新北师大版九年级数学上册正方形的性质与判定一学案
北师大版数学九年级上册1.3正方形的性质与判定(第一课时)优秀教学案例
3.引导学生通过观察、操作、猜想、验证等方法,自主探究正方形的性质。
问题导向教学策略能够激发学生的好奇心,培养学生独立思考和解决问题的能力,使学生在探究过程中更深入地理解和掌握正方形的性质。
(三)小组合作
1.组织学生进行小组合作,让每个学生都参与到正方形性质的探究中来;
二、教学目标
(一)知识与技能
1.让学生掌握正方形的性质,包括边长、对角线、四边形等特征;
2.培养学生能够运用数学语言描述和判定正方形的能力;
3.使学生了解正方形与其他四边形的关系,提高学生的图形认知能力。
为实现这一目标,我将在课堂上引导学生观察、操作、猜想、验证等环节,通过小组合作、师生互动等方式,让学生在实践中掌握正方形的性质。同时,我将设计具有层次性的练习题,让学生在巩固知识的过程中,提高运用数学语言描述和判定正方形的能力。
2.通过示例和讲解,让学生了解正方形的判定方法,如四条边相等或对角线互相垂直平分等;
3.结合实例,讲解正方形性质在实际问题中的应用,如正方形面积的计算等。
(三)学生小组讨论
1.组织学生进行小组讨论,让学生分享自己对于正方形性质的理解和判定方法;
2.引导学生通过操作、观察、猜想、验证等方法,探索正方形的性质;
(一)导入新课
1.利用多媒体展示正方形在生活中的应用,如正方形地毯、正方形桌面等,引导学生关注正方形的存在;
2.提出问题:“你们知道正方形有哪些特点吗?”让学生思考正方形与其他四边形的不同;
3.总结正方形的特点,引出正方形是一种特殊的长方形,进而导入新课。
(二)讲授新知
1.介绍正方形的定义和性质,如边长相等、对角线相等、四个角都是直角等;
数学北师大版九年级上册1.3正方形的性质和判定教案
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“正方形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了正方形的基本概念、性质和判定方法,以及它在日常生活中的应用。通过实践活动和小组讨论,我们加深了对正方形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
数学北师大版九年级上册1.3正方形的性质和判定教案
一、教学内容
本节课选自北师大版九年级上册第一章第三节的正方形的性质和判定。教学内容主要包括以下方面:
1.正方形的定义:通过前一节矩形和菱形的性质,引导学生探究正方形的定义,即四条边相等且四个角都是直角的矩形。
2.正方形的性质:
(1)对边平行且相等;
(2)对角相等,且均为直角;
2.教学难点
-正方形性质的推导:学生需要理解并推导出正方形的各种性质,如对角线相等、垂直、平分等,这需要较强的逻辑推理能力。
-正方形判定的灵活应用:学生需要能够根据不同情况灵活应用判定方法,这对于部分学生来说可能存在难度。
-解决实际问题中的正方形应用:将正方形的性质和计算方法应用于实际问题,如求解正方形边长或面积,需要学生具备一定的数学建模能力。
(3)对角线互相垂直、平分且相等;
北师大版九年级数学上册第一章正方形的性质和判定(1)导学案1.7
北师版九年级数学(上)第一章正方形的性质和判定(1)导学案1.7一、学习目标1、掌握正方形的概念、性质2、运用正方形的性质进行有关的论证和计算 二、温故知新请回顾平行四边形、矩形和菱形的有关性质三、自主探究:阅读课本p20—21 探究(一)、用一张长方形的纸片(如图所示)折出一个正方形.正方形定义:有 ,.并且 的平行四边形.....叫做正方形. 探究(二)正方形的性质边 角对角线 对称性平行四边形的性质 矩形的性质菱形的性质1、 正方形是矩形吗?是菱形吗?为什么?D CBA所以,正方形具有矩形的性质,同时又具有菱形的性质.正方形性质定理1:正方形的四个角都是 ,四条边都 。
正方形性质定理2:正方形的两条对角线相等并且 。
2.正方形有几条对称轴?如图,画出该正方形的对称轴。
(三)平行四边形、菱形、矩形、正方形之间的有什么关系?: 你能用一个图直观地表示他们之间的关系吗?(四)练一练1:如图,在正方形ABCD 中,对角线AC 与BD相交于点O ,图中有多少个等腰三角形?例1.:如图,正方形ABCD 中,G 是CD 上一点,以CG 为边做正方形GFEC 判断线段BG 与DE 有什么关系?并证明五、小结:本课知识:正方形定义:有一组_______相等并且有一个角是________的平行四边形叫做正方形。
有一个角是________的菱形叫做正方形;一组________相等的矩形叫做正方形。
2、正方形既是_____,又是_____,所以它具有_____ 和 _____ 的性质: (1)正方形的四个角都是_____ ,四条边都 _____ ;(2)正方形的对角线_____且______,每条对角线平分__________;(3)正方形是_______图形,两条对角线所在直线,以及过每一组对边中点的直线都是它的对称轴。
你还有哪些收获: 哪些疑问: 六.随堂练习 :1.已知:如图,点E 是正方形ABCD 的边CD 上一点,点F 是CB 的延长线上一点,且DE=BF . 求证:(1)EA=AF ; (2)EA ⊥AF .A B CDE FG2.如图,在正方形ABCD中,点F为对角线BD上一点,连接AF,CF。
北师大版数学九上《正方形的性质与判定》word学案
1.3 正方形的性质和判定1. 掌握正方形的定义和性质,弄清正方形与平行四边形、菱形、矩形的关系2. 掌握正方形的判定方法并能在解题中选择恰当的方法。
3. 提高学生分析问题及解决问题的能力。
4. 通过分析概念之间的联系与区别,培养学生辨证唯物主义观点 重点:知晓正方形的性质和正方形的判定方法 难点:正方形知识的灵活应用1.正方形的定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形. 2.正方形的性质正方形是特殊的平行四边形、矩形、菱形.它具有前三者的所有性质: ① 边的性质:对边平行,四条边都相等. ② 角的性质:四个角都是直角.③ 对角线性质:两条对角线互相垂直平分且相等,•每条对角线平分一组对角. ④ 对称性:正方形既是中心对称图形,也是轴对称图形. 平行四边形、矩形、菱形和正方形的关系:(如图) 3.正方形的判定判定①:有一组邻边相等的矩形是正方形. 判定②:有一个角是直角的菱形是正方形.【铺垫】正方形有 条对称轴.【例1】☆⑴、已知正方形BDEF 的边长是正方形ABCD 的对角线,则:BDEF ABCD S S =正方形正方形 ⑵、如图1,已知正方形ABCD 的面积为256,点F 在CD 上,点E 在CB 的延长线上,且20AE AF AF ⊥=,,则BE 的长为正方形菱形矩形平行四边形PNME DCBA⑶、如图2,在正方形ABCD 中,E 为AB 边的中点,G ,F 分别为AD ,BC 边上的点,若1AG =,2BF =,90GEF ∠=︒,则GF 的长为 .【例2】☆将n 个边长都为1cm 的正方形按如图所示摆放,点12...n A A A ,,,分别是正方形的中心,则n 个正方形重叠形成的重叠部分的面积和为【例3】 ☆如图,正方形ABCD 的边长为2cm ,以B 为圆心,BC 长为半径画弧交对角线BD 于点E ,连接CE ,P 是CE 上任意一点,PM BC ⊥于M ,PN BD ⊥于N ,则PM PN +的值为【铺垫】如图,E 是正方形ABCD 对角线BD 上的一点,求证:AE CE =.EDCBA【例4】如图,P 为正方形ABCD 对角线上一点,PE BC ⊥于E ,PF CD ⊥于F .求证:AP EF =.F EPDCB A【巩固】如图所示,正方形ABCD 对角线AC 与BD 相交于O ,MN ∥AB ,且分别与AO BO 、交于M N 、.试探讨BM 与CN 之间的关系,写出你所得到的结论的证明过程.FEDCBAM N CDO BA【巩固】☆如图,已知P 是正方形ABCD 内的一点,且ABP ∆为等边三角形,那么DCP ∠=PDCBA【例5】已知正方形ABCD ,在AD 、AC 上分别取E 、F 两点,使2ED AD FC AC =∶∶,求证:BEF ∆是等腰直角三角形.EHDFCBA【例6】如图,已知E 、F 分别是正方形ABCD 的边BC 、CD 上的点,AE 、AF 分别与对角线BD 相交于M 、N ,若50EAF ∠=︒,则CME CNF ∠+∠= .NMFEDCBA【例7】☆如图,四边形ABCD 为正方形,以AB 为边向正方形外作正方形ABE ,CE 与BD 相交于点F ,则AFD ∠=GC FED BA【例9】如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE AD =,DF BD =.连结BF 分别交CD ,CE 于H ,G .求证:GHD ∆是等腰三角形.3142FE GHCDBA【巩固】如图,过正方形顶点A 引AE BD ∥,且BE BD =.若BE 与AD 的延长线的交点为F ,求证DF DE =.GFEBDA【例10】如图所示,在正方形ABCD 中,AK 、AN 是A ∠内的两条射线,BK AK ⊥,BL AN ⊥,DM AK ⊥,DN AN ⊥,求证KL MN =,KL MN ⊥.K NMLDCB A【巩固】如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,连接,BE DG ,求证:BE DG =.【例11】 如图,在正方形ABCD 中,E 为CD 边上的一点,F 为BC 延长线上的一点,CE CF =,30FDC ∠=︒,求BEF ∠的度数.BDCAEF【巩固】☆已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE CG =,连接BG 并延长交DE 于F . (1)求证:BCG DCE ∆∆≌;(2)将DCE △绕点D 顺时针旋转90︒得到DAE '∆,判断四边形E BGD '是什么特殊四边形?并说明理由.【例12】若正方形ABCD 的边长为4,E 为BC 边上一点,3BE =,M 为线段AE 上一点,射线BM 交正方形的一边于点F ,且BF AE =,则BM 的长为 .【例13】☆如图1,在正方形ABCD 中,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 上的点,HA EB FC GD ===,连接EG 、FH ,交点为O . ⑴、如图2,连接EF FG GH HE ,,,,试判断四边形EFGH 的形状,并证明你的结论; ⑵、将正方形ABCD 沿线段EG 、HF 剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形ABCD 的边长为3cm ,1cm HA EB FC GD ====,则图3中阴影部分的面积为_________2cm .图3图1图2H DGC FEBAOH GFEDC BA【巩固】如图,正方形ABCD 对角线相交于点O ,点P 、Q 分别是BC 、CD 上的点,AQ DP ⊥,求证:(1)OP OQ =;(2)OP OQ ⊥.BO D CAQP【例14】如图,正方形ABCD 中,E F ,是AB BC ,边上两点,且EF AE FC DG EF =+⊥,于G .求证:DG DA =G FEC DBA【巩固】如图,点M N ,分别在正方形ABCD 的边BC CD ,上,已知MCN∆的周长等于正方ABCDEF E 'GHEFG DCBA形ABCD 周长的一半,求MAN ∠的度数NMDCBA【巩固】如图,设EF ∥正方形ABCD 的对角线AC ,在DA 延长线上取一点G ,使AG AD =,EG 与DF 交于H ,求证:AH =正方形的边长.HEGCDFBA【例15】☆把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC 交于点H (如图).试问线段HG 与线段HB 相等吗?请先观察猜想,然后再证明你的猜想.GCHF EDB A【例16】如图所示,在直角梯形ABCD 中,AD BC ∥,90ADC ∠=︒,l 是AD 的垂直平分线,交AD 于点M ,以腰AB 为边作正方形ABFE ,作EP l ⊥于点P ,求证22EP AD CD +=.lPM FE DC BA【正方形的判定】【例17】四边形ABCD 的四个内角的平分线两两相交又形成一个四边形EFGH ,求证: ⑴、四边形EFGH 对角互补;⑵、若四边形ABCD 为平行四边形,则四边形EFGH 为矩形. ⑶、四边形ABCD 为长方形,则四边形EFGH 为正方形.M E NCDBA O E DC B A H GFE DCBA【巩固】如图,已知平行四边形ABCD 中,对角线AC 、BD 交于点O ,E 是BD 延长线上的点,且ACE ∆是等边三角形. ⑴、求证:四边形ABCD 是菱形;⑵、若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.【巩固】已知:如图,在ABC ∆中,AB AC =,AD BC ⊥,垂足为点D ,AN 是ABC ∆外角CAM ∠的平分线,CE AN ⊥,垂足为点E .⑴、求证:四边形ADCE 为矩形; ⑵、当ABC ∆满足什么条件时,四边形ADCE 是一个正方形?并给出证明.【例18】☆如图,点M 是矩形ABCD 边AD 的中点,2AB AD =,点P 是BC 边上一动点,PE MC ⊥,PF BM ⊥,垂足分别为E 、F ,求点P 运动到什么位置时,四边形PEMF 为正方形.PMF EDC BA【例19】☆如图,ABCD 是边长为1的正方形,EFGH 是内接于ABCD 的正方形,AE a AF b ==,,若23EFGH S =,则b a -=【例20】如图,A 在线段BG 上,ABCD 和DEFG 都是正方形,面积分别为27cm 和211cm ,则CDE ∆ 的面积为GFEDCB A【巩固】☆如图,在正方形ABCD 中,点1P P ,为正方形内的两点,且11PB PD PB AB CBP PBP ==∠=∠,,,则1BPP ∠= P 1PDC BA【例21】如图,若在平行四边形ABCD 各边上向平行四边形的外侧作正方形,求证:以四个正方形中心为顶点组成一个正方形.PRQ S NMFEDCBA【例22】☆已知:PA 4PB =,以AB 为一边作正方形ABCD ,使P 、D 两点落在直线AB 的两侧.(1)如图,当∠APB=45°时,求AB 及PD 的长;(2)当∠APB 变化,且其它条件不变时,求PD 的最大值,及相应∠APB 的大小.PDCBA【课后练习】 1、如图,正方形ABCD 中,O 是对角线AC BD ,的交点,过点O 作OE OF ⊥,分别交AB CD ,于E F ,,若43AE CF ==,,则EF =OFE DC BA2、如图所示,ABCD 是正方形,E 为BF 上的一点,四边形AEFC 恰好是一个菱形,则EAB ∠=______.ABCDEF3、如果点E 、F 是正方形ABCD 的对角线BD 上两点,且BE DF =,你能判断四边形AECF 的形状吗?并阐明理由.E CDFBA4、如图,在正方形ABCD 中,E 、F 分别是AB 、BC 的中点,求证:AM AD =.MFEDCBA。
北师大版九年级数学上册教案:1.3 正方形的性质与判定
1.3 正方形的性质与判定第1课时正方形的性质1.在对平行四边形、矩形、菱形的认识基础上探索正方形的性质,并能运用正方形的性质进行证明与计算.(重难点)2.进一步了解平行四边形、矩形、菱形及正方形之间的相互关系,并形成文本信息与图形信息相互转化的能力.阅读教材P20~21,完成下列问题:(一)知识探究1.有________相等并且有一个角是________的__________叫做正方形.2.正方形既是________又是________,它既具有________的性质,又有________的性质.3.正方形的________相等,都是________,________相等.4.正方形的对角线________________________.(二)自学反馈正方形的性质:1.边:________都相等且________.2.角:四个角都是________.3.对角线:两条对角线互相________且________,并且每一条对角线平分________.4.正方形既是________图形,又是________图形,正方形有________对称轴.活动1 小组讨论例如图,在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF.BE与DF之间有怎样的关系?请说明理由.解:BE=DF,且BE⊥DF.理由如下:如图,延长BE交DF于点M.∵四边形ABCD是正方形,∴BC=DC,∠BCE=90°(正方形的四条边都相等,四个角都是直角).∴∠DCF=180°-∠BCE=180°-90°=90°.∴∠BCE=∠DCF.又∵CE=CF,∴△BCE≌△DCF.∴BE=DF,∵∠DCF=90°,∴∠CDF+∠F=90°.∴∠CBE+∠F=90°.∴∠BMF=90°.∴BE⊥DF.本题是通过证明△BCE≌△DCF来得到BE与DF之间的关系,证明三角形全等是解决这一类型问题的常用做法.活动2 跟踪训练1.菱形,矩形,正方形都具有的性质是( )A.对角线相等且互相平分 B.对角线相等且互相垂直平分C.对角线互相平分 D.四条边相等,四个角相等2.正方形面积为36,则对角线的长为( )3.如图,菱形ABCD 中,∠B =60°,AB =4,则以AC 为边长的正方形ACEF 的周长为( )A .14B .15C .16D .174.如图,延长正方形ABCD 的边BC 至E ,使CE =AC ,连接AE 交CD 于F ,则∠AFC =________°.5.如图,正方形ABCD 的对角线AC 、BD 交于点O ,∠OCF =∠OBE.求证:OE =OF.活动3 课堂小结正方形的性质⎩⎪⎨⎪⎧边:正方形的四条边都相等且对边平行.角:正方形的四个角都是直角.对角线:正方形的两条对角线互相垂直平分且相等,每一条对角线平分一组对角.对称:既是轴对称图形,又是中心对称图形,它有四条对称轴,其对角线交点为对称中心.【预习导学】(一)知识探究1.一组邻边 直角 平行四边形 2.矩形 菱形 矩形 菱形3.四个角 直角 四条边 4.相等且互相垂直平分(二)自学反馈1.四条边 对边平行 2.直角 3.垂直平分 相等 一组对角4.中心对称 轴对称 四条【合作探究】活动2 跟踪训练1.C 2.B 3.C 4.112.55.证明:∵四边形ABCD 是正方形,∴AC ⊥BD ,OB =OC.∴∠AOB =∠BOC =90°.又∵∠OBE =∠OCF,∴△OBE ≌△OCF.∴OE =OF.第2课时 正方形的判定1.掌握正方形的判定定理,并能综合运用特殊四边形的性质和判定解决问题.(重难点)2.发现决定中点四边形形状的因素,熟练运用特殊四边形的判定及性质对中点四边形进行判断.阅读教材P22~24,完成下列问题:(一)知识探究1.对角线相等的________是正方形.2.对角线垂直的________是正方形.3.有一个是直角的________是正方形.(二)自学反馈1.已知四边形ABCD 中,∠A =∠B =∠C =90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )A .∠D =90°B .AB =CDC .AD =BC D .BC =CD2.下列命题正确的是( )A .两条对角线相等的菱形是正方形B .对角线与一边的夹角是45°的四边形是正方形C .两邻角相等,且有一角是直角的四边形是正方形D .对角线相等且互相垂直的四边形是正方形3.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( )A .AC =BD ,AB ∥CD ,AB =CDB .AD ∥BC ,∠A =∠CC .AO =BO =CO =DO ,AC ⊥BDD .AO =CO ,BO =DO ,AB =BC4.如图,将一张矩形纸片ABCD 折叠,使AB 落在AD 边上,然后打开,折痕为AE ,顶点B 的落点为F.则四边形ABEF 是________形.活动1 小组讨论例 如图,在矩形ABCD 中,BE 平分∠ABC ,CE 平分∠DCB ,BF ∥CE ,CF ∥BE.求证:四边形BECF 是正方形.证明:∵BF ∥CE ,CF ∥BE ,∴四边形BECF 是平行四边形.∵四边形ABCD 是矩形,∴∠ABC =90°,∠DCB =90°.又∵BE 平分∠ABC ,CE 平分∠DCB ,∴∠EBC =12∠ABC =45°,∠ECB =12∠DCB =45°. ∴∠EBC =∠ECB.∴EB =EC.∴平行四边形BECF 是菱形.在△EBC 中,∵∠EBC =45°,∠ECB =45°,∴∠BEC =90°.∴菱形BECF 是正方形.掌握平行四边形、矩形、菱形成为正方形所需要的条件是解决这类问题的关键.活动2 跟踪训练1.如图,在△ABC 中,∠ABC =90°,BD 平分∠ABC ,DE ⊥BC ,DF ⊥AB ,垂足分别为E 、F ,求证:四边形BEDF 是正方形.2.如图,E 、F 、G 、H 分别是正方形ABCD 四条边上的点,AE =BF =CG =DH ,四边形EFGH 是什么图形?证明你的结论.3.如图所示,点E ,F ,G ,H 分别是CD ,BC ,AB ,DA 的中点,求证:四边形EFGH 是平行四边形.活动3 课堂小结1.对角线相等的菱形是正方形;2.对角线垂直的矩形是正方形;3.有一个角是直角的菱形是正方形.【预习导学】(一)知识探究1.菱形 2.矩形 3.菱形(二)自学反馈1.D 2.A 3.C 4.正方【合作探究】活动2 跟踪训练1.证明:∵∠ABC =90°,DE ⊥BC ,DF ⊥AB ,∴四边形BEDF 是矩形.∵BD 平分∠ABC ,DE ⊥BC ,DF ⊥AB ,∴DE =DF.∴四边形BEDF 是正方形.2.四边形EFGH 是正方形.证明:∵四边形ABCD 是正方形,∴AB =BC =CD =DA.∵AE =BF =CG =DH ,∴HA =EB =FC =GD.∵∠A =∠B =∠C =∠D =90°,∴Rt △AEH ≌Rt △BFE ≌Rt △CGF ≌Rt △DHG.∴HE =EF =FG =GH.∴四边形EFGH 是菱形.又∠AHE =∠BEF ,∠AHE +∠AEH =90°,∴∠BEF +∠AEH =90°.∴∠HEF =90°.∴四边形EFGH 是正方形.3.证明:连接BD.∵点E ,F ,G ,H 分别是CD ,BC ,AB ,DA 的中点,∴EF 是△BCD 的中位线,GH 是△ABD 的中位线.∴EF ∥BD ,EF =12BD ,GH ∥BD ,GH =12BD.∴EF ∥GH ,EF =GH.∴四边形EFGH 是平行四边形.。
北师大版数学九年级上册1.3.2正方形的性质与判定优秀教学案例
3.教师对学生的学习情况进行评价,关注学生的知识掌握程度、思维能力、团队协作等方面的发展,给予积极的反馈和指导。
四、教学内容与过程
(一)导入新课
1.利用实物模型、图片等展示正方形的实际应用场景,如正方形桌面、正方形瓷砖等,让学生感受到正方形在生活中的存在。
北师大版数学九年级上册1.3.2正方形的性质与判定优秀教学案例
一、案例背景
本节课的主题是北师大版数学九年级上册1.3.2正方形的性质与判定,这是学生在学习了矩形、菱形的基础上的进一步拓展。学生在日常生活中对正方形有了一定的认识,但如何从数学的角度去定义它、理解它,以及如何运用它的性质解决实际问题,这是本节课需要解决的核心问题。
2.设计具有挑战性的任务,如“探究正方形对角线的性质”,让学生在合作中解决问题,提高他们的实践能力。
3.引导学生运用已学的知识,如矩形、菱形的性质,解决小组讨论中的问题,增强学生的知识运用能力。
(四)总结归纳
1.让学生回顾本节课所学的内容,引导他们总结正方形的性质、判定方法以及如何解决实际问题。
2.强调正方形在实际生活中的应用,让学生认识到学习正方形性质的重要性。
3.小组合作的学习方式:组织学生进行小组讨论,培养学生的团队协作能力,让学生在合作中解决问题,提高实践能力。同时,通过小组合作,促进学生之间的交流与分享,拓宽学生的视野。
(三)小组合作
1.组织学生进行小组讨论,鼓励他们分享自己的观点,培养学生的团队协作能力。
2.设计具有挑战性的任务,如“探究正方形对角线的性质”,让学生在合作中解决问题,提高他们的实践能力。
3.通过对小组合作过程的观察和评价,了解学生的学习情况,及时给予指导和鼓励。
九年级数学上册正方形的性质与判定(1)导学案
九年级数学上册正方形的性质与判定(1)
导学案
流程如图,在正方形ABCD中,E为CD边上一点,F为BC延长线上一点,CE=CF.
问:BE与DF有怎样的关系,请说明理由.
讨论:平行四边形、菱形、矩形、正方形之间的关系,如图所示:
学生经小组讨
论,派一名代
表上台展示。
教师板演详细
解答过程。
15
分钟完成。
学生讨论、理
解。
课堂检测1、如图,四边形ABCD是正方形,两条对角线相交于点O.
(1)一条对角线把它分成_______个全等的
________ 三角形;
(2)两条对角线把它分成_______个全等的
________三角形;
图中一共有________个等腰直角三角形;
(3)∠AOB=_____度,∠OAB=_____度.
(4)AB: AO: AC=________.
2、如图,正方形ABCD中,∠DAF=25°,AF交对角线BD于点E,那么∠BEC 多少度?
教后反思
E
B
D A
C
F。
北师大版九年级数学上册1.3正方形的性质与判定优秀教学案例
3.设计一系列实践活动,让学生亲自动手操作,加深对正方形性质的理解,培养他们的动手能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣,使他们认识到数学在生活中的重要性,激发他们学习数学的积极性。
2.培养学生团队合作精神,使他们学会与他人交流、分享和合作,提高他们的团队协作能力。
3.教师对学生的学习情况进行总结和评价,及时发现问题并进行针对性的指导,促进学生的全面发展。
四、教学内容与过程
(一)导入新课
1.利用多媒体课件展示正方形的家具、建筑物等生活实例,引导学生关注正方形在生活中的应用。
2.提出问题:“你们知道正方形有哪些特点吗?”激发学生对正方形性质的思考。
3.引导学生回顾之前学过的矩形、菱形的性质,为新课的学习做好铺垫。
2.问题导向:引导学生思考正方形的性质和判定方法,激发学生的思考兴趣,培养他们的数学思维能力。通过问题驱动的教学方法,让学生自主ห้องสมุดไป่ตู้现正方形的性质,提高他们的学习效果。
3.小组合作:将学生分成小组,鼓励他们相互讨论、交流,共同探索正方形的性质和判定方法。通过小组活动,培养学生的团队合作精神和动手能力,提高他们的学习兴趣和动力。
3.培养学生独立思考和解决问题的能力,使他们学会面对困难时保持积极的心态,勇于挑战。
三、教学策略
(一)情景创设
1.通过生活实例引入正方形的概念,如展示正方形的家具、建筑物等,让学生感受到正方形在生活中的应用。
2.利用多媒体课件展示正方形的性质和判定方法,引导学生直观地理解正方形的特点。
3.创设问题情境,如给出一个四边形,让学生判断它是否为正方形,激发学生的思考兴趣。
北师大版九年级数学上册1.3节正方形的性质与判定优秀教学案例
作为一名特级教师,我深知教学案例亮点的重要性,它们是教学过程中的突出特点和独特之处,能够为学生提供更好的学习体验和效果。在本节课的教学中,我注重了情景创设的真实性、问题导向的有效性、小组合作的互动性、反思与评价的深度性以及教学内容的系统性,这些亮点不仅提高了学生的学习兴趣和参与度,还能够培养学生的思维能力、团队协作能力和问题解决能力。通过这些亮点的设计和实施,我相信能够有效地实现本节课的教学目标,提高学生的数学素养。
二、教学目标
(一)知识与技能
1.学生能够理解正方形的定义,掌握正方形的性质,如四条边相等、四个角都是直角等。
2.学生能够运用正方形的性质解决实际问题,如计算正方形的周长、面积等。
3.学生能够理解正方形的判定方法,能够根据给定的条件判断一个四边形是否为正方形。
4.学生能够运用正方形的判定方法解决实际问题,如确定图形的类型等。
2.学生能够树立自信心,相信自己能够掌握正方形的性质和判定方法。
3.学生能够培养批判性思维,勇于提出问题并寻找解决问题的方法。
4.学生能够理解数学与现实生活的联系,认识到数学在生活中的重要性。
作为一名特级教师,我明白教学目标的重要性,它不仅能够为学生提供明确的学习方向,还能够帮助教师更好地进行教学设计和评估。因此,在教学过程中,我将注重引导学生通过观察、操作、思考、讨论等途径,探究正方形的性质和判定方法,使学生能够掌握相关的知识和技能。同时,我还将注重培养学生的过程与方法,使学生能够通过实际操作和问题解决,培养观察能力、思维能力和创新能力。此外,我还将注重培养学生的情感态度与价值观,使学生能够积极参与课堂活动,对数学学习充满兴趣和热情。
2015-2016北师大版九年级数学上册《正方形的性质与判定(一)》教学案
《正方形的性质与判定(一)》教学案教学目标:知识与能力:1、在对平行四边形、矩形、菱形的认识基础上探索正方形的性质,体验数学发现的过程,并得出正确的结论.2、进一步了解平行四边形、矩形、菱形、正方形及梯形之间的相互关系,并形成文本信息与图形信息相互转化的能力.过程与方法:在观察、操作、推理、归纳等探索过程中,发展合情推理能力,进一步培养自己的说理习惯与能力.情感态度价值观:培养学生勇于探索、团结协作交流的精神。
激发学生学习的积极性与主动性。
教学重点:掌握正方形的性质定理教学难点:运用综合法证明已经理解平行四边形、矩形、菱形、正方形四者之间的关系教学方法:探究发现、合作学习的方法课时安排:1课时教学过程:一、回顾交流提问:1.我们学习过哪些特殊的平行四边形?2.你能说出菱形和矩形的定义吗?教师活动:提问学生,进行归纳。
学生活动:回忆与交流,知识迁移。
二、导入新课(展示幻灯片)提问:这些图案中有我们熟悉的图形吗?学生活动:观察图片并回答三、小组合作探究教师黑板演示从平行四边形变形到正方形的过程,学生小组交流并得出正方形的定义。
正方形的定义:一组邻边相等,并且有一个角是直角的平行四边形叫做正方形。
议一议:①正方形是矩形吗?是菱形吗?②你能用矩形或是菱形给正方形下个定义吗?教师活动:提问学生学生活动:小组交流、代表总结拓展讨论:正方形有哪些性质?引导学生从四方面总结:边:四条边都相等且对边平行;角:四个角都是直角;对角线:两条对角线互相垂直平分且相等对称性:既是中心对称图形又是轴对称图形四、议一议:平行四边形、菱形、矩形、正方形之间有么关系?你能用一个你喜欢的图形直观地示它们之间的关系吗?与同伴交流教师引导学生整体地理解平行四边形、菱形、矩形、正方形之间的关系,并用图形表示它们之间的关系。
五、范例学习例1:如图1-18,在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF.BE与DF之间又怎样的关系?请说明理由。
北师大版九年级数学上册优秀教学案例:1.3正方形的性质与判定
(四)反思与评价
1.教师引导学生对所学知识进行反思,帮助他们巩固记忆,形成知识体系。
2.学生进行自我评价,培养他们自我监控、自我调整的能力。
3.教师对学生的学习过程和结果进行评价,关注他们的成长,激发他们的学习动力。
北师大版九年级数学上册优秀教学案例:1.3正方形的性质与判定
一、案例背景
本节课的教学内容是北师大版九年级数学上册的1.3节——正方形的性质与判定。在学习了矩形、菱形的基础上,正方形作为特殊的四边形,具有独特的性质和判定方法。它不仅是四边相等的四边形,还有更多的特性等待学生去发现。
在教学过程中,我以“探索正方形的性质与判定”为主题,引导学生通过观察、操作、思考、交流等途径,发现正方形的性质,并能运用这些性质解决问题。在教学设计上,我注重学生的参与和动手实践,力求让每一个学生都能在活动中体验到学习的乐趣,提高他们的数学素养。
(五)作业小结
1.设计具有针对性的作业,让学生在实践中运用所学知识,提高他们的应用能力。
2.引导学生对作业过程中遇到的问题进行思考,培养他们解决问题的能力。
3.教师对学生的作业情况进行评价,及时反馈,指导他们改进学习方法。
4.鼓励学生进行自我反思,培养他们自主学习、自我调整的能力。
五、案例亮点
1.生活情境的创设:本节课以日常生活中的正方形物体为例,如瓷砖、骰子等,引导学生关注正方形的存在,激发他们的学习兴趣。这种生活情境的创设,使得学生能够更加直观地理解正方形的特征,提高了他们的学习积极性。
三、教学策略
(一)情景创设
1.生活情境:以日常生活中的正方形物体为例,如瓷砖、骰子等,引导学生关注正方形的存在,激发他们的学习兴趣。
北师大版九年级数学13正方形的性质与判定教案
教案:北师大版九年级数学13正方形的性质与判定一、教学内容本堂课的教学内容为正方形的性质与判定。
学生通过本节课的学习,将了解正方形的定义和特征,并能够利用正方形的性质判断给定的图形是否为正方形。
二、教学目标1.知识目标:了解正方形的定义和特征,能够应用正方形的性质判断图形是否为正方形。
2.技能目标:培养学生观察并归纳总结的能力,以及运用已学知识判断问题的能力。
3.情感目标:培养学生对数学的兴趣,增强学生解决问题的自信心。
三、教学重难点1.教学重点:正方形的定义和特征,以及判断给定图形是否为正方形的方法。
2.教学难点:帮助学生归纳总结正方形的特征,理解并应用正方形的性质进行判断。
四、教学准备1.教师准备:教材、黑板、白板笔、图形卡片。
2.学生准备:准备纸和笔。
五、教学过程Step 1 自由探究1.教师出示一些较为复杂的图形,并让学生观察和讨论,看是否能够找出其中的正方形。
2.学生观察并尝试寻找,教师帮助引导学生观察正方形的特征,如四条边相等且四个角都是直角等。
3.学生将可能的正方形标出来,并与同桌讨论。
4.教师随机选择一组学生发言,让他们将找到的正方形标出来,并说明自己的观察。
Step 2 归纳总结1.教师引导学生回顾所找到的正方形图形,并将其特征进行总结,强调正方形的定义:四边相等,四个角都是直角。
2.教师将正方形的定义写在黑板上,学生将其抄写在笔记本上。
3.学生自主提问并与同桌讨论:只有边相等和角为直角,是否就能判断为正方形?4.教师引导学生思考,并通过举例说明:对角线相等,是否能判断为正方形?引导学生进行思考和讨论,并总结规律。
Step 3 知识点讲解1.教师讲解正方形的性质:正方形的对角线相等,并通过示意图进行说明。
2.学生通过观察和讨论,将正方形的对角线相等这一性质归纳总结,并记录在笔记本上。
Step 4 练习巩固1.教师出示一些图形,让学生根据正方形的性质判断其是否为正方形。
2.学生分组进行讨论,并将判断结果写在纸上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新北师大版九年级数学上册正方形的性质与判定一学案
学习
目标
掌握正方形的概念性质和判定并会用它们进行有关的计算。
重点
难点
掌握正方形的概念、性质和判定,并会应用它们进行有关的计算
旧知
识链
接
1、口述矩形的性质,并用几何语言叙述矩形的性质。
问题探究2、口述菱形的性质,并用几何语言叙述菱形的性质。
正方形与矩形和菱形的关系是
【探究一】1、正方形的定义
正方形的性质边
角对角线
对称性
2、用几何语言叙述正方形的性质:
平行四边形、菱形、矩形、正方形之间的关系:
练习
1/如图,正方形ABCD中,△EBC是正三角形,求∠EAD的度数。
2.如图,正方形ABCD中,G是CD上一点,以CG
为边做正方形GFEC,
求证:BG=DE
A
B C
D
E
达
标检测3如图,正方形ABCD中,E是AB上一点,AF=BE求证:CE=BF。
4在正方形ABCD的边BC的延长线上取一点E,使CE=CA,连接AE交CD于F,求AFD
的度数。
5已知如下图,正方形ABC D中,E是CD边上的一点,F为BC延长线上一点,CE=CF. (1)求证:△BEC≌△DFC;(2)若∠BEC=60°,求∠EFD的度数.
A
B C
D
E
F
G
F
E
D
C
B
A。