高一数学第一章集合与函数检测题(二)
高一数学试题-湘教版高中数学(必修1)单元测试-第一章集合与函数 最新
数学:第一章《集合与函数》单元测试(湘教版必修1)一、选择题(本大题共10个小题;每小题3分,共30分)在每小题给出的四个结论中,只有一项是符合题目要求的,把正确结论的代号填入本大题后的答题表内. 1.已知全集U R =,集合{|212}M x x =-≤-≤和{|21,1,2,}N x x k k ==-=的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有 ( )A .3个B .2个C .1个D .无穷多个2.函数0)y x =≤的反函数是( )A .2(0)y x x =≥B .2(0)y x x =-≥C .2(0)y x x =≤D .2(0)y x x =-≤ 3.|x | < 2是|x | < 1的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件4.已知函数()224,0,4,0.x x x f x x x x ⎧+≥=⎨-<⎩ 若()()22f a f a ->,则实数a 的取值范围是( )A .()(),12,-∞-+∞B .()1,2-C .()2,1-D .()(),21,-∞-+∞5.函数)(x f 在区间(-2,3)上是增函数,则)5(+=x f y 的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5)6.函数)(x f y =的定义域为[1,4],则函数)(x f y =的定义域是 ( )A .[1,2]B .[-2,2]C .]1,2][]2,1[--D .[1,16]7.已知复合命题“p 且q ”为假命题,则可以肯定的是( )A .p 为假命题B .q 为假命题C .p 、q 中至少有一个为假命D .p 、q 均为假命题 8.已知y n xm x y x y x a a a log ,11log ,)1(log ,0,0,122则且=-=+>>=+等于( )A .)(21n m + B .)(21n m - C .m + nD .m -n9.若不等式6|2|<+ax 的解集为(-1,2),则实数a 等于 ( )A .8B .2C .-4D .-810.已知B A Z x x N x B x N x A 则,},1|{},5|{∈>∈=≤∈=等于 ( )A .{1,2,3,4,5}B .{2,3,4}C .{2,3,4,5,}D .}51|{≤<∈x R x二、填空题(本大题共5个小题;每小题4分,共20分)把答案填在题中横线上.11.命题“若m > 0,则关于x 的方程x 2+ x -m = 0有实数根”的否命题是 . 12.函数29124)(x x x f -+-=的定义域为 .13.若函数=-⎪⎩⎪⎨⎧<=>+=)))9200(((,)0(0)0()0(1)(2f f f x x x x x f 则π . 14.已知函数)1(,12)(2++=x f x x f 则函数的值域为 .15.对于任意定义在R 上的函数)(x f ,若实数x 0满足00)(x x f =,则称x 0是函数f (x )的一个不动点.若二次函数1)(2+-=ax x x f 没有不动点,则实数a 的取值范围是 .三、解答题(本大题共5小题,共50分)解答应写出文字说明、演算步骤或证明过程. 16.(本小题满分8分) 试用定义判断函数),1(12)(+∞-=在区间x xx f 上的单调性. 17.(本小题满分10分) 比较2122255++xx 与的大小.18.(本小题满分10分)已知边长为1的正方形ABCD (如图),P 是对角线BD 上的点,连结AP 延长AP 交BC 或其延长线于Q ,设DP = x ,y 为△ADP 和△BPQ 的面积之和.写出y 关于x 的函数关系式.19.(本大题满分10分)已知二次函数x x f f bx ax x f ==+=)(,0)2()(2且方程满足有等根.(1)求f (x )的解析式;(2)求f (x )的值域;(3)是否存在实数m 、n(m<n),使f (x )的定义域和值域分别为[m ,n]和[4m ,4n].若存在,求出m 、n 的值;若不存在,请说明理由.20.(本大题满分12分)已知集合{})2(,,,,321≥=k a a a a A k 其中),,2,1(k i Z a i =∈,由A 中的元素构成两个相应的集合(){}A b a A b A a b a S ∈+∈∈=,,,,(){}A b a A b A a b a T ∈-∈∈=,,,,其中()b a ,是有序实数对,集合T S 和的元素个数分别为n m ,.若对于任意的A a A a ∉-∈,总有,则称集合A 具有性质P .(Ⅰ)检验集合{}3,2,1,0与{}3,2,1-是否具有性质P ,并对其中具有性质P 的集合写出 相应的集合T S 和; (Ⅱ)对任何具有性质P 的集合A ,证明:()21-≤k k n ;(Ⅲ)判断n m 和的大小关系,并证明你的结论.参考答案一、选择题1.B 2.B 3.B 4.C 5.B 6.D 7.C 8.B 9.C 10.C 1.B ;由{212}M x x =-≤-≤得31≤≤-x ,则{}3,1=⋂N M ,有2个.2.B ;【解1】因为0x ≤,所以0y ,由y =2x y =-,所以0)y x =≤的反函数为2(0)y x x =-≥.故选B .【解2】(排除法)因为0x ≤,所以排除A,C ;又因为0y =≥,所以排除D .故选B .4.C ;【解法1】函数()24f x x x =+在0x ≥时是增函数,函数()24f x x x =-在0x <时是增函数,并且当0x =时, 2244x x x x +=-,所以, ()224,0,4,0.x x x f x x x x ⎧+≥=⎨-<⎩在R 上是增函数.于是由()()22f a f a ->得22,a a ->即220a a +-<,解得21a -<<.故选C.【解法2】画出函数()224,0,4,0.x x x f x x x x ⎧+≥=⎨-<⎩的图象,可以看出,已知函数是R 上的增函数.于是由()()22f a f a ->得22,a a ->即220a a +-<,解得21a -<<.故选C. 【解法3】用特殊值排除.当0a =时,()()()()222448,00f a f f a f -==+===, 不等式()()22f a f a ->成立,从而排除A,D ;当1a =-时, ()()()()221145,1415f a f f a f -==+==-=--=-, 不等式()()22f a f a ->成立,从而排除B .故选C .二、填空题11.若m ≤0,则关于x 的方程x 2+ x -m = 0没有实数根;12.}32{; 13.12+π; 14.[)+∞,3; 15.13<<-a三、解答题16.解:设211x x <<…………2分则)1)(1()(2)()(211221---=-x x x x x f x f…………4分01010,1211221>->->-∴<<x x x x x x…………5分0)1)(1()(22112>---∴x x x x…………6分)()(,0)()(2121x f x f x f x f >>-∴即 …………7分 故函数f (x )在区间(1,+∞)上递减. …………8分17.解:∵5>1时或即当11,1,212222-<>>+>+∴x x x x x , …………2分 2122255++>xx…………4分 当11,1,212222-===+=+x x x x x 或即时…………5分 2122255++=xx…………6分 当11,1,212222<<-<+<+x x x x 即时,…………7分 2122255++<x x…………9分212212222255,11;55,11++++=-==>-<>∴xxx xx x x x 时或当时或当;当.55,1121222++<<<-x x x 时…………10分 18.解:(1)x BP x DP -=∴=2,…………2分又△APD ∽△BPQ (]2,0,2∈-=∴x xxQB …………5分BP BQ PD AD y 22212221⋅+⋅=…………8分则:(]2,0,1)1(22∈-+=x xx y …………10分19.解:(1)0)2(,)(2=+=f bx ax x f.21,1,00)1(0)1(,)(02,02422-===--=∆∴=-+==+=+∴a b b x b ax x x f b a b a 即有等根即又即x x x f +-=∴221)( …………3分(2)2121)1(2121)(22≤+--=+-=x x x x f∴函数⎥⎦⎤ ⎝⎛∞-21,)(的值域为x f…………6分(3)设有实数m 、n(m<n)使f (x )定义域为[m ,n],值域为[4m ,4n] 当81214,21)(,1max ≤≤==n n x f x 即时 …………7分⎩⎨⎧==∴n n f mm f n m x f 4)(4)(,],[)(则上是增函数在 …………8分⎩⎨⎧=-==-=∴0606n n m m 或或,由于0,6,=-=∴<n m n m 取…………10分20.(Ⅰ)解:集合{}3,2,1,0不具有性质P ,{}3,2,1-具有性质P ,其相应的集合T S 和是()(){}()(){}3,2,1,2,1.3,3,1-=--=T S ; …………3分(Ⅱ)证明:首先由A 中的元素构成的有序实数对共有2k 个,因为()T a a A i i ∈∈,,0),,2,1(k i =,又因为当A a A a ∉-∈时,,所以当()()T a a T a a i j j i ∉∈,,时,),,2,1(k i =.于是集合T 中的元素的个数最多为()()121212-=-=k k k k n ,即()21-≤k k n .…………6分(Ⅲ)解:n m =,证明如下:①对于()S b a ∈,,根据定义()T b b a A b a A b A a ∈+∈+∈∈,,,从而,则 如果()()d c b a ,,与是S 中的不同元素,那么d b c a ==与中至少有一个不成立,于是d c b a +=+与d b =中至少有一个不成立,故()b b a ,+与()d d c ,+也是T 中的不同元素.可见S 中的元素个数不多于T 中的元素个数,即n m ≤; …………9分②对于()T b a ∈,,根据定义()S b b a A b a A b A a ∈-∈-∈∈,,,从而,则 如果()()d c b a ,,与是T 中的不同元素,那么d b c a ==与中至少有一个不成立,于是d c b a -=-与d b =中至少有一个不成立,故()b b a ,-与()d d c ,-也是S 中的不同元素.可见T 中的元素个数不多于S 中的元素个数,即m n ≤. …………11分由①、②可知n m =. …………12分。
高中数学必修一第一章《集合与函数概念》单元测试题(含答案)
⾼中数学必修⼀第⼀章《集合与函数概念》单元测试题(含答案)《集合与函数概念》单元测试题(第⼀章)(120分钟150分)⼀、选择题(本⼤题共12⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的)1.集合A={0,1,2},B={x|-1A.{0}B.{1}C.{0,1}D.{0,1,2}2.设集合M={2,0,x},集合N={0,1},若N?M,则x的值为( )A.2B.0C.1D.不确定3.在下列由M到N的对应中构成映射的是( )4.已知函数f(x)=ax3+bx(a≠0),满⾜f(-3)=3,则f(3)= ( )A.2B.-2C.-3D.3【补偿训练】已知y=f(x)是偶函数,且f(4)=5,那么f(4)+f(-4)的值为( ) A.5 B.10C.8D.不确定5.已知⼀次函数y=kx+b为减函数,且kb<0,则在直⾓坐标系内它的⼤致图象是( )6.若f(x)=则f的值为( )A.-B.C.D.7.若f(g(x))=6x+3,且g(x)=2x+1,则f(x)= ( )A.3B.3xC.6x+3D.6x+18.下列四个图形中,不是以x为⾃变量的函数的图象是( )9.已知集合A={x|x2+x+1=0},若A∩R=?,则实数m的取值范围是( )A.m<4B.m>4C.0D.0≤m<410.函数f(x)=|x|和g(x)=x(2-x)的单调递增区间分别是( )A.(-∞,0]和(-∞,1]B.(-∞,0]和[1,+∞)C.[0,+∞)和(-∞,1]D.[0,+∞)和[1,+∞)11.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中⼀个为正偶数,另⼀个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a※b=12,a∈N*,b∈N*}中的元素个数是( )A.10个B.15个C.16个D.18个12.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则使<0的x的取值范围为( )A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)⼆、填空题(本⼤题共4⼩题,每⼩题5分,共20分.请把正确答案填在题中横线上)13.已知集合A={x|1≤x<2},B={x|x14.已知a是实数,若集合{x|ax=1}是任何集合的⼦集,则a的值是.15.已知f(x)为偶函数,则f(x)=x1,1x0, ______,0x 1.+-≤≤≤≤16.定义在R上的奇函数f(x)为减函数,若a+b≤0,给出下列不等式:①f(a)f(b)≤0;②f(a)+f(b)≤f(-a)+f(-b);③f(b)f(-b)≤0;④f(a)+f(b)≥f(-a)+f(-b).其中正确的是.(把你认为正确的不等式的序号全写上).三、解答题(本⼤题共6⼩题,共70分.解答时应写出必要的⽂字说明、证明过程或演算步骤)17.(10分)设全集为R,集合A={x|3≤x<6},B={x|2(1)分别求A∩B,(eB)∪A.R(2)已知C={x|a18.(12分)已知函数f(x)=.(1)判断点(3,14)是否在f(x)的图象上.(2)当x=4时,求f(x)的值.(3)当f(x)=2时,求x的值.19.(12分)若函数f(x)=x2+4x+a的定义域和值域均为[-2,b](b>-2),求实数a,b的值.20.(12分)(2015·烟台⾼⼀检测)已知函数f(x)=ax+b,且f(1)=2,f(2)=-1.(1)求f(m+1)的值.(2)判断函数f(x)的单调性,并⽤定义证明..【拓展延伸】定义法证明函数单调性时常⽤变形技巧(1)因式分解:当原函数是多项式函数时,作差后的变形通常进⾏因式分解.(2)通分:当原函数是分式函数时,作差后往往进⾏通分,然后对分⼦进⾏因式分解.(3)配⽅:当原函数是⼆次函数时,作差后可考虑配⽅,便于判断符号.21.(12分)已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,⼜f(1)=-2.(1)判断f(x)的奇偶性.(2)求证:f(x)为R上的减函数.(3)求f(x)在区间[-3,3]上的值域.22.(12分)定义在(-1,1)上的函数f(x)满⾜:①对任意x,y∈(-1,1),都有f(x)+f(y)=f;②f(x)在(-1,1)上是单调递减函数,f=-1.(1)求f(0)的值.(2)求证:f(x)为奇函数.(3)解不等式f(2x-1)<1.《集合与函数概念》单元测试题参考答案(第⼀章)(120分钟150分)。
高一数学人教版必修一第一章《集合与函数概念》单元测试题(含答案)
三、解答题 :每小题 12 分,共 60 分
16、设 A { x Z || x | 6} , B 1,2,3 , C
3,4,5,6 ,求:
(题目有错漏,需修改,要么改为① A { x Z x 6} ,要么改为② C { 3,4,5} )
( 1) A (B C ) ;( 2) A C A (B C )
的元素 ( 1,2) 对应的 B 中的元素为(
A)
(A ) ( 3,1)
( B) (1,3)
( C) ( 1, 3)
(D ) (3,1)
5、下列各组函数 f ( x)与 g (x) 的图象相同的是( D )
(A ) f ( x) x, g( x) ( x ) 2
(B ) f ( x) x2 , g(x) (x 1) 2
第一章 《集合与函数概念》单元测试题
姓名:
班别:
学号:
一、选择题:每小题 4 分,共 40 分
1、在“①高一数学课本中的难题;②所有的正三角形;
2
③方程 x 2 0 的实数解”中,能够
表示成集合的是 ( A )
(A )② ( C )②③
( B)③ ( D)①②③
2、若 A x | 0 x 2 , B x |1 x 2 ,则 A B ( D )
元?
解: 设每天从报社买进 x 份,每月所获的利润为 f( x),则
① 当每天购入少于或等于 250 份的报纸的时候,全部都卖光了,则
f( x) =( 1-0.9) *30*x
故 f ( x)在 x
x 0 的值域为
,2
综上得, f ( x)的值域为 2,
,2
19、中山市的一家报刊摊点,从报社买进《南方都市报》的价格是每份
高一数学第一、二单元检测(含答案)
第1页 共8页 ◎ 第2页 共8页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………高一数学 集合&函数(~奇偶性)第I 卷(选择题)一、选择题(题型注释)1.已知函数()x x f =,则下列哪个函数与()x f y =表示同一个函数( ) A .()()2x x g =B .()2x x h =C .()x x s =D .⎩⎨⎧<->=00x x x x y ,,2.已知函数()⎩⎨⎧≤>=030log 2x x x x f x ,,,则⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛41f f 的值是( ) A .91-B .9-C .91D .93.下列函数中,既是偶函数,又是在区间(0,+)上单调递减的函数是( ) A .B .C .12+-=x y D .y =cosx4.已知全集=⋃≤=≤==B A x B x x A R U x 则集合},12|{},0lg |{, ( )A .]0,(-∞B .]1,(-∞C .),0[+∞D .),1[+∞5.(5分)(2011•湖北)若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x,则g (x )=( )A.e x﹣e ﹣xB.(e x+e ﹣x) C.(e ﹣x﹣e x) D.(e x﹣e ﹣x) 6.若集合{|02},{|11}A y y B x x =≤<=-<<,则R ()A C B = ( )A .{|01}x x ≤≤B .{|12}x x ≤<C .{|10}x x -<≤D .{|01}x x ≤< 7.已知{|24}A x Z x =∈-<<,2{|1}1B x x =≥-,则()R AC B 的元素个数为( )A .1B .2C .3D .48.(5分)(2011•陕西)设集合M={y|y=|cos 2x ﹣sin 2x|,x ∈R},N={x||x ﹣|<,i 为虚数单位,x ∈R},则M∩N 为( )A.(0,1)B.(0,1]C.[0,1)D.[0,1] 9.设集合}|,sin cos ||{22R ∈-==x x x y y M ,2{|||113ixN x =<-,i 为虚数单位,}R ∈x ,则M ∩N 为( )A .(0,1)B .(0,1]C .[0,1)D .[0,1]10.设p :211x -≤,q:[]()(1)0x a x a --+≤,若q 是p 的必要而不充分条件,则实数a 的取值范围是( )A.10,2⎡⎤⎢⎥⎣⎦ B .10,2⎛⎫⎪⎝⎭ B.C.()1,0,2⎡⎫-∞+∞⎪⎢⎣⎭ D .()1,0,2⎛⎫-∞+∞ ⎪⎝⎭11.已知下列三个命题:①棱长为2的正方体外接球的体积为43π;②如果将一组数据中的每一个数都加上同一个非零常数,那么这组数据的平均数和方差都改变;∞||2x y =3x第3页 共8页 ◎ 第4页 共8页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………③直线310x y -+=被圆22(1)4x y -+=截得的弦长为23. 其中真命题的序号是( )。
高一数学第一章集合与函数概念单元检测试题(带答案解析)
2021高一数学第一章集合与函数概念单元检测试题(带答案解析)为使大家课后及时巩固知识,查字典数学网特整理了集合与函数概念单元检测试题,请练习。
一、选择题1.已知全集U={0,1,2}且 UA={2},则集合A的真子集共有( ).A.3个B.4个C.5个D.6个2.设集合A={x|1A.{a|aB.{a|aC.{a|aD.{a|a2}3.A={x|x2+x-6=0},B={x|mx+1=0},且,则的取值集合是( ).A. B. C. D.4.设I为全集,集合M,N,P都是其子集,则图中的阴影部分表示的集合为( ).A.M P)B.M (P IN)C.P ( IN IM )D.(M (M P)5.设全集U={(x,y)| xR,yR},集合M= ,P={(x,y)|yx+1},那么 U(MP)等于( ).A. B.{(2,3)}C.(2,3)D.{(x,y)| y=x+1}6.下列四组中的f(x),g(x),表示同一个函数的是( ).A.f(x)=1,g(x)=x0B.f(x)=x-1,g(x)= -1C.f (x)=x2,g(x)=( )4D.f(x)=x3,g(x)=7.函数f(x)= -x的图象关于( ).A.y轴对称B.直线y=-x对称C.坐标原点对称D.直线y=x对称8.函数f(x)=11+x2(xR)的值域是( ).A.(0,1)B.(0,1]C.[0,1)D.[0,1]9.已知f(x)在R上是奇函数,f(x+4)=f(x),当x(0,2)时,f(x)=2x2,则f(7)=( ).A.-2B.2C.-98D.9810.定义在区间(-,+)的奇函数f(x)为增函数;偶函数g(x)在区间[0,+)的图象与f(x)的图象重合.设a0,给出下列不等式:①f(b)-f(-a)g(a)-g(-b);②f(b)-f(-a)③f(a)-f(-b)g(b)-g(-a);④f(a)-f(-b)其中成立的是( ).A.①与④B.②与③C.①与③D.②与④二、填空题11.函数的定义域是 .12.若f( x)=ax+b(a0),且f(f(x))=4x+1,则f(3)= .13.已知函数f(x)=ax+2a-1在区间[0,1]上的值恒正,则实数a的取值范围是 .14.已知I={不大于15的正奇数},集合MN={5,15},( IM)( IN)={3,13},M ( IN)={1,7},则M= ,N= .15.已知集合A={x|-27},B={x|m+116.设f(x)是R上的奇函数,且当x[0,+)时,f(x)=x(1+x3),那么当x(-,0]时,f(x)= .三、解答题17.已知A={x|x2-ax+a2-19=0},B={ x|x2-5x+6=0},C={x |x2+2x-8=0},且 (AB),AC= ,求的值.18.设A是实数集,满足若aA,则 A,a1且1 A.(1)若2A,则A中至少还有几个元素?求出这几个元素.(2)A能否为单元素集合?请说明理由.(3)若aA,证明:1- A.19.求函数f(x)=2x2-2ax+3在区间[-1,1]上的最小值.20.已知定义域为R的函数f( x)= 是奇函数.(1)求a,b的值;(2)若对任意的tR,不等式f(t2-2t)+f(2t2-k)0恒成立,求k的取值范围.参考答案一、选择题1.A解析:条件 UA={2}决定了集合A={0,1},所以A的真子集有,{0},{1},故正确选项为A.2.D解析:在数轴上画出集合A,B的示意图,极易否定A,B.当a=2时,2 B,故不满足条件A B,所以,正确选项为D.3.C解析:据条件AB=A,得B A,而A={-3,2},所以B只可能是集合,{-3},{2},所以,的取值集合是C.4.B解析:阴影部分在集合N外,可否 A,D,阴影部分在集合M 内,可否C,所以,正确选项为B.5.B解析:集合M是由直线y=x+1上除去点(2,3)之后,其余点组成的集合.集合P是坐标平面上不在直线y=x+1上的点组成的集合,那么M P就是坐标平面上除去点(2,3)外的所有点组成的集合.由此 U(M P)就是点(2,3)的集合,即 U(M P)={(2,3)}.故正确选项为B.6.D解析:判断同一函数的标准是两函数的定义域与对应关系相同,选项A,B,C中,两函数的定义域不同,正确选项为D.7.C解析:函数f(x)显然是奇函数,所以不难确定正确选项为C.取特殊值不难否定其它选项.如取x=1,-1,函数值不等,故否A;点(1,0)在函数图象上,而点(0,1)不在图象上,否选项D,点(0,-1)也不在图象上,否选项B.8.B解析:当x=0时,分母最小,函数值最大为1,所以否定选项A,C;当x的绝对值取值越大时,函数值越小,但永远大于0,所以否定选项D.故正确选项为B.9.A解析:利用条件f(x+4)=f(x)可得,f(7)=f(3+4)=f(3)=f(-1+4)=f(-1),再根据f(x)在R上是奇函数得,f(7)=-f(1)=-212=-2,故正确选项为A.10.C解析:由为奇函数图像关于原点对称,偶函数图象关于y轴对称,函数f(x),g(x)在区间[0,+)上图象重合且均为增函数,据此我们可以勾画两函数的草图,进而显见①与③正确.故正确选项为C.二、填空题11.参考答案:{x| x1}.解析:由x-10且x0,得函数定义域是{x|x1}.12.参考答案: .解析:由f(f(x))=af(x)+b=a2x+ab+b=4x+1,所以a2=4,ab+b=1(a0),解得a=2,b= ,所以f(x)=2x+ ,于是f(3)= .13.参考答案: .解析:a=0时不满足条件,所以a0.(1)当a0时,只需f(0)=2a-1(2)当a0时,只需f(1)=3a-10.综上得实数a的取值范围是 .14.参考答案:{1,5,7,15},{5,9,11,15}.解析:根据条件I={1,3,5,7,9,11,13,15},MN={5,15},M( IN)= {1,7},得集合M={1,5,7,15},再根据条件( IM)( IN)={3,13},得N={5,9,11,15}.15.参考答案:(2,4].解析:据题意得-22m-17,转化为不等式组,解得m的取值范围是(2,4].16.参考答案:x(1-x3).解析:∵任取x(-,0],有-x[0,+),f(-x)=-x[1+(-x)3]=-x(1-x3),∵ f(x)是奇函数, f(-x)=-f(x).f(x)=-f(-x)=x(1-x3),即当x(-,0]时,f(x)的表达式为f(x)=x(1-x3).三、解答题17.参考答案:∵B={x|x2-5x+6=0}={2,3},C={x|x2+2x-8=0}={-4,2},由AC= 知,-4 ,2由 (AB)知,3A.32-3a+a2-19=0,解得a=5或a=-2.当a=5时,A={x|x2-5x+6=0}=B,与AC= 矛盾.当a=-2时,经检验,符合题意.18.参考答案:(1)∵ 2A,= =-1= =2A.因此,A中至少还有两个元素:-1和 .(2)如果A为单元素集合,则a= ,整理得a2-a+1=0,该方程无实数解,故在实数范围内,A不可能是单元素集. (3)证明: aA A A A,即1- A.19.参考答案: f(x)=2 +3- .(1)当 -1,即a-2时,f(x)的最小值为f(-1)=5+2a;(2)当-11,即-22时,f(x)的最小值为 =3- ;(3)当 1,即a2时,f(x)的最小值为f(1)=5-2a.综上可知,f(x)的最小值为20.参考答案:(1)∵函数f(x)为R上的奇函数,f(0)=0,即 =0,解得b=1,a-2,从而有f(x)= .又由f(1)=-f (-1)知 =- ,解得a=2.(2)先讨论函数f(x)= =- + 的增减性.任取x1,x2R,且x1 ∵指数函数2x为增函数,0, f(x2)函数f(x)= 是定义域R上的减函数.由f(t2-2t)+f(2t2-k)0得f(t2-2t)-f(2t2-k),f(t2-2t)由( )式得k3t2-2t.又3t2-2t=3(t- )2- - ,只需k- ,即得k的取值范围是 . 集合与函数概念单元检测试题的所有内容希望大家可以完全掌握,成绩进步。
人教版2019年高一数学必修一-第一章练习题与配套参考答案
集合与函数基础测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.函数y ==x 2-6x +10在区间(2,4)上是( )A .递减函数B .递增函数C .先递减再递增D .选递增再递减.2.方程组20{=+=-y x y x 的解构成的集合是 ( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( )A. aB. {a ,c }C. {a ,e }D.{a ,b ,c ,d }4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( )A.}0{=∅B. }0{⊆∅C. }0{⊇∅D. }0{∈∅6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为 ( )A.A∩BB.A ⊇BC.A ∪BD.A ⊆B7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14}又,,B b A a ∈∈则有( )A.(a+b )∈ AB. (a+b) ∈BC.(a+b) ∈ CD. (a+b) ∈ A 、B 、C 任一个8.函数f (x )=-x 2+2(a -1)x +2在(-∞,4)上是增函数,则a 的范围是( )A .a ≥5B .a ≥3C .a ≤3D .a ≤-59.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是 ( )A. 8B. 7C. 6D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )A. A BB. B AC. B C A C U UD. B C A C U U11.下列函数中为偶函数的是( )A .x y =B .x y =C .2x y =D .13+=x y12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( )A .0B .0 或1C .1D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.函数f (x )=2×2-3|x |的单调减区间是___________.14.函数y =11+x 的单调区间为___________. 15.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合M N A M N B N M C M N D=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 设f (x )是定义在R 上的增函数,f (xy )=f (x )+f (y ),f (3)=1,求解不等式f (x )+f (x -2)>1.19. 已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式.20. 已知二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,写出函数的解析表达式,并求出函数)(x f 的单调递增区间.必修1 第一章 集合测试集合测试参考答案:一、1~5 CABCB 6~10 ABACC 11~12 cB二、13 [0,43],(-∞,-43) 14 (-∞,-1),(-1,+∞) 15 -1 16 03|{≤≤-=x x N 或}32≤≤x ;}10|{)(<<=⋂x x N C M U ;13|{<≤-=⋃x x N M 或}32≤≤x .三、17 .{0.-1,1}; 18. 解:由条件可得f (x )+f (x -2)=f [x (x -2)],1=f (3). 所以f [x (x -2)]>f (3),又f (x )是定义在R 上的增函数,所以有x (x -2)>3,可解得x >3或x <-1.答案:x >3或x <-1.19. .解析:本题主要是培养学生理解概念的能力.f (x )=x 3+2x 2-1.因f (x )为奇函数,∴f (0)=-1.当x <0时,-x >0,f (-x )=(-x )3+2(-x )2-1=-x 3+2x 2-1,∴f (x )=x 3-2x 2+1.20. 二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,∴1=m ,则1)(2+-=x x f ,函数)(x f 的单调递增区间为(]0,∞-..。
高一数学试题-湘教版高中数学(必修1)单元测试-第一章集合与函数(一) 最新
数学:第一章《集合与函数》练习题(湘教版必修1) 一:填空题1.设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是 。
2.下列五个写法:①}3,2,1{}0{∈;②}0{⊆φ;③{0,1,2}}0,2,1{⊆;④φ∈0;⑤φφ=⋂0,其中错误..写法的个数为 。
3. 已知M ={x|y=x 2-1}, N={y|y=x 2-1},N M ⋂等于 。
4. 方程x 2-px +6=0的解集为M ,方程x 2+6x -q =0的解集为N ,且M ∩N ={2},那么p +q 等于 。
5.若函数y=x 2+(2a -1)x+1在区间(-∞,2]上是减函数,则实数a 的取值范围是 。
6. 若)21(),0(1)]([,21)(22g x x x x f g x x f 则≠-=-=的值为 。
7.已知函数21|1|)(x ax x f ---=是奇函数。
则实数a 的值为 。
8. 已知函数f (x )=12++mx mx 的定义域是一切实数,则m 的取值范围是9. 已知函数f (n )= ⎩⎨⎧<+≥-)10)](5([)10(3n n f f n n ,其中n ∈N ,则f (8)等于 。
10. 已知函数()533f x ax bx cx =-+-,()37f -=,则()3f 的值为 。
11.函数y =的定义域为 。
12.设偶函数f (x )的定义域为R ,当[0,)x ∈+∞时f (x )是增函数,则(2),(),(3)f f f π--的大小关系是 。
13.已知y=f(x)是定义在R 上的奇函数,当0x ≥时,()2x -x x f 2=, 则()x f 在0<x 时的解析式是 _______________ 。
14. 某工厂8年来某产品产量y 与时间t 年的函数关系如下图,则:①前3年总产量增长速度增长速度越来越快;②前3年中总产量增长速度越来越慢;③第3年后,这种产品停止生产;④第3年后,这种产品年产量保持不变.以上说法中正确的是 。
人教版高一数学必修一 教材配套检测题(附答案可下载)
人教版高一数学必修一教材配套检测题及参考答案目录第一章集合与函数概念教材配套检测题 (1)第一章检测题参考答案 (3)第二章基本初等函数教材配套检测题 (4)第二章检测题参考答案 (6)第三章函数的应用教材配套检测题 (7)第三章参考答案 (9)人教版高一数学必修一第一章集合与函数概念教材配套检测题一、选择题(每小题只有一个正确选项)1.方程260x px -+=的解集为M ,方程260x x q +-=的解集为N ,且{}2M N = ,那么p q +=.21A .8B .6C .7D 2.下列四组函数中,表示相等函数的一组是().A f x x =,()g x =.B ()f x =())2g x =()21.1x C f x x -=-,()1g x x =+().D f x =()g x =3.下列四个函数中,在()0,+∞上为增函数的是().3A f x x=-()2.3B f x x x=-()1.1C f x x =-+().D f x x=-4.()f x 是定义在[]6,6-上的偶函数,且()()31f f >,则下列各式一定成立的是()().06A f f <()().32B f f >()().13C f f -<()().20D f f >5.已知函数()f x 是R 上的增函数,()0,1A -、()3,1B 是其图象上的两点,那么()11f x +<的解集的补集是().1,2A -().1,4B ()[).,14,C -∞-+∞ (][).,12,D -∞-+∞ 二、填空题6.函数12y x=-的定义域为。
7.已知函数()f x 是偶函数,当0x <时,()()1f x x x =+,则当0x >时,()f x =。
8.()201,2,0x x f x x x ≤⎧+=⎨->⎩若()10f x =,则x =。
三、解答题9.求函数211x y x -=+,[]3,5x ∈的最小值和最大值。
高一数学必修1第一章集合与函数的概念单元测试题(含答案)
一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=()A.{0} B.{0,2}C.{-2,0} D.{-2,0,2}解析M={x|x(x+2)=0.,x∈R}={0,-2},N={x|x(x-2)=0,x∈R}={0,2},所以M ∪N={-2,0,2}.答案 D2.设f:x→|x|是集合A到集合B的映射,若A={-2,0,2},则A∩B=()A.{0} B.{2}C.{0,2} D.{-2,0}解析依题意,得B={0,2},∴A∩B={0,2}.答案 C3.f(x)是定义在R上的奇函数,f(-3)=2,则下列各点在函数f(x)图象上的是() A.(3,-2) B.(3,2)C.(-3,-2) D.(2,-3)解析∵f(x)是奇函数,∴f(-3)=-f(3).又f(-3)=2,∴f(3)=-2,∴点(3,-2)在函数f(x)的图象上.答案 A4.已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()A.1 B.3C.5 D.9解析逐个列举可得.x=0,y=0,1,2时,x-y=0,-1,-2;x=1,y=0,1,2时,x-y=1,0,-1;x=2,y=0,1,2时,x-y=2,1,0.根据集合中元素的互异性可知集合B的元素为-2,-1,0,1,2.共5个.答案 C6.设f(x)=x+3(x>10),f(x+5)(x≤10),则f(5)的值为()A.16 B.18C.21 D.24解析f(5)=f(5+5)=f(10)=f(15)=15+3=18.答案 B7.设T={(x,y)|ax+y-3=0},S={(x,y)|x-y-b=0},若S∩T={(2,1)},则a,b的值为()A.a=1,b=-1 B.a=-1,b=1C.a=1,b=1 D.a=-1,b=-1解析依题意可得方程组2a+1-3=0,2-1-b=0,⇒a=1,b=1.答案 C8.已知函数f(x)的定义域为(-1,0),则函数f(2x+1)的定义域为()A.(-1,1) B.-1,-12C.(-1,0) D.12,1解析由-1<2x+1<0,解得-1<x<-12,故函数f(2x+1)的定义域为-1,-12.答案 B9.已知A={0,1},B={-1,0,1},f是从A到B映射的对应关系,则满足f(0)>f(1)的映射有()A.3个B.4个C.5个D.6个解析当f(0)=1时,f(1)的值为0或-1都能满足f(0)>f(1);当f(0)=0时,只有f(1)=-1满足f(0)>f(1);当f(0)=-1时,没有f(1)的值满足f(0)>f(1),故有3个.答案 A10.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)[f(x2)-f(x1)]>0,则当n∈N*时,有()A.f(-n)<f(n-1)<f(n+1)B.f(n-1)<f(-n)<f(n+1)C.f(n+1)<f(-n)<f(n-1)D.f(n+1)<f(n-1)<f(-n)解析由题设知,f(x)在(-∞,0]上是增函数,又f(x)为偶函数,∴f(x)在[0,+∞)上为减函数.∴f(n+1)<f(n)<f(n-1).又f(-n)=f(n),∴f(n+1)<f(-n)<f(n-1).答案 C11.函数f(x)是定义在R上的奇函数,下列说法:①f(0)=0;②若f(x)在[0,+∞)上有最小值为-1,则f(x)在(-∞,0]上有最大值为1;③若f(x)在[1,+∞)上为增函数,则f(x)在(-∞,-1]上为减函数;④若x>0时,f(x)=x2-2x,则x<0时,f(x)=-x2-2x.其中正确说法的个数是()A.1个B.2个C.3个D.4个解析①f(0)=0正确;②也正确;③不正确,奇函数在对称区间上具有相同的单调性;④正确.12.f(x)满足对任意的实数a,b都有f(a+b)=f(a)•f(b)且f(1)=2,则f(2)f(1)+f(4)f(3)+f(6)f(5)+…+f(2014)f(2013)=()A.1006 B.2014C.2012 D.1007解析因为对任意的实数a,b都有f(a+b)=f(a)•f(b)且f(1)=2,由f(2)=f(1)•f(1),得f(2)f(1)=f(1)=2,由f(4)=f(3)•f(1),得f(4)f(3)=f(1)=2,……由f(2014)=f(2013)•f(1),得f(2014)f(2013)=f(1)=2,∴f(2)f(1)+f(4)f(3)+f(6)f(5)+…+f(2014)f(2013)=1007×2=2014.答案 B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.函数y=x+1x的定义域为________.解析由x+1≥1,x≠0得函数的定义域为{x|x≥-1,且x≠0}.答案{x|x≥-1,且x≠0}14.f(x)=x2+1(x≤0),-2x(x>0),若f(x)=10,则x=________.解析当x≤0时,x2+1=10,∴x2=9,∴x=-3.当x>0时,-2x=10,x=-5(不合题意,舍去).∴x=-3.答案-315.若函数f(x)=(x+a)(bx+2a)(常数a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=________.解析f(x)=(x+a)(bx+2a)=bx2+(2a+ab)x+2a2为偶函数,则2a+ab=0,∴a=0,或b=-2.又f(x)的值域为(-∞,4],∴a≠0,b=-2,∴2a2=4.∴f(x)=-2x2+4.答案-2x2+416.在一定范围内,某种产品的购买量y吨与单价x元之间满足一次函数关系,如果购买1000吨,每吨为800元,购买2000吨,每吨为700元,那么客户购买400吨,单价应该是________元.解析设一次函数y=ax+b(a≠0),把x=800,y=1000,和x=700,y=2000,代入求得a=-10,b=9000.∴y=-10x+9000,于是当y=400时,x=860.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.(1)求A∪B,(∁UA)∩B;(2)若A∩C≠∅,求a的取值范围.解(1)A∪B={x|2≤x≤8}∪{x|1<x<6}={x|1<x≤8}.∁UA={x|x<2,或x>8}.∴(∁UA)∩B={x|1<x<2}.(2)∵A∩C≠∅,∴a<8.18.(本小题满分12分)设函数f(x)=1+x21-x2.(1)求f(x)的定义域;(2)判断f(x)的奇偶性;(3)求证:f1x+f(x)=0.解(1)由解析式知,函数应满足1-x2≠0,即x≠±1.∴函数f(x)的定义域为{x∈R|x≠±1}.(2)由(1)知定义域关于原点对称,f(-x)=1+(-x)21-(-x)2=1+x21-x2=f(x).∴f(x)为偶函数.(3)证明:∵f1x=1+1x21-1x2=x2+1x2-1,f(x)=1+x21-x2,∴f1x+f(x)=x2+1x2-1+1+x21-x2=x2+1x2-1-x2+1x2-1=0.19.(本小题满分12分)已知y=f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-2x.(1)求当x<0时,f(x)的解析式;(2)作出函数f(x)的图象,并指出其单调区间.解(1)当x<0时,-x>0,∴f(-x)=(-x)2-2(-x)=x2+2x.又f(x)是定义在R上的偶函数,∴f(-x)=f(x).∴当x<0时,f(x)=x2+2x.(2)由(1)知,f(x)=x2-2x(x≥0),x2+2x(x<0).作出f(x)的图象如图所示:由图得函数f(x)的递减区间是(-∞,-1],[0,1].f(x)的递增区间是[-1,0],[1,+∞).20.(本小题满分12分)已知函数f(x)=2x+1x+1,(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.(2)求该函数在区间[1,4]上的最大值与最小值.解(1)函数f(x)在[1,+∞)上是增函数.证明如下:任取x1,x2∈[1,+∞),且x1<x2,f(x1)-f(x2)=2x1+1x1+1-2x2+1x2+1=x1-x2(x1+1)(x2+1),∵x1-x2<0,(x1+1)(x2+1)>0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以函数f(x)在[1,+∞)上是增函数.(2)由(1)知函数f(x)在[1,4]上是增函数,最大值f(4)=95,最小值f(1)=32.21.(本小题满分12分)已知函数f(x)的定义域为(0,+∞),且f(x)为增函数,f(x•y)=f(x)+f(y).(1)求证:fxy=f(x)-f(y);(2)若f(3)=1,且f(a)>f(a-1)+2,求a的取值范围.解(1)证明:∵f(x)=fxy•y=fxy+f(y),(y≠0)∴fxy=f(x)-f(y).(2)∵f(3)=1,∴f(9)=f(3•3)=f(3)+f(3)=2.∴f(a)>f(a-1)+2=f(a-1)+f(9)=f[9(a-1)].又f(x)在定义域(0,+∞)上为增函数,∴a>0,a-1>0,a>9(a-1),∴1<a<98.22.(本小题满分12分)某商场经销一批进价为每件30元的商品,在市场试销中发现,此商品的销售单价x(元)与日销售量y(件)之间有如下表所示的关系:x 30 40 45 50y 60 30 15 0(1)在所给的坐标图纸中,根据表中提供的数据,描出实数对(x,y)的对应点,并确定y与x的一个函数关系式.(2)设经营此商品的日销售利润为P元,根据上述关系,写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?解(1)由题表作出(30,60),(40,30),(45,15),(50,0)的对应点,它们近似地分布在一条直线上,如图所示.设它们共线于直线y=kx+b,则50k+b=0,45k+b=15,⇒k=-3,b=150.∴y=-3x+150(0≤x≤50,且x∈N*),经检验(30,60),(40,30)也在此直线上.∴所求函数解析式为y=-3x+150(0≤x≤50,且x∈N*).(2)依题意P=y(x-30)=(-3x+150)(x-30)=-3(x-40)2+300.∴当x=40时,P有最大值300,故销售单价为40元时,才能获得最大日销售利润.。
人教版高一数学必修一第一章单元检测试题及答案
高一数学第一章集合与函数概念单元检测试题一、选择题:共12题每题5分共60分1.已知函数的图象如下图所示,则函数的图象为2.下列各组函数为相等函数的是A. B.C. D.==3.函数的定义域为若对于任意的当时,都有则称函数在上为非减函数.设函数的上为非减函数,且满足以下三个条件:①②③=则等于A. B. C. D.4.设函数,则的最小值为A. B. C. D.5.函数f(x)=x2-4x+6(x∈[1,5))的值域是A.(3,11]B.[2,11)C.[3,11)D.(2,11]6.若函数在区间上单调,则实数的取值范围为A. B.C. D.7.定义运算:a*b=,如1*2=1,则函数f(x)=2x*2-x的值域为A.RB.(0,+∞)C.(0,1]D.[1,+∞)8.已知集合E={x|2-x≥0},若F⊆E,则集合F可以是A.{x|x<1}B.{x|x>2}C.{x|x>3}D.{x|1<x<3}9.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f()的x的取值范围是() A.(,) B.[,) C.(,) D.[,)10.某部队练习发射炮弹,炮弹的高度与时间(秒)的函数关系式是,则炮弹在发射几秒后最高呢?A. B. C. D.11.已知,且,则等于A. B. C. D.12.已知集合和集合,则两个集合间的关系是A. B. C. D.M,P互不包含试卷第2页,总4页二、填空题:共4题每题5分共20分13.已知函数f(x)=a﹣x2(1≤x≤2)与的图象上存在关于轴对称的点,则实数的取值范围是A. C.14.设集合M={x|0≤x≤2},N={y|0≤y≤2}.给出下列四个图,其中能构成从集合M到集合N 的函数关系的是.15.给出下列二次函数,将其图象画在同一平面直角坐标系中,则图象的开口按从小到大的顺序排列为.(1)f(x)=-x2;(2)f(x)=(x+5)2;(3)f(x)=x2-6;(4)f(x)=-5(x-8)2+9.16.若函数的图像关于y轴对称,则的单调减区间为 .三、解答题:共6题共70分17.(本题10分)如果对函数f(x)定义域内任意的x1,x2都有|f(x1)-f(x2)|≤|x1-x2|成立,就称函数f(x)是定义域上的“平缓函数”.(1)判断函数f(x)=x2-x,x∈[0,1]是否为“平缓函数”;(2)若函数f(x)是闭区间[0,1]上的“平缓函数”,且f(0)=f(1),证明:对任意的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤成立.(注:可参考绝对值的基本性质①|ab|≤|a||b|,②|a+b|≤|a|+|b|)18.(本题12分)记函数的定义域为集合,集合.(1)求和;(2) 若,求实数的取值范围.19.(本题12分)设全集U={x|0<x<9,且x∈Z},集合S={1,3,5},T={3,6},求:(1)S∩T;(2).20.(本题12分)已知函数f(x)=.(1)用定义证明f(x)在区间[1,+∞)上是增函数;(2)求该函数在区间[2,4]上的最大值与最小值.21.(本题12分)定义在非零实数集上的函数对任意非零实数满足:,且当时.(Ⅰ)求及的值;(Ⅱ)求证:是偶函数;(Ⅲ)解不等式:.22.(本题12分)(1)证明:函数f(x )=在(-∞,0)上是减函数;(2)证明:函数f(x)=x3+x在R上是增函数.试卷第4页,总4页参考答案1.B【解析】本试题主要考查函数的图象.根据题意,由于函数图象可知,函数在y 轴右侧图象在x 轴上方,在y轴左侧的图象在x轴的下方,而函数在x>0时图象保持不变,因此排除C,D,对于选项A,由于在时偶函数,故在y轴左侧的图象与y轴右侧的图象关于y轴对称,故选B.【备注】无2.C【解析】本题主要考查相等函数、函数的定义域、值域与对应关系.A.因为这两个函数的值域不同,所以这两个函数不是相等函数;B.这两个函数的定义域不同,所以这两个函数不是相等函数;C.这两个函数的定义域、值域与对应关系均相同,所以这两个函数为相等函数;D.这两个函数的定义域不同,所以这两个函数不是相等函数.【备注】无3.D【解析】本题主要考查新定义问题、函数的性质及其综合应用.由题意,令x=0,由=可得由可得令则=同理=====令则==同理====. 非减函数的性质:当时,都有.因为所以所以=.【备注】无4.A【解析】本题主要考查分段函数的最值问题.由题意,函数的图象如图所示:红色图象即为所求解的函数的图象,可知最小值为0.【备注】无5.B【解析】f(x)=x2-4x+6=(x-2)2+2.∵f(x)图象的对称轴是直线x=2,∴f(x)在[1,2]上单调递减,在(2,5)上单调递增,∴f(x)的值域是[2,11).故选B.【备注】无6.C【解析】本题主要考查二次函数.依题意,函数在区间上单调,则函数的对称轴或,得或,故选C.【备注】无7.C【解析】本题主要考查在新型定义的前提下函数值域的求解.根据题目定义知f(x)=2x*2-x=,结合图象知其值域为(0,1].故选C.【备注】无8.A【解析】由题意知E={x|2-x≥0}={x|x≤2},F⊆E,观察选项知应选A.【备注】无9.A【解析】偶函数f(x)在区间[0,+∞)上单调递增,所以函数f(x)在区间(-∞,0]上单调递减.由于f(x)是偶函数,所以f(-x)=f(x),则f(-)= f().由f(2x-1)<f()得①或②,解①得≤x<,解②得<x<.综上可得<x<,故x的取值范围是(,).【备注】无10.C【解析】本题主要考查二次函数.依题意,根据二次函数得性质,函数的开口向下,对称轴为,故炮弹在发射后最高,故选C.【备注】无11.B【解析】本题主要考查函数的解析式与求值.因为,设,则,所以,因为,所以,解得,故选B.【备注】无12.D【解析】无【备注】无13.D【解析】本题主要考查二次函数的图像与性质,考查了逻辑推理能力与计算能力.因为函数f(x)=a ﹣x2(1≤x ≤2)与的图象上存在关于轴对称的点,所以函数f(x)=a﹣x2(1≤x≤2)与的图象上存在交点,所以有解,令,则,求解可得,故答案为D.【备注】无14.④【解析】图①中函数的定义域是[0,1];图②中函数的定义域是[-1,2];图③中对任意的x∈(0,2],其对应的y值不唯一.故①②③均不能构成从集合M到集合N 的函数,图④满足题意.【备注】无15.(4)(3)(2)(1)【解析】因为二次函数y=ax2+bx+c(a≠0)的图象在同一平面直角坐标系中|a|越小,图象开口越大,又|-|<||<||<|-5|,所以图象开口按从小到大的顺序排列为(4)(3)(2)(1).【备注】无16.【解析】本题考查函数的图象. 若函数的图像关于y轴对称,则a=0,,所以f(x)的单调减区间为.【备注】无17.(1)对任意的x1,x2∈[0,1],有-1≤x1+x2-1≤1,即|x1+x2-1|≤1.从而|f(x1)-f(x2)|=|(-x 1)-(-x2)|=|x1-x2||x1+x2-1|≤|x1-x2|,所以函数f(x )=x2-x,x∈[0,1]是“平缓函数”.(2)当|x1-x2|<时,由已知,得|f(x1)-f(x2)|≤|x1-x2|<;当|x1-x2|≥时,因为x1,x2∈[0,1],不妨设0≤x1<x2≤1,所以x2-x1≥.因为f(0)=f(1),所以|f(x1)-f(x2)|=|f(x 1)-f(0)+f(1)-f(x2)|≤|f(x1)-f(0)|+|f(1)-f (x2)|≤|x1-0|+|1-x2|=x1-x2+1≤-+1=.所以对任意的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤成立.【解析】无 【备注】无18.由条件可得{|2}A x x =>, (1)={|23}x x <≤,{|3}A B x x ⋃=≥-;(2) {|}C x x p =>,由可得2p ≥.【解析】本题考查函数的定义域与集合的运算.(1)先求出函数的定义域,再进行运算即可;(2)利用数轴进行分析即可得出结论.【备注】与不等式有关的集合运算或集合之间的关系问题通常可以借助数轴进行求解.19.U ={1,2,3,4,5,6,7,8} (1)S ∩T ={3} (2)S ∪T ={1,3,5,6}={2,4,7,8}【解析】本题主要考查集合的基本运算.(1)由交集的定义求解;(2)由并集与补集的定义求解. 【备注】无20.(1)任取x 1,x 2∈[1,+∞),且x 1<x 2,则f(x 1)-f(x 2)=-=.∵1≤x 1<x 2,∴x 1-x 2<0,(x 1+1)(x 2+1)>0, ∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), ∴函数f(x)在区间[1,+∞)上是增函数. (2)由(1)知函数f(x)在区间[2,4]上是增函数, ∴f(x)max =f(4)==, f(x)min =f(2)==.【解析】无 【备注】无21.(1)f (1)=0,f (-1)=0;(2)f (-x )=f (x )+f (-1)=f (x )∴f (-x )=f (x ),所以函数是偶函数;(3)据题意可知,f(2)+f(x2-1/2)=f(2x2-1)≤0∴-1≤2x2-1<0或0<2x2-1≤1∴0≤x2<1/2或<x2≤1,所以不等式的解集为【解析】本题主要考查特殊函数的性质的判断与应用以及一元二次不等式的解法.(1)分别令x=1与x=—1即可求出结果;(2)利用函数奇偶性的定义即可证明;(3)根据题意与f(1)=0,f(-1)=0,原不等式可化为-1≤2x2-1<0或0<2x2-1≤1然后求解即可.【备注】无22.(1)设x1,x2是(-∞,0)上的任意两个实数,且x1<x2,则f (x1)-f(x2)=-.因为x1,x2∈(-∞,0),所以x1x2>0,又因为x1<x2,所以x2-x1>0,则>0.于是f(x1)-f(x2)>0,即f(x1)>f(x2).因此函数f(x )=在(-∞,0)上是减函数.(2)设x1,x2是R上的任意两个实数,且x1<x2,则x2-x1>0,而f(x2)-f(x1)=(+x2)-(+x1)=(x 2-x1)(+x2x1+)+(x2-x 1)=(x2-x1)(+x2x1++1)=(x2-x1)[(x2+)2++1].因为(x2+)2++1>0,x2-x1>0,所以f(x2)-f(x1)>0,即f(x2)>f(x1).因此函数f(x)=x3+x在R上是增函数.【解析】用定义证明函数f(x)在给定区间D上的单调性的一般步骤:①取值——任取x1,x2∈D,且x1<x2;②作差——f(x1)-f(x2);③变形——通过因式分解、配方、通分、有理化等方法,向有利于判断差值的符号的方向变形;④定号——判断f(x1)-f(x2)的正负;⑤下结论——指出函数f(x)在给定区间D上的单调性.【备注】无。
(完整版)高一数学必修一第一章集合与函数测试卷
高一数学必修一第一章集合与函数测试卷、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
1.用描述法表示一元二次方程的全体,应是a, b, c€ R}a, b, c€ R,且 a 乒0}b, c£R} b, c£ R,且 a 乒 0}旱A 1, 0,1集合A 的子集个数是( B. 4C. 61,1,2的值域是4.函数f (x ) x 2 2(a 1)x 2在区间 ,4上是递减的,则实数a 的取值范围为()A a 3B a 3C a 5D a 5 5.设集合A 只含一个元素a,则下列各式正确的是()A. 0€ AB. a AC. a€ AD. a= A6.图中阴影部分所表示的集合是( )A.Bn : CU(A U C)]B.(A U B) U (B U C)C.(A U C) n (CUB)D.[CJA n C): U B7. 设集合P= {立方后等于自身的数},那么集合 P 的真子集个数是( )A. 3B. 48、下列四组函数中表示同一函数的是A 、f (x)=| x | 与 g(x)= tx 2B 、y=x 0与 y=1地停留1小时后再以50千米/小时的速度返回 A 地,把汽车离开A 地的距离x 表示为时 间t (小时)的函数表达式是A. x =60t B . x =60t +50t60t,(0 t 2.5)D - x = 150,(2.5 t 3.5)150 50( t 3.5),(3.5 t 6.5)A 0 , 2, 3B 0 y 3C {0,2,3}D [0,3]2A. {x| ax +bx +c =0, 2B. {x| ax +bx +c =0,2C. {ax +bx +c =0 I a, 2D. {ax +bx +c =0 | a,2. 已知 x|x 2 1 0A. 33. 函数 f (x) x 1, xD. 8C. 7 D . 8()y=x+1 匕x 2 1与y= ---------x 1D 、y=x — 1 与 y=/x 2 2x 19. 已知A 、B 两地相距150千米,某人开汽车以 60千米/小时的速度从A 地到达B 地,在B 60t, (0 t 2.5) C. x= 150 50t,(t 3.5) 10.已知 g (x )=1-4x, f [g (x )]=2x,T(x0),则f ( 1)等于A. 20B. 35C. 65D. 30x 2(x1)11 .已知 f(x)x 2( 1 x 2),若 f(x) 3,则 x 的值是( )2x(x 2)A. 1 B . 1 或3 C . 1,-或焰 D .很2 212.下列四个命题(1) f(x)= J x2 <1 x 在[1,2]上有意义;、填空题:请把答案填在题中横线上A. 0B. 1C. 2D. 313、已知函数 g(x 2) 2x 3,贝U g(3)( )A 、9B、7C、5D、314.设函数 f(x) 2x 3,g(x 2) f(x),则g (x )的表皿是()A. 2x 1 B . 2x 1 C . 2x 3 D. 2x 715.已知集合M {4,7,8},且M 中至多有一个偶数,则这样的集合共有()(A)3 个(B) 4 个 (C) 5个 (D) 6个16.已知 S {x/x 2n,n Z} , T {x/x 4k 1,kZ},则((A)S T (B) TS (C)S 丰 T(D)S=T17.函数y x 2 4x 3,x [0,3]的值域为()(A)[0,3] (B)[-1,0] (C)[-1,3](D)[0,2]18.下述函数中,在(,0]内为增函数的是()A y = x 2- 2B y = 3Cxy = 1 22xDy (x 2)19.在区间(0 , +8 )上不是增函数的函数是 2 y=_ x()A. y =2x+1B. y =3x 2 +1C .D . y =2x 2+ x+ 120.设函数f ( x )是(一 ,+ )上的减函数,又若 aR,则B . fA. f (a )>f (2 a )2(2) (3) 函数是其定义域到值域的映射函数 (4) 函数 5y=2x(x N )的图象是一直线; 2x , x 2x , xy= 0的图象是抛物线,其中正确的命题个数是 )<f (a)2C- f ( a +a )< f (a )2D. f ( a +1)<f (a )1. 已知全集U 2,3, a2 a 1 , A 2, 3 ,若C u A 1 ,则实数a的值是22. 函数y=(x- 1) 的减区间是 .3. 设集合A=( x 3 x 2},B=(x 2k 1 x 2k 1},且A B,则k的取值范围是4. 已知集合A (x| ax23x 2 0}.若A中至多有一个元素,则a的取值范围是25. 若函数f(x)=2x+x+3,求f (x)的递减区间是.6. 已知x [0,1],则函数vr—2 j i —的值域是^7.函数y x2 ax 3(0 a 2)在[1,1]上的最大值是三. 求下列函数的定义域:四. 求下列函数的解析式:(1) 已知f (x) x2 2x,求f (2x 1);(2) 已知f(w& 1) x 2Jx,求f (x);2⑶若f(x 1) 2x 1 ,求f (x)(4) 已知f (x 1) x2 2x 1,求f (x)(5) 已知f (x)是一次函数满足f (f (x)) 4x 6,求f (x)五. 求值域(1) 求函数y x2 4x 6, x (1,5)的值域(2) y x 4 x 4的值域2 , 一、x 4x,(x 2)2x 4 …,(4) y 冬^4的值域2x 6(5) y 2x W x 1的值域,最小值是^(3)求函数f (x) l,(x2)的值域。
人教版高一数学必修一第一章单元检测试题及参考答案
高一数学第一章集合与函数概念单元检测试题一、选择题:共12题每题5分共60分1.已知函数的图象如下图所示,则函数的图象为2.下列各组函数为相等函数的是A. B.C. D.==3.函数的定义域为若对于任意的当时,都有则称函数在上为非减函数.设函数的上为非减函数,且满足以下三个条件:①②③=则等于A. B. C. D.4.设函数,则的最小值为A. B.C. D.5.函数f(x)=x2-4x+6(x∈[1,5))的值域是A.(3,11]B.[2,11)C.[3,11)D.(2,11]6.若函数在区间上单调,则实数的取值范围为A. B.C. D.7.定义运算:a*b=,如1*2=1,则函数f(x)=2x*2-x的值域为A.RB.(0,+∞)C.(0,1]D.[1,+∞)8.已知集合E={x|2-x≥0},若F?E,则集合F可以是A.{x|x<1}B.{x|x>2}C.{x|x>3}D.{x|1<x<3}9.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f()的x的取值范围是() A.(,) B.[,) C.(,) D.[,)10.某部队练习发射炮弹,炮弹的高度与时间(秒)的函数关系式是,则炮弹在发射几秒后最高呢?A. B. C. D.11.已知,且,则等于A. B. C. D.12.已知集合和集合,则两个集合间的关系是A. B. C. D.M,P互不包含二、填空题:共4题每题5分共20分13.已知函数f(x)=a﹣x2(1≤x≤2)与的图象上存在关于轴对称的点,则实数的取值范围是A. C.14.设集合M={x|0≤x≤2},N={y|0≤y≤2}.给出下列四个图,其中能构成从集合M到集合N 的函数关系的是.?15.给出下列二次函数,将其图象画在同一平面直角坐标系中,则图象的开口按从小到大的顺序排列为.?(1)f(x)=-x2;(2)f(x)=(x+5)2;(3)f(x)=x2-6;(4)f(x)=-5(x-8)2+9.16.若函数的图像关于y轴对称,则的单调减区间为.三、解答题:共6题共70分17.(本题10分)如果对函数f(x)定义域内任意的x1,x2都有|f(x1)-f(x2)|≤|x1-x2|成立,就称函数f(x)是定义域上的“平缓函数”.(1)判断函数f(x)=x2-x,x∈[0,1]是否为“平缓函数”;(2)若函数f(x)是闭区间[0,1]上的“平缓函数”,且f(0)=f(1),证明:对任意的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤成立.(注:可参考绝对值的基本性质①|ab|≤|a||b|,②|a+b|≤|a|+|b|)18.(本题12分)记函数的定义域为集合,集合.(1)求和;(2)若,求实数的取值范围. 19.(本题12分)设全集U={x|0<x<9,且x∈Z},集合S={1,3,5},T={3,6},求:(1)S∩T;(2).20.(本题12分)已知函数f(x)=.(1)用定义证明f(x)在区间[1,+∞)上是增函数;(2)求该函数在区间[2,4]上的最大值与最小值.21.(本题12分)定义在非零实数集上的函数对任意非零实数满足:,且当时.(Ⅰ)求及的值;(Ⅱ)求证:是偶函数;(Ⅲ)解不等式:.22.(本题12分)(1)证明:函数f(x)=在(-∞,0)上是减函数;(2)证明:函数f(x)=x3+x在R上是增函数.参考答案1.B【解析】本试题主要考查函数的图象.根据题意,由于函数图象可知,函数在y轴右侧图象在x 轴上方,在y轴左侧的图象在x轴的下方,而函数在x>0时图象保持不变,因此排除C,D,对于选项A,由于在时偶函数,故在y轴左侧的图象与y轴右侧的图象关于y轴对称,故选B.【备注】无2.C【解析】本题主要考查相等函数、函数的定义域、值域与对应关系.A.因为这两个函数的值域不同,所以这两个函数不是相等函数;B.这两个函数的定义域不同,所以这两个函数不是相等函数;C.这两个函数的定义域、值域与对应关系均相同,所以这两个函数为相等函数;D.这两个函数的定义域不同,所以这两个函数不是相等函数.【备注】无3.D【解析】本题主要考查新定义问题、函数的性质及其综合应用.由题意,令x=0,由=可得由可得令则=同理=====令则==同理====.非减函数的性质:当时,都有.因为所以所以=. 【备注】无4.A【解析】本题主要考查分段函数的最值问题.由题意,函数的图象如图所示:红色图象即为所求解的函数的图象,可知最小值为0.【备注】无5.B【解析】f(x)=x2-4x+6=(x-2)2+2.∵f(x)图象的对称轴是直线x=2,∴f(x)在[1,2]上单调递减,在(2,5)上单调递增,∴f(x)的值域是[2,11).故选B.【备注】无6.C【解析】本题主要考查二次函数.依题意,函数在区间上单调,则函数的对称轴或,得或,故选C.【备注】无7.C【解析】本题主要考查在新型定义的前提下函数值域的求解.根据题目定义知f(x)=2x*2-x=,结合图象知其值域为(0,1].故选C.【备注】无8.A【解析】由题意知E={x|2-x≥0}={x|x≤2},F?E,观察选项知应选A.【备注】无9.A【解析】偶函数f(x)在区间[0,+∞)上单调递增,所以函数f(x)在区间(-∞,0]上单调递减.由于f(x)是偶函数,所以f(-x)=f(x),则f(-)=f().由f(2x-1)<f()得①或②,解①得≤x<,解②得<x<.综上可得<x<,故x的取值范围是(,).【备注】无10.C【解析】本题主要考查二次函数.依题意,根据二次函数得性质,函数的开口向下,对称轴为,故炮弹在发射后最高,故选C.【备注】无11.B【解析】本题主要考查函数的解析式与求值.因为,设,则,所以,因为,所以,解得,故选B.【备注】无12.D【解析】无【备注】无13.D【解析】本题主要考查二次函数的图像与性质,考查了逻辑推理能力与计算能力.因为函数f(x)=a ﹣x2(1≤x≤2)与的图象上存在关于轴对称的点,所以函数f(x)=a﹣x2(1≤x≤2)与的图象上存在交点,所以有解,令,则,求解可得,故答案为D. 【备注】无14.④【解析】图①中函数的定义域是[0,1];图②中函数的定义域是[-1,2];图③中对任意的x∈(0,2],其对应的y值不唯一.故①②③均不能构成从集合M到集合N的函数,图④满足题意.【备注】无15.(4)(3)(2)(1)【解析】因为二次函数y=ax2+bx+c(a≠0)的图象在同一平面直角坐标系中|a|越小,图象开口越大,又|-|<||<||<|-5|,所以图象开口按从小到大的顺序排列为(4)(3)(2)(1).【备注】无16.【解析】本题考查函数的图象.若函数的图像关于y轴对称,则a=0,,所以f(x)的单调减区间为.【备注】无17.(1)对任意的x1,x2∈[0,1],有-1≤x1+x2-1≤1,即|x1+x2-1|≤1.从而|f(x1)-f(x2)|=|(-x1)-(-x2)|=|x1-x2||x1+x2-1|≤|x1-x2|,所以函数f(x)=x2-x,x∈[0,1]是“平缓函数”.(2)当|x1-x2|<时,由已知,得|f(x1)-f(x2)|≤|x1-x2|<;当|x1-x2|≥时,因为x1,x2∈[0,1],不妨设0≤x1<x2≤1,所以x2-x1≥.因为f(0)=f(1),所以|f(x1)-f(x2)|=|f(x1)-f(0)+f(1)-f(x2)|≤|f(x1)-f(0)|+|f(1)-f(x2)|≤|x1-0|+|1-x2|=x1-x2+1≤-+1=.所以对任意的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤成立.【解析】无【备注】无18.由条件可得{|2}A x x =>, (1)={|23}x x <≤,{|3}A B x x ⋃=≥-;(2){|}C x x p =>,由可得2p ≥.【解析】本题考查函数的定义域与集合的运算.(1)先求出函数的定义域,再进行运算即可;(2)利用数轴进行分析即可得出结论.【备注】与不等式有关的集合运算或集合之间的关系问题通常可以借助数轴进行求解. 19.U ={1,2,3,4,5,6,7,8} (1)S ∩T ={3} (2)S ∪T ={1,3,5,6}={2,4,7,8}【解析】本题主要考查集合的基本运算.(1)由交集的定义求解;(2)由并集与补集的定义求解. 【备注】无20.(1)任取x 1,x 2∈[1,+∞),且x 1<x 2,则 f(x 1)-f(x 2)=-=.∵1≤x 1<x 2,∴x 1-x 2<0,(x 1+1)(x 2+1)>0, ∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), ∴函数f(x)在区间[1,+∞)上是增函数. (2)由(1)知函数f(x)在区间[2,4]上是增函数, ∴f(x)max =f(4)==, f(x)min =f(2)==.【解析】无 【备注】无 21.(1)f (1)=0,f (-1)=0;(2)f (-x )=f (x )+f (-1)=f (x )∴f (-x )=f (x ),所以函数是偶函数;(3)据题意可知,f (2)+f (x 2-1/2)=f (2x 2-1)≤0∴-1≤2x 2-1<0或0<2x 2-1≤1∴0≤x 2<1/2或<x 2≤1,所以不等式的解集为【解析】本题主要考查特殊函数的性质的判断与应用以及一元二次不等式的解法.(1)分别令x =1与x=—1即可求出结果;(2)利用函数奇偶性的定义即可证明;(3)根据题意与f (1)=0,f (-1)=0,原不等式可化为-1≤2x 2-1<0或0<2x 2-1≤1然后求解即可. 【备注】无22.(1)设x 1,x 2是(-∞,0)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=-.因为x1,x2∈(-∞,0),所以x1x2>0,又因为x1<x2,所以x2-x1>0,则>0.于是f(x1)-f(x2)>0,即f(x1)>f(x2).因此函数f(x)=在(-∞,0)上是减函数.(2)设x1,x2是R上的任意两个实数,且x1<x2,则x2-x1>0,而f(x2)-f(x1)=(+x2)-(+x1)=(x2-x1)(+x2x1+)+(x2-x1)=(x2-x1)(+x2x1++1)=(x2-x1)[(x2+)2++1].因为(x2+)2++1>0,x2-x1>0,所以f(x2)-f(x1)>0,即f(x2)>f(x1).因此函数f(x)=x3+x在R上是增函数.【解析】用定义证明函数f(x)在给定区间D上的单调性的一般步骤:①取值——任取x1,x2∈D,且x1<x2;②作差——f(x1)-f(x2);③变形——通过因式分解、配方、通分、有理化等方法,向有利于判断差值的符号的方向变形;④定号——判断f(x1)-f(x2)的正负;⑤下结论——指出函数f(x)在给定区间D上的单调性.【备注】无。
(2021年整理)高一年级数学必修1集合与函数测试题及答案
高一年级数学必修1集合与函数测试题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一年级数学必修1集合与函数测试题及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一年级数学必修1集合与函数测试题及答案的全部内容。
31中高一年级数学第一章测试—-集合与函数(满分120分) 姓名: 班级: 成绩:一、选择题:(本大题共12小题,每小题5分,共60分)1、如果集合{}8,7,6,5,4,3,2,1=U ,{}8,5,2=A ,{}7,5,3,1=B ,那么(A U )B 等于( )(A){}5 (B) {}8,7,6,5,4,3,1 (C ) {}8,2 (D) {}7,3,12.设函数y=1+x 的定义域为M ,集合N={y|y=x 2,x ∈R},则M ∩N=( ) A .φB .NC .[1,+∞)D .M3.已知{}7,6,5,4,3,2=U ,{}7,5,4,3=M ,{}6,5,4,2=N ,则( )A .{}6,4=⋂N M B. M ∪N=UC .U M N C u = )( D. N N M C u = )(4.已知集合A ={x ||x -1|<2},B ={x ||x -1|>1},则A ∩B 等于 ( )A .{x |-1<x <3}B .{x |x <0或x >3}C .{x |-1<x <0}D .{x |-1<x <0或2<x <3}5.下列各组函数中,表示同一函数的是 ( ) A .x xy y ==,1 B .1,112-=+⨯-=x y x x yC .33,x y x y ==D . 2)(|,|x y x y ==6。
高中数学 第一章 集合与函数概念 1.1.1 第2课时 集合的表示课后习题 新人教A版必修1-新人教
第2课时集合的表示一、A组1.已知集合A={x|x(x+4)=0},则下列结论正确的是()A.0∈AB.-4∉AC.4∈AD.0∉A解析:∵A={x|x(x+4)=0}={0,-4},∴0∈A.答案:A2.(2016·某某某某高一期中)设集合M={a2-a,0}.若a∈M,则实数a的值为()A.0B.2C.2或0D.2或-2解析:因为集合M={a2-a,0},a∈M,所以a=a2-a或a=0(舍去),所以a=2.故选B.答案:B3.(2016·某某双鸭山高一月考)已知集合A={-2,2},B={m|m=x+y,x∈A,y∈A},则集合B等于()A.{-4,4}B.{-4,0,4}C.{-4,0}D.{0}解析:∵集合A={-2,2},B={m|m=x+y,x∈A,y∈A},∴集合B={-4,0,4},故选B.答案:B4.已知集合M={y|y=x2},用自然语言描述M应为()A.满足y=x2的所有函数值y组成的集合B.满足y=x2的所有自变量x的取值组成的集合C.函数y=x2图象上的所有点组成的集合D.满足y=x的所有函数值y组成的集合解析:由于集合M={y|y=x2}的代表元素是y,而y为函数y=x2的函数值,故选A.答案:A5.(2016·某某文登高一月考)已知集合M=错误!未找到引用源。
,则M等于()A.{2,3}B.{1,2,3,4}C.{1,2,3,6}D.{-1,2,3,4}解析:因为集合M=错误!未找到引用源。
,所以5-a可能为1,2,3,6,即a可能为4,3,2,-1.所以M={-1,2,3,4},故选D.答案:D6.若集合A={1,2,3,4},集合B={y|y=x-1,x∈A},将集合B用列举法表示为.解析:当x=1时,y=0;当x=2时,y=1;当x=3时,y=2;当x=4时,y=3.故B={0,1,2,3}.答案:{0,1,2,3}7.设集合A={x|x2-3x+a=0},若4∈A,则集合A用列举法表示为.解析:∵4∈A,∴16-12+a=0,∴a=-4,∴A={x|x2-3x-4=0}={-1,4}.答案:{-1,4}8.一次函数y=2x与y=3x-2的图象的交点组成的集合用列举法表示为.解析:={(2,4)}.答案:{(2,4)}9.选择适当的方法表示下列集合:(1)被5除余1的正整数组成的集合;(2)24的所有正因数组成的集合;(3)在平面直角坐标系中,两坐标轴上的点组成的集合;(4)三角形的全体组成的集合.解:(1){x|x=5k+1,k∈N};(2{1,2,3,4,6,8,12,24};(3){(x,y)|xy=0};(4){x|x是三角形}或{三角形}.10.导学号29900007用描述法表示如图所示的阴影(含边界)中的点组成的集合.解:题图阴影中的点P(x,y)的横坐标x的取值X围为-1≤x≤3,纵坐标y的取值X围为0≤y≤3.故阴影(含边界)中的点组成的集合为{(x,y)|-1≤x≤3,0≤y≤3}.二、B组1.集合A={(x,y)|x+y≤1,x∈N,y∈N}中元素的个数是()A.1B.2C.3D.4解析:∵x∈N,y∈N,且x+y≤1,∴当x=0时,y=0或y=1;当x=1时,y=0.故A={(0,0),(0,1),(1,0)}.答案:C2.已知集合P={x|x=2k,k∈Z},Q={x|x=2k+1,k∈Z},R={x|x=4k+1,k∈Z},a∈P,b∈Q,则有()A.a+b∈PB.a+b∈QC.a+b∈RD.a+b不属于P,Q,R中的任意一个解析:设a=2m(m∈Z),b=2n+1(n∈Z),所以a+b=2m+2n+1=2(m+n)+1.又m+n∈Z,与集合Q中的元素特征x=2k+1(k∈Z)相符合,所以a+b∈Q,故选B.答案:B3.设a,b都是非零实数,则y=错误!未找到引用源。
高一数学必修1《集合与函数概念》测试卷(含答案)
第一章《集合与函数概念》测试卷(一)考试时间:120分钟满分:150分一.选择题.(本大题共12小题,每小题5分,共60分) 1.下列叙述正确的是( )A.函数的值域就是其定义中的数集BB.函数()y f x =的图像与直线x m =至少有一个交点C.函数是一种特殊的映射D.映射是一种特殊的函数2.如果{}1A x x =>-,则下列结论正确的是() A.0A ⊆ B.{}0A ⊆ C.{}0A ∈ D.A ∅∈3.设()(21)f x a x b =-+在R 上是减函数,则有( ) A.12a ≥B.12a ≤C.12a >D.12a < 4.定义在R 上的偶函数()f x ,对任意1x ,2x ∈[)0,+∞12()x x ≠,有1212()()0f x f x x x -<-,则有()A.(3)(2)(1)f f f <-<B.(1)(2)(3)f f f <-<C.(2)(1)(3)f f f -<<D.(3)(1)(2)f f f <<-5.若奇函数()f x 在区间[]1,3上为增函数,且有最小值0,则它在区间[]3,1--上() A.是减函数,有最小值0B.是增函数,有最小值0C.是减函数,有最大值0D.是增函数,有最大值06.设:f x x →是集合A 到集合B 的映射,若{}2,0,2A =-,则A B 等于()A.{}0B.{}2C.{}0,2D.{}2,0-7.定义两种运算:a b ab ⊕=,22a b a b ⊗=+,则函数3()33xf x x ⊕=⊗-为()A.奇函数B.偶函数C.既不是奇函数又不是偶函数D.既是奇函数又是偶函数 8.若函数()f x 是定义域在R 上的偶函数,在(),0-∞上是减函数,且(2)0f -=,则使()0f x <的x 的取值范围为() A.()2,2- B.()()2,00,2- C.()(),22,-∞-+∞ D.(][),22,-∞-+∞9.函数()xf x x x=+的图像是( ) 10.设()f x 是定义域在R 上的奇函数,(2)()f x f x +=-,当01x <≤时,()f x x =,则(7.5)f 的值为( )A. -0.5B. 0.5C. -5.5D.7.511.已知2(21)1f x x -+=+,且(21)f x -+的定义域为[)2,1-,则()f x 的解析式为( )A.)51(,452141)(2≤<--+=x x x x f B.)51(,452141)(2≤<-+-=x x x x f C.21153()(0)4242f x x x x =+-<≤, D.21153()(0)4242f x x x x =-+<≤,12.已知函数()f x 是定义在R 上的不恒为零的偶函数,且对任意实数x 都有(1)(1)()xf x x f x +=+,则5(())2f f 的值是( )A.0B.12C.1D.52二.填空题.(本大题共4小题,每小题5分,共20分)13.已知1()x f x +=()f x 的定义域为.14.设函数(1)()()x x a f x x++=为奇函数,则a 的值为.15.设22,1(),12x x f x x x +≤-⎧=⎨-<<⎩,若()f x =3,则x 的值为.16.关于函数()()1(),,00,f x x x x=-∈-∞+∞,有下列四个结论:○1()f x 的值域为R ; ○2()f x 是定义域上的增函数; ○3对任意的()(),00,x ∈-∞+∞,都有()()0f x f x -+=成立;○4()f x 与20()x x g x x x=-表示同一个函数.把你认为正确的结论的序号填写到横线上.三.解答题.(本大题共6小题,其中17题10分,其余5个小题每题12分,共70分)17.设函数()f x 是定义域在R 上的奇函数,当0x >时,2()331f x x x =-+-,求()f x 在R 上的解析式. 18.已知集合{}{}13,22A x x B x m x m -≤≤=-≤≤+=. (1)若{}03AB x x =≤≤,求实数m 的值(2)若R A C B ⊆,求实数m 的取值范围.19.二次函数()f x 的最小值为1,且(0)(2)3f f ==. (1)求()f x 的解析式;(2)若()f x 在区间[]2,1a a +上不单调,求a 的取值范围.20.某商场国庆节期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣;如果顾(1)试写出y x 关于的函数解析式; (2)若30y =,求此人购物实际所付金额. 21.已知函数2()2(1)f x x a x a =+-+. (1)当1a =-时,求()f x 在[]3,3-上的值域; (2)求()f x 在区间[]3,3-上的最小值. 22.已知2()1ax b f x x +=+是定义域在()1,1-上的奇函数,且12()25f =. (1)求()f x 的解析式;(2)判断()f x 的单调性,并证明你的结论; (3)解不等式(22)()0f t f t -+<.第一章《集合与函数概念》答案解析一.选择题.(本大题共12小题,每小题5分,共60分) CBDAD CAADA BA 二.填空题.(本大题共4小题,每小题5分,共20分) 13.[)()()1,11,22,-+∞或者{}11,2x x x x ≥-≠≠且14. -1 16.①③三.解答题.(本大题共6小题,其中17题10分,其余5个小题每题12分,共70分)2222217.0,0()3()3()1331()()()331()(0)0331,0()0,0331,0x x f x x x x x f x f x f x x x f x R f x x x f x x x x x <->∴-=--+--=---∴=--=++∴=⎧++<⎪∴==⎨⎪-+->⎩解:设则是奇函数又是上的奇函数{}()()2018.(1)2232.(2),2,2232153,35,U U m m m m B C B x x m x m A C Bm m m m m -=⎧⇒=⎨+≥⎩∴≠∅=<->+⊆∴->+<-><-∴-∞-+∞解:由题意得: 的值为 由题意知:则或或 得到或 的取值范围为22219.(1)(0)(2)3()1()1()(1)1(0)(0)132()2(1)1,()243211(2)02112f f f x x f x f x a x a f a a f x x f x x x a a a a a a ==∴=∴=-+>=+==∴=-+=-+<+⎧⇒<<⎨<<+⎩∴解: 二次函数的对称轴为 又有最小值 设 由得 即 由题意得: 的取值范围102⎛⎫⎪⎝⎭为, 0,080020.(1):(800)5%,800130025(1300)10%,1300(2)305005%2525(1300)10%30,135013503013201320x y x x x x x x ≤≤⎧⎪=-⨯<≤⎨⎪+-⨯>⎩>⨯=∴+-⨯==∴-=∴解:由题意得 解得 此人购物实际所付金额为元.[](][][]2min 21.(1)1()41()2()-3,22,3()=(2)5(3)20,(3)4()3,3-5,20(2)()113,4a f x x x f x x f x f x f f f f x f x x a a a =-=--∴=∴∴=--==-∴-=--<->解:当时, 的对称轴为 在上单调递减,在上单调递增 / 又在上的值域为 的对称轴为 ①当即时 [][](][]min 2min()-33()=(3)155313,24()-3,11,3()=(1)3113,2()-33f x f x f a a a f x a a f x f a a a a a f x f ∴-=--≤-≤-≤≤--∴-=-+--><-∴ 在,上单调递增 / ②当即时在上单调递减,在上单调递增/ ③当即时 在,上单调递减 min 2min ()=(3)7+37+3,2()=31,24155,4x f a a a f x a a a a a =<-⎧⎪-+--≤≤⎨⎪->⎩/ 综上所述,/()()22212121222.(1)()1,1(0)0()112()2522,115()12()1(2)()-1,1,(1,1),,()()f x f baxf x x f aa xf x x f x x x x x x f x f x -∴==∴=+=∴==+∴=+∈-<-=解:是上的奇函数又 解得 在上单调递增.证明:任意取且则()1212122222121212221212121212()(1)11(1)(1)110,10,10,10()()0,()()()-1,1(3)(22)()0x x x x x x x x x x x x x x x x x f x f x f x f x f x f t f t ---=++++-<<<∴-<->+>+>∴-<<∴-+<∴即 在上单调递增. ()()(22)()()1,1()()(22)()(2)()1,122121221,2311f t f t f x f t f t f t f t f x t tt t t -<--∴-=-∴-<---<-⎧⎪∴-<-<<<⎨⎪-<-<⎩ 易知是上的奇函数 又由知是上的增函数 解得。
高一数学人教版必修一第一章《集合与函数概念》综合测试题(含答案)
第一章集合与函数概念综合测试题、选择题1函数讨二2x -1的定义域是()2•已知集合 A 到B 的映射f:x T y=2x+1,那么集合A 中元素2在B 中对应的元素是( )A • 2B • 6C • 5D • 83•设集合 A 二{x|1 ::: x ::: 2}, B 二{x|x ::: a}.若 A B,则 a 的范围是()A • a_2B • a < 1C • a - 1D . a 乞 24•函数y =(k • 2)x • 1在实数集上是减函数,则 k 的范围是()A • k l :—2B • k z ;—2C • k ^ -2D • k-25•全集 U ={ 0,1,3,5,6,8},集合 A = { 1 , 5, 8 }, B ={2},则(6 A ) B =()A (2,;)B.[];)2 2—1 C.(「2) -1D.( =,2]B • { 0,3,6} {2,1,5,8} D • {0,2,3,6}F列各组函数中,表示同一函数的是(0 x y =x ,y =A •xB y = .x -1 . x 1, y = . x2 -1—2Dy=|x|,y = (、x)F列函数是奇函数的是(1A • y =x2B • y =2x2 3 (一“)若奇函数f x在1,3】上为增函数,且有最小值0,则它在1-3,-1】上A •是减函数,有最小值C •是减函数,有最大值设集合M = X - 2乞x -2 :f,B •是增函数,D •是增函数,N 二:y0 -有最小值有最大值y乞2:,给出下列四个图形,其中能表示集合M为定义域,N为值域的函数关系的是()x2 x 010. 已知f (x) X=0,则 f [ f (-3)]等于( )0 x cO2A . 0 B. n C. n D. 9二. 填空题r X +5(XA 1) nt211. 已知f(x—1)=x2,贝y f(x)= .14.已知f (x) = 2 ,则2x +1(x 兰1)f[f(1)> _______________________ .212. 函数y = x -6x的减区间是_____________ .13•设偶函数f (x)的定义域为R,当x・[0, •::)时f(x)是增函数,则f (2), f (二),f (-3)的大小关系是_________________________三、解答题14.设U =R, A x _1[ B J x 0 :: x :: 5?,求C u 切B 和A C U B .15. 求下列函数的定义域(4)f(X)x —22(2) f(x)|x| -216.集合A = 'xx2• 4x = 0; B -汉x2• 2 a T x • a2-1 = 0若A B = B求a 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学第一章集合与函数检测题(二) 班级_______ 姓名_______ 学号____
一、选择题:
1.设集合M={x|x ≤2008},a=2005,则下列各式中正确的是( )
A .0⊆M
B .{a}∈M
C .{a}⊂M
D .{a}⊃M 2.若U=N ,则集合C U N +
=( )
A .0
B .{0}
C .φ
D .N +
3.下列命题:①φ没有子集 ②φ是任何一个集合的子集 ③任何集合必须有两个以上的子集,一个是它本身,另一个则是φ ④φ={0},其中正确..
的命题有( ) A .0个 B .1个 C .2个 D .3个
4.已知集合A={y|y=x 2
-2x+3},B={y|y=2x 2-3x+1},则A ∪B=( ) A .{(-1,6),(2,3)} B .{y|y ≥2} C .{y|-81≤y ≤2} D .{y|y ≥-8
1} 5.六个关系式:①{a,b}⊆{b,a} ②{b,a}={a,b} ③{0}⊇φ ④0∈{0} ⑤φ={0}⑥φ∈{0},其中错误..
的关系有( ) A .0个 B .5个 C .3个 D .2个
6.设f:A →B 是从集合A 到B 的映射,下列说法正确的是( )
A .
B 中每一个元素在A 中的原象是唯一的 B .B 是A 中所有元素的象的集合
C .A 中有元素在B 中无象
D .A 中每一个元素在B 中必有唯一的象 7.下列各组函数中,f(x)与g(x)表示同一函数的是( ) A .f(x)=x 0
,g(x)=1 B .f(x)=2x ,g(x)=x
C .f(x)=31x 2,g(x)=x 3x 3
D .f(x)=|x-1|,g(x)=⎪⎩⎪
⎨⎧<-≥-)1x (x 1)1x (1x
8.函数y=2
2
x
1x 4--的定义域为( ) A .[-2,2] B .[-2,-1)∪(-1,1)∪(1,2] C .(-∞,-2)∪(2,+∞) D .[-2,-1)∪(1,2]
9.若函数y=3ax 2ax 2+-的定义域为R ,则实数a 的取值范围是( )
A .(0,3]
B .(0,3)
C .[0,3)
D .[0,3]
10.函数f(x)=⎪⎪
⎩
⎪
⎪⎨⎧≥<<--≤+)2x (x 2)2x 1(x )
1x (2x 2,若f(x)=3,则x=( )
A .1
B .1或
2
3
C .3±
D .3 11.函数y=f 1(x)是R 上的增函数,y=f 2(x)是R 上的减函数,则( )
A .y=f 1(x)+f 2(x)是R 上的增函数
B .y=f 1(x)+f 2(x)是R 上的减函数
C .y=f 1(x)-f 2(x)是R 上的增函数
D .y=f 1(x)-f 2(x)是R 上的减函数 12.已知y=f(x)是偶函数,y=g(x)是奇函数,则( )
A .y=f(x)+g(x)是偶函数
B .y=f(x)-g(x)是奇函数
C .y=f(x)g(x)是偶函数
D .y=f(x)g(x)是奇函数 二、填空题:
13.设f(x)=x 2
+2x+1,那么f[f(2)]=___________。
14.函数y=ax 2+bx+c,当a>0时的单调递增区间是______________。
15.函数f(x)=x 2+2(a-1)+2在(-∞,4]上是减函数,则a 的取值范围是________。
16.已知f(x)=x 5+ax3+bx-8,若f(-2)=0,则f(2)=_________。
17.函数y=
1
x x
2+的值域是______________________。
选择、填空题答案
三、解答题:
18.已知f(x)是二次函数,且有f(0)=1,f(x+1)=f(x)+2x,求f(x)并作出图像。
19.( 本小题满分10分)若函数bx
x a x f 1
)1()(2
++=
,且3)1(=f ,29)2(=f
⑴求b a ,的值,写出)(x f 的表达式 ⑵用单调性的定义证明)(x f 在),1[+∞上是增函数
20. ( 本小题满分10分)已知奇函数f(x)是定义在(-1,1)上的减函数,且f(a-2)+f(a 2
-4)<0,求实数a 的取值范围.
21.已知f(x)=
x
1x
+ (1)写出函数定义域、值域; (2)求f(1)+f(2)+f(3)+…+f(2005)+f(21)+f(31)+…+f(2005
1
)的值。
22. ( 本小题满分10分)根据市场调查,某商品在最近40天的价格f(t)与时间t 满足关系
f(t)=⎪⎩⎪⎨⎧∈≤≤+-∈〈≤+).
,4020(41)
,200(1121
N t t t N t t t 销售量g(t)与时间t 满足关系g(t)= —31t+343(0≤t
≤40,t ∈N). 求这种商品的销售额F(x)的最大值.(注: 商品的销售额F(x)=销售量g(t)×
价格f(t) ).。