七年级数学一元一次方程5
北师大版七年级数学第五章-----一元一次方程
第五章 一元一次方程
思维导图
程
方次一元
一⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎪
⎪⎩
⎪⎪⎪⎪
⎪⎪⎪⎪⎪⎪
⎪⎪
⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪
⎪⎪⎨⎧⎪⎩⎪
⎨⎧⎪⎩⎪
⎨⎧写出答案检验解一元一次方程列一元一次方程设出适当的未知数找出等量审清题意题的一般步骤列一元一次方程解应用未知数的系数化为
合并同类项移项去括号去分母
解一元一次方程的步骤
结果仍是等式,所得的数或除以同一个不为个数:等式两边同时乘同一
性质结果仍是等式同一个代数式,所得的或减:等式两边同时加性质等式的基本性质数的值右两边的值相等的未知方程的解:使方程左、
数的等式方程的概念:含有未知未知数的指数都是式方程中的代数式都是整只含有一个未知数一元一次方程的概念
1)0(2)(11
考点精讲。
新浙教版七年级教学上册数学第五章节《一元一次方程》知识点总结及典型例题
新浙教版七年级上册数学第五章?一元一次方程?知识点及典型例题一元一次方程知识框图朱国林定义:方程两边都是整式,只含有一个未知数,未知数的指数是一次的方程一元一次方程方程的解:使方程中等号左右两边相等的未知数的值叫做方程的解等式的性质1:等式的两边加上〔或都减去〕同一个数或式,所得的结果仍是等式等式的根本性质等式的性质2:等式的两边都乘或都除以同一个数或式〔除数不能为0〕,所得的结果仍是等式解方程:求方程解的过程一元一次浙教版教材中分母为整数的方程:两边同乘最小公倍数,去分母方程的解法方程的类型:分母为小数的方程:先将小数变为整数,然后再去分母解方程的步骤去分母→去括号→移项→合并同类项→两边同除以未知数的系数分配问题:等量关系为“全部数量=各个局部数量之和行程问题:包括相遇问题和追及问题、顺风与逆风问题浙教版教材中等积问题:利用面积相等或体积相等列方程应用题类型调配问题:将A调往B等形成新的数量关系储蓄问题:要弄清利息、利息税、本利和等概念重叠问题:借助于韦恩图列方程,主要有人数重叠或面积重叠和差倍分问题:可以从题目中看出明确的等量关系折扣与利润问题:一元一次课外拓展应用数字问题:设间接未知数,注意数如何用字母表示出来题类型方程的应用年龄问题:抓住年龄增长的特点,一年一岁,人人平等工程问题:一般设总工作量为“1〞审题:分析题意,找出数量关系,尤其是等量关系设未知数:设哪一个量为未知数x,以好列方程为原那么列方程解实际列方程:根据相等关系列出方程问题的一般过解方程:求出未知数的值程检验:检查求得的值是否正确和符合实际情形,这是在草稿纸上完成或心里完成的,并写出答案以及答,这是在试卷上完成的1关于一元一次方程概念的拓展教材中的概念:方程两边都是整式,只含有一个未知数,未知数的指数是一次的方程是一元一次方程,那么x+2=x+3是一元一次方程吗?从概念上来看,是一元一次方程,但稍作变形,就是 2=3,是不是觉得很可笑?因此,一元一次方程的概念应该是:方程两边都是整式,只含有一个未知数,未知数的指数是一次,并且能变形为ax=b 〔a ≠0,a 、b 均为常数〕的方程是一元一次方程,也就是说,一元一次方程一定只有一个解。
七年级数学上册第5章一元一次方程5-2等式的基本性质作业新版浙教版
B.等式的性质 2
C.分式的基本性质C ) A.若 x-1=3,则 x=4 B.若 x-3=y-3,则 x-y=0 C.若12 x-1=x,则 x-1=2x D.若 3x+4=2x,则 3x-2x=-4
4.下列结论不成立的是( D ) A.若 x=y,则 5-x=5-y B.若 x=y,则-5x=-5y C.若ac =bc ,则 a=b D.若 a=b,则ac =bc
A.在等式 ab=ac 的两边同时除以 a,可得 b=c B.在等式 a=b 的两边同时除以 c2+1,可得c2+a 1 =c2+b 1 C.在等式ab =ac 的两边同时除以 a,可得 b=c D.在等式 x-2=6 的两边同时加上 2,可得 x=6
12.(1)能不能由(a+3)x=b-1,变形成 x =ba- +13 ?为什么?
(4)如果-1m0 =n5 ,那么 m=___-__2_n__.理 由 : 根 据 等 式 性 质 __2___ , 在 等 式 两 边 _______都__乘__以__-__1_0________.
7.利用等式性质解方程: (1)8x=6+7x;
解: x=6;
(2)3-6x=17+x;
解: x=-2
第5章 一元一次方程
5.2 等式的基本性质
课时目标
1.掌握等式的性质1和性质2
2.会用等式的性质解方程
A
1.已知 x=y,下列等式不成立的是( C )
A.x+2=y+2
B.3x=3y
C.5x=5y+1
D.-x2 =-2y
2.把方程12 x=1 变形为 x=2,其依据是( B )
A.等式的性质 1
5.由0.3y=6得到y=20,这是由于( D ) A.等式两边都加上0.3 B.等式两边都减去0.3 C.等式两边都乘以0.3 D.等式两边都除以0.3
初一上册数学解一元一次方程
初一上册数学解一元一次方程解一元一次方程是初中数学的基础内容。
下面是解一元一次方程的步骤:
1. 将方程整理成标准形式:ax + b = 0,其中a和b是已知常数。
2. 移项:将b移到方程的另一侧,得到ax = -b。
3. 消去系数a:如果a不等于0,则将方程两边都除以a,得到x = -b/a。
这是方程的唯一解。
4. 如果a等于0,那么方程就变成了bx = 0。
这种情况下,方程有无穷多解,即任何实数都可以作为方程的解。
总结起来,解一元一次方程的关键是将方程整理成标准形式,然后通过移项和消去系数的操作得到解。
如果a不等于0,则方程有唯一解;如果a等于0,则方程有无穷多解。
1。
七年级数学上册第5章一元一次方程5、3一元一次方程的解法2去分母法解方程新版浙教版
10 若关于 x 的方程 mx+23=n3-x 有无数个解,则 3m+n 的值 为( A ) A.-1 B.1 C.2 D.以上答案都不对
【点拨】mx+23=n3-x,移项,得 mx+x=n3-23,合并同类 项,得(m+1)x=n-3 2.因为该方程有无数个解,所以 m+1 =0,n-3 2=0,所以 m=-1,n=2.所以 3m+n=-1,故 选 A.
第5章一元一次方程
5.3. 去分母法解方程 2
习题链接
温馨提示:点击 进入讲评
1B 2D 3C 4A
5C 6 7 8
答案呈现
9 10 11 12
习题链接
温馨提示:点击 进入讲评
13 14 15
答案呈现
1 解方程3y-4 1-1=2y1+2 7时,为了去分母应将方程两边同乘
(B)
A.16
B.12
D.35x=2(x-1)+1 变形为 3x=10(x-1)+1
4 小明在解方程2x-3 1=x+3 a-1 去分母时,方程右边的-1 没
有乘 3,因而求得的解为 x=2,则原方程的解为( A ) A.x=0 B.x=-1
C.x=2 D.x=-2
5 某书上有一道解方程的题:1+3□x+1=x,□处在印刷时被 油墨盖住了,查后面的答案知道这个方程的解是 x=4,那 么□处的数应该是( C ) A.7 B.5 C.2 D.-2
13 (1)如下表,方程1,方程2,方程3,…,是按照一定规律 排列的一列方程,解方程1,并将它的解填在表格中;
4 3
(2)方程1x0-(x-a)=1 的解是 x=790,求 a 的值.该方程是 否是(1)中所给出的一列方程中的一个方程?如果是,它是第 几个方程?
解:把 x=790代入方程,得79-790-a=1,解得 a=8.此时, 方程即为1x0-(x-8)=1.观察可知,它是(1)中所给出的一列 方程中的一个方程,是第 7 个方程.
2024秋七年级数学上册第5章一元一次方程5.4应用一元一次方程——打折销售教案(新版)北师大版
1. 拓展阅读材料:
- 《数学与生活》:介绍数学在日常生活中的应用,包括购物打折、银行利息等实际问题。
- 《趣味数学》:通过有趣的故事和实例,引导学生了解一元一次方程在其他方法》:讲解一元一次方程的起源、发展及其在数学体系中的地位,培养学生对数学学科的兴趣。
- 引导学生探索一元二次方程、多元一次方程组等更高级的数学问题。
(3)数学思维方法的拓展:
- 培养学生运用分类讨论、归纳总结等数学思维方法解决问题。
- 引导学生学会用数学建模的方法,将实际问题抽象为数学模型,并运用一元一次方程进行求解。
板书设计
①条理清楚、重点突出、简洁明了:
1. 重点知识点:一元一次方程的定义、性质、求解方法。
2. 自主设计问题批改:评估学生是否能将所学知识应用到实际问题中,问题设计是否合理,解答过程是否清晰。
3. 调查报告批改:检查学生是否能正确收集和分析数据,报告撰写是否规范,分析是否深入。
4. 针对作业中出现的问题,及时给予反馈,指出学生存在的问题,并提供改进建议。
5. 鼓励学生在作业中展现自己的思考和创造力,对优秀作业进行表扬和展示,激发学生的学习积极性。
(4)项目导向学习:设置与打折销售相关的项目任务,引导学生自主探究,培养学生的自主学习能力和实践能力。
2. 教学活动设计:
(1)角色扮演:让学生扮演商家和消费者,模拟真实的购物场景,运用一元一次方程解决打折销售问题。
(2)实验:设计数学实验,让学生通过实际操作,感受一元一次方程在解决实际问题中的应用。
2. 课后自主学习和探究:
- 让学生尝试寻找生活中的其他一元一次方程问题,如票价计算、电话费结算等,并运用所学知识进行求解。
- 鼓励学生利用网络资源、图书馆书籍等途径,了解一元一次方程在其他学科领域的应用,如物理、化学、经济学等。
七年级数学 第五章 一元一次方程 5.2 求解一元一次方程 5.2.2 用去括号解一元一次方程练习
第2课时 用去括号解一元一次方程
B 规律方法综合练
6.若关于 x 的方程 2x-(2a-1)x+3=0 的解是 x=3,则 a 的 值为( C ) A.1 B.0 C.2 D.3
[解析] 把 x=3 代入方程,得 6-3(2a-1)+3=0, 解得 a=2.故选 C.
12/13/2021
第2课时 用去括号解一元一次方程
12/13/2021
第2课时 用去括号解一元一次方程
10.已知 y1=6-x,y2=2+7x. (1)若 y1=2y2,求 x 的值; (2)当 x 取何值时,y1 与 y2 互为相反数?
2 解:(1)根据 y1=2y2,得 6-x=2(2+7x),解得 x=15. (2)因为 y1 与 y2 互为相反数,
12/13/2021
第2课时 用去括号解一元一次方程
4.若代数式 5m+14的值与 5m-14的值互为相反数,则 m 的值是 ___0_._1___.
[解析] 由题意,得 5m+14+5m-14=0,5m+14+5m-54=0,10m=1,m=0.1.
12/13/2021
第2课时 用去括号解一元一次方程
4 所以 y1+y2=0,所以 6-x+(2+7x)=0,解得 x=-3.
12/13/2021
第2课时 用去括号解一元一次方程
C 拓广探究创新练
11.将四个数
a,b,c,d
排列成
a c
b d
,并且规定
a c
b d
=ad-bc.
若
x+1 -2
1-x 3
的值为
8,求
x
的值.
x+1 [解析] 根据题目中的规定可知-2
1-x
3
一元一次方程-七年级数学上册课件(浙教版)
x
x
思考:x=420是 1方程的解吗?
60 70
420 420
解:当x=420时,方程左边= - =7-6=1,右边=1,左边=右边,
60 70
所以x=420是此方程的解.
例3 x=1000和x=2000中哪一个是方程 0.52x-(1-0.52)x=80的解?
解:当x=1000时,方程左边=0.52×1000-(1-0.52)×1000=520-480=40,
由题意列方程为5x+4(5-x)=21.
【点睛】本题考查了列一元一次方程,找准等量关系是解题关键.
14
3
2+0.3x 5
问题1:每个方程中,各含有几个未知数? 1个
问题2:说一说每个方程中未知数的次数.
1次
问题3:等号两边的式子有什么共同点?
都是整式
一元一次方程的概念
只含有一个未知数,未知数的次数都是1,等号两边都是整式,
这样的方程叫做一元一次方程.
练一练
下列哪些是一元一次方程?
(1) 2 x 1 ;
(1) 2 5 3 ( × )
(2) 3x 1 7
( √ )
(3) 2a b
(× )
(4) x 3
( ×)
(5) x y 8
(√ )
(6) 2 x 2 5 x 1 0 ( √ )
含有未知数的等式叫做方程.
知识点一 一元一次方程的概念
请用已学知识,根据下列问题中的条件分别列出方程.
9.只列方程,不解方程
(1)某班有男生25人,比女生的2倍少15人,这个班女生有多少人?
(2)小明买苹果和梨共5千克,用去21元,其中苹果每千克5元,梨每
一元一次方程 浙教版2019-2020学年度七年级数学上册讲义+分层训练(含答案)
浙江版2019-2020学年度七年级数学上册第5章一元一次方程 5.1 一元一次方程【知识清单】 一、一元一次方程:1.方程:含有未知数的等式叫做方程.2.方程的解:使方程左右两边的值都相等的未知数的值叫做方程的解3.一元一次方程:只含有一个未知数,未知数的次数是1,这样的方程叫做一元一次方程. 二、方程的判定方法归纳:1.判断一个式子是不是方程必须看两点:一是等式,二是含有未知数,二者缺一不可;2.判定一个方程是不是一元一次方程,要看方程是否只含一个未知数并且未知数的指数都是1,而且是整式方程. 【经典例题】例题1、下列方程中,是一元一次方程的是( )A .x 2-2x =1B .-5x =0C .3x +2y =5D .x =x1【考点】一元一次方程的定义.【分析】根据一元一次方程的定义判断即可.【解答】A 、方程的次数是2次,即不是一元一次方程,故本选项错误;B 、是一元一次方程,故本选项正确;C 、含有两个未知数,即不是一元一次方程,故本选项错误;D 、不是整式方程,即不是一元一次方程,故本选项错误; 故选B .【点评】本题考查了对一元一次方程的定义的应用,熟练掌握一元一次方程的定义是解决问题的关键.例题2、如果方程(m -2)1-m x+26=0是关于x 的一元一次方程,那么m 的取值是______.【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,高于一次的项系数是0.据此可得出关于m 的方程,继而可求出m 的值. 【解答】由一元一次方程的定义,得⎩⎨⎧=-≠-1102m m ,解得m =-2.故填:-2.【点评】本题主要考查了一元一次方程的定义,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.【夯实基础】1.下列方程中,是一元一次方程的是( )A .2x =3y B.y 1+1=0 C .2x 2+3x =2 D. )2(31-x =1 2.下列说法正确的是( )A .x =-2是方程2x +5=0的解B .y =0是方程0.5(5-2y )=2.5的解C .方程3x -4=)3(31-x )的解是x =3D .方程43-x =2的解是x =383.一件高于成本50%标价的上衣,按8折销售仍可获利40元.设这件上衣的成本价为x 元,根据题意,下面所列方程正确的是( )A .x (1+50%)×0.8-x =30B . ( x +50%)×0.8-x =30C .x (1+50%)×0.8=30-xD .( x +50%)×0.8=30-x 4.关于|x -2|=2的说法正确的是 ( )A .不是方程B .是方程其解为0C .是方程其解为4D .是方程其解为0或45.若关于x 的方程(3k -2)x 2- (3k +2)x +5=0是一元一次方程,则k 的值为 .6.如图,两边都放着物体的天平处于平衡状态,用等式表示天平两边所放物体的质量关系为__ __________.7.下列不是方程的是__________.(填序号)① 1+2=3; ② 2x +1; ③ 2m +15=3; ④ x 2-6=0; ⑤ 3x +2y =9; ⑥ 3a +9>15.8.已知关于x 的方程5a -2x =9的解为x =3,求代数式(-a )2-2a +1的值.9.有甲、乙两支同样长的蜡烛,甲蜡烛可使用12 h ,乙蜡烛可使用10 h .两蜡烛同时点燃,几小时后乙蜡烛的长度是甲蜡烛长度的三分之一?(列出方程,不必求解)【提优特训】10.若5x -6与2x -8是一个正数两个平方根,则可列方程来表示为( )A .5x -6=2x -8B .5x -6+2x -8=0C .5x +6+2x +8=0D .5x +6+2x -8=0 11.若方程(3a -2)x 2+bx +c =0是关于x 的一元一次方程,则字母系数a ,b ,c 的值满足( )A .a =32,b =0,c 为任意数 B .a ≠32,b ≠0,c =0 C .a =32,b ≠0,c 为任意数 D .a =32,b ≠0,c ≠0 12.下列方程中,解为x =-2的方程是( )A .21x +3=x B . x -2=0 C .2x =4 D .321)63(31-=-x x 13.已知单项式-ma 3b m -1与单项式4a 3b 2是同类项,则关于m 的方程一定正确的是( )A .-m +4=0B .-m -4=0C .m -1+2=0D . m -1=2 14.已知53-m x-1=m 是关于x 的一元一次方程,则这个方程的解 .15.对于有理数a ,b ,c ,d ,规定一种运算bc ad dbc a -=,如43525342⨯-⨯==-2. 若32331=----x x ,则所得到的方程为 .16.根据下列条件列出方程. 1.设某数为x : (1)某数的65与-5的和是6; (2)某数的5倍等于该数的2倍与18的差; (3)某数减少20%后比该数的60%小5; (4)比某数的3倍大6的数是12”用方程表示为.2.(1)某长方形的周长是64,长与宽之比为5∶3,则长和宽各是多少?设长方形的长为5x . (2)爸爸今年38岁,比儿子年龄的3倍少4岁,则小明今年几岁?设小明今年x 岁.17.已知关于x 的方程ax 2+x b -3-2=0是一元一次方程,试求x a +b 的值.18.数学课上老师出示了四张卡片,上面分别写着不同的代数式,要求同学们解决下面的问题:用等号将这四张卡片的任意两张卡片上的数或式子连接起来,就会得到等式或方程. (1)你一共能写出几个等式?(2)在这些等式中,有几个一元一次方程?请写出这几个一元一次方程.19.汽车的油箱内储油40kg,已知工作时的耗油以及油箱内的剩油量的关系如表所示工作时间t(h) 耗油量p(kg) 剩油量m(kg)1 2.5 40-2.5=37.52 5 40-5=353 7.5 40-7.5=32.54 10 40-10=30………(1)写出工作10h后,油箱内的剩油量;(2)写出工作t h后,油箱内的剩油量为7.5kg,请你列出关于t的方程(不解方程).20.如图用火柴棒搭正方形,用n表示所搭正方形的个数,从而计算火柴棒的根数,当n=1,所需火柴棒为4根,当n=2,所需火柴棒为7根,当n=3,所需火柴棒为10根,…,请问:(1)第5个图形中火柴棒有多少根?(2)第n个图形中火柴棒有多少根?(3)若有一个图形由781根火柴棒组成,那么这个图形由几个正方形组成?【中考链接】21.(2018•临安)(3分)中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2 B.3 C.4 D.522.(2018•临沂)任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数7.0 为例进行说明:设7.0 =x ,由7.0 =0.7777…可知,l0x =7.7777…,所以l0x -x =7,解方程,得x =97,于是.得7.0 =97.将63.0 写成分数的形式是 .参考答案1、D2、B3、A4、D5、326、x+4=107、①②⑥ 10、B 11、C 12、D 13、D 14、-1或3 15、-(x -2)+3(3-x )=3 21、D 22、114 8.已知关于x 的方程5a -2x =9的解为x =3,求代数式(-a )2-2a +1的值. 解:∵方程5a -2x =9的解为x =3,∴5a -2×3=9, ∴a =3.∴(-a )2-2a +1 =(-3)2-2×3+1=4.9.有甲、乙两支同样长的蜡烛,甲蜡烛可使用12 h ,乙蜡烛可使用10 h .两蜡烛同时点燃,几小时后乙蜡烛的长度是甲蜡烛长度的三分之一?(列出方程,不必求解) 解:设x 小时后乙蜡烛的长度是甲蜡烛长度的一半,则1-101x =31(1-121x ). 16.根据下列条件列出方程. 1.设某数为x : (1)某数的65与-5的和是6; (2)某数的5倍等于该数的2倍与18的差; (3)某数减少20%后比该数的60%小5; (4)比某数的3倍大6的数是12”用方程表示为.2.(1)某长方形的周长是64,长与宽之比为5∶3,则长和宽各是多少?设长方形的长为5x . (2)爸爸今年38岁,比儿子年龄的3倍少4岁,则小明今年几岁?设小明今年x 岁. 16.解:1.(1)65x -5=6; (2) 5x =2x -18;(3) (1-20%)x =60%x -5; (4) 3x +6=12;2.解:(1)由长方形的长为3x ,得宽为2x ,则2(5x +3x )=64.(2)根据题意,得3x -4=38.17.已知关于x 的方程ax 2+x b -3-2=0是一元一次方程,试求x a +b 的值. 解:∵ax 2+x b-3-2=0是关于x 的一元一次方程,∴a =0,b -3=1, ∴a =0,b =4, ∴x -2=0, ∴x =2. ∴x a +b =24=16.18.数学课上老师出示了四张卡片,上面分别写着不同的代数式,要求同学们解决下面的问题:用等号将这四张卡片的任意两张卡片上的数或式子连接起来,就会得到等式或方程. (1)你一共能写出几个等式?(2)在这些等式中,有几个一元一次方程?请写出这几个一元一次方程. 18. 解:(1)6个.(2)有3个一元一次方程,它们分别是5x -3=-6,6261-=-x ,5x -3=261-x . 19.汽车的油箱内储油40kg ,已知工作时的耗油以及油箱内的剩油量的关系如表所示工作时间t (h) 耗油量p (kg) 剩油量m (kg) 1 2.5 40-2.5=37.5 2 5 40-5=35 3 7.5 40-7.5=32.5 4 10 40-10=30 ………(1)写出工作10h 后,油箱内的剩油量;(2)写出工作t h 后,油箱内的剩油量为7.5kg ,请你列出关于t 的方程(不解方程). 解: (1)40-10×2.5=15;工作10h 后,油箱内的剩油量为15 kg ; (2)根据题意,得40-2.5t =7.5.20.如图用火柴棒搭正方形,用n 表示所搭正方形的个数,从而计算火柴棒的根数,当n =1,所需火柴棒为4根,当n =2, 所需火柴棒为7根,当n =3, 所需火柴棒为10根,…,请问:(1)第5个图形中火柴棒有多少根?(2)第n个图形中火柴棒有多少根?(3)若有一个图形由781根火柴棒组成,那么这个图形由几个正方形组成?解:根据图形特点和题意可得:第1个图形n=1,火柴棒为3×1+1=4根,第2个图形n=2,火柴棒为3×2+1=7根,第3个图形n=3,火柴棒为3×3+1=10根,…(1)第5个图形中火柴棒有3×5+1=16根,(2)第n个图形中火柴棒有3×n+1=(3n+1)根,(3)3n+1=781,解得n=260,答:这个图形由260个正方形组成.。
人教版七年级数学上册 第三章 一元一次方程 实际问题与一元一次方程 第5课时 分段计费与优化方案问题
(1)①根据上表,用水量每月不超过20 m3,实际每立方米收水费_3___元; ②如果1月份某用户用水量为19 m3,那么该用户1月份应该缴纳水费5_7___元; (2)某用户2月份共缴纳水费80元,那么该用户2月份用了多少水? 解:(2)设该用户2月份用水x m3,根据题意,得20×3+(x-20)×(3.8+0.2)=80, 解得x=25. 答:该用户2月份用水25 m3
4.(4分)某服装商店出售一种优惠卡,花200元买这种卡后,凭卡可在这家商店 按8折购物,下列情况买卡购物更合算的是( D )
A.购物500元 B.购物900元 C.购物1 000元 D.购物1 200元 5.(4分)某同学花了30元钱购买图书馆会员证,只限本人使用,凭证购买入场 券每张1元,不凭证购买入场券每张4元,要想使得购会员证比不购会员证合算, 该同学去图书馆阅览应超过(C ) A.8次 B.9次 C.10次 D.11次
答:王大爷当年的住院费用为46 250元
9.(15分)一个12人的旅游团去某景点游玩,单独买票,共支付600元. (1)他们一共去了几个成人,几个学生? (2)请你帮他们算一算,用哪种方式买票更省钱,省多少?
北师大版七年级数学上册知识点归纳:第五章一元一次方程
一元一次方程知识点(一)、方程的有关概念1. 方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次),这样的方程叫做一元一次方程. 例如: 1700+50x=1800, 2(x+1.5x )=5等都是一元一次方程. (例1)3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解. (例2)注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程.⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.(二)、等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.等式的性质(1)用式子形式表示为:如果a=b ,那么a ±c=b ±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c ≠0),那么a c =b c(三)、移项法则:把等式一边的某项变号后移到另一边,叫做移项.(例3)(四)、去括号法则1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.(五)、解方程的一般步骤(例4)1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a ≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a ,得到方程的解x=b a). 一.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.二、一元一次方程的实际应用1. 和、差、倍、分问题:增长量=原有量×增长率 现在量=原有量+增长量(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.例1:兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?解:设x 年后,兄的年龄是弟的年龄的2倍,则x 年后兄的年龄是15+x ,弟的年龄是9+x .(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3•年后具有相反意义的量)2. 等积变形问题:(1)“等积变形”是以形状改变而体积不变为前提.常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积.(2) 常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S ·h =h r 2π ②长方体的体积 V =长×宽×高=abc例2 将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14). 解:设圆柱形水桶的高为x 毫米,依题意,得3. 工程问题:工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=1例3. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?解:设乙还需x 天完成全部工程,设工作总量为单位1,由题意得,(115+112)×3+x 12=1 4.行程问题:路程=速度×时间 时间=路程÷速度 速度=路程÷时间(1)相遇问题: 快行距+慢行距=原距(2)追及问题: 快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.例4. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
人教版七年级数学上册期末易错难点突破专练 :一元一次方程实际应用(五)
人教版七年级数学上册期末易错难点突破专练:一元一次方程实际应用(五)1.重百超市对出售A、B两种商品开展春节促销活动,活动方案有如下两种:(同一种商品不可同时参与两种活动)商品A B标价(单位:元)120 150 方案一每件商品出售价格按标价降价30% 按标价降价a% 方案二若所购商品达到或超过101件(不同商品可累计)时,每件商品按标价降价20%后出售(1)某单位购买A商品50件,B商品40件,共花费9600元,试求a的值;(2)在(1)的条件下,若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.2.综合与实践在数学综合与实践课上,老师以“出行方式的选择“为主题,请同学们发现和提出问题并分断和解决问题.问题情境随着互联网的普及和城市交通的多样化,人们出行的时间与方式有了更多的选择.某市有出租车.滴滴快车和神州专车三种网约车,收费标准见下图(该市规定网约车行驶的平均速度为40公里/时)问题一“奋进小组”提出的问题是:如果乘坐这三种网约车的里程数都是10公里.他们发现乘坐出租车最节省钱.费用为元;问题二“质疑小组”提出了两个问题,请从A,B两个问题中任选一问作答,A.从甲地到乙地,乘坐出租车比滴滴快车节省13.6元,求甲.乙两地间的里程数.B.神州专车和滴滴快车对第一次下单的乘客有如下优惠活动:神州专车收费打八折,另外加5.3元的空车费;滴滴快车超过8公里收费立减6.5元.如果两位顾客都是第一次下单.分别乘坐神州专车、滴滴快车且收费相同,求这两位顾客乘车的里程数.3.为了资源再利用,学校计划对库存的桌椅进行维修,现有甲、乙两个木工组,甲组每天修桌椅10套,乙组每天比甲组多修5套,甲组单独修完这些桌椅比乙组单独修完多用5天.甲组每天维修费200元,乙组每天维修费300元.(1)请问学校库存多少套桌椅?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天80元生活补助费,现有三种修理方案:①由甲组单独修理;②由乙组单独修理;③甲、乙合作同时修理;你认为哪种方案最划算,请说明理由?4.李老师准备购买若干个某种笔记本奖励学生,甲、乙两家商店都有足够数量的这种笔记本,其标价都是每个6元,甲商店的促销方案是:购买这种笔记本数量不超过5个时,原价销售;超过5个时,超过部分按原价的7折销售.乙商店的销售方案是:一律按标价的8折销售.(1)若李老师要购买x(x>5)个这种笔记本,请用含x的式子分别表示李老师到甲商店和乙商店购买全部这种笔记本所需的费用.(2)李老师购买多少个这种笔记本时,到甲、乙两家商店购买所需费用相同?(3)若李老师需要20个这种笔记本,则到甲、乙哪家商店购买更优惠?5.某超市第一次用3600元购进了甲、乙两种商品,其中甲种商品80件,乙种商品120件.已知乙种商品每件进价比甲种商品每件进价贵5元.甲种商品售价为20元/件,乙种商品售价为30元/件.(注:获利=售价﹣进价)(1)该超市第一次购进甲、乙两种商品每件各多少元?(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得多少利润?(3)该超市第二次又购进同样数量的甲、乙两种商品.其中甲种商品每件的进价不变,乙种商品进价每件少3元;甲种商品按原售价提价a%销售,乙种商品按原售价降价a%销售,如果第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多260元,那么a的值是多少?6.实践与探索:将连续的奇数1,3,5,7…排列成如下的数表,用十字框框出5个数(如图).(1)若将十字框上下左右平移,但一定要框住数列中的5个数,若设中间的数为a,用a的代数式表示十字框框住的5个数字之和;(2)十字框框住的5个数之和能等于285吗?若能,分别写出十字框框住的5个数;若不能,请说明理由;(3)十字框框住的5个数之和能等于365吗?若能,分别写出十字框框住的5个数;若不能,请说明理由.7.某人乘船由A地顺流而下到达B地,然后又逆流而上到C地,共用了3小时.已知船在静水中速度为每小时8千米,水流速度是每小时2千米.已知A、B、C三地在一条直线上,若AC两地距离是2千米,则AB两地距离多少千米?(C在A、B之间)8.一个两位数,十位数字是个位数字的两倍,将这个两位数的十位数字与个位数字对调后得到的两位数比原来的两位数小27,求这个两位数.9.某品牌运动鞋经销商购进A、B两种新式运动鞋,按标价售出后可获利48000元.已知购进A种运动鞋的数量是B种运动鞋数量的2倍,这两种运动鞋的进价、标价如下表所示.A B款式价格进价(元/双)100 120标价(元/双)250 300(1)这两种运动鞋各购进多少双?(2)如果A种运动鞋按标价9折出售,B种运动鞋按标价8折出售,那么这批运动鞋全部售出后,经销商所获利润比按标价出售少收入多少元?10.某超市第一次用12000元购进甲、乙两种商品.其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:甲乙进价(元/件)44 60售价(元/件)58 80(1)该超市第一次购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多360元,求第二次乙商品是按原价打几折销售?(提示:设原价打m折销售,则实际售价=原价×)参考答案1.解:(1)由题意有,50×120×0.7+40×150×(1﹣a%)=9600整理得,42+60(1﹣a%)=96则(1﹣a%)=0.9,所以a=10(2)根据题意得:x+2x+1=100得:x=33当总数不足101时,即,只能选择方案一得最大优惠;当总数达到或超过101,即x>33时,方案一需付款:120×0.7x+150×0.9(2x+1)=84x+270x+135=354x+135方案二需付款:[120x+150(2x+1)]×0.8=336x+120∵(354x+135)﹣(336x+120)=18x+15>0∴选方案二优惠更大综上所述:当总数不足101时,只能选择方案一最大优惠方式;当x>33时,采用方案二更加优惠,此时需付款336x+120(元)2.解:问题一:14+2.4×(10﹣3)=30.8(元)问题二:A解:设甲、乙两地间里程数为x公里①若解得:(舍)②若x>3,解得:x=12答:甲、乙两地间里程数为12公里B.B解:设两位顾客的里程数为x公里①若x≤8,解得:x=5②解得:x=30答:两位顾客的里程数为5或30公里.3.解:(1)设学校库存x套桌椅,依题意,得:﹣=5,解得:x=150.答:学校库存150套桌椅.(2)方案①所需费用为(200+80)×=4200(元);方案②所需费用为(300+80)×=3800(元);方案③所需费用为(200+300+80)×=3480(元).∵4200>3800>3480,∴选择方案③最划算.4.解:(1)李老师到甲商店购买全部这种笔记本应付费:6×5+0.7×6(x﹣5)=4.2x+9(元);李老师到乙商店购买全部这种笔记本应付费:0.8×6x=4.8x(元).(2)设李老师要购买x(由题可知x>5)个这种笔记本时,到甲、乙两家商店购买所需费用相同.由题意,得4.2x+9=4.8x.解得x=15.答:李老师购买15个这种笔记本时,到甲、乙两家商店购买所需费用相同.(3)李老师购买20个这种笔记本到甲商店应付费:4.2×20+9=93(元);李老师购买20个这种笔记本到乙商店应付费:4.8×20=96(元).因为93元<96元,所以李老师到甲商店购买更优惠.5.解:(1)设该超市第一次购进甲种商品每件x元,乙种商品每件(x+5)元.由题意得80x+120(x+5)=3600,解得x=15,x+5=15+5=20.答:该超市第一次购进甲种商品每件15元,乙种商品每件20元.(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得的利润=80×(20﹣15)+120×(30﹣20)=1600元.答:该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得1600元的利润.(3)由题意80×[20(1+a%)﹣15]+120×[30(1﹣a%)﹣(20﹣3)]=1600+260,解得a=5.答:a的值是5.6.解:(1)设中间的数为a,则另外四个数分别为(a﹣12),(a﹣2),(a+2),(a+12),∴十字框框住的5个数字之和为(a﹣12)+(a﹣2)+a+(a+2)+(a+12)=5a.(2)依题意,得:5a=285,解得:a=57.∵(57+1)÷2=29,29÷6=4……5,4+1=5,∴57在第5行,第5列,符合题意,∴a﹣12=45,a﹣2=55,a+2=59,a+12=69,∴十字框框住的5个数之和能等于285,这5个数分别为45,55,57,59,69.(3)依题意,得:5a=365,解得:a=73.∵(73+1)÷2=37,37÷6=6……1,4+1=7,∴73在第7行,第1列,不符合题意,∴十字框框住的5个数之和不能等于365.7.解:设AB两地距离为x千米,则CB两地距离为(x﹣2)千米.根据题意,得+=3解得x=.答:AB两地距离为千米.8.解:设这个两位数的个位数字为x,则十位数字为2x,原两位数为(10×2x+x),十位数字与个位数字对调后的数为(10x+2x),依题意,得:(10×2x+x)﹣(10x+2x)=27,解得:x=3,∴2x=6,∴10×2x+x=63.答:这个两位数为63.9.(1)解:设B种运动鞋购进x双,则A种运动鞋购进2x双,依题意,得(250﹣100)•2x+(300﹣120)•x=48000.480x=48000.x=100.答:A种运动鞋购进200双,B种运动鞋购进100双;(2)200×250×(1﹣0.9)+100×300×(1﹣0.8)=11000(元).答:服装店比按标价出售少收入11000元.10.解:(1)设第一次购进甲种商品x件,则购进乙种商品件,根据题意得:解得:x=150,∴.答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(58﹣44)×150+(80﹣60)×90=3900(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润3900元.(3)设第二次乙种商品是按原价打m折销售,根据题意得:,解得:m=8.5.答:第二次乙商品是按原价打8.5折销售.。
七年级数学上第5章一元一次方程5.2求解一元一次方程第2课时用去括号法解一元一次方程北师大
8.解方程 4(x-1)-x=2x+12,步骤如下: ①去括号,得 4x-4-x=2x+1; ②移项,得 4x-x+2x=1+4; ③合并同类项,得 5x=5;④系数化为 1,得 x=1. 经检验知 x=1 不是原方程的解,说明解题的四个步骤中有 错,其中做.错.的一步是( B ) A.① B.② C.③ D.④
14.解方程:278(x-3)-463(6-2x)-888(7x-21)=0.
【点拨】方程左右两边都含有x-1,因此将方程左边括 号内的第一项x变为(x-1)+1后,把x-1视为一个整体进 行运算.
解:原方程可化为 278(x-3)+463×2(x-3)-888×7(x-3)=0. 逆用分配律,得(278+463×2-888×7)(x-3)=0. 因为278+463×2-888×7≠0, 所以x-3=0. 解得x=3.
4.解方程-2(x-1)-4(x-2)=4,去括号正确的是( D ) A.-2x+2-4x-8=4 B.-2x+1-4x+2=4 C.-2x-2-4x-8=4 D.-2x+2-4x+8=4
5.下列解方程过程中,变形正确的是( D ) A.由2x-1=3,得2x=3-1 B.由2x-3(x+4)=5,得2x-3x-4=5 C.由-75x=76,得 x=-7756 D.由2x-(x-1)=1,得2x-x=0
一元一次方程的解法-七年级数学上册课件(浙教版)
2 x
(1)
1 2
;
2
4
解:去分母(方程两边乘4),得
2(x+1) -4 = 8+ (2 -x).
去括号,得 2x+2 -4 = 8+2 -x.
移项,得
2x+x = 8+2 -2+4.
合并同类项,得 3x = 12.
系数化为1,得
x = 4.
x 1
2x 1
(2)3 x
3
1.已知x=3是关于x的方程2x+3a=3的解,则a的值是( )
A.1 B.-1 C.2 D.-2
【答案】B
【分析】把x=3代入方程2x+3a=3得出6+3a=3,求出方程的解即可.
【详解】解:把x=3代入方程2x+3a=3得:6+3a=3,
解得a=-1,
故选:B.
2.已知关于x的一元一次方程
(1) 3 x 7 32 2 x ;
解:移项,得
3x 2x 32 7.
合并同类项 ,得
5x 25.
系数化为1,得
x 5.
移项时需要移哪些项?为什么?
解:移项,得
3
x x 1 3.
2
合并同类项,得
1
x 4.
2
系数化为1,得
x 8.
解一元一次方程ax+b=cx+d(a,b,c,d均为常数,且a≠c)的一般
移项的定义
一般地,把方程中的某些项改变符号后,从方程的一边移到另一
边,这种变形叫做移项.
移项的依据及注意事项
移项实际上是利用等式的性质1.
冀教版七年级上册数学第5章 一元一次方程 目标三 解一元一次方程的六种技巧
去分母,得-12=5(4-x). 去括号,得-12=20-5x. 移项,得5x=20+12. 合并同类项,得5x=32. 系数化为1,得x的方法很麻烦,通过观察分 母的特点,将分母有倍数关系的结合在一起进行通分 合并,则简便得多.
6 阅读: 在解方程 3(x+1)-13(x-1)=2(x-1)-12(x+1)时,我们 可以将 x+1,x-1 各看成一个整体进行移项、合并同 类项,得72(x+1)=73(x-1),即12(x+1)=13(x-1),去分 母,得 3(x+1)=2(x-1),进而解得 x=-5,这种方法 叫整体求解法.
请用这种方法解方程: 5(2x+3)-34(x-2)=2(x-2)-12(2x+3).
解:将 2x+3,x-2 各看成一个整体进 行移项、合并同类项,得 121(2x+3)=141(x-2), 即12(2x+3)=14(x-2). 去分母,得 2(2x+3)=x-2. 进而解得 x=-83.
4 解方程:1141614(x-1)+5+13+14=15.
解:移项、合并同类项,得114{1614(x-1)+5+13}=1. 两边同时乘 14,得16[14(x-1)+5]+13=14. 移项、合并同类项,得16[14(x-1)+5]=1.
两边同时乘 6,得14(x-1)+5=6. 移项、合并同类项,得14(x-1)=1. 两边同时乘 4,得 x-1=4.
冀教版七年级上
第五章一元一次方程
课5题.32 解 一 元 一 次 方 程
第2课时 用去括号与去分母法 解一元一次方程
目标三 解一元一次方程的六种技巧
习题链接
温馨提示:点击 进入讲评
1
5
2
6
3
4
1 【2020·凉山州】解方程:x-x-2 2=1+2x-3 1.
北师大七年级数学上册教学课件:第5章 一元一次方程
小试牛刀
2、解下列方程
(1)x-3x=-4(2) -x+3x=4
(3) 3x-x=8-0.5×8(4) -x+3x-6=-2
注意这4道题的符号和结果哟!
(2) X=-25
(3)
问题1: 某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?
设前年购买x台。可以表示出:去年购买计算机 台,今年购买计算机 台。你能找出问题中的相等关系吗?
2 x
4 x
6÷(-0.2)
填一填:(1)如果3x+4=7,那么3x=________,其依据是________ ,在等式的两边都________.(2)如果- 2x=8,那么x=________,依据是________ ,在等式的两边都________.(3)如果-x=3,那么x=________(4) 如果-2x=4, ,那么x =________。(5) 如果2x- ,那么6x-1=________.
右
左
c
a = b
右
左
c
a = b
右
左
a = b
右
左
a = b
a-c b-c
=
右
左
等式的性质1:等式的两边加(或减)同一个数(或式子),结果仍相等.
如果a=b,那么a+c=b+c.
等式的性质1: 等式两边同加(或同减)同一个数(或式子),结果仍相等。
b
a
a = b
设A、B两地相距x km,则根据题意得:
6-2-2解一元一次方程(5)实际问题 2022—2023学年华东师大版数学七年级下册
x+x+ 1 x + 1 x +1=100
24
(1)把题中的未知量用字母表示
(2)把表示数量关系的语言转换 为含字母的代数式
(3)根据等量关系,列出方程
作业
1.课本P13练习1 2.课本P14习题6.2.2第4,5 题。 3.跟踪练习册6.2.4 4.课本P21复习参考题2、3、4
x 8×4 32X
65-x 24(65-x)
等量关系是什么? 男生搬砖数+女生搬砖数=总搬砖数
解 :设新团员中有x名男同学,则女生 (65-x)人,根据题意,得
32x+24(65-x)=1800. 解这个方程,得
x=30. 经检验,符合题意.
答: 新团员中有30名男同学.
讲解点2:列一元一次方程解答实际问题
则根据题意,得 51-x=45+x.
解这个方程,得 x=3.
经检验,符合题意.
答: 应从盘员为学校建花坛搬
砖.女同学每人搬6块,男同学每人搬8块,每人 搬了4次,共搬了1800块.问这些新团员中有多 少名男同学? 分析 设新团员中有x名男同学,可列表如下.
做人贵在有德,学习贵在有心。
解下列方程:
(1) 51-x=45+x
2x=6
x=3
(2) 32x+24(65-x)=1800
32x-24x=1800-24x65
8x=240
3y-1
5y-7
(3)
-1 =
4
6
3(3y-1)-12=2(5y-7)
x=30
y=-1
华东师大版七年级(下)
29中一年级数学课件
教学目标
1.理解一元一次方程解简单应用题的 方法和步骤;并会列一元一次方程解 简单应用题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7章二元一次方程组
小结与复习(二)
教学目的
通过列二元一次方程组解决实际问题,开发学生智力和培养学生理解能力,分析能力和逻辑推理能力以及培养创造性思维、用数学的意识。
重点:列二元一次方程组解应用题。
难点:间接设元以及找出2个等量关系。
一、复习
1.列二元一次方程组解应用题的步骤是什么?
2.如何设未知数?
我们已经知道,有两种设元方法——直接设元、间接设元。
当直接设元不易列出方程时,用间接设元。
在列方程(组)的过程中,关键寻找出“等量关系”,根据等量关系,决定直接设元,还是间接设元。
二、新授
例1.某旅行团从甲地到乙地游览。
甲、乙两地相距100公里,团中的一部分人乘车先行,余下的人步行,先坐车的人到途中某处下车步行,汽车返回接先步行的那部分人,已知步行时速是8公里,汽车时速是40公里,问要使大家在下午4:00同时到达乙地,必须在什么时候出发?
分析:这个问题实质上求的是如果按题设的行走方式,至少需要多少个小时?
本题比较复杂,引导学生用线段图帮助分析。
X公里
A D y公里
B C
甲上车点下车点乙
(1)汽车从A→B→D所需的时间与先步行的一部分人从A到D所需的时间相等。
(2)汽车从B→D→C所需的时间与后步行的一部分人从B到C所需要的时间相等。
因此可设先坐车的一部人下车地点距甲地x公里,这一部分人下车地点距另一部分人的上车地点相距y公里,如图所示。
由以上两个等量关系,得:
x+y 40 = x-y 8
2y+100-x 40 = 100-x 8
解方程组即可得到方程组的解。
例2:方程组 ax+by=62 的解应为 x =8 mx-20y=-224 y =10 但是由于看错了系数m ,而得到的解为,求a+b+m 的值;
三、巩固练习
教科书第39页,第6、7题,第40页,第11、12、13、14题。