第七章气体动理论
气体动理论
第十三章 气体动理论本章从理想气体的微观组成出发,假以统计性假设,推出理想气体的压强和温度公式,揭示了压强和温度的本质;提出了理想气体内能的概念,介绍了理想气体能量按自由度均分原理;阐述了理想气体的麦克斯韦速率分布率。
这称为气体动理论。
气体动理论的产生和发展凝聚了众多物理学家的智慧和心血。
早在1678年,胡克就提出了气体压强是由大量气体分子与器壁碰撞的结果的观点。
之后,在1738年,伯努利根据这一观点推导出压强公式,并且解释了玻意耳定律。
1744年,俄国的罗蒙诺索夫提出了热是分子运动表现的观点。
在19世纪中叶,气体动理论经克劳修斯、麦克斯韦和玻耳兹曼的努力而有了重大发展。
1858年,克劳修斯提出气体分子平均自由程的概念并导出相关公式。
1860年,麦克斯韦指出,气体分子的频繁碰撞并未使它们的速度趋于一致,而是达到稳定的分布,导出了平衡态气体分子的速率分布和速度分布。
之后,麦克斯韦又建立了输运过程的数学理论。
1868年,玻耳兹曼在麦克斯韦气体分子速率分布律中又引进重力场。
第一节理想气体状态方程一、状态参量1.状态参量概念如何描述系统的冷热变化规律,这就需要一些物理量。
假设气体的质量为 m ,其宏观状态一般可以用气体的压强p 、体积V 和温度T 三个物理量来描述。
如果在热力学过程中伴随着化学反应,还需要物质的量、摩尔质量 、物质各组分的质量等物理量来描述。
如果热力学系统处于磁场中,还需要电场强度E 、电极化矢量P 、磁场强度H 和磁化强度M 等物理量来描述。
选择几个描写系统状态的参量,称为状态参量。
2.状态参量分类按照不同的划分标准,状态参量可作如下划分:(1)按状态参量描写系统的性质划分可分为:V P E P H M几何参量:描述系统的空间广延性。
如体积 。
力学参量:描述系统的强度。
如压强 。
化学参量:描述系统的化学组分。
如各组分的质量,物质的量。
电磁参量:描述系统的电磁性质。
如电场强度 ,电极化强度 ,磁场强度 ,磁化强度 。
大学物理-气体分子动理论
v
v1 v2 v3 … …
N ΔN1 ΔN2 ΔN3 … …
速率为 vi 的概率为:
Pi
Ni N
长时间“观测”理想气体分子的速率 v :
v
0 ~ +∞ 连续分布
速率为 v → v + dv 的概率为:
Pv~vdv
dNv N
0
???
速率分布函数
Pv~vdv
dNv N
f (v)dv
f (v) dNv Ndv
刚性双原子分子的动能
分子动能
平动动能
t x
t y
t z
转动动能
r
r
t x
t y
t z
r
r
1 kT 2
t x
t y
t z
r
r
5 kT 2
温度较高时,双原子气体分子不能看作刚性分子,分子
平均能量更大,因为振动能量也参与能量均分
理想气体分子的平均能量
分子模型 刚性单原子分子 刚性双原子分子 刚性多原子分子
每个分子频繁地发生碰撞,速度也因此不断变化;
二、压强形成的微观解释
单个分子与器壁碰撞 冲力作用瞬间完成,大小、位置具有 偶然性;
大量分子(整个气体系统)与器壁碰撞 气体作用在器壁上是一个持续的、不 变的压力;
压强是气体分子给容器壁冲量的 统计平均量
三、理想气体的压强公式
建立三维直角坐标系 Oxyz
vz i N
气体处于平衡态时,气体分子沿各个方向运动的机会均等。
vx vy vz
气体分子速率平方的平均值
v v1 v2 v3 … …
N ΔN1 ΔN2 ΔN3 … …
v
大学物理第六版第七章气体动理论基础总结
大学物理第六版第七章气体动理论基础总结
1. 气体分子模型:气体由大量无限小的分子组成,分子之间几乎没有相互作用,分子运动是无规则的。
2. 气体分子的运动:气体分子具有随机热运动,并遵循牛顿力学定律。
分子的速度和方向是随机的。
3. 气体的压强:气体分子与容器壁的碰撞会产生压强。
气体的压强与分子的速度、分子间平均自由程、分子总数等因素有关。
4. 理想气体状态方程:理想气体状态方程描述了气体的状态。
PV = nRT,其中P为气体压强,V为体积,n为物质的量,R为气体常数,T为温度。
5. 分子平均动能:气体分子的平均动能与气体的温度成正比。
分子平均动能与分子质量无关。
6. 温度和热力学温度:温度是描述物体热平衡状态的物理量。
热力学温度是温度的定量度量,它与分子平均动能的平方成正比。
7. 气体分子的速率分布:气体分子的速率分布服从麦克斯韦-波尔兹曼分布。
分子速率分布与温度相关,高温下分子速率分布图会变得更加平坦。
总结起来,第七章主要介绍了气体动理论的基本概念和定律,包括气体分子的运动、气体压强、气体状态方程、分子平均动能、温度和速率分布等内容。
大学物理学第7章气体动理论(Temperature)
4
研究对象:大量无规则热运动气体分子构成的系统 研究内容:物质与冷热有关的性质及这些性质的变化
对象特点:单个分子 无序性、偶然性、遵循力学规律 整体(大量分子):服从统计规律
mvx
l2
立直角坐标系。
a
O
-mvx
X
(2)选任意一个分子a作为研
究对象,求其对A1面的压力 Z
l1
分子“a” 的速度:
分子“ a”碰撞器壁A1面一次所受的冲量:
由牛顿第三定律可知,器壁A1面受分子碰撞一次所受的冲量:
23
分子“ a”相继碰撞器壁A1面两次所用的时间为: 单位时间内,分子“ a”与器壁A1面碰撞的次数为: 单位时间内,分子“ a”对器壁A1面的冲量即冲力为:
如压强 p、体积 V、温度 T等 .
平衡态:一定量的气体,在不受外界的影响下, 经过一 定的时间, 系统达到一个稳定的, 宏观性质不随时间变 化的状态称为平衡态 .(理想状态)
平衡态的特点
( p,V ,T )
p
*( p,V ,T )
o
V
1)单一性(
处处相等);
2)物态的稳定性---与时间无关;
3)自发过程的终点;
(2)在平衡态下,分子按位置的分布是均匀的 n dN N
则各处分子数密度是相同的。
dV V
(3) 分子速度指向任何方向的机会是一样, 或分子速度按方向的分布是均匀的。
vx2 vy2 vz2
各个方向的速度分量的平均值相等。
vx 2
v1 x 2
07 气体动理论答案(2016)
一.选择题 1、[ A ](基础训练2)下列各式中哪一式表示气体分子的平均平动动能?(式中M 为气体的质量,m 为气体分子质量,N 为气体分子总数目,n 为气体分子数密度,N A 为阿伏加得罗常量)(A)pV M m 23. (B) pV M Mmol23.(C) npV 23. (D) pV N M M A 23mol . 【解】:根据气体分子的平均平动动能:201322k m v kT ε==,==N p nkT kT V ,而=M N m,则333==222k pV mkT pV N Mε= 2、[ B ](基础训练5)一定量某理想气体按pV 2=恒量的规律膨胀,则膨胀后理想气体的温度(A) 将升高. (B) 将降低. (C) 不变. (D)升高还是降低,不能确定. 【解】:由于pV 2=恒量,又=pVC T,则有=VT C ',因此,体积膨胀,温度将降低。
3、[ C ](基础训练8)设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分子的平均速率为 (A)⎰21d )(v v v v v f . (B) 21()d v v v vf v v ⎰.(C)⎰21d )(v v v v v f /⎰21d )(v v v v f . (D)⎰21d )(v v v v v f /()d f v v ∞⎰.【解】:速率分布在v 1~v 2区间内的分子的速率总和:⎰21d )(v v v v v f N ,速率分布在v 1~v 2区间内的分子数总和:21()d v v Nf v v ⎰,因此速率分布在v 1~v 2区间内的分子的平均速率:222111222111()()()()v v v v v v v v v v v v vdN vNf v dv vf v dvv dNNf v dvf v dv===⎰⎰⎰⎰⎰⎰4、[ B ](基础训练9)一定量的理想气体,在温度不变的条件下,当体积增大时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 减小而λ不变. (B)Z 减小而λ增大. (C) Z 增大而λ减小. (D)Z 不变而λ增大.【解】:根据分子的平均碰撞频率:n v d Z22π=,和平均速率公式:v =,在温度不变的条件下,平均速率不变,当体积增大时,分子数密度Nn V=减小,平均碰撞频率Z 减小。
物理学教程(第二版)上册课后答案7
物理学教程(第二版)上册课后答案7第七章 气体动理论7 -1 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们( )(A) 温度,压强均不相同 (B) 温度相同,但氦气压强大于氮气的压强(C) 温度,压强都相同 (D) 温度相同,但氦气压强小于氮气的压强分析与解 理想气体分子的平均平动动能23k /kT =ε,仅与温度有关.因此当氦气和氮气的平均平动动能相同时,温度也相同.又由物态方程nkT p =,当两者分子数密度n 相同时,它们压强也相同.故选(C).7-2 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,方均根速率之比()()()4:2:1::2/12C 2/12B 2/12A =v v v ,则其压强之比C B A ::p p p 为( )(A) 1∶2∶4 (B) 1∶4∶8(C) 1∶4∶16 (D) 4∶2∶1 分析与解 分子的方均根速率为M RT /3=2v ,因此对同种理想气体有3212C 2B 2A ::::T T T =v v v ,又由物态方程nkT ρ,当三个容器中分子数密度n 相同时,得16:4:1::::321321==T T T p p p .故选(C).7 -3 在一个体积不变的容器中,储有一定量的某种理想气体,温度为0T 时,气体分子的平均速率为0v ,分子平均碰撞次数为0Z ,平均自由程为0λ ,当气体温度升高为04T 时,气体分子的平均速率v 、平均碰撞频率Z 和平均自由程λ分别为( ) (A)04,4,4λλZ Z ===0v v (B) 0022λλ===,,Z Z 0v v (C) 00422λλ===,,Z Z 0v v (D) 00,2,4λλ===Z Z 0v v 分析与解 理想气体分子的平均速率M RT π/8=v ,温度由0T 升至04T ,则平均速率变为0v 2;又平均碰撞频率v n d Z 2π2=,由于容器体积不变,即分子数密度n 不变,则平均碰撞频率变为0Z 2;而平均自由程n d 2π21=λ,n 不变,则λ也不变.因此正确答案为(B).7 -5 有一个体积为35m 1001⨯.的空气泡由水面下m050.深的湖底处(温度为C 0.4o )升到湖面上来.若湖面的温度为C 017o .,求气泡到达湖面的体积.(取大气压强为Pa 10013150⨯=.p )分析 将气泡看成是一定量的理想气体,它位于湖底和上升至湖面代表两个不同的平衡状态.利用理想气体物态方程即可求解本题.位于湖底时,气泡内的压强可用公式gh pp ρ+=0求出, 其中ρ为水的密度( 常取33m kg 100.1-⋅⨯=ρ).解 设气泡在湖底和湖面的状态参量分别为(p 1 ,V 1 ,T 1 )和(p 2 ,V 2 ,T 2 ).由分析知湖底处压强为gh ρp gh ρp p+=+=021,利用理想气体的物态方程222111T V p T V p =可得空气泡到达湖面的体积为()3510120121212m 1011.6-⨯=+==T p V T gh p T p V T p V ρ 7 -6 一容器内储有氧气,其压强为Pa 100115⨯.,温度为27 ℃,求:(1)气体分子的数密度;(2) 氧气的密度;(3) 分子的平均平动动能;(4) 分子间的平均距离.(设分子间均匀等距排列)分析 在题中压强和温度的条件下,氧气可视为理想气体.因此,可由理想气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求解.又因可将分子看成是均匀等距排列的,故每个分子占有的体积为30d V=,由数密度的含意可知n V /10=,d 即可求出.解 (1) 单位体积分子数325m 1044.2⨯==kTp n (2) 氧气的密度3-m kg 30.1/⋅===RTpM V m ρ (3) 氧气分子的平均平动动能J 102162321k -⨯==./kT ε(4) 氧气分子的平均距离m 10453193-⨯==./n d通过对本题的求解,我们可以对通常状态下理想气体的分子数密度、平均平动动能、分子间平均距离等物理量的数量级有所了解.7-7 2.0×10-2 kg 氢气装在4.0×10-3 m 3 的容器内,当容器内的压强为3.90×105Pa 时,氢气分子的平均平动动能为多大?分析 理想气体的温度是由分子的平均平动动能决定的,即23k /kT =ε.因此,根据题中给出的条件,通过物态方程pV =Mm 'RT ,求出容器内氢气的温度即可得kε. 解 由分析知氢气的温度mRMpV T =,则氢气分子的平均平动动能为J 1089.3232322k -⨯='==Rm pVMk kT ε7 -8 某些恒星的温度可达到约1.0 ×108K ,这是发生聚变反应(也称热核反应)所需的温度.通常在此温度下恒星可视为由质子组成.求:(1) 质子的平均动能是多少? (2) 质子的方均根速率为多大?分析 将组成恒星的大量质子视为理想气体,质子可作为质点,其自由度 i =3,因此,质子的平均动能就等于平均平动动能.此外,由平均平动动能与温度的关系2/32/2kT m =v,可得方均根速率2v .解 (1) 由分析可得质子的平均动能为 J 1007.22/32/152k-⨯===kT m v ε (2) 质子的方均根速率为1-62s m 1058.13⋅⨯==mkT v 7 -9 日冕的温度为2.0 ×106K ,所喷出的电子气可视为理想气体.试求其中电子的方均根速率和热运动平均动能.解 方均根速率16e 2s m 105.93-⋅⨯==m kT v 平均动能J 10142317k -⨯==./kT ε7-10 在容积为2.0 ×10-3 m 3 的容器中,有内能为6.75 ×102J 的刚性双原子分子某理想气体.(1)求气体的压强;(2) 设分子总数为5.4×1022个,求分子的平均平动动能及气体的温度.分析 (1) 一定量理想气体的内能RT i M m E 2=,对刚性双原子分子而言,i =5.由上述内能公式和理想气体物态方程pV =νRT 可解出气体的压强.(2)求得压强后,再依据题给数据可求得分子数密度,则由公式p =nkT 可求气体温度.气体分子的平均平动动能可由23k /kT ε=求出.解 (1) 由RT i E 2ν=和pV =νRT 可得气体压强 Pa 1035.125⨯==iVE p (2) 分子数密度n =N/V ,则该气体的温度()()K 1062.3//2⨯===nk pV nk p T 气体分子的平均平动动能为J104972321k -⨯==./kT ε 7 -11 当温度为0C 时,可将气体分子视为刚性分子,求在此温度下:(1)氧分子的平均动能和平均转动动能;(2)kg 100.43-⨯氧气的内能;(3)kg 100.43-⨯氦气的内能.分析 (1)由题意,氧分子为刚性双原子分子,则其共有5个自由度,其中包括3个平动自由度和2个转动自由度.根据能量均分定理,平均平动动能kT 23kt =ε,平均转动动能kT kT ==22kr ε.(2)对一定量理想气体,其内能为RT i M mE 2'=,它是温度的单值函数.其中i 为分子自由度,这里氧气i =5、氦气i =3.而m '为气体质量,M 为气体摩尔质量,其中氧气13mol kg 1032--⋅⨯=M ;氦气13mol kg 100.4--⋅⨯=M .代入数据即可求解它们的内能.解 根据分析当气体温度为T=273 K 时,可得(1)氧分子的平均平动动能为J 107.52321kt -⨯==kT ε 氧分子的平均转动动能为J 108.32221kr -⨯==kT ε (2)氧气的内能为J 10 7.1J 27331.8251032100.42233⨯=⨯⨯⨯⨯⨯='=--RT i M m E (3)氦气的内能为J 10 3.4J 27331.823100.4100.42333⨯=⨯⨯⨯⨯⨯='=--RT i M m E 7 -12 已知质点离开地球引力作用所需的逃逸速率为gr v 2=,其中r 为地球半径.(1) 若使氢气分子和氧气分子的平均速率分别与逃逸速率相等,它们各自应有多高的温度;(2) 说明大气层中为什么氢气比氧气要少.(取r =6.40 ×106 m) 分析 气体分子热运动的平均速率M RTπ8=v ,对于摩尔质量M 不同的气体分子,为使v 等于逃逸速率v ,所需的温度是不同的;如果环境温度相同,则摩尔质量M 较小的就容易达到逃逸速率. 解 (1) 由题意逃逸速率gr 2=v ,而分子热运动的平均速率M RTπ8=v .当v v = 时,有RMrg T 4π= 由于氢气的摩尔质量13H mol kg 10022--⋅⨯=.M,氧气的摩尔质量12O mol kg 10232--⋅⨯=.M ,则它们达到逃逸速率时所需的温度分别为 K10891K,101815O 4H 22⨯=⨯=..T T (2) 根据上述分析,当温度相同时,氢气的平均速率比氧气的要大(约为4倍),因此达到逃逸速率的氢气分子比氧气分子多.按大爆炸理论,宇宙在形成过程中经历了一个极高温过程.在地球形成的初期,虽然温度已大大降低,但温度值还是很高.因而,在气体分子产生过程中就开始有分子逃逸地球,其中氢气分子比氧气分子更易逃逸.另外,虽然目前的大气层温度不可能达到上述计算结果中逃逸速率所需的温度,但由麦克斯韦分子速率分布曲线可知,在任一温度下,总有一些气体分子的运动速率大于逃逸速率.从分布曲线也可知道在相同温度下氢气分子能达到逃逸速率的可能性大于氧气分子.故大气层中氢气比氧气要少.7-13 容积为1 m 3 的容器储有1 mol 氧气,以v =10-1s m ⋅的速度运动,设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能.试求气体的温度及压强各升高了多少. 分析 容器作匀速直线运动时,容器内分子除了相对容器作杂乱无章的热运动外,还和容器一起作定向运动.其定向运动动能(即机械能)为221mv .按照题意,当容器突然停止后,80%定向运动动能转为系统的内能.对一定量理想气体内能是温度的单值函数,则有关系式:T R M m v m E Δ25%8021Δ2'=⋅'=成立,从而可求ΔT .再利用理想气体物态方程,可求压强的增量.解 由分析知T R M m m E Δ2528.0Δ2⋅'='=v ,其中m '为容器内氧气质量.又氧气的摩尔质量为12m ol kg 1023--⋅⨯=.M ,解得ΔT =6.16 ×10-2 K当容器体积不变时,由pV =M mRT 得Pa 51.0ΔΔ==T VRM m p7-14 有N 个质量均为m 的同种气体分子,它们的速率分布如图所示.(1) 说明曲线与横坐标所包围的面积的含义;(2) 由N 和0v 求a 值;(3) 求在速率0v /2到30v /2 间隔内的分子数;(4) 求分子的平均平动动能.题 7-14 图分析 处理与气体分子速率分布曲线有关的问题时,关键要理解分布函数()v f 的物理意义.()υd d N Nf =v ,题中纵坐标()v v d /d N Nf =,即处于速率v 附近单位速率区间内的分子数.同时要掌握()v f 的归一化条件,即()1d 0=⎰∞v v f .在此基础上,根据分布函数并运用数学方法(如函数求平均值或极值等),即可求解本题.解 (1) 由于分子所允许的速率在0 到20v 的范围内,由归一化条件可知图中曲线下的面积()N Nf S v ==⎰v v d 020即曲线下面积表示系统分子总数N .(2 ) 从图中可知,在0 到0v 区间内,()0/v v v a Nf =;而在0 到20v 区间,()αNf =v .则利用归一化条件有vv v vv ⎰⎰+=0020d d v v a a N(3) 速率在0v /2到30v /2间隔内的分子数为12/7d d Δ2/3000N a a N =+=⎰⎰v v v v v v v(4) 分子速率平方的平均值按定义为()v v f v v v d /d 0222⎰⎰∞∞==N N故分子的平均平动动能为20220302k 3631d d 212100v v v v v v v v v v m N a N a m m =⎥⎦⎤⎢⎣⎡+==⎰⎰ε 7-15 一飞机在地面时,机舱中的压力计指示为Pa100115⨯.,到高空后压强降为Pa101184⨯..设大气的温度均为27.0℃.问此时飞机距地面的高度为多少?(设空气的摩尔质量为2.89 ×10-2kg·mol -1) 分析 当温度不变时,大气压强随高度的变化主要是因为分子数密度的改变而造成.气体分子在重力场中的分布满足玻耳兹曼分布.利用地球表面附近气压公式()kT mgh p p /ex p 0-=,即可求得飞机的高度h .式中p 0 是地面的大气压强. 解 飞机高度为()()m 1093.1/ln /ln 300⨯===p p MgRT p p mg kT h7 -16 目前实验室获得的极限真空约为1.33×10-11Pa ,这与距地球表面1.0×104km 处的压强大致相等.而电视机显像管的真空度为1.33×10-3Pa ,试求在27 ℃时这两种不同压强下单位体积中的分子数及分子的平均自由程.(设气体分子的有效直径d =3.0×10-8cm)解 理想气体分子数密度和平均自由程分别为n =k T p ;pd kT λ2π2=,压强为1.33×10-11Pa 时,-39m 1021.3/⨯==kT p nm 108.7π282⨯==pd kT λ 从λ的值可见分子几乎不发生碰撞.压强为1.33×10-3Pa 时,3-17m 1021.3⨯==kT p n ,m 8.7π22==pd kT λ此时分子的平均自由程变小,碰撞概率变大.但相对显像管的尺寸而言,碰撞仍很少发生. 7-17 在标准状况下,1 cm 3中有多少个氮分子?氮分子的平均速率为多大?平均碰撞次数为多少?平均自由程为多大?(已知氮分子的有效直径m 1076.310-⨯=d )分析 标准状况即为压强Pa 10013.15⨯=p ,温度K 273=T .则由理想气体物态方程nkT p =可求得气体分子数密度n ,即单位体积中氮分子的个数.而氮气分子的平均速率、平均碰撞次数和平均自由程可分别由公式MRTv π8=,n v d Z 2π2=和nd 2π21=λ直接求出.解 由分析可知,氮分子的分子数密度为325m 1069.2-⨯==kTpn 即3cm 1中约有191069.2⨯个.氮气的摩尔质量为M =28 ×10-3kg·mol -1,其平均速率为MRTv π8==454 1s m -⋅则平均碰撞次数为-192s 107.7π2⨯==n v d Z平均自由程为m 106π2182-⨯==nd λ 讨论 本题主要是对有关数量级有一个具体概念.在通常情况下,气体分子平均以每秒几百米的速率运动着,那么气体中进行的一切实际过程如扩散过程、热传导过程等好像都应在瞬间完成,而实际过程都进行得比较慢,这是因为分子间每秒钟上亿次的碰撞导致分子的自由程只有几十纳米,因此宏观上任何实际过程的完成都需要一段时间.7-18 在一定的压强下,温度为20℃时,氩气和氮气分子的平均自由程分别为9.9×10-8m 和27.5×10-8m.试求:(1) 氩气和氮气分子的有效直径之比;(2) 当温度不变且压强为原值的一半时,氮气分子的平均自由程和平均碰撞频率. 分析 ( 1 ) 气体分子热运动的平均自由程()p d kT nd 22π2/π21==λ,因此,温度、压强一定时,平均自由程2/1d λ∝.(2) 当温度不变时,平均自由程p λ/1∝.解 (1) 由分析可知67.1//r 22r A N N A ==λλd d(2) 由分析可知氮气分子的平均自由程在压强降为原值的一半时,有m 105.527N N22-⨯=='λλ而此时的分子平均碰撞频率22222N N N N N 2π/8λM RT λZ ='=v将T =293K ,M N2 =2.8×10-2kg·mol -1代入,可得-18N s 1056.82⨯=Z。
气体动理论
气体动理论(kinetic theory of gases)是19世纪中叶建立的以气体热现象为主要研究对象的经典微观统计理论。
气体由大量分子组成,分子作无规则的热运动,分子间存在作用力,分子的运动遵循经典的牛顿力学。
根据上述微观模型,采用统计平均的方法来考察大量分子的集体行为,为气体的宏观热学性质和规律,如压强、温度、状态方程、内能、比热以及输运过程(扩散、热传导、黏滞性)等提供定量的微观解释。
气体动理论揭示了气体宏观热学性质和过程的微观本质,推导出宏观规律,给出了宏观量与微观量平均值的关系。
它的成功印证了微观模型和统计方法的正确性,使人们对气体分子的集体运动和相互作用有了清晰的物理图像,标志着物理学的研究第一次达到了分子水平。
第7章 气体动理论
碰后折回来需用的时间:
2x vx
t vxt 2x / vx 2x
一个分子在 t 时间内碰撞器壁的总冲量:
I1
2mv
x
t
2x / v x
mv
2 x
t
x
(3) N 个分子在 t 时间内
碰撞器壁的总冲量:
IN
N
mv
2 ix
t
x i 1
m x
t
N i 1
v2 ix
y
A1
vy
m
(4) I Ft P F / s
kr
1 2
mvc2x
1 2
mvc2y
1 2
mvc2z
1 2
J yc2y
1 2
J zc2z
1 2
J x c2x
2.能量均分定理(Boltzmann 假设)
t
1 2
mv2
3 2
kT
v
2 x
v
2 y
v
2 z
1 3
v2
1 2
mv
2 x
1 2
m
v
2 y
1 2
mvz2
1 ( 1 mv2 ) 32
1 kT 2
φ
确定刚体转轴的方位: 需要二个自由度(α,β);
β P(x,y,z)
α
γo
X
确定刚体绕转轴转过的角度, Z
需要一个自由度(φ);
刚体位置的确定共需要六个自由度。
3.气体分子模型自由度 ①单原子分子: 如氦原子 He 需要三个平动自由度 i=t=3;
②刚性双原子分子: 如氧气分子
O2
质心需要三个平动自由度;两原子连线方位需要
大学物理(科学出版社,熊天信、蒋德琼、冯一兵、李敏惠)第七、八章习题解
第七章 气体动理论7–1 一定量的理想气体,在保持温度T 不变的情况下,使压强由P 1增大到P 2,则单位体积内分子数的增量为_________________。
解:由nkT P =,可得单位体积内分子数的增量为kTP P kT P n 12-=∆=∆ 7–2 一个具有活塞的圆柱形容器中贮有一定量的理想气体,压强为P ,温度为T ,若将活塞压缩并加热气体,使气体的体积减少一半,温度升高到2T ,则气体压强增量为_______,分子平均平动动能增量为_________。
解:设经加热和压缩后气体的压强为P ',则有TV P T PV 22/⨯'=所以P P 4='压强增量为P P P P 3=-'=∆由分子平均平动动能的计算公式kT 23=ε知分子平均平动动能增量为kT 23。
7–3 从分子动理论导出的压强公式来看,气体作用在器壁上的压强,决定于 和 。
解:由理解气体的压强公式k 32εn P =,可知答案应填“单位体积内的分子数n ”,“分子的平均平动动能k ε”。
7–4 气体分子在温度T 时每一个自由度上的平均能量为 ;一个气体分子在温度T 时的平均平动动能为 ;温度T 时,自由度为i 的一个气体分子的平均总动能为 ;温度T 时,m /M 摩尔理想气体的内能为 。
解:kT 21;kT 23;kT i2;RT i M m 27–5 图7-1所示曲线为处于同一温度T 时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线,其中曲线(a )是__________气分子的速率分布曲线; 曲线(c )是__________气分子的速率分布曲线。
解:在相同温度下,对不同种类的气体,分子质量大的,速率分布曲线中的最慨然速率p v 向量值减小方向迁移。
可得图7-1中曲线(a )是氩气分子的速率分布曲线,图7-1中曲线(c )是氦气分子的速率分布曲线。
7–6 声波在理想气体中传播的速率正比于气体分子的方均根速率。
07气体动理论2
EH 2 EO 2
i1 / 2 RT = = 1 :1 i2 / 2 RT
对1g氢气和1g氧气来说,都是双原子分子( i = 5), 但它们的摩尔数不同。
EH 2 EO 2
m1 M = 1 m2 M2
i1 RT M 32 2 = 2 = = 16 : 1 i2 RT M 1 2 2
3.理想气体的内能是 温度 的单值函数,平衡态时 能量按 自由度 均分, 理想气体分子的平均动能 , 1mol理想气体分子的内能
p = nkT
可知,V不变,P 要增大。
三、计算题
1.容积为10升的容器中储有 10克的氧气。若气体分子的方均 根速率 v 2 =600m ·s-1,则此气体的温度和压强各为多少? =600m· 由方均根速率公式 解: 解:由方均根速率公式
v2 =
3RT M
3 × 8.31 T ⇒ T = 462K 600 = −3 32 ×10 m pV = RT 由 M m 10 × 10 −3 p= RT = × 8.31× 462 可得 -3 −3 VM 10 × 10 × 32 ×10
B
dN/N表示dv间隔内的分子数占总分子数的百分比。所以 f (v)表示速率分布在v附近的单位速率间隔中的分子数占 总分子数的百分比。
2.若某种气体在温度 T2 时的最概然速率与它在温度 T1 时的 方均根速率相等,那么这两个温度之比 T1 : T2为: ( A )2 : 3 ; ( C )7 : 8 ; 解: 最概然速率 方均根速率 两者相等 可得 (B) 3 : 2 ; (D) 8 : 7
= 1.2 ×105 Pa
2.有N个气体分子,其速率分布如图所示,当 v>2v0时, 粒子的数目为零。求 : (1)常数a;
气体动理论
MpV 解: T不变,设每天用去m 质量的气体 m RT Mp1V1 使用前,气体质量为 m1 RT Mp2V1 m2 充气时,气体质量为 RT
使用天数:
m1 m2 ( p1 p2 )V1 N 9.6天 m pV
§7.4
理想气体压强公式与温度公式
一、理想气体的微观模型
热力学第零定律——测温原理 热平衡:两热力学系统互相热接触,经过一段时 间后它们的宏观性质不再变化,即达到了热平衡 状态。
热力学第零定律:在不受外界影响的条件下,如 果两个系统分别与第三个系统达到热平衡,则这 两个系统彼此也处于热平衡。
A A
B
C
B C
温度 T —— 表征物体的温暖程度
在宏观层次上:温度是表征热平衡状态下系统的 宏观性质的物理量。处于热平衡的两个系统,它 们的温度是相同的。 在微观层次上:温度是物 质分子无规则运动的量度。 这种微观运动在宏观上不 能直接观察,观察到的是 温度。随着温度的升高, 微观运动也加强。 温度 —— 某种温度计上的读数
1 2 kt v 分子平均平动动能 2
是大量分子运动的集体表现,决定于微观量 的统计平均值。 对少数分子压强无意义。
四、理想气体的温度公式 理想气体状态方程 压强公式
p nkT
说明: 温度是分子平均平动动能的量度,是分子热 运动剧烈程度的标志。 温度是大量分子热运动的集体表现,是统 计性概念,对个别分子无温度可言。
热运动:物质中大量微观粒子的无规则运动 热学:是研究与热现象(热运动的集体表现)有关 的规律的学科。 ①宏观理论:热力学(宏观理论) 从实验事实出发,以热力学基本规律为基础,用 逻辑推理的方法研究物质各宏观性质间的关系,以 及热运动过程进行的方向和限度。 ②微观理论:统计物理学(微观理论)
第7章气体动理论习题解答
第7章 气体动理论7.1基本要求1.理解平衡态、物态参量、温度等概念,掌握理想气体物态方程的物理意义及应用。
2.了解气体分子热运动的统计规律性,理解理想气体的压强公式和温度公式的统计意义及微观本质,并能熟练应用。
3.理解自由度和内能的概念,掌握能量按自由度均分定理。
掌握理想气体的内能公式并能熟练应用。
4.理解麦克斯韦气体分子速率分布律、速率分布函数及分子速率分布曲线的物理意义,掌握气体分子热运动的平均速率、方均根速率和最概然速率的求法和意义。
5.了解气体分子平均碰撞频率及平均自由程的物理意义和计算公式。
7.2基本概念1 平衡态系统在不受外界的影响下,宏观性质不随时间变化的状态。
2 物态参量描述一定质量的理想气体在平衡态时的宏观性质的物理量,包括压强p 、体积V 和温度T 3 温度宏观上反映物体的冷热程度,微观上反映气体分子无规则热运动的剧烈程度。
4 自由度确定一个物体在空间的位置所需要的独立坐标数目,用字母i 表示。
5 内能理想气体的内能就是气体内所有分子的动能之和,即2i E R T ν=6 最概然速率速率分布函数取极大值时所对应的速率,用p υ表示,p υ==≈,其物理意义为在一定温度下,分布在速率p υ附近的单位速率区间内的分子在总分子数中所占的百分比最大。
7 平均速率各个分子速率的统计平均值,用υ表示,υ==≈8 方均根速率各个分子速率的平方平均值的算术平方根,用rm s υ表示,rm s υ==≈9 平均碰撞频率和平均自由程平均碰撞频率Z 是指单位时间内一个分子和其他分子平均碰撞的次数;平均自由程λ是每两次碰撞之间一个分子自由运动的平均路程,两者的关系式为:Zυλ==或λ=7.3基本规律1 理想气体的物态方程pV RTν=或'm pV R TM=pV NkT=或p nkT =2 理想气体的压强公式23k p n ε=3 理想气体的温度公式21322k m kT ευ==4 能量按自由度均分定理在温度为T 的平衡态下,气体分子任何一个自由度的平均动能都相等,均为12kT5 麦克斯韦气体分子速率分布律 (1)速率分布函数()dN f N d υυ=表示在速率υ附近单位速率区间内的分子数占总分子数的百分比或任一单个分子在速率υ附近单位速率区间内出现的概率,又称为概率密度。
第7章 气体动理论
三、分子运动论的发展
1. 早期的分子运动论
(1) 德莫克里特:物质皆由各种不同微粒组成 (2) 1658年,伽桑狄提出,物质是由分子构成的
二、热力学第一定律的建立
1.定律诞生的背景
(1) 蒸汽机的进一步发展,迫切需要研究热和功的关系 (2) 能量转化与守恒思想的萌发
1836年俄国的赫斯:热总是恒定的
y
vy
A2
v
2 vx
vx vx 2 l1 2l1
vz
l1
l vx A1 2
※N个分子一秒内给予A1的冲量为
z
l3 x
F t
v1x 2
l1
v2 x2
l1
vNx2
l1
2
l1
v
i
2
ix
t 1
pV m RT RT M
例2 设空气中含有23.6%氧和76.4%氮, 求在压 强 p=105Pa和温度T=17oC时空气的密度
解:设空气中氧和氮的质量分别为 m1、 m2 ,摩尔质量分别为1 、2
由道尔顿分压定理 空气压强
M pV m1 mol 1 RT
M pV M pV m2 mol 2 m3 mol 3 3 RT RT m1 m2 ( p1 p2 )V 可用天数 N m3 p3V3
对象:宏观物体(大量分子、原子系统)
或物体系 — 热力学系统 。 外界 系统
外界
▲
内容: 与热现象有关的性质和规律。 宏观上说是与温度 T 有关 热现象 微观上说是与热运动有关
解忧 © 版权所有
11
宏观量是相应的微观量的统计平均值
解忧 © 版权所有
第七章 气体动理论答案
一.选择题1、(基础训练1)[ C ]温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w 都相等. (B) ε相等,而w 不相等.(C) w 相等,而ε不相等. (D) ε和w 都不相等. 【解】:分子的平均动能kT i2=ε,与分子的自由度及理想气体的温度有关,由于氦气为单原子分子,自由度为3;氧气为双原子分子,其自由度为5,所以温度、压强相同的氦气和氧气,它们分子的平均动能ε不相等;分子的平均平动动能kT w 23=,仅与温度有关,所以温度、压强相同的氦气和氧气,它们分子的平均平动动能w 相等。
2、(基础训练3)[ C ]三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()()2/122/122/12::C B A v v v=1∶2∶4,则其压强之比A p ∶B p ∶C p 为:(A) 1∶2∶4. (B) 1∶4∶8. (C) 1∶4∶16. (D) 4∶2∶1. 【解】:气体分子的方均根速率:MRTv 32=,同种理想气体,摩尔质量相同,因方均根速率之比为1∶2∶4,则温度之比应为:1:4:16,又因为理想气体压强nkT p =,分子数密度n 相同,则其压强之比等于温度之比,即:1:4:16。
3、(基础训练8)[ C ]设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分子的平均速率为 (A)⎰21d )(v v v v v f . (B) 21()d v v v vf v v ⎰.(C)⎰21d )(v v v v v f /⎰21d )(v v v v f . (D) ⎰21d )(v v v v v f /0()d f v v ∞⎰ .【解】:因为速率分布函数f (v )表示速率分布在v 附近单位速率间隔内的分子数占总分子数的百分率,所以⎰21d )(v v v v v f N 表示速率分布在v1~v2区间内的分子的速率总和,而21()d v v Nf v v ⎰表示速率分布在v 1~v 2区间内的分子数总和,因此⎰21d )(v v v v v f /⎰21d )(v v v v f 表示速率分布在v 1~v 2区间内的分子的平均速率。
气体动理论ppt课件
一 自由度
kt
1 mv2 2
3 kT 2
v
2 x
v
2 y
v2z
1 v2 3
z
oy
x
1 2
m
v
2 x
1 2
mv2y
1 2
mv2z
1 kT 2
28
第六章 气体动理论
单原子分子平均能量
3 1 kT
2
刚性双原子分子
分子平均平动动能
kt
1 2
mvC2 x
1 2
mvC2 y
1 2
mvC2 z
29
第六章 气体动理论
摩尔热容比
E m i RT M2
dE m i RdT M2
CV ,m
i 2
R
C p,m
i
2 2
R
Cp,m i 2
CV ,m i
36
第六章 气体动理论
7-6 麦克斯韦气体分子速率分布律
一 测定气体分子速率分布的实验
实验装置
接抽气泵
2
l v vl
Hg
金属蒸汽 狭缝
l
显 示
屏
37
第六章 气体动理论 分子速率分布图
12
第六章 气体动理论
二 分子力
现主为要当斥表力 现r; 为当 引r力0r时.,r分0时子,力分主子要力表
F
o
r 109 m, F 0
r0 ~ 1010 m
r0
r
分子力
三 分子热运动的无序性及统计规律
热运动:大量实验事实表明分子都在作永不停止的
无规运动 . 例 : 常温和常压下的氧分子
v 450m/s ~ 107 m; z ~ 1010次 / s
麦克斯韦气体分子速率分布律
问题3:容器内N个分子的速率分布有什么规律? 1
7-6 麦克斯韦气体分子速率分布律
第七章 气体动理论
对某一分子,其任一时刻的速度具有偶然性,但大 量分子从整体上会出现一些统计规律。
1859年,麦克斯韦用概率论证明了在平衡态下,理 想气体分子速度分布是有规律的,这个规律叫麦克斯 韦速度分布律,若不考虑分子速度的方向,则叫麦克 斯韦速率分布律。
若要将气体分子按速率分布准确描述,则需要将
速率区间尽可能取小,当Δv→0时,即取dv为分子速
率区间,其相应分子数为dNv。
则任一速率区间(v→v+dv)间内的分子出现的概率
为
dN v
N
这概率在各速率区间是不同的,它应是速率 v 的函数,
并且与区间的大小dv成正比
dNv f (v)dv N
其中 f(v) 称为分子的速率分布函数。
第七章 气体动理论
v
4 3/2
a3/2
v3eav2 dv
0
利用积分公式 x e dx 3 ax2 1
0
2a2
v
4
1/2
a3/2
1 2a2
2
a
8kT
m
由
k R NA
和 M NAm
得: v 8kT 8RT 1.59 RT -平均速率
m M
一、速率分布函数
按统计假设,各种速率下的分子都存在,用某一 速率区间内分子数占总分子数的百分比,表示分子按 速率的分布规律。
1.将速率从 0→∞ 分割成很多相等的速率区间。 2
7-6 麦克斯韦气体分子速率分布律
一、速率分布函数
第七章 气体动理论
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一. 选择题1. (基础训练2)[ C ]两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内气体的质量ρ的关系为:(A) n 不同,(E K /V )不同,ρ 不同.(B) n 不同,(E K /V )不同,ρ 相同. (C) n 相同,(E K /V )相同,ρ 不同.(D) n 相同,(E K /V )相同,ρ 相同. 【解答】: ∵nkT p =,由题意,T ,p 相同∴n 相同;∵kT n V kTNV E k 2323==,而n ,T 均相同∴V E k 相同 由RT M m pV =得m pMV RTρ==,∵不同种类气体M 不同∴ρ不同 2. (基础训练7)[ B ]设图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令()2O p v 和()2H p v 分别表示氧气和氢气的最概然速率,则(A) 图中a表示氧气分子的速率分布曲线;()2O p v /()2H p v =4.(B) 图中a表示氧气分子的速率分布曲线;()2O p v /()2H p v =1/4.(C) 图中b表示氧气分子的速率分布曲线;()2O p v /()2H p v =1/4.(D) 图中b表示氧气分子的速率分布曲线;()2O pv /()2Hp v = 4.【解答】:理想气体分子的最概然速率p v =p v 越小,又由氧气的摩尔质量33210(/)M kg mol -=⨯,氢气的摩尔质量3210(/)M kg mol -=⨯,可得()2O p v /()2H p v =1/4。
故应该选(B )。
3. (基础训练8)[ C ]设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分子的平均速率为 (A) ⎰21d )(v v v v v f . (B) 21()d v v v vf v v ⎰.(C)⎰21d )(v v v v v f /⎰21d )(v v v v f . (D)⎰21d )(v v v v v f /0()d f v v ∞⎰ .【解答】:因为速率分布函数f (v )表示速率分布在v 附近单位速率间隔内的分子数占总分子数的百分率,所以⎰21d )(v v v v v f N 表示速率分布在v 1~v 2区间内的分子的速率总和,而21()d v v Nf v v ⎰表示速率分布在v 1~v 2区间内的分子数总和,因此⎰21d )(v v v v v f /⎰21d )(v v vv f 表示速率分布在v 1~v 2区间内的分子的平均速率。
4. (基础训练9)[ B ]一定量的理想气体,在温度不变的条件下,当体积增大时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 减小而λ不变. (B)Z 减小而λ增大. (C) Z 增大而λ减小. (D)Z 不变而λ增大.【解答】:根据分子的平均碰撞频率nv d Z 22π=和平均自由程Pd kTn d 22221ππλ==,在温度不变的条件下,当体积增大时,分子数密度Nn V=减小,从而压强nkT p =减小,平均自由程λ增大,平均碰撞频率Z 减小。
5. (自测提高3)[ B ]若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了(A)0.500. (B) 400. (C) 900. (D) 2100.【解答】:kT n p 11=, kT n p 22=, 121211p p n n kT kT p n kT --==211T T -=124.167%288=6. (自测提高 7)[ C ]一容器内盛有1 mol 氢气和1 mol 氦气,经混合后,温度为 127℃,该混合气体分子的平均速率为 (A) πR 10200. (B) πR10400. (C) 10Rπ)210πR . (D) +πR10(400)210πR. 【解答】:根据算术平均速率: 8RTv Mπ=, 其中,273127400T K =+=31210(/M kg mol -=⨯),32410(/M kg mol -=⨯)根据平均速率的定义,混合气体分子的平均速率为:v =1Nii vN==∑22222211()()222H O H O H O AA A vv v v v v N N N +=+=+∑∑∑∑2H v ===2O v ===v ∴=)210πR二.填空题1. (基础训练 11) A 、B 、C 三个容器中皆装有理想气体,它们的分子数密度之比为n A ∶n B ∶n C =4∶2∶1,而分子的平均平动动能之比为A w ∶B w ∶C w =1∶2∶4,则它们的压强之比A p ∶B p ∶C p =_1:1:1_.【解答】:根据理想气体的压强公式:23k p n ε=,得A p ∶B p ∶C p =1:1:1。
2. (基础训练 14)在平衡状态下,已知理想气体分子的麦克斯韦速率分布函数为f (v )、分子质量为m 、最概然速率为v p ,试说明下列各式的物理意义: (1)()⎰∞pf v v v d 表示_分子速率处于Pv∞区间内的概率,或分布在Pv ∞速率区间内的分子数占总分子数的百分数_; (2)()v v v d 212f m ⎰∞表示 分子平动动能的平均值__.3. (基础训练 15)用总分子数N 、气体分子速率v 和速率分布函数f (v )表示下列各量:(1) 速率大于v 0的分子数=()v Nf v dv ∞⎰;(2) 速率大于v 0的那些分子的平均速率= 00()()v v vf v dvf v dv∞∞⎰⎰;(3)多次观察某一分子的速率,发现其速率大于v 0的概率= 0()v f v dv ∞⎰.【解答】:(1)根据速率分布函数()dNf v Ndv=,dN 表示v v dv +区间内的分子数,则速率大于v 0的分子数,即0v ∞区间内的分子数为:()v v dN Nf v dv ∞∞=⎰⎰(2)速率大于v 0的分子的平均速率:0000()()()()v v v v v v vdN vNf v dv vf v dvv dNNf v dvf v dv∞∞∞∞∞∞===⎰⎰⎰⎰⎰⎰(3)某一分子的速率大于v 0的概率,即分子速率处于0v ∞区间内的概率,应为v ∞区间内的分子数占总分子数的百分数,即:()()v v v dNNf v dv f v dv NN∞∞∞==⎰⎰⎰4. (基础训练 17)一容器内储有某种气体,若已知气体的压强为 3×105 Pa ,温度为27℃,密度为0.24 kg/m 3,则可确定此种气体是_氢_气;并可求出此气体分子热运动的最概然速率为_1581.14_m/s .【解答】:nkT p =, kT pn =, 00N m nm Vρ⋅==, p kT n m ρρ== , 0A RTM N m pρ===2(g/mol)ρpMRTv p 22==5. (自测提高12)储有氢气的容器以某速度v 作定向运动,假设该容器突然停止,气体的全部定向运动动能都变为气体分子热运动的动能,此时容器中气体的温度上升 0.7 K ,则容器作定向运动的速度v =_120_m/s ,容器中气体分子的平均动能增加了232.410-⨯J .【解答】: 氢气为双原子分子,自由度数5=i,分子热运动的平均动能为52kT ε=,根据题意,气体的全部定向运动动能都转变为气体分子热运动的动能,可知:2015()22Nm V N k T T '=-,则 s m MT T R m T T k V /120)(5)(50=-'=-'=容器中气体分子平均动能增量为:J T T k 23104.2)(25)(-⨯=-'=-'εε6. (自测提高16)一容器内盛有密度为ρ的单原子理想气体,其压强为p ,此气体分子的方均根速率为=;单位体积内气体的内能是32p.【解答】:根据0N mnmVρ⋅==,nmρ=,玻尔兹曼常数ARkN=则00AR RTp nkT kT Tm m N Mρρρ====,即RT pMρ=此气体分子的方均根速率:==根据能量均分原理,在温度为T的平衡态下,分子在任一自由度上的平均能量都是12kT,对于单原子分子:自由度数3i=,32kTε=单位体积内气体的内能3322E n kT p==三.计算题1.(基础训练21)水蒸气分解为同温度T的氢气和氧气H2O →H2+21O2时,1摩尔的水蒸气可分解成1摩尔氢气和21摩尔氧气.当不计振动自由度时,求此过程中内能的增量.【解答】:RTiE2ν==RT26,而RTRTE252125⨯+==RT415∴15642E E RT RT-=-=34RT即内能增加了25%。
2.(基础训练24)有N个粒子,其速率分布函数为()(0)()0()f v C v vf v v v=≤≤=>,,试求其速率分布函数中的常数C和粒子的平均速率(均通过v表示)【解答】:由归一化条件⎰⎰⎰∞∞==+=0001)(0υυυυυCdCddvvf∴1υ=Cυ=⎰∞)(υυυd f =⎰⋅001υυυυd =2120υυ⋅=20υ 3. (自测提高 21)试由理想气体状态方程及压强公式,推导出气体温度与气体分子热运动的平均平动动能之间的关系式.【解答】: 由理想气体状态方程mpV RT M=,(式中m 、M 分别为理想气体的质量和摩尔质量,R 为气体普适常数),可得:000A ANm Nm m N R p RT RT RT T nkT MV MV N m V V N =====, 即:p nkT =,(式中Nn V=表示单位体积内的分子数,2311.3810ARk J K N --==⨯⋅为玻尔兹曼常数,236.0210/A N mol =⨯个为阿伏枷德罗常数)再由理想气体的压强公式:201233p nm v nw ==,得气体分子的平均平动动能与温度的关系201322w m v kT ==4. (自测提高 22)许多星球的温度达到108 K .在这温度下原子已经不存在了,而氢核(质子)是存在的.若把氢核视为理想气体,求:(1) 氢核的方均根速率是多少? (2) 氢核的平均平动动能是多少电子伏特? 【解答】:(1) 氢核的方均根速率:=61.5810(/)m s ==⨯ (2) 氢核的平均平动动能238154331.3810102.0710 1.291022w kT J eV --==⨯⨯⨯=⨯=⨯。