苏科版七年级上册数学常州市第一学期期中教学质量调研
苏科版数学七年级上册《期中测试卷》附答案
苏科版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共8小题,共24.0分)1.下列各式中正确的是( )A. ﹣|5|=|﹣5|B. |﹣5|=5C. |﹣5|=﹣5D. |﹣1.3|<02.在数轴上到原点距离等于3数是( )A. 3B. ﹣3C. 3或﹣3D. 不知道3.下列计算正确的是( )A. 4x﹣x=4B. 2x+3x=5xC 3xy﹣2xy=xy D. x+y=xy4. 实数a、b、c在数轴上的位置如图所示,则下列式子中一定成立的是( )A. a+b+c>0B. |a+b|<cC. |a﹣c|=|a|+cD. |b﹣c|>|c﹣a|5.若|x-2|+|y+6|=0,则x+y的值是()A. 4B. 4C.D. 86.某商场元旦促销,将某种书包每个x元,第一次降价打“八折”,第二次降价每个又减18元,经两次降价后售价为102元,则所列方程是()A. x﹣0.8x﹣18=102B. 0.08x﹣18=102C. 102﹣0.8x=18D. 0.8x﹣18=1027. 2010年5月27日,上海世博会参观人数达到37.7万人,37.7万用科学记数法表示应为A. 0.377×l06B. 3.77×l05C. 3.77×l04D. 377×1038.杨辉三角形,又称贾宪三角形帕斯卡三角形,是二项式系数在三角形中的一种几何排列,在我国南宋数学家杨辉所著的《详解九章算术》(1261年)一书中用如图的三角形解释二项和的乘方规律观察下列各式及其展开式:请你猜想(a+b)10展开式的第三项的系数是( )A. 36B. 45C. 55D. 66二、填空题(本大题共10小题,共30.0分)9.25-的倒数是_______.10.在下列各式:①π﹣3;②ab=ba;③x;④2m﹣1>0;⑤x yx y-+;⑥8(x2+y2)中,整式有_____.11.绝对值不大于4所有负整数的和是_____________.12.某校七年级学生乘车去郊外秋游,如果每辆汽车坐45人,那么有16人坐不上汽车;如果每辆汽车坐50人,那么有一辆汽车空出9个座位,有x辆汽车,则根据题意可列出方程为______.13.若规定[x]表示不超过x的最大整数,如[4.3]=4,[﹣2.6]=﹣3;则[5.9]+[4.9]=_____.14.已知x=1是方程3x﹣m=x+2n的解,则整式m+2n+2008的值等于_____15.下列说法:①﹣a是负数:②一个数的绝对值一定是正数:③一个有理数不是正数就是负数:④绝对值等于本身的数是非负数,其中正确的是_____.16.多项式3x|m|y2+(m+2)x2y-1是四次三项式,则m的值为______.17.已知|a|=1,|b|=2,如果a>b,那么a+b=_____.18.如图所示的运算程序中,若开始输入的x值为100,我们发现第1次输出的结果为50,第2次输出的结果为25,…,则第2019次输出的结果为______.三、解答题(本大题共10小题,共96.0分)19.把下列各数填入表示它所在的数集的括号里 ﹣(﹣2.3),227,0,﹣42,30%,π,﹣|﹣2013|,﹣512,.0.3 (1)负整数集合[ …] (2)正有理数集合[ …] (3)分数集合[ …] 20.计算(1)0﹣(+3)+(﹣5)﹣(﹣7)﹣(﹣3)(2)48×(﹣23)﹣(﹣48)÷(﹣8) (3)﹣12×(12﹣34+112)(4)﹣12﹣(1﹣0.5)×13×[3﹣(﹣3)2]. 21.化简:(1)﹣3(2x ﹣3)+7x +8; (2)3(x 2﹣12y 2)﹣12(4x 2﹣3y 2) 22.若3x m +5y 2与x 3y n 的和是单项式,求m n ﹣mn 的值.23.若a 与b 互为相反数b 与c 互为倒数,并且m 的平方等于它本身,试求222a bm +++bc ﹣3m 的值.24.已知A=3b 2﹣2a 2+5ab,B=4ab ﹣2b 2﹣a 2. (1)化简:3A ﹣4B ;(2)当a=1,b=﹣1时,求3A ﹣4B 的值.25.如图两摞规格完全相同的课本整齐地叠放在讲台上请根据图中所给出的数据信息,回答下列问题:(1)每本课本的厚度为 cm .(2)若有一摞上述规格的课本x本整齐地叠放在讲台上请用含x的代数式表示出这摞课本的顶部距离地面的高度;(3)当x=42时,求课本的顶部距离地面的高度.26. 一病人发高烧进医院进行治疗,医生给他开了药并挂了水,同时护士每隔1小时对病人测体温,及时了解病人的好转情况,现护士对病人测体温的变化数据如下表:时间7:008:009:0010:0011:0012:0013:0014:0015:00体温0C(与前升0.2降1.0降0.8降1.0降06升0.4降0.2降0.2降0一次比较)注:病人早晨进院时医生测得病人体温是40.2℃.问:(1)病人什么时候体温达到最高,最高体温是多少?(2)病人中午12点时体温多高?(3)病人几点后体温稳定正常?(正常体温是37℃)27.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓广探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.28.对于有理数a,b,定义一种新运算“⊙”,规定a⊙b=|a+b|+|a﹣b|.(1)计算2⊙(﹣3)的值;(2)当a,b在数轴上位置如图所示时,化简a⊙b;(3)已知(a⊙a)⊙a=8+a,求a的值.答案与解析一、选择题(本大题共8小题,共24.0分)1.下列各式中正确的是( )A. ﹣|5|=|﹣5|B. |﹣5|=5C. |﹣5|=﹣5D. |﹣1.3|<0 【答案】B【解析】【分析】正数的绝对值等于其本身,负数的绝对值等于其相反数,0的绝对值为0,据此依次判断即可. 【详解】A、∵﹣|5|=-5,|﹣5|=5,∴﹣|5|≠|﹣5|,∴选项A不符合题意;B、∵|﹣5|=5,∴选项B符合题意;B、∵|﹣5|=5,∴选项C不符合题意;D、∵|﹣1.3|=1.3>0,∴选项D不符合题意.故选:B.【点睛】本题主要考查了绝对值的代数意义,熟练掌握相关概念是解题关键.2.在数轴上到原点距离等于3的数是( )A. 3B. ﹣3C. 3或﹣3D. 不知道【答案】C【解析】分析】根据数轴上到原点距离等于3的数为绝对值是3的数即可求解.【详解】绝对值为3的数有3,-3.故答案为C.【点睛】本题考查数轴上距离的意义,解题的关键是知道数轴上的点到原点的距离为绝对值.3.下列计算正确的是( )A. 4x﹣x=4B. 2x+3x=5xC. 3xy﹣2xy=xyD. x+y=xy【答案】C【解析】【分析】合并同类项时,字母不变,系数相加(减),据此依次计算即可.【详解】A:4x2﹣x2=3x2,故A错误;B:2x2+3x2=5x2,故B错误;C: 3xy﹣2xy=xy,故C正确;D:x与y不是同类项,不能合并,故D错误;故选:C.【点睛】本题主要考查了合并同类项,熟练掌握相关法则是解题关键.4. 实数a、b、c在数轴上的位置如图所示,则下列式子中一定成立的是( )A. a+b+c>0B. |a+b|<cC. |a﹣c|=|a|+cD. |b﹣c|>|c﹣a|【答案】C【解析】试题分析:先根据数轴确定a.b,c的取值范围,再逐一对各选项判定,即可解答.解:由数轴可得:a<b<0<c,∴a+b+c<0,故A错误;|a+b|>c,故B错误;|a﹣c|=|a|+c,故C正确;|b﹣c|<|c﹣a|,故D错误;故选:C.考点:数轴.5.若|x-2|+|y+6|=0,则x+y的值是()A. 4B. 4C.D. 8【答案】B【解析】【分析】根据已知等式,利用非负数的性质求出x,y的值,即可确定出x+y的值.【详解】∵|x−2|+|y+6|=0,∴x−2=0,y+6=0,解得x=2,y=−6,则x+y=2−6=−4.故选:B.【点睛】此题考查绝对值,解题关键在于掌握绝对值的非负性.6.某商场元旦促销,将某种书包每个x元,第一次降价打“八折”,第二次降价每个又减18元,经两次降价后售价为102元,则所列方程是()A. x﹣0.8x﹣18=102B. 0.08x﹣18=102C. 102﹣0.8x=18D. 0.8x﹣18=102【答案】D【解析】【分析】根据等量关系:第一次降价后的价格−第二次降价的18元=最后的售价列出方程即可.【详解】设某种书包每个x元,可得:0.8x﹣18=102,故选:D.【点睛】本题主要考查了一元一次方程的实际运用,准确找出等量关系是解题关键.7. 2010年5月27日,上海世博会参观人数达到37.7万人,37.7万用科学记数法表示应为A. 0.377×l06B. 3.77×l05C. 3.77×l04D. 377×103【答案】B【解析】37.7万=377000=3.77×105.故答案为B.8.杨辉三角形,又称贾宪三角形帕斯卡三角形,是二项式系数在三角形中的一种几何排列,在我国南宋数学家杨辉所著的《详解九章算术》(1261年)一书中用如图的三角形解释二项和的乘方规律观察下列各式及其展开式:请你猜想(a+b)10展开式的第三项的系数是( )A. 36B. 45C. 55D. 66【答案】B【解析】【分析】根据题意可得出(a+b)10的展开式的系数是杨辉三角第11行的数,并且第三项的系数为第十一行的第三个数,从而进一步得出规律求解即可.【详解】依据规律可得到:(a+b)10的展开式的系数是杨辉三角第11行的数,第3行第三个数为1,第4行第三个数为3=1+2,第5行第三个数为6=1+2+3,…第11行第三个数为:1+2+3+…+9=()199452+⨯=.故选:B.【点睛】本题主要考查了整式中的规律计算,准确找出相应的规律是解题关键.二、填空题(本大题共10小题,共30.0分)9.25-的倒数是_______.【答案】-5 2【解析】【分析】根据倒数概念求解.【详解】25-的倒数是-52.故答案是:-52.【点睛】考查了求一个数的倒数,解题关键是求一个数的倒数是交换分子和分母的位置即可.10.在下列各式:①π﹣3;②ab=ba;③x;④2m﹣1>0;⑤x yx y-+;⑥8(x2+y2)中,整式有_____.【答案】①、③、⑥.【解析】【分析】单项式与多项式统称为整式,据此依次判断即可. 【详解】①π﹣3,是整式;②ab=ba,不是整式,是等式;③x,是整式;④2m﹣1>0,不是整式,是不等式;⑤x yx y-+,不是整式,是分式;⑥8(x2+y2),是整式∴整式有①、③、⑥.故答案为:①、③、⑥.【点睛】本题主要考查了整式的定义,熟练掌握相关概念是解题关键.11.绝对值不大于4的所有负整数的和是_____________.【答案】-10【解析】试题分析:根据绝对值的定义及有理数的大小比较法则即可得到结果. 绝对值不大于4的所有负整数是-4、-3、-2、-1,它们的和是-10.考点:本题考查的是绝对值,有理数的大小比较点评:本题是基础应用题,只需学生熟练掌握绝对值的定义,即可完成.12.某校七年级学生乘车去郊外秋游,如果每辆汽车坐45人,那么有16人坐不上汽车;如果每辆汽车坐50人,那么有一辆汽车空出9个座位,有x 辆汽车,则根据题意可列出方程为______. 【答案】4516509x x +=- 【解析】 【分析】设有x 辆汽车,根据去郊游的人数不变,即可得出关于x 的一元一次方程,此题得解. 【详解】解:设有x 辆汽车, 根据题意得:4516509x x +=-. 故答案为:4516509x x +=-.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键. 13.若规定[x ]表示不超过x 的最大整数,如[4.3]=4,[﹣2.6]=﹣3;则[5.9]+[4.9]=_____. 【答案】9. 【解析】 【分析】根据给出的法则先分别确定[5.9]=5,[4.9]=4,再求出它们的和. 【详解】解:[5.9]=5,[4.9]=4, ∴[5.9]+[4.9]=5+4=9. 故答案为:9【点睛】本题主要考查的是比较有理数的大小,掌握[x]的意义是解题的关键. 14.已知x =1是方程3x ﹣m =x +2n 的解,则整式m +2n +2008的值等于_____ 【答案】2010. 【解析】 【分析】将x =1代入方程3x ﹣m =x +2n 后通过变形得出m +2n =2,然后整体代入求解即可. 【详解】把x =1代入3x ﹣m =x +2n 得:3﹣m =1+2n , ∴m +2n =2,∴m +2n +2008=2+2008=2010. 故答案为:2010.【点睛】本题主要考查了方程的解与代数式的求值,整体代入求值是解题关键.15.下列说法:①﹣a是负数:②一个数的绝对值一定是正数:③一个有理数不是正数就是负数:④绝对值等于本身的数是非负数,其中正确的是_____.【答案】④【解析】【分析】负数是比0小的数,带负号不一定是负数;绝对值具有非负性;有理数可分为正数、负数与0;绝对值等于本身的数为0和正数;据此依次判断即可.【详解】①﹣a不一定是负数.故①错误;②一个数的绝对值一定是非负数,故②错误;③一个有理数包括正数、负数、0,故③错误;④绝对值等于本身的数是非负数,故④正确;故答案为:④【点睛】本题主要考查了有理数的相关性质,熟练掌握各自概念是解题关键.16.多项式3x|m|y2+(m+2)x2y-1是四次三项式,则m的值为______.【答案】2【解析】【分析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m的值.【详解】解:∵多项式3x|m|y2+(m+2)x2y-1是四次三项式,m+≠∴m+2=4,20∴m=2.故答案为:2.【点睛】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.17.已知|a|=1,|b|=2,如果a>b,那么a+b=_____.【答案】–1或–3【解析】试题分析:根据绝对值的性质可得:a=,b=2,根据a b可得:a=,b=-2,则a+b=1-2=-1或a+b=-1-2=-3.18.如图所示的运算程序中,若开始输入的x值为100,我们发现第1次输出的结果为50,第2次输出的结果为25,…,则第2019次输出的结果为______.【答案】4【解析】分析】根据设计的程序进行计算,找到循环的规律,根据规律推导计算.【详解】解:∵第1次输出的数为:100÷2=50,第2次输出的数为:50÷2=25,第3次输出的数为:25+7=32,第4次输出的数为:32÷2=16,第5次输出的数为:16÷2=8,第6次输出的数为:8÷2=4,第7次输出的数为:4÷2=2,第8次输出的数为:2÷2=1,第9次输出的数为:1+7=8,第10次输出的数为:8÷2=4,…,∴从第5次开始,输出的数分别为:8、4、2、1、8、…,每4个数一个循环;∵(2019-4)÷4=503…3,∴第2019次输出的结果为2.故答案为:2.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.三、解答题(本大题共10小题,共96.0分)19.把下列各数填入表示它所在的数集的括号里﹣(﹣2.3),227,0,﹣42,30%,π,﹣|﹣2013|,﹣512,.0.3(1)负整数集合[…](2)正有理数集合[…](3)分数集合[…]【答案】(1)﹣42,﹣|﹣2013|;(2)﹣(﹣2.3),227,30%,.0.3;(3)﹣(﹣2.3),227,30%,﹣512,.0.3.【解析】 【分析】(1)负整数是指小于0的整数,据此判断即可; (2)正有理数是指大于0的有理数,据此判断即可;(3)分数包括正分数与负分数,其中有限小数与无限循环小数也是分数,据此判断即可. 【详解】∵﹣(﹣2.3)=2.3,﹣|﹣2013|=﹣2013,∴负整数集合[﹣42,﹣|﹣2013|,…]; 正有理数集合[﹣(﹣2.3),227,30%,.0.3,…];分数集合[﹣(﹣2.3),227,30%,﹣512,.0.3,…].【点睛】本题主要考查了有理数的分类,熟练掌握各类数的定义是解题关键. 20.计算(1)0﹣(+3)+(﹣5)﹣(﹣7)﹣(﹣3)(2)48×(﹣23)﹣(﹣48)÷(﹣8) (3)﹣12×(12﹣34+112)(4)﹣12﹣(1﹣0.5)×13×[3﹣(﹣3)2]. 【答案】(1)2;(2)﹣38;(3)2;(4)0. 【解析】 【分析】(1)根据有理数加减混合运算法则及顺序计算即可; (2)根据有理数混合运算法则及顺序计算即可; (3)利用乘法分配律计算即可;(4)根据有理数混合运算法则及顺序计算即可. 【详解】(1)原式=0﹣3﹣5+7+3 =﹣8+10 =2;(2)原式=﹣32﹣6 =﹣38;(3)原式=﹣6+9﹣1 =﹣7+9=2;(4)原式=﹣1﹣12×13×(3﹣9)=﹣1﹣12×13×(﹣6)=﹣1+1=0.【点睛】本题主要考查了有理数的混合运算,熟练掌握运算法则是解题关键.21.化简:(1)﹣3(2x﹣3)+7x+8;(2)3(x2﹣12y2)﹣12(4x2﹣3y2)【答案】(1)x+17;(2)x2.【解析】【分析】(1)先去括号,然后合并同类项即可;(2)先去括号,然后合并同类项即可. 【详解】(1)﹣3(2x﹣3)+7x+8=﹣6x+9+7x+8=x+17;(2)3(x2﹣12y2)﹣12(4x2﹣3y2)=3x2﹣32y2﹣2x2+32y2=x2.【点睛】本题主要考查了整式的加减混合运算,熟练掌握运算法则是解题关键.22.若3x m+5y2与x3y n和是单项式,求m n﹣mn的值.【答案】m n﹣mn=8.【解析】【分析】根据3x m+5y2与x3y n的和是单项式可得二者是同类项,从而利用同类项性质求出m、n的值代入计算即可. 【详解】∵3x m+5y2与x3y n的和是单项式,∴3x m+5y2与x3y n是同类项.∴m+5=3,n=2.解得m=﹣2.∴当m=﹣2,n=2时,m n﹣mn=(﹣2)2﹣(﹣2)×2=4+4=8.【点睛】本题主要考查了代数式的求值,发现二者之间同类项的关系是解题关键.23.若a与b互为相反数b与c互为倒数,并且m的平方等于它本身,试求222a bm+++bc﹣3m的值.【答案】当m=1时,原式=﹣2;当m=0时,原式=1.【解析】【分析】根据题意可以先得知a+b=0,bc=1,m=1或0,从而进一步分类代入求值即可. 【详解】∵a与b互为相反数b与c互为倒数,并且m的平方等于它本身,∴a+b=0,bc=1,m=1或0;当m=1时,则222a bm+++bc﹣3m=0+1﹣3=﹣2;当m=0时,则222a bm+++bc﹣3m=0+1﹣0=1.【点睛】本题主要考查了代数式的求值,熟练掌握相反数、倒数的性质及乘方运算的特例是解题关键.24.已知A=3b2﹣2a2+5ab,B=4ab﹣2b2﹣a2.(1)化简:3A﹣4B;(2)当a=1,b=﹣1时,求3A﹣4B的值.【答案】(1)3A-4B=-2a2+17b2-ab;(2)16.【解析】【分析】(1)将A、B代入求解;(2)将a=1,b=-1代入(1)式求解即可.【详解】解:(1)∵A=3b2-2a2+5ab,B=4ab-2b2-a2,∴3A-4B=3(3b2-2a2+5ab)-4(4ab-2b2-a2)=9b2-6a2+15ab-16ab+8b2+4a2=-2a2+17b2-ab;(2)当a=1,b=-1时,原式=-2+17+1=16.【点睛】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.25.如图两摞规格完全相同的课本整齐地叠放在讲台上请根据图中所给出的数据信息,回答下列问题:(1)每本课本的厚度为cm.(2)若有一摞上述规格的课本x本整齐地叠放在讲台上请用含x的代数式表示出这摞课本的顶部距离地面的高度;(3)当x=42时,求课本的顶部距离地面的高度.【答案】(1)0.5;(2)高出地面的距离为(85+0.5x)cm;(3)余下的课本的顶部距离地面的高度106cm.【解析】【分析】(1)根据图中所画可以得出3本课本的高度为(88-86.5)cm,从而进一步求出每本高度即可;(2)首先求出课桌的高度,然后加上x本书的高度0.5xcm即可;(3)将x=42代入(2)中的代数式计算即可.【详解】(1)书的厚度为:(88﹣86.5)÷(6﹣3)=0.5cm;故答案为:0.5;(2)∵x本书的高度为0.5xcm,课桌的高度为85cm,∴高出地面的距离为(85+0.5x)cm;(3)当x=42时,85+0.5x=106.答:余下的课本的顶部距离地面的高度106cm.【点睛】本题主要考查了代数式的实际运用,准确找出文中各数之间的关系是解题关键.26.一病人发高烧进医院进行治疗,医生给他开了药并挂了水,同时护士每隔1小时对病人测体温,及时了解病人的好转情况,现护士对病人测体温的变化数据如下表:注:病人早晨进院时医生测得病人体温是40.2℃. 问:(1)病人什么时候体温达到最高,最高体温是多少? (2)病人中午12点时体温多高?(3)病人几点后体温稳定正常?(正常体温是37℃)【答案】解:(1)病人7:00时体温达到最高,最高体温是40.40C(2)病人中午12点时体温达到3740C(3)病人14点后体温稳定正常(正常体温是37℃) 【解析】 【分析】此题只要在病人早晨进院时医生测得病人体温40.2℃的基础上根据表格进行加减即可求出. 【详解】(1)早上7:00,最高达40.4℃;(2)病人中午12点时体温为:40.2+0.2−1−0.8−1−0.6+0.4=37.4℃; (3)14:00以后27.阅读材料:我们知道,4x ﹣2x +x =(4﹣2+1)x =3x ,类似地,我们把(a +b )看成一个整体,则4(a +b )﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓广探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【答案】(1)﹣(a﹣b)2;(2)-9;(3)8.【解析】【分析】(1)利用整体思想,把(a−b)2看成一个整体,合并3(a−b)2−6(a−b)2+2(a−b)2即可得到结果;(2)原式可化为3(x2−2y)−21,把x2−2y=4整体代入即可;(3)依据a−2b=3,2b−c=−5,c−d=10,即可得到a−c=−2,2b−d=5,整体代入进行计算即可.【详解】(1)∵3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;故答案为:﹣(a﹣b)2;(2)∵x2﹣2y=4,∴原式=3(x2﹣2y)﹣21=12﹣21=﹣9;(3)∵a﹣2b=3,2b﹣c=﹣5,c﹣d=10,∴a﹣c=﹣2,2b﹣d=5,∴原式=﹣2+5﹣(﹣5)=8.【点睛】本题考查整式的加减,解决问题的关键是读懂题意,运用整体思想解题.28.对于有理数a,b,定义一种新运算“⊙”,规定a⊙b=|a+b|+|a﹣b|.(1)计算2⊙(﹣3)的值;(2)当a,b在数轴上的位置如图所示时,化简a⊙b;(3)已知(a⊙a)⊙a=8+a,求a的值.【答案】(1)2⊙(﹣3)=6;(2)a⊙b=﹣2b;(3)当a≥0时, a=83;当a<0时, a=﹣85.【解析】【分析】(1)根据文中的新运算法则将2⊙(﹣3)转化为我们熟悉的计算方式进行计算即可;(2)根据文中的新运算法则将a⊙b转化为|a+b|+|a﹣b|,然后先判断出a+b与a﹣b的正负性,之后利用绝对值代数意义化简即可;(3)先根据文中的新运算法则将(a⊙a)⊙a转化为我们熟悉的计算方式,此时注意对a进行分a≥0、a<0两种情况讨论,然后得出新的方程求解即可.【详解】(1)由题意可得:2⊙(﹣3)=|2﹣3|+|2+3|=6;(2)由数轴可知,a+b<0,a﹣b>0,∴a⊙b=|a+b|+|a﹣b|=﹣a﹣b+a﹣b=﹣2b;(3)当a≥0时,(a⊙a)⊙a=2a⊙a=4a=8+a,∴a=83;当a<0时,(a⊙a)⊙a=(﹣2a)⊙a=﹣4a=8+a,∴a=85 -.综上所述,a的值为83或85-.【点睛】本题主要考查了绝对值的化简与定义新运算的综合运用,根据题意找出正确的新运算的法则是解题关键.。
江苏省常州市七年级数学上学期期中试卷(含解析) 苏科版-苏科版初中七年级全册数学试题
2016-2017学年某某省某某市七年级(上)期中数学试卷一、选择题1.﹣2的相反数是()A.2 B.﹣2 C.D.2.下列运算正确的是()A.﹣3+2=﹣5 B.3×(﹣2)=﹣1 C.﹣1﹣1=﹣2 D.﹣32=93.淹城遗址距今已有2500年的历史,总面积约为650000平方米,650000用科学记数法可以表示为()×106×105×104×1044.下列五个数中:①3.14;②;③3.33333…;④π;⑤3.030030003…如果|a|>0,则a()A.一定是正数B.一定是负数C.一定不是负数 D.不等于06.有理数a、b在数轴上的位置如图所示,则下列各式符号的判断正确的是()A.a2﹣b>0 B.a+|b|>0 C.a+b2>0 D.2a+b>07.某超市8月份营业额为m万元,9月份比8月份增长了20%,则该超市9月份的营业额为()A.(1+20%m)万元B.(m+20%)万元C.m万元D.20% m 万元8.如图是一个计算程序,当输出值y=16时,输入值x为()A.±4 B.5 C.﹣3 D.﹣3或5二、填空题9.﹣3的倒数等于;﹣的绝对值等于.10.单项式﹣的系数与次数的乘积为.11.跳绳比赛中以跳160个为标准,多跳或少跳的个数分别用正数与负数表示,如多跳了20个记作“+20”,那么“﹣8”表示.12.比较大小:﹣π﹣.(填“>”、“<”或“=”).14.若x3y a与﹣2x b y2的和仍为单项式,则a﹣b的值为.15.将数轴上一点P先向右移动3个单位长度,再向左移动5个单位长度,此时它表示的数是4,则原来点P表示的数是.16.当x=1时,代数式ax2+bx﹣4=0,则当x=﹣1时,代数式﹣ax2+bx+7的值为.17.一个两位数,十位数字是x,个位数字比十位数字的3倍少5,则该两位数的最大值是.18.甲乙两人分别从A、B两地同时出发.相向而行,甲的速度是每分钟60米,乙的速度是每分钟90米,出发x分钟后,两人恰好相距100米,则A、B两地之间的距离是米.三、计算题19.计算(1)2+(﹣3)+(﹣6)+8(2)1﹣(﹣4)÷22×(3)(﹣+)÷(﹣)(4)﹣12×8﹣8×()3+4÷.四、计算与化简(20、21每小题5分,22题6分,共16分)20.计算:﹣x+y﹣2x﹣3y.21.计算:﹣(3xy﹣2x2)﹣2(3x2﹣xy)22.先化简,再求值:5(3a2b﹣ab2)﹣4(ab2+3a2b),其中a=,b=.五、解答题(第23题5分,第24题7分,第25、26各8分,共28分)23.将﹣4,﹣(﹣3.5),﹣1,|﹣2|这些数在数轴上表示出来,并用“<”将它们连接起来.24.某高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):﹣8,+18,+2,﹣16,+11,﹣5.(1)该养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为/km,则这次养护共耗油多少升?25.现有20筐葡萄,以每筐15千克为标准,超过或不足的千克数分别用正、负数来表示,与标准质量的差值记录如下:单位(千克)﹣3 ﹣2 0 1筐数 1 5 2 2 4(1)这20筐葡萄中,最重的一筐比最轻的一筐重千克.(2)与标准重量比较,这20筐葡萄总计超过或不足多少千克?(3)若葡萄每千克售价8元,则出售这20筐葡萄可卖多少元?26.如图,图①、图②分别由两个长方形拼成,其中a>b.(1)用含a、b的代数式表示它们的面积,则S①=,S②=.(2)S①与S②之间有怎样的大小关系?请你解释其中的道理.(3)请你利用上述发现的结论计算式子:20162﹣20142.2016-2017学年某某省某某市七年级(上)期中数学试卷参考答案与试题解析一、选择题1.﹣2的相反数是()A.2 B.﹣2 C.D.【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选A【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.下列运算正确的是()A.﹣3+2=﹣5 B.3×(﹣2)=﹣1 C.﹣1﹣1=﹣2 D.﹣32=9【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式=﹣1,错误;B、原式=﹣6,错误;C、原式=﹣2,正确;D、原式=﹣9,错误,故选C【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.淹城遗址距今已有2500年的历史,总面积约为650000平方米,650000用科学记数法可以表示为()×106×105×104×104【考点】科学记数法—表示较大的数.【分析】根据科学记数法的表示方法,可得答案.×105,故选:B.【点评】本题考查了科学记数法,确定n的値是解题关键,n是整数数位减1.4.下列五个数中:①3.14;②;③3.33333…;④π;⑤3.030030003…(2016秋•天宁区期中)如果|a|>0,则a()A.一定是正数B.一定是负数C.一定不是负数 D.不等于0【考点】绝对值.【分析】根据绝对值的定义回答即可【解答】解:∵|a|>0,∴a≠0,故选D.【点评】本题主要考查了绝对值的定义,注意①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a(a>0)0(a=0)﹣a(a<0)是解答此题的关键.6.有理数a、b在数轴上的位置如图所示,则下列各式符号的判断正确的是()A.a2﹣b>0 B.a+|b|>0 C.a+b2>0 D.2a+b>0【考点】数轴.【分析】根据数轴可得出a<﹣1,0<b<1,再判断a2,b2的X围,进行选择即可.【解答】解:根据数轴得a<﹣1,0<b<1,∴a2>1,b2<1,∴a2﹣b>0,故A正确;∴a+|b|<0,故B错误;∴a+b2<0,故C错误;∴2a+b<0,故D错误,故选A.【点评】本题考查了数轴,可以发现借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小有直观、简捷,举重若轻的优势.7.某超市8月份营业额为m万元,9月份比8月份增长了20%,则该超市9月份的营业额为()A.(1+20%m)万元B.(m+20%)万元C.m万元D.20% m 万元【考点】列代数式.【分析】根据题意可知9月份增长了20%m.【解答】解:由题意可知:9月份的营业额为m+20%m=m+m=m,故选(C)【点评】本题考查列代数式,涉及合并同类项.8.如图是一个计算程序,当输出值y=16时,输入值x为()A.±4 B.5 C.﹣3 D.﹣3或5【考点】有理数的混合运算.【专题】推理填空题.【分析】当输出值y=16时,小括号内的数是4或﹣4,据此求出输入值x为多少即可.【解答】解:当输出值y=16时,小括号内的数是4或﹣4,4+1=5,﹣4+1=﹣3,∴输入值x为﹣3或5.故选:D.【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.二、填空题9.﹣3的倒数等于﹣;﹣的绝对值等于.【考点】倒数;绝对值.【分析】根据倒数的定义,互为倒数的两数积为1;正数的绝对值是其本身,负数的绝对值是它的相反数.【解答】解:﹣3×(﹣)=1,因此﹣3的倒数等于﹣;﹣的绝对值是它的相反数,即.【点评】本题考查倒数的定义和绝对值的概念.10.单项式﹣的系数与次数的乘积为﹣2 .【考点】单项式.【分析】直接利用单项式的次数与系数的定义分析得出答案.【解答】解:∵单项式﹣的系数为:﹣,次数为:5,∴单项式﹣的系数与次数的乘积为:﹣×5=﹣2.故答案为:﹣2.【点评】此题主要考查了单项式,正确把握单项式的次数与系数的定义是解题关键.11.跳绳比赛中以跳160个为标准,多跳或少跳的个数分别用正数与负数表示,如多跳了20个记作“+20”,那么“﹣8”表示少跳了8个.【考点】正数和负数.【分析】根据正数和负数表示相反意义的量,可得答案.【解答】解:跳绳比赛中以跳160个为标准,多跳或少跳的个数分别用正数与负数表示,如多跳了20个记作“+20”,那么“﹣8”表示少跳了8个,故答案为:少跳了8个.【点评】本题考查了正数和负数,确定相反意义的量是解题关键.12.比较大小:﹣π<﹣.(填“>”、“<”或“=”)【考点】实数大小比较.【分析】首先将﹣化为小数,然后依据两个负数绝对值大的反而小进行比较即可.【解答】解:﹣=﹣3.1.∵π>3.1,∴﹣π<﹣3.1.故答案为:<.【点评】本题主要考查的是比较实数的大小,熟练掌握相关法则是解题的关键.24 .【考点】有理数的乘法;绝对值.【专题】计算题;实数.【分析】找出绝对值小于4.5的所有负整数,求出之积即可.【解答】解:绝对值小于4.5的所有负整数为:﹣4,﹣3,﹣2,﹣1,之积为24,故答案为:24【点评】此题考查了有理数的乘法,以及绝对值,熟练掌握运算法则是解本题的关键.14.若x3y a与﹣2x b y2的和仍为单项式,则a﹣b的值为﹣1 .【考点】合并同类项.【分析】根据单项式的和是单项式,可得同类项,根据同类项是字母相同且相同字母的指数也相同,可得答案.【解答】解:由题意,得b=3,a=2.a﹣b=2﹣3=﹣1,故答案为:﹣1.【点评】本题考查了合并同类项,利用同类项的定义得出a,b的值是解题关键.15.将数轴上一点P先向右移动3个单位长度,再向左移动5个单位长度,此时它表示的数是4,则原来点P表示的数是 6 .【考点】数轴.【专题】推理填空题.【分析】设开始点P表示的数为x,由于在数轴上的点向左移时点表示的数要减小,向右移动时,点表示的数要增大,于是得到x+3﹣5=4,然后解一次方程即可.【解答】解:设点P原来表示的数为x,根据题意,得:x+3﹣5=4,解得:x=6,即原来点P表示的数是6,故答案为:6.【点评】本题考查了数轴:规定了原点、正方向、单位长度的直线叫做数轴;所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数;一般来说,当数轴方向朝右时,右边的数总比左边的数大.16.当x=1时,代数式ax2+bx﹣4=0,则当x=﹣1时,代数式﹣ax2+bx+7的值为 3 .【考点】代数式求值.【分析】由题意可知x=1时,a+b﹣4=0,即a+b=4,然后将a+b=4和x=﹣1代入所求的式子即可求出答案.【解答】解:令x=1代入ax2+bx﹣4=0,∴a+b﹣4=0,∴令x=﹣1代入﹣ax2+bx+7,∴原式=﹣a﹣b+7=﹣(a+b)+7=3,故答案为:3【点评】本题考查代数式求值,涉及整体的思想.17.一个两位数,十位数字是x,个位数字比十位数字的3倍少5,则该两位数的最大值是47 .【考点】列代数式.【分析】根据题意个位数字为3x﹣5,则有0<3x﹣5<10,解不等式,求出x的最大值即可解决问题.【解答】解:由题意个位数字为3x﹣5,则有0<3x﹣5<10,∴<x<5,∴x的最大值为4,∴这个两位数为47,故答案为47【点评】本题考查列代数式、一元一次不等式等知识,解题的关键是把问题转化为不等式解决,属于基础题,中考常考题型.18.甲乙两人分别从A、B两地同时出发.相向而行,甲的速度是每分钟60米,乙的速度是每分钟90米,出发x分钟后,两人恰好相距100米,则A、B两地之间的距离是(150x+100)米.【考点】一元一次方程的应用.【专题】计算题;应用题;一次方程(组)及应用.【分析】根据速度与时间的乘积表示出甲乙两人走的路程,加上100即可得到结果.【解答】解:根据题意得:(60+90)x+100=(150x+100)米,故答案为:(150x+100)【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.三、计算题19.(20分)(2016秋•天宁区期中)计算(1)2+(﹣3)+(﹣6)+8(2)1﹣(﹣4)÷22×(3)(﹣+)÷(﹣)(4)﹣12×8﹣8×()3+4÷.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=2+8﹣3﹣6=10﹣9=1;(2)原式=1+4××=1;(3)原式=(﹣+)×(﹣12)=﹣3+10﹣4=3;(4)原式=﹣8﹣1+16=7.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、计算与化简(20、21每小题5分,22题6分,共16分)20.计算:﹣x+y﹣2x﹣3y.【考点】合并同类项.【分析】根据合并同类项的法则把系数相加即可.【解答】解:原式=(﹣x﹣2x)+(y﹣3y)=﹣3x﹣2y.【点评】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.21.计算:﹣(3xy﹣2x2)﹣2(3x2﹣xy)【考点】整式的加减.【分析】去括号、合并同类项可得.【解答】解:原式=﹣3xy+2x2﹣6x2+2xy=﹣4x2﹣xy.【点评】本题主要考查整式的运算,熟练掌握整式的运算法则是解题的关键.22.先化简,再求值:5(3a2b﹣ab2)﹣4(ab2+3a2b),其中a=,b=.【考点】整式的加减—化简求值.【分析】根据去括号,合并同类项,可化简整式,根据代数式求值,可得答案.【解答】解:原式=15a2b﹣5ab2﹣4ab2﹣12a2b=3a2b﹣9ab2,当a=,b=时,原式=3×()2×﹣9××()2=﹣=﹣.【点评】本题考查了整式的化简求值,先化简再求值,注意去括号易出错.五、解答题(第23题5分,第24题7分,第25、26各8分,共28分)23.将﹣4,﹣(﹣3.5),﹣1,|﹣2|这些数在数轴上表示出来,并用“<”将它们连接起来.【考点】有理数大小比较;数轴;绝对值.【分析】在数轴上表示出各数,从左到右用“<”连接起来即可.【解答】解:如图所示,,故﹣4<﹣1<|﹣2|<﹣(﹣3.5).【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.24.某高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):﹣8,+18,+2,﹣16,+11,﹣5.(1)该养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为/km,则这次养护共耗油多少升?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据单位耗油量乘以行驶路程等于总耗油量,可得答案.【解答】(1)解:﹣8+18+2﹣16+11﹣5=2 km,答:该养护小组最后到达的地方在出发点的东边,距出发点2 km.(2)|﹣8|+18+2|﹣16|+11+|﹣5|=60km,60×0.5=30l,答:这次养护共耗油30升.【点评】本题考查了正数和负数,利用有理数的加法是解题关键.25.现有20筐葡萄,以每筐15千克为标准,超过或不足的千克数分别用正、负数来表示,与标准质量的差值记录如下:单位(千克)﹣3 ﹣2 0 1筐数 1 5 2 2 4(1)这20筐葡萄中,最重的一筐比最轻的一筐重 5.5 千克.(2)与标准重量比较,这20筐葡萄总计超过或不足多少千克?(3)若葡萄每千克售价8元,则出售这20筐葡萄可卖多少元?【考点】正数和负数.【分析】(1)根据正负数的意义列式计算即可得解;(2)根据图表数据列出算式,然后计算即可得解;(3)求出20筐葡萄的质量乘以单价,计算即可得解.【解答】解:(1)最轻的是﹣3,最重的是2.5;+3=5.5 (千克),故答案为:5.5;(2)20﹣(1+4+2+2+5)=6 (筐)﹣3×1+1×4+(﹣1.5)×2+(﹣2)×5+×6=3(千克);答:与标准重量比较,这20筐葡萄总计超过了3千克.(3)15×20+3=303(千克);303×8=2424(元),答:出售这20筐葡萄可卖2424元.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.26.如图,图①、图②分别由两个长方形拼成,其中a>b.(1)用含a、b的代数式表示它们的面积,则S①= a2﹣b2,S②=(a+b)(a﹣b).(2)S①与S②之间有怎样的大小关系?请你解释其中的道理.(3)请你利用上述发现的结论计算式子:20162﹣20142.【考点】列代数式.【分析】(1)根据长方形和正方形的面积公式列代数式即可;(2)根据(1)得出的结果即可直接得出答案;(3)根据(2)的公式进行计算即可.【解答】解:(1)图①的面积是a2﹣b2;图②的面积是(a+b)(a﹣b);故答案为:a2﹣b2;(a+b)(a﹣b),(2)根据(1)可得:(a+b)(a﹣b)=a2﹣b2;相同的两个长方形拼成的两个图形的面积相等,即都等于这两个长方形面积的和;(3)20162﹣20142=(2016+2014)(2016﹣2014)=4030×2=8060【点评】此题考查了列代数式,用到的知识点是正方形的面积公式,多项式的乘法,关键是根据所给出的图形列出相应的代数式,找出它们之间的规律.。
2024-2025学年苏科版七年级数学上册期中复习卷(含答案)
期中复习卷-2024-2025学年数学七年级上册苏科版(2024)一.选择题(共8小题)1.在下列数,+1,6.7,0,,﹣5,25%中整数有( )A.2个B.3个C.4个D.5个2.能源产业已成为云南省第一大支柱产业,目前正在推进的3000000千瓦光伏项目,将带动光伏、储能绿色能源装备的发展.3000000用科学记数法可以表示为( )A.0.3×108B.3×106C.30×105D.30×1063.我国部分地区的日温差较大,“早穿棉袄午穿纱”这句谚语描绘的就是某地这种奇妙的气温变化现象.若某市某日上午温度上升15℃记作+15℃,那么傍晚温度下降10℃记作( )A.﹣15℃B.+15℃C.﹣10℃D.+10℃4.﹣1.2﹣0.8=( )A.﹣2B.﹣0.4C.0.4D.25.如果x为有理数,式子2023﹣|x﹣2023|存在最大值,这个最大值是( )A.2023B.4046C.20D.06.如果单项式与x3y b是同类项,则a、b的值分别是( )A.2,2B.﹣3,2C.2,3D.3,27.当x=2时,代数式px3+qx+1的值等于2024,那么当x=﹣2时,代数式px3+qx+1的值为( )A.2024B.﹣2024C.2022D.﹣20228.小亮按如图所示的程序输入一个数x等于10,最后输出的结果为( )A.51B.251C.256D.255二.填空题(共8小题)9.计算:(1)﹣2﹣1= ;(2)(﹣2.1)+(+3.9)= ;(3)(﹣4)×6= ;10.数轴上表示﹣5与1这两个数对应的点之间的距离是 .11.已知|a|=3,,且a<0<b,则ab= .12.如图所示的数轴被墨迹盖住了一部分,则被遮住的所有整数个数为 .13.有理数a,b在数轴上的位置如图所示,若表示数b与﹣b的点相距36个单位长度,a与原点的距离是|b|的,则a= .14.已知单项式﹣2ab3与4a n b m+1是同类项,则m+n= .15.如果(k﹣2)x3+(|k|﹣2)x2﹣5是关于x的三次二项式,则k的值为 .16.某公园准备修建一块长方形草坪,长为35m,宽为25m.并在草坪上修建如图所示的十字路,已知十字路宽x m,则修建的十字路的面积是 m2.(用含x的代数式表示)三.解答题(共8小题)17.计算:(1)﹣6+3+2﹣1(2)(3)(4)18.已知,求ab﹣(a+b)c的值.19.先化简,再求值:2(ab2+3a2b)﹣3(ab2+a2b)﹣a2b,其中,b=2.20.已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置;(2)若数b与其相反数相距20个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,求a表示的数是多少?21.在数学活动课上,李老师设计了一个游戏活动,四名同学分别代表一种运算,四名同学可以任意排列,每次排列代表一种运算顺序,剩余同学中,一名学生负责说一个数,其他同学负责运算,运算结果既对又快着获胜,可以得到一个奖品.F面我们用四个卡片代表四名同学(如图):列式,并计算:(1)﹣3经过A、B、C、D的顺序运算后,结果是多少?(2)5经过B、C、A、D的顺序运算后,结果是多少?22.某同学做一道数学题,已知两个多项式A、B,其中B=2x2y﹣3xy+2x+5,试求A+B.这位同学把A+B 误看成A﹣B,结果求出的答案为4x2y+xy﹣x﹣4.(1)请你替这位同学求出A+B的正确答案;(2)若A﹣3B的值与x的取值无关,求y的值.23.阅读下列材料,我们知道,5x+3x﹣4x=(5+3﹣4)x=4x,类似的,我们把(a+b)看成一个整体,则5(a+b)+3(a+b)﹣4(a+b)=(5+3﹣4)(a+b)=4(a+b),“整体思想“是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,尝试应用;(1)把(a﹣b)2看成一个整体,合并2(a﹣b)2+6(a﹣b)2﹣3(a﹣b)2的结果 .(2)已知m+n=15,3a﹣2b=11,求2m+6a﹣(4b﹣2n)的值.(3)拓展探索:已知a﹣3b=4,3b﹣c=﹣3,c﹣d=11,求(a﹣c)+(3b﹣d)﹣(3b﹣c)的值.24.如图,通过观察,小丽同学发现可以用这样的方法确定每个图形中黑色和白色小正方形的总个数:图(1)中共有1个黑色小正方形,图(2)中共有1+3=22个黑白小正方形,图(3)中共有1+3+5=32个黑白小正方形,图(4)中共有1+3+5+7=42个黑白小正方形,回答下列问题.(1)根据前四个图中计算黑白小正方形的总个数的方法和规律,则第(5)个图中计算小正方形个数的等式是: ;(2)根据规律,第50个图比第49个图多 个小正方形;(3)根据每个图中计算黑白小正方形总个数的方法和规律,计算:①1+3+5+…+197+199;②201+203+205+…+297+299.期中复习卷-2024-2025学年数学七年级上册苏科版(2024)参考答案与试题解析一.选择题(共8小题)1.在下列数,+1,6.7,0,,﹣5,25%中整数有( )A.2个B.3个C.4个D.5个【解答】解:,+1,6.7,0,,﹣5,25%中整数有:+1,0,﹣5,共3个,故选:B.2.能源产业已成为云南省第一大支柱产业,目前正在推进的3000000千瓦光伏项目,将带动光伏、储能绿色能源装备的发展.3000000用科学记数法可以表示为( )A.0.3×108B.3×106C.30×105D.30×106【解答】解:3000000=3×106,故选:B.3.我国部分地区的日温差较大,“早穿棉袄午穿纱”这句谚语描绘的就是某地这种奇妙的气温变化现象.若某市某日上午温度上升15℃记作+15℃,那么傍晚温度下降10℃记作( )A.﹣15℃B.+15℃C.﹣10℃D.+10℃【解答】解:温度上升15℃记作+15℃,那么傍晚温度下降10℃记作﹣10℃,故选:C.4.﹣1.2﹣0.8=( )A.﹣2B.﹣0.4C.0.4D.2【解答】解:﹣1.2﹣0.8=﹣1.2+(﹣0.8)=﹣2,故选:A.5.如果x为有理数,式子2023﹣|x﹣2023|存在最大值,这个最大值是( )A.2023B.4046C.20D.0【解答】解:∵绝对值具有非负性,∴|x﹣2023|≥0,∵2023﹣|x﹣2023|有最大值,∴当|x﹣2023|=0时,式子有最大值,此时的值是2023,故A正确.故选:A.6.如果单项式与x3y b是同类项,则a、b的值分别是( )A.2,2B.﹣3,2C.2,3D.3,2【解答】解:由同类项定义可知a=3,b=2.故选:D.7.当x=2时,代数式px3+qx+1的值等于2024,那么当x=﹣2时,代数式px3+qx+1的值为( )A.2024B.﹣2024C.2022D.﹣2022【解答】解:当x=2时,px3+qx+1=8p+2q+1=2024,∴4p+q=,∴当x=﹣2时,px3+qx+1=﹣8p﹣2q+1=﹣2(4p+q)+1=﹣+1=﹣2022.故选:D.8.小亮按如图所示的程序输入一个数x等于10,最后输出的结果为( )A.51B.251C.256D.255【解答】解:当x=10时,5x+1=51<200,此时输入的数为51,5x+1=256>200,所以输出的结果为256.故选:C.二.填空题(共8小题)9.计算:(1)﹣2﹣1= ﹣3 ;(2)(﹣2.1)+(+3.9)= 1.8 ;(3)(﹣4)×6= ﹣24 ;【解答】解:(1)原式=﹣3,故答案为:﹣3;(2)原式=1.8,故答案为:1.8;(3)原式=﹣24,故答案为:﹣24.10.数轴上表示﹣5与1这两个数对应的点之间的距离是 6 .【解答】解:如图,点A所表示的数是﹣5,点B所表示的数是1,所以AB=|1﹣(﹣5)|=6,故答案为:6.11.已知|a|=3,,且a<0<b,则ab= ﹣1 .【解答】解:∵|a|=3,,a<0<b,∴,∴,∴.故答案为:﹣1.12.如图所示的数轴被墨迹盖住了一部分,则被遮住的所有整数个数为 13 .【解答】解:根据题意得:被盖住的整数为﹣10,﹣9,﹣8,﹣7,﹣6,﹣5,7,8,9,10,11,12,13,∴被盖住的整数的个数为13,故答案为:13.13.有理数a,b在数轴上的位置如图所示,若表示数b与﹣b的点相距36个单位长度,a与原点的距离是|b|的,则a= 6 .【解答】解:∵表示数b与﹣b的点相距36个单位长度,∴,∵a与原点的距离是|b|的,∴|a|=6,∴a=±6,由数轴得:a>0,∴a=6.故答案为:6.14.已知单项式﹣2ab3与4a n b m+1是同类项,则m+n= 3 .【解答】解:由同类项定义可知n=1,m+1=3,解得m=2,n=1,∴m+n=2+1=3.故答案为:3.15.如果(k﹣2)x3+(|k|﹣2)x2﹣5是关于x的三次二项式,则k的值为 ﹣2 .【解答】解:∵多项式(k﹣2)x3+(|k|﹣2)x2﹣5是三次二项式,∴|k|﹣2=0,k﹣2≠0,∴k=﹣2.故答案为:﹣2.16.某公园准备修建一块长方形草坪,长为35m,宽为25m.并在草坪上修建如图所示的十字路,已知十字路宽x m,则修建的十字路的面积是 (60x﹣x2) m2.(用含x的代数式表示)【解答】解:由图可得,修建的十字路的面积是:35x+25x﹣x2=(60x﹣x2)m2,故答案为:(60x﹣x2).三.解答题(共8小题)17.计算:(1)﹣6+3+2﹣1(2)(3)(4)【解答】解:(1)原式=﹣3+2﹣1=﹣1﹣1=﹣2;(2)原式===;(3)原式==﹣1﹣5﹣3=﹣9;(4)==﹣20+8﹣9=﹣21.18.已知,求ab﹣(a+b)c的值.【解答】解:∵,∴a+1=0,2b﹣5=0,=0,∴a=﹣1,b=,c=,∴ab﹣(a+b)c=.19.先化简,再求值:2(ab2+3a2b)﹣3(ab2+a2b)﹣a2b,其中,b=2.【解答】解:原式=2ab2+6a2b﹣3ab2﹣3a2b﹣a2b=﹣ab2+2a2b,当a=﹣,b=2时,原式=﹣(﹣)×22+2×(﹣)2×2=2+1=3.20.已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置;(2)若数b与其相反数相距20个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,求a表示的数是多少?【解答】解:(1)如图,;(2)数b与其相反数相距20个单位长度,则b表示的点到原点的距离为10,所以b表示的数是﹣10;(3)因为﹣b表示的点到原点的距离为10,而数a表示的点与数b的相反数表示的点相距5个单位长度,所以a表示的点到原点的距离为5,所以a表示的数是5.21.在数学活动课上,李老师设计了一个游戏活动,四名同学分别代表一种运算,四名同学可以任意排列,每次排列代表一种运算顺序,剩余同学中,一名学生负责说一个数,其他同学负责运算,运算结果既对又快着获胜,可以得到一个奖品.F面我们用四个卡片代表四名同学(如图):列式,并计算:(1)﹣3经过A、B、C、D的顺序运算后,结果是多少?(2)5经过B、C、A、D的顺序运算后,结果是多少?【解答】解:(1)[(﹣3)×2﹣(﹣5)]÷3+6=(﹣6+5)÷3+6==;(2)[5﹣(﹣5)]÷3×2+6=(5+5)÷3×2+6==.22.某同学做一道数学题,已知两个多项式A、B,其中B=2x2y﹣3xy+2x+5,试求A+B.这位同学把A+B 误看成A﹣B,结果求出的答案为4x2y+xy﹣x﹣4.(1)请你替这位同学求出A+B的正确答案;(2)若A﹣3B的值与x的取值无关,求y的值.【解答】解:(1)由题意可得,A﹣B=4x2y+xy﹣x﹣4,∴A=4x2y+xy﹣x﹣4+(2x2y﹣3xy+2x+5)=4x2y+xy﹣x﹣4+2x2y﹣3xy+2x+5=6x2y﹣2xy+x+1,∴A+B=6x2y﹣2xy+x+1+(2x2y﹣3xy+2x+5)=6x2y﹣2xy+x+1+2x2y﹣3xy+2x+5=8x2y﹣5xy+3x+6;(2)A﹣3B=6x2y﹣2xy+x+1﹣3(2x2y﹣3xy+2x+5),=6x2y﹣2xy+x+1﹣6x2y+9xy﹣6x﹣15,=7xy﹣5x﹣14,=(7y﹣5)x﹣14,∵A﹣3B的值与x的取值无关,∴7y﹣5=0,∴.23.阅读下列材料,我们知道,5x+3x﹣4x=(5+3﹣4)x=4x,类似的,我们把(a+b)看成一个整体,则5(a+b)+3(a+b)﹣4(a+b)=(5+3﹣4)(a+b)=4(a+b),“整体思想“是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,尝试应用;(1)把(a﹣b)2看成一个整体,合并2(a﹣b)2+6(a﹣b)2﹣3(a﹣b)2的结果 5(a﹣b)2 .(2)已知m+n=15,3a﹣2b=11,求2m+6a﹣(4b﹣2n)的值.(3)拓展探索:已知a﹣3b=4,3b﹣c=﹣3,c﹣d=11,求(a﹣c)+(3b﹣d)﹣(3b﹣c)的值.【解答】解:(1)2(a﹣b)2+6(a﹣b)2﹣3(a﹣b)2=(2+6﹣3)(a﹣b)2=5(a﹣b)2.故答案为:5(a﹣b)2.(2)2m+6a﹣(4b﹣2n)=2(m+n)+2(3a﹣2b),∵m+n=15,3a﹣2b=11,∴2(m+n)+2(3a﹣2b)=2×15+2×11,=52.(3)∵a﹣3b=4,3b﹣c=﹣3,c﹣d=11,∴(a﹣c)+(3b﹣d)﹣(3b﹣c),=a﹣c+3b﹣d﹣3b+c,=a﹣d,=4+3b﹣(c﹣11),=4+3b﹣c+11,=4+(3b﹣c)+11,=4﹣3+11,=12.24.如图,通过观察,小丽同学发现可以用这样的方法确定每个图形中黑色和白色小正方形的总个数:图(1)中共有1个黑色小正方形,图(2)中共有1+3=22个黑白小正方形,图(3)中共有1+3+5=32个黑白小正方形,图(4)中共有1+3+5+7=42个黑白小正方形,回答下列问题.(1)根据前四个图中计算黑白小正方形的总个数的方法和规律,则第(5)个图中计算小正方形个数的等式是: 1+3+5+7+9=52 ;(2)根据规律,第50个图比第49个图多 99 个小正方形;(3)根据每个图中计算黑白小正方形总个数的方法和规律,计算:①1+3+5+…+197+199;②201+203+205+…+297+299.【解答】解:(1)图(1)中共有12个黑色小正方形,图(2)中共有22个黑白小正方形,图(3)中共有32个黑白小正方形,图(4)中共有42个黑白小正方形,∴图(5)中共有52个黑白小正方形,故答案为:1+3+5+7+9=52;(2)∵图(1)中共有1个黑色小正方形,图(2)中共有1+3=22个黑白小正方形,图(3)中共有1+3+5=32个黑白小正方形,图(4)中共有1+3+5+7=42个黑白小正方形,⋯,则图(n)中共有1+3+5+7+9+(2n﹣1)=n2个黑白小正方形,∴第50个图比第49个图多502﹣492=99(个),故答案为:99;(3)由(2)得图(n)中共有1+3+5+7+9+(2n﹣1)=n2个黑白小正方形,∴①2n﹣1=199,解得:n=100,∴1+3+5+⋯+197+199=1002=10000;②2n﹣1=99,解得:n=50,∴201+203+205+⋯+297+299=200×100+(1+3+5+7⋯+97+99)=20000+502=22500.。
2019-2020学年江苏省常州市七年级(上)期中数学试卷(解析版)
2019-2020学年江苏省常州市七年级(上)期中数学试卷一、选择题(每题3分) 1.(3分)4-的相反数是( ) A .4 B .4-C .14-D .142.(3分)在3π-,3.1415,0,0.333-⋯,227-,0.15-,2.010010001⋯中,有理数有( ) A .2个B .3个C .4个D .5个3.(3分)若3,2,0mm n n==<且,则m n +的值是( ) A .1-B .1C .1或5D .1±4.(3分)如果||a a =,则( ) A .a 是正数B .a 是负数C .a 是零D .a 是正数或零5.(3分)下列说法:①若a 、b 互为相反数,则0a b +=;②若0a b +=,则a 、b 互为相反数;③若a 、b 互为相反数,则1a b =-; ④若1ab=-,则a 、b 互为相反数.其中正确的结论有( ) A .1个B .2个C .3个D .4个6.(3分)已知3a b -=-,2c d +=,则()()b c a d +--的值为( ) A .1B .5C .5-D .1-7.(3分)一个商标图案如图中阴影部分,在长方形ABCD 中,8AB cm =,4BC cm =,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F ,则商标图案的面积是( )A .2(48)cm π+B .2(416)cm π+C .2(38)cm π+D .2(316)cm π+8.(3分)在一列数1x ,2x ,3x ,⋯中,已知11x =,且当2k …时,11214([][])44k k k k x x ---=+--(符号[]a 表示不超过实数a 的最大整数,例如[2.6]2=,[0.2]0)=,则2014x 等于( ) A .1B .2C .3D .4二、填空题(第11题每空1分,其他题每空2分)9.(1分)近年来,随着交通网络的不断完善,我市近郊游持续升温. 据统计,在今年“十一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为 人.10.(2分)比较大小:(8)-+ |9|--; 23- 34-(填“>”、“ <”、或“=”符号).11.(4分)单项33x y-的系数是 ,次数是 次;多项式242xy xy -+是 次 项式.12.(1分)一只蚂蚁从数轴上一点A 出发,爬了7个单位长度到了原点,则点A 所表示的数是 .13.(1分)绝对值不大于5的所有整数的积是 . 14.(1分)若三个非零有理数a ,b ,c 满足||||||1a b c a b c ++=,则||abc abc= . 15.(1分)若5a b ab +=,则11a b+= . 16.(1分)设22P y =-,23Q y =+,且31P Q -=,则y 的值为 . 17.(1分)当k = 时,多项式22(1)325x k xy y xy +----中不含xy 项.18.(2分)有一数值转换器,原理如图所示,若开始输入x 的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是 ,依次继续下去⋯,第2014次输出的结果是 .三、解答题 19.(3分)计算 (1)20(5)(18)-+---; (2)21293()12(3)23-÷+-⨯+-;(3)4211(10.5)[2(3)]3---⨯⨯--;(4)222172(3)(6)()3-+⨯-+-÷-.20.(5分)先化简,再求值:2214(1)2(1)(42)2x x x x --++-,其中3x =-.21.(6分)已知代数式2232A x xy y =++,2B x xy x =-+. (1)求2A B -;(2)若2A B -的值与x 的取值无关,求y 的值. 22.(5分)观察下列算式,你发现了什么规律? 212316⨯⨯=;22235126⨯⨯+=;2223471236⨯⨯++=;222245912346⨯⨯+++=;⋯ (1)根据你发现的规律,计算下面算式的值;22221238++⋯+= (2)请用一个含n 的算式表示这个规律:2222123n ++⋯+= .23.(6分)某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品? (3)请求出该工艺厂在本周实际生产工艺品的数量;(4)已知该厂实行每周计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个另奖50元,少生产一个扣80元.试求该工艺厂在这一周应付出的工资总额. 24.(6分)如图,用粗线在数轴上表示了一个“范围”,这个“范围”包含所有大于1且小于2的数(数轴上1与2这两个数的点空心,表示这个范围不包含数1和2). 请你在数轴上表示出一个范围,使得这个范围;(1)包含所有大于3-且小于0的数[画在数轴(1)上];(2)包含 1.5-、π这两个数,且只含有5个整数[画在数轴(2)上]; (3)同时满足以下三个条件:[画在数轴(3)上] ①至少有100对互为相反数和100对互为倒数; ②有最小的正整数;③这个范围内最大的数与最小的数表示的点的距离大于3但小于4.25.(10分)当5x =, 4.5y =时,求2221212()()2(1)333kx x y x y x y --+-+--+的值.一名同学做题时,错把5x =看成5x =-,但结果也正确,且计算过程无误,求k 的值.2019-2020学年江苏省常州市七年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分) 1.(3分)4-的相反数是( ) A .4B .4-C .14-D .14【分析】根据只有符号不同的两个数互为相反数,0的相反数是0即可求解. 【解答】解:4-的相反数是4. 故选:A .【点评】此题主要考查相反数的意义,解决本题的关键是熟记相反数的定义. 2.(3分)在3π-,3.1415,0,0.333-⋯,227-,0.15-,2.010010001⋯中,有理数有( ) A .2个B .3个C .4个D .5个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【解答】解:在3π-,3.1415,0,0.333-⋯,227-,0.15-,2.010010001⋯中,有理数有3.1415,0,0.333-⋯,227-,0.15-,共有5个. 故选:D .【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001⋯,等有这样规律的数. 3.(3分)若3,2,0mm n n==<且,则m n +的值是( ) A .1-B .1C .1或5D .1±【分析】根据绝对值的定义得到3m =或3-,2n =或2-,由于m 、n 异号,所以当3m =时,2n =-;当3m =-时,2n =,然后分别计算m n +即可.【解答】解:||3m =,||2n =, 3m ∴=或3-,2n =或2-,又0mn<,即m 、n 异号, ∴当3m =时,2n =-,则321m n +=-=;当3m =-时,2n =,则321m n +=-+=-. 故选:D .【点评】本题考查了绝对值:若0a >,则||a a =;若0a =,则||0a =;若0a <,则||a a =-. 4.(3分)如果||a a =,则( ) A .a 是正数B .a 是负数C .a 是零D .a 是正数或零【分析】根据绝对值的性质进行分析:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:根据绝对值的意义,若一个数的绝对值等于它本身,则这个数是非负数,即a 是正数或零. 故选:D .【点评】考查了绝对值的性质.5.(3分)下列说法:①若a 、b 互为相反数,则0a b +=;②若0a b +=,则a 、b 互为相反数;③若a 、b 互为相反数,则1a b =-; ④若1ab=-,则a 、b 互为相反数.其中正确的结论有( ) A .1个B .2个C .3个D .4个【分析】根据相反数的定义对各小题进行逐一分析即可.【解答】解:①只有符号不同的两个数叫做互为相反数,∴若a 、b 互为相反数,则0a b +=,故本小题正确;②0a b +=,a b ∴=-,a ∴、b 互为相反数,故本小题正确; ③0的相反数是0,∴若0a b ==时,ab-无意义,故本小题错误;④1ab=-,a b ∴=-,a ∴、b 互为相反数,故本小题正确. 故选:C .【点评】本题考查的是相反数的定义,在解答此题时要注意0的相反数是0. 6.(3分)已知3a b -=-,2c d +=,则()()b c a d +--的值为( ) A .1B .5C .5-D .1-【分析】先把括号去掉,重新组合后再添括号.【解答】解:因为()()()()()()b c a d b c a d b a c d a b c d +--=+-+=-++=--++⋯(1), 所以把3a b -=-、2c d +=代入(1) 得:原式(3)25=--+=. 故选:B .【点评】(1)括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去括号;(2)添括号后,括号前是“+”,括号里的各项都不改变符号;添括号后,括号前是“-”,括号里的各项都改变符号.运用这一法则添括号.7.(3分)一个商标图案如图中阴影部分,在长方形ABCD 中,8AB cm =,4BC cm =,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F ,则商标图案的面积是( )A .2(48)cm π+B .2(416)cm π+C .2(38)cm π+D .2(316)cm π+【分析】作辅助线DE 、EF 使BCEF 为一矩形,从图中可以看出阴影部分的面积=三角形的面积-(正方形的面积-扇形的面积),依面积公式计算即可. 【解答】解:作辅助线DE 、EF 使BCEF 为一矩形. 则2(84)4224CEF S cm ∆=+⨯÷=, 24416ADEF S cm =⨯=正方形,290164360ADF S cm ππ⨯==扇形, ∴阴影部分的面积224(164)84()cm ππ=--=+.故选:A .【点评】本题主要考查了扇形的面积计算,关键是作辅助线,并从图中看出阴影部分的面积是由哪几部分组成的.8.(3分)在一列数1x ,2x ,3x ,⋯中,已知11x =,且当2k …时,11214([][])44k k k k x x ---=+--(符号[]a 表示不超过实数a 的最大整数,例如[2.6]2=,[0.2]0)=,则2014x 等于( ) A .1B .2C .3D .4【分析】首先由11x =和当2k …时,1124([][])44k k k k x x ---=--求得:2x ,3x ,4x ,5x ,6x ,7x ,8x ,9x 的值,则可得规律:n x 每4次一循环,又由201445032÷=⋯,可知20142x x =,则问题得解.【解答】解:由11x =且当2k …时,根据1124([][])44k k k k x x ---=--可得: 22x =,33x =,44x =,51x =, 62x =,73x =,84x =,91x =,⋯n x ∴每4次一循环,201445032÷=⋯, 201422x x ∴==,故选:B .【点评】此题考查数字的变化规律,理解取整函数,解题的关键是找到规律:n x 每4次一循环.二、填空题(第11题每空1分,其他题每空2分)9.(1分)近年来,随着交通网络的不断完善,我市近郊游持续升温. 据统计,在今年“十一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为 52.0310⨯ 人.【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【解答】解:20.3万5203000 2.0310==⨯, 故答案为:52.0310⨯.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数,表示时关键要正确确定a 的值以及n 的值.10.(2分)比较大小:(8)-+ > |9|--; 23- 34-(填“>”、“ <”、或“=”符号).【分析】根据正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的其值反而小;①首先化简,然后比较出即可;②通分,化成同分母分数,再比较其绝对值的大小,即可得出.【解答】解:①(8)8-+=-,|9|9-=-,89->-, (8)|9|∴-+>-;②228||3312-==,339||4412-==,891212<,2334∴->-.故答案为:>;>.【点评】本题主要考查了有理数大小比较,①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.11.(4分)单项33x y -的系数是 13- ,次数是 次;多项式242xy xy -+是 次项式.【分析】根据单项式的系数及次数的定义,多项式的次数及项数的概念解答.【解答】解:单项33x y -的系数是13-,次数是4次,多项式242xy xy -+是三次三项式.【点评】根据单项式的单项式的系数是单项式前面的数字因数,次数是单项式所有字母指数的和;多项式是由单项式组成的,常数项也是一项,多项式的次数是“多项式中次数最高的项的次数”.12.(1分)一只蚂蚁从数轴上一点A 出发,爬了7个单位长度到了原点,则点A 所表示的数是 7± .【分析】一只蚂蚁从数轴上一点A 出发,爬了7个单位长度到了原点,则这个数的绝对值是7,据此即可判断.【解答】解:一只蚂蚁从数轴上一点A 出发,爬了7个单位长度到了原点,则这个数的绝对值是7,则A 表示的数是:7±.故答案是:7±.【点评】本题考查了绝对值的定义,根据实际意义判断A 的绝对值是7是关键. 13.(1分)绝对值不大于5的所有整数的积是 0 .【分析】根据绝对值的性质列出算式,再根据任何数同0相乘都等于0解答. 【解答】解:由题意得,(5)(4)(3)(2)(1)0123450-⨯-⨯-⨯-⨯-⨯⨯⨯⨯⨯⨯=.故答案为:0.【点评】本题考查了有理数的乘法,准确列出算式并观察出有0因数是解题的关键. 14.(1分)若三个非零有理数a ,b ,c 满足||||||1a b c a b c ++=,则||abc abc= 1- . 【分析】由||||||1a b c a b c++=知,a 、b 、c 中有一个为负数,故能求||abc abc 的值. 【解答】解:||||||1a b c a b c++= a ∴、b 、c 中有一个为负数,另外两个为正数,∴||1abc abc=- 故答案为1-.【点评】本题主要考查有理数除法的知识点,比较简单. 15.(1分)若5a b ab +=,则11a b+= 5 . 【分析】根据分式的运算法则即可求出答案. 【解答】解:5a b ab +=,∴5a bab+=, ∴115a b+=, 故答案为:5【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型. 16.(1分)设22P y =-,23Q y =+,且31P Q -=,则y 的值为 52. 【分析】将P 与Q 代入31P Q -=中计算即可求出y 的值. 【解答】解:根据题意得:3(22)(23)1y y --+=, 去括号得:66231y y ---=, 移项合并得:410y =,解得:52y =. 故答案为:52【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.17.(1分)当k = 3 时,多项式22(1)325x k xy y xy +----中不含xy 项. 【分析】不含有xy 项,说明整理后其xy 项的系数为0. 【解答】解:整理只含xy 的项得:(3)k xy -, 30k ∴-=,3k =.故答案为:3.【点评】本题考查多项式的概念.不含某项,说明整理后的这项的系数之和为0. 18.(2分)有一数值转换器,原理如图所示,若开始输入x 的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是 3 ,依次继续下去⋯,第2014次输出的结果是 .【分析】根据运算程序进行计算,然后得到从第2次开始到第7次输出每6次为一个循环组依次循环,用(20141)-除以6,再根据商和余数的情况确定第2014出输出的结果. 【解答】解:第2次输出的结果是6, 第3次输出:1632⨯=,第4次输出:358+=, 第5次输出:1842⨯=,第6次输出:1422⨯=,第7次输出:1212⨯=,第8次输出:156+=, 第9次输出:1632⨯=,⋯,(20141)6335-÷=余3,∴第2014次输出的结果与第4次输出的结果相同,是8.故答案为:3,8.【点评】本题考查了函数值的求解,读懂运算程序并通过计算得到从第2次开始到第7次输出每6次为一个循环组依次循环是解题的关键. 三、解答题 19.(3分)计算 (1)20(5)(18)-+---; (2)21293()12(3)23-÷+-⨯+-;(3)4211(10.5)[2(3)]3---⨯⨯--;(4)222172(3)(6)()3-+⨯-+-÷-.【分析】(1)根据有理数的加减混合运算法则进行计算即可求解; (2)根据有理数的混合运算顺序进行计算即可求解;(3)根据有理数的混合运算顺序:先算乘方,再算乘除,最后算加减,如果有括号先算括号内的即可求解;(4)先算乘方,再算乘除,最后算加减即可求解. 【解答】解:(1)20(5)(18)-+--- 20518=--+ 7=-(2)21293()12(3)23-÷+-⨯+-3689=-+-+4=(3)4211(10.5)[2(3)]3---⨯⨯--111(29)23=--⨯⨯-11(7)6--⨯-716=-+16=(4)222172(3)(6)()3-+⨯-+-÷-4929(6)9=-+⨯+-⨯ 491854=-+- 85=-【点评】本题考查了有理数的混合运算,解决本题的关键是熟练有理数混合运算顺序,同时注意符号的变化.20.(5分)先化简,再求值:2214(1)2(1)(42)2x x x x --++-,其中3x =-.【分析】原式去括号合并得到最简结果,把x 的值代入计算即可求出值. 【解答】解:原式224422236x x x x x =---+-=-, 当3x =-时,原式9615=--=-.【点评】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键. 21.(6分)已知代数式2232A x xy y =++,2B x xy x =-+. (1)求2A B -;(2)若2A B -的值与x 的取值无关,求y 的值.【分析】(1)将A 、B 代入,然后去括号、合并同类项求解; (2)与x 的取值无关说明x 的系数为0,据此求出y 的值. 【解答】解:(1)2222322()A B x xy y x xy x -=++--+22232222x xy y x xy x =++-+- 522xy y x =+-;(2)522(52)2xy y x y x y +-=-+,2A B -的值与x 的取值无关,520y ∴-=解得:25y =. 【点评】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则. 22.(5分)观察下列算式,你发现了什么规律? 212316⨯⨯=;22235126⨯⨯+=;2223471236⨯⨯++=;222245912346⨯⨯+++=;⋯(1)根据你发现的规律,计算下面算式的值;22221238++⋯+= 204 (2)请用一个含n 的算式表示这个规律:2222123n ++⋯+= .【分析】(1)观察不难发现,从1开始的平方数的和,分母都是6,分子为最后一个数与比它大1的数的积再乘以比这个数的2倍大1的数的积; (2)根据规律写出含n 的算式即可. 【解答】解:(1)22228(81)(281)12382046⨯+⨯+++⋯+==;(2)2222(1)(21)1236n n n n ++++⋯+=.故答案为:204;(1)(21)6n n n ++.【点评】此题考查数字的变化规律,难点在于观察出分子的变化情况.23.(6分)某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品? (3)请求出该工艺厂在本周实际生产工艺品的数量;(4)已知该厂实行每周计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个另奖50元,少生产一个扣80元.试求该工艺厂在这一周应付出的工资总额. 【分析】(1)根据表格将300与5相加即可求得周一的产量;(2)由表格中的数字可知星期六产量最高,星期五产量最低,用星期六对应的数字与300相加求出产量最高的量,同理用星期五对应的数字与300相加求出产量最低的量,两者相减即可求出所求的个数;(3)由表格中的增减情况,把每天对应的数字相加,利用互为相反数的两数和为0,且根据同号及异号两数相加的法则计算后,与300与7的积相加即可得到工艺品一周共生产的个数;(4)用计划的2100乘以单价60元,加超额的个数乘以50,减不足的个数乘以80-,即为一周工人的工资总额.【解答】解:(1)周一的产量为:3005305+=个;(2)由表格可知:星期六产量最高,为300(16)316++=(个),星期五产量最低,为300(10)290+-=(个),则产量最多的一天比产量最少的一天多生产31629026-=(个);(3)根据题意得一周生产的服装套数为:⨯+++-+-+++-+++-3007[(5)(2)(5)(15)(10)(16)(9)]210010=+=(套).2110答:服装厂这一周共生产服装2110套;(4)(5)(2)(5)(15)(10)(16)(9)10++-+-+++-+++-=个,根据题意得该厂工人一周的工资总额为:⨯+⨯=(元).2110605010127100【点评】此题考查了有理数的混合运算的应用,此类题常常结合生产、生活中的热点问题,是近几年中考的必考题型,认真阅读,理解题意是解此类题的关键.24.(6分)如图,用粗线在数轴上表示了一个“范围”,这个“范围”包含所有大于1且小于2的数(数轴上1与2这两个数的点空心,表示这个范围不包含数1和2).请你在数轴上表示出一个范围,使得这个范围;(1)包含所有大于3-且小于0的数[画在数轴(1)上];(2)包含 1.5-、π这两个数,且只含有5个整数[画在数轴(2)上];(3)同时满足以下三个条件:[画在数轴(3)上]①至少有100对互为相反数和100对互为倒数;②有最小的正整数;③这个范围内最大的数与最小的数表示的点的距离大于3但小于4.【分析】(1)和(2)可以直接根据题意,在数轴上包含这个点,用实心圆点,不包含这个点,用空心圆圈即可;(3)由于数轴上2-到2之间有无数个实数,并且包含1和1-,也不大于3,小于4,由此即可画出图形.【解答】解:(1)画图如下:(2)画图如下:(3)根据题意画图如下:【点评】此题考查了有理数大小的比较,用到的知识点是相反数、倒数、实数与数轴的对应关系,在数轴上包含这个点用实心圆点,不包含这个点用空心圆圈,数轴上的点与实数是一一对应的关系.25.(10分)当5x =, 4.5y =时,求2221212()()2(1)333kx x y x y x y --+-+--+的值.一名同学做题时,错把5x =看成5x =-,但结果也正确,且计算过程无误,求k 的值. 【分析】原式去括号合并后,由错把5x =看成5x =-,但结果也正确,且计算过程无误,得到x 系数为0,求出k 的值即可. 【解答】解:原式222222122222(4)323333kx x y x y x y k x y =-+-+-+-=-+-, 由错把5x =看成5x =-,但结果也正确,且计算过程无误,得到243k =.【点评】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.。
江苏省常州市金坛市七年级数学上学期期中试卷(含解析) 苏科版-苏科版初中七年级全册数学试题
2016-2017学年某某省某某市金坛市七年级(上)期中数学试卷一.选择题:每小题2分,共8小题,共16分.1.如果向右走3步记作+3,那么向左走2步记作()A.+B.﹣ C.+2 D.﹣22.有理数﹣1,0,﹣2,3中,最小的数是()A.﹣1 B.0 C.﹣2 D.33.2017年我国大学毕业人人数预计将达到7260000,数据7260000用科学记数法表示为()×105×107×106×1074.小明买了m千克苹果,花了n元,则每千克苹果是()A.元 B.元 C.mn元D.(n﹣m)元5.下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2C.ab2D.3ab6.有理数a,b在数轴上对应的位置如图所示,则下列结论中,错误的是()A.a+b<0 B.a﹣b<0 C.ab>0 D.7.定义一种新的运算:a*b=a b,如﹣4*2=(﹣4)2=16,则﹣1*2的值是()A.﹣2 B.2 C.﹣1 D.18.计算210﹣29的结果等于()A.219B.29C.28D.2二.填空题:每小题2分,共8小题,共16分.9.﹣的倒数是.10.+.11.根据如图所示的程序计算,若输入x的值为1,则输出y的值为.12.一个两位数,十位上的数字为a,个位上的数字为b,则这个两位数是.13.已知一个长方形的宽是m+2n,长比宽多m,则该长方形的周长是.14.写出一个含有字母x、y的5次单项式:.15.若|a|=4,|b|=3且a<b,则a+b=.16.一组数按图中规律从左向右依次排列,则第9个图中m+n=.三.解答题:共8小题,共68分.17.计算:(1)(﹣)﹣(0.2)+1(2)3×(﹣4)+(﹣28)÷7.18.计算:(1)﹣3x+2y﹣5x﹣7y(2)﹣3a+2+(4a﹣6)19.先化简,再求值:(1)(4a2﹣3a)﹣(2a2﹣3a﹣1),其中a=﹣2;(2)(ab﹣3a2)﹣2b2﹣[5ab﹣(a2﹣2ab)],其中a=1,b=﹣2.20.学校图书馆平均每天借出图书50册,如果某天借出53册,就记作+3;如果某天借出40册,就记作﹣10.上星期图书馆借出图书记录如表:星期一星期二星期三星期四星期五0 +8 +6 ﹣2 ﹣7(1)上期五借出图书多少册?(2)上星期二比上星期五多借出图书多少册?(3)上星期平均每天借出图书多少册?21.现代互联网技术的广泛应用,催生了快递行业的告诉发展,小明计划计划给朋友快递一部分物品,经了解有甲乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.设小明快递物品x(x>1)千克.(1)用含有x的代数式表示小明快递物品的费用;(2)若小明快递物品3千克,应付快递费多少元?22.观察下来关于自然数的一列等式:(1)12=22﹣3;(2)22=32﹣5;(3)32=42﹣7;(4)42=52﹣9;…根据上述规律解决下面的问题:(1)写出第5个等式;(2)写出含有82的等式;(3)写出第n个等式(用含有n的代数式表示).23.图1、图2分别由两个长方形拼成.(1)图1中图形的面积为a2﹣b2,图2中图形的面积为(a﹣b)×();(用含有a、b的代数式表示)(2)由(1)可以得到等式:;(3)根据你得到的等式解决下列问题:22②若m+4n=2,求(m+1)2+(2n+1)2﹣m2﹣(2n﹣1)2的值.24.已知a是最大的负整数,且b、c满足|b﹣1|+(c+6)2=0.(1)填空:a=,b=,c=;(2)a、b、c在数轴上所对应的点分别为A、B、C,P是数轴上点A、B之间一动点(不与点A、B 重合),其对应的数为x,化简:|x+1|+2|x﹣1|;(3)在(1)、(2)的条件下,点A、B、C开始在数轴上同时运动,若点C和点A分别以每秒6个单位长度和2个单位长度的速度向左运动,点B以每秒2个单位长度的速度向右运动,假设t秒钟过后,若点A与点C之间的距离表示为AC,点A与B之间的距离表示为AB.请问:AC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.2016-2017学年某某省某某市金坛市七年级(上)期中数学试卷参考答案与试题解析一.选择题:每小题2分,共8小题,共16分.1.如果向右走3步记作+3,那么向左走2步记作()A.+B.﹣ C.+2 D.﹣2【考点】正数和负数.【分析】根据向右走3步记作+3,可以得到向左走2步记作什么,本题得以解决.【解答】解:∵向右走3步记作+3,∴向左走2步记作﹣2,故选D.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题目中的实际意义.2.有理数﹣1,0,﹣2,3中,最小的数是()A.﹣1 B.0 C.﹣2 D.3【考点】有理数大小比较.【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由题意,得3>0>﹣1>﹣2,故选:C.【点评】本题考查了有理数的大小比较,熟记据正数大于零,零大于负数是解题关键.3.2017年我国大学毕业人人数预计将达到7260000,数据7260000用科学记数法表示为()×105×107×106×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.小明买了m千克苹果,花了n元,则每千克苹果是()A.元 B.元 C.mn元D.(n﹣m)元【考点】列代数式(分式).【分析】根据单价=总价÷苹果的重量,列式即可.【解答】解:依题意得:每千克苹果的价格=(元).故选:B.【点评】本题考查了列代数式,比较简单,理解单价的表示是解题的关键.5.下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2C.ab2D.3ab【考点】同类项.【分析】根据同类项的概念:所含字母相同,并且相同字母的指数也相同,结合选项解答即可.【解答】解:A、2a2b与a2b所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;B、a2b2与a2b所含字母相同,但相同字母b的指数不相同,不是同类项,故本选项错误;C、ab2与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误;D、3ab与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误.故选A.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项中相同字母的指数相同的概念.6.有理数a,b在数轴上对应的位置如图所示,则下列结论中,错误的是()A.a+b<0 B.a﹣b<0 C.ab>0 D.【考点】数轴.【分析】根据数轴上点的位置判断出a与b的正负及绝对值的大小,即可作出判断.【解答】解:由数轴得:b<﹣1<a,|b|>|a|,A、a+b<0,正确;B、a﹣b>0,故错误;C、ab>0,正确;D、,正确;故选:B.【点评】此题考查了数轴,弄清数轴上点的位置是解本题的关键.7.定义一种新的运算:a*b=a b,如﹣4*2=(﹣4)2=16,则﹣1*2的值是()A.﹣2 B.2 C.﹣1 D.1【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式利用已知的新定义计算即可得到结果.【解答】解:根据题中的新定义得:﹣1*2=(﹣1)2=1,故选D【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.8.计算210﹣29的结果等于()A.219B.29C.28D.2【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式提取公因式,计算即可得到结果.【解答】解:原式=29×(2﹣1)=29,故选B【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.二.填空题:每小题2分,共8小题,共16分.9.﹣的倒数是﹣2 .【考点】倒数.【分析】根据倒数的定义直接解答即可.【解答】解:∵(﹣)×(﹣2)=1,∴﹣的倒数是﹣2.【点评】本题考查倒数的基本概念,即若两个数的乘积是1,我们就称这两个数互为倒数.属于基础题.10.+ ﹣5.6 .【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:5.6的相反数是﹣5.6,故答案为:﹣5.6.【点评】本题考查了相反数,在一个数的前面加上符号就是相反数.11.根据如图所示的程序计算,若输入x的值为1,则输出y的值为 4 .【考点】代数式求值.【专题】图表型.【分析】观察图形我们可以得出x和y的关系式为:y=2x2﹣4,因此将x的值代入就可以计算出y 的值.如果计算的结果<0则需要把结果再次代入关系式求值,直到算出的值>0为止,即可得出y 的值.【解答】解:依据题中的计算程序列出算式:12×2﹣4.由于12×2﹣4=﹣2,﹣2<0,∴应该按照计算程序继续计算,(﹣2)2×2﹣4=4,∴y=4.故答案为:4.【点评】解答本题的关键就是弄清楚题图给出的计算程序.由于代入1计算出y的值是﹣2,但﹣2<0不是要输出y的值,这是本题易出错的地方,还应将x=﹣2代入y=2x2﹣4继续计算.12.一个两位数,十位上的数字为a,个位上的数字为b,则这个两位数是 10a+b .【考点】列代数式.【分析】两位数=10×十位数字+个位数字.【解答】解:这个两位数是10a+b.【点评】用到的知识点为:两位数=10×十位数字+个位数字.13.已知一个长方形的宽是m+2n,长比宽多m,则该长方形的周长是6m+8n .【考点】整式的加减.【专题】推理填空题.【分析】首先求出长方形的长是多少;然后根据长方形的周长=(长+宽)×2,求出该长方形的周长是多少即可.【解答】解:[(m+2n+m)+(m+2n)]×2=[3m+4n]×2=6m+8n∴该长方形的周长是6m+8n.故答案为:6m+8n.【点评】此题主要考查了整式的加减,以及长方形的周长的求法,要熟练掌握,解答此题的关键是要明确:整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.14.写出一个含有字母x、y的5次单项式:x4y(答案不唯一).【考点】单项式.【分析】直接利用单项式的定义进而得出答案.【解答】解:由题意可得:x4y(答案不唯一).故答案为:x4y(答案不唯一).【点评】此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键.15.若|a|=4,|b|=3且a<b,则a+b= ﹣7或﹣1 .【考点】有理数的加法;绝对值.【分析】根据绝对值的性质求出a、b,根据a<b即可求出a、b的值,再代入计算即可求解.【解答】解:∵|a|=4,|b|=3,∴a=±4,b=±3,∵a<b,∴a=﹣4,b=±3,∴①当a=﹣4,b=﹣3时,a+b=﹣4﹣3=﹣7,②当a=﹣4,b=3时,a+b=﹣4+3=﹣1.故答案为:﹣7或﹣1.【点评】本题主要考查绝对值及有理数的大小比较,熟练掌握有理数的大小比较是解题的关键.16.一组数按图中规律从左向右依次排列,则第9个图中m+n= 100 .【考点】规律型:数字的变化类.【分析】根据题意可以求得m的值,n=10+m,从而可以求得m+n的值,从而可以解答本题.【解答】解:由图可知,m=1+2+3+4+5+6+7+8+9=45,n=m+10=45+10=55,∴m+n=45+55=100,故答案为:100.【点评】本题考查数字的变化类,解题的关键是明确题意,找出数字的变化规律.三.解答题:共8小题,共68分.17.计算:(1)(﹣)﹣(0.2)+1(2)3×(﹣4)+(﹣28)÷7.【考点】有理数的混合运算.【分析】(1)根据有理数的加法和减法可以解答本题;(2)根据有理数的乘除法和加法可以解答本题.【解答】解:(1)(﹣)﹣(0.2)+1==;(2)3×(﹣4)+(﹣28)÷7=(﹣12)+(﹣4)=﹣16.【点评】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.18.计算:(1)﹣3x+2y﹣5x﹣7y(2)﹣3a+2+(4a﹣6)【考点】整式的加减.【专题】计算题.【分析】整式的加减的一般步骤是:先去括号,然后合并同类项,据此化简每个算式即可.【解答】解:(1)﹣3x+2y﹣5x﹣7y=(﹣3﹣5)x+(2﹣7)y=﹣8x﹣5y(2)﹣3a+2+(4a﹣6)=﹣3a+2+2a﹣3=(﹣3+2)a+(2﹣3)=﹣a﹣1【点评】此题主要考查了整式的加减,要熟练掌握,解答此题的关键是要明确:整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.19.先化简,再求值:(1)(4a2﹣3a)﹣(2a2﹣3a﹣1),其中a=﹣2;(2)(ab﹣3a2)﹣2b2﹣[5ab﹣(a2﹣2ab)],其中a=1,b=﹣2.【考点】整式的加减—化简求值.【分析】根据去括号法则、合并同类项法则把原式化简,代入计算即可.【解答】解:(1)原式=4a2﹣3a﹣2a2+3a+1=2a2+1,当a=﹣2时,原式=2×(﹣2)2+1=9;(2)原式=ab﹣3a2﹣2b2﹣5ab+(a2﹣2ab)=ab﹣3a2﹣2b2﹣5ab+a2﹣2ab=﹣2a2﹣6ab﹣2b2,当a=1,b=﹣2时,原式=﹣2+12﹣8=2.【点评】本题考查的是整式的化简求值,掌握整式的加减混合运算法则是解题的关键.20.学校图书馆平均每天借出图书50册,如果某天借出53册,就记作+3;如果某天借出40册,就记作﹣10.上星期图书馆借出图书记录如表:星期一星期二星期三星期四星期五0 +8 +6 ﹣2 ﹣7(1)上期五借出图书多少册?(2)上星期二比上星期五多借出图书多少册?(3)上星期平均每天借出图书多少册?【考点】正数和负数.【专题】计算题;实数.【分析】(1)由表格中的数据求出星期五借出图书即可;(2)找出上星期二与星期五借出的图书,求出之差即可;(3)根据表格中的数据求出上星期平均每天借出图书即可.【解答】解:(1)根据题意得:50﹣7=43(册),则上星期五借出图书43册;(2)星期二:50+8=58(本),星期五43(本),则上星期二比上星期五多借出图书58﹣43=15(本);(3)上星期平均每天借出图书:50+(0+8+6﹣2﹣7)÷5=50+1=51(本).【点评】此题考查了正数与负数,弄清题中的数据是解本题的关键.21.现代互联网技术的广泛应用,催生了快递行业的告诉发展,小明计划计划给朋友快递一部分物品,经了解有甲乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.设小明快递物品x(x>1)千克.(1)用含有x的代数式表示小明快递物品的费用;(2)若小明快递物品3千克,应付快递费多少元?【考点】列代数式.【分析】(1)根据物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费和小明快递物品x(x>1)千克,列式计算即可;(2)根据(1)列出的算式,再代值计算即可.【解答】解:(1)∵快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费,又∵小明快递物品x(x>1)千克,∴小明快递物品的费用是:22+15(x﹣1)=(15x+7)元;(2)将x=3代入得:15×3+7=45+7=53(元),答:小明快递物品3千克,应付快递费53元.【点评】此题考查了列代数式,关键是读懂题意,正确的表示出总费用是解题的关键.22.观察下来关于自然数的一列等式:(1)12=22﹣3;(2)22=32﹣5;(3)32=42﹣7;(4)42=52﹣9;…根据上述规律解决下面的问题:(1)写出第5个等式;(2)写出含有82的等式;(3)写出第n个等式(用含有n的代数式表示).【考点】规律型:数字的变化类;有理数.【分析】根据已知所反映的规律:等式的左边是序数加1的平方,右边第一个加数是序数,第二个加数是序数的平方,第三个加数是序数加1,由此得出即可.根据所反映的规律得出,并用n表示,进一步证明即可.【解答】解:(1)22=32﹣5,32=42﹣7,42=52﹣9,第6个等式为52=62﹣11;(2)72=82﹣15;82=92﹣17(3)n2=(n+1)2﹣(2n+1).【点评】此题考查数字的变化规律,发现规律,利用规律解决问题.23.图1、图2分别由两个长方形拼成.(1)图1中图形的面积为a2﹣b2,图2中图形的面积为(a﹣b)×(a+b );(用含有a、b的代数式表示)(2)由(1)可以得到等式:a2﹣b2=(a+b)(a﹣b);(3)根据你得到的等式解决下列问题:22②若m+4n=2,求(m+1)2+(2n+1)2﹣m2﹣(2n﹣1)2的值.【考点】完全平方公式的几何背景.【分析】(1)图2面积根据长方形面积公式可得;(2)根据两个图形的面积相等可得;(3)①直接套用公式a2﹣b2=(a﹣b)(a+b)可得;②将原式变形为[(m+1)2﹣m2]+[2n+1)2(2n ﹣1)2],再套用平方差公式可得答案.【解答】解:(1)图1中图形的面积为a2﹣b2,图2中图形的面积为(a﹣b)×(a+b),故答案为:a+b;(2)根据两个图形的面积相等可得a2﹣b2=(a﹣b)(a+b),故答案为:a2﹣b2=(a﹣b)(a+b);22+31.5)=35×100=3500;②(m+1)2+(2n+1)2﹣m2﹣(2n﹣1)2=[(m+1)2﹣m2]+[2n+1)2(2n﹣1)2]=[(m+1﹣m)(m+1+m)]+[(2n+1﹣2n+1)(2n+1+2n﹣1)]=2m+1+8n=4+1=5.【点评】本题主要考查平方差公式的几何背景,运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.24.已知a是最大的负整数,且b、c满足|b﹣1|+(c+6)2=0.(1)填空:a= ﹣1 ,b= 1 ,c= ﹣6 ;(2)a、b、c在数轴上所对应的点分别为A、B、C,P是数轴上点A、B之间一动点(不与点A、B重合),其对应的数为x,化简:|x+1|+2|x﹣1|;(3)在(1)、(2)的条件下,点A、B、C开始在数轴上同时运动,若点C和点A分别以每秒6个单位长度和2个单位长度的速度向左运动,点B以每秒2个单位长度的速度向右运动,假设t秒钟过后,若点A与点C之间的距离表示为AC,点A与B之间的距离表示为AB.请问:AC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【考点】一元一次方程的应用;数轴;非负数的性质:绝对值;非负数的性质:偶次方.【分析】(1)根据绝对值和偶次幂具有非负性可得b﹣1=0,c+6=0,进而可得答案;(2)根据a、b、c的值可得x+1>0,x﹣1<0,然后再利用绝对值的性质取绝对值合并同类项即可;(3)根据题意可得A、B、C三点对应的数字,然后表示出AC、AB的长,进而可得AC﹣AB的值是常数.【解答】解:(1)∵a是最大的负整数,∴a=﹣1,∵|b﹣1|+(c+6)2=0,∴b﹣1=0,c+6=0,∴b=1,c=﹣6.故答案为:﹣1;1;﹣6;(2)由题意可知:﹣1<x<1,所以x+1>0,x﹣1<0,所以:|x+1|+2|x﹣1|=x+1﹣2x+2=﹣x+3.(3)由题意可知:A点对应的数字:﹣1﹣2t;B点对应的数字:1+2t;C点对应的数字:﹣6﹣6t,所以AC=﹣1﹣2t﹣(﹣6﹣6t)=4t+5,AB=1+2t﹣(﹣1﹣2t)=4t+2,所以AC﹣AB=4t+5﹣(4t+2)=3.【点评】此题考查一元一次方程的实际运用,以及数轴与绝对值,正确理解AB,AC的变化情况是关键.。
苏科版七年级上册数学《期中考试试卷》及答案解析
苏 科 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.相反数是( )A. B. 2 C. 12 D. 12- 2.在百度中,搜索“快乐学数学”关键词,约有634000条相关结果,把数字634000写成科学计数法是( )A. 60.63410⨯B. 56.3410⨯C. 463.410⨯D. 363410⨯ 3.下列计算结果正确的是( )A. 233a a a += B. 54a a a -= C. 2222a a a -=- D. 246a b ab += 4.下列一组数2211-8,3,0,2,0.010010001 (7223)π,,,(相邻两个1之间依次增加一个0),其中无理数的个数有( )A. 0个B. 1个C. 2个D. 3个 5.用代数式表示“a 的5倍和b 的差的平方”,正确的是( )A. ()25a b -B. ()25a b -C. 25a b -D. ()25a b - 6.如图A 、B 两点在数轴上表示的数分别是a ,b ,则表示A 、B 两点间距离不正确的是( )A. a-bB. a+bC. b a -D. a b + 7.如果单项式5x a y 5与-313b x y 是同类项,那么a 、b 值分别为( ) A. 2,5 B. 3,5C. 5,3D. -3,5 8.下列说法中,①a 和1a 都是单项式;②单项式225x y -的系数是-2;③x+2xy-y 可读作x 、2xy 、-y 的和;④若x =-x ,则x<0;正确的是( )A. 1个B. 2个C. 3个D. 4个9.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“S”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则“S”形的周长可表示为( )A. 8a-4bB. 8a-5bC. 4a+5bD. 4a+4b10.某班要在一面墙上同时展示数张形状、大小均相同矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如用9枚图钉将4张作品钉在墙上如图).若有28枚图钉可供选用,则最多可以展示绘画作品( )A. 16张B. 18张C. 20张D. 21张二、填空题11.如果盈利200元记作+200,那么亏损500元记作______元12.写一个绝对值不大于π的整数_______.13.比较大小:23-__35-.(填“<”、“>”或“=”)14.如图,若开始输入的x的值为3,按所示的程序运算,最后输出的结果为___.15.单项式213nx y-是关于x、y的四次单项式,则n=____.16.一组数:3、1、8、x、y、.........满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是3a-b”,那么这组数中y表示的数是______.17.有理数a、b、c在数轴上的位置如图所示,则a c c b a b----+=_______.18.若多项式2835x x -+与多项式3225x mx x --相加后,结果不含二次项,则常数m 的值为_______. 19.已知多项式ax 5+bx 3+cx+3,当x=-1时,多项式的值为5,当x=1时,该多项式的值为_______.20.下图是某同学在沙滩上用石头摆成的小房子观察规律变化,写出第⑧个小房子用了_____块石头.三、解答题21.计算题(1)-11+8+(-14)(2)()243-13-23+⨯+ (3)()157--362612⎛⎫+⨯ ⎪⎝⎭ (4)()3214--5-2-31211⎛⎫⨯+÷+ ⎪⎝⎭ 22.化简(1)323235322m m n m nm m --++(2)()()2232x y y x ---(3)()()22742223x x x x +---+(4)()()927232x y x y z z ⎡⎤----+⎣⎦23.(1)先化简,再求值:()()22225342a b ab ab a b ---+,其中a=2,b=-1 (2)已知:a 2-2a-1=0,求代数式2(a+2)-2(a 2-a +1)的值.24.在数轴上画出表示下列各数的点,并用“<”号将所给的数按从小到大的顺序连接起来:|-2.5|,211,0,-212,-(-1),-4. 25.如图设计师设计图形如图所示1,为边长4a 正方形和直径4a 半个圆,后来改为了倒凸形和直径2a 的圆(如图2所示).(1)求出图2的面积(用含有的式子表示,圆周率用π表示);(2)如果用铁丝做成这两个图形,问哪个图形用的铁丝多?写出理由.26.每年“双11”天猫商城都会推出各种优惠活动进行促销.今年,张阿姨在“双11”到来之前准备在三家天猫店铺中选择一家购买原价均为500元/瓶的护肤品若干瓶.已知三家店铺在非活动期间,均在原价基础上优惠20%销售,活动期间在此基础上再分别给予以下优惠:A 店铺:“双11”当天购买可以再享受8折优惠.B 店铺:双十一当天所有会员(办理商场会员卡需50元手续费)商品每满400元,商场返现金50元,同时该护肤品专柜针对所有会员也在当天推出活动,购护肤品每满100元可返现金10元(如:张阿姨购买2瓶护肤品需支付400×2-50×2-10×8+50=670元). C 店铺:“双11”当天下单可享立减活动:①每瓶立减58元(购买10瓶以内,不包括10瓶);②每瓶立减88元(一次性购买10瓶及10瓶以上).(1)双十一当天:若在A 店铺购买1瓶护肤品,需支付____________元;若在B 店铺办理会员并购买一瓶护肤品,需支付____________元;(2)若张阿姨在“双11”当天在同一家店铺一次性购买a 瓶护肤品,请用含有a 的代数式分别表示在这三家店铺的购买费用. (B 店铺:先办理会员再购买)(3)若张阿姨在双十一当天在同一家店铺一次性购买20瓶护肤品,你推荐她去哪家,通过计算、比较,说明你的理由27.在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”.记,1011234567891055n n ==+++++++++=∑,3231n n a a a a -=++∑,()()()()()()()8322324252627281233n x n x x x x x x x =+=+++++++++++=+∑.同学们,通过以上材料的阅读,请回答下列问题:(1)计算(填写最后的结果)421n n =∑=__________;()321n x nx =∑+=____________.(2)2+4+6+8+10用求和公式符号可表示__________.(3)化简:()333111321nn n n n n a a a ===---∑∑∑ (4)若对于任意x 都存在()222420k n x n x a x bx =⎡⎤∑+-=++⎣⎦,请求代数式12b-ab 的值.答案与解析一、选择题1.的相反数是( )A. B. 2 C. 12 D. 12-【答案】B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .2.在百度中,搜索“快乐学数学”关键词,约有634000条相关结果,把数字634000写成科学计数法是() A. 60.63410⨯ B. 56.3410⨯ C. 463.410⨯ D. 363410⨯【答案】B【解析】【分析】根据科学计数法的表示即可求解.【详解】解:634000=56.3410⨯故选B【点睛】此题主要考查科学计数法的表示,解题的关键是熟知科学计数法的表示方法.3.下列计算的结果正确的是( )A. 233a a a +=B. 54a a a -=C. 2222a a a -=-D. 246a b ab+=【答案】C【解析】【分析】根据合并同类项进行计算解答即可.【详解】解:A. 34a a a +=,故错误;B. 54a a 与不是同类项,不能合并,故错误;C. 2222a a a -=-,正确D. 24a b 与不是同类项,不能合并,故错误;故选C【点睛】本题考查合并同类项问题,关键是根据合并同类项的法则解答.4.下列一组数2211-8,3,0,2,0.010010001 (7223)π,,,(相邻两个1之间依次增加一个0),其中无理数的个数有( )A. 0个B. 1个C. 2个D. 3个 【答案】C【解析】【分析】根据无理数与有理数的概念进行判断即可得. 【详解】解:2211-8,3,0,2,0.010010001 (7223)π,,,(相邻两个1之间依次增加一个0),其中无理数的个数有:0.010010001...2π,(相邻两个1之间依次增加一个0),共2个故选C【点睛】本题考查了无理数定义,初中范围内学习的无理数有三类:①π类,如2π,3π等;②开方开不尽的数,,如0.1010010001…,等.5.用代数式表示“a 的5倍和b 的差的平方”,正确的是( )A. ()25a b -B. ()25a b -C. 25a b -D. ()25a b - 【答案】A【解析】【分析】a 的5倍为5a ,a 的5倍与b 的差为5a-b ,然后再平方即可.【详解】依题意得:(5a-b)2,故选:A .【点睛】本题考查了列代数式的知识,列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“差”等,从而明确其中的运算关系,正确地列出代数式.6.如图A 、B 两点在数轴上表示的数分别是a ,b ,则表示A 、B 两点间距离不正确的是( )A. a-bB. a+bC. b a -D. a b + 【答案】B【解析】【分析】 根据数轴可得a ,b 正负性,再根据两点间距离进行化简即可【详解】解:由数轴可知:b<0<a∴a-b >0,|b|=-b∵AB =|a-b|∴AB =a-b=|b-a|= a b +故A 、C 、D 正确故选B【点睛】本题考查了数轴上两点的距离以及化简绝对值,掌握绝对值的化简是解题的关键.7.如果单项式5x a y 5与-313b x y 是同类项,那么a 、b 的值分别为( ) A. 2,5B. 3,5C. 5,3D. -3,5 【答案】B【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),求出a ,b 的值即可.【详解】∵单项式5x a y 5与-313b x y 是同类项, ∴a =3,b =5.故选B.【点睛】同类项概念:对于两个单项式,如果所含字母相同,相同字母的指数也相同,那么这两个单项式是同类项.8.下列说法中,①a 和1a 都是单项式;②单项式225x y -的系数是-2;③x+2xy-y 可读作x 、2xy 、-y 的和;④若x =-x ,则x<0;正确的是( )A. 1个B. 2个C. 3个D. 4个【答案】A【解析】【分析】各个小点进行判断后,即可得出正确的个数.【详解】解:①1a 不是单项式,故①错; ②单项式225x y -的系数是25-,故②错; ③x+2xy-y 可读作x 、2xy 、-y 的和,故③正确;④若x =-x ,则0x ≤ ,故④错;故正确个数由1个故选A【点睛】本题考查了整式、绝对值,掌握整式和绝对值是解题的关键.9.如图1,将一个边长为a 的正方形纸片剪去两个小矩形,得到一个“S ”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则“S”形的周长可表示为( )A. 8a-4bB. 8a-5bC. 4a+5bD. 4a+4b【答案】A【解析】【分析】 根据题意列出关系式,去括号合并即可得到结果.【详解】根据题意得:44a-b 8a a b +=-()4 ,故选:A【点睛】此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.10.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如用9枚图钉将4张作品钉在墙上如图).若有28枚图钉可供选用,则最多可以展示绘画作品( )A. 16张B. 18张C. 20张D. 21张【答案】B【解析】【分析】分别找出展示的绘画作品展示成一行、二行、三行、四行、五行的时候,28枚图钉最多可以展示的画的数量,比较后即可得出结论.【详解】解:①如果所有的画展示成一行,28÷(1+1)﹣1=13(张),∴28枚图钉最多可以展示13张画;②如果所有的画展示成两行,28÷(2+1)=9……1(枚),9﹣1=8(张),2×8=16(张),∴28枚图钉最多可以展示16张画;③如果所有的画展示成三行,28÷(3+1)=7,7﹣1=6,3×6=18(张),∴28枚图钉最多可以展示18张画;④如果所有的画展示成四行,28÷(4+1)=5……3(枚),5﹣1=4(张),4×4=16(张),∴28枚图钉最多可以展示16张画;⑤如果所有的画展示成五行,28÷(5+1)=4,4﹣1=3(张),5×3=15(张),∴28枚图钉最多可以展示15张画.综上所述:28枚图钉最多可以展示18张画.故选B.【点睛】本题考查了规律型中图形的变化类,观察图形,求出展示的绘画作品展示成一行、二行、三行、四行、五行时,最多可以展示的画的数量是解题的关键.二、填空题11.如果盈利200元记作+200,那么亏损500元记作______元【答案】-500【解析】【分析】根据正负数表示的意义作答即可.【详解】解:∵盈利200元记作+200,∴亏损500元记作:-500元故答案为-500【点睛】本题考查正负数的意义,正确理解题目中正负数表示意义是解题的关键.12.写一个绝对值不大于π的整数_______.【答案】0(答案不唯一)【解析】【分析】直接利用绝对值的性质进而分析得出答案.【详解】解:绝对值不大于π的整数有很多个,例如:0…故答案为0(答案不唯一)【点睛】此题主要考查了绝对值的性质,正确掌握绝对值的性质是解题关键.13.比较大小:23-__35-.(填“<”、“>”或“=”)【答案】<【解析】【分析】根据两个负数,绝对值大的反而小进行比较即可得答案.【详解】∵22103315-==,3395515-==,109 1515>,∴23-<35-,故答案为<.【点睛】本题考查了有理数大小比较,有理数大小比较法则:正数大于0,0大于负数,正数大于负数. 14.如图,若开始输入的x 的值为3,按所示的程序运算,最后输出的结果为___.【答案】15【解析】【分析】根据开始输入的x 的值为3,由程序框图计算即可得出结果.【详解】解:根据题意得:2317102711510⨯+⨯+>=<;= ,故最后输出结果为15. 故答案为15.【点睛】本题考查了有理数混合运算,能根据程序框图进行计算是解答此题的关键.15.单项式213n x y-是关于x 、y 的四次单项式,则n=____. 【答案】3【解析】【分析】直接利用单项式的次数确定方法分析得出答案.【详解】解:∵单项式213n x y-是关于x 、y 的四次单项式∴2+n-1=()4∴n=3故答案为:3【点睛】此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键.16.一组数:3、1、8、x 、y 、.........满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是3a-b”,那么这组数中y 表示的数是______.【答案】29【解析】【分析】根据题中给出的运算法则按照顺序求解即可.【详解】解:根据题意,得:3185x,38(5)29y .故答案为29. 【点睛】本题考查了有理数的运算,理解题意、弄清题目给出的运算法则是正确解题的关键.17.有理数a 、b 、c 在数轴上的位置如图所示,则a c c b a b ----+=_______.【答案】2b【解析】【分析】根据数轴上点的位置判断出绝对值里式子的正负,利用绝对值的代数意义化简,计算即可得到结果.【详解】解:根据题意得:a <b <0<c ,,∴a-c<0,c-b>0,a+b<0则原式=-a+c-c+b+a+b=2b ;故答案为2b .【点睛】本题考查了整式的加减,掌握整式的加减实质上就是合并同类项是解题的关键.18.若多项式2835x x -+与多项式3225x mx x --相加后,结果不含二次项,则常数m 的值为_______.【答案】8【解析】【分析】根据题意列出关系式,合并后根据结果不含二次项,即可确定出m 值.【详解】解:根据题意得: 2835x x -+()+3225x mx x --()= 2835x x -++3225x mx x -- =x +-m x -8x+5322(8)由结果不含二次项,得到8-m=0,解得:m=8.故答案为8.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.19.已知多项式ax 5+bx 3+cx+3,当x=-1时,多项式的值为5,当x=1时,该多项式的值为_______.【答案】1【解析】【分析】首先把x=-1代入多项式ax 5+bx 3+cx+3,整理成关于a 、b 、c 的等式,再把x=1代入,观察两个式子的联系,进一步求得数值即可.【详解】解:x =-1时,ax 5+bx 3+cx+3=5,即-a-b-c+3=5,所以a+b+c=-2,当x=1时,ax 5+bx 3+cx+3=a+b+c+3=1,故答案为1.【点睛】本题考查了代数式求值,注意代入数值的特点,发现前后式子的联系,整体代入解决问题. 20.下图是某同学在沙滩上用石头摆成的小房子观察规律变化,写出第⑧个小房子用了_____块石头.【答案】96【解析】【分析】把房子所需的石子分为2部分,上面一部分,下面一部分分别找到规律再相加即可.【详解】解:把房子所需的石子分为2部分,第一个房子的上面的石子个数为1,第二个房子的上面的石子个数为3,第三个房子的上面的石子个数为5,第四个房子的上面的石子个数为7,故第n 个房子的上面的石子个数为2n-1;第一个房子的下面的石子个数为4=22,第二个房子的下面的石子个数为9=32,第三个房子的下面的石子个数为16=42,第四个房子的下面的石子个数为25=52,第n 个房子的下面的石子个数为(n+1) 2,故第n 个小房子用了2n-1+(n+1) 2=(24n n +)个石子.故第8个小房子用了2848=96+⨯个石子.故答案为:96【点睛】此题主要考查图形规律探索,解题的关键是根据题意分开求出规律.三、解答题21.计算题(1)-11+8+(-14)(2)()243-13-23+⨯+ (3)()157--362612⎛⎫+⨯ ⎪⎝⎭(4)()3214--5-2-31211⎛⎫⨯+÷+ ⎪⎝⎭ 【答案】(1)-17;(2);(3) -27;(4)【解析】【分析】(1)利用有理数的加法法则计算即可;(2)先计算乘方与乘法,然后利用有理数的加减法运算即可;(3)利用乘法分配律计算,然后再利用有理数的加法以及乘法运算即可;(4)先计算乘方与乘法,然后利用有理数的加减法运算即可.【详解】解:(1)原式=-11+8-14=-17(2) 原式=-13427+⨯+=-11227++=(3) 原式=()()()157-36-36--362612⨯+⨯⨯ =-18-30+21=-27(4) 原式=()114-8-91211⨯+÷+ =()2-88+÷=()2-1+=【点睛】本题考查有理数的加减乘除混合运算以及乘方,解题的关键是熟练掌握运算法则,属于中考常考题型.22.化简(1)323235322m m n m nm m --++(2)()()2232x y y x ---(3)()()22742223x x x x +---+(4)()()927232x y x y z z ⎡⎤----+⎣⎦【答案】(1) 326m m n -;(2) 510x y -;(3) 914x -;(4)2-x z【解析】【分析】(1)根据合并同类项的法则,系数相加作为系数,字母和字母的指数不变进行合并;(2)原式去括号,然后合并同类项即可;(4)原式去括号,然后合并同类项即可;(3)原式去括号,然后合并同类项即可.【详解】解:(1)原式=333225232m m m m n nm -+-+=326m m n -(2) 原式=246+3x y y x --=2+346x x y y --=510x y -(3) 原式=227484+2-6x x x x +--=227+2448-6x x x x +--=914x - (4) 原式=9272+32x y x y z z ---+() =927+2-32x y x y z z --+=972+2-32x x y y z z --+=2-x z【点睛】本题主要考查了整式的加减混合运算,熟练掌握去括号,合并同类项的解题过程是解答本题的关键.23.(1)先化简,再求值:()()22225342a b ab ab a b ---+,其中a=2,b=-1 (2)已知:a 2-2a-1=0,求代数式2(a+2)-2(a 2-a +1)的值.【答案】(1)227a b ab -;-30 (2) 2-2-2-1a a ();0【解析】【分析】(1)原式去括号,然后合并同类项即可,把a,b 的值代入原式求值即可;(2)原式去括号,然后合并同类项即可,把a 2-2a-1=0整体代入原式求值即可.【详解】解:(1)原式=2222155+4-8a b ab ab a b -=222215-85+4a b a b ab ab -=227a b ab -当a=2,b=-1时原式=222-72-⨯⨯⨯-(1)(1)=-1742⨯⨯⨯-(1)=-282-=-30(2)原式= 224-2+2a-2a a += 2+-24+2a a= 2-2-2-1a a ()∵2210a a --=∴原式=0【点睛】本题主要考查了整式的加减-化简求值,熟练掌握化简的方法与根据已知条件求出相关字母的值是解题的关键24.在数轴上画出表示下列各数的点,并用“<”号将所给的数按从小到大的顺序连接起来:|-2.5|,211,0,-212,-(-1),-4. 【答案】数轴见解析;-212<-4<0<211<-(-1) < |-2.5| 【解析】【分析】先画出数轴并在数轴上表示出各数,再根据数轴的特点从左到右用“<”号将这些数连接起来.【详解】解:画出数轴并表示出各数如图所示,根据数轴的特点从左到右用“<”号将这些数连接起来:-212<-4<0<211<-(-1) < |-2.5|【点睛】此题考查数轴、有理数大小比较,解题关键在于运用数轴进行有理数的大小比较.25.如图设计师设计图形如图所示1,为边长4a正方形和直径4a半个圆,后来改为了倒凸形和直径2a的圆(如图2所示).(1)求出图2的面积(用含有的式子表示,圆周率用π表示);(2)如果用铁丝做成这两个图形,问哪个图形用的铁丝多?写出理由.【答案】(1)(π+12) a2;(2)一样,理由见解析.【解析】【分析】(1)分别计算出上面圆的面积和下面倒凸形面积即可解答.【详解】解:(1)π(22a)2+2a×4a+2a×2a=πa2+8 a2+4 a2=(π+12) a2.(2)因为图1:4a×4+π×4a÷2=16a+2πa;图2:π×2a+4a×4=16a+2πa.所以用的铁丝一样多.【点睛】本题考查列代数式,解题关键是熟练掌握圆的面积、周长公式.26.每年“双11”天猫商城都会推出各种优惠活动进行促销.今年,张阿姨在“双11”到来之前准备在三家天猫店铺中选择一家购买原价均为500元/瓶的护肤品若干瓶.已知三家店铺在非活动期间,均在原价基础上优惠20%销售,活动期间在此基础上再分别给予以下优惠:A店铺:“双11”当天购买可以再享受8折优惠.B店铺:双十一当天所有会员(办理商场会员卡需50元手续费)商品每满400元,商场返现金50元,同时该护肤品专柜针对所有会员也在当天推出活动,购护肤品每满100元可返现金10元(如:张阿姨购买2瓶护肤品需支付400×2-50×2-10×8+50=670元). C 店铺:“双11”当天下单可享立减活动:①每瓶立减58元(购买10瓶以内,不包括10瓶);②每瓶立减88元(一次性购买10瓶及10瓶以上).(1)双十一当天:若在A 店铺购买1瓶护肤品,需支付____________元;若在B 店铺办理会员并购买一瓶护肤品,需支付____________元;(2)若张阿姨在“双11”当天在同一家店铺一次性购买a 瓶护肤品,请用含有a 的代数式分别表示在这三家店铺的购买费用. (B 店铺:先办理会员再购买)(3)若张阿姨在双十一当天在同一家店铺一次性购买20瓶护肤品,你推荐她去哪家,通过计算、比较,说明你的理由【答案】(1)320;360;(2)在A 家店铺的购买费用:320a 元;在B 家店铺的购买费用:(310a+50)元,在C 家店铺的购买费用:当0a 10≤< 时:费用为:342a 元当10a ≤ 时:费用为:312a 元;(3)在C 家店铺的购买费用最少,为6240元.【解析】【分析】(1)根据题意可以分别得到A 、B 家店铺需要支付的费用;(2)根据题意可以用代数式表示出在A 、B 、C 家店铺的购买费用;(3)利用(2)中代数式分别算出在A 、B 、C 家店铺的购买费用,进行比较即可.【详解】解:(1)500-%.=320⨯⨯(120)08 ;500-%-50-104+50=360⨯⨯(120)故答案为:320;360(2)在A 家店铺的购买费用:500-%.a=320a ⨯⨯⨯(120)08(元)在B 家店铺的购买费用:[500-%-50-104]+50=310a+50a ⨯⨯⨯(120)(元) 在C 家店铺的购买费用:当0a 10≤< 时:费用为:[500-%-a=342a ⨯⨯(120)58](元) 当10a ≤ 时:费用为:[500-%-a=312a ⨯⨯(120)88](元) (3)当a=20时:在A 家店铺的购买费用:32020=6400⨯(元)在B 家店铺的购买费用:31020+50=6250⨯(元)在C 家店铺的购买费用: 31220=6240⨯(元)∵624062506400<<故在C 家店铺的购买费用最少答:(2)在A 家店铺的购买费用:320a 元;在B 家店铺的购买费用:(310a+50)元在C 家店铺的购买费用:当0a 10≤< 时:费用为:342a 元,当10a ≤ 时:费用为:312a 元(3)在C 家店铺的购买费用最少,为6240元.【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.27.在数学中,了书写简便,18世纪数学家欧拉就引进了求和符号“∑”.记,1011234567891055n n ==+++++++++=∑,3231n n a a a a -=++∑,()()()()()()()8322324252627281233n x n x x x x x x x =+=+++++++++++=+∑. 同学们,通过以上材料的阅读,请回答下列问题:(1)计算(填写最后的结果)421n n =∑=__________;()321n x nx =∑+=____________.(2)2+4+6+8+10用求和公式符号可表示为__________.(3)化简:()333111321nn n n n n a a a ===---∑∑∑ (4)若对于任意x 都存在()222420k n x n x a x bx =⎡⎤∑+-=++⎣⎦,请求代数式12b-ab 的值. 【答案】(1)30;26x x +3;(2) 512n n =∑;(3);(4)27【解析】【分析】(1)根据定义进行计算即可;(2)观察出2,4,6,8,10是2n 的形式,再利用定义进行计算即可;(3)根据定义进行计算化简即可;(4)根据定义进行列出方程,计算出a ,b 的值,再代入计算即可.【详解】解:(1)421n n =∑=22221+2+3+4=1+4+9+16=30;()3222221+2+3=6n x nx x x x x x x x x =∑+=++++()()()3 故答案为30;26x x +3.(2)2+4+6+8+10用求和公式符号可表示:512n n =∑(3) ()111333321n n n n n n a a a ===∑-∑--∑=()()()232332333[+++212121](+a a a a a a a a a --+-+--()) =233232++-a++-3-33322-a a a a a a a a -(2)=223323++-a--33322+-3-a a a a a a a a -2=(4)根据题意得:()22kn x n x a =⎡⎤∑+-⎣⎦()()()()2222 23 4 5 x x a x x a x x a x x a =+-++-++-++⎡⎤-⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦= 2420x bx ++,整理得:4x 2+14x-14a=4x 2+bx+20,则有:b=14,-14a=20, ∴10147b a ==-, , ∴1110=14--=+20=27227b ab -⨯⨯()147, 【点睛】本题考查了整式的加减,弄清题中的新定义,熟练掌握运算法则是解本题的关键.。
苏科版七年级上册数学《期中检测试卷》附答案
苏 科 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.-5的倒数的是( ) A. -5B. 5C. 15-D.152.下列各式中,不相等...的是 ( ) A. (-3)2和-32B. (-3)2和32C. (-2)3和-23D. 32-和32-3.“x 与y 的差的平方的3倍”用代数式可以表示为( ) A. 3(x ﹣y 2)B. (3x ﹣y )2C. 3x ﹣y 2D. 3(x ﹣y )24.下列计算正确的是( ) A. 3m 2-2m 2 =1 B. 3m 2n-3nm 2=0 C. 3m 2 + 2m 2 = 5m 4D. 3m + 2n = 5mn5.长方形的一边长是4x+y ,另一边比它小x-y ,则长方形的周长是 ( ) A. 7x+yB. 7x+3yC. 14x+2yD. 14x+6y6.3n 4333444m ⨯⨯=++个个( )A. 34m nB. 34n mC. 34m nD. 43m n7.下列说法错误有( )①有理数包括正有理数和负有理数; ②绝对值等于它本身的数是非负数;③若|b|=|﹣5|,则b=-5 ; ④当b=2时,5﹣|2b ﹣4|有最小值是5;⑤若、互为相反数,则0ab <;⑥2232xy x y -+-是关于、的六次三项式. A. 2个B. 3个C. 4个D. 5个8.已知a ﹣b=2,d ﹣b=﹣2,则()2a-d 的值为( )A. 2B. 4C. 9D. 169.请阅读一小段约翰斯特劳斯作品,根据乐谱中的信息,确定最后一个音符的时值长应为 ( )A.18B.12C.14D.3410.观察如图所示一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第10个图中共有点的个数是 ( )A. 109个B. 136个C. 166个D. 199个二.填空题(共8小题)11.下列各数中:227,﹣|﹣2|,0,π,﹣(﹣43),0.32••,正有理数个数有_____个.12.我国的历史文化古迹故宫,又名紫禁城,位于北京市中心,占地面积约为720000平方米,将数720000用科学记数法可表示为____;13.从冰箱冷冻室里取出温度为-10℃的冰块,放在杯中,过一段时间后,该冰块的温度升高到-4℃,其温度升高了___________℃.14.如果规定符号“﹡”的意义是﹡=aba b+,则[2﹡()3-]﹡(-1)的值为__________. 15.已知一个多项式与3x 2+ x+2的和等于3x 2-x ﹣3,则此多项式是_________. 16.某商场实行7折优惠销售,现售价为a 元的商品的原价是__________. 17.若3a =,225b =,且a <b ,则2a -b 的值为______.18.定义:若a b n +=,则称a 与b 是关于数n 的“平衡数”比如3与4-是关于的“平衡数”,5与12是关于17的“平衡数”现有28614a x kx =-+与()2243(b x x k k =--+为常数)始终是数n 的“平衡数”,则它们是关于______的“平衡数”.三.解答题(共8小题)19.画数轴,在数轴上把下列各数表示出来,并用“<”连接各数. 1.5,100(1)--,-(-2),22-,122--按照从小到大的顺序排列为 . 20.计算:(1)(3)(4)(11)(9)-+--+--(2)1321(3)2(1)3434-+---- (3)42211(1)[2(3)]32---+⨯⨯--(4) 512146324⎛⎫-+-÷- ⎪⎝⎭21.化简(1)x 2y ﹣3x 2y ﹣6xy+7xy -2x 2y (2)()()()5432323x y x y x y +----.22.已知多项式(a -3)x 3+4x b+3+5x -1是关于x 二次三项式. (1)求a 、b 的值.(2)利用(1)中的结果,先化简,再求值:2(3a 2b -ab 2)-3(ab 2+1-2a 2b)-3 23.如图,P 是长方形ABCD 内一点,三角形ABP 的面积为a.(1)若长方形ABCD 的面积为m,则三角形CPD 的面积为______________;(用含m 、a 的代数式表示) (2)若三角形BPC 的面积为b(b>a),则三角形BPD 的面积为______________.(用含a 、b 的代数式表示)24.已知有理数a 、b 、c 在数轴上的位置如图所示:化简:2(a+b )﹣4|a ﹣c|+3|c ﹣b|25.一架直升飞机从高度为460米的位置开始,先以30m/s 的速度上升50s,后以12m/s 的速度下降120s, (1)这时直升机所在高度是多少?(2)如果飞机每上升或下降 1 千米需消耗 2 升燃油,那么这架飞机在这个过程中,一共消耗了多少升燃油? 26.如图,在数轴上点A 表示数a ,点C 表示数c ,且210(20)0a c ++-=.我们把数轴上两点之间的距离用表示两点的大写字母一起标记.比如,点A 与点B 之间的距离记作AB. (1)求AC 的值;(2)若数轴上有一动点D 满足CD +AD=36,直接写出D 点表示的数;(3)动点B 从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A ,C 在数轴上运动,点A 、C 的速度分别为每秒 3个单位长度,每秒4个单位长度,运动时间为t 秒. ①若点A 向右运动,点C 向左运动,AB=BC ,求t 值.②若点A 向左运动,点C 向右运动,2AB -m×BC 值不随时间t 的变化而改变,请求出m 的值.答案与解析一.选择题(共10小题)1.-5的倒数的是()A. -5B. 5C.15- D.15【答案】C【解析】【分析】根据乘积为1的两个数互为倒数求解即可.【详解】因为15()15-⨯-=所以-5的倒数为-1 5故选C.【点睛】此题主要考查了倒数,明确倒数的意义是解题关键.乘积为1的两个数互为倒数. 2.下列各式中,不相等...的是()A. (-3)2和-32B. (-3)2和32C. (-2)3和-23D. 32-和32-【答案】A【解析】【分析】分别计算,即可确定答案.【详解】解: A. (-3)2=9,-32=-9,故选项A错误;B. (-3)2=9,32=9,故选项B正确;C. (-2)3=-8,-23=-8,故选项C正确;D. 32-=8,32-=8,故选项D正确;故答案为A.【点睛】本题考查了有理数的乘方,解题的关键在于理解(-3)2和-32的不同之处.3.“x与y的差的平方的3倍”用代数式可以表示为()A. 3(x﹣y2)B. (3x﹣y)2C. 3x﹣y2D. 3(x﹣y)2【答案】D【解析】【分析】先求x、y的差,再求差的平方,最后写出它们的3倍.【详解】由题意得,x与y的差的平方的3倍”为:3(x﹣y)2.故选D.【点睛】本题考查了列代数式的知识,解答本题的关键是熟练读题,找出题目所给的等量关系.4.下列计算正确的是( )A. 3m2-2m2 =1B. 3m2n-3nm2=0C. 3m2 + 2m2 = 5m4D. 3m + 2n = 5mn【答案】B【解析】【分析】根据合并同类项的法则,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加,即可作出判断.【详解】A、3m2-2m2=m2,选项错误;B、3m2n-3nm2=0,正确;C、3m2+2m2=5m2,选项错误;D、不是同类项,不能合并,选项错误.故选B.【点睛】本题主要考查合并同类项得法则.即系数相加作为系数,字母和字母的指数不变.5.长方形的一边长是4x+y,另一边比它小x-y,则长方形的周长是( )A. 7x+yB. 7x+3yC. 14x+2yD. 14x+6y【答案】D【解析】【分析】根据题意先表示另一边的长,进一步表示周长,再化简即可. 【详解】依题意得:周长=2[(4x+y )+(4x+y )-(x-y )] =2[4x+y+4x+y-x+y] =2[7x+3y] =14x+6y . 故选D.【点睛】此题考查了整式的加减,列式表示出长方形的周长是关键.6.3n 4333444m ⨯⨯=++个个( )A. 34m nB. 34n mC. 34m nD. 43m n【答案】A 【解析】 【分析】根据积的乘方运算法则进行求解即可.【详解】3n 433334444m mn ⨯⨯=++个个. 故选A.【点睛】此题主要考查了积的乘方的应用,熟练掌握积的乘方运算法则是解此题的关键. 7.下列说法错误的有( )①有理数包括正有理数和负有理数; ②绝对值等于它本身的数是非负数;③若|b|=|﹣5|,则b=-5 ; ④当b=2时,5﹣|2b ﹣4|有最小值是5;⑤若、互为相反数,则0ab <;⑥2232xy x y -+-是关于、的六次三项式. A. 2个 B. 3个C. 4个D. 5个【答案】D 【解析】 【分析】根据有理数的概念、绝对值的性质、相反数、多项式的概念即可求出答案. 【详解】①有理数包括正有理数、负有理数和0,故①错误; ②绝对值等于它本身的数是非负数,故②正确; ③∵|b|=5,∴b=±5,故③错误; ④当b≤2时,原式=2b+1, 当b >2时,原式=-2b+9当b=2时,5-|2b-4|的最大值值是5,故④错误; ⑤若、互为相反数,则0ab ≤;故⑤错误; ⑥2232xy x y -+-是关于、的三次三项式,故⑥错误. 故选D .【点睛】本题考查学生对概念的理解,解题的关键是正确理解概念,本题属于基础题型. 8.已知a ﹣b=2,d ﹣b=﹣2,则()2a-d 的值为( )A. 2B. 4C. 9D. 16【答案】D 【解析】 【分析】已知两式相减得a-d=4,代入所求代数式即可求解. 【详解】∵a ﹣b=2,d ﹣b=﹣2, ∴两式相减得,a-d=4, ∴(a-d)2=42=16, 故选D.【点睛】此题主要考查了求代数式的值,求出a-d=4是解此题的关键.9.请阅读一小段约翰斯特劳斯作品,根据乐谱中的信息,确定最后一个音符的时值长应为 ( )A.18B.12C.14D.34【答案】C【解析】本题是有理数运算的实际应用,就是已知两个数的和及其中一个加数,求另外一个加数,作减法列出正确的算式依题意得:311424-=故选C.10.观察如图所示一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第10个图中共有点的个数是( )A. 109个B. 136个C. 166个D. 199个【答案】C【解析】【分析】由图可知:其中第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…由此规律得出第n个图有1+1×3+2×3+3×3+…+3n=(33)12n n++个点,进一步代入求得数值即可.【详解】第1个图中共有1+1×3=4个点, 第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点, …第n个图有1+1×3+2×3+3×3+…+3n=(33)12n n++个点.所以第10个图中共有点的个数是10(310+3)11662⨯⨯+=个,故选C.【点睛】本题考查了规律型中得图形的变化类,根据图形中点的个数的变化找出变化规律“1+1×3+2×3+3×3+…+3n=(33)12n n ++是解题的关键. 二.填空题(共8小题)11.下列各数中:227,﹣|﹣2|,0,π,﹣(﹣43),0.32••,正有理数个数有_____个.【答案】3 【解析】 【分析】根据有理数的正负性进行判断即可. 【详解】解:227,﹣(﹣43),0.32••.是正有理数,故答案为:3.【点睛】此题考察有理数的分类,正确掌握分类方法才可正确解题.12.我国的历史文化古迹故宫,又名紫禁城,位于北京市中心,占地面积约为720000平方米,将数720000用科学记数法可表示为____; 【答案】57210⨯. 【解析】 【分析】科学记数法的表示形式为a×10 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】720000=57210⨯. 故答案为57210⨯..【点睛】此题考查科学记数法,解题关键在于掌握其表示形式.13.从冰箱冷冻室里取出温度为-10℃的冰块,放在杯中,过一段时间后,该冰块的温度升高到-4℃,其温度升高了___________℃. 【答案】6 【解析】 分析】利用最高温度减去最低温度即可.【详解】(-4)-(-10)=-4+10=6.,故答案为:6.【点睛】此题主要考查了有理数的减法,关键是掌握有理数减法法则:减去一个数,等于加上这个数的相反数.14.如果规定符号“﹡”的意义是﹡=aba b+,则[2﹡()3-]﹡(-1)的值为__________.【答案】65 -;【解析】【分析】先观察公式,求出2﹡(-3)=6,再求出6﹡(-1)即可.【详解】[2﹡(-3)]﹡(-1)=2(3)2(3)⨯-+-﹡(-1)=6﹡(-1)=6(1) 6(1)⨯-+-=6 5 -.故答案为6 5 -.【点睛】本题考查了新运算和有理数的混合运算,主要考查学生的理解能力和计算能力,题目比较典型,是一道比较好的题目.15.已知一个多项式与3x2+ x+2的和等于3x2-x﹣3,则此多项式是_________.【答案】-2x-5;【解析】【分析】根据和减去一个加数等于另一个加数列出关系式,去括号合并即可得到结果.【详解】根据题意得:(3x2-x﹣3)-(3x2+ x+2)=3x2-x﹣3-3x2-x-2=-2x-5.故答案为-2x-5.【点睛】此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.16.某商场实行7折优惠销售,现售价为a 元的商品的原价是__________. 【答案】107a 元; 【解析】【分析】由于原价的7折为售价,于是原价等于用a 除以70%.【详解】售价为a 元的商品的原价为100.77a a =(元). 故答案为107a 元. 【点睛】本题考查了列代数式:把问题中与数量有关词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.本题的关键是理解7折的意义.17.若3a =,225b =,且a <b ,则2a -b 值为______.【答案】1或﹣11【解析】试题解析:∵|a|=3,b 2=25,∴a=3或-3,b=5或-5,∵a <b,∴a=3时,b=5,此时2a-b=2×3-5=1, a=-3时,b=5,此时2a-b=2×(-3)-5=-6-5=-11,故答案为1或-11.18.定义:若a b n +=,则称a 与b 是关于数n 的“平衡数”比如3与4-是关于的“平衡数”,5与12是关于17的“平衡数”现有28614a x kx =-+与()2243(b x x k k =--+为常数)始终是数n 的“平衡数”,则它们是关于______的“平衡数”.【答案】12【解析】【分析】利用“平衡数”的定义判断即可.【详解】解:28614a x kx =-+与()2243(b x x k k =--+为常数)始终是数n 的“平衡数”, ()()22228614243861486266142a b x kx x x k x kx x x k k x k n ∴+=-+--+=-+-+-=-+-=,即660k -=,解得:1k =,即12n =,故答案为12【点睛】此题考查了整式的加减,弄清题中的新定义是解本题的关键.三.解答题(共8小题)19.画数轴,在数轴上把下列各数表示出来,并用“<”连接各数.1.5,100(1)--,-(-2),22-,122--按照从小到大的顺序排列为 .【答案】见解析【解析】【分析】先分别把各数化简,再在数轴上找出对应的点,注意在数轴上标数时要用原数,然后由数轴比较大小.【详解】这些数分别为:1.5;100(1)--=-1;-(-2)=2;22-=-4;112=222---在数轴上表示出来如图所示:∴按照从小到大的顺序排列为:-22<122--<-(-1)100<1.5<-(-2) 【点睛】本题考查了有理数大小比较的方法.注意在数轴上表示的两点,右边的点表示的数比左边的点表示的数大.20.计算:(1)(3)(4)(11)(9)-+--+--(2)1321(3)2(1)3434-+---- (3)42211(1)[2(3)]32---+⨯⨯-- (4) 512146324⎛⎫-+-÷- ⎪⎝⎭【答案】(1)-9;(2)152-;(3)16;(4)-42 【解析】【分析】 (1)先根据减法法则:减去一个数等于加上这个数的相反数,把原式中的减法运算化为加法运算,然后运用加法运算律把正数结合,负数结合,分别利用同号两数相加的法则计算后,再利用异号两数相加的法则即可得到结果;(2)先根据有理数减法法则变形后再运用加法交换律和结合律进行计算即可得到答案;(3)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里的;(4)先计算绝对值,再把除法转化为乘法,最后运用乘法分配律进行计算即可得到答案.【详解】(1)(3)(4)(11)(9)-+--+--=-3-4-11+9=-9;(2)1321(3)2(1)3434-+---- =12312313344---+ =-3-212=-512; (3)42211(1)[2(3)]32---+⨯⨯-- =-1-11(7)32⨯⨯- =-1+76=16(4) 512146324⎛⎫-+-÷- ⎪⎝⎭ =5121()46324-+-÷ =512()24463-+-⨯ =512242424463-⨯+⨯-⨯ =-30+4-16=-42.【点睛】此题考查了有理数的混合运算,进行有理数的混合运算时,先弄清运算顺序,先算乘方,再算乘除,最后算加减,同级运算从左到右依次进行,如果有括号先算括号里的,此外还要正确合理地运用运算律来简化运算,从而提高解题速度和运算能力.21.化简(1)x 2y ﹣3x 2y ﹣6xy+7xy -2x 2y(2)()()()5432323x y x y x y +----.【答案】(1)﹣4x 2y+xy ,(2)-13x+22y【解析】【分析】(1)根据合并同类项的方法可以解答本题;(2)先去括号,然后合并同类项即可解答本题.【详解】(1)x 2y ﹣3x 2y ﹣6xy+7xy -2x 2y=(x 2y ﹣3x 2y -2x 2y )+(﹣6xy+7xy )=﹣4x 2y+xy ;(2)()()()5432323x y x y x y +----=5512869x y x y x y +-+-+=(5126)(589)x x x y y y --+++=-13x+22y.【点睛】本题考查整式的加减,解答本题的关键是明确整式的加减的计算方法.22.已知多项式(a -3)x 3+4x b+3+5x -1是关于x 的二次三项式.(1)求a、b的值.(2)利用(1)中的结果,先化简,再求值:2(3a2b-ab2)-3(ab2+1-2a2b)-3【答案】(1)a=3,b=-1;(2)12a2b-5ab2-6,-129.【解析】【分析】(1)利用多项式次数与项的定义判断即可;(2)原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【详解】(1)∵多项式(a-3)x3+4x b+3+5x-1是关于x的二次三项式,∴a-3=0,b+3=2,解得:a=3,b=-1;(2)原式=6a2b-2ab2-3ab2-3+6a2b-3=12a2b-5ab2-6=-108-15-6=-129.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.23.如图,P是长方形ABCD内一点,三角形ABP的面积为a.(1)若长方形ABCD的面积为m,则三角形CPD的面积为______________;(用含m、a的代数式表示)(2)若三角形BPC的面积为b(b>a),则三角形BPD的面积为______________.(用含a、b的代数式表示)【答案】(1)12m a;(2)b-a.【解析】【分析】(1)根据三角形CPD的面积为长方形面积的一半减去三角形ABP的面积可得;(2)根据三角形BPC的面积等于三角形APD的面积进行解答即可.【详解】(1)三角形CPD的面积为12m−a;(2)三角形BPD的面积为b-a;【点睛】此题考查列代数式问题,关键是根据题意中面积的关系解答.24.已知有理数a、b、c在数轴上的位置如图所示:化简:2(a+b)﹣4|a﹣c|+3|c﹣b|【答案】6a -b -c【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】根据题意得:a <0<b <c ,则a-c <0,c-b >0,则原式=2a+2b+4(a-c )+3(c-b )=2a+2b+4a-4c+3c-3b=6a -b -c .【点睛】此题考查了整式的加减,数轴,以及绝对值,弄清题意是解本题的关键.25.一架直升飞机从高度为460米的位置开始,先以30m/s 的速度上升50s,后以12m/s 的速度下降120s,(1)这时直升机所在的高度是多少?(2)如果飞机每上升或下降 1 千米需消耗 2 升燃油,那么这架飞机在这个过程中,一共消耗了多少升燃油?【答案】(1)这时直升机所在的高度是520m.(2)一共消耗了5.88升燃油.【解析】【分析】(1)如果规定飞机上升为正,根据题意确定出所求即可;(2)求出飞机飞行的总路程化成千米,再乘以2升/千米即可得解.【详解】(1)如果规定飞机上升为正,那么根据题意,可得460+30×50+(-12)×120=460+1500-1440=520(m ), 答:这时直升机所在高度是520 m ;(2)30×50+|(-12)×120|=1500+1440=2940m=2.94(km ), 2.94×2=5.88(升).所以,这架飞机这个过程中,一共消耗了5.88升燃油?【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.26.如图,在数轴上点A 表示数a ,点C 表示数c ,且210(20)0a c ++-=.我们把数轴上两点之间的距离用表示两点的大写字母一起标记.比如,点A与点B之间的距离记作AB.(1)求AC的值;(2)若数轴上有一动点D满足CD+AD=36,直接写出D点表示的数;(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A,C在数轴上运动,点A、C的速度分别为每秒3个单位长度,每秒4个单位长度,运动时间为t秒.①若点A向右运动,点C向左运动,AB=BC,求t的值.②若点A向左运动,点C向右运动,2AB-m×BC的值不随时间t的变化而改变,请求出m的值.【答案】(1)a=-10,b=20 ,A C=30;(2) D:-13 或23;(3)①83t=或307;②83m=【解析】【分析】(1)根据非负性可求出答案;(2)分三种情况:当点D在点A的左侧;当点D在点A,C之间时;当点D在点C的右侧时;进行讨论可求D点表示的数;(3)①用t代数式表示AB,BC,列出等式可求解;②用t的代数式表示AB,BC,代入代数式可求解;【详解】(1)∵|a+10|+(c-20)2=0,∴a+10=0,c-20=0,∴a=-10,c=20,(2)当点D在点A的左侧,∵CD+AD=36,∴AD+AC+AD=36,∴AD=3,∴点D点表示的数为-10-3=-13;当点D在点A,C之间时,∵CD+AD=AC=30≠36,∴不存在点D,使CD+AD=36;当点D在点C的右侧时,∵CD+AD=36,∴AC+CD+CD=36,∴CD=3,∴点D点表示的数为20+3=23;综上所述,D点表示的数为-13或23;(3)①∵AB=BC,∴|(1+t)-(-10+3t)|=|(1+t)-(20-4t)|∴t=307或83;②∵2AB-m×BC=2×(11+4t)-m(19+3t)=(8-3m)t+22-19m,且2AB-m×BC的值不随时间t的变化而改变, ∴8-3m=0,∴m=8 3 .【点睛】此题考查了一元一次方程的应用,数轴以及绝对值的知识点,动点在数轴上运动,在已知运动的方向和速度之后,就可以利用原来所在的数如果向右移动就加上向右移动的距离,如果向左移动,就减去向左移动的距离为解题关键,利用方程思想列式求解即可.。
2023-2024学年江苏省常州市天宁区正衡中学七年级(上)期中数学试卷(含解析)
2023-2024学年江苏省常州市天宁区正衡中学七年级第一学期期中数学试卷一.选择题(共8小题,每小题2分,共16分,请将答案填在答题纸上)1.﹣3的相反数是( )A.﹣B.3C.﹣3D.2.下面对生活中数据的估计,最合适的是( )A.一瓶矿泉水约为100升B.六年级学生50米跑合格成绩为80秒C.一张数学试卷的面积约为20平方米D.一本七年级数学教科书的质量约为350克3.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数,用正、负数来表示具有相反意义的量.如果小明身高165cm,以小明身高为标准,小明爸爸身高175cm,记作+10cm,小明妈妈身高163cm,应记作( )A.+163cm B.﹣2cm C.+2cm D.﹣163cm4.下列说法正确的是( )A.不是整式B.0不是单项式C.﹣2πab2的系数是﹣2D.2a2+a﹣1是二次三项式5.下列说法错误的有( )①非负数就是正数;②整数和分数统称为有理数;③0既不是正数,也不是负数;④零是最小的整数.A.1个B.2个C.3个D.4个6.按照如图所示的操作步骤,若输入x的值为﹣2,则输出的值为( )A.﹣10B.﹣9C.﹣8D.﹣47.小李家住房的结构如图所示,小李打算把卧室和客厅铺上木地板,请你帮他算一算,他至少需买多少平方米的木地板( )A.12ab B.10ab C.8ab D.6ab8.将若干个数组成一个正方形数阵,若任意一行、一列及对角线上的数字之和都相等,则称具有这种性质的数阵为“幻方”,中国古代称“幻方”为“河图”、“洛书”等.现在小明改成了“幻圆”,将﹣1,2,﹣3,4,﹣5,6,﹣7,8分别填入如图所示的圆圈内,使横、竖以及内外两圆上的4个数之和都相等,则a﹣b的值为( )A.﹣6或﹣3B.4或﹣3C.7或4D.﹣3或7二.填空题(共10小题,每小题2分,共20分,请将答案填在答题纸上)9.比较大小:﹣3 ﹣4(用“>”“=”或“<”表示).10.袁隆平院士被誉为“杂交水稻之父”,经过他带领的团队多年努力,目前我国杂交水稻种植面积约为2.5亿亩.将250000000用科学记数法表示为 .11.下列各数中:12,,,﹣|﹣1|,0,无理数有 个.12.单项式5x m y5与x6y2n+1是同类项,则m﹣n= .13.若|x﹣2|+(y+3)2=0,则y x= .14.实数a满足a2﹣3a﹣3=0,则2a2﹣6a+2009= .15.为落安“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动,现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为6元/本,设购买甲种读本x本,则购买乙种读本的费用为 .16.有理数a,b,c在数轴上表示的点如图所示,化简|a+b|﹣|a﹣c|﹣2|b+c|= .17.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,如图1,孩子出生后的天数=3×72+2×71+6=147+14+6=167(天).请根据图2,计算孩子自出生后的天数是 天.18.有一列式子,按一定规律排列成﹣2a3,4a7,﹣8a11,16a15,﹣32a19,…则第n个式子为 .三.解答题(共7小题,19题16分,20题10分,21题6分,22题6分,23题6分,24题10分,25题10分)19.(16分)计算:(1)(﹣29)+(﹣5)﹣(+31)﹣(﹣15);(2)(﹣7)×(﹣4)+8÷(﹣2);(3);(4).20.合并同类项:(1)﹣5mn﹣3m2+7mn+m2;(2)2x2﹣4+5x﹣3(x﹣1+x2).21.先化简再求值:2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=﹣1.22.将下列各数:﹣(﹣4),﹣|﹣3.5|,,0在数轴上表示出来:并比较它们的大小(用“<”连接): .23.小波准备完成题目:化简:(x2+6x+8)﹣(6x+5x2+2)发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几.24.【教材回顾】课本88页,有这样一段文字:人们通过长期观察发现,如果早晨天空中有棉絮状的高积云,那么午后常有雷雨降临,于是有了“朝有破絮云,午后雷雨临”的谚语.在数学的学习过程中,我们经常用这样的方法探究规律.【数学问题】三角形有3个顶点,如果在它的内部再画n个点,并以这(n+3)个点为顶点画三角形,那么最多可以剪得多少个这样的三角形?【问题探究】为了解决这个问题,我们可以从n=1,2,3等具体的、简单的情形入手,搜索最多可以剪得的三角形个数的变化规律.三角形内点的个数图形最多剪出的小三角形个数1352374…a………【问题解决】(1)表格中的a= ;(2)你发现的变化规律是:三角形内的点每增加1个,最多剪得的三角形增加 个;(3)猜想:当三角形内点的个数为n时,最多可以剪得 个三角形;像这样通过对简单情形的观察、分析,从特殊到一般地探索这类现象的规律、提出猜想的思想方法称为归纳.【类比应用】(1)四边形有4个顶点,在它的内部画1个点,把四边形剪成若干个小三角形,最多可以剪得 个小三角形;(2)四边形内部每增加1个点,最多剪得的三角形增加 个;(3)当四边形内点的个数为n时,最多可以剪得 个三角形;(4)m边形内有n个点时,最多可以剪得 个三角形.25.在数轴上,把原点记作点O,表示数a的点记作点A.对于数轴上任意一点P(不与点O、点A重合),将线段PO与线段PA的长度之比定义为点P关于点A的幸福值,记作k(P,a),即,例如:点P表示的数为1,点A表示的数为3,因为PO =1,PA=2,所以.(1)当点P是线段OA的中点时,点P关于点A的幸福值k(P,a)= ;(2)若点P表示的数为﹣1,点A表示的数为3,点P关于点A的幸福值k(P,3)= ;(3)若点P表示的数为2,点A表示的数为a,点P关于点A的幸福值k(P,a)=2,求点A表示的数a;(4)若点P表示的数为p,点A表示的数为a,OA=3OP,则点P关于点A的幸福值k (P,a)= ;(5)点P1、点P2为数轴上两个不同的点,并且点P2与P1关于原点对称,点P1表示的数为m,点A、点B分别表示数a、2,若k(P1,a)=k(P2,2),则a、m需满足条件: .参考答案一.选择题(共8小题,每小题2分,共16分,请将答案填在答题纸上)1.﹣3的相反数是( )A.﹣B.3C.﹣3D.【分析】根据相反数的概念解答求解.解:﹣3的相反数是﹣(﹣3)=3.故选:B.【点评】本题考查了相反数的意义,理解相反数的意义是解题的关键.2.下面对生活中数据的估计,最合适的是( )A.一瓶矿泉水约为100升B.六年级学生50米跑合格成绩为80秒C.一张数学试卷的面积约为20平方米D.一本七年级数学教科书的质量约为350克【分析】根据生活经验判断即可得到结论.解:A、一瓶矿泉水约为100毫升,故不符合题意;B、六年级学生50米跑合格成绩为10秒,故不符合题意;C、一张数学试卷的面积约为20平方厘米,故不符合题意;D、一本七年级数学教科书的质量约为350克,故符合题意;故选:D.【点评】本题考查了数学常识,正确地把握各种单位在生活中的应用是解题的关键.3.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数,用正、负数来表示具有相反意义的量.如果小明身高165cm,以小明身高为标准,小明爸爸身高175cm,记作+10cm,小明妈妈身高163cm,应记作( )A.+163cm B.﹣2cm C.+2cm D.﹣163cm【分析】小明身高为标准,小明妈妈身高比小明矮,记作负值即可.解:如果小明身高165cm,以小明身高为标准,小明爸爸身高175cm,记作+10cm,小明妈妈身高163cm,应记作﹣2cm.故选:B.【点评】此题考查了正数与负数,以及数学常识,弄清题意是解本题的关键.4.下列说法正确的是( )A.不是整式B.0不是单项式C.﹣2πab2的系数是﹣2D.2a2+a﹣1是二次三项式【分析】由数与字母的积组成的代数式叫做单项式,单独的一个数或字母也是单项式;单项式前面的数字因数是它的系数,所有字母的次数之和是它的次数;几个单项式的和叫做多项式;组成一个多项式的每个单项式都是这个多项式的项,次数最高的单项式的次数是这个多项式的次数;据此进行判断即可.解:是单项式,则A不符合题意;0是单项式,则B不符合题意;﹣2πab2的系数是﹣2π,则C不符合题意;2a2+a﹣1是二次三项式,则D符合题意;故选:D.【点评】本题考查整式,单项式和多项式,熟练掌握相关定义是解题的关键.5.下列说法错误的有( )①非负数就是正数;②整数和分数统称为有理数;③0既不是正数,也不是负数;④零是最小的整数.A.1个B.2个C.3个D.4个【分析】根据有理数的分类即可做出判断.解:①非负数包括0和正数,故①错;②整数和分数统称为有理数对,故②对;③0既不是正数,也不是负数对,故③对;④比0小的整数有﹣1、﹣2,、3……无数个,故④错,∴①④符合题意,共2个,故选:B.【点评】本题考查有理数的分类,掌握方法是解题关键.6.按照如图所示的操作步骤,若输入x的值为﹣2,则输出的值为( )A.﹣10B.﹣9C.﹣8D.﹣4【分析】根据操作步骤输入数据依次进行计算即可,再与﹣5进行比较,,小于﹣5则输出,大于﹣5则继续输入一直到小于﹣5输出即可.解:由题可知,将x=﹣2代入,﹣2×3﹣(﹣2)=﹣6+2=﹣4,﹣4>﹣5,故继续代入,﹣4×3﹣(﹣2)=﹣12+2=﹣10.故选:A.【点评】本题考查有理数的混合运算,能够理解操作步骤是解题的关键.7.小李家住房的结构如图所示,小李打算把卧室和客厅铺上木地板,请你帮他算一算,他至少需买多少平方米的木地板( )A.12ab B.10ab C.8ab D.6ab【分析】将住房的平面图分割,将不规则图形转化为规则图形,即卧室、客厅都是矩形,再根据矩形的面积计算公式分别计算即可.解:客厅的面积为:4b×2a=8ab.卧室的面积为:2a×2b=4ab.所以需买木地板的面积为:8ab+4ab=12ab.故选:A.【点评】本题考查了根据几何图形列代数式,解题的关键是求出卧室的长,然后代入矩形的面积计算公式进行计算.8.将若干个数组成一个正方形数阵,若任意一行、一列及对角线上的数字之和都相等,则称具有这种性质的数阵为“幻方”,中国古代称“幻方”为“河图”、“洛书”等.现在小明改成了“幻圆”,将﹣1,2,﹣3,4,﹣5,6,﹣7,8分别填入如图所示的圆圈内,使横、竖以及内外两圆上的4个数之和都相等,则a﹣b的值为( )A.﹣6或﹣3B.4或﹣3C.7或4D.﹣3或7【分析】利用內圆上4个数之和等于给定的8个数之和的一半,可列出关于b的一元一次方程,解之可求出b的值,结合“幻圆”的性质,可得出a的值,再将其代入a﹣b中,即可求出结论.解:根据题意得:6﹣3+b+4=×(﹣1+2﹣3+4﹣5+6﹣7+8),解得:b=﹣5,∵a和最右的数在同一条直线且同在外圆上,∴a=﹣1或a=2,当a=﹣1时,a﹣b=﹣1﹣(﹣5)=4;当a=2时,a﹣b=2﹣(﹣5)=7.∴a﹣b的值为7或4.故选:C.【点评】本题考查了一元一次方程的应用、数学常识以及规律型:数字的变化类,根据“幻圆”的性质,求出a,b的值是解题的关键.二.填空题(共10小题,每小题2分,共20分,请将答案填在答题纸上)9.比较大小:﹣3 > ﹣4(用“>”“=”或“<”表示).【分析】本题是基础题,考查了实数大小的比较.两负数比大小,绝对值大的反而小;或者直接想象在数轴上比较,右边的数总比左边的数大.解:根据有理数大小比较的规律可得两个负数中绝对值大的反而小,﹣3>﹣4.故答案为:>.【点评】规律总结:(1)在以向右方向为正方向的数轴上两点,右边的点表示的数比左边的点表示的数大.(2)正数大于0,负数小于0,正数大于负数.(3)两个正数中绝对值大的数大.(4)两个负数中绝对值大的反而小.10.袁隆平院士被誉为“杂交水稻之父”,经过他带领的团队多年努力,目前我国杂交水稻种植面积约为2.5亿亩.将250000000用科学记数法表示为 2.5×108 .【分析】绝对值大于1的数可以用科学记数法表示,一般形式为a×10n,n为正整数,且比原数的整数位数少1,据此可以解答.解:250000000用科学记数法表示为2.5×108.故答案为:2.5×108.【点评】本题考查用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为a×10n,其中1≤|a|<10,n是正整数,正确确定a的值和n的值是解题的关键.11.下列各数中:12,,,﹣|﹣1|,0,无理数有 1 个.【分析】根据无理数的定义逐个判断即可.解:在实数12,,,﹣|﹣1|,0中,无理数有,共1个.故答案为:1.【点评】此题考查了无理数.解题的关键是掌握实数的分类.12.单项式5x m y5与x6y2n+1是同类项,则m﹣n= 4 .【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值,代入即可得出答案.解:∵单项式5x m y5与x6y2n+1是同类项,∴m=6,2n+1=5,解得m=6,n=2,∴m﹣n=6﹣2=4.故答案为:4【点评】本题考查了同类项的知识,属于基础题,掌握同类项中的两个相同是解答本题的关键13.若|x﹣2|+(y+3)2=0,则y x= 9 .【分析】根据非负数的性质可求出x、y的值,再将它们代入y x中求解即可.解:∵x、y满足|x﹣2|+(y+3)2=0,∴x﹣2=0,x=2;y+3=0,y=﹣3;则y x=(﹣3)2=9.故答案为:9.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.14.实数a满足a2﹣3a﹣3=0,则2a2﹣6a+2009= 2015 .【分析】由a2﹣3a﹣3=0得a2﹣3a=3,然后代入2a2﹣6a+2009计算即可.解:∵a2﹣3a﹣3=0,∴a2﹣3a=3,∴2a2﹣6a+2009=2(a2﹣3a)+2009=2×3+2009=2015.故答案为:2015.【点评】此题考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算,也可以运用整体代入的思想,本题就利用了整体代入进行计算.15.为落安“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动,现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为6元/本,设购买甲种读本x本,则购买乙种读本的费用为 6(100﹣x)元 .【分析】直接根据乙的费用=乙的单价×乙的本数,列式即可.解:设购买甲种读本x本,则购买乙种读本的数量为(100﹣x)本,∴购买乙种读本的费用为:6(100﹣x)元.【点评】此题主要考查了列代数式,正确表示出乙的本数是解答本题的关键.16.有理数a,b,c在数轴上表示的点如图所示,化简|a+b|﹣|a﹣c|﹣2|b+c|= ﹣3b﹣3c .【分析】根据图形判断a、b、c的符号,以及绝对值中三个式子的符号,再去绝对值化简.解:根据数轴可知,a<b<0<c,且b+c>0,故a+b<0,a﹣c<0,b+c>0,|a+b|=﹣a﹣b,|a﹣c|=c﹣a,|b+c|=b+c,∴原式=﹣(a+b)﹣(c﹣a)﹣2(b+c)=﹣a﹣b﹣c+a﹣2b﹣2c=﹣3b﹣3c.故答案为:﹣3b﹣3c.【点评】本题考查了绝对值和数轴.注意数轴上a、b、c的位置,以及他们与原点的距离远近,关键在于判断题干绝对值符号里面各个式子的符号,进而化简得出结果.17.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,如图1,孩子出生后的天数=3×72+2×71+6=147+14+6=167(天).请根据图2,计算孩子自出生后的天数是 109 天.【分析】由于从右到左依次排列的绳子上打结,满七进一,所以从右到左的数分别为4,1×7和2×7×7,然后把它们相加即可.解:孩子自出生后的天数是:2×7×7+1×7+4=98+7+4=109.故答案为:109.【点评】本题考查了用数字表示事件.本题是以古代“结绳计数”为背景,按满七进一计算自孩子出生后的天数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.18.有一列式子,按一定规律排列成﹣2a3,4a7,﹣8a11,16a15,﹣32a19,…则第n个式子为 (﹣2)n a4n﹣1 .【分析】由﹣2a3,4a7,﹣8a11,16a15,﹣32a19,…,总结规律得第n个式子为(﹣2)n a4n ﹣1.解:由﹣2a3,4a7,﹣8a11,16a15,﹣32a19,…,则第n个式子为(﹣2)n a4n﹣1.故答案为:(﹣2)n a4n﹣1.【点评】本题主要考查了数字变化的规律,解题关键是找到规律并正确应用.三.解答题(共7小题,19题16分,20题10分,21题6分,22题6分,23题6分,24题10分,25题10分)19.(16分)计算:(1)(﹣29)+(﹣5)﹣(+31)﹣(﹣15);(2)(﹣7)×(﹣4)+8÷(﹣2);(3);(4).【分析】(1)利用加法交换律和结合律进行计算,即可解答;(2)先算乘除,后算加减,即可解答;(3)利用乘法分配律进行计算,即可解答;(4)先算乘方,再算乘除,后算加减,有括号先算括号里,即可解答.解:(1)(﹣29)+(﹣5)﹣(+31)﹣(﹣15)=﹣29﹣5﹣31+15=(﹣29﹣31)+(﹣5+15)=﹣60+10=﹣50;(2)(﹣7)×(﹣4)+8÷(﹣2)=28+(﹣4)=24;(3)=12×+12×﹣12×=5+8﹣9=13﹣9=4;(4)=﹣1+4×﹣×=﹣1+﹣=﹣﹣=﹣.【点评】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.20.合并同类项:(1)﹣5mn﹣3m2+7mn+m2;(2)2x2﹣4+5x﹣3(x﹣1+x2).【分析】(1)根据合并同类项法则求解即可;(2)先去括号,再合并同类项即可.解:(1)原式=2mn﹣2m2;(2)原式=2x2﹣4+5x﹣3x+3﹣3x2=﹣x2+2x﹣1.【点评】本题主要考查整式的加减,整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.21.先化简再求值:2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=﹣1.【分析】先去括号,然后合并同类项得到原式=﹣5x2y+5xy,然后把x、y的值代入计算即可.解:原式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy,当x=1,y=﹣1时,原式=﹣5×1×(﹣1)+5×1×(﹣1)=0.【点评】本题考查了整式的加减﹣化简求值:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.22.将下列各数:﹣(﹣4),﹣|﹣3.5|,,0在数轴上表示出来:并比较它们的大小(用“<”连接): .【分析】先将各数在数轴上表示出来,再根据数轴上的数从左到右依次增大,比较数的大小即可.解:﹣(﹣4)=4,﹣|﹣3.5|=﹣3.5,=﹣,将各数在数轴上表示出来,如图所示:由图可知:.故答案为:.【点评】本题考查有数轴表示有理数,并比较有理数的大小.正确的在数轴上表示出各数,熟练掌握数轴上的数从左到右依次增大,是解题的关键.23.小波准备完成题目:化简:(x2+6x+8)﹣(6x+5x2+2)发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几.【分析】根据整式的运算法则即可求出答案.解:(1)原式=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6;(2)设为a,原式=(a﹣5)x2+6,当a=5时,此时原式的结果为常数.故为5.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.24.【教材回顾】课本88页,有这样一段文字:人们通过长期观察发现,如果早晨天空中有棉絮状的高积云,那么午后常有雷雨降临,于是有了“朝有破絮云,午后雷雨临”的谚语.在数学的学习过程中,我们经常用这样的方法探究规律.【数学问题】三角形有3个顶点,如果在它的内部再画n个点,并以这(n+3)个点为顶点画三角形,那么最多可以剪得多少个这样的三角形?【问题探究】为了解决这个问题,我们可以从n=1,2,3等具体的、简单的情形入手,搜索最多可以剪得的三角形个数的变化规律.三角形内点的个数图形最多剪出的小三角形个数1325374…a………【问题解决】(1)表格中的a= 9 ;(2)你发现的变化规律是:三角形内的点每增加1个,最多剪得的三角形增加 2 个;(3)猜想:当三角形内点的个数为n时,最多可以剪得 (2n+1) 个三角形;像这样通过对简单情形的观察、分析,从特殊到一般地探索这类现象的规律、提出猜想的思想方法称为归纳.【类比应用】(1)四边形有4个顶点,在它的内部画1个点,把四边形剪成若干个小三角形,最多可以剪得 4 个小三角形;(2)四边形内部每增加1个点,最多剪得的三角形增加 2 个;(3)当四边形内点的个数为n时,最多可以剪得 (2n+2) 个三角形;(4)m边形内有n个点时,最多可以剪得 (m+2n﹣2) 个三角形.【分析】问题解决:可以从数字找规律,然后进行计算即可,类比应用:可以从数字找规律,然后进行计算即可.解:问题解决:(1)当三角形内有1个点时,最多剪出的小三角形个数为:3=1+2×1,当三角形内有2个点时,最多剪出的小三角形个数为:5=1+2×2,当三角形内有3个点时,最多剪出的小三角形个数为:7=1+2×3,当三角形内有4个点时,最多剪出的小三角形个数为:1+2×4=9,(2)三角形内的点每增加1个,最多剪得的三角形增加2个,(3)当三角形内有n个点时,最多剪出的小三角形个数为:1+2n;故答案为:9,2,(2n+1);类比应用:(1)当四边形内有1个点时,最多剪出的小三角形个数为:4=2+2×1,当四边形内有2个点时,最多剪出的小三角形个数为:6=2+2×2,当四边形内有3个点时,最多剪出的小三角形个数为:8=2+2×3,(2)四边形内部每增加1个点,最多剪得的三角形增加2个,(3)当四边形内有n个点时,最多剪出的小三角形个数为:2+2n,(4)当m边形内有1个点时,最多剪出的小三角形个数为:m=m+2×0,当m边形内有2个点时,最多剪出的小三角形个数为:m+2=m+2×1,当m边形内有3个点时,最多剪出的小三角形个数为:m+4=m+2×2,当m边形内有n个点时,最多剪出的小三角形个数为:m+2(n﹣1)=m+2n﹣2,故答案为:4,2,(2n+2),(m+2n﹣2).【点评】本题考查了图形的变化规律,此类问题可以从数字找规律,也可以从图形找规律,然后进行计算即可.25.在数轴上,把原点记作点O,表示数a的点记作点A.对于数轴上任意一点P(不与点O、点A重合),将线段PO与线段PA的长度之比定义为点P关于点A的幸福值,记作k(P,a),即,例如:点P表示的数为1,点A表示的数为3,因为PO =1,PA=2,所以.(1)当点P是线段OA的中点时,点P关于点A的幸福值k(P,a)= 1 ;(2)若点P表示的数为﹣1,点A表示的数为3,点P关于点A的幸福值k(P,3)= ;(3)若点P表示的数为2,点A表示的数为a,点P关于点A的幸福值k(P,a)=2,求点A表示的数a;(4)若点P表示的数为p,点A表示的数为a,OA=3OP,则点P关于点A的幸福值k (P,a)= 或 ;(5)点P1、点P2为数轴上两个不同的点,并且点P2与P1关于原点对称,点P1表示的数为m,点A、点B分别表示数a、2,若k(P1,a)=k(P2,2),则a、m需满足条件: a=2m+2或a=﹣2 .【分析】(1)直接利用“幸福值”的定义即可求解.(2)易得PO=1,PA=4,再利用“幸福值”的定义计算即可.(3)由题意可得关于a的分式方程,求解即可;(4)分别两种情况:点P、A在点O的同侧和点P、A在点O的异侧.分别表示出PO和PA,再根据“幸福值”的定义计算即可.(5)根据题意,分别表示出k(P1,a),k(P2,2),由k(P1,a)=k(P2,2)可得关于a,m的含绝对值的等式,取绝对值符号即可求解.解:(1)∵点P是线段OA的中点,∴PO=PA,∴k(P,a)==1.故答案为:1.(2)∵点P表示的数为﹣1,点A表示的数为3,∴PO=1,PA=4,∴k(P,3)==.故答案为:.(3)∵点P表示的数为2,点A表示的数为a,∴PO=2,PA=|a﹣2|,∵点P关于点A的幸福值k(P,a)=2,∴,经检验,a=1或3原方程的解,解得:a=1或3.(4)①当点P、A在点O的同侧时(此处以点P、A在原点右侧来分析),如图,由题意得OP=p,OA=3P,则PA=2p,∴k(P,a)===;②当点P、A在点O的异侧时(此处以点P在原点左侧,点A在原点右侧来分析),如图,由题意得OP=﹣p,OA=﹣3P,则PA=﹣4p,∴k(P,a)===.故答案为:或.(5)P2与P1关于原点对称,点P1表示的数为m,∴点P2表示的数为﹣m,且PO1=PO2=|m|,点A、点B分别表示数a、2,P1A=|a﹣m|,P2B=|2+m|,∴k(P1,a)==,k(P2,2)==,要使k(P1,a)=k(P2,2),则|a﹣m|=|2+m|,即a﹣m=2+m或a﹣m=﹣2﹣m,∴a=2m+2或a=﹣2.故答案为:a=2m+2或a=﹣2.【点评】本题主要考查数轴、新定义、绝对值、数轴上两点间的距离公式,理解新定义并灵活应用相关知识解决问题是解题关键.。
苏科版七年级上册数学《期中考试卷》及答案解析
苏 科 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共8小题,每小题3分,共24分.)1.如果向北走3m, 记作+3m, 那么-10m 表示( ) A. 向东走10mB. 向南走10mC. 向西走10mD. 向北走10m2.下列各数:0.3333……,0,100,-1.5,2π,53,-0.121221222中,无理数的个数是( )A. 0个B. 1个C. 2个D. 3个3.下列说法正确的是( ) A. x+2=5是代数式B.2x yzx+是单项式 C. 多项式4x - 3x -2 是4x,- 3x,-2的和 D. 2不是单项式4.下列各式,正确的是( ) A. 2a+3b=5ab B. x+2x=3x C. 2(a+b)=2a+bD. -(m-n)=-m+n5.不超过33()2-的最大整数是 ( ) A. –4B. –3C. 3D. 46.下列等式成立的是( )A. 100÷17×(—7)=100÷1(7)7⎡⎤⨯-⎢⎥⎣⎦ B. 100÷17×(—7)=100×7×(—7) C. 100÷17×(—7)=100×17×7 D. 100÷17×(—7)=100×7×7 7.无论x 取什么值,下列代数式中,值一定是正数的是( ) A. 2x 2-1B. (2x+1)2C. |2x+1|D. 2x 2+18.小丽用计算机设计了一个计算程序,输入和输出的数据如下表.当输入数据-11时,输出的数据是( )输出-1225-310417-526…A.11120B. -11120C. -11121D. -11122二、填空题(本大题共10小题,每小题3分,共30分)9.吐鲁番盆地低于海平面155米,记作﹣155m,南岳衡山高于海平面1900米,则衡山比吐鲁番盆地高m.10.比较大小:-34_____-57(填“>”、“<”或“=”)11.一个数用科学计数法表示为1.9×103,则这个数是_____.12.“与5的积是m-3的数”用代数式可以表示为________.13.已知-x m y n+1与2x2y是同类项,则m+n的值是________.14.数轴上表示数-5和表示-14的两点之间的距离是.15.在数-5,1,-3,5,-2中,任取三个相乘,其中最大的积是______16.计算2101×(-12)99结果是______.17.已知|x|=1,|y|=2,且xy>0,则x+y=______________18.观察如图所示图形构成的规律,根据此规律,第n个图中小圆点的个数为______.三、解答题(本题共9小题,共96分)19.计算:(1)(+16)-(+5)-(-4);(2)100-25×(-2)³(3)(13-+56-79)÷(118-)(4)-3²-(-3)³+(-2)²-2³20.计算:(1)-a+2a-2+4a(2)2x²-3xy+1-2(5-3xy+x²) 21.有下列7个数+4,﹣|﹣2|,-20%,73,0,-(-1),3.14(1)画出数轴,并将上面的七个数表示在数轴上;(2)下图的两个圈的交叉部分表示什么数的集合,请填写在横线上,并把七个数中适合的数填写到两个圈的交叉部分.22.先化简,在求值:14(-4x²+2x-8y)-(-x²-y),其中x=2,y=1.23.已知两个多项式A=9x²y+7xy-x-2,B=3x²y-5xy+x+7(1)求A-3B;(2)若要使A-3B的值与x的取值无关,试求y的值;24.体育课上,七年级某班男同学进行了100米测验,达标成绩为15秒,下表是梦想小组8名男生成绩记录,其中“+”表示成绩大于15秒.﹣0.8 +1 ﹣1.2 0 ﹣07 +0.6 ﹣0.4 ﹣0.1问:(1)这个小组男生的达标率为多少?(达标率=达标人数总人数)(2)这个小组男生的平均成绩是多少秒?25.某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元.双“十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的90%付款,现某客户要到该卖场购买微波炉20台,电磁炉x台(x>20).(1)若该客户按方案一购买,需付款元,若该客户按方案二购买,需付款元.(用含x代数式表示)(2)若x=50,通过计算说明此时按哪种方案购买较为合算?26.在《代数式》的学习中,我们通过对同一面积的不同表达和比较,得到合并同类项的法则.下面我们利用这种方法来研究速算.(1)提出问题:47×43,56×54,89×81,……是一些十位数相同,且个位数之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?(2)几何建模:用长方形的面积表示两个正数的乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原长方形上面.(2)分析:原长方形面积可以有两种不同的表达方式:47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的长方形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,(3)模仿应用:①请仿照上面的方法使用长方形的面积表示56×54的乘积;②填空:89×81= ×8×100+×=7209;(4)归纳提炼:两个十位数字相同,并且个位数字之和是10两位数相乘的速算方法是(用文字表述) .27.定义:对于一个数x,我们把[x]称作x的相伴数;若x≥0,则[x]=x-1,若x<0,则[x]=x+1.例:[0.5]=-0.5(1)求[43]= , [-3]= ;(2)当a>0,b<0时,有[a]=[b],试求(b-a)-6(12a²b+52a-b)+3ba²+9b的值;(3)计算2[x]-[x+2].答案与解析一、选择题(本大题共8小题,每小题3分,共24分.)1.如果向北走3m, 记作+3m, 那么-10m 表示( ) A. 向东走10m B. 向南走10m C. 向西走10m D. 向北走10m【答案】B 【解析】 【分析】根据正负数的意义判断即可; 【详解】解:∵向北走3m, 记作+3m, ∴向北走为正,则向南走为负 ∴-10m 表示向南走10m 故选B.【点睛】此题考查的是正负数的意义,掌握正负数表示具有相反意义的量是解决此题的关键. 2.下列各数:0.3333……,0,100,-1.5,2π,53,-0.121221222中,无理数的个数是( )A. 0个B. 1个C. 2个D. 3个【答案】B 【解析】 【分析】利用无理数就是无限不循环小数,主要有三种形式:①开方开不尽的数;②含的式子;③有规律但不循环的无限小数.【详解】0.3333……是无限循环小数,属于有理数,故不是无理数; 0是整数,属于有理数,故不是无理数; 100是整数,属于有理数,故不是无理数; -1.5是负分数,属于有理数,故不是无理数; 2π是含的式子,故是无理数;53是分数,属于有理数,故不是无理数;-0.121221222是有限小数,属于有理数,故不是无理数; 故选B .【点睛】此题考查的是无理数的概念,掌握无理数就是无限不循环小数和常见的表现形式是解决此题的关键. 3.下列说法正确的是( ) A. x+2=5是代数式B.2x yzx+是单项式 C. 多项式4x - 3x -2 是4x,- 3x,-2的和 D. 2不是单项式【答案】C 【解析】 【分析】根据代数式的定义、单项式的定义和多项式的项的定义判断即可. 【详解】A. x+2=5中含有等号,不是代数式,故A 错误; B.2x yzx+中含有“+”,不是单项式,故B 错误; C. 多项式4x - 3x -2 中的项分别是4x,- 3x,-2,故C 正确; D. 单独的一个数字或字母也是单项式,故D 错误; 故选C.【点睛】此题考查的是代数式的定义、单项式的定义和多项式的项的定义,利用它们的定义去判断各选项的对错是解决此题的关键. 4.下列各式,正确的是( ) A. 2a+3b=5ab B. x+2x=3x C. 2(a+b)=2a+b D. -(m-n)=-m+n【答案】D 【解析】 【分析】根据同类项的定义、合并同类项法则、乘法分配律和去括号法则判断即可. 【详解】A. 2a 和3b 不是同类项,不能合并,故A 错误; B. x+2x=(1+2)x= 3x ,故B 错误;C.根据乘法分配律: 2(a+b)=2a+2b ,故C 错误;D.根据去括号法则: -(m-n)=-m+n ,故D 正确. 故选D.【点睛】此题考查的是同类项的定义、合并同类项法则、乘法分配律和去括号法则,解决此题的关键是根据它们的定义及法则去判断各选项的对错. 5.不超过33()2-的最大整数是 ( ) A. –4 B. –3 C. 3 D. 4【答案】A 【解析】 【分析】利用乘方运算法则计算出结果即可【详解】332⎛⎫- ⎪⎝⎭=333222⎛⎫⎛⎫-⋅-⋅- ⎪ ⎪⎝⎭⎝⎭=278-;所以不超过278-的最大整数为﹣4. 故答案为A 选项.【点睛】本题主要考查有理数乘方运算以及有理数的大小比较,正确的进行乘方运算是关键. 6.下列等式成立的是( )A. 100÷17×(—7)=100÷1(7)7⎡⎤⨯-⎢⎥⎣⎦B. 100÷17×(—7)=100×7×(—7) C. 100÷17×(—7)=100×17×7 D. 100÷17×(—7)=100×7×7 【答案】B 【解析】 【分析】根据有理数的运算法则即可判断. 【详解】100÷17×(-7)=100×7×(-7) 故选B.【点睛】此题主要考查有理数的运算,解题的关键是熟知有理数的乘除法则. 7.无论x 取什么值,下列代数式中,值一定是正数的是( ) A. 2x 2-1B. (2x+1)2C. |2x+1|D. 2x 2+1【答案】D 【解析】 【分析】讨论每个选项后,作出判断.注意平方数和绝对值都可是非负数. 【详解】解:A 、当x=0时,代数式2x 2-1的值为-1,不符合题意;B 、当x=-12时,代数式(2x+1)2的值为0,0不是正数,所以错误; C 、当x=-12时,代数式|2x+1|值为0,0不是正数,所以错误;D 、无论x 是何值,代数式2x 2+1的值都是正数. 故选D .【点睛】本题主要考查代数式的求值,注意0既不是正数,也不是负数.平方数和绝对值都可以为0,也可以为正数.8.小丽用计算机设计了一个计算程序,输入和输出的数据如下表.当输入数据-11时,输出的数据是( )A.11120B. -11120C. -11121D. -11122【答案】D 【解析】 【分析】根据表中数据,找出输入、输出的数据关系即可. 【详解】解:当输入﹣1时,输出的结果为:()211211--=-+; 当输入2时,输出的结果为:222521=+;当输入﹣3时,输出的结果为:()2301313--=-+; 当输入4时,输出的结果为:2441741=+; 故当输入n 时,输出的结果为:21nn +;故当输入﹣11时,输出的结果为:()21111122111-=--+ 故选D.【点睛】此题考查的数字找规律题,找到输入数字与输出数字的关系并总结规律、概括公式是解决此题的关键.二、填空题(本大题共10小题,每小题3分,共30分)9.吐鲁番盆地低于海平面155米,记作﹣155m,南岳衡山高于海平面1900米,则衡山比吐鲁番盆地高 m .【答案】2055 【解析】试题分析:根据正负数的意义,把比海平面低记作“﹣”,则比海平面高可记作“+”,求高度差用“作差法”,列式计算.解:吐鲁番盆地低于海平面155米,记作﹣155m,则南岳衡山高于海平面1900米,记作+1900米; ∴衡山比吐鲁番盆地高1900﹣(﹣155)=2055(米). 考点:正数和负数.10.比较大小:-34 _____ -57(填“>”、“<”或“=”) 【答案】< 【解析】 【分析】根据两个负数的比较大小:绝对值大的反而小,判断即可.【详解】解:∵33214428-==,55207728-==而2120 2828>∴35 47 -<-故答案为:<.【点睛】此题考查的是负数比较大小,掌握两个负数比较大小:绝对值大的反而小,是解决此题的关键.11.一个数用科学计数法表示为1.9×103,则这个数是_____.【答案】1900【解析】【分析】根据有理数乘方的意义计算即可.【详解】解:1.9×103=1.9×1000=1900.故答案为:1900.【点睛】此题考查的是有理数的乘方及乘法运算,掌握有理数乘方的意义是解决此题的关键.12.“与5的积是m-3的数”用代数式可以表示为________.【答案】3 5 m-【解析】【分析】根据乘、除法互为逆运算即可表示. 【详解】∵这个数与5的积是m-3∴这个数是:3 5 m-故答案为:3 5m-.【点睛】此题考查是用代数式表示数,掌握代数式的规范写法和乘、除法互为逆运算是解决此题的关键.13.已知-x m y n+1与2x2y是同类项,则m+n的值是________.【答案】2【解析】【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,列出方程即可求出m、n. 【详解】解:∵-x m y n+1与2x2y是同类项∴211 mn=⎧⎨+=⎩解得:20 mn=⎧⎨=⎩∴m+n=2故答案为:2.【点睛】此题考查的是同类项的定义,根据同类项的定义:所含字母相同,并且相同字母的指数也相同,列出方程是解决此题的关键.14.数轴上表示数-5和表示-14的两点之间的距离是.【答案】9【解析】试题分析:如图所示,数轴上两点之间的距离等于这两点的数的差的绝对值,即较大的数减去较小的数,即-5-(-14)=9.考点:数轴与绝对值15.在数-5,1,-3,5,-2中,任取三个相乘,其中最大的积是______【答案】75【解析】【分析】把绝对值最大的两个负数相乘,然后把它们的积乘以5即可.【详解】解:在数-5,1,-3,5,-2中任取三个相乘,其中最大的积是-5×(-3)×5,即最大的积为75.故答案为75.【点睛】本题考查了有理数的大小比较比较有理数的大小可以利用数轴,他们从右到左的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.16.计算2101×(-12)99的结果是______.【答案】-4 【解析】【分析】逆用同底数幂的乘法可得:2101=299×22,然后利用乘法结合律和逆用积的乘方先计算299×(-12)99,再乘22即可.【详解】解:2101×(-12)99=299×22×(-12)99=[2×(-12)]99×22=(-1)99×4=-4故答案为:-4【点睛】此题考查的是有理数乘方和乘法运算,掌握逆用同底数幂的乘法和逆用积的乘方是解决此题的关键.17.已知|x|=1,|y|=2,且xy>0,则x+y=______________【答案】3或-3【解析】【分析】先根据绝对值的定义计算x和y的值,再根据xy>0分情况讨论x和y的值,再根据有理数的加法运算,可得答案.【详解】∵|x|=1,|y|=2∴x=±1,y=±2,又∵xy>0∴x、y同号当x=1,y=2时,x+y=3当x=-1,y=-2时,x+y=-3故填3或-3.【点睛】本题考查有理数的加法,绝对值,有理数的乘法.能通过有理数的乘法判断想x、y同号,从而分类讨论是解决此题的关键.18.观察如图所示图形构成的规律,根据此规律,第n个图中小圆点的个数为______.【答案】1+n2.【解析】【分析】根据每个图中小圆点的个数分析并总结规律即可.【详解】解:第1个图形中小圆点的个数为2=1+1=1+12;第2个图形中小圆点的个数为5=1+4=1+22;第3个图形中小圆点的个数为10=1+9=1+32;第4个图形中小圆点的个数为17=1+16=1+42;故第n个图中小圆点的个数为:1+n2.故答案:1+n2.【点睛】此题考查的是图形探索规律题,找到各图形中小圆点的个数的变化规律并概括公式是解决此题的关键三、解答题(本题共9小题,共96分)19.计算:(1)(+16)-(+5)-(-4);(2)100-25×(-2)³(3)(13-+56-79)÷(118-)(4)-3²-(-3)³+(-2)²-2³【答案】(1)15;(2)300;(3)5;(4)14 【解析】【分析】(1)根据有理数减法法则和加法法则计算即可;(2)根据有理数乘方的意义、乘法法则和减法法则计算即可;(3)根据除法法则和乘法分配律计算即可;(4)根据有理数乘方的意义、减法法则和加法法则计算即可;【详解】解:(1)(+16)-(+5)-(-4)=(+16)+(﹣5)+4=15;(2)100-25×(-2)3=100-25×(-8)=100+200=300;(3)(13-+56-79)÷(118-)=(13-+56-79)×(18-)=13-×(18-)+56×(18-)-79×(18-)=6+(15-)+14=5(4)-3²-(-3)³+(-2)²-2³=-9+27+4-8=14【点睛】此题考查的是有理数的混合运算,掌握有理数运算的各个法则是解决此题的关键.20.计算:(1)-a+2a-2+4a(2)2x²-3xy+1-2(5-3xy+x²)【答案】(1)5a-2;(2)3xy-9.【解析】【分析】(1)合并同类项即可;(2)去括号、合并同类项即可.【详解】解:(1)-a+2a-2+4a=(-1+2+4)a-2=5a-2(2)2x²-3xy+1-2(5-3xy+x²)=2x²-3xy+1-10+6xy-2x²=3xy-9【点睛】此题考查的是整式的加减法,掌握去括号法则和合并同类项法则是解决此题的关键.21.有下列7个数+4,﹣|﹣2|,-20%,73,0,-(-1),3.14(1)画出数轴,并将上面的七个数表示在数轴上;(2)下图的两个圈的交叉部分表示什么数的集合,请填写在横线上,并把七个数中适合的数填写到两个圈的交叉部分.【答案】(1)数轴见解析;(2)正整数;图见解析.【解析】【分析】(1)先将需化简的数化简再将其画在数轴上即可;(2)根据两个圈表示意义即可判断两个圈的交叉部分应是正整数,再将7个数中的正整数填入即可.【详解】(1)﹣|﹣2|=﹣2,-(-1)=+1,数轴如下所示:(2)根据题意:既属于整数又属于正数的数是正整数,而+4是正整数;﹣|﹣2|=-2不是正整数;-20%不是正整数;73不是正整数;0不是正整数;-(-1)=+1是正整数;3.14不是正整数.故将+4和-(-1)填入,如图所示:【点睛】此题考查的是用数轴表示数及正整数的概念,掌握在数轴上表示数和既属于整数又属于正数的数是正整数是解决此题的关键.22.先化简,在求值:14(-4x²+2x-8y)-(-x²-y),其中x=2,y=1.【答案】0【解析】【分析】先去括号,合并同类项进行化简,再代入求值即可.【详解】解:14(-4x²+2x-8y)-(-x²-y)=-x²+12x-2y+x²+y=12x-y将x=2,y=1代入得:原式=12×2-1=0【点睛】此题考查的是整式的加减法:化简求值题,掌握去括号法则和合并同类项法则将整式化简是解决此题的关键.23.已知两个多项式A=9x²y+7xy-x-2,B=3x²y-5xy+x+7(1)求A-3B;(2)若要使A-3B的值与x的取值无关,试求y的值;【答案】(1)22 xy-4x-23;(2)2 11【解析】【分析】(1)将A=9x²y+7xy-x-2,B=3x²y-5xy+x+7代入化简即可;(2)若要使A-3B的值与x的取值无关,只需使含x的项的系数为0即可求出y的值. 【详解】解:(1)将A=9x²y+7xy-x-2,B=3x²y-5xy+x+7代入,得:A-3B=(9x²y+7xy-x-2)-3(3x²y-5xy+x+7)=9x²y+7xy-x-2-9x²y+15 xy-3x-21=22 xy-4x-23(2)A-3B=22 xy-4x-23=(22 y-4)x-23∵A-3B的值与x的取值无关∴22 y-4=0解得:y=2 11【点睛】此题考查的是整式的加减,掌握去括号法则和合并同类项法则将整式化简及不含某项就使其系数为0是解决此题的关键.24.体育课上,七年级某班男同学进行了100米测验,达标成绩为15秒,下表是梦想小组8名男生的成绩记录,其中“+”表示成绩大于15秒.问:(1)这个小组男生的达标率为多少?(达标率=达标人数总人数)(2)这个小组男生的平均成绩是多少秒?【答案】(1)这个小组男生的达标率是75%;(2)这个小组男生的平均成绩是14.8秒.【解析】【分析】(1)根据题意和表格中的数据可以求得这个小组男生的达标率;(2)根据题意和表格中的数据可以求得这个小组男生的平均成绩.【详解】解:(1)由题意可得,这个小组男生的达标率为:6100%8⨯=75%,答:这个小组男生的达标率是75%;(2)由题意可得,这个小组男生的平均成绩是:15+(0.8)1( 1.2)0(0.7)0.6(0.4)(0.1)8-++-++-++-+-=14.8(秒),答:这个小组男生的平均成绩是14.8秒.【点睛】本题考查正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义.25.某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元.双“十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的90%付款,现某客户要到该卖场购买微波炉20台,电磁炉x台(x>20).(1)若该客户按方案一购买,需付款元,若该客户按方案二购买,需付款元.(用含x的代数式表示)(2)若x=50,通过计算说明此时按哪种方案购买较为合算?【答案】(1)(200x+12000);(180x+14400);(2)按方案一购买比较合算.【解析】【分析】(1)根据题意,分别用x表示出方案一和方案二的付款即可;(2)把x=50分别代入方案一和方案二的付款中,然后比较大小即可.【详解】解:(1)根据题意:若该客户按方案一购买,需付款:800×20+200(x-20)=(200x+12000)元;若该客户按方案二购买,需付款:90%(800×20+200x)=(180x+14400)元;(2)将x=50代入方案一的付款中得:200×50+12000=22000元,x=50代入方案二的付款中得:180×50+14400=23400元,∵22000元<23400元∴当x=50时,按方案一购买比较合算.【点睛】此题考查的是用代数式表示实际问题,掌握各个方案的代数式的列法是解决此题的关键.26.在《代数式》的学习中,我们通过对同一面积的不同表达和比较,得到合并同类项的法则.下面我们利用这种方法来研究速算.(1)提出问题:47×43,56×54,89×81,……是一些十位数相同,且个位数之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?(2)几何建模:用长方形的面积表示两个正数的乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原长方形上面.(2)分析:原长方形面积可以有两种不同的表达方式:47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的长方形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,(3)模仿应用:①请仿照上面的方法使用长方形的面积表示56×54的乘积;②填空:89×81= ×8×100+×=7209;(4)归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述) .【答案】模仿应用:①图形见解析;②9;9;1;归纳提炼:十位上的数字加1的和乘十位上的数字,再乘100,加上两个数个位上的数字的乘积.【解析】【分析】模仿应用:①参照几何建模中画47×43的矩形画法即可;②根据47×43和56×54总结的规律即可计算89×81;归纳提炼:根据以上总结规律写出即可.【详解】解:模仿应用:①画长为56,宽为54的矩形,如下图,将这个56×54的矩形从右边切下长50,宽4的一条,拼接到原长方形上面.分析:原长方形面积可以有两种不同的表达方式:56×54的矩形面积或(50+6+4)×50的矩形与右上角4×6的长方形面积之和,即56×54=(50+6+4)×50+4×6=6×5×100+4×6=3024;②根据47×43=5×4×100+3×7=2021和56×54=6×5×100+4×6=3024可得:满足两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是:将十位上的数字加1的和乘十位上的数字,再乘100,加上两个数个位上的数字的乘积即可.所以89×81=9×8×100+9×1=7209;归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是:十位上的数字加1的和乘十位上的数字,再乘100,加上两个数个位上的数字的乘积.【点睛】此题考查的是数形结合的数学思想,把代数式的运算转化成几何图形的面积,然后利用几何图形的面积找到代数式的速算方法.27.定义:对于一个数x,我们把[x]称作x的相伴数;若x≥0,则[x]=x-1,若x<0,则[x]=x+1.例:[0.5]=-0.5(1)求[43]= , [-3]= ;(2)当a>0,b<0时,有[a]=[b],试求(b-a)-6(12a²b+52a-b)+3ba²+9b的值;(3)计算2[x]-[x+2].【答案】(1)13;-2;(2)﹣14;(3)当x<-2时,2[x]-[x+2] =x-1;当-2≤x<0时,2[x]-[x+2] =x+1;当x≥0时2[x]-[x+2]= x-3. 【解析】【分析】(1)根据相伴数的定义计算即可;(2)先化简所求的整式,再根据相伴数的定义求出a、b的关系,然后代入即可;(3)根据相伴数的定义对x进行分类讨论即可.【详解】解:(1)根据题意:[43]=41133-=,[-3]= -3+1=-2;(2)(b-a)-6(12a²b+52a-b)+3ba²+9b=(b-a)-3a²b-15a+6b+3ba²+9b =(a-b)-15(a-b)∵a>0,b<0,[a]=[b]∴a-1=b+1∴a-b=2将a-b=2代入,得:原式=2-15×2=﹣14;(3)①当x<0,x+2<0时,即x<-2时2[x]-[x+2]=2(x+1)-(x+2+1)=2x+2-x-3=x-1;②当x<0,x+2≥0时,即-2≤x<0时2[x]-[x+2]=2(x+1)-(x+2-1)=2x+2-x-1=x+1;③当x≥0,x+2≥0时,即x≥0时2[x]-[x+2]=2(x-1)-(x+2-1)=2x-2-x-1=x-3;综上所述:当x<-2时,2[x]-[x+2] =x-1;当-2≤x<0时,2[x]-[x+2] =x+1;当x≥0时2[x]-[x+2]= x -3.【点睛】此题考查的是定义新运算,掌握相伴数的定义和分类讨论的数学思想是解决此题的关键.。
七年级上册数学期中考质量分析
七年级上册数学期中考质量分析七年级上册数学期中考质量分析(精选8篇)分析是在头脑中把事物或对象由整体分解成各个部分或属性。
尽管“分析”作为一个正式的概念在近年来才逐步建立起来,这一技巧自亚里士多德就已经应用在了数学、逻辑学等多个领域。
以下是店铺整理的七年级上册数学期中考质量分析,欢迎阅读,希望大家能够喜欢。
七年级上册数学期中考质量分析篇1一、命题意图:以初一年级数学检测试卷的命题总体来说,具有以下几个特点:1、注重学生基础知识和基本技能的考察。
整个试卷上的题目能够做到起点低,基础性强,针对学生来说有得分点,容易得分。
能够做到考察学生对基础知识的掌握程度和基本解题能力、解题技巧及方法的运用。
2、能够结合课标,注重立足教材,能够与现实生活相联系,注重考查学生的实践能力和灵活运用数学知识解决实际问题的能力,学生具有可操作性。
3、所考察的知识点全面、覆盖面大,考试的内容均能设计到,而且所考查的重点突出,相对比较合理。
但部分考察的内容超出考试范围,小部分考察的内容较难,部分学生不能够动手去做。
4、能够密切联系生活实际,选择具有现实性和趣味性的素材考查数学知识的运用,让学生体会到数学在生活中的作用,而且能够注重学生探究性和开放性思维的考查与培养。
5、试卷较正质量较好,能够使学生的检测心理和检测水平得到正常发挥,不会影响学生的答题情况和检测成绩。
二、学生答题情况(以(1)班为例)从整体试卷的难易情况看,此次数学试题难度适中,以常规题居多,但从检测情况来看,部分学生答题情况欠佳。
下面逐题简要说明:第一题选择题:总分24分,因为起点较低,基础性强,学生得分情况比较好。
但第6、7题超出考试范围,得分情况不是很好。
第二题填空题:总分24分,得分情况也较好。
但(1)第11、15(2)题超出考试范围,(2)第16题灵活性较强,从而得分情况不是很好。
第三题解答题:总分52分,此题整体难度不大,得分情况还是很好。
但(1)少数同学仍然是计算上出了问题,基础知识掌握不扎实。
24-25学年七年级数学上学期期中模拟卷(江苏通用,测试范围:苏科版2024七上第1章-第3章)解析
2024-2025学年七年级数学上学期期中模拟卷(苏科版2024)(考试时间:120分钟 试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:苏科版2024七年级上册第1章-第3章。
5.难度系数:0.85。
第Ⅰ卷一、选择题:本题共8小题,每小题2分,共16分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.2024的绝对值是( )A .2024-B .2024C .12024D .12024-2.下列各组整式中,不是同类项的是( )A .ab -与baB .25与52C .20.2a b 与212a b -D .23a b 与32a b -故选:D .3.下列各数中,最小的数是( )A .2B .4-C .p -D .0【答案】B【详解】解:∵402p -<-<<,∴所给的各数中,最小的数是4-.故选:B .4.若m 、n 满足()2|2|30m n -++=,则m n =( )A .9-B .9C .6D .6-5.甲数为x ,乙数为y ,则甲数的3倍与乙数的和除甲数与乙数的3倍的差,可表示为( )A .33x yx y +-B .33x yx y -+C .33x yx y -+D .33x yx y+-6.若224a b -=,则代数式232a b -+的值为( )A .11B .7C .1-D .5-【答案】C【详解】解:∵224a b -=,∴()223232341a b a b -+=--=-=-.故选C .7.如图所示是计算机程序流程图,若开始输入1x =,则最后输出的结果是( )A .11B .11-C .13D .13-【答案】C 【详解】解:当1x =时,()41411310x ---=-´+=-<,∴当3x =-时,()()414311310x ---=-´-+=>,符合要求,∴最后输出的结果是:13.故选:C .8.用大小完全相同的圆点按如图所示的规律拼图案,其中第①个图案中有5个圆点,第②个图案中有9个圆点,第③个图案中有13个圆点,第④个图案中有17个圆点,…,按此规律排列下去,则第⑨个图案中圆点的个数为( )A .29B .33C .37D .40第Ⅱ卷二、填空题:本题共10小题,每小题2分,共20分。
七年级上册数学期中试卷质量分析
七年级上册数学期中试卷质量分析七年级上册数学期中试卷质量分析(通用10篇)在各领域中,我们很多时候都不得不用到试卷,试卷是是资格考试中用以检验考生有关知识能力而进行人才筛选的工具。
大家知道什么样的试卷才是规范的吗?下面是店铺为大家整理的七年级上册数学期中试卷质量分析,希望对大家有所帮助。
七年级上册数学期中试卷质量分析篇1对于本次考试的成绩,我感到不满意。
总体情况来看,只有一两个学生都发挥了正常水平,但成绩不高,另一小部分同学通过强化复习,虽然有了一定基础,可他们做起题来马马虎虎,不该错的也做错,大部分的学生的成绩有待加强。
下面,我对考试中出现的具体情况作如下细致的分析:一、试卷分析本次考试的命题范围:人教版七年级上册,第一章到第二章的内容,完全根据新课改的要求。
试卷共计26题,满分100分。
其中填空题共10小题,每空2分,共20分;选择题共6题,每小题3分,共18分;解答题共10小题,共62分。
第一章有关知识点:有理数,绝对值,相反数,科学记数法,有理数的混合运算。
第二章有关知识点:代数式及它的化简求值,单项式和多项式,同类项,去括号等内容,教学重点和难点都有考察到,基础题覆盖面还是很广的,基础稍扎实的学生把自己会的题目分数拿到基本及格来讲还是很容易的,整体看试卷的难度适中,难易结合,并且有一定梯度。
二、成绩分析:1、试卷的难度和区分度等:学生总体成绩不够理想,难度系数大,计算量过多。
2、成绩统计:(2)计算题,由于学生平常练得不精,做不好的主要是对学过知识遗忘,对有理数的加法法则及有理数的乘法法则易混淆不予理解,导致丢分太多,这方面有待加强。
21题需要用到分情况讨论,有些同学就自动放弃了,另外一个原因是无法解读题意,无从下手,实际上只是一个数的绝对值有两个,只要从两个方面分析,就易得的答案;题22则需要较全面的综合理解能力和计算能力,在做这个题目的时候,学生的判别思维比较差,只考虑了一种情况,因此得分差。
苏科版七年级上册数学《期中测试卷》含答案
苏 科 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共8小题,每小题3分,共24分)1.的相反数是( ) A.B. 2C.12D. 12-2.下列代数式中a , -2ab ,x y +,22x y +,-1, 2312ab c ,单项式共有( )A 6个B. 5 个C. 4 个D. 3个3.下列计算正确的是( ) A. 2a −a = 2B. 2a + b = 2abC. 3x 2 + 2x 2 = 5x 4D. mn − 2mn = −mn4.下列方程中,是一元一次方程的是( ) A.110x-= B. x ﹣1=0 C. x 2﹣x ﹣1=0 D. 2(x ﹣1)=2x5.关于x 的方程ax +3=1的解为x =2,则a 的值为( ) A. 1B. -1C. 2D. -26.一元一次方程3x+6=2x ﹣8移项后正确的是( ) A. 3x ﹣2x=6﹣8B. 3x ﹣2x=﹣8+6C. 3x ﹣2x=8﹣6D. 3x ﹣2x=﹣6﹣87.按如图所示的运算程序,能使输出的结果为18的是( )A. x =1,y =4B. x = -4,y = 4C. x = -4,y = -1D. x =4,y =48.若规定[a]表示不超过a 的最大整数,例如[4.3]=4,若m=[π],n=[﹣2.1],则在此规定下[m+74n]的值为( ) A. ﹣3B. ﹣2C. ﹣1D. 0二、填空题(每空2分,共20分)9.-5的绝对值是________.32x y-的次数是_________10.江苏省的面积约为102 600km 2,这个数据用科学记数法可表示为_______km 2.11.甲数比乙数的2倍大3,若乙数为x,则甲数为____________.12.已知2m a b -和3n 13a b -是同类项,则m +n = ( ) A. 6B. 5C. 4D. 313.一个多项式加上﹣3-x ﹣2x 2得到x 2+1,这个多项式是________ 14.若|x ﹣2|+(y +3)2=0,则(x +y)2018=________15.若|x |=7,|y |=5,且x >y ,那么x ﹣y 的值是_______________. 16.已知2x ﹣3y=3,则代数式6x ﹣9y+5的值为_____.17.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子的数为_____.三、解答题(本大题共56分,解答时应写出必要的文字说明、计算过程或演算步骤)18.画一条数轴,并把 -4,-(-3.5),212,0,32- 各数在数轴上表示出来,并用“<”把它们连接起来. 19.计算:(1)()8121623-+---- (2)(-8)÷(-4)-(-3)3×(-123) (3)(12-59+712)×(-36) (4)()31210.7510514143⨯--⨯+÷ 20.(1)化简:5m 2-7n -8mn +5n -9m 2+8mn .(2)已知:a -2b =4,ab =1.试求代数式(-a +3b +5ab )-(5b -2a +6ab )的值. 21.解方程:(1)43(5)6x x --=; (2)121146x x +--=. 22.已知代数式A =x 2+3xy +x -12,B =2x 2-xy +4y -1 (1)当x =y =-2时,求2A -B 的值; (2)若2A -B 值与y 的取值无关,求x 的值. 23.有理数、、在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:-c 0,+ 0,c - 0. (2)化简:| b -c|+|+b|-|c -a|24.某公园准备修建一块长方形草坪,长为30米,宽为20米.并在草坪上修建如图所示的十字路,已知十字路宽米,回答下列问题:(1)修建十字路的面积是多少平方米?(2)草坪(阴影部分)面积是多少?(3)如果十字路宽2米,那么草坪(阴影部分)的面积是多少?25.某原料仓库一天的原料进出记录如下表(运进用正数表示,运出用负数表示):进出数量-3 4 -1 2 -5(单位:吨)进出次数 2 1 3 3 2(1)这天仓库原料比原来增加了还是减少了?请说明理由;(2)根据实际情况,现有两种方案:方案一:运进每吨原料费用5元,运出每吨原料费用8元;方案二:不管运进还是运出费用都是每吨原料6元;从节约运费的角度考虑,选用哪一种方案比较合适.(3)在(2)的条件下,设运进原料共a吨,运出原料共b吨,a、b之间满足怎样的关系时,两种方案的运费相同.26.如图,点A、B和线段MN都在数轴上,点A、M、N、B对应的数字分别为﹣1、0、2、11.线段MN沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒.(1)用含有t代数式表示AM的长为(2)当t= 秒时,AM+BN=11.(3)若点A、B与线段MN同时移动,点A以每秒2个单位速度向数轴的正方向移动,点B以每秒1个单位的速度向数轴的负方向移动,在移动过程,AM和BN可能相等吗?若相等,请求出t的值,若不相等,请说明理由.答案与解析一、选择题(本大题共8小题,每小题3分,共24分)1.的相反数是( ) A. B. 2 C.12D. 12-【答案】B 【解析】 【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2, 故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 . 2.下列代数式中a , -2ab ,x y +,22x y +,-1, 2312ab c ,单项式共有( )A. 6个B. 5 个C. 4 个D. 3个【答案】C 【解析】试题分析:根据单项式的定义:数字与字母的积,或单独的数字和字母都叫单项式.即可求解. 解:单项式有:a , -2ab ,-1, 2312ab c ,共4个. 故选C.3.下列计算正确的是( ) A. 2a −a = 2 B. 2a + b = 2abC. 3x 2 + 2x 2 = 5x 4D. mn − 2mn = −mn【答案】D 【解析】 【分析】根据合并同类项系数相加字母及指数不变,可得答案. 【详解】A .2a −a = a ,故A 错误; B .不是同类项不能合并,故B 错误; C .3x 2 + 2x 2 = 5x 2,故C 错误; D .mn − 2mn = −mn ,故D 正确. 故选D .【点睛】本题考查了合并同类项,合并同类项系数相加字母及指数不变是解题的关键.4.下列方程中,是一元一次方程的是( )A. 110x-= B. x﹣1=0 C. x2﹣x﹣1=0 D. 2(x﹣1)=2x【答案】B【解析】【分析】根据一元一次方程定义进行分析即可.【详解】A.不是一元一次方程,故此选项错误;B.是一元一次方程,故此选项正确;C.不是一元一次方程,故此选项错误;D.不是一元一次方程,故此选项错误.故选B.【点睛】本题主要考查了一元一次方程定义,关键是掌握只含有一个未知数(元),且未知数次数是1,这样的方程叫一元一次方程.5.关于x的方程ax+3=1的解为x=2,则a的值为( )A. 1B. -1C. 2D. -2【答案】B【解析】【分析】把x=2代入方程可得关于a 的方程,解之即可得.【详解】把x=2代入方程ax+3=1得,2a+3=1,解得:a=-1,故选B.【点睛】本题考查了一元一次方程的解,方程的解是能使方程两边相等的未知数的值.6.一元一次方程3x+6=2x﹣8移项后正确的是( )A. 3x﹣2x=6﹣8B. 3x﹣2x=﹣8+6C. 3x﹣2x=8﹣6D. 3x﹣2x=﹣6﹣8【答案】D【解析】试题解析:根据移项法则得:3x﹣2x=﹣6﹣8,故选D.7.按如图所示的运算程序,能使输出的结果为18的是()A. x=1,y=4B. x= -4,y= 4C. x= -4,y= -1D. x=4,y=4 【答案】C【解析】【分析】根据运算程序,结合输出结果确定的值即可.【详解】A.x=1,y=4时,输出结果为12+2×4=9,不符合题意;B.x=﹣4,y=4时,输出结果为(﹣4)2+2×4=24,不符合题意;C.x=﹣4,y=﹣1时,输出结果为(﹣4)2﹣2×(﹣1)=18,符合题意;D.x=4,y=4时,输出结果为42+2×4=24,不符合题意.故选C.【点睛】本题考查了代数式的求值与有理数的混合运算,熟练掌握运算法则是解答本题的关键.8.若规定[a]表示不超过a的最大整数,例如[4.3]=4,若m=[π],n=[﹣2.1],则在此规定下[m+74n]的值为( )A. ﹣3B. ﹣2C. ﹣1D. 0 【答案】A【解析】∵[a]表示不超过a的最大整数,m=[π]=3,n=[﹣2.1]=﹣3,∴[m+74n]=[3+74×(﹣3)]=[﹣94]=﹣3,故选A.二、填空题(每空2分,共20分)9.-5的绝对值是________.32x y的次数是_________【答案】(1). 5(2). 4【解析】【分析】根据绝对值的代数意义和单项式次数的概念求解.【详解】-5的绝对值是5,单项式32x y-的次数是4.故答案为5,4.【点睛】本题考查了绝对值和单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.10.江苏省的面积约为102 600km 2,这个数据用科学记数法可表示为_______km 2. 【答案】1.026×105 【解析】 【分析】科学记数法就是将一个数字表示成(a×10的n 次幂的形式),其中1≤|a|<10,n 表示整数.n 为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n 次幂, 【详解】解:102 600=1.026×105 故答案为:1.026×105 【点睛】本题考查科学计数法,掌握概念正确表示是本题的解题关键. 11.甲数比乙数的2倍大3,若乙数为x,则甲数为____________. 【答案】2x +3 【解析】 【分析】由题意先表示出乙数的2倍,再加上3,即可得到结果. 【详解】解:乙数x 的2倍为2x, 所以甲数为:2x+3, 故答案为2x+3.【点睛】本题考查了列代数式,读懂语句列出代数式是解题的关键.12.已知2m a b -和3n 13a b -是同类项,则m +n = ( ) A. 6 B. 5C. 4D. 3【答案】A 【解析】 【分析】根据相同字母的指数相同列方程求解即可. 【详解】由题意得m=3,n-1=2,∴n=3,∴m+n=3+3=6.故选A.【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.13.一个多项式加上﹣3-x﹣2x2得到x2+1,这个多项式是________【答案】3x2+x+4【解析】【分析】本题涉及整式的加减运算、合并同类项两个考点,解答时根据整式的加减运算法则求得结果即可.【详解】设这个整式为M,则M=x2+1﹣(﹣3﹣x﹣2x2)=x2+1+3+x+2x2=(1+2)x2+x+(1+3)=3x2+x+4.故答案为3x2+x+4.【点睛】解决此类题目的关键是熟练掌握同类项的概念和整式的加减运算.整式的加减实际上就是合并同类项,这是各地中考的常考点,最后结果要化简.14.若|x﹣2|+(y+3)2=0,则(x+y)2018=________【答案】1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x﹣2=0,y+3=0,解得:x=2,y=﹣3,所以,(x+y)2018=(2﹣3)2018=1.故答案为1.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.若|x|=7,|y|=5,且x>y,那么x﹣y的值是_______________.【答案】2或12【解析】【分析】根据题意,利用绝对值的代数意义求出x与y的值,即可确定出x﹣y的值.【详解】∵|x|=7,|y|=5,且x>y,∴x=7,y=5或x=7,y=﹣5,∴x﹣y=7﹣5=2或7﹣(﹣5)=12.故答案为2或12.【点睛】本题考查了有理数的减法,熟练掌握运算法则是解答本题的关键.16.已知2x﹣3y=3,则代数式6x﹣9y+5值为_____.【答案】14.【解析】【详解】代数式6x-9y+5可变形为3(2x-3y)+5,又2x-3y=3,所以6x-9y+5=3×3+5=14.故答案为14.17.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子数为_____.【答案】【解析】【分析】根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是3可得b=2,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【详解】∵任意三个相邻格子中所填整数之和都相等,∴a+b+c=b+c+(−1),3+(−1)+b=−1+b+c,∴a=−1,c=3,∴数据从左到右依次为3、−1、b、3、−1、b,∵第9个数与第3个数相同,即b=2,∴每3个数“3、−1、2”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为−1.故答案为−1.【点睛】此题考查数字的变化规律以及有理数的加法,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.三、解答题(本大题共56分,解答时应写出必要的文字说明、计算过程或演算步骤)18.画一条数轴,并把 -4,-(-3.5),212,0,32各数在数轴上表示出来,并用“<”把它们连接起来.【答案】答案见解析.【解析】 【分析】在数轴上把各个数表示出来,再根据在数轴上表示的数,右边的总比左边的数大比较即可. 【详解】在数轴上表示为:用“<”把它们连接为:﹣4<0<32-<122<﹣(﹣3.5). 【点睛】本题考查了数轴和有理数的大小比较,注意:在数轴上表示的数,右边的总比左边的数大. 19.计算:(1)()8121623-+---- (2)(-8)÷(-4)-(-3)3×(-123) (3)(12-59+712)×(-36) (4)()31210.7510514143⨯--⨯+÷ 【答案】(1)-3;(2)-43;(3)-19;(4)-84 【解析】 【分析】(1)先算绝对值,把减法转化为加法,然后计算即可; (2)按照有理数混合运算的顺序,先乘方后乘除最后算加减; (3)运用乘法的分配律计算;(4)把除法转化为乘法后,运用乘法的分配律计算. 【详解】(1)原式=-8+12+16-23=-3; (2)原式=52273-⨯=2-45=-43; (3)原式=-18+20-21=-19;(4)原式=21×(-0.75)-105×0.75+14×0.75=0.75×(-21-105+14)=0.75×(-112)=-84. 【点睛】本题考查了有理数的混合运算.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣. 20.(1)化简:5m 2-7n -8mn +5n -9m 2+8mn .(2)已知:a -2b =4,ab =1.试求代数式(-a +3b +5ab )-(5b -2a +6ab )的值.【答案】(1)-4m 2-2n ;(2)3.【解析】【分析】(1)原式合并同类项即可得到结果;(2)原式去括号合并得到最简结果,把已知等式代入计算即可求出值.【详解】(1)原式=﹣4m 2﹣2n ;(2)原式=﹣a +3b +5ab ﹣5b +2a ﹣6ab =a ﹣2b ﹣ab,当a ﹣2b =4,ab =1时,原式=4-1=3.【点睛】本题考查了整式的加减﹣化简求值,熟练掌握运算法则是解答本题的关键.21.解方程:(1)43(5)6x x --=; (2)121146x x +--=. 【答案】(1)x=3;(2)x=-7.【解析】【分析】(1)先去括号,再移项,再合并同类项,最后化系数为1,即可得到方程的解;(2)先去分母,再去括号,再移项,再合并同类项,最后化系数为1,即可得到方程的解.【详解】(1)去括号得:4x ﹣15+3x =6,移项得:4x +3x =6+15,合并同类项得:7x =21,化系数为1得:x =3;(2)去分母得:3(x +1)﹣2(2x ﹣1)=12,去括号得:3x +3﹣4x +2=12,移项得:3x ﹣4x =12﹣3﹣2,合并同类项得:﹣x =7,化系数为1得:x =﹣7.【点睛】本题考查了一元一次方程的求解方法,去分母,去括号,移项,合并同类项,化系数为1,是常用的一元一次方程的求解方法.22.已知代数式A =x 2+3xy +x -12,B =2x 2-xy +4y -1 (1)当x =y =-2时,求2A -B 的值;(2)若2A -B 的值与y 的取值无关,求x 的值.【答案】(1)2A -B =7xy+2x-4y ;(2)47x =【解析】【分析】(1)把A与B代入2A﹣B中,去括号合并后,把x与y的值代入计算即可得到结果;(2)由2A﹣B与x取值无关,确定出y的值即可.【详解】(1)2A﹣B=2(x2+3xy+x﹣12)﹣(2x2﹣xy+4y﹣1),= 2x2+6xy+2x﹣1﹣2x2+xy﹣4y+1,=7xy+2x﹣4y,当x=﹣2,y=﹣2时,2A﹣B=7xy+2x﹣4y =7×(﹣2)×(﹣2)+2×(﹣2)﹣4×(﹣2)=28-4+8=32;(2)由(1)可知2A﹣B=7xy+2x﹣4y =(7x﹣4)y+2x,若2A﹣B的值与y的取值无关,则7x﹣4=0,解得:47x .【点睛】本题考查了有理数的减法,熟练掌握运算法则是解答本题的关键.23.有理数、、在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:-c0,+0,c-0.(2)化简:| b-c|+|+b|-|c-a|【答案】(1)<,<, >;(2)-2b【解析】【分析】(1)根据数轴得出a<0<b<c,|b|<|a|<|c|,即可求出答案;(2)去掉绝对值符号,合并同类项即可.【详解】(1)∵从数轴可知:a<0<b<c,|b|<|a|<|c|,∴b−c<0,a+b<0,c−a>0,(2)∵b−c<0,a+b<0,c−a>0,∴|b−c|+|a+b|−|c−a|=c−b+(−a−b)−(c−a)=c−b−a−b−c+a=−2b.【点睛】此题考查数轴、绝对值、整式的加减,解题关键在于结合数轴判断绝对值的大小.24.某公园准备修建一块长方形草坪,长为30米,宽为20米.并在草坪上修建如图所示的十字路,已知十字路宽米,回答下列问题:(1)修建十字路的面积是多少平方米?(2)草坪(阴影部分)的面积是多少?(3)如果十字路宽2米,那么草坪(阴影部分)的面积是多少?【答案】(1)50x-x2;(2)600-50x+x2;(3)504【解析】【分析】(1)根据修建的十字路面积=两条路的面积和﹣重叠部分的面积得出;(2)阴影面积等于矩形面积减去道路面积;(3)根据长方形草坪的面积﹣十字路的面积=草坪(阴影部分)的面积得出.【详解】(1)30x+20x﹣x2=50x﹣x2.答:修建十字路的面积是(50x﹣x2)平方米.(2)草坪的面积为:30×20﹣(50x﹣x2)=600﹣50x+x2;(3)600﹣50x+x2=600﹣50×2+2×2=504(平方米).答:草坪(阴影部分)的面积504平方米.【点睛】本题考查了列代数式及代数式求值的问题,应熟记长方形的面积公式.另外,整体面积=各部分面积之和;阴影部分面积=原面积﹣空白的面积.进出数量-3 4 -1 2 -5(单位:吨)进出次数 2 1 3 3 2(1)这天仓库的原料比原来增加了还是减少了?请说明理由;(2)根据实际情况,现有两种方案:方案一:运进每吨原料费用5元,运出每吨原料费用8元;方案二:不管运进还是运出费用都是每吨原料6元;从节约运费的角度考虑,选用哪一种方案比较合适.(3)在(2)的条件下,设运进原料共a吨,运出原料共b吨,a、b之间满足怎样的关系时,两种方案的运费相同.【答案】(1)仓库原料比原来减少9吨;(2)选方案二运费少;(3)当a=2b时,两种方案运费相同.【解析】【分析】(1)将进出数量×进出次数,再把它们相加即可求解;(2)分别求出两种方案的钱数,再相加即可求解;(3)根据两种方案的运费相同,列出等式求解即可.【详解】(1)﹣3×2+4×1﹣1×3+2×3﹣5×2=﹣6+4﹣3+6﹣10=﹣9.答:仓库的原料比原来减少9吨.(2)方案一:(4+6)×5+(6+3+10)×8=50+152=202(元),方案二:(6+4+3+6+10)×6=29×6=174(元),因为174<202,所以选方案二运费少.(3)根据题意得:5a+8b=6(a+b),解得:a=2b.答:当a=2b时,两种方案运费相同.【点睛】本题考查了有理数的混合运算,列代数式,以及正数和负数,解题的关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.26.如图,点A、B和线段MN都在数轴上,点A、M、N、B对应的数字分别为﹣1、0、2、11.线段MN沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒.(1)用含有t的代数式表示AM的长为(2)当t= 秒时,AM+BN=11.(3)若点A、B与线段MN同时移动,点A以每秒2个单位速度向数轴正方向移动,点B以每秒1个单位的速度向数轴的负方向移动,在移动过程,AM和BN可能相等吗?若相等,请求出t的值,若不相等,请说明理由.【答案】(1)1+t,(2)192;(3)10,83.【解析】分析:(1)根据点M开始表示的数结合其运动速度和时间,即可得出运动后点M的表示的数,再依据点A表示的数为-1即可得出结论;(2)分别找出AM、BN,根据AM+BN=11即可列出关于t的含绝对值符号的一元一次方程,解方程即可得出结论;(3)假设能够相等,找出AM、BN,根据AM=BN即可列出关于t的含绝对值符号的一元一次方程,解方程即可得出结论.本题解析:(1)∵点A、M、N对应的数字分别为﹣1、0、2,线段MN沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒,∴移动后M 表示的数为t,N 表示的数为t+2,∴AM=t﹣(﹣1)=t+1.(2)由(1)可知:BN=|11﹣(t+2)|=|9﹣t|,∵AM+BN=11,∴t+1+|9﹣t|=11, 解得:192t = (3)假设能相等 ,则点A 表示的数为2t ﹣1,M 表示的数为t,N 表示的数为t+2,B 表示的数为11﹣t, ∴AM=|2t﹣1﹣t|=|t ﹣1|,BN=|t+2﹣(11﹣t)|=|2t ﹣9|,∵AM=BN ,∴|t﹣1|=|2t ﹣9|,1210,83t t ==解得 故在运动的过程中AM 和BN 能相等,此时运动的时间为 秒和8秒.点睛:本题考查了数轴及一元一次方程的应用,根据数量关系列出一元一次方程是解答试题的关键.。
苏科版七年级上册数学《期中测试卷》及答案
苏 科 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共8个小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-6的相反数是( ) A. 16- B. 16 C. -6 D. 62. “比a 的2倍大l 的数”用代数式表示是( )A. 2(a+1)B. 2(a ﹣1)C. 2a+1D. 2a ﹣1 3.下列算式中,运算结果为负数的是( )A. (5)--B. |5|-C. 3(5)-D. 2(5)- 4.下列运算结果正确的是( )A. 66x x -=B. 43y y y -+=-C. 220x y xy -=D. 235224x x x +=5.已知4a =,7b =,且0a b ->,则+a b 的值为( )A. B.或 C. 3-或11- D. 或11- 6.一个两位数,十位上数字是,个位上的数字是,这个两位数用代数式表示为( )A.B. x y +C. 10y x +D. 10x y + 7.下列说法正确的是( )A. 单项式-5xy 系数是5B. 单项式3a 2b 的次数是2C. 多项式x 2y 3-4x+1是五次三项式D. 多项式x 2-6x+3的项分别是x 2,6x,3 8.小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将﹣1、2、﹣3、4、﹣5、6、﹣7、8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a +b 的值为( )A. ﹣6或﹣3B. ﹣8或1C. ﹣1或﹣4D. 1或﹣1二、填空题(每题2分,满分20分,将答案填在答题纸上)9.如果高出海平面20米,记作+20米,那么-30米表示__________.10.在①-42,②+0.080080008…(相邻两个8之间依次增加一个0),③,④0,⑤120.这5个数中正有理数__________.(填序号)11.比较两个数的大小:(1)1()2--__________23-; (2) 3.14-__________π-.12.据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是_______________.13.冬季某天我国三个城市的最高气温分别是10C ︒-,1℃,7C ︒-,则任意两城市最高气温的最大温差是______.14.若单项式23n x y 与32m x y -是同类项,则m n -=__________. 15.已知22x y -=-,则324x y -+的值是__________.16.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上表示“0cm ”、“8cm ”的点分别对应数轴上的﹣2和x ,那么x 的值为_____.17.如图,长方形的长为2,长方形的宽和半圆的半径都是,用字母表示图中阴影部分的面积为__________(结果保留)18.如图,圆的周长为4个单位长,数轴每个数字之间的距离为1个单位,在圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字0的点与数轴上表示-1的点重合,再将数轴按逆时针方向环绕在该圆上(如圆周上表示数字3的点与数轴上表示-2的点重合…),则数轴上表示-2013的点与圆周上表示数字_______的点重合.三、计算题:每小题16分,共16分.19.(1)8(3)5---+(2)9481(16)49-÷⨯÷- (3)313()(24)864--⨯- (4)4211(2)6()3---+⨯- 四、计算与化简:20题每小题10分,21题6分,共16分.20.化简下列各式:(1)223556a a a a --+(2)226()3(2)m n n m --+21.先化简再求值:22225(3)2(3)x y xy xy x y --+,其中12x =-,1y =-. 五、解答题:共32分.22.某水泥厂仓库6天内进出水泥的吨数如下(“+”表示进库,“﹣”表示出库):+50、﹣45、﹣33、+48、﹣49、﹣36.(1)经过这6天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这6天,仓库管理员结算发现库里还存200吨水泥,那么6天前,仓库里存有水泥多少吨?(3)如果进出仓库水泥装卸费都是每吨5元,那么这6天要付多少元装卸费.23.观察下列等式(1)32211124=⨯⨯ (2)3322112234+=⨯⨯ (3)333221123344++=⨯⨯ (4)33332211234454+++=⨯⨯ …根据上述等式的规律,解答下列问题:(1)写出第5个等式: ;(2)写出第个等式(用含有的代数式表示);(3)设是正整数且2s ≥,应用你发现的规律,化简:222211(1)(1)44s s s s ⨯⨯+-⨯-⨯. 24.拖拉机油箱储油60.5,在正常情况下,拖拉机工作1耗油5.5,(1)工作后油箱内还剩多少油?(2)利用(1)的结果分别计算拖拉机工作4.5,6后油箱内剩油量;(3)这台拖拉机最多能工作多少?答案与解析一、选择题:本大题共8个小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-6的相反数是( ) A. 16- B. 16 C. -6 D. 6【答案】D【解析】【分析】根据相反数的定义:只有符号不同的两个数互为相反数求解即可.【详解】-6相反数是6故选:D【点睛】主要考查相反数的定义,掌握相反数的定义:只有符号不同的两个数互为相反数是关键. 2. “比a 的2倍大l 的数”用代数式表示是( )A. 2(a+1)B. 2(a ﹣1)C. 2a+1D. 2a ﹣1 【答案】C【解析】试题分析:解:因为该数比a 的2倍大,故是在2a 的基础上加上1,因此:答案是2a +1故选C考点:代数式的求法点评:解答此类试题只需把各个未知数以及其基本性质带入分析即可3.下列算式中,运算结果为负数的是( )A. (5)--B. |5|-C. 3(5)-D. 2(5)- 【答案】C【解析】【分析】由题意直接利用绝对值的性质以及有理数的乘方运算法则分别化简得出答案.【详解】解:A 、(5)5--=,不合题意,故此选项错误;B 、55-=,不合题意,故此选项错误;C 、3(5)125-=-,符合题意,故此选项正确;D 、2(5)25-=,不合题意,故此选项错误;故选:C.【点睛】本题主要考查绝对值的性质以及有理数的乘方运算,掌握并正确化简各数是解题关键. 4.下列运算结果正确的是( )A. 66x x -=B. 43y y y -+=-C. 220x y xy -=D. 235224x x x +=【答案】B【解析】【分析】由题意直接利用合并同类项法则,对各选项分别判断得出答案.【详解】解:A 、65x x x -=,故此选项错误;B 、43y y y -+=-,正确;C 、22x y xy -,无法合并计算,故此选项错误;D 、2322x x +,无法合并计算,故此选项错误;故选:B.【点睛】本题主要考查合并同类项,熟练掌握合并同类项的运算法则是解题关键.5.已知4a =,7b =,且0a b ->,则+a b 的值为( )A.B.或C. 3-或11-D. 或11- 【答案】C【解析】分析】先依据绝对值的性质求得a 、b 的值, 然后再由0a b ->, 确定出a 、b 的具体值, 最后代入计算即可.【详解】解:4a =,7b =, a=,b=7±.又 0a b ->,a=4, b=-7.或a=-4,b=-7,当a=4, b=-7,则a+b=4-7=-3;当a=-4, b=-7则a+b=-4-7=-11.故选:C.【点睛】本题主要考查有理数的加、减法及绝对值的定义域性质.6.一个两位数,十位上的数字是,个位上的数字是,这个两位数用代数式表示为( )A.B. x y +C. 10y x +D. 10x y +【答案】D【解析】【分析】根据题意把十位上的数字x 乘以10后加上y 即可得出答案.【详解】解:这个两位数表示为10x y +.故选:D.【点睛】本题考查列代数式,掌握把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解决本题的关键是十位数的表示方法.7.下列说法正确的是( )A. 单项式-5xy 的系数是5B. 单项式3a 2b 的次数是2C. 多项式x 2y 3-4x+1是五次三项式D. 多项式x 2-6x+3的项分别是x 2,6x,3 【答案】C【解析】【分析】直接利用单项式的次数与系数以及多项式的次数与项数的定义,逐一分析即可得出答案.【详解】解:A 、单项式-5xy 的系数是-5,故此选项错误;B 、单项式3a 2b 的次数是3,故此选项错误;C 、多项式x 2y 3-4x+1是五次三项式,正确;D、多项式x2-6x+3的项数分另是x2,-6x,3,故此选项错误;故选C.【点睛】此题主要考查了单项式和多项式的定义,正确把握相关定义是解题关键.8.小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将﹣1、2、﹣3、4、﹣5、6、﹣7、8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a+b的值为( )A. ﹣6或﹣3B. ﹣8或1C. ﹣1或﹣4D. 1或﹣1【答案】A【解析】【分析】由于八个数的和是4,所以需满足两个圈的和是2,横、竖的和也是2.列等式可得结论.【详解】解:设小圈上的数为c,大圈上的数为d,﹣1+2﹣3+4﹣5+6﹣7+8=4,∵横、竖以及内外两圈上的4个数字之和都相等,∴两个圈的和是2,横、竖的和也是2,则﹣7+6+b+8=2,得b=﹣5,6+4+b+c=2,得c=﹣3,a+c+4+d=2,a+d=1,∵当a=﹣1时,d=2,则a+b=﹣1﹣5=﹣6,当a=2时,d=﹣1,则a+b=2﹣5=﹣3,故选A.【点睛】本题考查了有理数的加法.解决本题的关键是知道横竖两个圈的和都是2.二、填空题(每题2分,满分20分,将答案填在答题纸上)9.如果高出海平面20米,记作+20米,那么-30米表示__________.【答案】低于海平面30米【解析】【分析】根据题意利用“正”和“负”所表示的意义进行分析作答即可.【详解】解:-30米表示低于海平面30米,故答案为:低于海平面30米.【点睛】本题主要考查正负数的意义,解题的关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量即在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.10.在①-42,②+0.080080008…(相邻两个8之间依次增加一个0),③,④0,⑤120.这5个数中正有理数是__________.(填序号)【答案】⑤【解析】【分析】由题意根据正有理数是正整数或正分数,即可得出答案.【详解】解:在①-42,②+0.080080008…(相邻两个8之间依次增加一个0),③,④0,⑤120.这5个数中正有理数⑤.故答案为:⑤.【点睛】本题考查有理数,掌握有理数是有限小数或无限循环小数,无理数是无限不循环小数.11.比较两个数的大小:(1)1()2--__________23-;(2) 3.14-__________π-.【答案】(1). >(2). >【解析】【分析】(1)由题意根据正数大于一切负数即可求解;(2)由题意根据两个负数绝对值大的反而小进行求解.【详解】解:(1)12()23-->-(2) 3.14π->-故答案为:;. 【点睛】考查了有理数的大小比较,掌握正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小.12.据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是_______________.【答案】75.510⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】55000000的小数点向左移动7位得到5.5,所以55000000用科学记数法表示为5.5×107, 故答案为5.5×107. 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.冬季某天我国三个城市的最高气温分别是10C ︒-,1℃,7C ︒-,则任意两城市最高气温的最大温差是______.【答案】11℃【解析】【分析】根据题意列出代数式:1℃-(-10℃)=11℃,1℃-(-7℃)=8℃,-7℃-(-10℃)=3℃,通过比较即可推出任意两城市中最大的温差是11℃.【详解】∵三个城市的最高气温分别是−10℃,1℃,−7℃,∴1℃−(−10℃)=11℃,1℃−(−7℃)=8℃,−7℃−(−10℃)=3℃,∵11℃>8℃>3℃,∴任意两城市中最大的温差是11℃.故答案为11℃.【点睛】本题考查有理数减法,学生们要认真计算即可.14.若单项式23n x y 与32m x y -是同类项,则m n -=__________.【答案】-1【解析】【分析】由题意直接根据同类项的概念,进行分析求解即可.【详解】解:∵单项式23n x y 与32m x y -是同类项,∴2m =,3n =,则231m n -=-=-.故答案为:-1.【点睛】本题考查同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”即相同字母的指数相同.15.已知22x y -=-,则324x y -+的值是__________.【答案】7【解析】【分析】由题意将324x y -+进行变形,再运用整体代入思想即可求解.【详解】解:324x y -+32(2)x y =--32(2)=-⨯-7=.故答案为7.【点睛】本题考查代数式求值,解决本题的关键是利用去添括号的技巧以及运用整体思想.16.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上表示“0cm ”、“8cm ”的点分别对应数轴上的﹣2和x ,那么x 的值为_____.【答案】6【解析】【分析】根据直尺的长度知x 为﹣2右边8个单位的点所表示的数,据此可得.【详解】解:由题意知,x 的值为﹣2+(8﹣0)=6,故答案为6.【点睛】本题主要考查了数轴,解题的关键是确定x 与表示﹣2的点之间的距离.17.如图,长方形的长为2,长方形的宽和半圆的半径都是,用字母表示图中阴影部分的面积为__________(结果保留)【答案】22122a a π-【解析】【分析】 根据题意和题目中图形,可知图中阴影部分的面积为长方形的面积减去半圆的面积,以此进行分析得出答案.【详解】解:由图可得,图中阴影部分的面积为:222112222a a a a a ππ⋅-⨯=-, 故答案为:22122a a π-. 【点睛】本题考查列代数式,解答本题的关键是明确题意并根据题意列出相应的代数式.18.如图,圆的周长为4个单位长,数轴每个数字之间的距离为1个单位,在圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字0的点与数轴上表示-1的点重合,再将数轴按逆时针方向环绕在该圆上(如圆周上表示数字3的点与数轴上表示-2的点重合…),则数轴上表示-2013的点与圆周上表示数字_______的点重合.【答案】0【解析】【分析】根据题意寻找规律可知每4个数一组,分别与0、3、2、1重合,计算2013÷4,看是第几组的第几个数即可得出答案.【详解】解:∵201345031÷=,∴表示-2013的点是第504组的第一个数,即是0.故答案为:0.【点睛】本题是结合数轴考查数的规律,根据题干条件寻找规律是解题的关键.三、计算题:每小题16分,共16分.19.(1)8(3)5---+(2)9481(16)49-÷⨯÷-(3)313()(24) 864--⨯-(4)4211(2)6()3---+⨯-【答案】)(1)0(2)1(3)13(4)-7【解析】【分析】(1)根据题意利用去括号和减法的计算法则进行计算即可求出值;(2)由题意从左到右运用乘除运算法则依次计算即可求出值;(3)由题意利用乘法分配律计算即可求出值;(4)根据题意先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【详解】解:(1)8(3)5---+835=-++=;(2)9481(16)49-÷⨯÷- 441819916=⨯⨯⨯ 1=: (3)313()(24)864--⨯- 9418=-++13=;(4)4211(2)6()3---+⨯- 142=---7=-.【点睛】本题考查有理数的混合运算,熟练掌握有理数的混合运算法则是解本题的关键.四、计算与化简:20题每小题10分,21题6分,共16分.20.化简下列各式:(1)223556a a a a --+(2)226()3(2)m n n m --+【答案】(1)22a a -+(2)9n -【解析】【分析】(1)根据题意直接合并同类项进行计算即可得出答案;(2)由题意直接去括号进而合并同类项即可得出答案.【详解】解:(1)223556a a a a --+ 22(35)(65)a a a a =-+-22a a =-+(2)226()3(2)m n n m --+ 226636m n n m =---9n =-.【点睛】本题主要考查整式的加减,熟练掌握并利用合并同类项方法是解题的关键.21.先化简再求值:22225(3)2(3)x y xy xy x y --+,其中12x =-,1y =-. 【答案】2297x y xy -,54【解析】【分析】 根据题意先对原式去括号合并得到最简结果,再把x 与y 的值代入计算即可求出值.【详解】解:22225(3)2(3)x y xy xy x y --+222215526x y xy xy x y =---2297x y xy =-, 当12x =-,1y =-时,代入2297x y xy -975424=-+=. 【点睛】本题考查整式的加减-化简求值,熟练掌握相关运算法则是解本题的关键.五、解答题:共32分.22.某水泥厂仓库6天内进出水泥的吨数如下(“+”表示进库,“﹣”表示出库):+50、﹣45、﹣33、+48、﹣49、﹣36.(1)经过这6天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这6天,仓库管理员结算发现库里还存200吨水泥,那么6天前,仓库里存有水泥多少吨?(3)如果进出仓库的水泥装卸费都是每吨5元,那么这6天要付多少元装卸费.【答案】(1)仓库里的水泥减少了,减少了65吨;(2)6天前,仓库里存有水泥265吨;(3)这6天要付1305元的装卸费.【解析】分析】(1)根据有理数的加法运算,可得答案;(2)根据有理数的减法运算,可得答案;(3)根据装卸都付费,可得总费用.【详解】解:(1)+50+(﹣45)+(﹣33)+(+48)+(﹣49)+(﹣36)=50﹣45﹣33+48﹣49﹣36=﹣65.答:仓库里的水泥减少了,减少了25吨;(2)200﹣(﹣65)=265(吨)答:6天前,仓库里存有水泥265吨;(3)(|+50|+|﹣45|+|﹣33|+|+48|+|﹣49|+|﹣36|)×5 =261×5 =1305(元)答:这6天要付1305元的装卸费.【点睛】考查了正数和负数,(1)有理数的加法是解题关键;(2)剩下的减去多运出的就是原来的,(3)装卸都付费.23.观察下列等式(1)32211124=⨯⨯ (2)3322112234+=⨯⨯ (3)333221123344++=⨯⨯ (4)33332211234454+++=⨯⨯ …根据上述等式的规律,解答下列问题:(1)写出第5个等式: ;(2)写出第个等式(用含有的代数式表示);(3)设是正整数且2s ≥,应用你发现的规律,化简:222211(1)(1)44s s s s ⨯⨯+-⨯-⨯. 【答案】(1)3333322112345564++++=⨯⨯(2)333332211234(1)4n n n +++++=⨯⨯+(3)3s 【解析】 【分析】(1)由题意可知从1开始的连续整数的立方和等于最后两个整数的平方积的14,据此进行分析即可得出答案; (2)由题意直接根据从1开始的连续整数的立方和等于最后两个整数的平方积的14,这一规律即可求得; (3)利用所得规律将原式变为33333333331234[1234(1)]s s +++++-+++++- ,据此进行计算可得.【详解】解:(1)第5个等式为3333322112345564++++=⨯⨯, 故答案为:3333322112345564++++=⨯⨯.(2)第个等式为333332211234(1)4n n n +++++=⨯⨯+; (3)222211(1)(1)44s s s s ⨯⨯+-⨯-⨯33333333331234[1234(1)]s s =+++++-+++++- 333333333312341234(1)s s =+++++------- 3s =.【点睛】本题主要考查数字的变化规律,解题的关键是根据已知条件推出规律.24.拖拉机油箱储油60.5,在正常情况下,拖拉机工作1耗油5.5,(1)工作后油箱内还剩多少油?(2)利用(1)的结果分别计算拖拉机工作4.5,6后油箱内剩油量;(3)这台拖拉机最多能工作多少?【答案】(1)工作后油箱内还剩油(60.5 5.5)t L -(2)当 4.5t h =时:60.5 5.5 4.535.75L -⨯=;当6t h =时:60.5 5.5627.5L -⨯=;(3)11t =【解析】【分析】(1)由题意直接根据剩油量=储油量-工作t 小时的耗油量进行分析可得答案;(2)根据题意把t=4.5,6分别代入(1)得到的关系式计算即可;(3)根据题意让剩油量等于0,进而求得t 的值即为最多工作时间.【详解】解:(1)由题意可知工作后油箱内还剩油(60.5 5.5)t L -;(2)当 4.5t h =时:60.5 5.5 4.535.75L -⨯=;当6t h =时:60.5 5.5627.5L -⨯=;(3)当60.5 5.50t -=时,11t =.答:4.5后油箱内剩油量为35.75,6后油箱内剩油量为27.5,这台拖拉机最多能工作11.【点睛】本题考查列代数式,根据题意得到剩油量的关系式是解决本题的关键.注意最多工作的时间为剩油量是0时的时间.。
苏科版七年级上册数学《期中考试试卷》附答案
苏科版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题:(本大题共有10小题,每小题3分,共30分)1. ﹣3的相反数是( )A.13- B.13C. 3-D.2.下列各式中,与-xy2是同类项的是()A. -3xy2B. 4x2yC. 3xyD. 2x2y23.2018年底,梁溪区人口数量约为101.5万人,用科学记数法应记为()A. 101.5×104人B. 1.015×106人C. 10.15×104人D. 1.015×105人4.下列说法中,①两个负数,绝对值大负数反而小;②最大的负数是-0.1;③一个有理数的平方一定是正数;④-1,0,1的倒数是本身.其中正确的是()A. 0个B. 1个C. 2个D. 3个5.已知多项式A=x2+2y2,B=-4x2+3y2,且A+B+C=0,则C为()A -3x2+5y2 B. 3x2+5y2 C. -3x2-5y2 D. 3x2-5y26.上等米每千克售价为x元,次等米每千克售价为y元,取上等米a千克和次等米b千克,混合后的大米每千克售价为( )A. a bx y++B.ax byab+C.ax bya b++D.2x y+7.请阅读一小段约翰斯特劳斯作品,根据乐谱中的信息,确定最后一个音符的时值长应为()A. 18B.12C.14D.348.小王利用计算机设计了一个计算程序,输入和输出的数据如表:那么,当输入数据为8时,输出的数据为( )A. 861B.863C.865D.8679.已知a+b =5,c-d =-2,则(b-c)-(-d-a)值为 ( )A. 7B. -7C. 3D. -310.如图,将四张边长各不相同的正方形纸片按如图方式放入矩形ABCD内(相邻纸片之间互不重叠也无缝隙),未被四张正方形纸片覆盖的部分用阴影表示,设右上角与左下角阴影部分的周长的差为l.若知道l的值,则不需要测量就能知道周长的正方形的标号为()A. ①B. ②C. ③D. ④二、填空题:(本大题共10空,每空2分,共20分)11.绝对值是7的数是________;-23的倒数是_____________.12.已知x=3是方程2x+m-4=0的一个解,则m﹣2 =________.13.下列式子①x=5,②-52a7,③2x y+,④ 7,⑤m,⑥abπ,⑦ 3a+b,⑧2c中,是单项式的有________________;是多项式的有______________________.(填序号)14.若5a x b2与-a3b y的和为单项式,则y x=_____________.15. x表示一个两位数,y表示一个三位数,如果将x放在y的左边,则得到一个五位数是.16.对于任意两个实数对(a,b)和(c,d),规定:当且仅当a=c且b=d时,(a,b)=(c,d).定义运算“”:(a,b) (c,d)=(ac-bd,ad+bc).若(1,2) (p,3)=(q,q),则pq=___________.17.对于两个不相等的有理数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规律解决问题:方程Max(x,﹣x}=3x+2的解为_____.18.已知(|x+1|+|x-2|)(|y-2|+|y+2|)=12,则代数式3x +5y 的最小值为________.三、解答题:(本大题共8小题,共60分)19.计算:(1)5111-3417+4417-111 (2)(112-34-16)×(-36) (3)-34―(1―05)÷13×[2+(-4)2] (4)(13-15)×52÷|-13|+(14)2019×42020 20.化简:(1)5x 2+2x -7x 2+6x(2)(a 2+2ab +b 2)+4(a 2-ab -3b 2)21.解方程:(1)x +3=5x -1(2)3x -14x -=2. 22.已知:A =2232x xy x y -++,B =222x xy x y +-+,求:(1)当x =1,y =-2时,求2A -(3A -2B )的值.(2)若(1)中代数式的值与x 的取值无关,求y 的值.23.有理数a 、b 、c 在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:c ﹣b 0,a+b 0,a ﹣c 0.(2)化简:|c ﹣b|+|a+b|﹣|a ﹣c|.24.如图,四边形ABCD 和ECGF 都是正方形,边长分别为a 和6.(1)写出表示阴影部分面积代数式;(结果要求化简)(2)当a=3.5时,求阴影部分的面积.25.将若干个奇数按每行8个数排成如图的形式:小军画了一方框框住了其中的9个数.(1)如图中方框内9个数之和是;(2)若小军画的方框内9个数之和等于333,则这个方框内左下角的那个数为_________;(3)试说明:方框内的9个数之和总是9的倍数.26.已知M=(a+24)x3﹣10x2+10x+5是关于x的二次多项式,且二次项系数和一次项系数分别为b和c,在数轴上A、B、C三点所对应的数分别是a、b、c.(1)则a=,b=,c=.(2)有一动点P从点A出发,以每秒4个单位的速度向右运动,多少秒后,P到A、B、C的距离和为40个单位?(3)在(2)的条件下,当点P移动到点B时立即掉头,速度不变,同时点T和点Q分别从点A和点C出发,向左运动,点T的速度1个单位/秒,点Q的速度5个单位/秒,设点P、Q、T所对应的数分别是x P、x Q、x T,点Q出发的时间为t,当143<t<172时,求2|x P﹣x T|+|x T﹣x Q|+2|x Q﹣x P|的值.答案与解析一、选择题:(本大题共有10小题,每小题3分,共30分)1. ﹣3的相反数是( )A.13- B.13C. 3-D.【答案】D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.2.下列各式中,与-xy2是同类项的是()A. -3xy2B. 4x2yC. 3xyD. 2x2y2【答案】A【解析】【分析】根据同类项的定义对各选项进行逐一分析即可.【详解】A、-3xy2与-xy2中,x、y的指数均相同,是同类项,故本选项正确;B、4x2y与-xy2中,x、y的指数均不相同,不是同类项,故本选项错误;C、3xy与-xy2中,x、y的指数均不相同,不是同类项,故本选项错误;D、2x2y2与-xy2中,x的指数不相同,不是同类项,故本选项错误.故选A.【点睛】本题考查的是同类项的定义,即所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.3.2018年底,梁溪区人口数量约为101.5万人,用科学记数法应记为()A. 101.5×104人B. 1.015×106人C. 10.15×104人D. 1.015×105人【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于101500000有9位,所以可以确定n=9-1=8;【详解】101.5万=101 500 0=1.015×106.故选B.【点睛】此题考查科学记数法表示方法,将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10.4.下列说法中,①两个负数,绝对值大的负数反而小;②最大的负数是-0.1;③一个有理数的平方一定是正数;④-1,0,1的倒数是本身.其中正确的是()A. 0个B. 1个C. 2个D. 3个【答案】B【解析】【分析】根据负数比较大小的方法,可对①作出判断;没有最大的负数,故可对②作出判断,当这个数为0时,可对③作出判断;依据倒数的定义可对④作出判断.【详解】两个负数,绝对值大的负数反而小,故①正确;没有最大的负数,故②错误;0的平方为0,故③错误;0没有倒数,故④错误.故选B.【点睛】本题主要考查的是绝对值、相反数、倒数的定义,取特殊值法的应用是解题的关键.5.已知多项式A=x2+2y2,B=-4x2+3y2,且A+B+C=0,则C为()A. -3x2+5y2B. 3x2+5y2C. -3x2-5y2D. 3x2-5y2【答案】D【解析】【分析】由于A+B+C=0,则C=-A-B,代入A和B的多项式即可求得C.【详解】由于多项式A=x2+2y24,B=-4x2+3y2且A+B+C=0,则C=-A-B=-(x2+2y2)-(-4x2+3y2)=-x2-2y2 +4x2-3y2=3x2-5y2.故选D.【点睛】解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则6. 上等米每千克售价为x元,次等米每千克售价为y元,取上等米a千克和次等米b千克,混合后大米每千克售价为( )A. a bx y++B.ax byab+C.ax bya b++D.2x y+【答案】C【解析】试题分析:上等米a千克需ax元;次等米b千克需by,则混合后大米每千克售价=ax bya b++.故选C.考点:列代数式.7.请阅读一小段约翰斯特劳斯作品,根据乐谱中的信息,确定最后一个音符的时值长应为()A. 18B.12C.14D.34【答案】C【解析】本题是有理数运算的实际应用,就是已知两个数的和及其中一个加数,求另外一个加数,作减法列出正确的算式依题意得:311424-=故选C.8.小王利用计算机设计了一个计算程序,输入和输出的数据如表:那么,当输入数据为8时,输出的数据为( ) A. 861 B. 863 C. 865 D. 867【答案】C【解析】【分析】由表格中的数据可知,输入的数据与输入的数据的分子相同,分母是分子的平方加1,从而可以解答本题.【详解】∵由表格可知,输入的数据与输出的数据的分子相同,而输出数据的分母正好是分子的平方加1, ∴当输入数据为8时,输出的数据为:2886581=+. 故选项A 错误,选项B 错误,选项C 正确,项D 错误,故选C.【点睛】此题考查规律型:数字的变化类,解题关键在于找到其规律.9.已知a +b =5,c -d =-2,则(b -c)-(-d -a)的值为 ( )A. 7B. -7C. 3D. -3【答案】A【解析】原式=b −c+d+a=(a+b)−(c −d)=5−(−2)=7,故选A.点睛:此题考查了整式的加减.整式的加减实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是括号外是“-”时,去括号后括号内的各项都要改变符号.10.如图,将四张边长各不相同的正方形纸片按如图方式放入矩形ABCD 内(相邻纸片之间互不重叠也无缝隙),未被四张正方形纸片覆盖的部分用阴影表示,设右上角与左下角阴影部分的周长的差为l .若知道l 的值,则不需要测量就能知道周长的正方形的标号为( )A. ①B. ②C. ③D. ④【答案】D【解析】【分析】设①、②、③、④四个正方形的边长分别为a、b、c、d,用a、b、c、d表示出右上角、左下角阴影部分的周长,利用整式的加减混合运算法则计算,得到答案.【详解】设①、②、③、④四个正方形的边长分别为a、b、c、d,由题意得,(a+d-b-c+b+a+d-b+b-c+c+c)-(a-d+a-d+d+d)=l,整理得,2d=l,则知道l的值,则不需测量就能知道正方形④的周长,故选D.【点睛】本题考查的是整式加减运算的应用,根据图形正确表示出右上角、左下角阴影部分的周长是解题的关键.二、填空题:(本大题共10空,每空2分,共20分)11.绝对值是7的数是________;-23的倒数是_____________.【答案】(1). 7或-7(2). -3 2【解析】【分析】根据绝对值、倒数的定义即可解答.【详解】绝对值是7的数是±7;-23的倒数是-32.故答案为±7,-32.【点睛】本题考查了绝对值、倒数的定义,解决本题的关键是熟记绝对值、倒数的定义.12.已知x=3是方程2x+m-4=0的一个解,则m﹣2 =________.【答案】-4【解析】把x=3代入方程得:6+m−4=0, 解得:m=−2,则m−2=−2−2=−4,故答案为−413.下列式子①x=5,②-52a7,③2x y+,④ 7,⑤m,⑥abπ,⑦ 3a+b,⑧2c中,是单项式的有________________;是多项式的有______________________.(填序号)【答案】(1). ②④⑤⑥(2). ③⑦【解析】【分析】根据“单项式即数或字母的积;多项式即几个单项式的和”进行判断即可得到答案.【详解】根据单项式和多项式的定义,知:②-52a7,④ 7,⑤m,⑥abπ是单项式;③2x y+,⑦ 3a+b是多项式.故答案为②④⑤⑥,③⑦.【点睛】此题考查了单项式和多项式的概念.注意:分母里含有字母的式子是分式,π表示一个数,不是字母.14.若5a x b2与-a3b y的和为单项式,则y x=_____________.【答案】8【解析】【分析】根据两单项式之和为单项式,得到两单项式为同类项,利用同类项的定义求出x,y的值即可解决问题.【详解】根据题意得:单项式5a x b2与-a3b y为同类项,∴x=3,y=2,则y x=23=8.故答案为8.【点睛】此题考查了合并同类项,熟练掌握同类项定义是解本题的关键.15. x表示一个两位数,y表示一个三位数,如果将x放在y的左边,则得到一个五位数是.【答案】1000x+y【解析】【详解】解:了解一个数的数位表示的意义,根据题意知,把一个两位数x放在一个三位数y的左边,相当于x扩大了1000倍.故五位数可表示为1000x+y.解:这个五位数为1000x+y.16.对于任意两个实数对(a,b)和(c,d),规定:当且仅当a=c且b=d时,(a,b)=(c,d).定义运算“”:(a,b) (c,d)=(ac-bd,ad+bc).若(1,2) (p,3)=(q,q),则pq=___________.【答案】135【解析】【分析】首先根据运算“⊕”:(a,b)⊕(c,d)=(ac-bd,ad+bc),可知(1,2)⊕(p,3)=(p-6,3+2p),再由规定:当且仅当a=c 且b=d时,(a,b)=(c,d),得出p-6=q,3+2p=q,解出p,q的值,即可得出结果.【详解】根据题意可知(1,2) (p,3)=(p-6,3+2p)=(q,q),∴p-6=q,3+2p=q,解得p=-9,q=-15,Pq=(-9)×(-15)=135.故答案为135.【点睛】此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.解题关键是对号入座不要找错对应关系.17.对于两个不相等的有理数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规律解决问题:方程Max(x,﹣x}=3x+2的解为_____.【答案】x=﹣1 2【解析】【分析】分x大于-x,x小于-x两种情况化简方程,求出解即可.【详解】解:①当x>-x,即x>0时,Max{x,-x}=x,方程化为x=3x+2,即x=-1,不合题意,舍去;②当x<-x,即x<0时,Max{x,-x}=-x,方程化为-x=3x+2,即-4x=2,x=1 2 -,故答案为: x=1 2 -,【点睛】本题主要考查一元一次方程的应用,注意理解题意分情况讨论列方程. 18.已知(|x+1|+|x-2|)(|y-2|+|y+2|)=12,则代数式3x+5y的最小值为________.【答案】5【解析】【分析】|x+1|+|x-2|相当于|x-(-1)|+|x-2|就是x轴上的一点到-1这个点和2这个点距离之和,x在-1和2之间的话,距离是最短的,就是3,可以得到|x+1|+|x-2|≥3,同理|y-2|+|y+2|≥4,求出x,y的最小值,可得结论. 【详解】∵|x+1|+|x-2|≥|(x+1)-(x-2)|=3,|y-2|+|y+2|≥(y-2-y+2)=4,∴满足上述情况下,12只能分解为:3×4,则必有:当-1≤x≤2时,|x+1|+|x-2|=3,当-2≤y≤2时,|y-2|+|y+2|=4,∴代数式3x+5y的最小值为3×(-1)+5×(-2)=-13.故答案为-13.【点睛】本题考查了数轴上两点间的距离以及求代数式的最值,难度较大,关键是利用数轴进行解答.三、解答题:(本大题共8小题,共60分)19.计算:(1)5111-3417+4417-111(2)(112-34-16)×(-36)(3)-34―(1―0.5)÷13×[2+(-4)2](4)(13-15)×52÷|-13|+(14)2019×42020【答案】(1) 6 ;(2)30;(3)-2734;(4)14【解析】【分析】(1)运用有理数的加法交换律和结合律进行简算即可;(2)运用乘法分配律把括号内的各项都乘以(-36),然后再算加减法即可;(3)先算乘方和括号内的,再算乘除,最后算加减即可得到答案;(4)先计算乘方、绝对值和积的乘方,再算乘除法,最后算加减即可.【详解】(1)5111-3417+4417-111=(5111-111)+(-3417+4417) =5+1=6;(2)(112-34-16)×(-36) =112×(-36)-34×(-36)-16×(-36) =-3+27+6=30;(3)-34―(1―0.5)÷13×[2+(-4)2] =-34―12÷13×18 =-34―12×3×18 = -34―27 =-2734; (4)(13-15)×52÷|-13|+(14)2019×42020 =201921125+(4)41534⨯÷⨯⨯ =103+43⨯ =10+4=14.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键,记住先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.化简:(1)5x 2+2x -7x 2+6x(2)(a 2+2ab +b 2)+4(a 2-ab -3b 2)【答案】(1)-2x 2+8x ;(2)5a 2-2ab -11b 2【解析】【分析】(1)直接找出同类项,进而合并得出即可;(2)首先去括号,进而找出同类项,合并同类项即可;【详解】(1)5x 2+2x -7x 2+6x=(5x 2-7x 2)+(2x +6x )=-2x 2+8x ;(2)(a 2+2ab +b 2)+4(a 2-ab -3b 2)=a 2+2ab +b 2+4a 2-4ab -12b 2=(a 2+4a 2)+(2ab -4ab )+(b 2-12b 2)=5a 2-2ab -11b 2【点睛】此题主要考查了整式的加减运算,正确去括号后合并同类项是解题关键.21.解方程:(1)x +3=5x -1(2)3x -14x -=2. 【答案】(1)x =1;(2)x =21【解析】【分析】(1)根据移项、合并同类项、系数化为1,可得方程的解;(2)根据去分母、去括号、移项、合并同类项、系数化为1,可得方程的解;【详解】(1)x +3=5x -1,x-5x=-1-3,-4x=-4,x=1;(2)3x -14x -=2. 4x-3(x-1)=244x-3x+3=244x-3x=24-3x=21.【点睛】本题考查了了解一元一次方程,注意去分母是要都乘以分母的最小公倍数,分子要加括号,去括号时要注意符号问题.22.已知:A =2232x xy x y -++,B =222x xy x y +-+,求:(1)当x =1,y =-2时,求2A -(3A -2B )的值.(2)若(1)中代数式的值与x 的取值无关,求y 的值.【答案】(1)-24 ;(2)y =47 【解析】【分析】(1)把A 与B 代入原式计算得到最简结果,将x 与y 的值代入计算即可求出值;(2)把(1)结果变形,根据结果与x 的值无关求出y 的值即可.【详解】(1)∵A=2232x xy x y -++,B=222x xy x y +-+,∴原式=2A-3A+2B=-A+2B=-(2232x xy x y -++)+2(222x xy x y +-+)=2232x xy x y -+--+22424x xy x y +-+,=743xy x y -+当x=1,y=-2时,原式=-14-4-6=-24;(2)原式=743=(74)3xy x y y x y -+-+,由结果与x 的取值无关,得到7y-4=0,解得,y=47. 【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.23.有理数a 、b 、c 在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:c ﹣b 0,a+b 0,a ﹣c 0.(2)化简:|c ﹣b|+|a+b|﹣|a ﹣c|.【答案】(1)> , <,<(2)-2b【解析】试题分析:(1)根据数轴判断出a 、b 、c 的正负情况,然后分别判断即可;(2)先去绝对值,然后合并同类项即可.试题解析:解:(1)由图可知,a <0,b >0,c >0且|b |<|a |<|c |,所以,c -b >0,a +b <0,a -c <0; (2)c b -+a b +-a c -=(c -b )+(-a -b )+(a -c )=c -b -a -b -c +a =-2b .点睛:(1)掌握通过数轴比较大小的方法;(2)掌握去绝对值的方法.24.如图,四边形ABCD 和ECGF 都是正方形,边长分别为a 和6.(1)写出表示阴影部分面积的代数式;(结果要求化简)(2)当a =3.5时,求阴影部分的面积. 【答案】(1)22a -3a +18 ;(2)1098 【解析】【分析】(1)阴影部分面积可视为大小正方形减去空白部分(即△ABD 和△BFG ),把对应的三角形面积代入即可得S=22a -3a+18; (2)直接把a=3.5代入(1)中可求出阴影部分的面积.【详解】(1)S=a 2+62-22a -12(a+6)×6 =a 2+62-12a 2-12a×6-12×62 =12a 2-3a+18. (2)当a=3.5时,S=12×3.52-3×3.5+18=1098. 【点睛】本题考查列代数式.要求对图形间的关系准确把握,找到阴影部分的面积是哪些规则图形的面积差是解题的关键.在考查代数式的同时也考查了学生的读图能力,培养了思维的缜密性和数形结合能力.25.将若干个奇数按每行8个数排成如图的形式:小军画了一方框框住了其中的9个数.(1)如图中方框内9个数之和是;(2)若小军画的方框内9个数之和等于333,则这个方框内左下角的那个数为_________;(3)试说明:方框内的9个数之和总是9的倍数.【答案】(1)189;(2)19;(3)方框内的9个数之和总是9的倍数分析】(1)根据已知9个数直接求出和即可,进而得出与中间的数的关系;(2)根据(1)中规律得出方框,左下角的那个数即可;(3)设中间的数为x,分别表示出其它8个数,进一步求和得出答案即可.【详解】(1)3+5+7+19+21+23+35+37+39=21×9=189;(2)这个方框内左下角的数为333÷9-2-16=19;(3)设中间一个数为x,则9个数之和为:(x-18)+(x-16)+(x-14)+(x-2)+x+(x+2)+(x+14)+(x+16)+(x+18)=9x.方框内9个数之和为9x,∴方框内的9个数之和总是9的倍数【点睛】此题主要考查了数字变化规律,根据已知得出表格中数据的变与不变是解题关键.26.已知M=(a+24)x3﹣10x2+10x+5是关于x的二次多项式,且二次项系数和一次项系数分别为b和c,在数轴上A、B、C三点所对应的数分别是a、b、c.(1)则a=,b=,c=.(2)有一动点P从点A出发,以每秒4个单位的速度向右运动,多少秒后,P到A、B、C的距离和为40个单位?(3)在(2)的条件下,当点P移动到点B时立即掉头,速度不变,同时点T和点Q分别从点A和点C出发,向左运动,点T的速度1个单位/秒,点Q的速度5个单位/秒,设点P、Q、T所对应的数分别是x P、x Q、x T,点Q出发的时间为t,当143<t<172时,求2|x P﹣x T|+|x T﹣x Q|+2|x Q﹣x P|的值.【答案】(1)﹣24,﹣10,10;(2)t=2s或5s;(3)46 【分析】(1)根据二次多项式的定义,列出方程求解即可;(2)分三种情形,分别构建方程即可解决问题;(3)当点P追上T的时间t1=1414413=-.当Q追上T的时间t2=3417512=-.当Q追上P的时间t3=2054-=20,推出当143<t<172时,位置如图,利用绝对值的性质即可解决问题.【详解】(1)∵M=(a+24)x3﹣10x2+10x+5是关于x的二次多项式, ∴a+24=0,b=﹣10,c=10,∴a=﹣24,故答案为﹣24,﹣10,10.(2)①当点P在线段AB上时,14+(34﹣4t)=40,解得t=2.②当点P在线段BC上时,34+(4t﹣14)=40,解得t=5,③当点P在AC的延长线上时,4t+(4t-14)+(4t-34)=40,解得t=223,不符合题意,排除,∴t=2s或5s时,P到A、B、C的距离和为40个单位.(3)当点P追上T的时间t1=1414 413=-.当Q追上T时间t2=3417 512=-.当Q追上P的时间t3=2054-=20,∴当143<t<172时,位置如图,∴2|x P﹣x T|+|x T﹣x Q|+2|x Q﹣x P|=2(3t-14)+34-4t+2(20-t)6t-28+34-4t+40-2t=74-28=46.【点睛】本题考查多项式、绝对值、数轴、一元一次方程的应用等知识,解题的关键是理解题意,学会构建方程解决问题,学会用分类讨论的思想思考问题.。
2021-2022学年江苏省常州市经开区七年级(上)期中数学试卷(解析版)
2021-2022学年江苏省常州市经开区七年级第一学期期中数学试卷一、选择题(每小题2分,共16分)1.在中百超市,某品牌的食品包装袋上“质量”标注:500g±10g;下列待检查的各袋食品中质量合格的是()A.530g B.515g C.480g D.495g2.在数0,,,0.,010010001…(相邻两个1之间依次增加1个0),3.1415,2.3%中,无理数有()A.2个B.3个C.4个D.5个3.下列计算正确的是()A.4a﹣2a=2B.2(a+2b)=2a+2bC.﹣a2﹣a2=﹣2a2D.7ab﹣(﹣3ab)=4ab4.在数轴上,与表示数﹣2的点的距离是3的点表示的数是()A.1B.5C.±3D.1或﹣55.下列说法:①最小的整数是0;②倒数等于本身的数是±1;③(﹣5)2=﹣52;④若|a|=﹣a,则a是负数;⑤2x2﹣xy2+1是关于x、y的二次三项式,其中正确的有()A.1个B.2个C.3个D.4个6.已知代数式x+2y+1的值是﹣3,则代数式2x+4y+1的值是()A.2B.﹣2C.7D.﹣77.一种商品每件进价为a元,按进价增加20%定出售价,后因库存积压降价,按售价的八折出售,每件亏损()A.0.01a元B.0.15a元C.0.25a元D.0.04a元8.任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数,再将这个新数按上述方式重新排列,再相减,….这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”.该“卡普雷卡尔黑洞数”为()A.594B.459C.954D.495二、填空题(每小题2分,共20分)9.﹣5的相反数是,﹣的倒数是.10.2021年5月15日我国天问一号探测器在火星预选着陆区着陆,在火星上首次留下中国印迹,迈出我国星际探测征程的重要一步.目前探测器距离地球约320000000千米,320000000这个数据用科学记数法可表示为.11.用“>”或“<”或“=”填空:(1)﹣|﹣2|﹣(﹣3);(2)﹣﹣.12.﹣的系数是.13.若3a m+2b4与﹣a5b n﹣1的和仍是一个单项式,则m+n=.14.如图是一个简单的运算程序,当输入n的值为3时,则输出的结果为.15.若|m|=3,|n|=5,且m﹣n>0,则m+n的值等于.16.若规定“*”的运算法则为a*b=ab﹣1,则﹣2*3=.17.若有理数a、b满足ab>0,则++=.18.填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是.三、计算题(每小题16分,共16分)19.(16分)计算:(1)(﹣4)﹣(+13)﹣(﹣9)+7;(2);(3);(4).四、计算与化简(第20题8分,第21题6分,共14分)20.化简(1)4xy﹣3x2﹣3xy+2x2(2)﹣3(2x2﹣xy)﹣(x2+xy﹣6).21.先化简,再求值:(4a2﹣3a)﹣(2a2+a﹣1)+(2﹣a2+4a),其中a=﹣2.五、解答题(第22题6分,第23题6分,第24题8分,第25题6分,第6题8分,共34分)22.小明在做一道题“已知两个多项式A、B,计算A﹣B时,误将A﹣B看A+B,求得的结果是9x2﹣2x+7,若B=x2+3x﹣2,请你帮助小明求出A﹣B的正确答案.”23.如图,数轴上的A、B两点所表示的数分别为a、b,a+b<0,ab<0,(1)原点O的位置在;A.点A的右边B.点B的左边C.点A与点B之间,且靠近点A D.点A 与点B之间,且靠近点B(2)若a﹣b=2,①利用数轴比较大小:a1,b ﹣1;(填“>”、“<”或“=”)②化简:|a﹣1|+|b+1|.24.某原料仓库一天的原料进出记录如下表(运进用正数表示,运出用负数表示):﹣34﹣12﹣5进出数量(单位:吨)进出次数21332(1)这天仓库的原料比原来增加或减少了多少吨?(2)根据实际情况,现有两种方案:方案一:运进每吨原料费用5元,运出每吨原料费用8元;方案二:不管运进还是运出费用都是每吨原料6元;从节约运费的角度考虑,选用哪一种方案较合适?请说明理由.25.将长为1,宽为a的长方形纸片(<a<1)如图①那样折一下,剪下一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图②那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作).(1)第一次操作后,剩下的长方形的长为,宽为(用含a的代数式表示).(2)第二次操作后,剩下的长方形的面积是.(列出代数式,不需化简)(3)假如a=0.6,第次操作后,剩下的长方形恰好是正方形.26.阅读下面的材料并解答问题:A点表示数a,B点表示数b,C点表示数c,且点A到点B的距离记为线段AB的长,线段AB的长可以用右边的数减去左边的数表示,即AB=b ﹣a.若a=﹣1,b是最小的正整数,c=﹣(﹣5).(1)b=,c=.(2)若将数轴折叠,使得A与C点重合:①点B与数表示的点重合;②若数轴上P、Q两点之间的距离为2018(P在Q的左侧),且P、Q两点经折叠后重合,则P、Q两点表示的数是、.(3)点A、B、C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,设运动时间为秒,试探索:3AC﹣5AB的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案一、选择题(每小题2分,共16分)1.在中百超市,某品牌的食品包装袋上“质量”标注:500g±10g;下列待检查的各袋食品中质量合格的是()A.530g B.515g C.480g D.495g【分析】先分别计算出净重的最大值和最小值,再确定合格范围,即可得出答案.解:净重的最大值是500+10=510(g),净重的最小值是500﹣10=490(g),这种食品的净重在490g~510g之间都是合格的,所以质量合格的是495g.故选:D.2.在数0,,,0.,010010001…(相邻两个1之间依次增加1个0),3.1415,2.3%中,无理数有()A.2个B.3个C.4个D.5个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:0是整数,属于有理数;是分数,属于有理数;0.是循环小数,属于有理数;3.1415是有限小数,属于有理数;2.3%是分数,属于有理数;∴无理数只有,010010001…(相邻两个1之间依次增加1个0)共2个.故选:A.3.下列计算正确的是()A.4a﹣2a=2B.2(a+2b)=2a+2bC.﹣a2﹣a2=﹣2a2D.7ab﹣(﹣3ab)=4ab【分析】根据合并同类项法则和去括号法则逐一计算即可得出答案.解:A.4a﹣2a=2a,此选项错误,不符合题意;B.2(a+2b)=2a+4b,此选项错误,不符合题意;C.﹣a2﹣a2=﹣2a2,此选项正确,符合题意;D.7ab﹣(﹣3ab)=10ab,此选项错误,不符合题意;故选:C.4.在数轴上,与表示数﹣2的点的距离是3的点表示的数是()A.1B.5C.±3D.1或﹣5【分析】设该点为x,再根据数轴上两点间的距离公式进行解答即可.解:设该点为x,则|x+2|=3,解得x=1或﹣5.故选:D.5.下列说法:①最小的整数是0;②倒数等于本身的数是±1;③(﹣5)2=﹣52;④若|a|=﹣a,则a是负数;⑤2x2﹣xy2+1是关于x、y的二次三项式,其中正确的有()A.1个B.2个C.3个D.4个【分析】根据整数的定义,倒数的定义,有理数的乘方,绝对值,多项式的项和次数的定义逐个判断即可.解:没有最小的整数,故①错误;倒数等于本身的数是±1,故②正确;(﹣5)2和﹣52;不相等,故③错误;若|a|=﹣a,则a是负数或0,故④错误;2x2﹣xy2+1是关于x、y的三次三项式,故⑤错误;即正确的个数是1,故选:A.6.已知代数式x+2y+1的值是﹣3,则代数式2x+4y+1的值是()A.2B.﹣2C.7D.﹣7【分析】由题意求出x+2y的值,原式前两项提取2变形后,代入计算即可求出值.解:由题意得到x+2y+1=﹣3,即x+2y=﹣4,则原式=2(x+2y)+1=﹣8+1=﹣7.故选:D.7.一种商品每件进价为a元,按进价增加20%定出售价,后因库存积压降价,按售价的八折出售,每件亏损()A.0.01a元B.0.15a元C.0.25a元D.0.04a元【分析】根据题意可以用代数式表示出每件亏损多少,本题得以解决.解:由题意可得,每件亏损为:a﹣a(1+20%)×0.8=a﹣0.96a=0.04a元,故选:D.8.任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数,再将这个新数按上述方式重新排列,再相减,….这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”.该“卡普雷卡尔黑洞数”为()A.594B.459C.954D.495【分析】任选一个符合要求的三位数,按照定义式子展开,化简到出现循环即可.解:若选的数为325,则用532﹣235=297,以下按照上述规则继续计算:972﹣279=693,963﹣369=594,954﹣459=495,954﹣459=495,….故“卡普雷卡尔黑洞数”是495.故选:D.二、填空题(每小题2分,共20分)9.﹣5的相反数是5,﹣的倒数是﹣.【分析】根据有理数的倒数、相反数的性质可求得此题结果.解:﹣5的相反数是5,﹣的倒数是﹣.故答案为:5,﹣.10.2021年5月15日我国天问一号探测器在火星预选着陆区着陆,在火星上首次留下中国印迹,迈出我国星际探测征程的重要一步.目前探测器距离地球约320000000千米,320000000这个数据用科学记数法可表示为 3.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解:320000000=3.2×108,故选:3.2×108.11.用“>”或“<”或“=”填空:(1)﹣|﹣2|<﹣(﹣3);(2)﹣<﹣.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.解:(1)﹣|﹣2|=﹣2,﹣(﹣3)=3,∴﹣|﹣2|<﹣(﹣3);(2)∵,∴.故答案为:(1)<;(2)<.12.﹣的系数是﹣.【分析】直接利用单项式的系数确定方法分析得出答案.解:﹣的系数是:﹣.故答案为:﹣.13.若3a m+2b4与﹣a5b n﹣1的和仍是一个单项式,则m+n=8.【分析】两者可以合并说明两式为同类项,根据同类项的字母相同及相同字母的指数相同可得出m和n的值.解:由题意得,两者可以合并说明两式为同类项,可得m+2=5,n﹣1=4,解得:m=3,n=5,m+n=8.故填:8.14.如图是一个简单的运算程序,当输入n的值为3时,则输出的结果为30..【分析】根据程序图计算代数式的值,若代数式的值>20则输出结果;若不大于20则返回继续算.解:当n=3时,n2﹣n=9﹣3=6<20,返回;当n=6时,n2﹣n=36﹣6=30>20,输出;故答案为:30.15.若|m|=3,|n|=5,且m﹣n>0,则m+n的值等于﹣2或﹣8.【分析】首先根据绝对值的性质确定m、n的值,然后代入代数式求值即可.解:∵|m|=3,|n|=5,∴m=3或﹣3,n=5或﹣5.∵m﹣n>0,即m>n,∴m=3,n=﹣5或m=﹣3,n=﹣5.则m+n=﹣2或﹣8.故答案为:﹣2或﹣8.16.若规定“*”的运算法则为a*b=ab﹣1,则﹣2*3=﹣7.【分析】根据定义运算法则列算式,然后先算乘法,再算减法进行计算.解:﹣2*3=﹣2×3﹣1=﹣6﹣1=﹣6+(﹣1)=﹣7,故答案为:﹣7.17.若有理数a、b满足ab>0,则++=﹣1或3.【分析】根据已知得出a、b同号,分为两种情况:①当a>0,b>0时,②当a<0,b <0时,去掉绝对值符号求出即可.解:∵ab>0,∴a、b同号,①当a>0,b>0时,则++=1+1+1=3;②当a<0,b<0时,则++=﹣1+(﹣1)+1=﹣1;故答案为:﹣1或3.18.填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是74.【分析】观察四个正方形,可得到规律,每个正方形中左下角的数比左上角的数大2、右上角的数比左上角的数大4.解:0+2=2 2+2=4 4+2=6,所以第四个正方形左下角的数为,6+2=80+4=4 2+4=6 4+4=8,所以第四个正方形右上角的数为,6+4=10.8=2×4﹣0 22=4×6﹣2 44=6×8﹣4 所以m=8×10﹣6=74.故答案为:74.三、计算题(每小题16分,共16分)19.(16分)计算:(1)(﹣4)﹣(+13)﹣(﹣9)+7;(2);(3);(4).【分析】(1)先去括号,再算加减法;(2)先算同分母分数,再相加即可求解;(3)根据乘法分配律夹布计算;(4)先算乘方,再算乘除,最后算减法;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.解:(1)(﹣4)﹣(+13)﹣(﹣9)+7=﹣4﹣13+9+7=﹣1;(2)=(6+3)+(﹣3.3+3.3)+4=10+0+4=14;(3)=﹣×24+×24﹣×24=﹣18+21﹣12=﹣9;(4)=﹣9﹣××=﹣9﹣=﹣9.四、计算与化简(第20题8分,第21题6分,共14分)20.化简(1)4xy﹣3x2﹣3xy+2x2(2)﹣3(2x2﹣xy)﹣(x2+xy﹣6).【分析】(1)直接合并同类项即可求解;(2)首先去括号,然后合并同类项即可求解.解:(1)4xy﹣3x2﹣3xy+2x2=xy﹣x2(2)﹣3(2x2﹣xy)﹣(x2+xy﹣6)=﹣6x2+3xy﹣x2﹣xy+6=﹣7x2+2xy+621.先化简,再求值:(4a2﹣3a)﹣(2a2+a﹣1)+(2﹣a2+4a),其中a=﹣2.【分析】原式去括号合并得到最简结果,把a的值代入计算即可求出值.解:原式=4a2﹣3a﹣2a2﹣a+1+2﹣a2+4a=a2+3,当a=﹣2时,原式=(﹣2)2+3=7.五、解答题(第22题6分,第23题6分,第24题8分,第25题6分,第6题8分,共34分)22.小明在做一道题“已知两个多项式A、B,计算A﹣B时,误将A﹣B看A+B,求得的结果是9x2﹣2x+7,若B=x2+3x﹣2,请你帮助小明求出A﹣B的正确答案.”【分析】根据题意,用9x2﹣2x+7减去B的2倍,求出A﹣B的正确答案是多少即可.解:9x2﹣2x+7﹣2(x2+3x﹣2)=9x2﹣2x+7﹣2x2﹣6x+4=7x2﹣8x+11∴A﹣B的正确答案是7x2﹣8x+11.23.如图,数轴上的A、B两点所表示的数分别为a、b,a+b<0,ab<0,(1)原点O的位置在C;A.点A的右边B.点B的左边C.点A与点B之间,且靠近点A D.点A 与点B之间,且靠近点B(2)若a﹣b=2,①利用数轴比较大小:a<1,b<﹣1;(填“>”、“<”或“=”)②化简:|a﹣1|+|b+1|.【分析】(1)由ab<0,a+b<0,可知a,b异号,故原点O的位置在点A与点B之间;(2)①由a﹣b=2结合(1)的结论,可知a<1,b>﹣1;②根据绝对值的定义化简即可.解:(1)∵ab<0,a+b<0,∴原点O的位置在点A与点B之间,且靠近点A.故答案为:C(2)①∵a﹣b=2,原点O的位置在点A与点B之间,且靠近点A,∴a<1,b<﹣1,故答案为:<、<;②∵a<1,b<﹣1,∴a﹣1<0,b+1<0,∴|a﹣1|+|b+1|=﹣a+1﹣b﹣1=﹣a﹣b.24.某原料仓库一天的原料进出记录如下表(运进用正数表示,运出用负数表示):进出数量(单位:﹣34﹣12﹣5吨)进出次数21332(1)这天仓库的原料比原来增加或减少了多少吨?(2)根据实际情况,现有两种方案:方案一:运进每吨原料费用5元,运出每吨原料费用8元;方案二:不管运进还是运出费用都是每吨原料6元;从节约运费的角度考虑,选用哪一种方案较合适?请说明理由.【分析】(1)将进出数量×进出次数,再把它们相加即可求解;(2)分别求出两种方案的钱数,再相加即可求解.解:(1)﹣3×2+4×1﹣1×3+2×3﹣5×2=﹣6+4﹣3+6﹣10=﹣9.答:仓库的原料比原来减少9吨.(2)方案一:(4+6)×5+(6+3+10)×8=50+152=202(元).方案二:(6+4+3+6+10)×6=29×6=174(元)因为174<202,所以选方案二运费少.25.将长为1,宽为a的长方形纸片(<a<1)如图①那样折一下,剪下一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图②那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作).(1)第一次操作后,剩下的长方形的长为a,宽为1﹣a(用含a的代数式表示).(2)第二次操作后,剩下的长方形的面积是(1﹣a)(2a﹣1).(列出代数式,不需化简)(3)假如a=0.6,第三次操作后,剩下的长方形恰好是正方形.【分析】(1)根据所给的图形可以看出每一次操作时所得正方形的边长都等于原矩形的宽,再根据长为1,宽为a的长方形即可得出剩下的长方形的长和宽;(2)再根据(1)所得出的原理,得出第二次操作时正方形的边长为1﹣a,即可求出第二次操作以后剩下的矩形的两边的长,再根据面积公式即可得出答案;(3)根据(2)所得出的长方形两边长分别是1﹣a和2a﹣1,把a的值代入,计算可得答案.解:(1)∵长为1,宽为a的长方形纸片(<a<1),∴第一次操作后剩下的矩形的长为a,宽为1﹣a.故答案为:a,1﹣a;(2)∵第二次操作时正方形的边长为1﹣a,第二次操作以后剩下的矩形的两边分别为1﹣a,2a﹣1,∴剩下的长方形的面积是(1﹣a)(2a﹣1);故答案为:(1﹣a)(2a﹣1);(3)根据(2)所得,第二次操作后剩下的长方形两边长分别是1﹣a和2a﹣1,当a=0.6时,1﹣a=0.4,2a﹣1=0.2,第三次操作后剩下的长方形两边长分别是0.4﹣0.2=0.2和0.2,此时是正方形,故答案为:三.26.阅读下面的材料并解答问题:A点表示数a,B点表示数b,C点表示数c,且点A到点B的距离记为线段AB的长,线段AB的长可以用右边的数减去左边的数表示,即AB=b ﹣a.若a=﹣1,b是最小的正整数,c=﹣(﹣5).(1)b=1,c=5.(2)若将数轴折叠,使得A与C点重合:①点B与数3表示的点重合;②若数轴上P、Q两点之间的距离为2018(P在Q的左侧),且P、Q两点经折叠后重合,则P、Q两点表示的数是﹣1007、1011.(3)点A、B、C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,设运动时间为秒,试探索:3AC﹣5AB的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其值.【分析】(1)利用正整数和相反数的定义可求解;(2)①由中点坐标公式可求AC的中点表示的数是2,由折叠的性质可求解;②由折叠的性质可求解;(3)利用两点距离公式分别求出AC,AB,即可求解.解:(1)∵b是最小的正整数,∴b=1,c=﹣(﹣5)=5.故答案为:1,5;(2)①∵将数轴折叠,使得A与C点重合:∴AC的中点表示的数是=2,∴与点B重合的数=2﹣1+2=3,②点P表示的数为2﹣=﹣1007,点Q表示的数为2+=1011,故答案为:①3;②﹣1007;1011;(3)3AC﹣5AB的值不变.理由:3AC﹣5AB=3[(5+3t)﹣(﹣1﹣2t)]﹣5[(1+t)﹣(﹣1﹣2t)]=8.故3AC﹣5AB的值不变,值为8.。
2023-2024学年江苏省常州市金坛区七年级(上)期中数学试卷(含解析)
2023-2024学年江苏省常州市金坛区七年级第一学期期中数学试卷一、选择题(每小题2分,共16分)1.2023的相反数是( )A.B.C.2023D.﹣20232.中国古代数学著作《九章算术》“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元,那么﹣80元表示( )A.支出20元B.支出80元C.收入20元D.收入80元3.下列各数中,比﹣2小的数是( )A.﹣1B.0C.﹣3D.14.下列各数中,属于无理数的是( )A.B.0.1011011101111C.D.π5.实数a、b在数轴上对应的点如图所示,则下列结论中正确的是( )A.a•b<0B.a+b<0C.|a|<|b|D.a﹣b<06.单项式x m﹣1y3与4xy n的和是单项式,则n m的值是( )A.3B.6C.8D.97.下列各式中,正确的是( )A.x2+3x2=4x4B.3x2﹣2x2=x2C.3x+5y=8xy D.2x2﹣x2=18.用棋子按下列方式摆放图形,依照此规律,第n个图形比第(n﹣1)个图形多摆放棋子( )A.(2n+1)个B.(2n﹣1)个C.(3n﹣1)个D.(3n﹣2)个二、填空题(每小题2分,共20分)9.计算:3+(﹣2)= .10.若|x|=2,则x= .11.买一个篮球需要m元,买一个排球需要n元,则买3个篮球和5个排球共需要 元.12.单项式﹣的系数是 .13.月球的半径约为1738000m,将数据1738000用科学记数法表示为 .14.计算:(﹣1)100+(﹣1)101= .15.若x﹣2y﹣1=0,则x﹣2y= .16.如果有理数a、b、c满足>0,<0,则ac 0(填“>”“<”或“=”).17.根据如图所示的程序计算,若输入x的值为1,则输出y的值为 .18.已知一列均不等为1的数a、1a2、a3、…、a n满足如下关系:a2=、a3=、a4=、…、a n+1=.若a1=2,则a2023= .三、计算(每小题16分,共16分)19.(16分)计算:(1)﹣15+1+4﹣20;(2);(3);(4).四、计算与化简(每小题16分,共16分)20.(16分)计算:(1)2xy﹣;(2)6x+2(x2﹣3x+1);(3)化简并求值:(3a2﹣a)﹣3(a2﹣a+1),其中a=﹣2;(4)化简并求值:2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,其中x=﹣,y=2.五、解答题(第21、22题每小题4分,第23题6分,第24题8分,第25题10分,共32分)21.邮递员骑车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B村,然后向东骑行9km到达C村,最后回到邮局.(1)以邮局为原点,向东为正方向,画出数轴,并在该数轴上表示A、B、C三个村庄的位置;(2)C村离A村有多远?(3)邮递员一共骑行了多少千米?22.一个三角形,第1条边长为a+b,第2条边长比第1条边长大b,第3条边长比第1条边长小(a﹣b).(1)求这个三角形的周长;(2)已知a=5,b=3,求这个三角形的周长.23.观察下列各个等式的规律:(1)32﹣12=8;(2)42﹣22=12;(3)52﹣32=16;(4)62﹣42=20;……解答下列问题:(1)请按以上规律写出第5个等式: ;(2)写出第n个等式 (用含n的代数式表示);(3)若两个边长分别是2m+1、2m﹣1的正方形的面积分别是S1、S2,用含有m的代数式表示S1﹣S2.24.某超市在国庆期间对顾客购物实行优惠,规定如下:一次性购物优惠办法不超过500元打9折超过500元其中500元打9折,超过500元的部分打7折(1)小李一次购物600元,他实际付款 元;(2)若顾客在超市一次购物x元,写出他的实际付款金额;(3)如果小李前后两次购物合计1200元,第一次购物a元(a>500),第二次购物(1200﹣a)元,若1200﹣a≤500,小李前后两次购物共付款多少元?25.数轴上点A、B分别表示数a、b,A、B两点之间的距离记作AB或BA,有AB=|a﹣b|或BA=|a﹣b|.如图,数轴上点A、B分别表示数﹣5、10.点P从点A出发,以每秒2个单位长度的速度向右移动,同时点Q从点B出发,以每秒3个单位长度的速度向左移动,设移动的时间是t秒.(1)填空:AB= ;(2)若PQ=5,求t的值;(3)在点P、Q出发的同时,点T从点O出发,以每秒5个单位长度的速度向右移动,是否存在常数k,使6PT+OQ﹣kOT的值与t无关?若存在,请求出k的值;若不存在,请说明理由.参考答案一、选择题(每小题2分,共16分)1.2023的相反数是( )A.B.C.2023D.﹣2023【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案.解:2023的相反数是﹣2023.故选:D.【点评】本题考查相反数,关键是掌握相反数的定义.2.中国古代数学著作《九章算术》“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元,那么﹣80元表示( )A.支出20元B.支出80元C.收入20元D.收入80元【分析】根据正数和负数的意义,即可解答.解:中国古代数学著作《九章算术》“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元,那么﹣80元表示支出80元,故选:B.【点评】本题考查了正数和负数,数学常识,熟练掌握正数和负数的意义是解题的关键.3.下列各数中,比﹣2小的数是( )A.﹣1B.0C.﹣3D.1【分析】先根据正数都大于0,负数都小于0,可排除A、D,再根据两个负数,绝对值大的反而小,可得比﹣2小的数是﹣3.解:根据两个负数,绝对值大的反而小可知﹣3<﹣2.故选:C.【点评】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.4.下列各数中,属于无理数的是( )A.B.0.1011011101111C.D.π【分析】根据无理数的定义:无限不循环小数判断即可.解:是分数,属于有理数,则A不符合题意;0.1011011101111是有限小数,属于有理数,则B不符合题意;是分数,属于有理数,则C不符合题意;π是无理数,则D符合题意;故选:D.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.5.实数a、b在数轴上对应的点如图所示,则下列结论中正确的是( )A.a•b<0B.a+b<0C.|a|<|b|D.a﹣b<0【分析】根据图中的点的位置即可确定a、b的正负,即可判断.解:根据数轴可知:a>1、﹣1<b<0.∴a•b<0,故选项A正确,符合题意;a+b>0,故选项B错误,不符合题意;a﹣b>0.故选项C错误,不符合题意;|a|>|b|.故选项D错误,不符合题意;.故选:A.【点评】本题考查数轴与实数对应关系、绝对值、有理数的加减法,乘除法知识,熟记运算法则是解题的关键.6.单项式x m﹣1y3与4xy n的和是单项式,则n m的值是( )A.3B.6C.8D.9【分析】根据已知得出两单项式是同类项,得出m﹣1=1,n=3,求出m、n后代入即可.解:∵x m﹣1y3与4xy n的和是单项式,∴m﹣1=1,n=3,∴m=2,∴n m=32=9故选:D.【点评】本题考查了合并同类项和负整数指数幂的应用,关键是求出m、n的值.7.下列各式中,正确的是( )A.x2+3x2=4x4B.3x2﹣2x2=x2C.3x+5y=8xy D.2x2﹣x2=1【分析】根据同类项、合并同类项法则逐项进行判断即可.解:A.x2+3x2=4x2,因此选项A不符合题意;B.3x2﹣2x2=x2,因此选项B符合题意;C.3x与5y不是同类项,不能合并计算,因此选项C不符合题意;D.2x2﹣x2=x2,因此选项D不符合题意.故选:B.【点评】本题考查同类项,理解同类项的定义,掌握合并同类项法则是正确解答的前提.8.用棋子按下列方式摆放图形,依照此规律,第n个图形比第(n﹣1)个图形多摆放棋子( )A.(2n+1)个B.(2n﹣1)个C.(3n﹣1)个D.(3n﹣2)个【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.解:设第n个图形的棋子数为Sn.第1个图形,S1=1;第2个图形,S2=1+4;第3个图形,S3=1+4+7;则第n个图形比第(n﹣1)个图形多(3n﹣2)枚棋子.故选:D.【点评】本题主要考查了学生通过特例分析从而归纳总结出一般结论的能力,解题的关键是找到图形的变化规律.二、填空题(每小题2分,共20分)9.计算:3+(﹣2)= 1 .【分析】根据有理数的加法法则计算即可.解:3+(﹣2)=+(3﹣2)=1.故答案为:1【点评】本题主要考查了有理数的加法,熟练掌握法则是解答本题的关键.10.若|x|=2,则x= ±2 .【分析】利用绝对值的定义:“绝对值代表与原点的距离”可知答案.解:因为|x|=2代表与原点的距离为2,而与原点距离为2的点有两个:2与﹣2,所以x=±2,故答案为:±2.【点评】本题考查了绝对值的定义,关键在于熟记知识完成问题.11.买一个篮球需要m元,买一个排球需要n元,则买3个篮球和5个排球共需要 (3m+5n) 元.【分析】根据题意,得3个篮球需要3m元,5个排球需要5n元.则共需(3m+5n)元.解:买3个篮球和5个排球共需要(3m+5n)元.故答案为:3m+5n【点评】注意代数式的正确书写:数字写在字母的前面,数字和字母之间的乘号要省略不写.注意多项式的后边有单位时,要带上括号.12.单项式﹣的系数是 ﹣ .【分析】单项式中的数字因数叫做单项式的系数,由此即可得到答案.解:单项式﹣的系数是﹣,故答案为:﹣.【点评】本题考查单项式的有关概念,关键是掌握单项式的系数的概念.13.月球的半径约为1738000m,将数据1738000用科学记数法表示为 1.738×106 .【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.解:1738000=1.738×106,故答案为:1.738×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.计算:(﹣1)100+(﹣1)101= 0 .【分析】原式利用乘方的意义化简即可得到结果.解:原式=1﹣1=0.故答案为:0.【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.15.若x﹣2y﹣1=0,则x﹣2y= 1 .【分析】由已知条件即可求得答案.解:∵x﹣2y﹣1=0,∴x﹣2y=1,故答案为:1.【点评】本题考查代数式求值,根据已知条件进行适当变形是解题的关键.16.如果有理数a、b、c满足>0,<0,则ac < 0(填“>”“<”或“=”).【分析】根据有理数的乘除法法则解答即可.解:∵>0,<0,∴a与b同号,c与b异号,∴a,c异号,∴ac<0.故答案为:<.【点评】本题考查了有理数大小比较,主要利用了同号得正,异号得负,需熟记.17.根据如图所示的程序计算,若输入x的值为1,则输出y的值为 4 .【分析】把x=1代入程序中计算,判断结果是否大于0,即可确定出y的值.解:根据题意得:2×12﹣4=﹣2<0,∴2×(﹣2)2﹣4=4>0,∴输出y的值为4.故答案为:4.【点评】此题考查了有理数的混合运算,解答本题的关键就是弄清楚题图给出的计算程序.18.已知一列均不等为1的数a、1a2、a3、…、a n满足如下关系:a2=、a3=、a4=、…、a n+1=.若a1=2,则a2023= ﹣ .【分析】分别计算出第2、3、4、5个数,据此得出循环规律,进一步求解即可.解:当a1=2时,a2==﹣3,a3==﹣,a4==,a5==2,……∴这列数以2、﹣3、﹣,为周期,4个一循环,∵2023÷4=505…3,∴a2023=a3=﹣,故答案为:﹣.【点评】本题主要考查数字的变化规律,解题的关键是掌握数字的循环规律.三、计算(每小题16分,共16分)19.(16分)计算:(1)﹣15+1+4﹣20;(2);(3);(4).【分析】(1)利用有理数的加减运算的法则进行运算即可;(2)先算乘法与除法,再算加减即可;(3)把除法转为乘法,再利用乘法的分配律进行运算即可;(4)先算乘方,再算乘法与除法,最后算加减即可.解:(1)﹣15+1+4﹣20=﹣14+4﹣20=﹣10﹣20=﹣30;(2)=﹣1+(﹣6)=﹣7;(3)===﹣6+4﹣7=﹣9;(4)=﹣3×(﹣)+=﹣3×(﹣)+==.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.四、计算与化简(每小题16分,共16分)20.(16分)计算:(1)2xy﹣;(2)6x+2(x2﹣3x+1);(3)化简并求值:(3a2﹣a)﹣3(a2﹣a+1),其中a=﹣2;(4)化简并求值:2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,其中x=﹣,y=2.【分析】(1)利用合并同类项的法则进行计算,即可解答;(2)先去括号,再合并同类项,即可解答;(3)先去括号,再合并同类项,然后把a的值代入化简后的式子进行计算,即可解答;(4)先去括号,再合并同类项,然后把x,y的值代入化简后的式子进行计算,即可解答.解:(1)2xy﹣=(2xy+2xy)+(﹣x3+0.5x3)+=4xy+;(2)6x+2(x2﹣3x+1)=6x+2x2﹣6x+2=2x2+2;(3)(3a2﹣a)﹣3(a2﹣a+1)=3a2﹣a﹣3a2+3a﹣3=2a﹣3,当a=﹣2时,原式=2×(﹣2)﹣3=﹣4﹣3=﹣7;(4)2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y=2x2y+2xy2﹣2x2y+2x﹣2xy2﹣2y=2x﹣2y,当x=﹣,y=2时,原式=2×(﹣)﹣2×2=﹣1﹣4=﹣5.【点评】本题考查了整式的加减﹣化简求值,合并同类项,准确熟练地进行计算是解题的关键.五、解答题(第21、22题每小题4分,第23题6分,第24题8分,第25题10分,共32分)21.邮递员骑车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B村,然后向东骑行9km到达C村,最后回到邮局.(1)以邮局为原点,向东为正方向,画出数轴,并在该数轴上表示A、B、C三个村庄的位置;(2)C村离A村有多远?(3)邮递员一共骑行了多少千米?【分析】(1)以邮局为原点,向东为正方向,画出数轴,根据题意在数轴上表示出A村、B村、C村即可;(2)根据数轴上两点之间的距离公式计算即可;(3)根据题意列出算式2+3+9+4计算即可.解:(1)由题意得,数轴为:(2)由数轴得,C村离A村距离为:4﹣(﹣2)=4+2=6(千米),答:C村离A村6千米;(3)由题意,得邮递员一共骑行了:2+3+9+4=18(千米),答:邮递员一共骑行了18千米.【点评】本题考查了数轴,考查了学生实际生活中对数轴的应用能力,同时考查了有理数的加减运算.22.一个三角形,第1条边长为a+b,第2条边长比第1条边长大b,第3条边长比第1条边长小(a﹣b).(1)求这个三角形的周长;(2)已知a=5,b=3,求这个三角形的周长.【分析】(1)根据第1条边长为a+b,第2条边长比第1条边长大b,第3条边长比第1条边长小(a﹣b),可以计算出第2条边和第3条边,然后再计算三角形的周长即可;(2)将a和b的值代入(1)中的结果计算即可.解:(1)由题意可得,第2条边为a+b+b=a+2b,第3条边为(a+b)﹣(a﹣b)=a+b﹣a+b=2b,∴这个三角形的周长为:(a+b)+(a+2b)+2b=a+b+a+2b+2b=2a+5b;(2)当a=5,b=3时,2a+5b=2×5+5×3=25.【点评】本题考查整式的加减,解答本题的关键是是明确去括号法则和合并同类项的方法.23.观察下列各个等式的规律:(1)32﹣12=8;(2)42﹣22=12;(3)52﹣32=16;(4)62﹣42=20;……解答下列问题:(1)请按以上规律写出第5个等式: 72﹣52=24 ;(2)写出第n个等式 (n+2)2﹣n2=4n+4 (用含n的代数式表示);(3)若两个边长分别是2m+1、2m﹣1的正方形的面积分别是S1、S2,用含有m的代数式表示S1﹣S2.【分析】(1)找出规律直接写出第5个即可;(2)按规律猜想证明结论即可;解:∵(1)32﹣12=8;(2)42﹣22=12;(3)52﹣32=16;(4)62﹣42=20;……∴(1)请按以上规律写出第5个等式:72﹣52=24;故答案为:72﹣52=24;(2)写出第n个等式(n+2)2﹣n2=4n+4,故答案为:(n+2)2﹣n2=4n+4.(3)S1﹣S2=(2m+1)2﹣(2m﹣1)2=4×2m=8m.【点评】本题考查数字变化规律,找出变化规律是解题的关键.24.某超市在国庆期间对顾客购物实行优惠,规定如下:一次性购物优惠办法不超过500元打9折超过500元其中500元打9折,超过500元的部分打7折(1)小李一次购物600元,他实际付款 520 元;(2)若顾客在超市一次购物x元,写出他的实际付款金额;(3)如果小李前后两次购物合计1200元,第一次购物a元(a>500),第二次购物(1200﹣a)元,若1200﹣a≤500,小李前后两次购物共付款多少元?【分析】(1)根据不超过500元打9折,超过500元,其中500元打9折,超过500元的部分打7折列式计算即可;(2)分两种情况列式即可;(3)把两次付款相加即可.解:(1)500×0.9+(600﹣500)×0.7=450+70=520(元);故答案为:520;(2)当0≤x≤500时,他的实际付款金额为0.9x元;当x>500时,他的实际付款金额为500×0.9+0.7(x﹣500)=(0.7x+100)元;(3)第一次购物a元(a>500)需付款500×0.9+0.7(a﹣500)=(0.7a+100)元;第二次购物(1200﹣a)元,若1200﹣a≤500,需付款0.9(1200﹣a)=(1080﹣0.9a)元;∵0.7a+100+1080﹣0.9a=(﹣0.2a+1180)元,∴小李前后两次购物共付款(﹣0.2a+1180)元.【点评】本题考查列代数式,解题的关键是读懂题意,理解优惠方案.25.数轴上点A、B分别表示数a、b,A、B两点之间的距离记作AB或BA,有AB=|a﹣b|或BA=|a﹣b|.如图,数轴上点A、B分别表示数﹣5、10.点P从点A出发,以每秒2个单位长度的速度向右移动,同时点Q从点B出发,以每秒3个单位长度的速度向左移动,设移动的时间是t秒.(1)填空:AB= 15 ;(2)若PQ=5,求t的值;(3)在点P、Q出发的同时,点T从点O出发,以每秒5个单位长度的速度向右移动,是否存在常数k,使6PT+OQ﹣kOT的值与t无关?若存在,请求出k的值;若不存在,请说明理由.【分析】(1)由点A、B分别表示数﹣5、10,得AB=|﹣5﹣10|=15;(2)P表示的数为﹣5+2t,Q表示的数为10﹣3t,故|﹣5+2t﹣(10﹣3t)|=5,可解得t 的值为2或4;(3)T表示的数为5t,P表示的数为﹣5+2t,Q表示的数为10﹣3t,6PT+OQ﹣kOT=6(5t+5﹣2t)+|10﹣3t|﹣k•5t,当10﹣3t≥0,即t≤时,6PT+OQ﹣kOT=6(5t+5﹣2t)+10﹣3t﹣k•5t=(15﹣5k)t+40,可得k=3时,6PT+OQ﹣kOT的值与t无关;当10﹣3t<0,即t>时,6PT+OQ﹣kOT=6(5t+5﹣2t)﹣10+3t﹣k•5t=(21﹣5k)t+20,得k=时,6PT+OQ﹣kOT的值与t无关.解:(1)∵点A、B分别表示数﹣5、10,∴AB=|﹣5﹣10|=15,故答案为:15;(2)P表示的数为﹣5+2t,Q表示的数为10﹣3t,∵PQ=5,∴|﹣5+2t﹣(10﹣3t)|=5,解得t=2或t=4;∴t的值为2或4;(3)存在常数k,使6PT+OQ﹣kOT的值与t无关,理由如下:T表示的数为5t,P表示的数为﹣5+2t,Q表示的数为10﹣3t,∴6PT+OQ﹣kOT=6(5t+5﹣2t)+|10﹣3t|﹣k•5t,当10﹣3t≥0,即t≤时,6PT+OQ﹣kOT=6(5t+5﹣2t)+10﹣3t﹣k•5t=(15﹣5k)t+40,∴当15﹣5k=0,即k=3时,6PT+OQ﹣kOT的值与t无关;当10﹣3t<0,即t>时,6PT+OQ﹣kOT=6(5t+5﹣2t)﹣10+3t﹣k•5t=(21﹣5k)t+20,∴当21﹣5k=0,即k=时,6PT+OQ﹣kOT的值与t无关.【点评】本题考查一元一次方程的应用,解题的关键是用含t的代数式表示动点所表示的数.。
2022-2022学年江苏省常州市七年级(上)期中数学试卷(解析版)
2022-2022学年江苏省常州市七年级(上)期中数学试卷(解析版)一、选择题(每题3分)1.(3分)4-的相反数是()A.4B.4-C.14-D.142.(3分)在3π-,3.1415,0,0.333-,227-,0.15-,2.010010001中,有理数有()A.2个B.3个C.4个D.5个3.(3分)若3,2,0mmnn==<且,则mn+的值是()A.1-B.1C.1或5D.1±4.(3分)如果||aa=,则()A.a是正数B.a是负数C.a是零D.a是正数或零5.(3分)下列说法:①若a、b互为相反数,则0ab+=;②若0ab+=,则a、b互为相反数;③若a、b互为相反数,则1ab=-;④若1ab=-,则a、b互为相反数.其中正确的结论有()A.1个B.2个C.3个D.4个6.(3分)已知3ab-=-,2cd+=,则()()bcad+--的值为() A.1B.5C.5-D.1-7.(3分)一个商标图案如图中阴影部分,在长方形ABCD中,8ABcm=,4BCcm=,以点A为圆心,AD为半径作圆与BA的延长线相交于点F,则商标图案的面积是()A.2(48)cmπ+B.2(416)cmπ+C.2(38)cmπ+D.2(316)cmπ+8.(3分)在一列数1某,2某,3某,中,已知11某=,且当2k…时,11214([][])44kkkk某某---=+--(符号[]a表示不超过实数a的最大整数,例如[2.6]2=,[0.2]0)=,则2022某等于()A.1B.2C.3D.4二、填空题(第11题每空1分,其他题每空2分)9.(1分)近年来,随着交通网络的不断完善,我市近郊游持续升温.据统计,在今年“十一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为人.10.(2分)比较大小:(8)-+|9|--;23-34-(填“>”、“<”、或“=”符号).11.(4分)单项33某y-的系数是,次数是次;多项式242某y某y-+是次项式.12.(1分)一只蚂蚁从数轴上一点A出发,爬了7个单位长度到了原点,则点A所表示的数是.13.(1分)绝对值不大于5的所有整数的积是.14.(1分)若三个非零有理数a,b,c满足||||||1abcabc++=,则||abcabc=.15.(1分)若5abab+=,则11ab+=.16.(1分)设22Py=-,23Qy=+,且31PQ-=,则y的值为.17.(1分)当k=时,多项式22(1)325某k某yy某y+----中不含某y项.18.(2分)有一数值转换器,原理如图所示,若开始输入某的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是,依次继续下去,第2022次输出的结果是.三、解答题19.(3分)计算(1)20(5)(18)-+---;(2)21293()12(3)23-÷+-+-;(3)4211(10.5)[2(3)]3-----;(4)222172(3)(6)()3-+-+-÷-.20.(5分)先化简,再求值:2214(1)2(1)(42)2某某某某--++-,其中3某=-.21.(6分)已知代数式2232A某某yy=++,2B某某y某=-+.(1)求2AB-;(2)若2AB-的值与某的取值无关,求y的值.22.(5分)观察下列算式,你发现了什么规律?212316=;22235126+=;2223471236++=;222245912346+++=;(1)根据你发现的规律,计算下面算式的值;22221238+++=(2)请用一个含n的算式表示这个规律:2222123n+++=.23.(6分)某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量;(4)已知该厂实行每周计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个另奖50元,少生产一个扣80元.试求该工艺厂在这一周应付出的工资总额.24.(6分)如图,用粗线在数轴上表示了一个“范围”,这个“范围”包含所有大于1且小于2的数(数轴上1与2这两个数的点空心,表示这个范围不包含数1和2).请你在数轴上表示出一个范围,使得这个范围;(1)包含所有大于3-且小于0的数[画在数轴(1)上];(2)包含1.5-、π这两个数,且只含有5个整数[画在数轴(2)上];(3)同时满足以下三个条件:[画在数轴(3)上]①至少有100对互为相反数和100对互为倒数;②有最小的正整数;③这个范围内最大的数与最小的数表示的点的距离大于3但小于4.25.(10分)当5某=,4.5y=时,求2221212()()2(1)333k某某y某y某y--+-+--+的值.一名同学做题时,错把5某=看成5某=-,但结果也正确,且计算过程无误,求k的值.2022-2022学年江苏省常州市七年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分)1.(3分)4-的相反数是()A.4B.4-C.14-D.14【分析】根据只有符号不同的两个数互为相反数,0的相反数是0即可求解.【解答】解:4-的相反数是4.故选:A.【点评】此题主要考查相反数的意义,解决本题的关键是熟记相反数的定义.2.(3分)在3π-,3.1415,0,0.333-,227-,0.15-,2.010010001中,有理数有()A.2个B.3个C.4个D.5个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:在3π-,3.1415,0,0.333-,227-,0.15-,2.010010001中,有理数有3.1415,0,0.333-,227,0.15-,共有5个.故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001,等有这样规律的数.3.(3分)若3,2,0mmnn==<且,则mn+的值是()A.1-B.1C.1或5D.1±【分析】根据绝对值的定义得到3m=或3-,2n=或2-,由于m、n异号,所以当3m=时,2n=-;当3m=-时,2n=,然后分别计算mn+即可.【解答】解:||3m=,||2n=,3m∴=或3-,2n=或2-,又0mn<,即m、n异号,∴当3m=时,2n=-,则321mn+=-=;当3m=-时,2n=,则321mn+=-+=-.故选:D.【点评】本题考查了绝对值:若0a>,则||aa=;若0a=,则||0a=;若0a<,则||aa=-.4.(3分)如果||aa=,则()A.a是正数B.a是负数C.a是零D.a是正数或零【分析】根据绝对值的性质进行分析:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:根据绝对值的意义,若一个数的绝对值等于它本身,则这个数是非负数,即a是正数或零.故选:D.【点评】考查了绝对值的性质.5.(3分)下列说法:①若a、b互为相反数,则0ab+=;②若0ab+=,则a、b互为相反数;③若a、b互为相反数,则1ab=-;④若1ab=-,则a、b互为相反数.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据相反数的定义对各小题进行逐一分析即可.【解答】解:①只有符号不同的两个数叫做互为相反数,∴若a、b 互为相反数,则0ab+=,故本小题正确;②0ab+=,ab∴=-,a∴、b互为相反数,故本小题正确;③0的相反数是0,∴若0ab==时,ab-无意义,故本小题错误;④1ab=-,ab∴=-,a∴、b互为相反数,故本小题正确.故选:C.【点评】本题考查的是相反数的定义,在解答此题时要注意0的相反数是0.6.(3分)已知3ab-=-,2cd+=,则()()bcad+--的值为()A.1B.5C.5-D.1-【分析】先把括号去掉,重新组合后再添括号.【解答】解:因为()()()()()()bcadbcadbacdabcd+--=+-+=-++=--++(1),所以把3ab-=-、2cd+=代入(1)得:原式(3)25=--+=.故选:B.【点评】(1)括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去括号;(2)添括号后,括号前是“+”,括号里的各项都不改变符号;添括号后,括号前是“-”,括号里的各项都改变符号.运用这一法则添括号.7.(3分)一个商标图案如图中阴影部分,在长方形ABCD中,8ABcm=,4BCcm=,以点A为圆心,AD为半径作圆与BA的延长线相交于点F,则商标图案的面积是()A.2(48)cmπ+B.2(416)cmπ+C.2(38)cmπ+D.2(316)cmπ+【分析】作辅助线DE、EF使BCEF为一矩形,从图中可以看出阴影部分的面积=三角形的面积-(正方形的面积-扇形的面积),依面积公式计算即可.【解答】解:作辅助线DE、EF使BCEF为一矩形.则2(84)4224CEFScm=+÷=,24416ADEFScm==正方形,290164360ADFScmππ==扇形,∴阴影部分的面积224(164)84()cmππ=--=+.故选:A.【点评】本题主要考查了扇形的面积计算,关键是作辅助线,并从图中看出阴影部分的面积是由哪几部分组成的.8.(3分)在一列数1某,2某,3某,中,已知11某=,且当2k…时,11214([][])44kkkk某某---=+--(符号[]a表示不超过实数a的最大整数,例如[2.6]2=,[0.2]0)=,则2022某等于()A.1B.2C.3D.4【分析】首先由11某=和当2k…时,1124([][])44kkkk某某---=--求得:2某,3某,4某,5某,6某,7某,8某,9某的值,则可得规律:n某每4次一循环,又由202245032÷=,可知20222某某=,则问题得解.【解答】解:由11某=且当2k…时,根据1124([][])44kkkk某某---=--可得:22某=,33某=,44某=,51某=,62某=,73某=,84某=,91某=,n某∴每4次一循环,202245032÷=,202222某某∴==,故选:B.【点评】此题考查数字的变化规律,理解取整函数,解题的关键是找到规律:n某每4次一循环.二、填空题(第11题每空1分,其他题每空2分)9.(1分)近年来,随着交通网络的不断完善,我市近郊游持续升温.据统计,在今年“十一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为52.0310人.【分析】科学记数法的表示形式为10na的形式,其中1||10a<…,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1>时,n是正数;当原数的绝对值1<时,n是负数.【解答】解:20.3万52030002.0310==,故答案为:52.0310.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10na的形式,其中1||10a<…,n为整数,表示时关键要正确确定a的值以及n的值.10.(2分)比较大小:(8)-+>|9|--;23-34-(填“>”、“<”、或“=”符号).【分析】根据正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的其值反而小;①首先化简,然后比较出即可;②通分,化成同分母分数,再比较其绝对值的大小,即可得出.【解答】解:①(8)8-+=-,|9|9-=-,89->-,(8)|9|∴-+>-;②228||3312-==,339||4412-==,891212<,2334∴->-.故答案为:>;>.【点评】本题主要考查了有理数大小比较,①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.11.(4分)单项33某y-的系数是13-,次数是次;多项式242某y某y-+是次项式.【分析】根据单项式的系数及次数的定义,多项式的次数及项数的概念解答.【解答】解:单项33某y-的系数是13-,次数是4次,多项式242某y某y-+是三次三项式.【点评】根据单项式的单项式的系数是单项式前面的数字因数,次数是单项式所有字母指数的和;多项式是由单项式组成的,常数项也是一项,多项式的次数是“多项式中次数最高的项的次数”.12.(1分)一只蚂蚁从数轴上一点A出发,爬了7个单位长度到了原点,则点A所表示的数是7±.【分析】一只蚂蚁从数轴上一点A出发,爬了7个单位长度到了原点,则这个数的绝对值是7,据此即可判断.【解答】解:一只蚂蚁从数轴上一点A出发,爬了7个单位长度到了原点,则这个数的绝对值是7,则A表示的数是:7±.故答案是:7±.【点评】本题考查了绝对值的定义,根据实际意义判断A的绝对值是7是关键.13.(1分)绝对值不大于5的所有整数的积是0.【分析】根据绝对值的性质列出算式,再根据任何数同0相乘都等于0解答.【解答】解:由题意得,(5)(4)(3)(2)(1)0123450-----=.故答案为:0.【点评】本题考查了有理数的乘法,准确列出算式并观察出有0因数是解题的关键.14.(1分)若三个非零有理数a,b,c满足||||||1abcabc++=,则||abcabc=1-.【分析】由||||||1abcabc++=知,a、b、c中有一个为负数,故能求||abcabc的值.【解答】解:||||||1abcabc++=a∴、b、c中有一个为负数,另外两个为正数,∴||1abcabc=-故答案为1-.【点评】本题主要考查有理数除法的知识点,比较简单.15.(1分)若5abab+=,则11ab+=5.【分析】根据分式的运算法则即可求出答案.【解答】解:5abab+=,∴5abab+=,∴115ab+=,故答案为:5【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.16.(1分)设22Py=-,23Qy=+,且31PQ-=,则y的值为52.【分析】将P与Q代入31PQ-=中计算即可求出y的值.【解答】解:根据题意得:3(22)(23)1yy--+=,去括号得:66231yy---=,移项合并得:410y=,解得:52y=.故答案为:52【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.17.(1分)当k=3时,多项式22(1)325某k某yy某y+----中不含某y项.【分析】不含有某y项,说明整理后其某y项的系数为0.【解答】解:整理只含某y的项得:(3)k某y-,30k∴-=,3k=.故答案为:3.【点评】本题考查多项式的概念.不含某项,说明整理后的这项的系数之和为0.18.(2分)有一数值转换器,原理如图所示,若开始输入某的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是3,依次继续下去,第2022次输出的结果是.【分析】根据运算程序进行计算,然后得到从第2次开始到第7次输出每6次为一个循环组依次循环,用(20221)-除以6,再根据商和余数的情况确定第2022出输出的结果.【解答】解:第2次输出的结果是6,第3次输出:1632=,第4次输出:358+=,第5次输出:1842=,第6次输出:1422=,第7次输出:1212=,第8次输出:156+=,第9次输出:1632=,,(20221)6335-÷=余3,∴第2022次输出的结果与第4次输出的结果相同,是8.故答案为:3,8.【点评】本题考查了函数值的求解,读懂运算程序并通过计算得到从第2次开始到第7次输出每6次为一个循环组依次循环是解题的关键.三、解答题19.(3分)计算(1)20(5)(18)-+---;(2)21293()12(3)23-÷+-+-;(3)4211(10.5)[2(3)]3-----;(4)222172(3)(6)()3-+-+-÷-.【分析】(1)根据有理数的加减混合运算法则进行计算即可求解;(2)根据有理数的混合运算顺序进行计算即可求解;(3)根据有理数的混合运算顺序:先算乘方,再算乘除,最后算加减,如果有括号先算括号内的即可求解;(4)先算乘方,再算乘除,最后算加减即可求解.【解答】解:(1)20(5)(18)-+---20518=--+7=-(2)21293()12(3)23-÷+-+-3689=-+-+4=(3)4211(10.5)[2(3)]3-----111(29)23=---11(7)6---716=-+16=(4)222172(3)(6)()3-+-+-÷-4929(6)9=-++-491854=-+-85=-【点评】本题考查了有理数的混合运算,解决本题的关键是熟练有理数混合运算顺序,同时注意符号的变化.20.(5分)先化简,再求值:2214(1)2(1)(42)2某某某某--++-,其中3某=-.【分析】原式去括号合并得到最简结果,把某的值代入计算即可求出值.【解答】解:原式224422236某某某某某=---+-=-,当3某=-时,原式9615=--=-.【点评】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.21.(6分)已知代数式2232A某某yy=++,2B某某y某=-+.(1)求2AB-;(2)若2AB-的值与某的取值无关,求y的值.【分析】(1)将A、B代入,然后去括号、合并同类项求解;(2)与某的取值无关说明某的系数为0,据此求出y的值.【解答】解:(1)2222322()AB某某yy某某y某-=++--+22232222某某yy某某y某=++-+-522某yy某=+-;(2)522(52)2某yy某y某y+-=-+,2AB-的值与某的取值无关,520y∴-=解得:25y=.【点评】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.22.(5分)观察下列算式,你发现了什么规律?212316=;22235126+=;2223471236++=;222245912346+++=;(1)根据你发现的规律,计算下面算式的值;22221238+++=204(2)请用一个含n的算式表示这个规律:2222123n+++=.【分析】(1)观察不难发现,从1开始的平方数的和,分母都是6,分子为最后一个数与比它大1的数的积再乘以比这个数的2倍大1的数的积;(2)根据规律写出含n的算式即可.【解答】解:(1)22228(81)(281)12382046+++++==;(2)2222(1)(21)1236nnnn+++++=.故答案为:204;(1)(21)6nnn++.【点评】此题考查数字的变化规律,难点在于观察出分子的变化情况.23.(6分)某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量;(4)已知该厂实行每周计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个另奖50元,少生产一个扣80元.试求该工艺厂在这一周应付出的工资总额.【分析】(1)根据表格将300与5相加即可求得周一的产量;(2)由表格中的数字可知星期六产量最高,星期五产量最低,用星期六对应的数字与300相加求出产量最高的量,同理用星期五对应的数字与300相加求出产量最低的量,两者相减即可求出所求的个数;(3)由表格中的增减情况,把每天对应的数字相加,利用互为相反数的两数和为0,且根据同号及异号两数相加的法则计算后,与300与7的积相加即可得到工艺品一周共生产的个数;(4)用计划的2100乘以单价60元,加超额的个数乘以50,减不足的个数乘以80-,即为一周工人的工资总额.【解答】解:(1)周一的产量为:3005305+=个;(2)由表格可知:星期六产量最高,为300(16)316++=(个),星期五产量最低,为300(10)290+-=(个),则产量最多的一天比产量最少的一天多生产31629026-=(个);(3)根据题意得一周生产的服装套数为:+++-+-+++-+++-3007[(5)(2)(5)(15)(10)(16)(9)]210010=+=(套).2110答:服装厂这一周共生产服装2110套;(4)(5)(2)(5)(15)(10)(16)(9)10++-+-+++-+++-=个,根据题意得该厂工人一周的工资总额为:+=(元).2110605010127100【点评】此题考查了有理数的混合运算的应用,此类题常常结合生产、生活中的热点问题,是近几年中考的必考题型,认真阅读,理解题意是解此类题的关键.24.(6分)如图,用粗线在数轴上表示了一个“范围”,这个“范围”包含所有大于1且小于2的数(数轴上1与2这两个数的点空心,表示这个范围不包含数1和2).请你在数轴上表示出一个范围,使得这个范围;(1)包含所有大于3-且小于0的数[画在数轴(1)上];(2)包含1.5-、π这两个数,且只含有5个整数[画在数轴(2)上];(3)同时满足以下三个条件:[画在数轴(3)上]①至少有100对互为相反数和100对互为倒数;②有最小的正整数;③这个范围内最大的数与最小的数表示的点的距离大于3但小于4.【分析】(1)和(2)可以直接根据题意,在数轴上包含这个点,用实心圆点,不包含这个点,用空心圆圈即可;(3)由于数轴上2-到2之间有无数个实数,并且包含1和1-,也不大于3,小于4,由此即可画出图形.【解答】解:(1)画图如下:(2)画图如下:(3)根据题意画图如下:【点评】此题考查了有理数大小的比较,用到的知识点是相反数、倒数、实数与数轴的对应关系,在数轴上包含这个点用实心圆点,不包含这个点用空心圆圈,数轴上的点与实数是一一对应的关系.25.(10分)当5某=,4.5y=时,求2221212()()2(1)333k某某y某y某y--+-+--+的值.一名同学做题时,错把5某=看成5某=-,但结果也正确,且计算过程无误,求k的值.【分析】原式去括号合并后,由错把5某=看成5某=-,但结果也正确,且计算过程无误,得到某系数为0,求出k的值即可.【解答】解:原式222222122222(4)323333k某某y某y某yk某y=-+-+-+-=-+-,由错把5某=看成5某=-,但结果也正确,且计算过程无误,得到243k=.【点评】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.。
江苏省苏州市2024-2025学年七年级上学期期中数学摸底调研卷
江苏省苏州市2024-2025学年七年级上学期期中数学摸底调研卷一、单选题1.下列各数:23202307π,,,,其中有理数的个数是()A .4个B .3个C .2个D .1个2.绝对值不大于3的所有整数的和是()A .0B .―1C .1D .63.2021年5月15日,天问一号着陆器搭载“祝融号”火星车成功降落在火星北半球的乌托邦平原.此时,火星与地球之间的距离超过320000000千米.数字320000000用科学记数法表示为()A .73210⨯B .83.210⨯C .73.210⨯D .93.210⨯4.下列说法正确的是()A .2x y +是单项式B .单项式232x y-的系数是32-C .33x y 的系数、次数都是3D .44x y -是4次单项式5.若单项式23x y-的系数是m ,次数是n ,在m +n 等于()A .53B .73C .83D .1036.下列说法:①正整数、负整数和零统称为整数;②面积为2的正方形的边长a 可以用数轴上的点表示;③绝对值相等的两个非零有理数的商为1,其中正确的是()A .①②B .①③C .②③D .①②③7.数线上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且5d d c -=-,则关于D 点的位置,下列叙述何者正确?()A .在A 的左边B .介于A 、C 之间C .介于C 、O 之间D .介于O 、B 之间8.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑨个图形中五角星的个数为()A .162B .180C .200D .128二、填空题9.若多项式()32022mx m x +-+是关于x 的三次三项式,那么m 的值为.10.已知a 、b 互为倒数,c 、d 互为相反数,m 是最大的负整数,则20225c dab m m++-的值为.11.若22m x y 与33n x y -是同类项,则mn =.12.一个数的倒数的相反数是9,这个数是.13.若关于x 的多项式()2311x k x +--中不含有x 的一次项,则k =.14.已知()120222025mm x --=是关于x 的一元一次方程,则m =.15.实数a ,b 在数轴上的位置如图所示,则化简代数式|a +b |﹣a 的结果是.16.如图1,在一条可以折叠的数轴上有A ,B ,C 三点,其中点A ,点B 表示的数分别为-8和+5,现以点C 为折点,将数轴向右对折,点A 对应的点1A 落在B 的右边;如图2,再以点B 为折点,将数轴向左折叠,点1A 对应的点2A 落在B 的左边.若2A ,B 两点之间的距离为1,设B ,C 两点之间的距离为x ,则x =.三、解答题17.计算:(1)()()121033⎛⎫-÷-⨯- ⎪⎝⎭;(2)()2021231210.25⎡⎤⎛⎫---+-⨯⎢⎥⎝⎭⎣⎦18.先化简,再求值:()22222222a b ab a b ab ⎡⎤⎣⎦--+,其中1,22a b =-=.19.已知M =4x 2﹣2x ﹣1,N =3x 2﹣2x ﹣5.(1)当x =﹣1时,求代数式4M ﹣(2M +3N )的值;(2)试判断M 、N 的大小关系,并说明理由.20.某同学做一道数学题,已知两个多项式A B 、,其中22325B x y xy x =-++,试求A B +.这位同学把A B +误看成A B -,结果求出的答案为244x y xy x +--.(1)请你替这位同学求出A B +的正确答案;(2)若3A B -的值与x 的取值无关,求y 的值.21.某校七年级男子篮球队共有10名队员,经测量他们的身高如下表(以160cm 为基准,超过的记为正数,不足的记为负数):球员序号①②③④⑤⑥⑦⑧⑨⑩身高与基准的差(单位:cm )2-1+5-03+8+03-3+5+(1)观察以上数据可以发现,这10名队员中,身高最高的是(填球员序号),最矮的是(填球员序号);(2)身高最高的队员比最矮的队员高多少?(3)求该年级男子篮球队队员的平均身高.22.设a 、b 都表示有理数,规定一种新运算“Δ”:当a ≥b 时,a Δb =b 2;当a <b 时,a Δb =2a .例如:1Δ2=2×1=2;3Δ(-2)=(-2)2=4.(1)(-3)Δ(-4)=;(2)求(2Δ3)Δ(-5);(3)若有理数x 在数轴上对应点的位置如图所示,求(1Δx )Δx -(3Δx ).23.如图①是一张边长为a 的正方形纸片,在它的一角剪去一个边长为b 的小正方形,然后将图①剩余部分(阴影部分)剪拼成如图②的一个大长方形(阴影部分)(1)请分别用含a b 、的代数式表示图①和图②中阴影部分的面积:图①阴影部分面积为:;图②阴影部分面积为:;(2)请探究并直接写出22a b a b a b -+-、、这三个式子之间的等量关系;(3)利用(2)中的结论,求22542.7457.3-的值.24.定义:关于x 的方程0ax b -=与方程0bx a -=(a 、b 均为不等于0的常数)称互为“伴生方程”,例如:方程210x -=与方程20x -=互为“伴生方程”.(1)若关于x 的方程230x -=与方程30x c -=互为“伴生方程”,则c =_________;(2)若关于x 的方程4310x m ++=与方程520x n -+=互为“伴生方程”,求m 、n 的值;(3)若关于x 的方程50x b -=与其“伴生方程”的解都是整数,求整数b 的值.25.读一读:式子“12345100+++++⋅⋅⋅+”表示1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“12345100+++++⋅⋅⋅+”表示为1001n n =∑,这里“∑”是求和符号.例如:1357999+++++⋅⋅⋅+,即从1开始的100以内的连续奇数的和,可表示为()50121n n =-∑;又如333333333312345678910+++++++++可表示为1031n n =∑.通过对以上材料的阅读,请解答下列问题.(1)246810100+++++⋅⋅⋅+(即从2开始的100以内的连续偶数的和)用求和符合可表示为______,它的计算结果是______;(2)计算()5311n n =-=∑______.(填写最后的计算结果)(3)计算()111kn n n ==+∑______.(用含字母k 的式子表示结果)26.为响应国家节能减排的号召,鼓励人们节约用电,保护能源,某市实施用电“阶梯价格”收费制度.收费标准如下表:居民每月用电量单价(元/度)不超过50度的部分0.5超过50度但不超过200度的部分0.6超过200度的部分0.8已知小刚家上半年的用电情况如下表(以200度为标准,超出200度记为正、低于200度记为负):一月份二月份三月份四月份五月份六月份-50+30-26-45+36+25根据上述数据,解答下列问题:(1)小刚家用电量最多的是月份,实际用电量为度;(2)小刚家一月份应交纳电费元;(3)若小刚家七月份用电量为x 度,求小刚家七月份应交纳的电费(用含x 的代数式表示).27.【定义】:在同一直线上的三点A 、B 、C ,若满足点C 到另两个点A .B 的距离具有2倍关系,则我们就称点C 是其余两点的强点(或弱点),具体地:①当点C 在线段AB 上时,若2CA CB =,则称点C 是A B 【,】的强点;若2CB CA =,则称点C 是B A 【,】的强点:②当点C 在线段AB 的延长线上时,若2CA CB =,则称点C 是A B 【,】的弱点【例如】如图,数轴上点A、B、C、D分别表示数1-,2,1,0,则点C是A B【,】的强点,又是A D【,】的强点,又是B C【,】的弱点;点D是B A【,】的弱点;【应用】I.如图,M.N为数轴上两点,点M所表示的数为2-,点N所表示的数为4.(1)M N【,】的强点表示的数为__________.【,】的弱点表示的数为__________.N M-,点B所表示的数为40.一只电子蚂蚁P从点B II.如图,数轴上,点A所表示的数为20出发,以4个单位每秒的速度沿数轴向左运动,设运动时间为t秒.(2)①求当t为何值时?P是B A【,】的弱点.②求当t为何值时?P、A、B三个点中恰有一个点为其余两点的强点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常州市2013~2014学年第一学期期中教学质量调研
七年级数学试题
一、选择题(每题2分,共16分)
1.在下列数:-(-12),-42,-9-,22
7,(-1)2004,0中,正数有 ------- 【 】
A .1个
B .2个
C .3个
D .4个
2.下列各式计算正确的是 -------------------------------------------------------------------------- 【 】 A .23-=-6; B .(-3)2 =-9; C .-3 2=-9;
D . -(-3)2=9
3.数a 、b 在数轴上的位置如图所示,则下列判断中,正确的是 ---------------------- 【 】
A .a > 1
B .b > 1
C .a <-1
D .b < 0
4.在22
7
-,π,0,.
333.0四个数中,有理数的个数为 ----------------------------------- 【 】
A .1
B .2
C .3
D .4
5.如果a =a ,则 ----------------------------------------------------------------------------------- 【 】
A . a 是正数;
B . a 是负数;
C . a 是零;
D . a 是正数或零
6.下列关于单项式-3
52
xy 的说法中,正确的是--------------------------------------------- 【 】
A .系数是-52,次数是4
B .系数是-5
2,次数是3
C .系数是-5,次数是4
D .系数是-5,次数是3
7.下列每组中的两个代数式,属于同类项的是 ---------------------------------------------- 【 】 A .
223
221xy y x 与 B .c a b a 225.05.0与
C .ab abc 33与
D .
33
82
1nm n m -与 8.如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪
拼成一个矩形(无缝隙,不重叠),若拼成的矩形一边长为3,则另一边长是 - 【 】
A .m +3
B .m +6
C .2m +3
D .2m +6
m +3
m
3
2013.11
a
b
1-01。