过程中经常发挥重要作用,可以帮助我们简化问题、找到解题的突破口。
在建筑设计和艺术创作中,圆的对称性也常被运用,可以创造出和谐美观的作品。
四、圆的对称性性质圆的对称性具有以下性质:1. 对称轴上的任意两点的对称点也在对称轴上。
2. 对称轴上的点到对称轴的距离相等。
3. 对称变换保持了图形的大小和形状不变。
五、圆的对称性的应用圆的对称性在日常生活中也有着广泛的应用。
如镜子、会旋转的木马等等都具有对称性,因此在制作这些用具时,需要考虑图形的对称性,这样会使产品更加美观,使用起来也更加安全。
六、圆的对称图形圆拥有非常丰富的对称图形,例如:1. 圆形2. 半圆形3. 扇形4. 弧形5. 弦形这些对称图形在实际生活中都有着广泛的应用,如构造街道的拱门、钟表的表盘等。
七、圆的对称性的研究圆的对称性不仅仅在几何学中有重要的应用,在现代数学中也有着广泛的研究。
在拓扑学中,圆是一个最基本的几何图形,对称性是研究圆的基本属性的重要内容之一。
在几何结构、代数结构等领域中,圆的对称性也有着深入的研究和运用。
八、总结圆是一个非常特殊的几何图形,具有很强的对称性,对称性在数学、几何学和现实生活中都有着广泛的应用。
圆的对称性性质以及对称图形的研究都是数学领域的重要内容,对于学生来说,深入理解圆的对称性有助于提高他们的数学素养和数学思维能力。
九上数学课件 圆的对称性(课件)
则AC与AE的大小关
系是 AC=AE .
C
D B
O
2.如图,在△ABC中,
∠C=90°,∠A=25°,以点C
为圆心,BC为半径的圆交
AB于点D,交AC于点E,
则弧BD度数5为0°
.
B D
C
EA
能力提升: 我们已经知道在⊙O中,如果2∠AOB=∠COD,则 C⌒D=2A⌒B,那么CD=2AB也成立吗?若成立,请说明 理由;若不成立,那它们之间的关系又是什么?
B D OC A
知 一 推 三
1.判断题 (1)等弦所对的弧相等.
(× )
(2)等弧所对的弦相等.
(√ )
(3)圆心角相等,所对的弦相等. ( × )
2.弦长等于半径的弦所对的 圆心角等于 60 ° .
弧、弦与圆心角关系定理的推论
在同圆或等圆中,如果 两个圆心角、两条弧、两条 弦中有一组量相等,那么它 们所对应的其余各组量都分 别相等.
( ( ( (
( (
填一填: 如图,AB、CD是⊙O的两条弦.
(1)如果AB=CD,那么_A_B_=__C_D___,∠__A_O_B__=_∠__C_O_D_. (2)如果AB=CD ,那么_A_B__=_C_D___,∠_A_O__B_=_∠__C_O__D__.
(3)如果∠AOB=∠COD,那么__A__B_=__C_D___,A__B_=_C__D___.
2AB>CD
AB C
O
E
D
如图,已知⊙O与△ABC三
A
边均相交,在三边上截得的
D
H
线段DE=FG=HK,∠A= 50°,则∠BOC的度数
N
Q
O E
圆的认识(二)知识点总结
圆的认识(二)知识点总结一、圆的对称性。
1. 轴对称性。
- 圆是轴对称图形,其对称轴是任意一条经过圆心的直线。
圆有无数条对称轴。
- 例如,我们可以将一个圆形纸片沿着任意一条通过圆心的直线对折,对折后的两部分都能完全重合,这就体现了圆的轴对称性。
2. 中心对称性。
- 圆也是中心对称图形,对称中心为圆心。
- 把一个圆绕着圆心旋转任意一个角度后,都能与原来的图形重合。
在圆形的转盘游戏中,转盘绕着圆心旋转后,其位置虽然改变了,但形状和大小不变,这就是圆的中心对称性的体现。
二、弧、弦、圆心角的关系。
1. 定义。
- 圆心角:顶点在圆心的角叫做圆心角。
例如在圆O中,∠ AOB的顶点O 是圆心,所以∠ AOB是圆心角。
- 弧:圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A、B为端点的弧记作overset{frown}{AB}。
- 弦:连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径,直径是圆内最长的弦。
例如在圆O中,线段AB是弦,若AB经过圆心O,则AB是直径。
2. 关系定理。
- 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
- 例如,在圆O中,如果∠ AOB=∠ COD,那么overset{frown}{AB}=overset{frown}{CD},AB = CD。
3. 推论。
- 在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。
- 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。
三、圆周角。
1. 定义。
- 顶点在圆上,并且两边都与圆相交的角叫做圆周角。
例如在圆O中,∠ACB的顶点C在圆上,且AC、BC都与圆相交,所以∠ ACB是圆周角。
2. 圆周角定理。
- 一条弧所对的圆周角等于它所对的圆心角的一半。
- 例如,在圆O中,弧overset{frown}{AB}所对的圆周角∠ ACB和圆心角∠ AOB,则∠ ACB=(1)/(2)∠ AOB。