学年高二12月月考数学试题(图片版)(附答案) (1)

合集下载

2021-2022年高二上学期12月月考数学理试题含答案

2021-2022年高二上学期12月月考数学理试题含答案

2021年高二上学期12月月考数学理试题含答案一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.命题“”的否定是▲.1.2.等差数列中,若, ,则 . 2. 1003.函数的导数▲ .3.2.在中,,则= .5.等差数列中,,,则其前n项和的最小值为___________.5. -45.在中,若,则▲.【答案】7.下列有关命题的说法中,错误..的是▲(填所有错误答案的序号).7.③①命题“若,则”的逆否命题为“若,则”;②“”是“”的充分不必要条件;③若为假命题,则、均为假命题.8.函数y=的最小值是8。

7.若成等差数列,成等比数列,则(结果用区间形式表示)7.8.已知抛物线的焦点是双曲线的右焦点,则双曲线的渐近线方程为▲.8.8.(理科)若,满足约束条件2323xx yx y≥⎧⎪+≥⎨⎪+≤⎩,则的最小值是▲.【答案】-39.已知{}是公差不为0的等差数列,不等式的解集是,则=.9. 2n 12.设满足约束条件,若目标函数的最大值为12,则的最小值为__ 12. 413.设等差数列的首项及公差均是正整数,前项和为,且,,,则a xx= 13. 402013.已知中,,若该三角形有两解,则的取值范围是13.12.如图,中,D是BC边上的中线,且,,则周长的最大值为▲.【答案】13.如图平面直角坐标系中,椭圆的离心率,分别是椭圆的左、右两个顶点,圆的半径为,过点作圆的切线,切点为,在轴的上方交椭圆于点.则▲.13.14.对于数列,如果对任意正整数,总有不等式:成立,则称数列为向上凸数列(简称上凸数列). 现有数列满足如下两个条件:(1)数列为上凸数列,且;(2)对正整数(),都有,其中.则数列中的第五项的取值范围为 . 14。

14.已知数列:11212312,,,,, 233444111nn n n+++⋅⋅⋅++⋅⋅⋅+⋅⋅⋅+++.设,则数列的前n项和为▲.【答案】二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)已知的三个内角所对的边分别为,是锐角,且. (1)求;(2)若,的面积为103,求的值.15. (本小题共14分) 解:(1) 由,又是锐角,所以………………………………………………6分(2)由面积公式13sin 1032S bc A bc ===, 又由余弦定理:2222cos 4913a b c bc A b c =+-=⇒+=…………………………14分.15.(本题满分14分) (理科)已知命题p :,命题q :.若为假命题, 为真命题,求实数x 的取值范围.(理)解:解不等式,得,所以p : (6分)由为假命题,为真命题,可得p ,q 一真一假. 当p 假q 真时, (10分) 当p 真q 假时,16.(本题满分14分)如图,在河对岸可以看到两个目标A ,B ,但不能到达,在岸边选取相距km 的C ,D 两点,并测得,,,。

2021-2022年高二12月月考 数学 含答案

2021-2022年高二12月月考 数学 含答案

2021年高二12月月考 数学 含答案一、选择题(共12个小题,每小题5分,共60分)1.命题“如果,那么”的逆否命题是 ( )A .如果,那么B .如果,那么C .如果,那么D .如果,那么 2.已知则是的 ( )A .充分不必要条件 B .必要不充分条件C .充要条件 D .既不充分也不必要条件 3.已知向量的夹角为 ( )A.0°B.45°C.90D.180°4.已知方程表示焦点在y 轴上的椭圆,则m 的取值范围是( ) A .m <2 B .1<m <2 C .m <-1或1<m < D .m <-1或1<m <25.过双曲线的一个焦点作垂直于实轴的弦,是另一焦点,若∠,则双曲线的离心率等于 ( )A .B .C .D . 6. 已知的值分别为与则若μλμλλ,//),2,12,6(),2,0,1(b a b a -=+= ( ) A.B.5,2C.D.-5,-27.若 是椭圆的两个焦点,为椭圆上一点,且,则Δ的面积为 ( )A .B .C .D . 8.在同一坐标系中,方程与的曲线大致是( )9.已知圆锥曲线的离心率e 为方程的两根,则满足条件的圆锥曲线的条数为 ( )A .1B .2C .3D .410.已知双曲线的离心率为2,有一个焦点恰好是抛物线的焦点,则此双曲线的渐近线方程是( )A. B. C. D.11.椭圆上有n个不同的点:P1 ,P2 ,…,P n , 椭圆的右焦点为F,数列{|P n F|}是公差大于的等差数列, 则n的最大值是()A.198 B.199 C.200 D.20112.若椭圆的左、右焦点分别为F1、F2,线段F1F2被抛物线y2=2bx的焦点分成5:3两段,则此椭圆的离心率为()A. B.C.D.二、填空题(共4个小题,每小题5分,共20分)13.“末位数字是0或5的整数能被5整除”的否定形式是;否命题是 .14.在平行六面体中,M为AC与BD的交点,若,则= 。

重庆市西南大学附属中学校2022-2023学年高二上学期12月月考数学试题(含答案)

重庆市西南大学附属中学校2022-2023学年高二上学期12月月考数学试题(含答案)

秘密★启用前2022~2023学年度上期学情调研高二数学试题卷注意事项:1.答卷前,考生务必将自己的姓名.准考证号码填写在答题卡上。

2.作答时,务必将答案写在答题卡上,写在本试卷及草稿纸上无效。

3.考试结束后,将答题卡交回。

一、选择题;本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13,21….该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它的前面两个数的和,人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,则()()()()2332132243334201520172016a a a a a a a a a a a a ----=A .1B .2017C .-1D .-20172.古希腊数学家阿波罗尼奥斯采用平面切割圆锥的方法来研究圆锥曲线,用垂直于圆锥轴的平面去截圆雉,得到的截面是圆;把平面再渐渐倾斜得到的截面是椭圆.若用面积为144的矩形ABCD 截某圆锥得到椭圆τ,且τ与矩形ABCD 的四边相切.设椭圆τ在平面直角坐标系中的方程为22221(0)x ya b a b+=>>,下列选项中满足题意的方程为( )A .2218116x y +=B .2216581x y +=C .22110064x y +=D .22164100x y +=3.若抛物线22y px =的焦点与双曲线2213x y -=的右焦点重合,则该抛物线的准线方程为A .=1x -B .2x =-C .1x =D .4x =4.已知{}n a 是等差数列,若11a +,33a +,55a +成等比数列,且公比为q ,则q =( )A .3B .3-C .1D .1-5.在等比数列{}n a 中,28,a a 为方程240x x π-+=的两根,则357a a a 的值为( )A .B .-C .±D .3π6.我国古代数学名著《增删算法统宗》中有如下问题:“一个公公九个儿,若问生年总不知,知长排来争三岁,其年二百七岁期借问长儿多少岁,各儿岁数要详推”大致意思是:一个公公九个儿子,若问他们的生年是不知道的,但从老大的开始排列,后面儿子比前面儿子小3岁,九个儿子共207岁,问老大是多少岁? ( )A .38B .35C .32D .297.已知双曲线()()220022:10,0,,x y C a b P x y a b-=>>是直线20bx ay a -+=上任意一点,若圆()()22002x x y y -+-=与双曲线C 的右支没有公共点.则双曲线C 的离心率的取值范围是( )A .(]1,2B .(C .()2,∞+D .)+∞8.数列{}n a 满足11a =,对任意的*N n ∈都有11n n a a a n +=++,则122016111...a a a +++=( )A .20152016B .20162017C .40342017D .40322017二、选择题;本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.记n S 为等差数列{}n a 的前n 项和,n T 为数列{}n b 的前n 项和,且11,*.n n n a a b n N +=∈若40,S =55a =,则( )A .25n a n =-B .24n S n n=-C .16n T <-D .()5n n a b +的最大值为210.关于函数()xf x e =,()lng x x =下列说法正确的是( )A .对0x ∀>,()1g x x ≤-恒成立B .对x ∀∈R ,()f x ex ≥恒成立C .若a b e >>,()()ag b bg a <D .若不等式()()f ax ax x g x -≥-对1x ∀>恒成立,则正实数a 的最小值为1e11.设数列{}n a 是公差为d 等差数列,n S 为其前n 项和,10a <,且20202023S S =,则( )A .0d >B .20220a =C .56S S <D .2021S ,2022S 为n S 的最小值12.已知双曲线22:1169x y C -=,下列结论正确的是( )A .双曲线C 的渐近线方程为34y x=±B .双曲线C 的焦点到其渐近线的距离为3C .若直线l 与C 相交于A 、B 两点且AB 的中点为()8,3,则l 的斜率为32-D .若直线y kx =与C 没有交点,则k 的取值范围是33,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭三、填空题;本题共4小题,每小题5分,共20分13.顶点在原点,经过圆2220C x y x +-+=:的圆心且准线与x 轴垂直的抛物线方程为________.14.数列{}n a 满足11a =,22a =,且2221sin 2cos 22n nn n a a ππ+⎛⎫=+⋅+ ⎪⎝⎭(*n ∈N ),则2020a =__.15.在ABC ∆中,,,a b c 分别为角,,A B C 的对边,已知2221cos cos sin sin sin 4A B C B C -+==,且ABC ∆,则a 的值为__________.16.已知{an }是公差不为零的等差数列,a 5=14,且a 1,a 3,a 11成等比数列,设bn =(-1)n +1an ,数列{bn }的前n 项的和为Sn ,则S 2 021=________.四、解答题;本题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知数列{}n a 满足132a =,111,213,2n n n a n n k a a n k--+-=+⎧=⎨=⎩,其中*k ∈N .记2112n n b a n -=++,*n ∈N .(1)求证:数列{}n b 是等比数列;(2)记212212n n n S a a a a -=++++…,试比较2(1)133n n S +++与233n nS +的大小,并说明理由.18.已知数列{}n a 的前n 项和为n S ,12n n a a S =+,且12a =.(1)求{}n a 的通项公式;(2)若()21log n n b n a =+,求221n n b ⎧⎫+⎨⎬⎩⎭的前n 项和n T .19.对于数列A :a 1,a 2,a 3,…,定义A 的“差数列” ∆A :213243,,a a a a a a ---,…(I )若数列A :a 1,a 2,a 3,…的通项公式121n n a -=+,写出∆A 的前3项;(II )试给出一个数列A :a 1,a 2,a 3,…,使得∆A 是等差数列;(III )若数列A :a 1,a 2,a 3,…的差数列的差数列 ∆(∆A )的所有项都等于1,且19a =92a =0,求1a 的值.20.已知中心在原点,焦点在x 轴上的椭圆C 的离心率为12,直线0x y +=过其短轴的一个端点.(1)求椭圆C 的标准方程;(2)若过点(2,1)P 的直线l 与椭圆C 在第一象限相切于点M ,求直线l 的方程和点M 的坐标.21.设n S 是等差数列{}n a 的前n 项和,已知132a a +=-,1575S =(*n ∈N ).(Ⅰ)求9S ;(Ⅱ)若数列()()1144n n n b a a +=++,求数列{}n b 的前n 项和n T .22.已知椭圆C :()222210x y a b a b +=>>的左焦点为F,点M ⎛ ⎝在椭圆C 上,且椭圆C 上存在点N 与点F 关于直线y x =对称.(1)求椭圆C 的标准方程.(2)若直线l 与椭圆C 只有一个公共点,点A ,B 是x 轴上关于原点对称的两点,且点A ,B 在直线l 上的射影分别为P ,Q ,判断是否存在点A ,B ,使得AP BQ ⋅为定值,若存在,求出A ,B 的坐标及该定值;若不存在,请说明理由.参考答案1.C根据“斐波那契数列”特点可得到数列的规律,即当n 为偶数时,2211n n n a a a ++-=-;当n 为奇数时,2211n n n a a a ++-=,所求式子最末项2015n =,从而可得结果.由题意得:21321a a a -=,22431a a a -=-,23541a a a -=,…∴当n 为偶数时,2211n n na a a ++-=-;当n 为奇数时,2211n n n a a a ++-=()()()()23321322433342015201720161a a a a a a a a a a a a ∴---⋅⋅⋅-=-本题正确选项:C本题考查根据数列的性质求值的问题,关键是能够总结归纳出数列中的规律.2.A由方程的要求,排除两个选项,再由矩形ABCD 的面积确定正确选项.由题意椭圆方程是22221(0)x y a b a b+=>>,排除BD ,矩形ABCD 的四边与椭圆相切,则矩形的面积为22a b ⋅144=,36ab =.在椭圆2218116x y +=中,9,4a b ==,36ab =,满足题意,在椭圆22110064x y +=中10,8a b ==,80ab =, 不满足题意.故选:A .3.B试题分析:双曲线2213x y -=的右焦点为()2,0 故抛物线22y px =中242p p =⇒= 故其准线方程为2x =-考点:抛物线的焦点,双曲线的焦点,抛物线的准线方程4.C设{}n a 是公差为d 的等差数列,运用等比数列的中项性质和等差数列的通项公式,化简可得1d =-,再由等比数列的定义,计算可得所求值.解:设{}n a 是公差为d 的等差数列,若11a +,33a +,55a +成等比数列,可得2315(3)(1)(5)a a a +=++,即2111(23)(1)(45)a d a a d ++=+++,化为2210d d ++=,解得1d =-,则1(1)n a a n =--,则公比为3111323111a a q a a +-+===++,故选:C .本题考查等差数列的通项公式和等比数列的中项性质和定义,考查方程思想和化简运算求解能力,属于基础题.5.C利用韦达定理可得28a a ,再根据等比数列的性质即可得出答案.解:在等比数列{}n a 中,因为28,a a 为方程240x x π-+=的两根,所以2258a a a π==,所以5a =所以33575a a a a ==±.故选:C.6.B由题意,将九个儿子的年龄可以看成以老大的年龄1a 为首项,公差为3-的等差数列,根据等差数列的求和公式列出方程,即可求出结果.由题意可知,九个儿子的年龄可以看成以老大的年龄1a 为首项,公差为3-的等差数列,所以()198932072a ⨯+⨯-=,解得135a =,故选:B.本题主要考查等差数列的简单应用,考查等差数列前n 项和公式的基本量运算,属于基础题型.7.B由直线20bx ay a -+=与渐近线0bx ay -=的距离得到圆心()00,P x y 到直线0bx ay -=的距离为2a d c=,再根据圆()()22002x x y y -+-=与双曲线C 的右支没有公共点,由2a d c =求解.双曲线22221x y a b-=的一条渐近线方程为0bx ay -=,因为点()00,P x y 是直线20bx ay a -+=上任意一点,又直线20bx ay a -+=与直线0bx ay -=的距离为:2a d c=,即圆心()00,P x y 到直线0bx ay -=的距离为:2ad c=,因为圆()()22002x x y y -+-=与双曲线C 的右支没有公共点,所以2ad c =c e a=≤1e >,所以双曲线的离心率的取值范围为.故选:B本题考查求解双曲线离心率的范围,对学生的理解与转化能力要求较高,难度较难.涉及到和双曲线某一支的交点个数问题,注意借助双曲线的渐近线进行分析.解题的关键在于将问题转化为渐近线0bx ay -=与直线20bx ay a -+=.8.D利用累加法可得(1)2n n n a +=,再裂项相消求和即可由题意得,对11n n a a a n +=++,故11a =,212a a =+,323a a =+,…,1n n a a n -=+,累加可得(1)12...(2)2n n n a n n +=+++=≥,11a =满足,所以(1)2n n n a +=,则1112(1n a n n =-+,122016111a a a +++ 1111140322(1223201620172017=-+-++-= 故选:D .9.ABD由题意,列方程组求出等差数列{}n a 的首项1a 和公差d 即可求解n a 与n S ,选项A 、B 可判断;由n a 可得n b ,又111136T b ==>-即可判断选项C ,由()1515282n n a b n n+=+-,利用单调性即可求解最大值.解:因为数列{}n a 为等差数列,40S =,55a =,所以1145460a d a d +=⎧⎨+=⎩,解得13,2a d =-=,所以()31225n a n n =-+-⨯=-,()232542n n n S n n -+-==-,故选项A 、B 正确;又因为11n n n a a b +=,所以()()1112523n n n b a a n n +==--,因为1n =时,111136T b ==>-,所以选项C 错误;因为()()()2221515252341615282nnn n a b n n n n n n+===---++-,1n =时,()11235a b =+,2n =时,()2245a b =-+,3n ≥时,因为15282n n+-随着n 的增大而增大,且大于0,所以()()33255n n a b a b +≤=+,综上,()5n n a b +的最大值为2,故选项D 正确;故选:ABD.10.ABD选项A :构造函数()()ln 10h x x x x =-+>,根据导数判断函数的单调性并求最大值,从而判断选项正确;选项B :构造函数()()x f x ex ϕ=-,根据导数判断函数的单调性并求最小值,从而判断选项正确;选项C :构造函数()()()0g x m x x x=>,根据导数判断函数在(),e +∞内单调递减,从而判断选项错误;选项D :把不等式()()f ax ax x g x -≥-变形为ln ln ax x e ax e x -≥-,所以只需研究函数()x F x e x =-的单调性即可求出答案,从而判断选项正确.选项A :令()()ln 10h x x x x =-+>,则()111xh x x x-'=-=,因为0x >,所以由()0h x '>得01x <<;由()0h x '<得1x >,所以()h x 在()0,1内单调递增,在()1,+∞内单调递减,所以()h x 的最大值为()10h =,所以对0x ∀>,()0h x ≤恒成立,即对0x ∀>,()1g x x ≤-恒成立,故选项A 正确;选项B :令()()x x f x ex e ex ϕ=-=-,则()x x e e ϕ'=-,由()0x ϕ'>得1x >;由()0x ϕ'<得1x <,所以()x ϕ在()1,+∞内单调递增,在(),1∞-内单调递减,所以()x ϕ的最小值为()10ϕ=,所以对x ∀∈R ,()0x ϕ≥恒成立,即对x ∀∈R ,()f x ex ≥恒成立,故选项B 正确;选项C :令()()ln ()0g x x m x x x x==>,则21ln ()xm x x -'=,所以由()0m x '>得0<<x e ;由()0m x '<得>x e ,所以()m x 在()0,e 内单调递增,在(),e +∞内单调递减,所以当a b e >>时,()()m a m b <,即()()g a g b a b<,所以a b e >>,()()ag b bg a >成立,故选项C 错误;选项D :因为不等式()()f ax ax x g x -≥-对1x ∀>恒成立,即不等式ln ax e ax x x -≥-对1x ∀>恒成立,又因为ln ln ln x x x e x -=-,所以不等式ln ln ax x e ax e x -≥-对1x ∀>恒成立;令()x F x e x =-,则 ()1x F x e '=-,当0x >时,()10x F x e '=->恒成立,所以()x F x e x =-在()0,∞+单调递增,所以由不等式ln ln ax x e ax e x -≥-对1x ∀>恒成立,得ln ax x ≥对1x ∀>恒成立,即ln xa x≥对1x ∀>恒成立,由选项C 知,()ln ()1xm x x x=>在()1,e 内单调递增,在(),e +∞内单调递减,所以()m x 的最大值为1()m e e =,所以只需1a e ≥,即正实数a 的最小值为1e .故选:ABD.利用导数研究不等式恒成立问题,通常要构造函数,然后利用导数研究函数的单调性,求出最值进而得到结论或求出参数的取值范围;也可分类变量构造函数,把问题转化为函数的最值问题.恒成立问题常见的处理方式有:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)()f x a >恒成立型的可转化为min ()f x a >;(3)()()f xg x >恒成立型的可以通过作差法构造函数()()()h x f x g x =-,然后求min ()0h x >,或者转化为min max()()f x g x >.11.ABD根据题干条件找出1a 和d 的等量关系,分析出1a 和d 的符号后逐一判断即可.根据20202023S S =可知,2021202220230a a a ++=,由等差中项可得,202120222023202203a a a a ++==,即20220a =,故B 正确;10a <,2022102021a a d ==+,故102021a d =->,故A 正确;10a <,0d >可知,等差数列单调递增,但20220a =,说明()12021,n a n n ≤≤∈Z 都是负数,故2021S 最小,又20220a =,于是20212022S S =,它们均是最小值,故D 正确;据刚才分析,60a <,而6560S S a -=<,故C 错误.故选:ABD 12.AB结合双曲线的渐近线,焦点到渐近线的距离,点差法、直线与双曲线的位置关系判断出正确选项.依题意,双曲线22:1169x y C -=,4,3,5a b c ===,双曲线的渐近线方程为34=±=±b y x x a ,A 选项正确.焦点()5,0F 到渐近线340x y -=的距离为1535=,B 选项正确.设()()1122,,,A x y B x y ,则222211221,1169169x y x y -=-=,两式相减并化简得12121212916y y y y x x x x +-=⋅+-,若AB 的中点为()8,3,则12121212933,1682y y y y x x x x --=⋅=--,即l 的斜率为32,C 选项错误.双曲线的渐近线34y x =±与双曲线没有交点,34k =±,所以D 选项错误.故选:AB 13.试题分析:由题意圆的圆心,因此抛物线的方程的焦点在轴正半轴,设方程,把点代入得,解得,因此抛物线方程.考点:抛物线的标准方程.14.2020当n 为偶数时,可得出22n n a a +=+,故偶数项是以2为首项,公差为2的等差数列,求出通项公式,代值计算即可得解.当n 为偶数时,2223cos 1sin 2cos 1cos 2222n n n n n n n a a a n a ππππ+-⎛⎫=+⋅+=⋅++=+ ⎪⎝⎭,即22n n a a +=+,故数列{}n a 的偶数项是以2为首项,公差为2的等差数列,所以2122n n a n ⎛⎫=+-⨯= ⎪⎝⎭,所以20202020a =.故答案为:2020.本题考查数列的递推式,解题关键是得出当n 为偶数时,可得出2n a +与n a 的关系式,进而求出{}n a 的通项公式,考查逻辑思维能力和计算能力,属于常考题.15.根据同角的三角函数关系和正弦、余弦定理求得角A 的值,再利用正弦定理和比例性质求得22bc a sinBsinC sin A=,结合△ABC 的面积求出a 的值.△ABC 中,由cos 2A ﹣cos 2B +sin 2C =sin B sin C 14=,得1- sin 2A -(1- sin 2B )+sin 2C =sin 2B +sin 2C ﹣sin 2A =sin B sin C ,∴b 2+c 2﹣a 2=bc ,由余弦定理得cos A 222122b c a bc +-==,又A ∈(0,π),∴A 3π=;由正弦定理a b csinA sinB sinC==,∴22bc a sinBsinC sin A=,即22143bc a sin π=,化简得a 2=3bc ;又△ABC 的面积为S △ABC 12=bc sinA =∴bc =4,∴a 2=12,解得a =故答案为本题考查了正弦、余弦定理的应用问题,也考查了三角形面积公式应用问题,是中档题.16.3032根据已知条件求得n a ,进而求得n b ,利用分组求和法求得2021S .设等差数列{}n a 的公差为d ,由于a 1,a 3,a 11成等比数列,∴23111a a a =⋅,即(a 5-2d )2=(a 5-4d )·(a 5+6d ).∴14d 2=3a 5d .又d ≠0,a 5=14,知d =3,因此an =a 5+(n -5)×3=3n -1,bn =(-1)n +1(3n -1).∴S 2 021=b 1+b 2+b 3+…+b 2 021=b 1+(b 2+b 3)+(b 4+b 5)+…+(b 2 020+b 2 021)2310103032=+⨯=.故答案为:303217.(1)见解析;(2)2(1)213333n n n nS S ++++>理由见解析.(1)根据题意求1n nb b +及1b ,即可得到数列{}n b 是等比数列;(2)根据(1)得到数列{}n b 的通项公式及前n 项和,然后根据题意将2n S 和数列{}n b 的前n 项和联系起来,得到2n S ,进而得22n S +,最后利用作差法比较2(1)133n n S +++与233n nS +的大小即可.(1)由题意得21221121212113312332223111222n n n n nn n n a n a n n a n b b a n a n a n +-+---++++++++====++++++,且11332b a =+=, 所以数列{}n b 是以3为首项,3为公比的等比数列.(2)由(1)知,3nn b =,所以()11231333132n n n b b b +--+++==-….因为2112n n b a n -=++,*n ∈N ,所以123112n n b a n --=+-+, (23122)b a =++,11112b a =++,所以()121321(1)22n n n n nb b b a a a -++++=+++++…….而212212n n n S a a a a -=++++…,11212133…--=++++n n a a a a ,()13214…-=+++n a a a .所以1212233242324622n n n n n S n n ++⎛⎫-+=-=⨯--- ⎪⎝⎭,故222222232(1)4(1)6232812n n n S n n n n +++=⨯-+-+-=⨯---,而()2(1)2(1)22111333333333+++++++++-=-n n n n n n n n S S S S ,()221211232893232433+++⎡⎤=⨯----⨯---⎣⎦n n n n n n n ,()2114403n n n +=+>,故2(1)213333n n n nS S ++++>.本题主要考查等比数列的证明、通项公式,数列求和,作差法比较大小等,还考查了逻辑推理和运算求解的能力,属于中档题.18.(1)2nn a =;(2)()()221n n n ++.(1)由题意结合数列n a 与n S 的关系可得12n n a a -=,进而可得{}n a 是公比2q =的等比数列,再由等比数列的通项公式即可得解;(2)由题意()22221111n n b n n +=-+,再由裂项相消法即可得解.(1)由12n n a a S =+可得当2n ≥时,1112n n a a S --=+,∴1122n n n n n a a S S a ---=-=,即12n n a a -=,又12a =,∴{}n a 是公比2q =的等比数列,∴112n nn a a q -==;(2)由(1)知,()()()221log 1log 21nn n b n a n n n =+=+=+,∴()()2222221211111nn n b n n n n ++==-++,∴()22222211111112231n T n n ⎡⎤⎛⎫⎛⎫=-+-++-⎢⎥ ⎪ ⎪⎝⎭⎝⎭+⎢⎥⎣⎦()22222211111112231n n =-+-++-+ ()()()2221111n n n n +=-=++.本题考查了数列n a 与n S 关系的应用及等比数列通项公式的求解,考查了裂项相消法求数列前n 项和的应用,属于中档题.19.(I )1,2,4;(II )数列A :2,2,2,2,…;(III )819(I )先计算数列A 的前4项,然后利用差数列的定义写出∆A 的前3项;(II )由差数列定义知常数列即满足题意;(III )根据差数列的定义利用累加法可求得数列{}n a 的通项公式,然后利用数列的第19项和第92项即可求得首项的值.(I)数列A:2,3,5,9,数列 A:1,2,4(II )数列A :2,2,2,2,… (III )数列∆(∆A ):1,1,1,1,…,设数列∆A :k ,k+1,k+2,k+3,…则数列A :a 2-a 1=k a 3-a 2=k+1…()12n n a a k n --=+-以上叠加得()()()11212n n n a a n k ---=-+,即()()()11212n n n a n k a--=-++则19192118179914591a k a a k a =+⨯+⎧⎨=+⨯+⎩,则154819k a =-⎧⎨=⎩.本题考查等差数列定义和通项公式的应用,考查学生推理能力和计算能力.20.(1)22143x y +=;(2)直线方程为2x =,(2,0)M 或240x y +-=,3(1,)2M .(1)由离心率得12c a =,由直线过短轴端点得b =,从而可求出a ,得椭圆方程;(2)分类讨论,斜率不存在的直线及斜率存在的切线,斜率存在的切线用0∆=可求解.(1)直线l 与y轴交点为(0,,它是椭圆短轴端点,则b =又12c e a ==,所以22214a b a -=,解得2a =.∴椭圆方程为22143x y +=;(2)过(2,1)P 斜率不存在的直线为2x =,是椭圆的切线,此时切点为(2,0)M .过(2,1)P 斜率存在的切线方程设为1(2)y k x -=-,由221431(2)x y y k x ⎧+=⎪⎨⎪-=-⎩得222(34)8(12)161680k x k k k k ++-+--=,∴222264(12)4(34)(16168)96(21)0k k k k k k ∆=--+--=-+=,12k =-,此时121x x ==,1232y y ==,即3(1,2M .直线方程为11(2)2y x -=--,即240x y +-=.切线方程为2x =,(2,0)M 或240x y +-=,3(1,)2M .本题考查由离心率求椭圆方程,考查直线与椭圆的相切问题.过椭圆外一点作椭圆的切线有两条,要注意考虑斜率不存在的情形.特别是设斜率k 求解时只有一解,说明还有一条是斜率不存在的.21.(Ⅰ)18;(Ⅱ)24n nT n =+.试题分析:(1)根据等差数列{}n a 满足132a a +=-,1575S =,列出关于首项1a 、公差d 的方程组,解方程组可得1a 与d 的值,根据等差数列的求和公式可得9S 递的值;(2)由(1)知3n a n =-,从而可得()()()()11111441212n n n b a a n n n n +===-++++++,利用裂项相消法求解即可.试题解析:(I )设数列{}n a 的公差为d ,则{112221510575a d a d +=-+=即{1111510575a d a d +=-+=,解得{121a d =-=,所以()998921182S ⨯=⨯-+⨯=. (也可利用等差数列的性质解答)(II)由(I )知()2113n a n n =-+⋅-=-,()()()()11111441212n n n b a a n n n n +===-++++++,∴ 123n n T b b b b =++++= 111111233412n n ⎛⎫⎛⎫⎛⎫-+-+- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭11.2224n n n =-=++ 【方法点晴】本题主要考查等差数列的通项与求和公式,以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++()()()11112n n n n ⎡⎤-⎢⎥+++⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.22.(1)22142x y +=;(2),存在点)A ,()B 或()A ,)2,0B,使得AP BQ ⋅为定值,该定值为2.(1)依题意可得点M ⎛ ⎝,()0,N c -在椭圆上,代入得到方程组,解得即可;(2)当直线l 的斜率存在时,设其方程为y kx m =+,联立直线与椭圆方程,消元,根据0∆=,得到,k m 的关系,设()(),00A t t ≠,则(),0B t -,求出点到直线的距离AP 、BQ ,即可得到AP BQ ⋅为定值时t 的值,再计算斜率不存在时AP BQ ⋅也为定值;解:(1)因为点M ⎛ ⎝在椭圆C 上,所以221123a b +=.由题意知(),0F c -,因为点N 与点F 关于直线y x =对称,所以点N 的坐标为()0,N c -,代入椭圆C 的方程,得221c b =,即2221a b b-=,所以222a b =,与221123a b +=联立并求解,得24a =,22b =,所以椭圆C 的标准方程为22142x y +=.(2)存在点A ,B ,使得AP BQ ⋅为定值.当直线l 的斜率存在时,设其方程为y kx m =+,将y kx m =+代入22142x y +=,得()222124240k x kmx m +++-=,则()()()2224412240km km∆=-+-=,得2242m k =+.设()(),00A t t ≠,则(),0B t -,点(),0A t 到直线l点(),0B t -到直线l 所以()22222224211t km t k AP BQ k k -+-⋅==++,当242t -=,即t =时,2AP BQ ⋅=,为定值,所以存在点)A,()B 或()A ,)B,使得2AP BQ ⋅=.当直线l 的斜率不存在时,直线l 的方程为2x =±,)A,()B 或()A ,)B均满足2AP BQ ⋅=.综上,存在点)A ,()B 或()A ,)B,使得AP BQ ⋅为定值,该定值为2.【得解】解决本题时,易忽略直线l 的斜率不存在的情况.一般地,解决关于直线与圆锥曲线的位置关系的问题时,只要题设条件没有给定直线的斜率,都要对直线分斜率存在和斜率不存在两种情况进行讨论.当直线的斜率存在时,按照常规的研究直线与圆锥曲线位置关系的方法求解;当直线的斜率不存在时,可以根据直线的斜率存在时得到的结论,借助几何图形直观求解.。

四川省成都市2024-2025学年高二上学期月考(一)数学试题含答案

四川省成都市2024-2025学年高二上学期月考(一)数学试题含答案

高二上数学月考(一)(答案在最后)一、单项选择题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某高校对中文系新生进行体测,利用随机数表对650名学生进行抽样,先将650名学生进行编号,001,002,…,649,650.从中抽取50个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是()32211834297864540732524206443812234356773578905642 84421253313457860736253007328623457889072368960804 32567808436789535577348994837522535578324577892345A.623B.328C.072D.457【答案】A【解析】【分析】按照随机数表提供的数据,三位一组的读数,并取001到650内的数,重复的只取一次即可【详解】从第5行第6列开始向右读取数据,第一个数为253,第二个数是313,第三个数是457,下一个数是860,不符合要求,下一个数是736,不符合要求,下一个是253,重复,第四个是007,第五个是328,第六个数是623,,故A正确.故选:A.2.某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第二次被抽到的可能性为b,则()A.19b= B.29b= C.310b= D.110b=【答案】D【解析】【分析】根据题意,在抽样过程中每个个体被抽到的概率相等即可求解.【详解】因为总体中共有10个个体,所以五班第一次没被抽到,第二次被抽到的可能性为91110910b=⨯=.故选:D.3.已知向量1,22AB ⎛⎫=- ⎪ ⎪⎝⎭,122BC ⎛⎫=- ⎪ ⎪⎝⎭,则ABC ∠=()A.30°B.150°C.60°D.120°【答案】B 【解析】【分析】根据向量夹角的坐标表示求出向量夹角,进而求解几何角.【详解】因为向量13,22AB ⎛⎫=- ⎪ ⎪⎝⎭ ,31,22BC ⎛⎫=- ⎪ ⎪⎝⎭,所以13312222cos ,2AB BC AB BC AB BC⎛⎫⎛⎫⨯+-⨯- ⎪ ⎪⋅==⋅,又0,180AB BC ≤≤,所以,30AB BC =,所以,18030150BA BC =-= ,所以150ABC ∠=o .故选:B.4.已知,a b 为两条不同的直线,,αβ为两个不同的平面,则下列说法错误的是()A.若//a b ,,b a αα⊂⊄,则//a αB.若,a b αα⊥⊥,则//a bC.若,,b a b αβαβ⊥⋂=⊥,则a β⊥D.若,a b 为异面直线,,a b αβ⊂⊂,//a β,//b α,则//αβ【答案】C 【解析】【分析】根据线面平行的判定定理判断A ,根据线面垂直的性质判断B ,当a α⊄时即可判断C ,根据异面直线的定义及线面平行的性质定理判断D.【详解】对于A :若//a b ,,b a αα⊂⊄,根据线面平行的判定定理可知//a α,故A 正确;对于B :若,a b αα⊥⊥,则//a b ,故B 正确;对于C :当a α⊂时,,,b a b αβαβ⊥⋂=⊥,由面面垂直的性质定理可得a β⊥,当a α⊄时,,,b a b αβαβ⊥⋂=⊥,则//a β或a β⊂或a 与β相交,故C 错误;对于D :因为a α⊂,//b α,所以存在b α'⊂使得//b b ',又b β⊂,b β'⊄,所以//b β',又//a β且,a b 为异面直线,所以平面α内的两直线b '、a 必相交,所以//αβ,故D 正确.故选:C5.下列说法正确的是()A.互斥的事件一定是对立事件,对立事件不一定是互斥事件B.若()()1P A P B +=,则事件A 与事件B 是对立事件C.从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为25D.事件A 与事件B 中至少有一个发生的概率不一定比A 与B 中恰有一个发生的概率大【答案】D 【解析】【分析】根据互斥事件、对立事件和古典概型及其计算逐一判定即可.【详解】对于A ,由互斥事件和对立事件的关系可判断,对立事件一定是互斥事件,互斥事件不一定是对立事件,故A 错误;对于B ,由()()1P A P B +=,并不能得出A 与B 是对立事件,举例说明:现从a ,b ,c ,d 四个小球中选取一个小球,已知选中每个小球的概率是相同的,设事件A 表示选中a 球或b 球,则1()2P A =,事件B 表示选中b 球或c 球,则1()2P B =,所以()()1P A P B +=,但A ,B 不是对立事件,故B 错误;对于C ,该试验的样本空间可表示为:{(1,3,5),(1,3,7),(1,3,9),(1,5,7),(1,5,9),(1,7,9),(3,5,7),(3,5,9),(3,7,9)(5,7,9)}Ω=,共有10个样本点,其中能构成三角形的样本点有(3,5,7),(3,7,9),(5,7,9),共3个,故所求概率310P =,故C 错误;对于D ,若A ,B 是互斥事件,事件A ,B 中至少有一个发生的概率等于A ,B 中恰有一个发生的概率,故D 正确.故选:D.6.一组数据:53,57,45,61,79,49,x ,若这组数据的第80百分位数与第60百分位数的差为3,则x =().A.58或64B.58C.59或64D.59【答案】A 【解析】【分析】先对数据从小到大排序,分57x ≤,79x ≥,5779x <<三种情况,舍去不合要求的情况,列出方程,求出答案,【详解】将已知的6个数从小到大排序为45,49,53,57,61,79.若57x ≤,则这组数据的第80百分位数与第60百分位数分别为61和57,他们的差为4,不符合条件;若79x ≥,则这组数据的第80百分位数与第60百分位数分别为79和61,它们的差为18,不符合条件;若5779x <<,则这组数据的第80百分位数与第60百分位数分别为x 和61(或61和x ),则613x -=,解得58x =或64x =故选:A7.如图,四边形ABCD 为正方形,ED ⊥平面,,2ABCD FB ED AB ED FB ==∥,记三棱锥,,E ACD F ABC F ACE ---的体积分别为123,,V V V ,则()A.322V V =B.31V V =C.3123V V V =-D.3123V V =【答案】D 【解析】【分析】结合线面垂直的性质,确定相应三棱锥的高,求出123,,V V V 的值,结合选项,即可判断出答案.【详解】连接BD 交AC 于O ,连接,OE OF ,设22AB ED FB ===,由于ED ⊥平面,ABCD FB ED ∥,则FB ⊥平面ABCD ,则1211141112222,22133233323ACD ABC V S ED V S FB =⨯⨯=⨯⨯⨯⨯==⨯⨯=⨯⨯⨯⨯= ;ED ⊥平面,ABCD AC Ì平面ABCD ,故ED AC ⊥,又四边形ABCD 为正方形,则AC BD ⊥,而,,ED BD D ED BD =⊂ 平面BDEF ,故AC ⊥平面BDEF ,OF ⊂平面BDEF ,故AC OF ⊥,又ED ⊥平面ABCD ,FB ⊥平面ABCD ,BD ⊂平面ABCD ,故,ED BD FB BD ⊥⊥,222222,26,3,BD OD OB OE OD ED OF OB BF =∴===+==+=而()223EF BD ED FB =+-=,所以222EF OF OE +=,即得OE OF ⊥,而,,OE AC O OE AC =⊂ 平面ACE ,故OF ⊥平面ACE ,又22222AC AE CE ===+=,故(2231131323233434F ACE V V ACE S OF AC OF =-=⋅=⨯⋅=⨯= ,故323131231,2,,233V V V V V V V V V ≠≠≠-=,故ABC 错误,D 正确,故选:D8.已知平面向量a ,b ,e ,且1e = ,2a = .已知向量b 与e所成的角为60°,且b te b e -≥- 对任意实数t 恒成立,则12a e ab ++-的最小值为()A.31+ B.23C.35 D.25【答案】B【解析】【分析】b te b e -≥-对任意实数t 恒成立,两边平方,转化为二次函数的恒成立问题,用判别式来解,算出||2b =r ,借助2a =,得到122a e a e +=+ ,12a e a b ++- 的最小值转化为11222a e a b++- 的最小值,最后用绝对值的三角不等式来解即可【详解】根据题意,1cos 602b e b e b ⋅=⋅︒=,b te b e -≥- ,两边平方22222||2||2b t e tb e b e b e +-⋅≥+-⋅ ,整理得到210t b t b --+≥ ,对任意实数t 恒成立,则()2Δ||410b b =--+≤ ,解得2(2)0b -≤ ,则||2b =r .由于2a =,如上图,122a e a e +=+ ,则111112(2)()22222a e a b a e a b a e a b ++-=++-≥+--222843e b e b b e =+=++⋅12a e ab ++- 的最小值为23当且仅当12,,2e b a -终点在同一直线上时取等号.故选:B .二、多项选择题.本题共3个小题,每小题6分,共18分.在每个小题给出的选项中,有多项符合题目要求,部分选对的得部分,有选错的得0分.9.某保险公司为客户定制了5个险种:甲,一年期短期;乙,两全保险;丙,理财类保险;丁,定期寿险;戊,重大疾病保险.各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得到如图所示的统计图表.则()A.丁险种参保人数超过五成B.41岁以上参保人数超过总参保人数的五成C.18-29周岁人群参保的总费用最少D.人均参保费用不超过5000元【答案】ACD 【解析】【分析】根据统计图表逐个选项进行验证即可.【详解】由参保险种比例图可知,丁险种参保人数比例10.020.040.10.30.54----=,故A 正确;由参保人数比例图可知,41岁以上参保人数超过总参保人数的45%不到五成,B 错误;由不同年龄段人均参保费用图可知,1829~周岁人群人均参保费用最少()3000,4000,但是这类人所占比例为15%,54周岁以上参保人数最少比例为10%,54周岁以上人群人均参保费用6000,所以18-29周岁人群参保的总费用最少,故C 正确.由不同年龄段人均参保费用图可知,人均参保费用不超过5000元,故D 正确;故选:ACD .10.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下:甲地:中位数为2,极差为5;乙地:总体平均数为2,众数为2;丙地:总体平均数为1,总体方差大于0;丁地:总体平均数为2,总体方差为3.则甲、乙、丙、丁四地中,一定没有发生大规模群体感染的有()A.甲地B.乙地C.丙地D.丁地【答案】AD 【解析】【分析】假设最多一天疑似病例超过7人,根据极差可判断AD ;根据平均数可算出10天疑似病例总人数,可判断BC .【详解】解:假设甲地最多一天疑似病例超过7人,甲地中位数为2,说明有一天疑似病例小于2,极差会超过5,∴甲地每天疑似病例不会超过7,∴选A .根据乙、丙两地疑似病例平均数可算出10天疑似病例总人数,可推断最多一天疑似病例可能超过7人,由此不能断定一定没有发生大规模群体感染,∴不选BC ;假设丁地最多一天疑似病例超过7人,丁地总体平均数为2,说明极差会超过3,∴丁地每天疑似病例不会超过7,∴选D .故选:AD .11.勒洛四面体是一个非常神奇的“四面体”,它能像球一样来回滚动.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的相交部分围成的几何体.如图所示,设正四面体ABCD 的棱长为2,则下列说法正确的是()A.勒洛四面体能够容纳的最大球的半径为22-B.勒洛四面体被平面ABC 截得的截面面积是(2π-C.勒洛四面体表面上交线AC 的长度为2π3D.勒洛四面体表面上任意两点间的距离可能大于2【答案】ABD 【解析】【分析】A 选项:求出正四面体ABCD 的外接球半径,进而得到勒洛四面体的内切球半径,得到答案;B 选项,作出截面图形,求出截面面积;C 选项,根据对称性得到交线AC 所在圆的圆心和半径,求出长度;D 选项,作出正四面体对棱中点连线,在C 选项的基础上求出长度.【详解】A 选项,先求解出正四面体ABCD 的外接球,如图所示:取CD 的中点G ,连接,BG AG ,过点A 作AF BG ⊥于点F ,则F 为等边ABC V 的中心,外接球球心为O ,连接OB ,则,OA OB 为外接球半径,设OA OB R ==,由正四面体的棱长为2,则1CG DG ==,BG AG ==133FG BG ==,233BF BG ==3AF ===,3OF AF R R =-=-,由勾股定理得:222OF BF OB +=,即22233R R ⎛⎫⎛-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,解得:2R =,此时我们再次完整的抽取部分勒洛四面体,如图所示:图中取正四面体ABCD 中心为O ,连接BO 交平面ACD 于点E ,交 AD 于点F ,其中 AD 与ABD △共面,其中BO 即为正四面体外接球半径2R =,设勒洛四面体内切球半径为r ,则22r OF BF BO ==-=-,故A 正确;B 选项,勒洛四面体截面面积的最大值为经过正四面体某三个顶点的截面,如图所示:面积为(2221π333322222344⎛⎫⨯⨯⨯-⨯+⨯= ⎪ ⎪⎭⎝,B 正确;C 选项,由对称性可知:勒洛四面体表面上交线AC 所在圆的圆心为BD 的中点M ,故3MA MC ==2AC =,由余弦定理得:2221cos 23233AM MC AC AMC AM MC +-∠===⋅⨯⨯,故1arccos3AMC ∠=3AC 133,C 错误;D 选项,将正四面体对棱所在的弧中点连接,此时连线长度最大,如图所示:连接GH ,交AB 于中点S ,交CD 于中点T ,连接AT ,则22312ST AT AS =-=-=则由C 选项的分析知:3TG SH ==,所以323322GH =+=,故勒洛四面体表面上两点间的距离可能大于2,D 正确.故选:ABD.【点睛】结论点睛:勒洛四面体考试中经常考查,下面是一些它的性质:①勒洛四面体上两点间的最大距离比四面体的棱长大,是对棱弧中点连线,最大长度为232a a ⎫->⎪⎪⎭,②表面6个弧长之和不是6个圆心角为60︒的扇形弧长之和,其圆心角为1arccos 3,半径为32a .三、填空题:本题共3个小题,每小题5分,共15分.12.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为3:4:7,现在用分层抽样的方法抽出容量为n 的样本,样本中的A 型号产品有15件,那么样本容量n 为________.【答案】70【解析】【分析】利用分层抽样的定义得到方程,求出70n =.【详解】由题意得315347n=++,解得70n =.故答案为:7013.平面四边形ABCD 中,AB =AD =CD =1,BD =BD ⊥CD ,将其沿对角线BD 折成四面体A ′﹣BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′﹣BCD 顶点在同一个球面上,则该球的表面积_____.【答案】3π【解析】【分析】根据BD ⊥CD ,BA ⊥AC ,BC 的中点就是球心,求出球的半径,即可得到球的表面积.【详解】因为平面A′BD ⊥平面BCD ,BD ⊥CD ,所以CD ⊥平面ABD ,∴CD ⊥BA ,又BA ⊥AD ,∴BA ⊥面ADC ,所以BA ⊥AC ,所以△BCD 和△ABC 都是直角三角形,由题意,四面体A ﹣BCD 顶点在同一个球面上,所以BC 的中点就是球心,所以BC =2所以球的表面积为:242π⋅=3π.故答案为:3π.【点睛】本题主要考查面面垂直的性质定理和球的外接问题,还考查空间想象和运算求解的能力,属于中档题.14.若一组样本数据12,,n x x x 的平均数为10,另一组样本数据1224,24,,24n x x x +++ 的方差为8,则两组样本数据合并为一组样本数据后的方差是__________.【答案】54【解析】【分析】计算出1n ii x =∑、21nii x=∑的值,再利用平均数和方差公式可求得合并后的新数据的方差.【详解】由题意可知,数据12,n x x x 的平均数为10,所以12)101(n x x x x n =+++= ,则110ni i x n ==∑,所以数据1224,24,,24n x x x +++ 的平均数为121(242424)210424n x x x x n'=++++++=⨯+= ,方差为()(()222221111444[24241010n n n i i i i i i s x x x x n n n n n ===⎤⎡⎤=+-+=-=-⨯⨯⎦⎣⎦∑∑∑2144008n i i x n ==-=∑,所以21102nii xn ==∑,将两组数据合并后,得到新数据1212,24,24,,24,n n x x x x x x +++ ,,则其平均数为11114)4)11113]4)[(2(3(222n i nn n i i i i i i i x x x x x n n n ====''=+=⨯+=⨯++∑∑∑∑()13104172=⨯⨯+=,方差为()()2222111111172417(586458)22n n n ni i i i i i i i s x x x x n n n ====⎡⎤=-++-=-+⎢⎥⎣⎦'∑∑∑∑1(51028610458)542n n n n=⨯-⨯+=.故答案为:54.四、解答题:本题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.袋中有形状、大小都相同的4个小球,标号分别为1,2,3,4.(1)从袋中一次随机摸出2个球,求标号和为奇数的概率;(2)从袋中每次摸出一球,有放回地摸两次.甲、乙约定:若摸出的两个球标号和为奇数,则甲胜,反之,则乙胜.你认为此游戏是否公平?说明你的理由.【答案】(1)23(2)是公平的,理由见解析【解析】【分析】(1)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式即可求解;(2)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式及概率进行比较即可求解.【小问1详解】试验的样本空间{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}Ω=,共6个样本点,设标号和为奇数为事件B ,则B 包含的样本点为(1,2),(1,4),(2,3),(3,4),共4个,所以42().63P B ==【小问2详解】试验的样本空间Ω{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}=,共有16个,设标号和为奇数为事件C ,事件C 包含的样本点为(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3),共8个,故所求概率为81()162P C ==,即甲胜的概率为12,则乙胜的概率为12,所以甲、乙获胜的概率是公平的.16.(1)请利用已经学过的方差公式:()2211ni i s x xn ==-∑来证明方差第二公式22211n i i s x x n ==-∑;(2)如果事件A 与B 相互独立,那么A 与B 相互独立吗?请给予证明.【答案】(1)证明见解析;(2)独立,证明见解析【解析】【分析】(1)根据题意,对方差公式恒等变形,分析可得结论;(2)根据相互独立事件的定义,只需证明()()()P AB P A P B =即可.【详解】(1)()()()()2222212111n i n i s x xx x x x x x n n =⎡⎤=-=-+-++-⎢⎥⎣⎦∑ ()()2222121212n n x x x x x x x nx n ⎡⎤=+++-+++⎢⎥⎣⎦ ()22221212n x x x x nx nx n ⎡⎤=+++-⨯+⎢⎥⎣⎦ ()222121n x x x nx n ⎡⎤=+++-⎢⎥⎣⎦ 2211n i i x x n ==-∑;(2)因为事件A 与B 相互独立,所以()()()P AB P A P B =,因为()()()P AB P AB P A +=,所以()()()()()()P AB P A P AB P A P A P B =-=-()()()()()1P A P B P A P B =-=,所以事件A 与B 相互独立.17.如图,四棱锥P ABCD -的侧面PAD 是边长为2的正三角形,底面ABCD 为矩形,且平面PAD ⊥平面ABCD ,M ,N 分别为AB ,AD 的中点,二面角D PN C --的正切值为2.(1)求四棱锥P ABCD -的体积;(2)证明:DM PC⊥(3)求直线PM 与平面PNC 所成角的正弦值.【答案】(1)3(2)证明见解析(3)35【解析】【分析】(1)先证明DNC ∠为二面角D PN C --的平面角,可得底面ABCD 为正方形,利用锥体的体积公式计算即可;(2)利用线面垂直的判定定理证明DM ⊥平面PNC ,即可证明DM PC ⊥;(3)由DM⊥平面PNC 可得MPO ∠为直线PM 与平面PNC 所成的角,计算其正弦值即可.【小问1详解】解:∵PAD △是边长为2的正三角形,N 为AD 中点,∴PN AD ^,PN =又∵平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =∴PN ^平面ABCD又NC ⊂平面ABCD ,∴PN NC ⊥∴DNC ∠为二面角D PN C --的平面角,∴tan 2DC DNC DN∠==又1DN =,∴2DC =∴底面ABCD 为正方形.∴四棱P ABCD -的体积12233V =⨯⨯=.【小问2详解】证明:由(1)知,PN ^平面ABCD ,DM ⊂平面ABCD ,∴PN DM⊥在正方形ABCD 中,易知DAM CDN ≌△△∴ADM DCN ∠=∠而90ADM MDC ∠+∠=︒,∴90DCN MDC ∠+∠=︒∴DM CN ⊥∵PN CN N = ,∴DM ⊥平面PNC∵PC ⊂平面PNC ,∴DM PC ⊥.【小问3详解】设DM CN O ⋂=,连接PO ,MN .∵DM⊥平面PNC .∴MPO ∠为直线PM 与平面PNC 所成的角∵2,1AD AM ==,∴DM =5DO ==∴55MO ==又MN =PM ==∴35sin 5MO MPO PM ∠===∴直线PM 与平面PNC 所成角的正弦值为35.18.某市根据居民的月用电量实行三档阶梯电价,为了深入了解该市第二档居民用户的用电情况,该市统计局用比例分配的分层随机抽样方法,从该市所辖A ,B ,C 三个区域的第二档居民用户中按2:2:1的比例分配抽取了100户后,统计其去年一年的月均用电量(单位:kW h ⋅),进行适当分组后(每组为左闭右开的区间),频率分布直方图如下图所示.(1)求m 的值;(2)若去年小明家的月均用电量为234kW h ⋅,小明估计自己家的月均用电量超出了该市第二档用户中85%的用户,请判断小明的估计是否正确?(3)通过进一步计算抽样的样本数据,得到A 区样本数据的均值为213,方差为24.2;B 区样本数据的均值为223,方差为12.3;C 区样本数据的均值为233,方差为38.5,试估计该市去年第二档居民用户月均用电量的方差.(需先推导总样本方差计算公式,再利用数据计算)【答案】(1)0.016m =(2)不正确(3)78.26【解析】【分析】(1)利用频率和为1列式即可得解;(2)求出85%分位数后判断即可;(3)利用方差公式推导总样本方差计算公式,从而得解.【小问1详解】根据频率和为1,可知()0.0090.0220.0250.028101m ++++⨯=,可得0.016m =.【小问2详解】由题意,需要确定月均用电量的85%分位数,因为()0.0280.0220.025100.75++⨯=,()0.0280.0220.0250.016100.91+++⨯=,所以85%分位数位于[)230,240内,从而85%分位数为0.850.7523010236.252340.910.75-+⨯=>-.所以小明的估计不正确.【小问3详解】由题意,A 区的样本数为1000.440⨯=,样本记为1x ,2x ,L ,40x ,平均数记为x ;B 区的样本数1000.440⨯=,样本记为1y ,2y ,L ,40y ,平均数记为y ;C 区样本数为1000.220⨯=,样本记为1z ,2z ,L ,20z ,平均数记为z .记抽取的样本均值为ω,0.42130.42230.2233221ω=⨯+⨯+⨯=.设该市第二档用户的月均用电量方差为2s ,则根据方差定义,总体样本方差为()()()40402022221111100i j k i i i s x y z ωωω===⎡⎤=-+-+-⎢⎥⎣⎦∑∑∑()()()4040202221111100i j k i i i x x x y y y z z z ωωω===⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑因为()4010ii x x =-=∑,所以()()()()404011220iii i x x x x x x ωω==--=--=∑∑,同理()()()()404011220jji i yyy y yy ωω==--=--=∑∑,()()()()202011220kki i zz z z zz ωω==--=--=∑∑,因此()()()()4040404022222111111100100i j i i i i s x x x y y y ωω====⎡⎤⎡⎤=-+-+-+-⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑()()202022111100k i i z z z ω==⎡⎤+-+-⎢⎥⎣⎦∑∑,代入数据得()()222114024.2402132214012.340223221100100s ⎡⎤⎡⎤⎣⎦⎦=⨯+⨯-+⨯-⎣+⨯()212038.32023322178.26100⎡⎤+⨯+⨯-=⎣⎦.19.在世界杯小组赛阶段,每个小组内的四支球队进行循环比赛,共打6场,每场比赛中,胜、平、负分别积3,1,0分.每个小组积分的前两名球队出线,进入淘汰赛.若出现积分相同的情况,则需要通过净胜球数等规则决出前两名,每个小组前两名球队出线,进入淘汰赛.假定积分相同的球队,通过净胜球数等规则出线的概率相同(例如:若B ,C ,D 三支积分相同的球队同时争夺第二名,则每个球队夺得第二名的概率相同).已知某小组内的A ,B ,C ,D 四支球队实力相当,且每支球队在每场比赛中胜、平、负的概率都是13,每场比赛的结果相互独立.(1)求A 球队在小组赛的3场比赛中只积3分的概率;(2)已知在已结束的小组赛的3场比赛中,A 球队胜2场,负1场,求A 球队最终小组出线的概率.【答案】(1)427(2)7981【解析】【分析】(1)分类讨论只积3分的可能情况,结合独立事件概率乘法公式运算求解;(2)由题意,若A 球队参与的3场比赛中胜2场,负1场,根据获胜的三队通过净胜球数等规则决出前两名,分情况讨论结合独立事件概率乘法公式运算求解.【小问1详解】A 球队在小组赛的3场比赛中只积3分,有两种情况.第一种情况:A 球队在3场比赛中都是平局,其概率为111133327⨯⨯=.第二种情况:A球队在3场比赛中胜1场,负2场,其概率为11113 3339⨯⨯⨯=.故所求概率为114 27927+=.【小问2详解】不妨假设A球队参与的3场比赛的结果为A与B比赛,B胜;A与C比赛,A胜;A与D比赛,A胜.此情况下,A积6分,B积3分,C,D各积0分.在剩下的3场比赛中:若C与D比赛平局,则C,D每队最多只能加4分,此时C,D的积分都低于A的积分,A可以出线;若B与C比赛平局,后面2场比赛的结果无论如何,都有两队的积分低于A,A可以出线;若B与D比赛平局,同理可得A可以出线.故当剩下的3场比赛中有平局时,A一定可以出线.若剩下的3场比赛中没有平局,则当B,C,D各赢1场比赛时,A可以出线.当B,C,D中有一支队伍胜2场时,若C胜2场,B胜1场,A,B,C争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=;若D胜2场,B胜1场,A,B,D争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=.其他情况A均可以出线.综上,A球队最终小组出线的概率为1179 1818181⎛⎫-+=⎪⎝⎭.【点睛】关键点点睛:解题的关键在于分类讨论获胜的三队通过净胜球数等规则决出前两名,讨论要恰当划分,做到不重不漏,从而即可顺利得解.。

高二数学12月月考试题含解析 试题(共19页)

高二数学12月月考试题含解析 试题(共19页)

中学2021-2021学年(xuénián)高二数学12月月考试题〔含解析〕一、选择题(本大题一一共12个小题,每一小题5分,一共60分)1.如下图,正方体的棱长为1,那么的坐标是〔〕A. B. C. D.【答案】C【解析】B的坐标是(1,1,1)。

试题分析:由空间直角坐标系和棱长为1,可得那么1考点:1.空间直角坐标系;的倾斜角为〔〕A. 30°B. 60°C. 120°D. 150°【答案】D【解析】【分析】先求得直线的斜率,利用倾斜角和斜率的对应关系得出倾斜角.【详解】直线的斜率为,设倾斜角为,那么.应选D.【点睛】本小题主要考察由直线方程的一般式求得直线的斜率,考察倾斜角和斜率的对应关系.对应直线的一般方程,化为斜截式得到,其中是斜率,是纵截距.直线的斜率,是倾斜角的正切值.要注意的是当倾斜角为时,斜率不存在.3.某校老年、中年和青年老师的人数(rén shù)见右表,采用分层抽样的方法调查老师的身体状况,在抽取的样本中,老年老师一共有180人,那么该样本中的青年老师人数为〔〕A. 320B. 360C. 90D. 180【答案】A【解析】【分析】先求得老年老师抽样的比例,用青年老师人数乘以这个比例得到样本中青年老师的人数. 【详解】老年老师抽样的比例为,故样本中青年老师的人数为人.应选A.【点睛】本小题主要考察分层抽样,利用分层抽样中某一层的抽样比例,得到总体的抽样比例,由此计算的其它层抽样的样本数.属于根底题.1,a2,…,a n的平均数为a,方差为s 2,那么数据2a1,2a2,…,2a n的平均数和方差分别为( )A. a,s2B. 2a,s2C. 2a,2s2D. 2a,4s2【答案】D【解析(jiě xī)】【分析】考虑到数据2a1,2a2,…,2a n的各个数据是原数据的2倍,充分利用两者的关系结合平均数、方差的计算公式计算即可.【详解】数据a1,a2,…,a n的平均数为a,方差为S2,那么另一组数据2a1,2a2,…,2a n的平均数为,方差是s′2,∵S2=[〔x1﹣〕2+〔x2﹣x〕2+…+〔x n﹣x〕2],∴S′2=1n[〔2x1﹣2x〕2+〔2x2﹣2x〕2+…+〔2x n﹣2x〕2]=1n[4〔x1﹣x〕2+4〔x2﹣x〕2+…+4〔x n﹣x〕2],=4S2应选:D.【点睛】此题考察了当数据都乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数,属于根底题.5.先后抛掷两枚均匀的正方体骰子〔它们六个面上分别标有点数1,2,3,4,5,6〕,骰子朝上的点数分别为X,Y,那么log2X Y=1的概率为〔〕.A. B. C. D.【答案】C【解析】试题分析:由题意知、应满足,所以满足题意的有三种,所以概率为.考点:1.古典概型;6.以下(yǐxià)说法正确的选项是( )A. 命题“假设x2=1,那么x=1〞的否命题是“假设x2=1,那么x≠1〞B. 假设命题p:∃x0∈R,,那么:∀x∈R,x2-2x-1<0C. 命题“假设x=y,那么sin x=sin y〞的逆否命题为真命题D. “x=-1〞是“x2-5x-6=0〞的必要不充分条件【答案】C【解析】【分析】A中,写出该命题的否命题,即可判断A是否正确;B中,写出该命题的否认命题,即可判断B是错误的;C中,判断原命题的真假,由此得出它的逆否命题的真假.D中,判断充分性和必要性是否成立即可;【详解】对于A,该命题的否命题是:假设x2≠1,那么x≠1,∴A错误;对于B,命题的否认是:“〞,∴B错误;对于C,∵命题“假设x=y,那么sin x=sin y〞是真命题,∴它的逆否命题也为真命题.∴C正确;对于D,x=-1时,x2-5x-6=0,∴充分性成立,x2-5x-6=0时,x=-1或者x=6,必要性不成立,是充分不必要条件,D 错误应选:C.【点睛】此题通过命题真假的判断,考察了命题与命题的否认,四种命题之间的关系,充分与必要条件等问题,是综合题.7.直线y =kx -k +1与椭圆的位置关系为( )A. 相切B. 相离C. 相交(xiāngjiāo)D. 不确定 【答案】C 【解析】 【分析】求得直线过的定点,这个定点在椭圆内部,由此判断直线和椭圆相交. 【详解】依题意,直线方程为,所以直线过点,这个点在椭圆的内部,故直线和椭圆一定相交,应选C.【点睛】本小题主要考察直线和椭圆的位置关系,考察含有参数的直线方程过定点的问题,属于根底题.和都相切的直线条数是〔 〕A. B. C. D. 【答案】B 【解析】 试题分析: 圆,,,圆和圆外相切,所以与圆1O 和圆2O 相切的直线有3条.应选B . 考点:1、直线与圆的位置关系;2、两圆的位置关系.满足条件 ,那么z=2x-y 的最大值为〔 〕A. 2B.C.D. 1【答案】D【解析】【分析(fēnxī)】画出可行域,通过向下平移基准直线到可行域边界的位置,由此求得目的函数的最大值.【详解】画出可行域如以下图所示,由图可知,目的函数在点处获得最大值,且最大值为.应选D【点睛】本小题主要考察利用线性规划求线性目的函数的最大值.这种类型题目的主要思路是:首先根据题目所给的约束条件,画图可行域;其次是求得线性目的函数的基准函数;接着画出基准函数对应的基准直线;然后通过平移基准直线到可行域边界的位置;最后求出所求的最值.属于根底题.10.在区间[0,1]上任取两个实数a,b,那么函数f(x)=x2+ax+b2无零点的概率为( )A. 12B. C. D.【答案】B【解析】【分析】函数f〔x〕=x2+ax+b2无零点的条件,得到a,b满足的条件,利用几何概型的概率公式求出对应的面积即可得到结论.【详解】∵a,b是区间[0,1]上的两个数,∴a,b对应区域面积为1×1=1假设(jiǎshè)函数f〔x〕=x2+ax+b2无零点,那么△=a2-4b2<0,对应的区域为直线a-2b=0的上方,面积为,那么根据几何概型的概率公式可得所求的概率为34.应选:B.【点睛】此题主要考察几何概型的概率计算,根据二次函数无零点的条件求出a,b满足的条件是解决此题的关键.2+ny2=1与直线y=1-x交于M,N两点,过原点与线段MN中点所在直线的斜率为,那么的值是( )A.22B. C. D.【答案】A【解析】【分析】设的中点为,利用点差法,列出直线MN的斜率和直线斜率的关系式,由此求得mn的值.【详解】设,设MN中点为,直线MN的斜率为,直线OA的斜率为.由于在椭圆上,故,两式相减得,化简为,即.应选A.【点睛】本小题主要(zhǔyào)考察利用点差法,解有关直线和椭圆相交所得弦的中点有关的问题,属于根底题.内,过点有条弦的长度成等差数列,最短的弦长为数列的首项,最长的弦长为,假设公差,那么n的取值集合为( )A. B. C. D.【答案】A【解析】由题设圆的圆心坐标与半径分别为,最长弦与最短弦分别为,所以,解之得,即,应选答案A。

2020-2021学年高二数学12月月考试题 (I)[1]

2020-2021学年高二数学12月月考试题 (I)[1]

2020-2021学年高二数学12月月考试题 (I)本试卷由卷I 和卷II 两部分组成,卷I 为《必修2》的模块考,满分100分,卷II 为《选修2—1》内容,满分50分,总分150分。

卷I (共100分)一. 选择题 :本大题共10小题 ,每小题5分,共50分,在每小题给出的四个选择项中,只有一项是符合题目要求的。

1.过点(-1,3)且垂直于直线x -2y+3=0的直线方程为( )A.2x+y -1=0B.2x+y -5=0C.x+2y -5=0D.x -2y+7=02. 已知直线l 的方程为043=++y x ,则直线l 的倾斜角为( )A .030B .060C .0120D .01503.在直角坐标系中,已知A (-1,2),B (3,0),那么线段AB 中点的坐标为( ).A .(2,2) B(1,1) C .(-2,-2) D .(-1,-1) 4.若一圆的标准方程为3)5()1(22=++-y x ,则此圆的的圆心和半径分别为 ( ) A 、)5,1(-,3 B 、)5,1(-, 3 C 、 )5,1(-,3 D 、 )5,1(-,35.已知直线0323=-+y x 和016=++my x 互相平行,则m 的值为( )A. 2B. 3C. 6D. 46.以两点)1,3(--A 和)5,5(B 为直径端点的圆的方程是( )A 、100)2()1(22=++-y xB 、100)2()1(22=-+-y x C 、25)2()1(22=+++y x D 、25)2()1(22=-+-y x 7.已知某几何体的三视图如右,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )A.12 cm 3B.13 cm 3C.16 cm 3D.112cm 38.长方体一个顶点上的三条棱长分别为3、4、5,若它的八个顶点都在同一个球面上,则这个球的表面积是()A.202π B.252πC.50π D.200π9.已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥β D.若m⊥α,n⊥α,则m∥n10.当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,半径为5的圆的方程为()A.x2+y2-2x+4y=0 B.x2+y2+2x+4y=0C.x2+y2+2x-4y=0 D.x2+y2-2x-4y=0二.填空题:(本大题共5小题,每小题4分,共20分)。

2022-2023学年上海市南洋模范中学高二上学期12月月考数学试题(解析版)

2022-2023学年上海市南洋模范中学高二上学期12月月考数学试题(解析版)

2022-2023学年上海市南洋模范中学高二上学期12月月考数学试题一、填空题1.在空间直角坐标系中,点(1,2,3)A -关于xOz 平面对称的点的坐标是______. 【答案】()1,2,3--【分析】根据空间对称的知识求得正确答案.【详解】点关于xOz 平面对称点,横坐标和竖坐标不变,纵坐标相反, 所以点(1,2,3)A -关于xOz 平面对称的点的坐标是()1,2,3--. 故答案为:()1,2,3--2.为了解某校高三年级男生的体重,从该校高三年级男生中抽取17名,测得他们的体重数据如下(按从小到大的顾序排列,单位:kg )56 56 57 58 59 59 61 63 64 65 66 68 69 70 73 74 83 据此估计该校高三年级男生体重的第75百分位数为______kg 【答案】69【分析】根据百分位数的求法求得正确答案. 【详解】170.7512.75⨯=, 数据从小到大第13个数是69, 所以第75百分位数为69kg 故答案为:693.第14届国际数学教有大会(ICME-14)于2021年7月12日至18日在上海举办,已知张老师和李老师都在7天中随机选择了连续的3天参会,则两位老师所选的日期恰好都不相同的概率为______. 【答案】625##0.24 【分析】先确定随机试验张老师和李老师各在7天中随机选择了连续的3天参会的基本事件数,再确定事件两位老师所选的日期恰好都不相同所包含的基本事件数,由古典概型概率公式求事件两位老师所选的日期恰好都不相同的概率.【详解】因为张老师在7天中随机选择连续的3天参会共有5种选法,即()12,13,14,()13,14,15,()14,15,16,()15,16,17,()16,17,18,所以随机试验张老师和李老师各在7天中随机选择连续的3天参会的基本事件数为25,其中两位老师所选的日期恰好都不相同选法有:张老师选()12,13,14,李老师选()15,16,17或()16,17,18,张老师选()13,14,15,李老师选()16,17,18,张老师选()15,16,17,李老师选()12,13,14,张老师选()16,17,18,李老师选()12,13,14或()13,14,15,即事件两位老师所选的日期恰好都不相同包含6个基本事件,所以事件两位老师所选的日期恰好都不相同的概率625P =. 故答案为:625. 4.设等差数列{}n a 的公差为d ,若1234576,,,,,,a a a a a a a 的方差为1,则d =________.【答案】12±【详解】由题意得2222222411[(3)(2)()0()(2)(3)]47x a d d d d d d d =∴=-+-+-++++= ,因此12d =±5.某学校随机抽取100名学生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[]0,100,样本数据分组为[)0,20,[)20,40,[)40,60,[)60,80,[]80,100.则该校学生上学所需时间的均值估计为______________.(精确到1分钟).【答案】34.【详解】由直方图可得0.0250.00650.0032201x +++⨯⨯=(). 所以0.0125x =,该校学生上学所需时间的均值估计为:10200.012530200.02550200.006570200.00390200.00333.6⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=分钟,故该校新生上学所需时间的平均值为34分,故答案346.由8个整数形成的样本数据中,至少有六个互不相同的整数,若平均数、中位数、唯一的众数和全距(即样本中最大数与最小数之差)都是8,则可能成为样本数据中的最大整数是________. 【答案】12【分析】根据平均数、中位数、唯一的众数和全距求得最大整数的值.【详解】依题意,平均数=中位数=众数=8,所以偏态系数为0,数据分布对称, 因为存在众数且众数唯一,所以可设这8个整数为123456,,,8,8,,,x x x x x x , 且12345688x x x x x x <<<=<<<, 所以6116882x x x x -=⎧⎪⎨+=⎪⎩,解得612x =.故答案为:127.如图:已知矩形ABCD 中,2AB =,BC t =,若PA ⊥平面ABCD ,在BC 边上取点E ,使PE DE ⊥,则满足条件的E 点有两个时,t 的取值范围是________.【答案】4t >【分析】由题意可证得DE AE ⊥,转化为以AD 为直径的圆与矩形另一边有2个交点,根据圆心到直线的距离小于半径求解即可. 【详解】连接AE ,如图,因为PA ⊥平面ABCD ,DE ⊂平面ABCD ,所以PA DE ⊥,又PE DE ⊥,PA PE P =,,PA PE ⊂平面PAE ,所以DE ⊥平面PAE , 因为AE ⊂平面PAE ,所以DE AE ⊥. 即E 点为以AD 为直径的圆与BC 的交点.因为2AB =,BC t =,满足条件的E 点有2个,即圆心也就是AD 中点到BC 的距离小于半径即可,即平行线间的距离22tAB =<,解得4t >. 故答案为:4t >8.某部门有8位员工,其中6位员工的月工资分别为8200,8300,8500,9100,9500,9600(单位:元),另两位员工的月工资数据不清楚,但两人的月工资和为17000元,则这8位员工月工资的中位数可能的最大值为__________元. 【答案】8800【详解】要使得这8位员工月工资的中位数最大值,即月工资数据不清楚的两个人的工资分别为比8200小,比9500大,即中位数为9100850088002+=. 9.已知正方体1111ABCD A B C D -中,M ,N 分别为棱AB ,1BB 的中点,过1D ,M ,N 三点作该正方体的截面,若截面为一个多边形Γ,则Γ在顶点1D 处的内角的余弦值为________.【答案】413【分析】建立空间直角坐标系,根据1//D P QN →→,1//D Q PM →→求出,P Q 坐标,利用向量的夹角公式求解即可.【详解】设正方体棱长为2,多边形Γ与棱11,B C AD 相交于,Q P ,以1,,DA DC DD 所在直线分别为,,x y z 轴建立空间直角坐标系,如图,则1(2,1,0),(2,2,1),(0,0,2)M N D ,设(,0,0)P a ,(,2,2)Q b ,则11(,0,2),(2,1,0),(,2,0),(2,0,1)D P a PM a D Q b QN b →→→→=-=-==--,由正方体左右侧面平行,与截面多边形Γ分别交于1D P QN ,,所以1//D P QN , 同理,可得1//D Q PM 故1//D P QN →→,1//D Q PM →→,所以2(2)2(2)a b b a =-⎧⎨=-⎩,解得43a b ==,所以14(,0,2)3D P →=-,14(,2,0)3D Q →=,则111111161649cos ,16163613||||49D P D Q D P D Q D P D Q →→→→→→⋅<>====++, 所以Γ在顶点1D 处的内角的余弦值为413. 故答案为:413. 10.已知A 、B 、C 是半径为1的球面上的三点,若1AB AC ==,则BC 的最大值为______. 【答案】3【分析】设ABC 的外接圆半径为r ,2BC x =,由条件列关系式确定,x r 的关系,由此可求x 的最大值,由此确定BC 的最大值.【详解】因为A 、B 、C 是半径为1的球面上的三点,过点A 、B 、C 作球的截面,设截面圆的圆心为1O ,半径为r ,设BC 的中点为D ,则1O D BC ⊥,因为1AB AC ==,所以AD BC ⊥,设2BC x =,则21AD x =-,211O D r x =--,又22211BD O D O B +=,所以()22221r x r x =+--,所以22114x r =-,因为球的半径为1,所以1r ≤,所以当1r =时,2x取最大值,最大值为34,所以BC 的最大值为3, 故答案为:3.11.在直三棱柱111ABC A B C 中,11AB AC AA ===,{}1Ω,01,02,03P AP AB AC AA λμηλμη==++≤≤≤≤≤≤,若Ω中所有的点构成的几何体的体积为3,则AB 与AC 夹角的大小为________.【答案】π6或5π6【分析】由条件确定区域Ω与三棱柱111ABC A B C 的体积关系,结合柱体体积公式列方程可求AB 与AC 夹角的正弦值,由此可得夹角大小.【详解】因为{}1Ω,01,02,03P AP AB AC AA λμηλμη==++≤≤≤≤≤≤, 所以Ω中所有的点构成的几何体的体积是直三棱柱111ABC A B C 体积的236⨯=倍, 则16sin ,3AB AC AB AC AA ⨯⨯=,又11AB AC AA ===,所以1sin ,2AB AC =,因为[],0,πAB AC ∈,所以π,6AB AC =或5π6, 所以AB 与AC 夹角的大小为π6或5π6.故答案为:π6或5π6.12.在一个112⨯⨯的长方体内部,有一半径为12的小球自由运动,则当小球在长方体内滚动时,长方体内没有被小球滚到的部分其体积为________. 【答案】5212π-【分析】根据条件,画直观图,直接计算即可.【详解】由题意,小球在长方体内活动如图中虚线所示,是由上下两个半球和中间的圆柱构成, 所以小球不能达到的空间体积为2314151121223212πππ⎛⎫⎛⎫⨯⨯-⨯⨯-⨯=-⎪ ⎪⎝⎭⎝⎭; 故答案为:5212π-.二、单选题13.如图是6株圣女果植株挂果个数(两位数)的茎叶图,则6株圣女果植株挂果个数的中位数为( )A .21B .21.5C .22D .22.5【答案】B【分析】根据中位数的知识求得正确答案. 【详解】6个数据为16,18,21,22,22,31, 所以中位数为212221.52+=. 故选:B14.已知数列{}n a 的前n 项和为n S ,若()e ,0,1a =-与()20232023,π,b a S =垂直,则{}n a 不可能是( )A .公差大于0的等差数列B .公差小于0的等差数列C .公比大于0的等比数列D .公比小于0的等比数列【答案】C【分析】根据空间向量互相垂直的性质、空间向量数量积的运算性质,结合等差数列和等比数列的性质逐一判断即可.【详解】因为()e ,0,1a =-与()20232023,π,b a S =垂直,所以2023202300a b a S ⋅=⇒-=,则20232023S a =,若20232023S a =,则2022202320230S S a =-=,所以保证20220S =即可, 若{}n a 为等差数列,取前2022项分别为2021,,3,1,1,3,,2021---即可,反之,取2021,,3,1,1,3,,2021---也可,故A 、B 均可能,若{}n a 为等比数列,取(1)nn a =-即可,故D 有可能,若公比大于0,则()2022120221S a q ==或()()202212022111a q S q q-=≠-均不为0,故C 不可能; 故选C .15.设a ,b ,c ,x ,y ,z 是正数,且2a +2b +2c =10, 2x +2y +2z =40, ax +by +cz =20,则a b cx y z++++=A .14B .13C .12D .34【答案】C【详解】由柯西不等式得()2222222111111444222a b c x y z ax by cz ⎛⎫⎛⎫++++≥++ ⎪ ⎪⎝⎭⎝⎭当且仅当111222a b c x y z ==时等号成立, 2222221040a b c x y z ++=++=,,20ax by cz ++=∴等号成立111222a b c x y z ∴== 12a b c x y z ++∴=++故答案选C16.已知a ,b 是异面直线,若直线m 上任意一点到a ,b 的距离都相等,则这样的直线m ( ) A .存在且只有一条 B .存在且只有两条 C .存在无数条 D .不存在【答案】B【分析】分别过a ,b 作与它们都平行的平面,再作一个他们正中间的平面,将两条异面直线投影到中间平面上,投影直线构成的四个角的角平分线即为所求.【详解】分别过a ,做平面α,使得b α,过b 作平面β,使得a β∥,然后在这两个平行平面中间作一个平面γ,使得平面γ到平面α、平面β的距离相等,则直线,a b 在平面γ内的投影分别为,a b '',则//,//a a b b '',则在平面γ内两条直线,a b ''构成的四个角的角平分线即为所求直线(共两条), 故选:B .三、解答题17.某单位有10000名职工,想通过验血的方法筛查乙肝病毒携带者.假设携带病毒的人占5%,如果对每个人的血样逐一化验,就需要化验10000次.统计专家提出了一种化验方法:随机地按5人一组分组,然后将各组5个人的血样混合再化验.如果混合血样呈阴性,说明这5个人全部阴性;如果混合血样呈阳性,说明其中至少有一人的血样呈阳性,就需要对每个人再分别化验一次. (1)求按照专家提出的这种化验方法需要化验的次数并说明是否能减少化验次数; (2)若携带病毒的人只占2%,按照k 个人一组,试问k 取多少时化验次数最少? 【答案】(1)平均需要化验4262次,能减少化验次数. (2)k 取8时化验次数最少【分析】(1)设每个人需要的化验次数为X ,结合独立重复试验概率计算公式、对立事件概率计算公式求得()E X ,从而确定正确答案.(2)假设k 个人一组,设每个人需要的化验次数为Y ,结合独立重复试验概率计算公式、对立事件概率计算公式求得()E Y ,从而确定正确答案. 【详解】(1)设每个人需要的化验次数为X ,若混合血样呈阳性,则15X =;若混合血样呈阴性,则65X =;因此,X 的分布列为510.955P X ⎛⎫== ⎪⎝⎭,5610.955P X ⎛⎫==- ⎪⎝⎭,()551()0.95610.950.42625E X ⎡⎤=+⨯-≈⎣⎦, 说明每5个人一组,平功每个人需要化验0.4262次;100000.4262426210000⨯=<,所以能减少化验次数.(2)假设k 个人一组,设每个人需要的化验次数为Y ,若混合血样呈阳性,则1Y k =;若混合血样呈阴性,则11Y k =+; 因此,Y 的分布列为10.98k P X k ⎛⎫== ⎪⎝⎭,1110.98kP X k ⎛⎫=+=- ⎪⎝⎭,()()()11()0.98110.9810.98k kk E Y k k k ⎡⎤=++⨯-=+-⎣⎦, 利用计算器,对k 取1,2,3,,逐一计算110.98kk+-,发现当k 取8时,()E Y 取到最小值0.2742, 此时,10000个人大约需要化验2742次.18.现有甲、乙、丙三个人相互传接球,第一次从甲开始传球,甲随机地把球传给乙、丙中的一人,接球后视为完成第一次传接球;接球者进行第二次传球,随机地传给另外两人中的一人,接球后视为完成第二次传接球;依次类推,假设传接球无失误,设第n 次传球后,甲接到球的概率为n P . (1)求0P ,1P ,2P 的值;(2)试用1n P -表示()*n P n N ∈,并求数列{}n P 的通项公式.【答案】(1)01P =,10P =,212P =(2)()1112n n P P -=-,1111332n n P -⎛⎫=-- ⎪⎝⎭【分析】(1)直接由题意求值即可.(2)由(1)得10P =,根据*n ∈N ,2n ≥时,第n 次传给甲的事件是第n 1-次传球后,球不在甲手上并且第n 次必传给甲的事件,进而有()1112n n P P -=-,然后变形借助等比数列的定义即可求出数列{}n P 的通项公式.【详解】(1)第一次从甲开始传球,甲随机地把球传给乙、丙中的一人,则01P =,10P =, 接球者进行第二次传球,随机地传给另外两人中的一人,则212P =. 故:01P =,10P =,212P =. (2)第一次传球后,球落在乙或丙手中,则10P =,*n ∈N ,2n ≥时,第n 次传给甲的事件是第n 1-次传球后,球不在甲手上并且第n 次必传给甲的事件, 于是有()1112n n P P -=-,即1111323n n P P -⎛⎫-=-- ⎪⎝⎭, 数列13n P ⎧⎫-⎨⎬⎩⎭是首项为11133P -=-,公比为12-的等比数列, 则1111332n n P -⎛⎫-=-- ⎪⎝⎭,所以1111332n n P -⎛⎫=-- ⎪⎝⎭.故:1111332n n P -⎛⎫=-- ⎪⎝⎭.19.高二A 班计划在学校即将举办的夏季游园会上为同学们提供单球冰激凌的销售服务.已知购买一圆柱形桶装冰激凌需要1300元,此桶装冰激凌桶内底面直径为25厘米,冰激凌净高20厘米.单球冰激凌的平均直径约为5厘米,一副一次性杯勺的成本约1元(其他成本忽略不计).根据前期调查,冰激凌球能全部售完.高二A 班打算将每个单球冰激凌定价为15元,你认为这样的定价是否合理?请作出必要的计算,结合计算结果阐述你的理由. 【答案】合理,理由见解析【分析】根据条件先求圆柱和单球冰激凌的体积,再计算每个单球冰激凌的成本,最后比较.【详解】2212.5203125V R h πππ==⋅⋅=圆柱,33441252.5336V r πππ==⋅=球, 每个单球冰激凌的成本价为125296130019.6731253ππ⋅+=≈(元),定价为15元,利润率约为55%,较为合理.【点睛】本题考查几何体的实际应用问题,重点考查读题能力,抽象概括能力,属于基础题型. 20.如图,等高的正三棱锥P-ABC 与圆锥SO 的底面都在平面M 上,且圆O 过点A ,又圆O 的直径AD ⊥BC ,垂足为E ,设圆锥SO 的底面半径为1,圆锥体积为33π.(1)求圆锥的侧面积;(2)求异面直线AB 与SD 所成角的大小;(3)若平行于平面M 的一个平面N 3P A 与底面ABC 所成角的大小.【答案】(1)2π;(2)3(3)3arctan 2 【分析】(1)利用圆锥体积可求得圆锥的高,进而得到母线长,根据圆锥侧面积公式可求得结果;(2)作//DF AB 交圆锥底面圆于点F ,则SDF ∠即为异面直线AB 与SD 所成角,在SDF ∆中,求解出三边长,利用余弦定理可求得cos SDF ∠,从而得到结果;(3)根据截面面积之比可得底面积之比,求得ABC S ∆,进而求得等边三角形的边长,利用正棱锥的特点可知若Q 为ABC ∆的中心,则PAQ ∠即为侧棱PA 与底面ABC 所成角,在Rt PAQ ∆中利用正切值求得结果.【详解】(1)设圆锥高为h ,母线长为l由圆锥体积得:21313h π⨯⨯= 3h ∴=132l ∴=+= ∴圆锥的侧面积:2S π=(2)作//DF AB 交圆锥底面圆于点F ,连接AF ,SF则SDF ∠即为异面直线AB 与SD 所成角 由题意知:126ADF EAB CAB π∠=∠=∠=,AF DF ⊥ 33DF AD ∴==2SD SF == 2222323cos 232SDF +-∴∠==⨯⨯ 3SDF ∴∠= 即异面直线AB 与SD 所成角为:3(3)平行于平面M 的一个平面N 33ABC O S S ∆∴=3ABC S ∆∴=又21sin 323ABC S AB π∆=⨯=AB 2∴=,即ABC ∆为边长为2的等边三角形 设Q 为ABC ∆的中心,连接PQ ,则22234133AQ AE ==-三棱锥-P ABC 为正三棱锥 PQ ∴⊥平面ABCPAQ ∴∠即为侧棱PA 与底面ABC 所成角33tan 223PQ PAQ AQ ∴∠=== 3arctan 2PAQ ∴∠= 即侧棱PA 与底面ABC 所成角为:3arctan 2【点睛】本题考查圆锥侧面积的求解、异面直线所成角的求解、直线与平面所成角的求解.解决立体几何中的角度问题的关键是能够通过平移找到异面直线所成角、通过找到直线在平面内的投影,得到线面角.21.同底的两个正三棱锥内接于半径为R 的球,它们的侧面与底面所成的角分别为12,.αα求:(1)侧面积的比;(2)体积的比;(3)角12αα+的最大值.【答案】(1)21cos :cos αα(2)12tan :tan αα(3)4arctan 3π- 【分析】分别计算出其侧面积,再计算比值.分别计算出其侧体积,再计算比值.根据tan x 在(0,)2π 单调递增,通过计算12tan()αα+的最大值,求出角12αα+的最大值. 【详解】解:(1)设O 为球心,1O 为正三棱锥底面ABC 所在圆的圆心,两个三棱锥的顶点分别为P ,Q ,取BC 的中点D ,则,,PD BC AD BC ⊥⊥∴∠1PDO 是侧面与底面所成二面角的平面角, ∴∠1PDO 1α=,同理1QDO ∠=2α.11,cos DO PD α∴=12cos DO QD α=, 11133.22cos P ABC DO S BC PD BC α-∴=⋅⋅=⋅侧 1213322cos Q ABC DO S BC QD BC α-=⋅⋅=⋅侧. P ABC S -∴侧:Q ABC S -侧=21cos :cos αα.(2)111112tan ,tan PO DO QO DO αα=⋅=⋅,这两个三棱锥的底都是三角形ABC ∆,1112::tan :tan .P ABC Q ABC V V PO QO αα--∴==(3)设ABC ∆边长为a ,1OO h =,则1111tan ,PO R h DO DO α-== 1211tan ,QO R h DO DO α+==而111,33DO AD ===12.3AO AD ==222211,3R h AO a -== ()121122221212112tan tan 2tan 1tan tan 13RDO R R h a DO DO DO αααααα+∴+===----0.=< 12,2πααπ∴<+<当平面ABC 通过球心O 时,aR 时,12tan()αα+取最大值43-,这时12αα+也最大,最大值为4arctan 3π-. 【点睛】用已知数量表示所求量,再求比值.求角的最大值,可以根据单调性通过求其三角函数值的最值来求.。

2021-2022年高二上学期12月月考试题 数学 含答案

2021-2022年高二上学期12月月考试题 数学 含答案

2021年高二上学期12月月考试题数学含答案(满分160分,考试时间120分钟)一、填空题:(本大题共14小题,每小题5分,共70分.)1.命题“”的否定是______命题.(填“真”或“假”之一).2.双曲线的两条渐近线的方程为.3.“”是“直线和直线垂直的”条件.(填“充要条件”、“充分不必要条件”、“必要不充分条件”、“既不充分也不必要条件”之一)4.已知函数,则= .5.若抛物线的焦点F与双曲线的一个焦点重合,则的值为.6.已知函数在上单调递增,则实数的取值范围是.7.若函数在处取得极大值,则正数的取值范围是.8.若中心在原点,以坐标轴为对称轴的圆锥曲线,离心率为,且过点,则曲线的方程为.9.在平面直角坐标系中,记曲线在处的切线为直线.若直线在两坐标轴上的截距之和为,则的值为.10.设函数是奇函数的导函数,,当时,,则使得成立的的取值范围是.11.在平面直角坐标系xOy中,圆C的方程为(x-1)2+(y-1)2=9,直线l:y=kx+3与圆C 相交于A,B两点,M为弦AB上一动点,以M为圆心,2为半径的圆与圆C总有公共点,则实数k的取值范围为.12.双曲线的右焦点为,直线与双曲线相交于两点.若,则双曲线的渐近线方程为.13.已知函数(为自然对数的底数)..若存在实数,使得.且,则实数的取值范围是.14.设函数,若在区间内的图象上存在两点,在这两点处的切线互相垂直,则实数的取值范围是.二、解答题(本大题共6小题,共90分解答应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)已知命题:函数在上有极值,命题:双曲线的离心率.若是真命题,是假命题,求实数的取值范围.16.(本小题满分14分) 设函数,.(1)求的单调区间和极值;(2)证明:若存在零点,则在区间上仅有一个零点.17.(本小题满分14分)如图,在平面直角坐标系中,已知圆及点,.(1)若直线平行于,与圆相交于,两点,,求直线的方程;(2)在圆上是否存在点,使得?若存在,求点的个数;若不存在,说明理由.18.(本小题满分16分)如图,在平面直角坐标系中,椭圆的左顶点为,与轴平行的直线与椭圆交于、两点,过、两点且分别与直线、垂直的直线相交于点.已知椭圆的离心率为,右焦点到右准线的距离为. (1)求椭圆的标准方程;(2)证明点在一条定直线上运动,并求出该直线的方程; (3)求面积的最大值.19.(本小题满分16分)如图所示,有一块矩形空地,km ,=km ,根据周边环境及地形实际,当地政府规划在该空地内建一个筝形商业区,筝形的顶点为商业区的四个入口,其中入口在边上(不包含顶点),入口分别在边上,且满足点恰好关于直线对称,矩形内筝形外的区域均为绿化区. (1)请确定入口的选址范围;(2)设商业区的面积为,绿化区的面积为,商业区的环境舒适度指数为,则入口如何选址可使得该商业区的环境舒适度指数最大?20.(本小题满分16分) 设函数.(1)若直线是函数图象的一条切线,求实数的值;(2)若函数在上的最大值为(为自然对数的底数),求实数的值; (3)若关于的方程有且仅有唯一的实数根,求实数的取值范围.参考答案:1.假2.3. 充分不必要4.5. 16. 7. (0,2) 8. 9. -3或-4 10. 11.1-34,+∞) 12. 13. 12,3]. 14.解:当x≥2a 时,f (x )=|e x ﹣e 2a |=e x ﹣e 2a ,此时为增函数,当x<2a时,f(x)=|e x﹣e2a|=﹣e x+e2a,此时为减函数,即当x=2a时,函数取得最小值0,设两个切点为M(x1,f(x1)),N((x2,f(x2)),由图象知,当两个切线垂直时,必有,x1<2a<x2,即﹣1<2a<3﹣a,得﹣<a<1,∵k1k2=f′(x1)f′(x2)=e x1•(﹣e x2)=﹣e x1+x2=﹣1,则e x1+x2=1,即x1+x2=0,∵﹣1<x1<0,∴0<x2<1,且x2>2a,∴2a<1,解得a<,综上﹣<a<,故答案为:(﹣,).15.解:命题p:f′(x)=3x2+2ax+a+,∵函数f(x)在(﹣∞,+∞)上有极值,∴f′(x)=0有两个不等实数根,∴△=4a2﹣4×3(a+)=4a2﹣4(3a+4)>0,解得a>4或a<﹣1;命题q:双曲线的离心率e∈(1,2),为真命题,则∈(1,2),解得0<a<15.∵命题“p∧q”为假命题,“p∨q”为真命题,∴p与q必然一真一假,则或,解得:a≥15或0<a≤4或a<﹣1.16.所以,的单调递减区间是,单调递增区间是;在处取得极小值.(Ⅱ)由(Ⅰ)知,在区间上的最小值为.因为存在零点,所以,从而.当时,在区间上单调递减,且,所以是在区间上的唯一零点.当时,在区间上单调递减,且,,所以在区间上仅有一个零点.综上可知,若存在零点,则在区间上仅有一个零点.考点:导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和最值、函数零点问题.17..(2)假设圆上存在点,设,则,222222(1)(0)(1)(2)12PA PB x y x y +=++-+-+-=,即,即, ………………………………10分 因为,……………………………………12分 所以圆与圆相交,所以点的个数为.…………………………………………………………14分 18. 解:(1)由题意得,,解得,所以,所以椭圆的标准方程为.………4分 (2)设,显然直线的斜率都存在,设为 ,则,,所以直线的方程为:0000000033(),()x x y x x y y x x y y y +-=--+=++, 消去得0000000033()()x x x x y x x y y y +---+=++,化简得, 故点在定直线上运动. ……10分 (3)由(2)得点的纵坐标为, 又,所以,则200000009354(3)4D y x y x y y y y y --=++=+=-,所以点到直线的距离为,将代入得,所以面积2200112727442224y yy-+=≤⋅=,当且仅当,即时等号成立,故时,面积的最大值为.……16分19.解:(1)以A为原点,AB所在直线为轴,建立如图所示平面直角坐标系,则,设(),则AF的中点为,斜率为,而,故的斜率为,则的方程为,令,得;………2分令,得;……4分由,得,,即入口的选址需满足的长度范围是(单位:km).……6分(2)因为()23111212AEGS S AE AG a a a aa a∆⎛⎫==⋅=++=++⎪⎝⎭,故该商业区的环境舒适度指数,……9分所以要使最大,只需最小.设……10分则()()())()2224222222111311132132aa aa af a aa a a a-++-++-'=+-===令,得或(舍),………12分的情况如下表:1减极小增故当,即入口满足km时,该商业区的环境舒适度指数最大16分20.解:(1),,设切点横坐标为,则…………2分消去,得,故,得………4分(2)①当时,在上恒成立,在上单调递增,则,得,舍去; ……………5分 ②当时,在上恒成立,在上单调递减, 则,得,舍去; ………6分 ③当时,由,得;由,得, 故在上单调递增,在上单调递减, 则,得, ……8分 设,则当时,,单调递减, 当时,单调递增, 故,的解为.综上①②③,. ……………10分 (3)方程可化为()()()()2211ln 2323ln 22x x t x x t x t x t --+--=-+-, 令,故原方程可化为,………12分由(2)可知在上单调递增,故有且仅有唯一实数根, 即方程(※)在上有且仅有唯一实数根, ……………13分 ①当,即时,方程(※)的实数根为,满足题意; ②当,即时,方程(※)有两个不等实数根,记为不妨设 Ⅰ)若代入方程(※)得,得或, 当时方程(※)的两根为,符合题意; 当时方程(※)的两根为,不合题意,舍去; Ⅱ)若设,则,得;综合①②,实数的取值范围为或. …………16分。

2022-2023学年辽宁省沈阳市第二中学高二上学期12月月考数学试题(解析版)

2022-2023学年辽宁省沈阳市第二中学高二上学期12月月考数学试题(解析版)

2022-2023学年辽宁省沈阳市第二中学高二上学期12月月考数学试题一、单选题1.沈阳二中24届篮球赛正如火如荼地进行中,全年级共20个班,每四个班一组,如1—4班为一组,5—8班为二组……进行单循环小组赛(没有并列),胜出的5个班级和从余下队伍中选出的数据最优秀的1个班级共6支球队按抽签的方式进行淘汰赛,最后胜出的三个班级再进行单循环赛,按积分的高低(假设没有并列)决出最终的冠亚季军,请问此次篮球赛学校共举办了多少场比赛?( ) A .51 B .42 C .39 D .36【答案】D【分析】先进行单循环赛,6支球队按抽签的方式进行淘汰赛,最后3个班再进行单循环赛,分别求出所需比赛场次,即可得出答案. 【详解】先进行单循环赛,有245C =30场,胜出的5个班级和从余下队伍中选出的数据最优秀的1个班级共6支球队按抽签的方式进行淘汰赛, 6支球队打3场,决出最后胜出的三个班, 最后3个班再进行单循环赛,由23C =3场. 所以共打了30+3+3=36场. 故选:D.2.“m>2”是“方程22212x y m m +=+表示焦点在x 轴上的椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】先根据焦点在x 轴上的椭圆求出m ,再根据充分性,必要性的概念得答案.【详解】由方程22212x y m m +=+表示焦点在x 轴上的椭圆得:220m m >+>, 解得21m -<<-或m>2, 由充分性,必要性的概念知,“m>2”是“方程22212x y m m +=+表示焦点在x 轴上的椭圆”的充分不必要条件.故选:A.合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则c ,k 的值分别是4e 和0.3;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程y a bx =+中,2b =,1x =,3y =,则1a =;④通过回归直线y bx a =+及回归系数b ,可以精确反映变量的取值和变化趋势,其中正确的个数是( ) A .1 B .2C .3D .4【答案】C【分析】根据独立性检验、非线性回归方程以及回归直线方程相关知识进行判断.【详解】对于命题①,根据独立性检验的性质知,两个分类变量2χ越大,说明两个分类变量相关程度越大,命题①正确;对于命题②,由kx y ce =,两边取自然对数,可得ln ln y c kx =+,令ln z y =,得ln z kx c =+,0.34z x =+,所以ln 40.3c k =⎧⎨=⎩,则40.3c e k ⎧=⎨=⎩,命题②正确;对于命题③,回归直线方程y a bx =+中,3211a y bx =-=-⨯=,命题③正确;对于命题④,通过回归直线y bx a =+及回归系数b ,可估计和预测变量的取值和变化趋势,命题④错误.故选C.【点睛】本题考查了回归直线方程、非线性回归方程变换以及独立性检验相关知识,考查推理能力,属于中等题.4.()823x y z ++的展开式中,共有多少项?( ) A .45 B .36 C .28 D .21【答案】A【分析】按照展开式项含有字母个数分类,即可求出项数.【详解】解:当()823x y z ++展开式的项只含有1个字母时,有3项,当()823x y z ++展开式的项只含有2个字母时,有2137C C 21=项,当()823x y z ++展开式的项含有3个字母时,有27C 21=项,所以()823x y z ++的展开式共有45项; 故选:A.5.已知()52232x x --21001210a a x a x a x =++++,则0110a a a ++=( )【答案】A【分析】首先令0x =,这样可以求出0a 的值,然后把2232x x --因式分解,这样可以变成两个二项式的乘积的形式,利用两个二项式的通项公式,就可以求出110a a 、的会下,最后可以计算出0110a a a ++的值.【详解】令0x =,由已知等式可得:50=232a =,()55552[(12)(2)]2((2)3122)x x x x x x =-+=-⋅+--,设5(12)x -的通项公式为:51551(2)(2)rrr r r r r T C x C x -+=⋅⋅-=⋅-⋅,则常数项、x 的系数、5x 的系数分别为:0155555(2)2C C C --⋅⋅、、;设5(2)x +的通项公式为:5512r r r r T C x -+=⋅⋅‘’‘’‘,则常数项、x 的系数、5x 的系数分别为: 4501555522C C C ⋅⋅、、,0115401555522)(2240,a C C C C =⋅⋅⋅=-⋅⋅+-5551055(2)32a C C =-⋅⋅=-,所以01103224032240a a a ++=--=-,故本题选A.【点睛】本题考查了二项式定理的应用,正确求出通项公式是解题的关键.6.平行四边形ABCD 内接于椭圆22221x y a b +=()0a b >>AB 的斜率为1,则直线AD 的斜率为( )A .1-4B .1-2C .D .-1【答案】A【分析】利用对称关系转化为中点弦问题即可求解. 【详解】22222223331,,,2444c c a b b a a a a -=∴==∴=, 设112233(,),(,),(,),A x y B x y D x y设E 为AD 中点,由于O 为BD 中点,所以//OE AB ,所以1OE k =, 因为1133(,),(,)A x y D x y 在椭圆上,所以22112222332211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得2131321313OE AD y y y y b k k a x x x x +--=⋅=⋅+-, 所以22114AD b k a ⨯=-=-,即14AD k =-.故选:A.7.已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为12,F F ,且两条曲线在第一象限的交点为P ,12PF F △是以1PF 为底边的等腰三角形,若110PF =,椭圆与双曲线的离心率分别为12,e e ,则121e e ⋅+的取值范围是A .()1,+∞B .4,3⎛⎫+∞ ⎪⎝⎭C .6,5⎛⎫+∞ ⎪⎝⎭D .10,9⎛⎫+∞ ⎪⎝⎭【答案】B【分析】本题主要考查椭圆和双曲线的定义,椭圆和双曲线的离心率,平面几何分析方法,值域的求法.由于椭圆和双曲线有公共点,那么公共点既满足椭圆的定义,也满足上曲线的定义,根据已知条件有22PF c =,利用定义列出两个离心率的表达式,根据题意求121e e ⋅+的表达式,表达式分母还有二次函数含有参数,根据三角形两边和大于第三边,求出c 的取值范围,进而求得121e e ⋅+的取值范围.【详解】设椭圆方程为()222221122111x y a b c a b +=-=,双曲线方程为()222221122111x y a b c a b -=+=,由椭圆和双曲线的几何性质可得,1211222,2PF PF a PF PF a +=-=,依题意可知22PF c =,110PF =,代入可得,125,5a c a c =+=-.故2122212251112525c c c e e a a c c ⋅+=⋅+=+=--,三角形两边的和大于第三边,故5410,2c c >>,120,0a a >>,故5c <故22223745402554252525c c c <⇒<⇒<-><-. 故选:B.【点睛】(1)椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、122PF PF a +=,得到a ,c 的关系.(2)双曲线上一点与两焦点构成的三角形,称为双曲线的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、122PF PF a -=,得到a ,c 的关系.8.已知A ,B ,C ,D 是椭圆E :22143x y +=上四个不同的点,且()1,1M 是线段AB ,CD 的交点,且3AM CM BMDM==,若l AC ⊥,则直线l 的斜率为( )A .12B .34C .43D .2【答案】C【分析】设出点的坐标()()()()11223344,,,,,,,A x y B x y C x y D x y ,由3AMBM=得到3AM MB =,列出方程,得到12124343x x y y -⎧=⎪⎪⎨-⎪=⎪⎩,分别把()()1122,,,A x y B x y 代入椭圆,得到()()111122143x y -+-=,同理得到()()331122143x y -+-=,两式相减得到34AC k =-,利用直线垂直斜率的关系求出直线l 的斜率. 【详解】设()()()()11223344,,,,,,,A x y B x y C x y D x y ,因为3AM BM =,故3AM MB =,所以()()1212131131x x y y ⎧-=-⎪⎨-=-⎪⎩,则12124343x x y y -⎧=⎪⎪⎨-⎪=⎪⎩,又()()1122,,,A x y B x y 都在椭圆上,故2211143x y +=,且()()22119114443x y -+-=, 两式相减得:()()1181142442443x y -⨯+-⨯=,即()()111122143x y -+-=①, 同理可得:()()11221x y -+-=②,②-①得:()()131311043x x y y -+-=, 所以131334ACy y k x x -==--, 因为l AC ⊥,所以直线l 的斜率为143AC k -=. 故选:C【点睛】直线与圆锥曲线相交涉及中点弦问题,常用点差法,该法计算量小,模式化强,易于掌握,若相交弦涉及AM MB λ=的定比分点问题时,也可以用点差法的升级版—定比点差法,解法快捷.二、多选题9.已知两点(5,0),(5,0)M N -,若直线上存在点P ,使||||6PM PN -=,则称该直线为“B 型直线”.下列直线中为“B 型直线”的是( ) A .1y x =+ B .2y = C .43y x =D .2y x =【答案】AB【解析】首先根据题意,结合双曲线的定义,可得满足||||6PM PN -=的点的轨迹是以M 、N 为焦点的双曲线的右支;进而可得其方程,若该直线为“B 型直线”,则这条直线必与双曲线的右支相交,依次分析4条直线与双曲线的右支是否相交,可得答案.【详解】解:根据题意,满足||||6PM PN -=的点的轨迹是以M 、N 为焦点的双曲线的右支; 则其中焦点坐标为(5,0)M -和(5,0)N ,即5c =,3a =, 可得4b =;故双曲线的方程为221916x y -=,(0)x > 双曲线的渐近线方程为43y x =±∴直线43y x =与双曲线没有公共点, 直线2y x =经过点(0,0)斜率43k >,与双曲线也没有公共点 而直线1y x =+、与直线2y =都与双曲线221916x y-=,(0)x >有交点 因此,在1y x =+与2y =上存在点P 使||||6PM PN -=,满足B 型直线的条件 只有AB 正确 故选:AB .10.甲箱中有3个白球和3个黑球,乙箱中有2个白球和4个黑球.先从甲箱中随机取出一球放入乙箱中,分别以12,A A 表示由甲箱中取出的是白球和黑球的事件;再从乙箱中随机取出一球,以B 表示从乙箱中取出的球是黑球的事件,则下列结论正确的是( ) A .12,A A 两两互斥B .()22|3P B A = C .事件B 与事件2A 相互独立 D .()914P B =【答案】AD【分析】根据条件概率、全概率公式、互斥事件的概念等知识,逐一分析选项,即可得答案. 【详解】因为每次取一球,所以12,A A 是两两互斥的事件,故A 项正确; 因为()()1212P A P A ==,()()()2225|7P BA P B A P A ==,故B 项错误; 又()()()1114|7P BA P B A P A ==,所以()()()1214159272714P B P BA P BA =+=⨯+⨯=,故D 项正确.从甲箱中取出黑球,放入乙箱中,则乙箱中黑球变为5个,取出黑球概率发生变化,所以事件B 与事件2A 不相互独立,故C 项错误. 故选:AD11.已知抛物线E :2y x =,O 为坐标原点,一束平行于x 轴的光线1l 从点41,116P ⎛⎫⎪⎝⎭射入,经过E 上的点()11,A x y 反射后,再经E 上的另一点()22,B x y 反射后,沿直线2l 射出,经过点Q ,则( ) A .12116x x =B .54AB =C .ABP QBP ∠=∠D .延长AO 交E 的准线于点C 则存在实数λ使得CB CQ λ= 【答案】ACD【分析】根据抛物线的光学性质可知,直线AB 经过抛物线的焦点,直线2l 平行于x 轴,由此可求出点,A B 的坐标,判断各选项的真假.【详解】如图所示:因为141,1,16P l ⎛⎫ ⎪⎝⎭过点P 且1//l x 轴,故(1,1)A ,故直线101:1414AF y x -⎛⎫=⋅- ⎪⎝⎭- 化简得4133y x =-,由24133y x y x⎧=-⎪⎨⎪=⎩消去x 并化简得231044y y --=,即1214y y =-,()21212116x x y y ==,故A 正确;又11y =, 故214y =-,B 11,164⎛⎫- ⎪⎝⎭,故121125116216AB x x p =++=++=,故B 错误;因为412511616AP AB =-==,故APB △为等腰三角形,所以ABP APB ∠=∠,而12l l //,故PBQ APB ∠=∠,即ABP PBQ ∠=∠,故C 正确;直线:AO y x =,由14y xx =⎧⎪⎨=-⎪⎩得11,,44C ⎛⎫-- ⎪⎝⎭故C B y y =,所以,,C B Q 三点共线,故D 正确.故选:ACD . 12.已知当随机变量()2,XN μσ时,随机变量X Z μσ-=也服从正态分布.若()2,,X X N Z μμσσ-~=,则下列结论正确的是( )A .()0,1ZNB .()12(1)P X P Z μσ-<=-<C .当μ减小,σ增大时,(2)P X μσ-<不变D .当,μσ都增大时,(3)P X μσ-<增大 【答案】AC【分析】根据正态分布与标准正态分布的关系以及正态分布的性质及特点可判断各选项正误. 【详解】对任意正态分布()2,X N μσ,X Z μσ-=服从标准正态分布()0,1ZN 可知A 正确,由于X Z μ-=,结合正态分布的对称性可得()(1)12(1)P X P Z P Z μσ-<=<=->,可知B 错误,已知正态分布()2,X N μσ,对于给定的*N k ∈,()P X k μσ-<是一个只与k 有关的定值,所以C正确,D 错误. 故选:AC.三、填空题 13.设()2,XB p ,若()519P X ≥=,则p =_________ .【答案】13【分析】由二项分布的概率公式()()1n kk kn P X k p p -==-C ,代入()()()112P X P X P X ≥==+=可得结果. 【详解】()2,XB p ,()()()()()0122222112C 1+C 12P X P X P X p p p p p p ∴≥==+==--=-,2529p p ∴-=,解得:13p ∴=或53p =(舍去)故答案为:13.14.已知()35P A =,()12P B A =,()23P B A =,则()P B =______. 【答案】1330【分析】根据已知条件结合全概率公式求解即可 【详解】因为()35P A =,所以32()1()155P A P A =-=-=, 因为()23P B A =,所以()()211133P B A P B A =-=-=, 所以由全概率公式可得()()()()()P B P B A P A P B A P A =+ 131213253530=⨯+⨯=, 故答案为:133015.现有三位男生和三位女生,共六位同学,随机地站成一排,在男生甲不站两端的条件下,有且只有两位女生相邻的概率是______. 【答案】2##0.4.【分析】先计算出男生甲不站两端,3位女生中有且只有两位女生相邻的总情况,再按照古典概型计算概率即可.【详解】3位男生和3位女生共6位同学站成一排共有66A 种不同排法,其中男生甲不站两端,3位女生中有且只有两位女生相邻有2322233422A (A A 6A A )-种不同排法,因此所求概率为232223342266A (A A 6A A )2=.A 5- 故答案为:25.16.关于曲线C :22111x y +=,有如下结论: ①曲线C 关于原点对称; ②曲线C 关于直线0x y ±=对称; ③曲线C 是封闭图形,且封闭图形的面积大于2π; ④曲线C 不是封闭图形,且它与圆222x y +=无公共点; 其中所有正确结论的序号为_________. 【答案】①②④【分析】利用曲线方程的性质,对称性的应用及曲线间的位置关系即可判断上述结论是否正确. 【详解】对于①,将方程中的x 换为x -,y 换为y -,得()()222211111x y x y +=+=--,所以曲线C 关于原点对称,故①正确;对于②,将方程中的x 换为y 或y -,y 换为x 或x -,得()()2222221111111y x x y y x +=+=+=--,所以曲线C 关于直线0x y ±=对称,故②正确; 对于③,由22111x y +=得221110y x=-≥,即21x ≥,同理21y ≥,显然曲线C 不是封闭图形,故③错误;对于④,由③知曲线C 不是封闭图形,联立22221112x y x y ⎧+=⎪⎨⎪+=⎩,消去2y ,得42220x x -+=,令2t x =,则上式转化为2220t t -+=,由()224240∆=--⨯=-<可知方程无解,因此曲线C 与圆222x y +=无公共点,故④正确. 故答案为:①②④.四、解答题17.给出下列条件:①若展开式前三项的二项式系数的和等于16;②若展开式中倒数第三项与倒数第二项的系数比为4:1.从中任选一个,补充在下面问题中,并加以解答(注:若选择多个条件,按第一个解答计分)已知()*nx n N ⎛∈ ⎝⎭,___________. (1)求展开式中二项式系数最大的项; (2)求展开式中所有的有理项.【答案】(1)4352T x =和74254T x =(2)51T x =,4352T x =,35516T x =【分析】(1)无论选①还是选②,根据题设条件可求5n =,从而可求二项式系数最大的项. (2)利用二项展开式的通项公式可求展开式中所有的有理项. 【详解】(1)二项展开式的通项公式为:211C C ,0,1,2,,2rr r rr n n n r r n T x x r n --+⎛⎫=== ⎪⎝⎭⎝⎭.若选①,则由题得012C C C 16n n n ++=,∴()11162n n n -++=,即2300n n +-=,解得5n =或6n =-(舍去),∴5n =.若选②,则由题得()221111C 22141C 22n n nn n n n n n n ----⎛⎫- ⎪⎝⎭==-=⎛⎫ ⎪⎝⎭,∴5n =, 展开式共有6项,其中二项式系数最大的项为22443515C 22T x x ⎛⎫== ⎪⎝⎭,,7732345215C 24T x x ⎛⎫== ⎪⎝⎭. (2)由(1)可得二项展开式的通项公式为:5521551C C ,0,1,2,,52rr r rr r r T x x r --+⎛⎫=== ⎪⎝⎭⎝⎭.当52rZ -∈即0,2,4r =时得展开式中的有理项,所以展开式中所有的有理项为:51T x =,5423522215C 22T x x -⎛⎫= ⎪⎝⎭=,5342545415C 216T x x -⎛⎫= ⎪=⎝⎭.18.已知圆()22:()(21)4C x a y a a -+-+=∈R ,定点()1,2M -.(1)过点M 作圆C 的切线,切点是A ,若线段MA C 的标准方程;(2)过点M 且斜率为1的直线l ,若圆C 上有且仅有4个点到l 的距离为1,求a 的取值范围. 【答案】(1)22(3)(5)4x y -+-=或22(1)(3)4x y +++=(2)(4【分析】(1)由题可知,圆心(),21C a a -,2r =,由勾股定理有222MC MA r =+,根据两点间距离公式计算即可求出a 的值,进而得出圆的方程;(2)因为圆C 上有且仅有4个点到l 的距离为1,圆C 的半径为2,因此需圆心C 到直线l 的距离小于1,设直线l 的方程为:()211y x -=+,根据点到直线的距离公式列出不等式,即可求出a 的取值范围.【详解】(1)解:由题可知,圆心(),21C a a -,2r =由勾股定理有222MC MA r =+,则222(1)(23)225a a ++-=+= 即2510150a a --=,解得:3a =或1a =-,所以圆C 的标准方程为:22(3)(5)4x y -+-=或22(1)(3)4x y +++=. (2)解:设直线l 的方程为:()211y x -=+,即30x y -+=, 由题,只需圆心C 到直线l 的距离小于1即可,所以1d =<,所以4a -44a <所以a 的取值范围为(4.19.某种植物感染α病毒极易导致死亡,某生物研究所为此推出了一种抗α病毒的制剂,现对20株感染了α病毒的该植株样本进行喷雾试验测试药效.测试结果分“植株死亡”和“植株存活”两个结果进行统计;并对植株吸收制剂的量(单位:mg )进行统计.规定:植株吸收在6mg (包括6mg )以上为“足量”,否则为“不足量”.现对该20株植株样本进行统计,其中 “植株存活”的13株,对制剂吸收量统计得下表.已知“植株存活”但“制剂吸收不足量”的植株共1株.(1)完成以下22⨯列联表,并判断是否可以在犯错误概率不超过1%的前提下,认为“植株的存活”与“制剂吸收足量”有关?(2)①若在该样本“吸收不足量”的植株中随机抽取3株,记ζ为“植株死亡”的数量,求ζ得分布列和期望E ζ;②将频率视为概率,现在对已知某块种植了1000株并感染了α病毒的该植物试验田里进行该药品喷雾试验,设“植株存活”且“吸收足量”的数量为随机变量η,求D η.参考数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++【答案】(1)不能在犯错误概率不超过1%的前提下,认为“植株的存活”与“制剂吸收足量”有关;(2)①分布列见解析,125E ζ=,②240 【解析】(1)已知“植株存活”但“制剂吸收不足量”的植株共1株,由题意可得“植株存活”的13株,“植株死亡”的7株;“吸收足量”的15株,“吸收不足量”的5株,填表即可(2)代入公式计算2220(12431) 5.934 6.635137155K ⨯-⨯=≈<⨯⨯⨯,有关(3)①样本中“制剂吸收不足量”有5株,其中“植株死亡”的有4株, 存活的1株,所以抽取的3株中ξ的可能取值是2,3,根据古典概型计算即可. ②“植株存活”且“制剂吸收足量”的概率为123205p ==,332~(1000,)(1)1000240555B D np p ηη⇒=-=⨯⨯=【详解】解:(1) 由题意可得“植株存活”的13株,“植株死亡”的7株;“吸收足量”的15株,“吸收不足量”的5株,填写列联表如下:吸收足量 吸收不足量 合计 植株存活 12 1 13 植株死亡 3 4 7 合计 155202220(12431) 5.934 6.635137155K ⨯-⨯=≈<⨯⨯⨯所以不能在犯错误概率不超过1%的前提下,认为“植株的存活”与“制剂吸收足量”有关. ①样本中“制剂吸收不足量”有5株,其中“植株死亡”的有4株, 存活的1株, 所以抽取的3株中ξ的可能取值是2,3.其中24353(2)5C P C ξ===, 34352(3)5C P C ξ===ξ的分布列为: ξ2 3 P3525所以321223555E ξ=⨯+⨯=. ②332~(1000,)(1)1000240555B D np p ηη⇒=-=⨯⨯=【点睛】考查完成22⨯列联表、离散型随机变量的分布列、期望以及二项分布的方差,难题. 20.安排5个大学生到,,A B C 三所学校支教,设每个大学生去任何一所学校是等可能的. (1)求5个大学生中恰有2个人去A 校支教的概率; (2)设有大学生去支教的学校的个数为ξ,求ξ的分布列.【答案】(1);(2)详见解析.【详解】试题分析:(1)5个大学生去三所学校支教,共有种方法,若恰有2人去A 校支教,那就从5人中先选2人,去A 大学,然后剩下的3人去B 和C 大学支教,有种方法,最后根据古典概型求概率;(2)根据题意,,表示5人都去了同一所大学支教,表示5人去了其中2所大学支教,那可以将5人分组,分为4和1,或是3和2,然后再分配到2所大学,计算概率,表示5人去了3所大学支教,那分组为113,或是122型,再将三组分配到三所大学,计算概率,最后列分布列.试题解析:(1)5个大学生到三所学校支教的所有可能为53243=种,设“恰有2个人去A 校支教”为事件M ,则有352280C ⋅=种,∴80()243P M =. 答:5个大学生中恰有2个人去A 校支教的概率80243. (2)由题得:1,2,3ξ=,15ξ=⇒人去同一所学校,有133C =种,∴ 31(1)24381P ξ===, 25ξ=⇒人去两所学校,即分为4,1或3,2有24323552()90C C C A ⋅+⋅=种,∴ 903010(2)2438127P ξ====, 35ξ=⇒人去三所学校,即分为3,1,1或2,2,1有312235253311()1502!2!C C C C A ⋅⋅⋅⋅+⋅= 种,∴15050(3)24381P ξ===. ∴ 的分布列为【解析】1.排列组合;2.离散型随机变量的分布列.21.已知椭圆22:143x y Γ+=的右焦点为F ,过F 的直线l 交Γ于,A B 两点.(1)若直线l 垂直于x 轴,求线段AB 的长;(2)若直线l 与x 轴不重合,O 为坐标原点,求△AOB 面积的最大值;(3)若椭圆Γ上存在点C 使得||||AC BC =,且△ABC 的重心G 在y 轴上,求此时直线l 的方程. 【答案】(1)3 (2)32(3):1l x =、:0l y =或3:1l x y =+【分析】(1)根据直线垂直x 轴,可得,A B 坐标,进而可求线段长度.(2)联立直线和椭圆方程,根据韦达定理,可得根与系数关系,进而根据三角形面积求表达式,进而根据函数最值进行求面积最大值.(3)联立直线和椭圆方程,根据韦达定理,可得根与系数关系,以及重心坐标公式,即可求解.【详解】(1)因为(1,0)F ,令1x =,得21143y +=,所以32y =±,所以||3AB = (2)设直线:1(0)l x my m =+≠,1122(,),(,)A x y B x y ,不妨设210,0y y ><,由221431x y x my ⎧+=⎪⎨⎪=+⎩得22(34)690m y my ++-=, 2144(1)m ∆=+,122634m y y m -+=+,122934y y m -=+, ()2221122221212169434434m y y y y y m m m y --⎛⎫- ⎪++-+-==+⎝⎭2211112122AOBm SOF y y +=⋅-=21m t +=,则1t ≥,2661313AOB t S t t t==++△,记1()3h t t t =+,可得1()3h t t t=+在[)1,+∞上单调递增所以211322AOBSOF y y =⋅-≤当且仅当0m =时取到, 即AOB 面积的最大值为32;(3)①当直线l 不与x 轴重合时,设直线:1l x my =+,1122(,),(,)A x y B x y ,AB 中点为M .由221431x y x my ⎧+=⎪⎨⎪=+⎩得22(34)690m y my ++-=,122634m y y m -+=+,122934y y m -=+, 因为ABC 的重心G 在y 轴上,所以120C x x x ++=, 所以121228()234C x x x m y y m -=--=-+-=+,又()12122242234M m y y x x x m +++===+,1223234M y y my m +-==+, 因为||||AC BC =,所以CM AB ⊥ ,故直线:()M M CM y y m x x -=--,所以29()34C M C M m y y m x x m =--=+,从而2289,3434m C m m -⎛⎫ ⎪++⎝⎭, 代入22143x y +=得22(31)0m m -=,所以0,m =:1l x =或:1l x y =+.② 当直线l 与x 轴重合时,点C 位于椭圆的上、下顶点显然满足条件,此时:0l y =. 综上,:1l x =,:0l y =或:1l x y =+. 22.已知双曲线2222:100x y C a b a b-=>>(,),1F 、2F 分别是它的左、右焦点,(1,0)A -是其左顶点,且双曲线的离心率为2e =.设过右焦点2F 的直线l 与双曲线C 的右支交于P Q 、两点,其中点P 位于第一象限内. (1)求双曲线的方程;(2)若直线AP AQ 、分别与直线12x =交于M N 、两点,证明22MF NF ⋅为定值; (3)是否存在常数λ,使得22PF A PAF λ∠=∠恒成立?若存在,求出λ的值,若不存在,请说明理由. 【答案】(1)2213y x -= (2)证明见解析 (3)存在,2【分析】(1)根据题意可得1a =,2ce a==,即可求解,b c 的值,进而得到双曲线方程; (2)设直线l 的方程及点,P Q 的坐标,直线l 的方程与双曲线C 的方程联立,得到1212,y y y y +的值,进而得到点,M N 的坐标,计算22MF NF ⋅的值即可;(3)在直线斜率不存在的特殊情况下易得2λ=,再证明222AF P PAF ∠=∠对直线l 存在斜率的情形也成立,将角度问题转化为斜率问题,即222tan 21PAPAk PAF k ∠=-,22tan PF AF P k ∠=-,即可求解=2λ. 【详解】(1)解:由题可知:1a = ∵2ce a==,∴c =2 ∵222+=a b c ,∴b = ∴双曲线C 的方程为:2213y x -=(2)证明:设直线l 的方程为:2x ty =+,另设:()11,P x y ,()22,Q x y ,∴()2222131129032y x t y ty x ty ⎧⎪⎨⎪-=⇒-++==+⎩, ∴121222129,3131t y y y y t t -+==--,又直线AP 的方程为()1111y y x x =++,代入()11311,2221y x M x ⎛⎫=⇒ ⎪ ⎪+⎝⎭, 同理,直线AQ 的方程为()2211y y x x =++,代入()22311,2221y x N x ⎛⎫=⇒ ⎪ ⎪+⎝⎭, ∴()()1222123333,,,221221y y MF NF x x ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭,∴()()()()()12121222212121212999999441144334439y y y y y y MF NF x x ty ty t y y t y y ⋅=+=+=+++++⎡⎤+++⎣⎦2222999993109124444393131t t t t t t ⨯-=+=-=-⎛⎫⨯+⨯+ ⎪--⎝⎭,故22MF NF ⋅为定值.(3)解:当直线l 的方程为2x =时,解得(2,3)P , 易知此时2AF P △为等腰直角三角形,其中22,24AF P PAF ππ∠=∠=,即222AF P PAF ∠=∠,也即:=2λ,下证:222AF P PAF ∠=∠对直线l 存在斜率的情形也成立,121112222212112122tan 212(1)tan 21tan 1(1)1()1PAPAy PAF k x y x PAF y PAF k x y x ⨯∠++∠====-∠-+--+,∵()222211111313y x y x -=⇒=-,∴()()()()()()11111222121112121tan 22122131y x y x y PAF x x x x x ++∠===--+--+--,∴21221tan tan 22PF y AF P k PAF x ∠=-=-=∠-, ∴结合正切函数在0,,22πππ⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭上的图像可知,222AF P PAF ∠=∠,。

高二数学12月月考试题文含解析(共20页)

高二数学12月月考试题文含解析(共20页)

第二中学2021-2021学年(xuénián)高二数学12月月考试题文〔含解析〕一、选择题:本大题一一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,选出符合题目要求的一项.1.双曲线的HY方程是,其渐近线方程是〔〕A.y=±3x B.y=±4x C.x=±4y D.x=±3y 2.以下命题中的假命题是〔〕A.质数都是奇数B.函数y=sin x是周期函数C.112能被7整除D.奇函数的图象关于坐标原点对称3.设m,n是两条不同的直线,α,β为两个不同的平面,那么以下命题正确的选项是〔〕A.假设m∥α,n⊂α,那么m∥n B.假设m⊂α,n⊂β,α⊥β,那么m⊥nC.假设m∥n,n⊥β,那么m⊥βD.假设m⊥β,α⊥β,那么m∥α4.椭圆以双曲线的焦点为顶点,以双曲线顶点为焦点,那么椭圆的HY方程为〔〕A.B.C.D.5.椭圆(tuǒyuán)=1与双曲线=1有一样的焦点,那么m的值是〔〕A.1 B.C.2 D.36.假设椭圆〔a>b>0〕的离心率为,那么双曲线的离心率是〔〕A.2 B.C.D.37.圆C与直线x﹣y=0及x﹣y﹣4=0都相切,圆心在直线x+y=0上,那么圆C的方程为〔〕A.〔x+1〕2+〔y﹣1〕2=2 B.〔x﹣1〕2+〔y+1〕2=2C.〔x﹣1〕2+〔y﹣1〕2=2 D.〔x+1〕2+〔y+1〕2=28.抛物线y2=4x的焦点为F,定点A〔2,2〕,在此抛物线上求一点P,使|PA|+|PF|最小,那么P点坐标为〔〕A.〔﹣2,2〕B.〔1,〕C.〔1,2〕D.〔1,﹣2〕9.设a,b∈R,ab≠0,那么直线ax﹣y+b=0和曲线bx2+ay2=ab的大致图形是〔〕A.B.C.D.10.某几何体的三视图〔单位:cm〕如下图,其中侧视图是一个边长为2的正三角形,那么这个几何体的体积是〔〕A.2 cm3B.cm3C.3cm3D.3 cm3 11.A〔﹣1,0〕,M是圆B:x2﹣2x+y2﹣7=0〔B为圆心〕上一动(yīdòng)点,线段AM的垂直平分线交MB于P,那么点P的轨迹方程是〔〕A.=1 B.=1C.=1 D.=112.x,y满足,假如目的函数z=的取值范围为[0,2〕,那么实数m的取值范围为〔〕A.[0,] B.〔﹣∞,] C.〔﹣∞,〕D.〔﹣∞,0] 二、填空题:本大题一一共4小题,每一小题5分,一共20分.13.“假设X>5,那么X2>25〞的逆否命题是.14.在平面直角坐标系xOy中,△ABC的顶点B〔﹣5,0〕和C〔5,0〕,顶点A在双曲线的右支上,那么=.15.在正方体ABCD﹣A1B1C1D1中,直线BA1与平面A1B1CD所成的角是.16.点A〔0,1〕,抛物线C:y2=ax〔a>0〕的焦点(jiāodiǎn)为F,连接FA,与抛物线C相交于点M,延长FA,与抛物线C的准线相交于点N,假设|FM|:|MN|=1:3,那么实数a的值是.三、解答题:本大题一一共6小题,一共70分.解容许写出文字说明,证明过程或者演算步骤.17.双曲线C的焦点坐标为F1〔,0〕,F2〔,0〕,实轴长为6.〔1〕求双曲线C HY方程;〔2〕假设双曲线C上存在一点P使得PF1⊥PF2,求△PF1F2的面积.18.某抛物线型拱桥水面宽度20m,拱顶离水面4m,现有一船宽9m,船在水面上高3m.〔1〕建立适当平面直角坐标系,求拱桥所在抛物线HY方程;〔2〕计算这条船能否从桥下通过.19.点P〔4,0〕,点Q在曲线C:y2=4x上.〔1〕假设点Q在第一象限内,且|PQ|=4,求点Q的坐标;〔2〕求|PQ|的最小值.20.如图,边长为3的等边三角形ABC,E,F分别在边AB,AC上,且AE=AF =2,M为BC边的中点,AM交EF于点O,沿EF将△AEF,折到DEF的位置,使.〔1〕证明DO⊥平面EFCB;〔2〕试在BC边上确定一点N,使EN∥平面DOC,并求的值.21.焦点(jiāodiǎn)在x轴上的双曲线C过点,且其渐近线方程为.〔1〕求双曲线C的HY方程;〔2〕假设直线y=ax+1与双曲线C的右支交于A,B两点,务实数a的取值范围.22.椭圆C的中心在坐标原点,焦点在x轴上,左顶点为A,左焦点为F1〔﹣2,0〕,点B〔2,〕在椭圆C上,直线y=kx〔k≠0〕与椭圆C交于P,Q两点,直线AP,AQ分别与y轴交于点M,N〔Ⅰ〕求椭圆C的方程〔Ⅱ〕以MN为直径的圆是否经过定点?假设经过,求出定点的坐标;假设不经过,请说明理由.2021-2021学年二中(èr zhōnɡ)高二〔上〕12月月考数学试卷〔文科〕参考答案与试题解析一、选择题:本大题一一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,选出符合题目要求的一项.1.双曲线的HY方程是,其渐近线方程是〔〕A.y=±3x B.y=±4x C.x=±4y D.x=±3y【解答】解:双曲线的HY方程是,可得a=1,b=3,由于渐近线方程为y=±3x,即为y=±3x.应选:A.2.以下命题中的假命题是〔〕A.质数都是奇数B.函数y=sin x是周期函数C.112能被7整除D.奇函数的图象关于坐标原点对称【解答】解:2是质数,也是偶数,所以A不正确;函数y=sin x是周期函数,正确;112÷7=16,所以112能被7整除,正确;奇函数的图象关于坐标原点对称,正确;应选:A.3.设m,n是两条不同(bù tónɡ)的直线,α,β为两个不同的平面,那么以下命题正确的选项是〔〕A.假设m∥α,n⊂α,那么m∥n B.假设m⊂α,n⊂β,α⊥β,那么m⊥nC.假设m∥n,n⊥β,那么m⊥βD.假设m⊥β,α⊥β,那么m∥α【解答】解:A,m,n也可能异面,故错误;B,m,n存在多种位置关系,不一定垂直,故错误;C,平行线中的一条垂直一个平面.那么另一条也垂直该平面,故正确;D,存在m⊂α的情况,故错误.应选:C.4.椭圆以双曲线的焦点为顶点,以双曲线顶点为焦点,那么椭圆的HY方程为〔〕A.B.C.D.【解答】解:双曲线的焦点〔5,0〕,〔﹣5,0〕是椭圆的顶点,那么所求椭圆方程中的长半轴a=5.双曲线的顶点为〔4,0〕,〔﹣4,0〕是椭圆的焦点,那么椭圆的半焦距c=4,那么b=3.椭圆(tuǒyuán)的HY方程为.应选:A.5.椭圆=1与双曲线=1有一样的焦点,那么m的值是〔〕A.1 B.C.2 D.3【解答】解:椭圆=1得∴c1=,∴焦点坐标为〔,0〕〔﹣,0〕,双曲线=1的焦点必在x轴上,那么半焦距c2=∴=解得实数m=1.应选:A.6.假设椭圆〔a>b>0〕的离心率为,那么双曲线的离心率是〔〕A.2 B.C.D.3【解答】解:椭圆〔a>b>0〕的离心率为,可得,即:,可得,在那么(nà me)双曲线中,由,即,可得,∴e=.应选:C.7.圆C与直线x﹣y=0及x﹣y﹣4=0都相切,圆心在直线x+y=0上,那么圆C的方程为〔〕A.〔x+1〕2+〔y﹣1〕2=2 B.〔x﹣1〕2+〔y+1〕2=2C.〔x﹣1〕2+〔y﹣1〕2=2 D.〔x+1〕2+〔y+1〕2=2【解答】解:圆心在x+y=0上,圆心的纵横坐标值相反,显然能排除C、D;验证:A中圆心〔﹣1,1〕到两直线x﹣y=0的间隔是;圆心〔﹣1,1〕到直线x﹣y﹣4=0的间隔是.故A错误.应选:B.8.抛物线y2=4x的焦点为F,定点A〔2,2〕,在此抛物线上求一点P,使|PA|+|PF|最小,那么P点坐标为〔〕A.〔﹣2,2〕B.〔1,〕C.〔1,2〕D.〔1,﹣2〕【解答】解:根据抛物线的定义,点P到焦点F的间隔等于它到准线l的间隔,设点P到准线l:x=﹣1的间隔为PQ,那么所求的|PA|+|PF|最小值,即|PA|+|PQ|的最小值;根据平面几何知识,可得当P、A、Q三点一共线时|PA|+|PQ|最小,∴|PA|+|PQ|的最小值为A到准线l的间隔;此时(cǐ shí)P的纵坐标为2,代入抛物线方程得P的横坐标为1,得P 〔 1,2〕应选:C.9.设a,b∈R,ab≠0,那么直线ax﹣y+b=0和曲线bx2+ay2=ab的大致图形是〔〕A.B.C.D.【解答】解:整理曲线的方程得=1,整理直线方程得y=ax+b 对于A选项观察直线图象可知斜率小于0即,a<0,b>0那么曲线的方程的图象一定是双曲线,故A不符合.B,D选项里面,直线的斜率a>0,截距b<0,那么曲线方程为双曲线,焦点在x轴,故B正确,D错误.C项中直线斜率a<0,那么曲线一定不是椭圆,故C项错误.应选:B.10.某几何体的三视图〔单位(dānwèi):cm〕如下图,其中侧视图是一个边长为2的正三角形,那么这个几何体的体积是〔〕A.2 cm3B.cm3C.3cm3D.3 cm3【解答】解:根据三视图知,该几何体是以俯视图为底面的四棱锥P﹣ABCD,且侧面PCD⊥底面ABCD,画出它的直观图,如下图;那么底面为直角梯形,面积为S梯形ABCD=×〔1+2〕×2=3,四棱锥的高为h=×2=,所以四棱锥的体积为V=S梯形ABCD•h=×3×=〔cm3〕.应选:B.11.A〔﹣1,0〕,M是圆B:x2﹣2x+y2﹣7=0〔B为圆心〕上一动点,线段AM的垂直平分线交MB于P,那么点P的轨迹方程是〔〕A.=1 B.=1C.=1 D.=1【解答(jiědá)】解:由题意得圆心B〔1,0〕,半径等于2,|PA|=|PB|,∴|PB|+|PM|=|PB|+|PA|=|BM|=2>|AB|,故点P的轨迹是以A、B为焦点的椭圆,2a=2,c=1,∴b=1,∴椭圆的方程为:=1.应选:A.12.x,y满足,假如目的函数z=的取值范围为[0,2〕,那么实数m的取值范围为〔〕A.[0,] B.〔﹣∞,] C.〔﹣∞,〕D.〔﹣∞,0] 【解答】解:x、y满足约束条件的可行域如图:目的函数z=的取值范围为[0,2〕,说明可行域内的点与〔m,﹣1〕的连线的斜率的范围是[0,2〕,直线2x﹣y﹣2=0的斜率为2;由图形可知〔m,﹣1〕在直线BA上,且在A的左侧,∴m<,应选:C.二、填空题:本大题一一共4小题(xiǎo tí),每一小题5分,一共20分.13.“假设X>5,那么X2>25〞的逆否命题是假如X2≤25,那么X≤5.【解答】解:“假设X>5,那么X2>25〞的逆否命题是:假设X2≤25,那么X≤5.故答案为:假设X2≤25,那么X≤5.14.在平面直角坐标系xOy中,△ABC的顶点B〔﹣5,0〕和C〔5,0〕,顶点A在双曲线的右支上,那么=.【解答】解:由题意B、C分别是双曲线的左、右焦点,那么|CB|=2c=10,顶点A在双曲线的右支上,又可得|AB|﹣|AC|=2a=6,==.故答案为:.15.在正方体ABCD﹣A1B1C1D1中,直线BA1与平面A1B1CD所成的角是30°〔或者〕.【解答】解:连接BC1,交B1C于点O,再连接A1O,因为是在正方体ABCD﹣A1B1C1D1中,所以(suǒyǐ)BO⊥平面A1B1CD,所以∠BA1O是直线A1B与平面A1B1CD所成的角.设正方体ABCD﹣A1B1C1D1的边长为1,所以在△A1BO中,A1B=,OB=,所以sin∠BA1O=,所以直线A1B与平面A1B1CD所成的角的大小等于30°.故答案为:30°〔或者〕.16.点A〔0,1〕,抛物线C:y2=ax〔a>0〕的焦点为F,连接FA,与抛物线C相交于点M,延长FA,与抛物线C的准线相交于点N,假设|FM|:|MN|=1:3,那么实数a的值是.【解答】解:依题意得焦点F的坐标为:〔,0〕,设M在抛物线的准线上的射影为K,连接MK,由抛物线的定义知|MF|=|MK|,因为|FM|:|MN|=1:3,所以|KN|:|KM|=2:1,又k FN==,k FN=﹣=﹣2,所以=2,解得a=.故答案为:.三、解答题:本大题一一共6小题,一共70分.解容许写出文字说明,证明(zhèngmíng)过程或者演算步骤.17.双曲线C的焦点坐标为F1〔,0〕,F2〔,0〕,实轴长为6.〔1〕求双曲线C HY方程;〔2〕假设双曲线C上存在一点P使得PF1⊥PF2,求△PF1F2的面积.【解答】解:〔1〕由条件得c=,2a=6,a=3,∴b=1,∴双曲线方程为:.〔2〕由双曲线定义知|PF1﹣PF2|=6且PF12+PF22=〔〕2,联立解得PF1•PF2=2,∴△PF1F2的面积为:PF1•PF2=1.18.某抛物线型拱桥水面宽度20m,拱顶离水面4m,现有一船宽9m,船在水面上高3m.〔1〕建立适当平面直角坐标系,求拱桥所在抛物线HY方程;〔2〕计算这条船能否从桥下通过.【解答】解:〔1〕以拱顶为原点,拱高所在直线为y轴〔向上〕,建立直角坐标系.设拱桥所在抛物线的方程为x2=﹣2py,那么点〔10,﹣4〕在抛物线上,所以有102=﹣2p〔﹣4〕,解得p=,所以(suǒyǐ)拱桥所在抛物线HY方程为:x2=﹣25y.〔2〕当x=时,y=﹣,所以此时限高为4﹣=,所以,能通过.19.点P〔4,0〕,点Q在曲线C:y2=4x上.〔1〕假设点Q在第一象限内,且|PQ|=4,求点Q的坐标;〔2〕求|PQ|的最小值.【解答】解:〔1〕设.由题意得,解得y=4.∴点Q的坐标为〔4,4〕.〔2〕|PQ|==,当y2=8时,|PQ|取到最小值.因此,|PQ|的最小值为.20.如图,边长为3的等边三角形ABC,E,F分别在边AB,AC上,且AE=AF =2,M为BC边的中点,AM交EF于点O,沿EF将△AEF,折到DEF的位置,使.〔1〕证明DO⊥平面EFCB;〔2〕试在BC边上确定一点N,使EN∥平面DOC,并求的值.【解答(jiědá)】解:〔1〕证明:在△DOM中,易得DO=,OM=,DM=,由DM2=DO2+OM2,得DO⊥OM,又∵AE=AF=2,AB=AC=3,∴EF∥BC,又M为BC中点,∴AM⊥BC,∴DO⊥EF,EF∩OM=O,∴DO⊥平面EBCF;〔2〕连接OC,过E作EN∥OC交BC于N,那么EN∥平面DOC,又OE∥CN,∴四边形OENC为平行四边形,∴OE=NC,,∴,∴.21.焦点(jiāodiǎn)在x轴上的双曲线C过点,且其渐近线方程为.〔1〕求双曲线C的HY方程;〔2〕假设直线y=ax+1与双曲线C的右支交于A,B两点,务实数a的取值范围.【解答】解:〔1〕由题知,即b=a所以可设双曲线方程为﹣=1,将点M〔1,〕代入,得﹣=1,解得a=,因此,双曲线C的方程为3x2﹣y2=1.〔2〕设A〔x1,y1〕,B〔x2,y2〕联立,消去y,得〔3﹣a2〕x2﹣2ax﹣2=0,那么x1+x2=,x1x2=,由题可得,解得a的取值范围(fànwéi)是﹣<a<﹣.22.椭圆C的中心在坐标原点,焦点在x轴上,左顶点为A,左焦点为F1〔﹣2,0〕,点B〔2,〕在椭圆C上,直线y=kx〔k≠0〕与椭圆C交于P,Q两点,直线AP,AQ分别与y轴交于点M,N〔Ⅰ〕求椭圆C的方程〔Ⅱ〕以MN为直径的圆是否经过定点?假设经过,求出定点的坐标;假设不经过,请说明理由.【解答】解:〔1〕由题意可设椭圆方程为,那么,解得:a2=8,b2=4.∴椭圆C的方程为;〔2〕如图,设F〔x0,y0〕,E〔﹣x0,﹣y0〕,那么,A〔﹣,0〕,AF所在直线方程,取x=0,得,∴N〔0,〕,AE所在(suǒzài)直线方程为,取x=0,得y=,∴M〔0,〕.那么以MN为直径的圆的圆心坐标为〔0,〕,半径r=,圆的方程为=,即=.取y=0,得x=±2.∴以MN为直径的圆经过定点〔±2,0〕.内容总结。

2020-2021学年山东省临沂四中高二(上)月考数学试卷(12月份)+答案解析(附后)

2020-2021学年山东省临沂四中高二(上)月考数学试卷(12月份)+答案解析(附后)

2020-2021学年山东省临沂四中高二(上)月考数学试卷(12月份)一、单选题(本大题共8小题,共40分。

在每小题列出的选项中,选出符合题目的一项)1.过点和的直线斜率等于1,那么m的值等于( )A. 1或3B. 4C. 1D. 1或42.向量,,若,且,则的值为( )A. B. 1 C. D. 43.在等差数列中,若为前n项和,,则的值是( )A. 55B. 11C. 50D. 604.位于德国东部萨克森州的莱科勃克桥如图所示有“仙境之桥”之称,它的桥形可近似地看成抛物线,该桥的高度为h,跨径为a,则桥形对应的抛物线的焦点到准线的距离为( )A. B. C. D.5.在公差不为零的等差数列中,,,依次成等比数列,前7项和为35,则数列的通项等于( )A. nB.C.D.6.已知双曲线的右焦点为F,点A在双曲线的渐近线上,是边长为2的等边三角形为原点,则双曲线的方程为( )A. B. C. D.7.点P是直线上的动点,由点P向圆O:作切线,则切线长的最小值为( )A. B. C. D.8.已知、是两个定点,点P是以和为公共焦点的椭圆和双曲线的一个交点,并且,和分别是上述椭圆和双曲线的离心率,则有( )A. B. C. D.二、多选题(本大题共4小题,共20分。

在每小题有多项符合题目要求)9.下列说法正确的是( )A. 过点,两点的直线方程为B. 点关于直线的对称点是C. 直线与两坐标轴围成的三角形的面积为2D. 经过点且在x轴和y轴上截距都相等的直线方程为10.在递增的等比数列中,是数列的前n项和,若,,则下列说法正确的是( )A. B.数列是等比数列C. D.数列是公差为2的等差数列11.如图,设E,F分别是正方体的棱DC上两点,且,,其中正确的命题为( )A. 三棱锥的体积为定值B. 异面直线与EF所成的角为C.平面D. 直线与平面所成的角为12.发现土星卫星的天文学家乔凡尼卡西尼对把卵形线描绘成轨道有兴趣.像笛卡尔卵形线一样,笛卡尔卵形线的作法也是基于对椭圆的针线作法作修改,从而产生更多的卵形曲线.卡西尼卵形线是由下列条件所定义的:曲线上所有点到两定点焦点的距离之积为常数.已知:曲线C是平面内与两个定点和的距离的积等于常数的点的轨迹,则下列命题中正确的是( )A. 曲线C过坐标原点B. 曲线C关于坐标原点对称C. 曲线C关于坐标轴对称D. 若点在曲线C上,则的面积不大于三、填空题(本大题共4小题,共20分)13.在等差数列中,,,则数列的前9项之和等于______.14.已知抛物线上一点P到准线的距离为,到直线l:为,则的最小值为______.15.数列的前n项和为,则数列的通项公式为__________.16.已知半径为5的动圆C的圆心在直线l:上.若动圆C过点,则圆C的方程为__________.存在正实数__________,使得动圆C中满足与圆O:相外切的圆有且仅有一个.四、解答题(本大题共6小题,共72分。

高二数学12月月考试题 理 试题_1(共10页)

高二数学12月月考试题 理 试题_1(共10页)

2021-2021学年(xuénián)高二数学12月月考试题理一.选择题〔每一小题5分,一共60分〕1.如图是根据x,y的观测数据〔x i,y i〕〔i=1,2,…,10〕得到的点图,由这些点图可以判断变量x,y具有线性相关关系的图〔〕A.①②B.①④C.②③D.③④2.命题“∀x∈R,x2﹣2x+4<0〞的否认为〔〕A.∀x∈R,x2﹣2x+4≥0B.∃x0∈R,x02﹣2x0+4≥0C.∀x∉R,x02﹣2x0+4≥0D.∃x0∉R,x02﹣2x0+4≥03.顶点在原点,焦点是〔0,3〕的抛物线的方程是〔〕A.y2=12x B.x2=12y C.D.4.为了理解某次数学竞赛中1000名学生的成绩,从中抽取一个容量为100的样本,那么每名学生成绩人样的时机是〔〕A.B.C.D.5.阅读程序框图,假如输出的函数值在区间内,那么输入的实数x的取值范围是〔〕A.〔﹣∞,﹣2] B.[﹣2,﹣1]C.[﹣1,2] D.[2,+∞〕6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,那么(nà me)恰好选中2名女生的概率为〔〕A.B.C.D.7.假设直线l1:ax+2y+6=0与直线l2:x+〔a﹣1〕y+5=0垂直,那么实数a的值是〔〕A.B.1 C.D.28.如图,矩形长为8,宽为3,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆为96颗,以此试验数据为根据可以估计椭圆的面积为〔〕9.两平行直线2x+y﹣1=0与2x+y+3=0间的间隔为〔〕A.B.C.D.10.圆与圆的位置关系是〔〕A.外离B.相交C.外切D.内切11.三棱锥A﹣BCD中,,假设该三棱锥的四个顶点在同一个球面上,那么此球的体积为〔〕A.B.24πC.D.6π12.直线经过椭圆的左焦点F,交椭圆于A,B两点,交y轴于C点,假设,那么该椭圆的离心率是〔〕A.B.C.D.二.填空题〔每一小题5分,一共20分〕13.圆与圆.求两圆公一共弦所在直线的方程.14.如图,矩形O'A'B'C'是程度放置的一个平面图形的斜二测画法画出的直观图,其中(qízhōng)O'A'=6,C'D'=2,那么原图形面积是.15.如下图,正方体ABCD﹣A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF=,那么以下结论中正确的选项是.①EF∥平面ABCD;②△AEF的面积与与△BEF的面积相等③平面ACF⊥平面BEF;④三棱锥E﹣ABF的体积为定值;16.如图,己知椭圆C:+=1〔a>b>0〕的左,右焦点分别为F1,F2,焦距为2c,P是椭圆C上一点〔不在坐标轴上〕,Q是∠F1PF2的平分线与x轴的交点,假设|QF2|=2|OQ|,那么椭圆离心率的范围是.三.解答题〔一共6小题,一共70分〕17.(本小题满分是10分〕命题P:关于x的方程x2+〔m﹣3〕x+m=0的一个根大于1,另一个根小于1.命题q:∃x∈〔﹣1,1〕,使x2﹣x﹣m=0成立,命题s:方程的图象是焦点在x轴上的椭圆〔1〕假设命题s为真,务实数m的取值范围;〔2〕假设p∨q为真,¬q为真,务实数m的取值范围.18.〔本小题满分是12分〕某需要从甲、乙两名学生中选一人参加数学竞赛,抽取了近期两人5次数学考试的成绩,统计结果如表:第一次第二次第三次第四次第五次甲的成绩〔分〕80 85 71 92 87乙的成绩〔分〕90 76 75 92 82〔1〕假设从甲、乙两人中选出一人参加数学竞赛,你认为(rènwéi)选谁适宜?请说明理由.〔2〕假设数学竞赛分初赛和复赛,在初赛中有两种答题方案:方案一:每人从5道备选题中任意抽出1道,假设答对,那么可参加复赛,否那么被淘汰.方案二:每人从5道备选题中任意抽出3道,假设至少答对其中2道,那么可参加复赛,否那么被润汰.学生甲、乙都只会5道备选题中的3道,那么你推荐的选手选择哪种答题方案进入复赛的可能性更大?并说明理由.19.〔本小题满分是12分〕如图,四棱锥P﹣ABCD中,底面ABCD是棱长为2的菱形,PA⊥平面ABCD,PA=2,∠ABC=60°,E是BC中点,假设H为PD上的点,AH=.〔1〕求证:EH∥平面PAB;〔2〕求三棱锥P﹣ABH的体积.20.〔本小题满分是12分〕1.点A〔1,1〕,B〔﹣1,3〕.〔1〕求以AB为直径的圆C的方程;〔2〕假设直线x﹣my+1=0被圆C截得的弦长为,求m值.21.〔本小题满分(mǎn fēn)是12分〕如图,ABCD为矩形,点A、E、B、F一共面,且△ABE和△ABF均为等腰直角三角形,且∠BAE=∠AFB=90°.〔1〕假设平面ABCD⊥平面AEBF,证明平面BCF⊥平面ADF;〔2〕问在线段EC上是否存在一点G,使得BG∥平面CDF,假设存在,求出此时三棱锥G﹣ABE与三棱锥G﹣ADF的体积之比.22.〔本小题满分是12分〕椭圆C:=1〔a>b>0〕,长半轴长与短半轴长的差为,离心率为.〔1〕求椭圆C的HY方程;〔2〕假设在x轴上存在点M,过点M的直线l分别与椭圆C相交于P、Q两点,且为定值,求点M的坐标.数学〔理〕试卷答案1-6:B B B A B C 7-12:A C D B C A11、解:三棱锥A﹣BCD中,,∴该三棱锥是由长方体的面对角线构成(gòuchéng)〔如图〕设长方体的棱长分别为a,b,c,那么a2+b2=5,b2+c2=4,a2+c2=3,那么该三棱锥的四个顶点所在球面的半径R==.V==.选:C.12、解:由,取y=0,得x=﹣,取x=0,得y=1,∴F〔,0〕,C〔0,1〕,设A〔x0,y0〕,那么,,由,得,∴,即,即A 〔〕.把A的坐标代入椭圆,可得,即.又b2=a2﹣3,解得,又c2=3,∴,∴e=.应选:A.13、x﹣y﹣1=0 14、24.15、解:①在正方体ABCD﹣A1B1C1D1中,B1D1∥BD,且BD⊂平面ABCD,B1D1∉平面ABCD,∴EF∥平面ABCD,故①正确;②点A到EF的间隔大于BB1,∴△AEF的面积与与△BEF的面积不相等,故②错;③在正方体ABCD﹣A1B1C1D1中,AC⊥BD,BB1⊥AC,∴AC⊥面BB1D1D,又面BB1D1D与面BEF是同一面,AC⊂面ACF,∴平面ACF⊥平面BEF,故③正确;④△BEF 中,EF=,EF边上的高BB1=1,∴△BEF的面积为定值,∵AC⊥面BDD1B1,∴AO⊥面BDD1B1,∴AO为三棱锥A﹣BEF底面BEF上的高,∴三棱锥A﹣BEF的体积是一个定值,故④正确;答案为:①③④.16、解:∵|QF2|=2|OQ|,∴|QF2|=,|QF1|=,∵PQ是∠F1PF2的角平分线,∴,那么(nà me)|PF1|=2|PF2|,由|PF1|+|PF2|=3|PF2|=2a,得|PF2|=,由a﹣c,可得e=>,由0<e<1,∴椭圆离心率的范围是〔,1〕.17、解:〔1〕命题s为真时,即命题s:方程的图象是焦点在x轴上的椭圆为真;∴4﹣m>m>0,∴0<m<2;故命题s为真时,实数m的取值范围为:〔0,2〕;(2)当命题p为真时,f〔x〕=x2+〔m﹣3〕x+m满足f〔1〕<0,即2m﹣2<0,所以m<1.命题q为真时,方程m=x2﹣x在〔﹣1,1〕有解,当x∈〔﹣1,1〕时,x2﹣x∈[,2〕,那么m∈[,2〕,由于p∨q为真,¬q为真;所以q为假,p为真;那么,得;∴m<;故p∨q为真,¬q为真时,实数m的取值范围为〔﹣∞,〕.18、解:〔1〕解法一:甲的平均成绩为,乙的平均成绩为,甲的成绩方差,乙的成绩方差为,由于,,乙的成绩较稳定,派乙参赛比拟适宜,乙适宜.解法二:派甲参赛比拟适宜,理由如下:从统计的角度看,甲获得85以上〔含85分〕的概率,乙获得8〔5分〕以上〔含85分〕的概率.因P1>P2派甲参赛比拟适宜,〔2〕5道备选题中学生乙会的3道分别记为a,b,c,不会的2道分别记为E,F.方案一:学生乙从5道备选题中任意抽出1道的结果有:a,b,c,E,F一共5种,抽中会的备选题的结果有a,b,c,一共3种.所以学生乙可参加复赛的概率.方案二:学生甲从5道备选题中任意(rènyì)抽出3道的结果有:〔a,b,c〕,〔a,b,E〕,〔a,b,F〕,〔a,c,E〕,〔a,c,F〕,〔a,E,F〕,〔b,c,E〕,〔b,c,F〕,〔b,E,F〕,〔c,E,F〕,一共10种,抽中至少2道会的备选题的结果有:〔a,b,c〕,〔a,b,E〕,〔a,b,F〕,〔a,c,E〕,〔a,c,F〕,〔b,c,E〕,〔b,c,F〕一共7种,所以学生乙可参加复赛的概率因为P1<P2,所以学生乙选方案二进入复赛的可能性更大.19、解:〔1〕证明:∵PA=AD=2,AH=,∴H为PD的中点,取PA的中点M,连结HM,MB,那么HM AD,BD,∴HM BD,∴四边形DHMB是平行四边形,∴EH∥BM,又EH⊄平面PAB,BM⊂平面PAB,∴EH∥平面PAB.(3)解:由〔1〕可知,EH∥平面PAB,(4)∴三棱锥P﹣ABH的体积:V P﹣ABH=V H﹣PAB=V E﹣PAB=V P﹣ABE===.∴三棱锥P﹣ABH的体积为.20、解:〔1〕根据题意,点A〔1,1〕,B〔﹣1,3〕,那么线段AB的中点为〔0,2〕,即C的坐标为〔0,2〕;圆C是以线段AB为直径的圆,那么其半径r=|AB|==,圆C的方程为x2+〔y﹣2〕2=2,〔2〕根据题意,假设直线x﹣my+1=0被圆C截得的弦长为,那么(nà me)点C到直线x﹣my+1=0的间隔d==,又由d=,那么有=,变形可得:7m2﹣8m+1=0,解可得m=1或者.21、解:〔1〕证明:∵ABCD为矩形,∴BC⊥AB,又∵平面ABCD⊥平面AEBF,BC⊂平面ABCD,平面ABCD∩平面AEBF=AB,∴BC⊥平面AEBF,又∵AF⊂平面AEBF,∴BC⊥AF.∵∠AFB=90°,即AF⊥BF,且BC、BF⊂平面BCF,BC∩BF=B,∴AF⊥平面BCF.又∵AF⊂平面ADF,∴平面ADF⊥平面BCF.〔2〕解:∵BC∥AD,AD⊂平面ADF,∴BC∥平面ADF.∵△ABE和△ABF均为等腰直角三角形,且∠BAE=∠AFB=90°,∴∠FAB=∠ABE=45°,∴AF∥BE,又AF⊂平面ADF,∴BE∥平面ADF,∵BC∩BE=B,∴平面BCE∥平面ADF.延长EB到点H,使得BH=AF,又BC AD,连CH、HF,由题意能证明ABHF是平行四边形,∴HF AB CD,∴HFDC是平行四边形,∴CH∥DF.过点B作CH的平行线,交EC于点G,即BG∥CH∥DF,〔DF⊂平面CDF〕∴BG∥平面CDF,即此点G为所求的G点.又BE==2AF=2BH,∴EG=,又S△ABE=2S△AEF,V G﹣ABE=====,故=.22、解:〔1〕由题意可得:a﹣b=,=,a2=b2+c2.联立解得:a=2,c=1,b =∴椭圆C的HY方程为:+=1.〔2〕设M〔t,0〕,P〔x1,y1〕,Q〔x2,y2〕.①当直线(zhíxiàn)l的斜率不为0时,设直线l的方程为:x=my+t.联立,化为:〔3m2+4〕y2+6mty+3t2﹣12=0.△=48〔3m2﹣t2+4〕>0.∴y1+y2=﹣,y1y2=.|PM|2=+=〔1+m2〕,同理可得:|PQ|2=〔1+m2〕.∴===•=.∵为定值,∴必然有3t2+12=16﹣4t2,解得t=.此时=为定值,M〔,0〕.②当直线l的斜率为0时,设P〔2,0〕,Q〔﹣2,0〕.|PM|=|t+2|,|QM|=|2﹣t|.此时=+=,把t2=代入可得:=为定值.综上①②可得:=为定值,M〔,0〕.内容总结(1)2021-2021学年高二数学12月月考试题理一.选择题〔每一小题5分,一共60分〕1.如图是根据x,y的观测数据〔xi,yi〕〔i=1,2,。

高二数学12月月考试卷 理含解析 试题(共21页)

高二数学12月月考试卷 理含解析 试题(共21页)

田阳高中(gāozhōng)2021-2021学年高二12月月考数学〔理〕试题一、选择题:〔一共12题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一个是符合题目要求的〕1.抛物线的准线方程是A. B. C. D.【答案】A【解析】抛物线方程即为,故准线方程为选A.2.某地区中小学生人数和近视情况分别如图1和图2所示,为理解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进展调查,那么样本容量和抽取的高中生近视人数分别为( )A. 100,10B. 200,10C. 100,20D. 200,20【答案】D【解析】【分析】根据分层抽样的定义建立比例关系即可得到结论.【详解(xiánɡ jiě)】由图1得样本容量为〔3500+2000+4500〕×2%=10000×2%=200,抽取的高中生人数为2000×2%=40人,那么近视人数为40×0.5=20人,应选:D.【点睛】此题主要考察分层抽样的应用,根据条件建立比例关系是解决此题的关键.转化为十进制数为〔〕A. 524B. 774C. 256D. 260【答案】B【解析】试题分析:∵.应选B.考点:排序问题与算法的多样性.4.一组数据的平均数是,方差是,假设将这组数据中的每一个数据都加上60,得到一组新数据,那么所得新数据的平均数和方差分别是〔〕A. B. 55.2, C. D.【答案】D【解析】【分析】首先写出原来数据的平均数的公式和方差的公式,把数据都加上以后,再表示出新数据的平均数和方差的公式,两局部进展比拟,即可得到结果.【详解】设这组数据分别为,由其平均数为,方差是,那么有,方差,假设将这组数据(shùjù)中每一个数据都加上,那么数据为,那么其平均数为,方差为,应选D.【点睛】此题主要考察了数据的平均数和方差公式的计算与应用,其中熟记数据的平均数和方差的公式,准确计算是解答的关键,着重考察了推理与运算才能.5.以下结论错误的选项是( )A. 命题“假设p,那么q〞与命题“假设非q,那么非p〞互为逆否命题B. 对于一个命题的四种命题可能一个真命题也没有C. 命题“直棱柱的每个侧面都是矩形〞为真D. “假设am2<bm2,那么a<b〞的逆命题为真【答案】D【解析】【分析】写出命题“假设p,那么q〞的逆否命题判断A,通过四种命题的关系和真假判断,即可判断B,由直棱柱的性质可知C成立.命题“假设am2<bm2,那么a<b〞的逆命题为“假设a<b,那么am2<bm2”,当m=0时,该命题为假来判断D.【详解】命题“假设p,那么q〞的逆否命题为:“假设非q,那么非p〞,故A正确;一个命题与它的逆命题、否命题、逆否命题中,互为逆否命题的命题有2对,根据互为逆否命题的两个命题真假性一样,∴这四个命题中真命题个数为0、2或者4,故B正确;由直棱柱的性质可知,直棱柱每个侧面都是矩形,故C成立;命题(mìng tí)“假设am2<bm2,那么a<b〞的逆命题为“假设a<b,那么am2<bm2”,很显然当m=0时,该命题为假.故D不成立.应选:D.【点睛】此题考察命题的真假判断与应用,考察四种命题间的互相关系,考察了直棱柱的性质,属于综合题.6.是椭圆上一点,为椭圆的两焦点,且,那么面积为〔〕A. B. C. D.【答案】A【解析】【分析】由椭圆的HY方程可得:c=4,设|PF1|=t1,|PF2|=t2,根据椭圆的定义可得:t1+t2=10,再根据余弦定理可得:t12+t22﹣t1t2=64,再联立两个方程求出t1t2=12,进而结合三角形的面积公式求出三角形的面积.【详解】由椭圆的HY方程可得:a=5,b=3,∴c=4,设|PF1|=t1,|PF2|=t2,所以根据椭圆的定义可得:t1+t2=10①,在△F1PF2中,∠F1PF2=60°,所以根据余弦定理可得:|PF1|2+|PF2|2﹣2|PF1||PF2|cos60°=|F1F2|2=〔2c〕2=64,整理可得:t12+t22﹣t1t2=64,②把①两边平方得t12+t22+2t1•t2=100,③所以(suǒyǐ)③﹣②得t1t2=12,∴∠F1PF2=3.应选A.【点睛】此题考察椭圆的几何性质与椭圆的定义,考察理解三角形的有关知识点,以及考察学生的根本运算才能与运算技巧,属于中档题.7. 如下图,程序框图〔算法流程图〕的输出结果是〔〕A. 34B. 55C. 78D. 89【答案】B【解析】试题分析:由题意,①②③④⑤⑥⑦⑧,从而输出,应选B.考点:1.程序框图的应用.【此处有视频,请去附件查看】8.双曲线过点〔,4〕,那么它的渐近线方程为〔〕A. B. C. D.【答案(dá àn)】A【解析】【分析】利用条件求出a,然后求解双曲线的渐近线方程即可.【详解】双曲线过点〔,4〕,可得,可得a=4,那么该双曲线的渐近线方程为:.应选:A.【点睛】此题考察双曲线的简单性质的应用,考察计算才能.9.如图,长方体中,,,分别是的中点,那么异面直线与所成角为〔〕A. 30°B. 45°C. 60°D. 90°【答案】D【解析】如图:连接B1G,EG∵E,G分别(fēnbié)是DD1,CC1的中点,∴A1B1∥EG,A1B1=EG,∴四边形A1B1GE为平行四边形,∴A1E∥B1G,∴∠B1GF即为异面直线A1E与GF所成的角在三角形B1GF中,B1G=∵B1G2+FG2=B1F2∴∠B1GF=90°∴异面直线A1E与GF所成角为90°,应选 D10.两人约定在20∶00到21∶00之间相见,并且先到者必须等迟到者40分钟方可离去,假如两人出发是各自HY的,在20∶00至21∶00各时刻相见的可能性是相等的,那么他们两人在约定时间是内相见的概率为〔〕.A. B. C. D.【答案】A【解析】【分析】由题意设事件A为“甲乙两人能会面〞,求出试验包含的所有事件,并且事件对应的集合表示的面积是s=1,再求出满足条件的事件,并且得到事件对应的集合表示的面积是,进而根据几何概率模型的计算公式可得答案.【详解】由题意知此题是一个几何概型,设事件A为“甲乙两人能会面〞,试验包含的所有事件是Ω={〔x,y〕|},并且事件对应的集合表示的面积是s=1,满足条件的事件(shìjiàn)是A={〔x,y〕|,|x﹣y|}所以事件对应的集合表示的面积是1﹣2,根据几何概型概率公式得到P.那么两人在约定时间是内能相见的概率是.应选:B.【点睛】此题考察了几何概型的定义与概率计算公式,而几何概率模型一般通过事件的长度、面积或者者体积之比来求事件发生的概率,此题属于中档题,11.直线过椭圆:的左焦点和上顶点,与圆心在原点的圆交于两点,假设,那么椭圆离心率为〔〕A. B. C. D.【答案】D【解析】【分析】根据圆的性质结合求出直线的斜率,再根据的坐标得出直线的斜率,从而得出的关系,进而求出椭圆的离心率.【详解(xiánɡ jiě)】椭圆的焦点在轴上,,,故直线的方程为,即,直线〔即〕的斜率为,过作的垂线,那么为的中点,,,是的中点,直线的斜率,,不妨令,那么,椭圆的离心率,应选D.【点睛】此题主要考察直线的斜率、圆的性质以及椭圆的离心率,属于难题.离心率的求解在圆锥曲线的考察中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解.与抛物线相交于两点,公一共弦恰好过它们的公一共焦点,那么双曲线的离心率为〔〕A. B. C. D.【答案(dá àn)】B【解析】试题分析:由抛物线和双曲线的对称性可知垂直与轴.因为过焦点,那么可令.因为抛物线和双曲线一共焦点,那么,所以,将代入双曲线方程可得,那么,将代入上式并整理可得,即,解得,因为,所以.故B正确.考点:1抛物线的定义;2双曲线的离心率.二.填空题:〔每一小题5分,一共20分〕13.假设向量=〔4, 2,-4〕,=〔6, -3,2〕,那么_____________【答案】4【解析】【分析】由坐标运算可得2和2的坐标,进而可得其数量积.【详解】∵〔4,2,﹣4〕,〔6,﹣3,2〕,由向量的坐标运算可得22〔4,2,﹣4〕-〔6,﹣3,2〕=〔2,7,﹣10〕,2〔4,2,﹣4〕+2〔6,﹣3,2〕=〔16,-4,0〕∴6×2﹣4×7﹣0×〔﹣10〕=4【点睛】此题考察空间向量的数量积的坐标运算,属于根底题.14.命题p:,,假设“非p〞为真命题,m的取值范围为____________【答案(dá àn)】【解析】【分析】由题意知, x2+mx+20恒成立,即,即可得到结果.【详解】由题意知,命题p:,为假,即x2+mx+20恒成立,即,所以<0,得到,故答案为.【点睛】此题考察命题的真假的判断与应用,考察转化思想以及计算才能.15.过原点的直线与圆相交于A、B两点,那么弦AB中点M的轨迹方程为_____________【答案】【解析】【分析】根据圆的特殊性,设圆心为C,那么有CM⊥AB,当斜率存在时,k CM k AB=﹣1,斜率不存在时加以验证.【详解】设圆x2+y2﹣6x+5=0的圆心为C,那么C的坐标是〔3,0〕,由题意,CM⊥AB,①当直线CM与AB的斜率都存在时,即x≠3,x≠0时,那么有k CM k AB=﹣1,∴〔x≠3,x≠0〕,化简得x2+y2﹣3x=0〔x≠3,x≠0〕,②当x=3时,y=0,点〔3,0〕合适题意,③当x=0时,y=0,点〔0,0〕不合适题意,解方程组得x,y,∴点M的轨迹(guǐjì)方程是x2+y2﹣3x=0〔〕.故答案为【点睛】此题主要考察轨迹方程的求解,应注意利用圆的特殊性,同时注意所求轨迹的纯粹性,防止增解.16.设P是抛物线y2=4x上的一个动点,F为抛物线的焦点,记点P到点A〔-1,1〕的间隔与点P到直线x= - 1的间隔之和的最小值为M,假设B〔3,2〕,记|PB|+|PF|的最小值为N,那么M+N= ______________【答案】【解析】【分析】当P、A、F三点一共线时,点P到点A〔-1,1〕的间隔与点P到直线x= - 1间隔之和最小,由两点间的间隔公式可得M;当P、B、F三点一共线时,|PB|+|PF|最小,由点到直线的间隔公式可得.【详解】可得抛物线y2=4x的焦点F〔1,0〕,准线方程为x=﹣1,∴点P到点A〔﹣1,1〕的间隔与点P到直线x=﹣1的间隔之和等于P到点A〔﹣1,1〕的间隔与点P到焦点F的间隔之和,当P、A、F三点一共线时,间隔之和最小,且M=|AF|,由两点间的间隔公式可得M=|AF|;由抛物线的定义可知|PF|等于P到准线x=﹣1的间隔,故|PB|+|PF|等于|PB|与P到准线x=﹣1的间隔之和,可知(kě zhī)当P、B、F三点一共线时,间隔之和最小,最小间隔 N为3﹣〔﹣1〕=4,所以M+N=,故答案为.【点睛】此题考察抛物线的定义,涉及点到点、点到线的间隔,利用好抛物线的定义是解决问题的关键,属于中档题.三.解答题:本大题一一共6小题,一共70分.解容许写出文字说明,证明过程或者演算步骤.17.p:,q:,假设p是q的充分不必要条件,务实数的取值范围【答案】【解析】【分析】根据一元二次不等式的解法分别求出命题p和q,由p是q的充分不必要条件,可知p⇒q,从而求出a的范围.【详解】解得,解得:,假设p是q的充分不必要条件,那么,∴,解得:【点睛】此题考察充分条件、必要条件和充要条件,解题时要认真审题,仔细解答,注意不等式组的解法,是一道根底题;18.对某校高一年级学生参加(cānjiā)社区效劳次数进展统计,随机抽取M名学生作为样本,得到这M名学生参加社区效劳的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:分组频数频率[10,15〕10[15,20〕25 n[20,25〕m p[25,30〕 2合计M 1〔1〕求出表中M,p及图中a的值;〔2〕假设该校高一学生有360人,试估计该校高一学生参加社区效劳的次数在区间[15,20〕内的人数;〔3〕在所取样本中,从参加社区效劳的次数不少于20次的学生中任选2人,请列举出所有根本领件,并求至多1人参加社区效劳次数在区间[20,25〕内的概率.【答案】〔1〕0.125;〔2〕5;〔3〕【解析】【分析(fēnxī)】〔1〕由频率=,能求出表中M、p及图中a的值.〔2〕由频数与频率的统计表和频率分布直方图能求出参加社区效劳的平均次数.〔3〕在样本中,处于[20,25〕内的人数为3,可分别记为A,B,C,处于[25,30]内的人数为2,可分别记为a,b,由此利用列举法能求出至少1人参加社区效劳次数在区间[20,25〕内的概率.【详解】〔1〕由分组[10,15〕内的频数是10,频率是知,,所以M=40.因为频数之和为40,所以.因为a是对应分组[15,20〕的频率与组距的商,所以.〔2〕因为该校高三学生有360人,分组[15,20〕内的频率是0.625,所以估计该校高三学生参加社区效劳的次数在此区间内的人数为360×0.625=225人.〔3〕这个样本参加社区效劳的次数不少于20次的学生一共有3+2=5人设在区间[20,25〕内的人为{a1,a2,a3},在区间[25,30〕内的人为{b1,b2}.那么任选2人一共有〔a1,a2〕,〔a1,a3〕,〔a1,b1〕,〔a1,b2〕,〔a2,a3〕,〔a2,b1〕,〔a2,b2〕,〔a3,b1〕,〔a3,b2〕,〔b1,b2〕10种情况,〔9分〕而两人都在[20,25〕内一共有〔a1,a2〕,〔a1,a3〕,〔a2,a3〕3种情况,至多一人参加社区效劳次数在区间[20,25〕内的概率为.【点睛】此题考察频率分布表和频率分布直方图的应用,考察概率的求法,是中档题,解题时要认真审题,注意列举法的合理运用.19.直线与双曲线.〔1〕当时,直线与双曲线的一渐近线交于点,求点到另一渐近线的间隔;〔2〕假设直线与双曲线交于两点,假设,求的值.【答案】〔1〕;〔2〕或者.【解析(jiě xī)】【分析】〔1〕写出双曲线渐近线方程,渐近线方程与直线方程联立可求得,利用点到直线间隔公式即可得结果;〔2〕直接联立直线与双曲线方程,化为关于的一元二次方程,利用根与系数关系求得两交点的横坐标的和与积,由弦长公式列方程求解即可.【详解】〔1〕双曲线渐近线方程为由得那么到的间隔为;〔2〕联立方程组,消去得直线与双曲线有两个交点,,解得且,〔且〕.,解得,或者,.【点睛】此题主要考察双曲线的渐近线方程、点到直线间隔公式以及弦长公式的应用,属于中档题.求曲线的弦长的方法:〔1〕利用弦长公式;〔2〕利用;〔3〕假如交点坐标可以求出,利用两点间间隔公式求解即可.20.某种产品(chǎnpǐn)的广告费用支出〔万元〕与销售额〔万元〕之间有如下的对应数据:2 4 5 6 830 40 60 50 70〔1〕求回归直线方程;〔2〕据此估计广告费用为12万元时的销售额约为多少?参考公式:【答案】〔1〕;〔2〕.【解析】试题分析:〔1〕根据所给的数据先做出横标和纵标的平均数,利用最小二乘法写出线性回归方程系数的表达式,把样本中心点代入求出a的值,得到线性回归方程;〔2〕根据所给的变量的值,把值代入线性回归方程,得到对应的的值,这里的的值是一个预报值.试题解析:〔1〕求回归直线方程,,,,∴因此回归直线方程为;〔2〕当时,预报的值是万元,即广告费用为12万元时,销售收入的值大约是万元.21.如图,四边形ABCD是正方形,PA平面ABCD,EB//PA,AB=PA=4,EB=2,F为PD的中点.〔1〕求证(qiúzhèng)AF PC〔2〕BD//平面PEC〔3〕求二面角D-PC-E的大小【答案】〔1〕见解析;〔2〕见解析;〔3〕150°.【解析】【分析】〔1〕依题意,PA⊥平面ABCD.以A为原点,分别以、、的方向为x轴、y轴、z 轴的正方向建立空间直角坐标系,利用向量法能证明AF⊥PC.〔2〕取PC的中点M,连接EM.推导出BD∥EM,由此能证明BD∥平面PEC.〔3〕由AF⊥PD,AF⊥PC,得AF⊥平面PCD,求出平面PCD的一个法向量和平面PCE的法向量,利用向量法能求出二面角D﹣PC﹣E的大小.【详解】〔1〕依题意,平面ABCD,如图,以A为原点,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系。

高二数学上学期12月月考试题及答案

高二数学上学期12月月考试题及答案

广东省梅县华侨中学高二上期第(3)次月考数学试题(文)-12一、 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在答题卡的表内(每小题5分,共50分)。

1.在△ABC 中,根据下列条件解三角形,其中有一解的是( ) A .b =7,c =3,C =30° B .b =5,c =42,B =45° C .a =6,b =63,B =60° D .a =20,b =30,A =30° 2. 在△ABC 中,已知b =43,c =23,∠A =120°,则a 等于( ) A .221B .6C .221或6D .23615+3. ∆ABC 中,)13(:6:2sin :sin :sin +=C B A ,则三角形的最小内角是( )A60 B45 C30 D 以上答案都不对 4. 若cCb B a A cos cos sin ==,则△ABC 的形状为( ) (A )等边三角形 (B )等腰直角三角形(C )有一个角为30°的直角三角形 (D )有一个角为30°的等腰三角形 5. 在△ABC 中,A =60°,b =1,其面积为3,则CB A cb a sin sin sin ++++等于( )A .33B .3392 C .338D .2396. ∆ABC 中,a=2,A=30,C=45,则∆ABC 的面积为( )AB 1 D11)27. 在△ABC 中,三边长AB=7,BC=5,AC=6,则AB BC •的值为( ) (A )19 (B )-14 (C )-18 (D )-19 8. 已知A 、B 、C 是△ABC 的三个内角,则在下列各结论中,不正确的为( ) A .sin 2A =sin 2B +sin 2C +2sin B sin C cos(B +C ) B .sin 2B =sin 2A +sin 2C +2sin A sin C cos(A +C ) C .sin 2C =sin 2A +sin 2B -2sin A sin B cos CD .sin 2(A +B )=sin 2A +sin 2B -2sin B sin C cos(A +B ) 9.已知二次函数()x f 的图象如图1所示 , 则其导函数()x f'的图象大致形状是( )10.函数)(x f 的定义域为(a,b ),其导函数),()(b a x f 在'内的图象如图所示, 则函数)(x f 在区间(a,b )内极小值点的个数是( )(A).1 (B).2 (C).3 (D).4二、填空题(每小题5分,共20分)。

高二数学12月月考试题理 12(共12页)

高二数学12月月考试题理 12(共12页)

HY中学2021-2021学年(xuénián)高二数学12月月考试题理考试说明:〔1〕本套试卷分第一卷(选择题)和第二卷(非选择题)两局部,满分是150分,考试时间是是为120分钟;〔2〕第一卷,第二卷试题答案均答在答题卡上,交卷时只交答题卡.第一卷 (选择题,一共60分)一、选择题:〔本大题一一共12小题,每一小题5分,一共60分. 在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的,将正确答案的选项填涂在答题卡上.〕1. 有一段演绎推理是这样的:“指数函数都是增函数;是指数函数那么是增函数〞的结论显然是错误的,这是因为A. 大前提错误B. 小前提错误C. 推理形式错误D. 非以上错误2. 假设,那么是的〔〕A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 以下结论,不正确的选项是〔〕A. 假设是假命题,是真命题,那么命题为真命题.B. 假设是真命题,那么命题p和q均为真命题.C. 命题“假设,那么〞的逆命题为假命题.D. 命题“,〞的否认是“,〞.4. 曲线(qūxiàn)在点处的切线与坐标轴围成的三角形的面积为A. 2B.C.D. 15. 函数,那么其导函数的图象大致是〔〕A. B. C. D.6. 图中阴影局部的面积总和可以用定积分表示为〔〕A. B.C. D.7. 是双曲线的一个焦点,点F到的一条渐近线的间隔为,那么双曲线C的离心率为〔〕A. B. C. D. 28. 抛物线的焦点为F,其准线与双曲线相交两点,假设为直角三角形,其中F为直角顶点,那么〔〕A. B. 3 C. D. 69. 经过(jīngguò)椭圆的一个焦点作倾斜角为的直线,交椭圆于,两点,设为坐标原点,那么等于〔〕A. B. C.13-或者3- D.10. 在正四棱锥中,O为顶点在底面的射影,为侧棱的中点,且,那么直线与平面所成的角是( )A. B. C. 45︒ D.11. 在正三棱柱中,假设,点是的中点,那么点A到平面的间隔是〔〕A. 1B.C. 3D. 212. 函数的定义域为,是的导函数,且满足,那么不等式的解集为〔〕A. B. C. D.第二卷(非选择题,满分(m ǎn f ēn)是90分)二、填空题:本大题一一共4小题,每一小题5分,一共20分.将正确答案写在答题卡的相应位置上. 13. 命题,命题q :〔x ﹣a 〕〔x ﹣a ﹣1〕≤0,假设¬p 是¬q 的必要不充分条件,那么实数a 的取值范围是 . 14. 椭圆在其上一点处的切线方程为.类比上述结论,双曲线在其上一点()00,P x y 处的切线方程为______. 15. =____.16. 函数,在以下命题中,其中正确命题的序号是_________. 〔1〕曲线必存在一条与轴平行的切线;〔2〕函数()y f x =有且仅有一个极大值,没有极小值; 〔3〕假设方程有两个不同的实根,那么的取值范围是;〔4〕对任意(rènyì)的,不等式恒成立;〔5〕假设,那么,可以使不等式的解集恰为;三、解答题:〔本大题一一共6小题,一共70分.解容许写出文字说明,证明过程或者演算步骤,解答过程书写在答题纸的相应位置.〕17.〔此题满分是10分〕求的值18.〔此题满分是12分〕m>0,,.(1)假设p是q的充分不必要条件,务实数m的取值范围;(2)假设m=5,“p q∨〞为真命题,“p q∧〞为假命题,务实数x的取值范围.19.〔此题满分(mǎn fēn)是12分〕f(x)=e x-ax-1.〔1〕求f(x)的单调增区间;〔2〕假设f(x)在定义域R内单调递增,求a的取值范围20.〔此题满分是12分〕如图,正方形和矩形所在平面互相垂直,,.〔1〕求二面角的大小;〔2〕求点F到平面的间隔 .21.〔此题满分是12分〕假设曲线C1:+=1〔a>b>0〕,〔y≤0〕的离心率e=且过点P 〔2,﹣1〕,曲线C2:x2=4y,自曲线C1上一点A作C2的两条切线切点分别为B,C.〔Ⅰ〕求曲线(qūxiàn)C1的方程;〔Ⅱ〕求S△ABC的最大值.22.〔此题满分是12分〕函数〔1〕设,试讨论单调性;〔2〕设,当时,任意,存在,使,务实数的取值范围.高二数学理参考答案一、选择题:1—5 6--10 11—12二、填空题:13. [0,] 14.15。

高二数学 12月份月考参考答案

高二数学 12月份月考参考答案

罗田县育英高级中学高二年级12月份月考数学(理科)试题参考答案一、选择题ABABD DBBCD 二、填空题11.、5/13 12、48 13、( ) 14、r<>0 17 15、1 2 3 三、解答题16、解:122122()11m m n nm m m n n n f x C x C x C x C x C x C x =+++++++++112222()()m n m n C C x C C x =+++++. 由题意19m n +=,m n *∈N ,.2x ∴项的系数为222(1)(1)1919172224m nm m n n C C m --⨯⎛⎫+=+=-+ ⎪⎝⎭.∵m n *∈N ,,根据二次函数知识,当9m =或10时,上式有最小值,也就是当9m =,10n =或10m =,9n =时,2x 项的系数取得最小值,最小值为81.17、解: 将一颗骰子先后抛掷2次,此问题中含有36个等可能基本事件-----------2分(1) 记“两数之和为8”为事件A ,则事件A 中含有5个基本事件,所以P(A )=536;答:两数之和为6的概率为536。

--------- 5分(2)记“两数之和是3的倍数”为事件B ,则事件B 中含有12个基本事件,所以P (B )=13;答:两数之和是3的倍数的概率为13。

------------8分故甲盒恰有2个红球的概率12131()()5102P P A P A =+=+=(3) 基本事件总数为36,点(x ,y ),在圆x 2+y 2=25的内部记为事件D ,则D 包含13个事件,所以P (D )=3613。

18、19、解:(1)当3m =时,一个小组有3个人,经过一次检验就能确定化验结果是指经过一次检验,结果为阴性,所以概率为3(10.1)0.729p =-=;(2)当4m =时,一个小组有4个人,这时每个人需要检验的次数是一个随机变量1η,其分布列为所以441150.9(10.9)0.5944E η=⨯+⨯-=;当6m =时,一个小组有6个人,这时需要检验的次数是一个随机变量2η,其分布列为所以662170.9(10.9)0.6466E η=⨯+⨯-=,由于21E E ηη>,因此当每4个人一组时所需要的化验次数更少一些.20、解:(1)、“飞碟投入红袋”,“飞碟投入蓝袋”,“飞碟不入袋”分别记为事件A,B,C。

2021-2022年高二12月月考 数学试题

2021-2022年高二12月月考 数学试题

山东临清三中2011——xx学年度上学期12月月考2021年高二12月月考数学试题1.“直线与双曲线有唯一交点”是“直线与双曲线相切”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.不充分不必要条件2. 抛物线y2=ax(a≠0)的焦点到其准线的距离是( )A. |a|4B.|a|2C.|a| D.-a23. 抛物线的准线与双曲线的两条渐近线所围成的三角形面积等于( )A. B. C.2 D.4.P是椭圆上任意一点,F1、F2是焦点,那么∠F1PF2的最大值是()A.600B.300C.1200D.9005. 已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是正三角形,则这个椭圆的离心率是()A.B.C.D.6. 已知a、b、c分别为双曲线的实半轴长、虚半轴长、半焦距,且方程无实根,则双曲线离心率的取值范围是()A. B. C. D.7.设a,b∈R,ab≠0,那么直线ax-y+b=0和曲线bx2+ay2=ab的图形是( )A B C D8.若直线mx- ny = 4与⊙O: x2+y2= 4没有交点,则过点P(m,n)的直线与椭圆的交点个数是()A.至多为1 B.2 C.1 D.09.若点(x,y)在椭圆上,则的最小值为()A.1B.-1C.-D.以上都不对10. 如图,为抛物线的焦点,A、B、C在抛物线上,若,则()A. 6B. 4C. 3D.211.椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点、是它的焦点,长轴长为,焦距为,静放在点的小球(小球的半径不计),从点沿直线出发,经椭圆壁反弹后第一次回到点时,小球经过的路程是()A.B.C.D.以上答案均有可能12. 设经过定点的直线与抛物线相交于两点,若为常数,则的值为()A. B。

C。

D。

第Ⅱ卷(非选择题共90分)13.若抛物线的焦点与双曲线的左焦点重合,则的值 .14. 与双曲线有共同的渐近线,且经过点的双曲线的标准方程为15.过双曲线x2-的右焦点作直线交双曲线于A、B两点,且,则这样的直线有___________条。

2021-2022年高二上学期12月月考数学试题含解析

2021-2022年高二上学期12月月考数学试题含解析

2021-2022年高二上学期12月月考数学试题含解析一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.命题“”的否定是.2.抛物线的焦点坐标为.3.已知正四棱锥的底面边长是6,高为,这个正四棱锥的侧面积是.4.已知函数,则.【答案】.试题分析:两函数的差求导数.分别求导再相减.故填.正弦函数的导数是余弦函数.考点:1.函数的差的求导方法.2.正弦函数的导数.5.一枚骰子(形状为正方体,六个面上分别标有数字1,2,3,4,5,6的玩具)先后抛掷两次,骰子向上的点数依次为.则的概率为.6.若双曲线的离心率为2,则的值为.7.在不等式组所表示的平面区域内所有的格点(横、纵坐标均为整数的点称为格点)中任取3个点,则该3点恰能成为一个三角形的三个顶点的概率为.【答案】.【解析】试题分析:如图总共有5个点,所以,每三个点一组共有10种情况.其中不能构成三角形的只有一种共线的情况.所以能够成三角形的占.本题考查的是线性规划问题.结合概率的思想.所以了解格点的个数是关键.3y=xx考点:1.线性规划问题.2.概率问题.3.格点问题.8.如图,在三棱柱中,分别是的中点,设三棱锥的体积为,三棱柱的体积为,则9.已知椭圆的离心率,A,B是椭圆的左、右顶点,P是椭圆上不同于A,B的一点,直线PA,PB倾斜角分别为,则10.若“”是 “”的必要不充分条件,则的最大值为 .11.已知函数)0()232()(23>+--++=a d x b a c bx ax x f 的图像如图所示,且.则的值是 .12. 设和为不重合的两个平面,给出下列命题:(1)若内的两条相交直线分别平行于内的两条直线,则平行于;(2)若外一条直线与内的一条直线平行,则和平行;(3)设和相交于直线,若内有一条直线垂直于,则和垂直;(4)直线与垂直的充分必要条件是与内的两条直线垂直.上面命题中,真命题...的序号(写出所有真命题的序号).考点:1.面面平行.2.直线与平面平行.3.面面垂直.4.直线与平面垂直.13.已知可导函数的导函数满足>,则不等式的解集是.14.已知椭圆E :,椭圆E 的内接平行四边形的一组对边分别经过它的两个焦点(如图),则这个平行四边形面积的最大值是 . 【答案】4. 【解析】试题分析:由题意得椭圆的半焦距为.i)当直线AB 与x 轴垂直的时候ABCD 为矩形面积为.ii)当直线AB 不垂直x 轴时假设直线:(3).:(3)AB CD l y k x l y k x ==.A (),B ().所以直线AB 与直线CD 的距离d=.又有.消去y 可得:2222(41)831240x k k x k +-+-=.2212122834(31)41k k x x x x k -+==+.所以2222222834(31)4(1)()4414141k k k AB k k k -+=-⨯=+++.所以平行四边形的面积S=令.所以221383641681169(81)1081t tS t t t t +==++--++-因为时.S 的最大值为4.综上S 的最大值为4.故填4.本题关键考查弦长公式点到直线的距离.考点:1.分类的思想.2.直线与椭圆的关系.3.弦长公式.4.点到直线的距离.二、解答题:(本大题共6小题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)求实数的取值组成的集合,使当时,“”为真,“”为假. 其中方程有两个不相等的负根;方程无实数根.,044)]2(4[2<⨯--=∆m 即…………………10 分①② …………………13分综上所述:}.312|{<<-<=m m m M 或 …………………14分 考点:1.含连接词的复合命题.2.二次方程的根的分布. 3.集合的概念.16.(本小题满分14分)如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 是直角梯形,DC ∥AB ,∠BAD =,且AB =2AD =2DC =2PD =4,E 为PA 的中点.(1)证明:DE ∥平面PBC ; (2)证明:DE ⊥平面PAB .17.(本小题满分15分)如图,过点的两直线与抛物线相切于A、B两点,AD、BC垂直于直线,垂足分别为D、C.(1)若,求矩形ABCD面积;(2)若,求矩形ABCD面积的最大值.(2)设切点为,则, 因为,所以切线方程为, 即,18.(本小题满分15分) 如图,在四棱柱中,已知平面,且31AB BC CA AD CD =====,. (1)求证:;(2)在棱BC 上取一点E ,使得∥平面,求的值.【答案】(1)证明参考解析;(2)【解析】试题分析:(1)由于AB=CB,AD=CD,BD=BD.可得三角形ABD全等于三角形CBD.所以这两个三角形关于直线BD对称.所以可得.再由面面垂直即可得直线BD垂直于平面.从而可得.19.(本小题满分16分)已知椭圆的左右两焦点分别为,是椭圆上一点,且在轴上方,.(1)求椭圆的离心率的取值范围;(2)当取最大值时,过的圆的截轴的线段长为6,求椭圆的方程;(3)在(2)的条件下,过椭圆右准线上任一点引圆的两条切线,切点分别为.试探究直线是否过定点?若过定点,请求出该定点;否则,请说明理由.(1)22222211111c b e a a λλλλ-==-=-=++,∴,在上单调递减. ∴时,最小,时,最大,∴,∴.(2) 当时,,∴,∴.∵,∴是圆的直径,圆心是的中点,∴在y 轴上截得的弦长就是直径,∴=6.又221322622b a PF a a a a a =-=-==,∴.∴椭圆方程是 -------10分20.(本小题满分16分)已知函数(为实常数) .(1)当时,求函数在上的最大值及相应的值;(2)当时,讨论方程根的个数.(3)若,且对任意的,都有,求实数a的取值范围.【答案】(1).;(2)时,方程有2个相异的根. 或时,方程有1个根. 时,方程有0个根.(3).(2)易知,故,方程根的个数等价于时,方程根的个数. 设=, x x x x x x x x x g 222ln )1ln 2(ln 1ln 2)(-=-=' 当时,,函数递减,当时,,函数递增.又,,作出与直线的图像,由图像知: 当时,即时,方程有2个相异的根;当 或时,方程有1个根;当时,方程有0个根; -------10分(3)当时,在时是增函数,又函数是减函数,不妨设,则等34900 8854 衔28564 6F94 澔32945 80B1 肱34815 87FF 蟿G26778 689A 梚32221 7DDD 緝*23653 5C65 履24992 61A0 憠37048 90B8 邸31243 7A0B 程x23206 5AA6 媦20974 51EE 凮。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档