(完整版)初中数学《勾股定理》专项习题及答案.docx
(完整版)勾股定理练习题及答案
一、 选择题1、在Rt △ABC 中,∠C=90°,三边长分别为a 、b 、c ,则下列结论中恒成立的是 ( ) A 、2ab<c 2 B 、2ab ≥c 2 C 、2ab>c 2 D 、2ab ≤c 22、已知x 、y 为正数,且│x 2-4│+(y 2-3)2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )A 、5B 、25C 、7D 、153、直角三角形的一直角边长为12,另外两边之长为自然数,则满足要求的直角三角形共有( ) A 、4个 B 、5个 C 、6个 D 、8个4、下列命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是3、4,那么斜边必是5;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,(a>b=c ),那么a 2∶b 2∶c 2=2∶1∶1。
其中正确的是( )A 、①②B 、①③C 、①④D 、②④5、若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2+338=10a+24b+26c ,则此△为( )A 、锐角三角形B 、钝角三角形C 、直角三角形D 、不能确定6、已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为( )A 、40B 、80C 、40或360D 、80或3607、如图,在Rt △ABC 中,∠C=90°,D 为AC 上一点,且DA=DB=5,又△DAB 的面积为10,那么DC 的长是( )A 、4B 、3C 、5D 、4.58、如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。
现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A 、2㎝B 、3㎝C 、4㎝D 、5㎝9.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是_____________。
(完整版)勾股定理经典例题(含答案)
经典例题透析类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。
解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b=(2) 在△ABC中,∠C=90°,a=40,b=9,c=(3) 在△ABC中,∠C=90°,c=25,b=15,a=举一反三【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?【答案】∵∠ACD=90°AD=13, CD=12∴AC2 =AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB= 4∴AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:BC的长.思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,,再由勾股定理计算出AD、DC的长,进而求出BC的长.解析:作于D,则因,∴(的两个锐角互余)∴(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半).根据勾股定理,在中,.根据勾股定理,在中,.∴.举一反三【变式1】如图,已知:,,于P. 求证:.解析:连结BM,根据勾股定理,在中,.而在中,则根据勾股定理有.∴又∵(已知),∴.在中,根据勾股定理有,∴.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD的面积。
分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。
勾股定理练习题(含答案)
勾股定理练习题(含答案)1.下列说法正确的是:C.若a、b、c是Rt△ABC的三边,A=90°,则a+b=c。
2.根据勾股定理,应该选B.a+b>c。
3.根据勾股定理,斜边长为√(k-1)²+(2k)²,即√(5k²-4)。
4.根据(a-b)(a+b-c)=0,可得a=b或a+b=c,所以它的形状为等腰三角形或直角三角形。
5.设另一直角边为x,则根据勾股定理得x²+9²=(x+1)²,解得x=40/9,周长为9+40/9+41/9=120/9=40/3,选C。
6.根据勾股定理得BC=√(13²-12²)=5,所以周长为15+13+5=33,选D。
7.根据勾股定理和中线长度公式得周长为2d+2√(d²-S),选C。
8.根据勾股定理得OP的长度为√(3²+4²)=5,选C。
9.根据勾股定理和海伦公式得BC=√(26²-24²/25)=17,选A。
10.根据(a-6)+b-8+c-10²=0,可得a+b+c=24,所以它的形状为等边三角形。
11.根据勾股定理和面积公式得面积为(8*15)/2=60,选D。
12.根据等腰三角形的性质,顶角的平分线与底边中线重合,所以答案为底边中线,即6.5.13.根据勾股定理得斜边长为√200=10√2,选D。
14.根据三角形边长比的性质,10:8:6无法构成三角形,所以不是三角形。
15.一个三角形的三边比为5:12:13,周长为60,则其面积为多少?16.在直角三角形ABC中,斜边AB=4,则AB+BC+AC=多少?17.如图,已知直角三角形ABC中,∠C=90°,BA=15,AC=12,以直角边BC为直径作半圆,则该半圆的面积为多少?18.若三角形三个内角的比为1:2:3,最短边长为1cm,最长边长为2cm,则该三角形三个角度数分别为多少?另外一边的平方是多少?19.长方形的一边长为3cm,面积为12cm²,则其一条对角线长为多少?20.如图,一个高为4m、宽为3m的大门,需要在对角线的顶点间加固一个木条,求该木条的长度。
中考数学复习《勾股定理》专项练习题-附带有答案
中考数学复习《勾股定理》专项练习题-附带有答案一、单选题1.线段a、b、c组成的三角形不是直角三角形的是()A.a=7,b=24,c=25 B.Ba= √41,b=4,c=5C.a= 34,b=1,c= 54D.a=40,b=50,c=602.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.65B.95C.125D.1653.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为7和9,则b的面积为()A.16 B.2 C.32 D.1304.如图,在5×5的正方形网格中,每个小正方形的边长为1,在图中找出格点C,使得△ABC是腰长为无理数的等腰三角形,点C的个数为()A.3 B.4 C.5 D.75.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中S A=10,S B=8,S C=9,S D=4则下列判断不正确的是()A.S E=18B.S F=13C.S M=31D.S M−S E=176.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.1B.√5C.2√2D.2√37.我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a、b,那么(a+b)2的值为().A.49 B.25 C.13 D.18.如图,在△ABC中∠C=60°,AC=4,BC=3 .分别以点A,B为圆心,大于12AB的长为半径作弧,两弧交于M、N两点,作直线MN交AC于点D,则CD的长为()A.1 B.75C.32D.3二、填空题9.如图,△ABC中AB=AC=10,BC=16,△ABC的面积是.10.如图,在Rt△ABC中,∠C=90°,AC=3,以AB为一边向三角形外作正方形ABEF,正方形的中心为O,且OC=4 √2,则BC=.11.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是12.某小区两面直立的墙壁之间为安全通道,一架梯子斜靠在左墙DE时,梯子底端A到左墙的距离AE为0.7m,梯子顶端D到地面的距离DE为2.4m,若梯子底端A保持不动,将梯子斜靠在右墙BC上,梯子顶端C到地面的距离CB为2m,则这两面直立墙壁之间的安全通道的宽BE为m.13.活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等.如已知△ABC中∠A=30°,AC=3,∠A所对的边为√3,满足已知条件的三角形有两个(我们发现其中如图的△ABC是一个直角三角形),则满足已知条件的三角形的第三边长为三、解答题14.如图,点C在∠DAB内部,CD⊥AD于点D,CB⊥AB于点B,CD=CB,若AD=5,求AB的长.15.如图,在△ABC中,CD⊥AB,垂足为D.AD=1,BD=4,CD=2.求证:∠ACB=90°.16.如图,一只小鸟旋停在空中A点,A点到地面的高度AB=20米,A点到地面C点(B、C两点处于同一水平面)的距离AC=25米.若小鸟竖直下降12米到达D点(D点在线段AB上),求此时小鸟到地面C 点的距离.17.如图,在△ABC中,∠ACB的平分线CD交AB于点D,E为AC边上一点,且满足∠AED=2∠DCB.(1)求证:DE∥BC;(2)若∠B=90°,AD=6,AE=9,求CE的长.18.如图,在正△ABC的AC,BC上各取一点D,E,使AD=CE,AE,BD相交于点M(1)如图1,求∠BME的度数;(2)如图2,过点B作直线AE的垂线BH,垂足为H①求证:2MH+DM=AE;②若BE=2EC=2,求BH的长.答案1.D2.C3.A4.C5.D6.B7.A8.B9.4810.511.1.512.2.213.2√3或√314.解:解法一:连结AC∵CD⊥AD于点D,CB⊥AB于点B∴∠CDA=∠CBA=90°在Rt△ABC与Rt△ADC中有AC=AC,CD=CB∴Rt△ABC≌Rt△ADC(HL)∴AB=AD=5解法二:连结AC∵CD⊥AD于点D,CB⊥AB于点B∴∠CDA=∠CBA=90°∵CD=CB∴由勾股定理得:AB= √AC2−BC2 = √AC2−CD2 =AD=515.证明:∵CD是△ABC的高∴∠ADC=∠BDC=90°.∵AD=1,BD=4,CD=2∴AC2=AD2+CD2=12+22=5,BC2=BD2+CD2=42+22=20,AB2=(1+4)2=25.∴AC2+BC2=AB2.∴△ABC是直角三角形∴∠ACB=90°.16.解:由勾股定理得;BC2=AC2−AB2=252−202=225∴BC=15(米)∵BD=AB−AD=20−12=8(米)∴在Rt△BCD中,由勾股定理得CD=√DB2+BC2=√82+152=17∴此时小鸟到地面C点的距离17米.答;此时小鸟到地面C点的距离为17米.17.(1)证明:∵CD平分∠ACB∴∠ACD=∠DCB即∠ACB=2∠DCB又∵∠AED=2∠DCB∴∠ACB=∠AED∴DE//BC;(2)解:∵DE//BC∴∠EDC=∠BCD,∠B=∠ADE=90°∵∠BCD=∠ECD∴∠EDC=∠ECD∴ED=CE∵AD=6,AE=9∴DE=√AE2−AD2=√92−62=3√5∴CE=3√5.18.(1)解:∵△ABC是等边三角形∴AB=AC,∠BAC=∠C=60°又∵AD=CE ∴△ABD≌△CAE(SAS)∴∠BME=∠ABD+∠BAE=∠CAE+∠BAE=∠BAC=60°(2)解:①∵BH⊥AE ∠BME=60°∴∠HBM=30°∴BM=2MH∵△ABD≌△CAE ∴AE=BD=BM+MD=2MH+MD②过点E作EG⊥AB于点GBE=2EC=2 ∴AB=BC=3∴使用ABC=60°∴BG=1,AG=2,由勾股定理可得,GE= √3,AE= √7设HE=x,则AH= √7 -x由勾股定理得32-(√7 -x)2=22-x2解得x= √77再由勾般定理可得:BH= 3√21.7。
第一章《勾股定理》专题复习(含答案)
第一章《勾股定理》专题复习(含答案)第一章《勾股定理》专项练习专题一:勾股定理考点分析:勾股定理单独命题的题目较少,常与方程、函数,四边形等知识综合在一起考查,在中考试卷中的常见题型为填空题、选择题和较简单的解答题典例剖析例1.(1)如图1是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离为______mm.(2)如图2,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A.4B.6 D.55图2图1 C.16分析:本题结合图中的尺寸直接运用勾股定理计算即可.解:(1)由已知得:AC=150-60=90,BC=180-60=120,由勾股定理得:AB2=902+1202=22500,所以AB=150(mm)(2)由勾股定理得:b=a+c=5+11=16,故选C.点评:以上两例都是勾股定理的直接运用,当已知直角三角形的两边,求第三边时,往往要借助于勾股定理来解决.例2.如图3,正方形网格的每一个小正方形的边长都是1,试求∠A1E2A2 ∠A4E2C4 ∠A4E5C4的度数.A5A4E5A 54A4E54A3A2A1AB11D1E1 12EA2A3E2B11D1E1解:连结图3A3E2. A3A2 A1A2,A2E2 A2E2, A3A2E2 A1A2E2 90, Rt△A3A2E2≌Rt△A1A2E2(SAS) AEA AEA. 322122.由勾股定理,得:C4E5C3E2,A4E5 A3E2,A4C4 A3C3 2,△A4C4E5≌△A3C3E2(SSS) AEC AEC. 323454勾股定理 - 1 -。
勾股定理习题集(含答案)
勾股定理习题集一、选择题(本大题共13小题,共39.0分)1.下列命题中,是假命题的是( )A. 在△ABC中,若∠B=∠C−∠A,则△ABC是直角三角形B. 在△ABC中,若a2=(b+c)(b−c),则△ABC是直角三角形C. 在△ABC中,若∠A:∠B:∠C=3:4:5,则△ABC是直角三角形D. 在△ABC中,若a:b:c=3:4:5,则△ABC是直角三角形2.已知△ABC中,a、b、c分别为∠A、∠B、∠C的对边,则下列条件中:①a=4,b=71;2 c=81;②a2:b2:C2=1:3:2;③∠A:∠B:∠C=3:4:5;④∠A=2∠B=2∠C.2其中能判断△ABC是直角三角形的有( )个.A. 1B. 2C. 3D. 43.下列四组线段中,可以构成直角三角形的是( )A. 2,5,7B. 4,5,6C. √2,√3,√5D. 32,42,524.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为( )A. 4B. 6C. 16D. 555.一位工人师傅测量一个等腰三角形工件的腰,底及底边上的高,并按顺序记录下数据,量完后,不小心与其他记录的数据记混了,请你帮助这位师傅从下列数据中找出等腰三角形工件的数据( )A. 13,10,10B. 13,10,12C. 13,12,12D. 13,10,116.直角三角形两条直角边的和为7,面积为6,则斜边为( )A. √37B. 5C. 25D. 77.如图,在四边形ABCD中,∠DAB=∠BCD=90∘,分别以四边形的四条边为边向外作四个正方形,若S1+S4=100,S3=36,则S2=( )A. 136B. 64C. 50D. 818.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在D′处,则重叠部分△AFC的面积是( )A. 8B. 10C. 20D. 329.如图,第1个正方形(设边长为2)的边为第一个等腰直角三角形的斜边,第一个等腰直角三角形的直角边是第2个正方形的边,第2个正方形的边是第2个等腰三角形的斜边…依此不断连接下去.通过观察与研究,写出第2016个正方形的边长a2016为( )A. a 2016=4(12)2015 B. a 2016=2(√23)2015C. a 2016=4(12)2016D. a 2016=2(√22)201610. 如果将长为6cm ,宽为5cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( ) A. 8cm B. 5√2cm C. 5.5cm D. 1cm 11. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )A. 42B. 32C. 42或32D. 37或3312. 如图,在Rt △ABC 中,∠ACB =90∘,AC =6,BC =8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是( )A. 2.4B. 4C. 4.8D. 513. 如图所示,△ABC 的顶点A 、B 、C 在边长为1的正方形网格的格点上,BD ⊥AC 于点D ,则BD 的长为( )A. 45√5B. 23√5 C. 25√5 D. 43√3二、填空题(本大题共15小题,共45.0分)14. 如图,AD =13,BD =12,∠C =90∘,AC =3,BC =4.则阴影部分的面积=______ .15. 若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为______ cm 2. 16. 如图,在△ABC 中,AB =AC =13,BC =10,D 是AB 的中点,过点D 作DE ⊥AC 于点E ,则DE 的长是______.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为3cm,则图中所有正方形的面积之和为______ cm2.18.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是______ .19.如图是由一系列直角三角形组成的螺旋形,OA=OA1=OA2=⋯OA n=1,则第n个直角三角形的面积为______ .20.如图,在△ABC中,AB=AC=5,BC=6,点M为BC中点,MN⊥AC于点N,则MN的长是______ .21.如图,点P是等边△ABC内一点,连接PA,PB,PC,PA:PB:PC=3:4:5,以AC为边作△AP′C≌△APB,连接PP′,则有以下结论:①△APP′是等边三角形;②△PCP′是直角三角形;③∠APB=150∘;④∠APC=105∘.其中一定正确的是______ .(把所有正确答案的序号都填在横线上)22.如图所示,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x−y=2,③2xy+4=49,④x+y=9.其中说法正确的结论有______ .23.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为______ .24.若直角三角形的两条边长为a,b,且满足(a−3)2+|b−4|=0,则该直角三角形的第三条边长为______ .25.如图,矩形ABCD中,AB=12cm,BC=24cm,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积______ .26.如果一架25分米长的梯子,斜边在一竖直的墙上,这时梯足距离墙角7分米,若梯子的顶端沿墙下滑4分米,那么梯足将向右滑______ 分米.27.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90∘到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=______ 度.28.已知a是√13的整数部分,3+√3=b+c,其中b是整数,且0<c<1,那么以a、b为两边的直角三角形的第三边的长度是______ .三、计算题(本大题共2小题,共12.0分)29.如图,在△ABC中,∠BAC=120∘,∠B=30∘,AD⊥AB,垂足为A,CD=1cm,求AB的长.30.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.四、解答题(本大题共8小题,共64.0分)31.如图,在笔直的铁路上A、B两点相距25km,C、D为两村庄,DA=10km,CB=15km,DA⊥AB于A,CB⊥AB于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等.求E应建在距A多远处?32.如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.(1)作AD⊥BC于D,设BD=x,用含x的代数式表示CD,则CD=______ ;(2)请根据勾股定理,利用AD作为“桥梁”建立方程,并求出x的值;(3)利用勾股定理求出AD的长,再计算三角形的面积.33.如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.(1)请你画出蚂蚁能够最快到达目的地的可能路径;(2)当AB=4,BC=4,CC1=5时,求蚂蚁爬过的最短路径的长;(3)求点B1到最短路径的距离.34.在Rt△ABC中,∠C=90∘,∠A、∠B、∠C的对边长分别为a、b、c,设△ABC的面积为S,周长为l.(1)填表:三边a、b、c a+b−c Sl3、4、525、12、1348、15、176=______ ,(用含有m的代数式表示);(2)如果a+b−c=m,观察上表猜想:Sl(3)说出(2)中结论成立的理由.35.点A,B的位置如图,在网格上确定点C,使AB=AC,∠BAC=90∘.(1)在网格内画出△ABC;(2)直接写出△ABC的面积为______.36.如图,将长方形ABCD沿直线AE折叠,顶点D恰好落在BC边上点F处.已知CE=3cm,AB=8cm.求:(1)AD的长;(2)阴影部分的面积.37.小明和同桌小聪在课后复习时,对课本“目标与评定”中的一道思考题,进行了认真的探索.【思考题】如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?(1)请你将小明对“思考题”的解答补充完整:解:设点B将向外移动x米,即BB1=x,则B1C=x+0.7,A1C=AC−AA1=√2.52−0.72−0.4=2而A1B1=2.5,在Rt△A1B1C中,由B1C2+A1C2=A1B12得方程______,解方程得x1=______,x2=______,∴点B将向外移动______米.(2)解完“思考题”后,小聪提出了如下两个问题:【问题一】在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?【问题二】在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?请你解答小聪提出的这两个问题.38.如图,有一段15m长的旧围墙AB,现打算利用该围墙的一部分(或全部)为一边,再用32m长的篱笆围成一块长方形场地CDEF.(1)怎样围成一个面积为126m2的长方形场地?(2)长方形场地面积能达到130m2吗?如果能,请给出设计方案,如果不能,请说明理由.答案和解析【答案】1. C2. C3. C4. C5. B6. B7. B8. B9. B10. A11. C12. C13. A14. 2415. 12016. 601317. 2718. 4719. √n220. 12521. ①②③22. ①②③23. 6cm224. 5或√725. 90cm226. 827. 13528. √7或529. 解:在△ABC中,∠BAC=120∘,∠B=30∘,∴∠C=180∘−120∘−30∘=30∘,∠DAC=120∘−90∘=30∘;即∠DAC=∠C,∴CD=AD=1cm.=√3.在Rt△ABD中,AB=ADtan30∘30. 解:∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90∘,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF=√AF2−AB2=√102−82=6,∴FC=BC−BF=4,设EC=x,则DE=8−x,EF=8−x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8−x)2,解得x=3,∴EC的长为3cm.31. 解:设AE=x,则BE=25−x,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=102+x2,在Rt△BCE中,CE2=BC2+BE2=152+(25−x)2,由题意可知:DE=CE,所以:102+x2=152+(25−x)2,解得:x=15km.(6分)所以,E应建在距A点15km处.32. 14−x33. 解:(1)如图,木柜的表面展开图是矩形或ACC1A1.故蚂蚁能够最快到达目的地的可能路径有如图的或AC1;(2)蚂蚁沿着木柜表面矩形爬过的路径的长是l1=√42+(4+5)2=√97.蚂蚁沿着木柜表面矩形矩形AB1C1D爬过的路径AC1的长=√97,蚂蚁沿着木柜表面ACC1A1爬过的路径AC1的长是l2=√(4+4)2+52=√89.l1>l2,故最短路径的长是l2=√89.(3)作B1E⊥AC1于E,∵∠C1EB1=∠C1A1A,∠A1C1A是公共角,∴△AA1C1∽△B1EC1,即B1EAA1=B1C1AC1,则B1E=B1C1AC1⋅AA1=4√89⋅5=2089√89为所求.34. m435. 536. 解:(1)如图,∵CD=AB=8,CE=3,∴EF=DE=8−3=5;由勾股定理得:CF=4;由题意得:AF=AD(设为λ),∠AFE=∠D=90∘;∵∠B=∠C=90∘;∴∠BAF+∠AFB=∠AFB+∠EFC,∴∠BAF=∠EFC,而∠B=∠C,∴△ABF∽△FCE,∴ABCF =AFEF,解得:AF=10.∴AD=AF=10.(2)由题意得:S△AEF=S△ADE,∴S阴影=S矩形ABCD−2S△ADE=10×8−2×12×10×5=80−50=30.37. (x+0.7)2+22=2.52;0.8;−2.2(舍去);0.838. 解:(1)设CD=xm,则DE=(32−2x)m,依题意得:x(32−2x)=126,整理得x2−16x+63=0,解得x1=9,x2=7,当x1=9时,(32−2x)=14当x2=7时(32−2x)=18>15(不合题意舍去)∴能围成一个长14m,宽9m的长方形场地.(2)设CD=ym,则DE=(32−2y)m,依题意得y(32−2y)=130整理得y2−16y+65=0△=(−16)2−4×1×65=−4<0故方程没有实数根,∴长方形场地面积不能达到130m2.【解析】1. 解:A、在△ABC中,若∠B=∠C−∠A,则△ABC是直角三角形,是真命题;B、在△ABC中,若a2=(b+c)(b−c),则△ABC是直角三角形,是真命题;C、在△ABC中,若∠A:∠B:∠C=3:4:5,则△ABC是直角三角形,是假命题;D、在△ABC中,若a:b:c=3:4:5,则△ABC是直角三角形,是真命题;故选C.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2. 解:①∵a2+b2=2894=(172)2,c2=(812)2=(172)2∴a2+b2=c2,∴此三角形是直角三角形,故本小题正确;②∵a2:b2:c2=1:3:2,∴设a2=x,则b2=3x,c2=2x,∵x+2x=3x,∴a2+c2=b2,∴此三角形是直角三角形,故本小题正确;③∵∠A:∠B:∠C=3:4:5,∴设∠A=3x,则∠B=4x,∠C=5x.∵∠A+∠B+∠C=180∘,∴3x+4x+5x=180∘,解得x=15∘,∴∠A=45∘,∠B=60∘,∠C=75∘,∴此三角形不是直角三角形,故本小题错误;④∵∠A=2∠B=2∠C,∴设∠B=∠C=x,则∠A=2x,∴x+x+2x=180∘,解得:x=45∘,∴∠A=2x=90∘,∴此三角形是直角三角形,故本小题正确.故选C.分别根据三角形内角和定理、勾股定理的逆定理对各选项进行逐一分析即可.本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.3. 解:A、22+52≠72,不能构成直角三角形,故不符合题意;B、42+52≠62,不能构成直角三角形,故不符合题意;C、(√2)2+(√3)2=(√5)2,能构成直角三角形,故符合题意;D、(32)2+(42)2≠(52)2,不能构成直角三角形,故不符合题意.故选:C.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4. 解:∵a、b、c都是正方形,∴AC=CD,∠ACD=90∘;∵∠ACB+∠DCE=∠ACB+∠BAC=90∘,∴∠BAC=∠DCE,∵∠ABC=∠CED=90∘,AC=CD,∴△ACB≌△DCE,∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即S b=S a+S c=11+5=16,故选:C.运用正方形边长相等,结合全等三角形和勾股定理来求解即可.此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.5. 解:由题可知,在等腰三角形中,底边的一半、底边上的高以及腰正好构成一个直)2+122=132,符合勾股定理,故选B.角三角形,且(102根据等腰三角形的三线合一,得底边上的高也是底边上的中线.根据勾股定理知:底边的一半的平方加上高的平方应等于腰的平方,即可得出正确结论.考查了等腰三角形的三线合一以及勾股定理的逆定理.6. 解:设一直角边为x,则另一直角边为7−x,x(7−x)=6,根据题意得12解得:x=4或x=3,则另一直角边为3和4,根据勾股定理可知斜边长为√32+42=5,故选:B.x(7−x),根据“面积为6”作为设一直角边为x,则另一直角边为7−x,可得面积是12相等关系,即可列方程,解方程即可求得直角边的长,再根据勾股定理求得斜边长.此题主要利用三角形的面积公式寻找相等关系,同时也考查了勾股定理的内容.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.7. 解:由题意可知:S1=AB2,S2=BC2,S3=CD2,S4=AD2,如果连接BD,在直角三角形ABD和BCD中,BD2=AD2+AB2=CD2+BC2,即S1+S4=S3+S2,因此S2=100−36=64,故选B.连接BD,即可利用勾股定理的几何意义解答.本题主要考查的是勾股定理的灵活运用,解答的关键是利用两个直角三角形公共的斜边.8. 解:重叠部分△AFC的面积是矩形ABCD的面积减去△FBC与△AFD’的面积再除以2,矩形的面积是32,∵AB//CD,∴∠ACD =∠CAB ,∵△ACD′由△ACD 翻折而成,∴∠ACD =∠ACD′,∴∠ACD′=∠CAB ,∴AF =CF ,∵BF =AB −AF =8−AF ,∴CF 2=BF 2+BC 2∴AF 2=(8−AF)2+42∴AF =5,BF =3∴S △AFC =S △ABC −S △BFC =10.故选B .解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系. 本题通过折叠变换考查学生的逻辑思维能力.9. 解:第2016个正方形的边长a 2016=2(√22)2015. 故选B 第一个正方形的边长是2,设第二个的边长是x ,则2x 2=22,则x =√2,即第二个的边长是:2(√22)1;设第三个的边长是y ,则2y 2=x 2,则y =2(√22)x =2(√22)2,同理可以得到第四个正方形的边长是2(√22)3,则第n 个是:2(√22)n−1. 正确理解各个正方形的边长之间的关系是解题的关键,大正方形的边与相邻的小正方形的边,正好是同一个等腰直角三角形的斜边与直角边.10. 解:易知最长折痕为矩形对角线的长,根据勾股定理对角线长为:√62+52=√61≈7.8,故折痕长不可能为8cm .故选:A .根据勾股定理计算出最长折痕即可作出判断.考查了折叠问题,勾股定理,根据勾股定理计算后即可做出选择,难度不大. 11. 解:此题应分两种情况说明:(1)当△ABC 为锐角三角形时,在Rt △ABD 中,BD =√AB 2−AD 2=√152 −122 =9,在Rt △ACD 中,CD =√AC 2−AD 2=√132 −122=5∴BC =5+9=14∴△ABC 的周长为:15+13+14=42;(2)当△ABC 为钝角三角形时,在Rt △ABD 中,BD =√AB 2−AD 2=√152 −122 =9,在Rt △ACD 中,CD =√AC 2−AD 2=√132 −122=5,∴BC =9−5=4.∴△ABC 的周长为:15+13+4=32∴当△ABC 为锐角三角形时,△ABC 的周长为42;当△ABC 为钝角三角形时,△ABC 的周长为32.故选C .本题应分两种情况进行讨论:(1)当△ABC 为锐角三角形时,在Rt △ABD 和Rt △ACD 中,运用勾股定理可将BD 和CD 的长求出,两者相加即为BC 的长,从而可将△ABC 的周长求出;(2)当△ABC 为钝角三角形时,在Rt △ABD 和Rt △ACD 中,运用勾股定理可将BD 和CD的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.此题考查了勾股定理及解直角三角形的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度.12. 解:如图,过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,∵AD是∠BAC的平分线.∴PQ=PM,这时PC+PQ有最小值,即CM的长度,∵AC=6,BC=8,∠ACB=90∘,∴AB=√AC2+BC2=√62+82=10.∵S△ABC=12AB⋅CM=12AC⋅BC,∴CM=AC⋅BCAB =6×810=245,即PC+PQ的最小值为245.故选:C.过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,由AD是∠BAC 的平分线.得出PQ=PM,这时PC+PQ有最小值,即CM的长度,运用勾股定理求出AB,再运用S△ABC=12AB⋅CM=12AC⋅BC,得出CM的值,即PC+PQ的最小值.本题主要考查了轴对称问题,解题的关键是找出满足PC+PQ有最小值时点P和Q的位置.13. 解:△ABC的面积=12×BC×AE=2,由勾股定理得,AC=√12+22=√5,则12×√5×BD=2,解得BD=45√5,故选:A.根据图形和三角形的面积公式求出△ABC的面积,根据勾股定理求出AC,根据三角形的面积公式计算即可.本题考查的是勾股定理的应用,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.14. 解:在RT△ABC中,AB=√AC2+BC2=5,∵AD=13,BD=12,∴AB2+BD2=AD2,即可判断△ABD为直角三角形,阴影部分的面积=12AB×BD−12BC×AC=30−6=24.答:阴影部分的面积=24.故答案为:24.先利用勾股定理求出AB,然后利用勾股定理的逆定理判断出△ABD是直角三角形,然后分别求出两个三角形的面积,相减即可求出阴影部分的面积.此题考查了勾股定理、勾股定理的逆定理,属于基础题,解答本题的关键是判断出三角形ABD为直角三角形.15. 解:设三边分别为5x,12x,13x,则5x+12x+13x=60,∴x=2,∴三边分别为10cm,24cm,26cm,∵102+242=262,∴三角形为直角三角形,∴S=10×24÷2=120cm2.故答案为:120.根据已知可求得三边的长,再根据三角形的面积公式即可求解.此题主要考查学生对直角三角形的判定及勾股定理的逆定理的理解及运用.16. 解:过A作AF⊥BC于F,连接CD;△ABC中,AB=AC=13,AF⊥BC,则BF=FC=12BC=5;Rt△ABF中,AB=13,BF=5;由勾股定理,得AF=12;∴S△ABC=12BC⋅AF=60;∵AD=BD,∴S△ADC=S△BCD=12S△ABC=30;∵S△ADC=12AC⋅DE=30,即DE=2×30AC=6013.故答案为:6013.过A作BC的垂线,由勾股定理易求得此垂线的长,即可求出△ABC的面积;连接CD,由于AD=BD,则△ADC、△BCD等底同高,它们的面积相等,由此可得到△ACD的面积;进而可根据△ACD的面积求出DE的长.此题主要考查了等腰三角形的性质、勾股定理、三角形面积的求法等知识的综合应用能力.17. 解:∵最大的正方形的边长为3cm,∴正方形G的面积为9cm2,由勾股定理得,正方形E的面积+正方形F的面积=9cm2,正方形A的面积+正方形B的面积+正方形C的面积+正方形D的面积=9cm2,∴图中所有正方形的面积之和为27cm2,故答案为:27.根据正方形的面积公式求出正方形G的面积,根据勾股定理计算即可.本题考查的是勾股定的应用,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.18. 解:设中间两个正方形的边长分别为x、y,最大正方形E的边长为z,则由勾股定理得:x2=32+52=34;y2=22+32=13;z2=x2+y2=47;即最大正方形E的边长为:√47,所以面积为:z2=47.故答案为:47.分别设中间两个正方形和最大正方形的边长为x,y,z,由勾股定理得出x2=32+52,y2=22+32,z2=x2+y2,即最大正方形的面积为z2.本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.19. 解:根据题意可知:OA1=√2,OA2=√3,…∴第n个直角三角形的直角边OA n−1长为√n.∵第n个直角三角形的另一条直角边长为1.∴第n个直角三角形的面积为12×1×√n=√n2.故答案为:√n2.这是一个规律性题目,第一个三角形的斜边正好是第二个三角形的直角边,依次进行下去,且有一个直角边的边长为1.从而可求出面积.本题考查勾股定理的应用,应用勾股定理求出三角形的斜边正好是下一个三角形的直角边.20. 解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM=√AB2−BM2=√52−32=4,又S△AMC=12MN⋅AC=12AM⋅MC,∴MN=AM⋅CMAC =125.连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.21. 解:△ABC是等边三角形,则∠BAC=60∘,又≌△APB,则AP= AP′,∠PAP′=∠BAC=60∘,是正三角形,①正确;又PA:PB:PC=3:4:5,∴设PA=3x,则:PP′=PA=3x,P′C=PB=4x,PC=5x,根据勾股定理的逆定理可知:是直角三角形,且∠PP′C=90∘,②正确;又是正三角形,∴∠AP′P=60∘,∴∠APB=150∘③正确;错误的结论只能是∠APC=105∘.故答案为①②③.先运用全等得出AP′=AP,∠CAP′=∠BAP,从而∠PAP′=∠BAC=60∘,得出△PAP′是等边三角形,∠AP′P=60∘,PP′=AP,再运用勾股定理逆定理得出∠PP′C=90∘,由此得解.本题主要考查了勾股定理的逆定理、全等三角形的性质以及等边三角形的知识,解决本题的关键是能够正确理解题意,由已知条件,联想到所学的定理,充分挖掘题目中的结论是解题的关键.22. 解:①∵△ABC为直角三角形,∴根据勾股定理:x2+y2=AB2=49,故本选项正确;②由图可知,x−y=CE=√4=2,故本选项正确;③由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积,×xy+4=49,列出等式为4×12即2xy+4=49;故本选项正确;④由2xy+4=49可得2xy=45①,又∵x2+y2=49②,∴①+②得,x2+2xy+y2=49+45,整理得,(x+y)2=94,x+y=√94≠9,故本选项错误.∴正确结论有①②③.故答案为①②③.根据正方形的性质、直角三角形的性质、直角三角形面积的计算公式及勾股定理解答.本题考查了勾股定理及正方形和三角形的边的关系,此图被称为“弦图”,熟悉勾股定理并认清图中的关系是解题的关键.23. 解:∵长方形折叠,使点B与点D重合,∴ED=BE,设AE=xcm,则ED=BE=(9−x)cm,在Rt△ABE中,AB2+AE2=BE2,∴32+x2=(9−x)2,解得:x=4,=6(cm2),∴△ABE的面积为:3×4×12故答案为:6cm2.首先翻折方法得到ED=BE,在设出未知数,分别表示出线段AE,ED,BE的长度,然后在Rt△ABE中利用勾股定理求出AE的长度,进而求出AE的长度,就可以利用面积公式求得△ABE的面积了.此题主要考查了图形的翻折变换和学生的空间想象能力,解题过程中应注意折叠后哪些线段是重合的,相等的,如果想象不出哪些线段相等,可以动手折叠一下即可.24. 解:该直角三角形的第三条边长为x,∵直角三角形的两条边长为a,b,且满足(a−3)2+|b−4|=0,∴a=3,b=4.若4是直角边,则第三边x是斜边,由勾股定理得:32+42=x2,∴x=5;若4是斜边,则第三边x为直角边,由勾股定理得:32+x2=42,∴x=√7;∴第三边的长为5或√7.故答案为:5或√7.设该直角三角形的第三条边长为x,先根据非负数的性质求出a、b的值,再分4是斜边或直角边的两种情况,然后利用勾股定理求解.本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.25. 解:∵四边形ABCD是矩形,∴AB=CD=12CM,BC=AD=24CM,AD//BC,∠A=90∘,∴∠EDB=∠CBD.∵△CBD与△C′BD关于BD对称,∴△CBD≌△C′BD,∴∠EBD=∠CBD,∴∠EBD=∠EDB,∴BE=DE.设DE为x,则AE=24−x,BE=x,由勾股定理,得122+(24−x)2=x2,解得:x=15,∴DE=15cm,∴S△BDE=15×12=90cm2.2故答案为90.根据轴对称的性质及矩形的性质就可以得出BE=DE,由勾股定理就可以得出DE的值,由三角形的面积公式就可以求出结论.本题考查了轴对称的性质的运用,矩形的性质的运用,勾股定理的运用,解答时运用轴对称的性质求解是关键.26. 解:如下图所示:AB相当于梯子,△ABO是梯子和墙面、地面形成的直角三角形,△OCD是下滑后的形状,∠O=90∘,即:AB=CD=25分米,OB=7分米,AC=4分米,BD是梯脚移动的距离.在Rt△ACB中,由勾股定理可得:AB2=AC2+BC2,AC=√AB2−BC2=24分米.∴OC=AC−AC=24−4=2分米,在Rt△COD中,由勾股定理可得:CD2=OC2+OD2,OD=15分米,BD=OD−OB=15−7=8分米,故答案为:8.梯子和墙面、地面形成的直角三角形,如下图所示可将该直角三角形等价于△ABC和△EFC,前者为原来的形状,后者则是下滑后的形状.由题意可得出AB=CD=25分米,OB=7分米,AC=4分米,在Rt△ACB中,由勾股定理可得:AB2=AC2+BC2,将AB、CB的值代入该式求出AC的值,OC=AO−AC;在Rt△COD中,求出OD的值,BD=OD−OB=15−7=8分米,即求出了梯脚移动的距离.本题主要考查勾股定理在实际中的应用,通过作相应的等价图形,可以使解答更加清晰明了.27. 解:连接EE′∵△ABE绕点B顺时针旋转90∘到△CBE′∴∠EBE′是直角,∴△EBE′是直角三角形,∵△ABE与△CE′B全等∴BE=BE′=2,∠AEB=∠BE′C∴∠BEE′=∠BE′E=45∘,∵EE′2=22+22=8,AE=CE′=1,EC=3,∴EC2=E′C2+EE′2,∴△EE′C是直角三角形,∴∠EE′C=90∘,∴∠AEB=135∘.故答案为:135.首先根据旋转的性质得出,△EBE′是直角三角形,进而得出∠BEE′=∠BE′E=45∘,即可得出答案.此题主要考查了旋转的性质,根据已知得出△EBE′是直角三角形是解题关键.28. 解:∵√9<√13<√16,∴3<√13<4,∴a=3,∵1<√3<2,∴4<3+√3<5,又∵b是整数,且0<c<1,∴b=4,c=√3−1.分两种情况:①若b=4为直角边,则第三边=√a2+b2=√32+42=5;若b=4为斜边,则第三条边=√b2−a2=√42−32=√7.故答案为√7或5.先根据√9<√13<√16,可得出a的值,根据1<√3<2,结合b是整数,且0<c<1,求出b、c的值,再分情况讨论,①b为直角边,②b为斜边,根据勾股定理可求出第三边的长度.本题考查了估算无理数的大小、勾股定理的知识,注意“夹逼法”的运用是解答本题的关键.29. 根据等腰三角形的性质和三角形内角和定理,易求得∠BAC=120∘,故∠DAC=∠C=30∘,由此可证得△ADC是等腰三角形,即可求出AD的长,再根据含30度角的直角三角形的性质即可求出AB的长.此题主要考查等腰三角形的判定和性质以及三角形内角和定理的应用;求得∠DAC= 30∘是正确解答本题的关键.30. 根据矩形的性质得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90∘,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=4,设EC=x,则DE=EF=8−x,在Rt△EFC中,根据勾股定理得x2+42= (8−x)2,然后解方程即可.本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.31. 根据题意设出E点坐标,再由勾股定理列出方程求解即可.本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.32. 解:(1)∵BC=14,BD=x,∴DC=14−x,故答案为:14−x;(2)∵AD⊥BC,∴AD2=AC2−CD2,AD2=AB2−BD2,∴132−(14−x)2=152−x2,解得:x=9;(3)由(2)得:AD=√AB2−BD2=√152−92=12,∴S△ABC=12⋅BC⋅AD=12×14×12=84.(1)直接利用BC的长表示出DC的长;(2)直接利用勾股定理进而得出x的值;(3)利用三角形面积求法得出答案.此题主要考查了勾股定理以及三角形面积求法,正确得出AD的长是解题关键.33. 根据题意,先将长方体展开,再根据两点之间线段最短.本题是一道趣味题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可.34. 解:(1)∵Rt△ABC的面积S=12ab,周长l=a+b+c,故当a、b、c三边分别为3、4、5时,S=12×3×4=6,l=3+4+5=12,故Sl=12,同理将其余两组数据代入可得Sl 为1,32.∴应填:12,1,32(2)通过观察以上三组数据,可得出m4.(3)∵l=a+b+c,m=a+b−c,∴lm=(a+b+c)(a+b−c)=(a+b)2−c2=a2+2ab+b2−c2.∵∠C=90∘,∴a2+b2=c2,s=12ab,∴lm=4s.即sl =m4.(1)Rt△ABC的面积S=12ab,周长l=a+b+c,分别将3、4、5,5、12、13,8、15、17三组数据代入两式,可求出Sl的值;(2)通过观察以上三组数据,可得出:Sl =m4;(3)根据lm=(a+b+c)(a+b−c),a2+b2=c2,S=12ab可得出:lm=4s,即Sl=m4.本题主要考查勾股定理在解直角三角形面积和周长中的运用.35. 解:(1)如图所示:(2)在△ABC中,∠BAC=90∘,∴AB=AC=√12+32=√10.故△ABC的面积为√10×√10÷2=5.故答案为:5.(1)先连结AB,再确定C点,连结AC,BC即可求解;(2)根据勾股定理得到AB,AC的长,再根据三角形面积公式即可求解.本题考查了勾股定理,学生作图与根据图象分析处理、以及计算面积的能力.36. (1)证明△ABF∽△FCE,列出比例式ABCF =AFEF,求出AF=10,得到AD=AF=10.(2)运用S阴影=10×8−2×12×10×5=80−50=30,即可解决问题.该题主要考查了旋转变换的性质及其应用、勾股定理及其应用等问题.37. 解:(1)(x+0.7)2+22=2.52,故答案为;0.8,−2.2(舍去),0.8.(2)①不会是0.9米,若AA1=BB1=0.9米,则A1C=2.4米−0.9米=1.5米,B1C=0.7米+0.9米=1.6米,1.52+1.62=4.81,2.52=6.25∵A1C2+B1C2≠A1B12,∴该题的答案不会是0.9米.②有可能.设梯子顶端从A处下滑x米,点B向外也移动x米,则有(x+0.7)2+(2.4−x)2=2.52,解得:x1=1.7或x2=0(舍)∴当梯子顶端从A处下滑1.7米时,点B向外也移动1.7米,即梯子顶端从A处沿墙AC 下滑的距离与点B向外移动的距离有可能相等.(1)直接把B1C、A1C、A1B1的值代入进行解答即可;(2)把(1)中的0.4换成0.9可知原方程不成立;设梯子顶端从A处下滑x米,点B向外也移动x米代入(1)中方程,求出x的值符合题意.本题考查的是解直角三角形的应用及一元二次方程的应用,根据题意得出关于x的一元二次方程是解答此题的关键.38. (1)首先设CD=xm,则DE=(32−2x)m,进而利用面积为126m2得出等式求出即可;(2)结合(1)中求法利用根的判别式分析得出即可.此题主要考查了一元二次方程的应用,表示出长方形的面积是解题关键.。
(完整版)勾股定理练习题及答案(共6套)
勾股定理课时练(1)8. 一个部件的形状以下图,已知AC=3cm, AB=4cm,BD=12cm。
求 CD的长 .1. 在直角三角形 ABC 中,斜边 AB=1 ,则 AB 2 BC 2 AC 2的值是()2.如图 18-2- 4 所示 ,有一个形状为直角梯形的部件ABCD ,AD ∥ BC,斜腰 DC 的长为10 cm,∠ D=120°,则该部件另一腰 AB 的长是 ______ cm(结果不取近似值) . 第 8 题图3. 直角三角形两直角边长分别为 5 和 12,则它斜边上的高为 _______.9. 如图,在四边形 ABCD中,∠ A=60°,∠ B=∠ D=90°, BC=2,CD=3,求 AB 的长 .4.一根旗杆于离地面12 m处断裂,如同装有铰链那样倒向地面,旗杆顶落于离旗杆地步16 m,旗杆在断裂以前高多少m ?第 9 题图10. 如图,一个牧童在小河的南4km 的 A 处牧马,而他正位于他的小屋 B 的西 8km 北 7km 处,5. 如图,以以下图,今年的冰雪灾祸中,一棵大树在离地面 3 米处折断,树的顶端落在离树杆底部4 他想把他的马牵到小河畔去饮水,而后回家. 他要达成这件事情所走的最短行程是多少?米处,那么这棵树折断以前的高度是米 .“路”3m4m第 5 题图第 2 题图11 如图,某会展中心在会展时期准备将高5m, 长 13m,宽 2m 的楼道上铺地毯 , 已知地毯平方米 18 6. 飞机在空中水平飞翔, 某一时辰恰巧飞到一个男孩子头顶正上方4000 米处 , 过了 20 秒, 飞机距离元,请你帮助计算一下,铺完这个楼道起码需要多少元钱?这个男孩头顶 5000 米, 求飞机每小时飞翔多少千米 ?13m 5m第 11 题12. 甲、乙两位探险者到荒漠进行探险,没有了水,需要找寻水源.为了不致于走散,他们用两部7. 以下图,无盖玻璃容器,高18 cm,底面周长为 60 cm,在外侧距下底 1 cm的点 C 处有一对话机联系,已知对话机的有效距离为15 千米.清晨 8:00 甲先出发,他以 6 千米 / 时的速度向蜘蛛,与蜘蛛相对的容器的上口外侧距张口 1 cm的 F 处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,东行走, 1 小时后乙出发,他以 5 千米 / 时的速度向北前进,上午10: 00,甲、乙二人相距多远?所走的最短路线的长度 . 还可以保持联系吗?第 7 题图第一课时答案:1.A ,提示:依据勾股定理得BC 2 AC 2 1,所以AB 2BC 2 AC 2 =1+1=2 ;2.4 ,提示:由勾股定理可得斜边的长为 5 m,而 3+4-5=2 m ,所以他们少走了 4 步.3. 60 ,提示:设斜边的高为x ,依据勾股定理求斜边为122 52 169 13 ,再利13用面积法得,15 12 1 13 x, x 60 ;2 2 134.解:依题意, AB=16 m, AC=12 m,在直角三角形 ABC 中 ,由勾股定理 ,BC 2AB 2AC 216 212 220 2,所以 BC=20 m ,20+12=32( m ),故旗杆在断裂以前有32 m高.6. 解: 如图 , 由题意得 ,AC=4000 米 , ∠C=90° ,AB=5000 米 , 由勾股定理得BC=50002400023000(米),3所以飞机飞翔的速度为540 (千米/小时)2036007.解:将曲线沿 AB睁开,以下图,过点 C 作 CE⊥ AB于 E.在R t CEF , CEF90 ,EF=18-1-1=16( cm ),1CE=30(cm) ,2. 60CE 2 EF 2 30 2 16 2 34( ) 由勾股定理,得CF=8.解:在直角三角形ABC中,依据勾股定理,得在直角三角形 CBD中,依据勾股定理,得2 2 2 2CD=BC+BD=25+12 =169,所以 CD=13.9.解:延伸 BC、AD交于点 E. (以下图)∵∠ B=90°,∠ A=60°,∴∠ E=30°又∵ CD=3,∴ CE=6,∴ BE=8,设 AB=x,则 AE=2x,由勾股定理。
勾股定理测试题及答案
勾股定理测试题及答案一、选择题(每题2分,共10分)1. 勾股定理适用于哪种三角形?A. 等边三角形B. 直角三角形C. 等腰三角形D. 钝角三角形答案:B2. 如果直角三角形的两条直角边长分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 一个直角三角形的斜边长度为13,一条直角边为5,另一条直角边的长度是多少?A. 12B. 10C. 8D. 6答案:A4. 勾股定理的公式是什么?A. a + b = cB. a * b = cC. a^2 + b^2 = c^2D. a^2 - b^2 = c^2答案:C5. 如果一个三角形的三边长分别为7、24和25,那么这个三角形是直角三角形吗?A. 是B. 不是答案:A二、填空题(每题2分,共10分)6. 直角三角形中,如果一条直角边长为x,另一条直角边长为y,斜边长为z,根据勾股定理,我们有________。
答案:x^2 + y^2 = z^27. 如果一个直角三角形的两条直角边长分别为6和8,那么斜边的长度是________。
答案:108. 在一个直角三角形中,如果斜边的长度是20,一条直角边长为15,另一条直角边的长度是________。
答案:5√3 或25√3/39. 勾股定理的发现归功于古希腊数学家________。
答案:毕达哥拉斯10. 勾股定理在数学中也被称为________定理。
答案:毕达哥拉斯定理三、解答题(每题5分,共20分)11. 一个直角三角形的斜边长度为17,一条直角边长为8,求另一条直角边的长度。
答案:根据勾股定理,另一条直角边的长度为√(17^2 - 8^2) =√(289 - 64) = √225 = 15。
12. 如果一个直角三角形的两条直角边长分别为9和12,求斜边的长度。
答案:根据勾股定理,斜边的长度为√(9^2 + 12^2) = √(81 + 144) = √225 = 15。
13. 一个直角三角形的斜边长度为25,一条直角边长为15,求另一条直角边的长度。
(完整版)勾股定理经典题目及答案
勾股定理1.勾股定理是把形的特征(三角形中有一个角是直角),转化为数量关系(a 2+b 2=c 2),不仅可以解决一些计算问题,而且通过数的计算或式的变形来证明一些几何问题,特别是证明线段间的一些复杂的等量关系. 在几何问题中为了使用勾股定理,常作高(或垂线段)等辅助线构造直角三角形.2.勾股定理的逆定理是把数的特征(a 2+b 2=c 2)转化为形的特征(三角形中的一个角是直角),可以有机地与式的恒等变形,求图形的面积,图形的旋转等知识结合起来,构成综合题,关键是挖掘“直角”这个隐含条件.△ABC 中 ∠C =Rt ∠a 2+b 2=c 2⇔3.为了计算方便,要熟记几组勾股数:①3、4、5; ②6、8、10; ③5、12、13; ④8、15、17;⑤9、40、41.4.勾股定理的逆定理是直角三角形的判定方法之一.一般地说,在平面几何中,经常利用直线间的位置关系,角的相互关系而判定直角,从而判定直角三角形,而勾股定理则是通过边的计算的判定直角三角形和判定直角的. 利用它可以判定一个三角形是否是直角三角形,一般步骤是:(1)确定最大边;(2)算出最大边的平方,另外两边的平方和;(3)比较最大边的平方与另外两边的平方和是否相等,若相等,则说明是直角三角形; 5.勾股数的推算公式①罗士琳法则(罗士琳是我国清代的数学家1789――1853)任取两个正整数m 和n(m>n),那么m 2-n 2,2mn, m 2+n 2是一组勾股数。
②如果k 是大于1的奇数,那么k, ,是一组勾股数。
212-k 212+k ③如果k 是大于2的偶数,那么k, ,是一组勾股数。
122-⎪⎭⎫ ⎝⎛K 122+⎪⎭⎫⎝⎛K ④如果a,b,c 是勾股数,那么na, nb, nc (n 是正整数)也是勾股数。
典型例题分析例1 在直线l 上依次摆放着七个正方形(如图1所示),已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=____ 依据这个图形的基本结构,可设S 1、S 2、S 3、S 4的边长为a 、b 、c 、d 则有a 2+b 2=1,c 2+d 2=3,S 1=b 2,S 2=a 2,S 3=c 2,S 4=d 2 S 1+S 2+S 3+S 4=b 2+a 2+c 2+d 2=1+3=4例2 已知线段a ,求作线段 a5分析一:a ==525a 224a a +∴a 是以2a 和a 为两条直角边的直角三角形的斜边。
(完整版)八年级勾股定理典型练习题含答案
八年级勾股定理典型练习题含答案一、选择题1、下列各组数中,能构成直角三角形的是A:4,5,B:1,1:6,8,11 D:5,12,22、在Rt△ABC中,∠C=90°,a=12,b=16,则c的长为 A:26B:1 C:20D:213、在平面直角坐标系中,已知点P的坐标是,则OP 的长为 A:3B:4C:5D:74、在Rt△ABC中,∠C=90°,∠B=45°,c=10,则a的长为 A: B:C:5D:、等边三角形的边长为2,则该三角形的面积为A、、、36、若等腰三角形的腰长为10,底边长为12,则底边上的高为A、 B、C、8D、9、已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为A、3cmC、6cm22B、4cm D、12cm228、若△ABC中,AB?13cm,AC?15cm,高AD=12,则BC 的长为 A、1 B、 C、14或4D、以上都不对二、填空题1、若一个三角形的三边满足c?a?b,则这个三角形是2、木工师傅要做一个长方形桌面,做好后量得长为80cm,宽为60cm,对角线为100cm,则这个桌面。
3、直角三角形两直角边长分别为3和4,则它斜边上的高为__________。
2224、如右图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和为。
5、如右图将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF=___________。
E6、一只蚂蚁从长为4cm、宽为cm,高是cm的FC长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是____________cm。
7、将一根长为15㎝的筷子置于底面直径为5㎝,高为12㎝的圆柱形水杯中,设筷子露在杯子外面的长为h㎝,则h的取值范围是________________。
(完整版)勾股定理习题(附答案)
C勾股定理评估试卷(1)一、选择题(每小题3分,共30分)1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ). (A )30 (B )28 (C )56 (D )不能确定2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长(A )4 cm(B )8 cm (C )10 cm(D )12 cm3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A )25(B )14(C )7(D )7或254. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )(A ) 钝角三角形 (B ) 锐角三角形 (C ) 直角三角形 (D ) 等腰三角形. 7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) (A ) 25 (B ) 12.5 (C ) 9 (D ) 8.5 8. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( ) (A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐角三角形.9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ). (A )50a 元 (B )600a 元 (C )1200a 元 (D )1500a 元 10.如图,A B ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).(A )12 (B )7 (C )5 (D )135米3米(第10题) (第11题) (第14题)二、填空题(每小题3分,24分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.12. 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______. 13. 直角三角形的三边长为连续偶数,则其周长为 .14. 如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是____________.(第15题) (第16题) (第17题) 15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米. 16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D若BC =8,AD =5,则AC 等于______________. 17. 如图,四边形ABCD 是正方形,AE 垂直于BE ,且AE =3,BE =4,阴影部分的面积是______.18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2.EABCDBDE ABCD第18题图7cm三、解答题(每小题8分,共40分)19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.21. 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?22. 如图所示的一块地,∠ADC=90°,AD=12m ,CD=9m ,AB=39m ,BC=36m ,求这块地的面积。
(完整版)勾股定理测试题及参考答案
勾股定理测试题一、选择题(每小题4分,共40分)1.以下列各组数为边长能组成直角三角形的是( )A .567,,B .1084,,C .91517,,D .72425,,2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长( )(A )4 cm (B )8 cm (C )10 cm(D )12 cm3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A)25(B )14 (C )7 (D )7或254.已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A 。
直角三角形B.等腰三角形C 。
等腰直角三角形D.等腰三角形或直角三角形5.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)6.如图,一个梯子AB 长2.5米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.5米,则梯子顶端A 下落了( )米EA BCDA .0.5B .1C .1.5D .2DCBA5米3米7.一只蚂蚁沿如图所示折线从A点爬到D点,共爬行了()(图中方格边长为1cm)A.12cm B.10cmC.14cm D.以上答案都不对8.△ABC是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a元计算,那么共需要资金().(A)50a元(B)600a元(C)1200a元(D)1500a元9.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行()米A.8米B.10米C.12米D.14米10.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C/处,B C/交AD于E,AD=8,AB=4,则DE的长为().A.3 B.4 C.5 D.6二、填空题(每小题4分,共16分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.12. 在直角三角形ABC中,斜边AB=2,则222AB AC BC++=______。
完整版)勾股定理测试题(含答案)
完整版)勾股定理测试题(含答案)18.2勾股定理的逆定理达标训练一、基础巩固1.下列条件满足不是直角三角形的三角形是()A。
三内角之比为1∶2∶3B。
三边长的平方之比为1∶2∶3C。
三边长之比为3∶4∶5D。
三内角之比为3∶4∶52.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10cm,∠D=120°,则该零件另一腰AB的长是________ cm(结果不取近似值)。
图18-2-43.如图18-2-5,以直角三角形ABC的三边为边向外作正方形,其面积分别为S1、S2、S3,且S1=4,S2=8,则AB的长为_________。
图18-2-54.如图18-2-6,已知正方形ABCD的边长为4,E为AB 中点,F为AD上的一点,且AF=√10,则BE的长为_________。
图18-2-65.一个零件的形状如图18-2-7,按规定这个零件中∠A与∠BDC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=12,BC=13,这个零件符合要求吗?试判断△XXX的形状。
图18-2-76.已知△ABC的三边分别为k2-1,2k,k2+1(k>1),求证:△ABC是直角三角形。
二、综合应用7.已知a、b、c是直角三角形ABC的三边长,△A1B1C1的三边长分别是2a、2b、2c,那么△A1B1C1是直角三角形吗?为什么?8.已知:如图18-2-8,在△ABC中,CD是AB边上的高,且CD2=AD·BD。
求证:△ABC是直角三角形。
图18-2-89.如图18-2-9所示,在平面直角坐标系中,点A、B的坐标分别为A(3,1),B(2,4),△OAB是直角三角形吗?借助于网格,证明你的结论。
图18-2-910.已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△XXX的形状。
解:∵a2c2-b2c2=a4-b4,(A)∴c2(a2-b2)=(a2+b2)(a2-b2),(B)∴c2=a2+b2,(C)∴△ABC是直角三角形。
(完整版)初中数学《勾股定理》专项习题及答案
《勾股定理》专项练习18.1勾股定理考点一、已知两边求第三边1.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为_____________.2.已知直角三角形的两边长为3、2,则另一条边长是________________.3.在一个直角三角形中,若斜边长为5cm ,直角边的长为3cm ,则另一条直角边的长为( ).A .4cmB .4cm 或cm 34C .cm 34D .不存在4.在数轴上作出表示10的点.5.一种盛饮料的圆柱形杯,测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做多长?考点二、利用列方程求线段的长1.把一根长为10㎝的铁丝弯成一个直角三角形的两条直角边,如果要使三角形的面积是9㎝2,那么还要准备一根长为____的铁丝才能把三角形做好.2.如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则EB 的长是( ).A .3B .4C .D .53.如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km处?4.如图,某学校(A 点)与公路(直线L )的距离为300米,又与公路车站(D 点)的距离为500米,现要在公路上建一个小商店(C 点),使之与该校A 及车站D 的距离相等,求商店与车站之间的距离.考点三、综合其它考点的应用1.直角三角形中,以直角边为边长的两个正方形的面积为72cm ,82cm ,则以斜边为边长的正方形的面积为_________2cm .2.如图一个圆柱,底圆周长6cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cmF E D C BA A DE B C AB3.小雨用竹杆扎了一个长80cm、宽60cm的长方形框架,由于四边形容易变形,需要用一根竹杆作斜拉杆将四边形定形,则斜拉杆最长需________cm .4.小杨从学校出发向南走150米,接着向东走了360米到九龙山商场,学校与九龙山商场的距离是米.5.如图:带阴影部分的半圆的面积是多少?(取3)6 86.已知,如图在ΔABC中,AB=BC=CA=2cm,AD是边BC上的高.求①AD的长;②ΔABC的面积.7.在直角ΔABC中,斜边长为2,周长为2+,求ΔABC的面积.8.已知:如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,垂足为E,BD=4cm.求AC的长.9.已知:如图,△ABC中,AB>AC,AD是BC边上的高.求证:AB2-AC2=BC(BD-DC).10.已知直角三角形两直角边长分别为5和12,求斜边上的高.11.小明想测量学校旗杆的高度,他采用如下的方法:先降旗杆上的绳子接长一些,让它垂到地面还多1米,然后将绳子下端拉直,使它刚好接触地面,测得绳下端离旗杆底部5米,你能帮它计算一下旗杆的高度.12.有一只鸟在一棵高4米的小树梢上捉虫子,它的伙伴在离该树12米,高20米的一棵大树的树梢上发出友好的叫声,它立刻以4米/秒的速度飞向大树树梢.那么这只鸟至少几秒才能到达大树和伙伴在一起.13.如图∠B=90º,AB=16cm,BC=12cm,AD=21cm,CD=29cmE C D B A 求四边形ABCD 的面积.14.如图,一个梯子AB 长2.5 米,顶端A 靠在墙AC 上,这时 梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.5米,求梯子顶端A 下落了多少米?15.在加工如图的垫模时,请根据图中的尺寸,求垫模中AB 间的尺寸.18.2勾股定理的逆定理考点四、判别一个三角形是否是直角三角形1.若△ABC 的三个外角的度数之比为3:4:5,最大边AB 与最小边BC 的关系是_________.2.若一个三角形的周长12c m,一边长为3c m,其他两边之差为c m,则这个三角形 是______________________.3.将直角三角形的三边扩大相同的倍数后,得到的三角形是 ( ).A.直角三角形B.锐角三角形C.钝角三角形D.不是直角三角形4.下列命题中是假命题的是( ).A .△ABC 中,若∠B =∠C -∠A ,则△ABC 是直角三角形.B .△ABC 中,若a 2=(b +c )(b -c ),则△ABC 是直角三角形.C .△ABC 中,若∠A ∶∠B ∶∠C =3∶4∶5则△ABC 是直角三角形.D .△ABC 中,若a ∶b ∶c =5∶4∶3则△ABC 是直角三角形.5.在△ABC 中,2:1:1::=c b a ,那么△ABC 是( ). A .等腰三角形 B .钝角三角形 C .直角三角形 D .等腰直角三角形6.如图,四边形ABCD 中,F 为DC 的中点,E 为BC 上一点,且BC CE 41=.你能说明∠AFE 是直角吗?考点五、开放型试题1.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=_______.l321S4S3S2S12.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1、S2、S3表示,则不难证明S1=S2+S3 .(1) 如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,那么S1、S2、S3之间有什么关系?(不必证明)(2) 如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1、S2、S3之间的关系并加以证明;(3) 若分别以直角三角形ABC三边为边向外作三个正多边形,其面积分别用S1、S2、S3表示,请你猜想S1、S2、S3之间的关系?.3.图示是一种“羊头”形图案,其作法是,从正方形1开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形2,和2′,…,依次类推,若正方形7的边长为1cm,则正方形1的边长为__________cm.参考答案考点一、已知两边求第三边1.cm 5 2.135或 3.A 4.略 5.13+4.6=17.6考点二、利用列方程求线段的长1.8cm .设两直角边为acm ,bcm ,则a+b=10,ab=18,c 2=a 2+b 2=(a+b)2—2ab=64,c=82.A .设BE=x ,则AE=8—x ,42+x 2=(8—x)2,x=33.设AE=xkm ,则x 2+152=102+(25—x)2,x=104.作AB ⊥L 于B ,则AB=300,设CD=x ,则CB=400—x ,x 2=(400—x)2+3002,x=312.5 考点三、综合其它考点的应用1.15 2.5 3.100 4.390 5.37.5 6.(1);(2)7. c=2,a+b+c=2+,a+b=,a 2+b 2=c 2=4,a 2+2ab+b 2=6,2ab=2,2121==ab S 8.连AD ,AD=BD=4,∠DAC=300,DC=2,AC=129.AB 2—AC 2=BD 2+AD 2—(DC 2+AD 2)=BD 2—DC 2=BC (BD —DC )10.斜边长为13,高为1360 11.设旗杆高为x 米,则(x+1)2=x 2+52,x=1212.513.AC=20,∠DAC=900,30614.AC=2,EC=1.5,AE=0.515.50考点四、判别一个三角形是否是直角三角形1.AB=2BC 2.直角三角形 3.A 4.C 5.C6.连AE ,设BC=4a ,则DF=2a ,AF 2=20a 2,EF 2=5a 2,AE 2=25a 2,AE 2=AF 2+EF 2 考点五、开放型试题1.42.(1)S 1=S 2+S 3;(2)S 1=S 2+S 3;(3)S 1=S 2+S 33.8。
(完整版)《勾股定理》练习题及答案
《勾股定理》练习题及答案测试1 勾股定理(一)学习要求掌握勾股定理的内容及证明方法,能够熟练地运用勾股定理由已知直角三角形中的两条边长求出第三条边长.课堂学习检测一、填空题1.如果直角三角形的两直角边长分别为a、b,斜边长为c,那么______=c2;这一定理在我国被称为______.2.△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.(1)若a=5,b=12,则c=______;(2)若c=41,a=40,则b=______;(3)若∠A=30°,a=1,则c=______,b=______;(4)若∠A=45°,a=1,则b=______,c=______.3.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C 所走的路程为______.4.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______.5.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______.二、选择题6.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( ).(A)8 (B)4 (C)6 (D)无法计算7.如图,△ABC中,AB=AC=10,BD是AC边上的高线,DC=2,则BD等于( ).2(A)4 (B)6 (C)8 (D)108.如图,Rt△ABC中,∠C=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为( ).(A)150cm2 (B)200cm2 (C)225cm2 (D)无法计算三、解答题9.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a∶b=3∶4,c=75cm,求a、b; (2)若a∶c=15∶17,b=24,求△ABC的面积;(3)若c-a=4,b=16,求a、c; (4)若∠A=30°,c=24,求c边上的高h c;(5)若a、b、c为连续整数,求a+b+c.综合、运用、诊断一、选择题10.若直角三角形的三边长分别为2,4,x,则x的值可能有( ).(A)1个(B)2个 (C)3 (D)4个二、填空题11.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是______.12.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=______.三、解答题13.如图,Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求BC的长.拓展、探究、思考14.如图,△ABC中,∠C=90°.(1)以直角三角形的三边为边向形外作等边三角形,探究S1+S2与S3的关系;图①(2)以直角三角形的三边为斜边向形外作等腰直角三角形,探究S1+S2与S3的关系;(3)以直角三角形的三边为直径向形外作半圆(如图③),探究S 1+S 2与S 3的关系.测试2 勾股定理(二)学习要求掌握勾股定理,能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题.课堂学习检测一、填空题1.若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为______.2.甲、乙两人同时从同一地点出发,已知甲往东走了4km ,乙往南走了3km ,此时甲、乙两人相距______km . 3.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______m 路,却踩伤了花草.4.如图,有两棵树,一棵高8m ,另一棵高2m ,两树相距8m ,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______m . 二、选择题5.如图,一棵大树被台风刮断,若树在离地面3m 处折断,树顶端落在离树底部4m 处,则树折断之前高( ). (A)5m(B)7m(C)8m(D)10m6.如图,从台阶的下端点B 到上端点A 的直线距离为( ). (A)212 (B)310 (C)56(D)58三、解答题7.在一棵树的10米高B 处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处;另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高多少米?8.在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,求这里的水深是多少米?综合、运用、诊断一、填空题9.如图,一电线杆AB的高为10米,当太阳光线与地面的夹角为60°时,其影长AC为______米.10.如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的A点,沿圆柱表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长约为______(取3)二、解答题:11.长为4 m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了______m.12.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?9 10 11 12拓展、探究、思考13.如图,两个村庄A、B在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD =3千米,CD=3千米.现要在河边CD上建造一水厂,向A、B两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD上选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用W.测试3 勾股定理(三)学习要求熟练应用勾股定理解决直角三角形中的问题,进一步运用方程思想解决问题.课堂学习检测一、填空题1.在△ABC中,若∠A+∠B=90°,AC=5,BC=3,则AB=______,AB边上的高CE=______.2.在△ABC中,若AB=AC=20,BC=24,则BC边上的高AD=______,AC边上的高BE=______.3.在△ABC中,若AC=BC,∠ACB=90°,AB=10,则AC=______,AB边上的高CD=______.4.在△ABC 中,若AB =BC =CA =a ,则△ABC 的面积为______.5.在△ABC 中,若∠ACB =120°,AC =BC ,AB 边上的高CD =3,则AC =______,AB =______,BC 边上的高AE =______. 二、选择题6.已知直角三角形的周长为62+,斜边为2,则该三角形的面积是( ).(A)41 (B)43 (C)21 (D)17.若等腰三角形两边长分别为4和6,则底边上的高等于( ). (A)7 (B)7或41(C)24(D)24或7三、解答题8.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为BC 和AC 的中点,AD =5,BE =102求AB 的长.9.在数轴上画出表示10-及13的点.综合、运用、诊断10.如图,△ABC 中,∠A =90°,AC =20,AB =10,延长AB 到D ,使CD +DB =AC +AB ,求BD 的长.11.如图,将矩形ABCD 沿EF 折叠,使点D 与点B 重合,已知AB =3,AD =9,求BE 的长.12.如图,折叠矩形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,求EC 的长.13.已知:如图,△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且DE⊥DF.求证:AE2+BF2=EF2.拓展、探究、思考14.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,求AC的长是多少?15.如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,……已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依次为S2,S3,…,S n(n为正整数),那么第8个正方形的面积S8=______,第n个正方形的面积S n=______.测试4 勾股定理的逆定理学习要求掌握勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.课堂学习检测一、填空题1.如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是______三角形,我们把这个定理叫做勾股定理的______.2.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做____________;如果把其中一个命题叫做原命题,那么另一个命题叫做它的____________.3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有____________.(填序号)4.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,①若a 2+b 2>c 2,则∠c 为____________; ②若a 2+b 2=c 2,则∠c 为____________; ③若a 2+b 2<c 2,则∠c 为____________.5.若△ABC 中,(b -a )(b +a )=c 2,则∠B =____________;6.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是______三角形. 7.若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以a -2、a 、a +2为边的三角形的面积为______.8.△ABC 的两边a ,b 分别为5,12,另一边c 为奇数,且a +b +c 是3的倍数,则c 应为______,此三角形为______. 二、选择题9.下列线段不能组成直角三角形的是( ). (A)a =6,b =8,c =10 (B)3,2,1===c b a (C)43,1,45===c b a (D)6,3,2===c b a10.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).(A)1∶1∶2(B)1∶3∶4 (C)9∶25∶26(D)25∶144∶16911.已知三角形的三边长为n 、n +1、m (其中m 2=2n +1),则此三角形( ).(A)一定是等边三角形 (B)一定是等腰三角形 (C)一定是直角三角形(D)形状无法确定综合、运用、诊断一、解答题12.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长.13.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积.14.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE =CB 41,求证:AF ⊥FE .15.在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?拓展、探究、思考16.已知△ABC中,a2+b2+c2=10a+24b+26c-338,试判定△ABC的形状,并说明你的理由.17.已知a、b、c是△ABC的三边,且a2c2-b2c2=a4-b4,试判断三角形的形状.18.观察下列各式:32+42=52,82+62=102,152+82=172,242+102=262,…,你有没有发现其中的规律?请用含n的代数式表示此规律并证明,再根据规律写出接下来的式子.参考答案 第十八章 勾股定理 测试1 勾股定理(一)1.a 2+b 2,勾股定理. 2.(1)13; (2)9; (3)2,3; (4)1,2.3.52. 4.52,5. 5.132cm . 6.A . 7.B . 8.C . 9.(1)a =45cm .b =60cm ; (2)540; (3)a =30,c =34; (4)63; (5)12.10.B . 11..5 12.4. 13..310 14.(1)S 1+S 2=S 3;(2)S 1+S 2=S 3;(3)S 1+S 2=S 3.测试2 勾股定理(二)1.13或.119 2.5. 3.2. 4.10. 5.C . 6.A . 7.15米. 8.23米. 9.⋅3310 10.25. 11..2232- 12.7米,420元. 13.10万元.提示:作A 点关于CD 的对称点A ′,连结A ′B ,与CD 交点为O .测试3 勾股定理(三)1.;343415,34 2.16,19.2. 3.52,5. 4..432a 5.6,36,33. 6.C . 7.D8..132 提示:设BD =DC =m ,CE =EA =k ,则k 2+4m 2=40,4k 2+m 2=25.AB =.1324422=+k m9.,3213,31102222+=+=图略.10.BD =5.提示:设BD =x ,则CD =30-x .在Rt △ACD 中根据勾股定理列出(30-x )2=(x +10)2+202,解得x =5.11.BE =5.提示:设BE =x ,则DE =BE =x ,AE =AD -DE =9-x .在Rt △ABE 中,AB 2+AE 2=BE 2,∴32+(9-x )2=x 2.解得x =5.12.EC =3cm .提示:设EC =x ,则DE =EF =8-x ,AF =AD =10,BF =622=-AB AF ,CF =4.在Rt △CEF中(8-x )2=x 2+42,解得x =3.13.提示:延长FD 到M 使DM =DF ,连结AM ,EM .14.提示:过A ,C 分别作l 3的垂线,垂足分别为M ,N ,则易得△AMB ≌△BNC ,则.172,34=∴=AC AB 15.128,2n -1.测试4 勾股定理的逆定理1.直角,逆定理. 2.互逆命题,逆命题. 3.(1)(2)(3). 4.①锐角;②直角;③钝角. 5.90°. 6.直角.7.24.提示:7<a <9,∴a =8. 8.13,直角三角形.提示:7<c <17. 9.D . 10.C . 11.C . 12.CD =9. 13..51+14.提示:连结AE ,设正方形的边长为4a ,计算得出AF ,EF ,AE 的长,由AF 2+EF 2=AE 2得结论. 15.南偏东30°.16.直角三角形.提示:原式变为(a -5)2+(b -12)2+(c -13)2=0.17.等腰三角形或直角三角形.提示:原式可变形为(a 2-b 2)(a 2+b 2-c 2)=0. 18.352+122=372,[(n +1)2-1]2+[2(n +1)]2=[(n +1)2+1]2.(n ≥1且n 为整数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学
《勾股定理》专项练习
18.1 勾股定理
考点一、已知两边求第三边
1.在直角三角形中,若两直角边的长分别为1cm, 2cm ,则斜边长为 _____________ .
2.已知直角三角形的两边长为3、 2,则另一条边长是________________ .
3.在一个直角三角形中,若斜边长为5cm,直角边的长为3cm,则另一条直角边的长为().
A . 4cm
B .4cm 或34cm C.34cm D .不存在
4.在数轴上作出表示10 的点.
5.一种盛饮料的圆柱形杯,测得内部底面半径为 2.5 ㎝,
高为 12 ㎝,吸管放进杯里,杯口外面至少要露出 4.6 ㎝,问吸管要做多长?
考点二、利用列方程求线段的长
1.把一根长为10 ㎝的铁丝弯成一个直角三角形的两条直角边,如果要使三角形的面积是9㎝2,那么还要准备一根长为____的铁丝才能把三角形做好.
2.如图,将一个边长分别为4、8 的长方形纸片ABCD 折
叠,使 C 点与 A 点重合,则EB 的长是().
A .3
B . 4 C.D. 5
F
A D
3.如图,铁路上 A ,B 两点相距 25km ,C, D 为两村庄,D
DA ⊥ AB 于 A ,CB⊥ AB 于 B ,已知 DA=15km ,CB=10km ,B
E C
现在要在铁路 AB 上建一个土特产品收购站E,使得 C,C D 两村到 E 站的距离相等,则 E 站应建在离 A 站多少 km
处?
A E B
4.如图,某学校(A 点)与公路(直线L)的距离为300 米,又与
公路车站( D 点)的距离为 500 米,现要在公路上建一个小商店( C
点),使之与该校 A 及车站 D 的距离相等,求商店与车站之间的距离.
考点三、综合其它考点的应用
1.直角三角形中,以直角边为边长的两个正方形的面积为7 cm2,8 cm2,则以斜边为边长
的正方形的面积为 _________ cm2.
B
2.如图一个圆柱,底圆周长6cm,高 4cm,一只蚂蚁沿外
壁爬行,要从 A 点爬到 B 点,则最少要爬行cm
A
3.小雨用竹杆扎了一个长80cm、宽 60cm 的长方形框架,由于四边形容易变形,需要用一
根竹杆作斜拉杆将四边形定形,则斜拉杆最长需________cm .
4.小杨从学校出发向南走150 米,接着向东走了360 米到九龙山商场,学校与九龙山商场
的距离是米.
5.如图:带阴影部分的半圆的面积是多少?(取3)
68
6.已知,如图在ABC中, AB=BC=CA=2cm, AD 是边 BC 上的高.
求① AD 的长;②ABC的面积.
7.在直角ABC中,斜边长为2,周长为 2+,求ABC的面积.
8.已知:如图,在△ ABC 中,∠ C=90°,∠ B=30°, AB 的垂直平分线交 BC 于 D,垂足为 E,BD=4cm .求 AC 的长.
9.已知:如图,△ABC中,AB>AC,AD是BC边上的高.
求证: AB 2
-AC
2
=BC(BD-DC) .
10.已知直角三角形两直角边长分别为 5 和 12,求斜边上的高.
11.小明想测量学校旗杆的高度,他采用如下的方法:先降旗
杆上的绳子接长一些,让它垂到地面还多 1 米,然后将绳子
下端拉直,使它刚好接触地面,测得绳下端离旗杆底部 5 米,
你能帮它计算一下旗杆的高度.
12.有一只鸟在一棵高 4 米的小树梢上捉虫子,它的伙伴在离该树12 米,高 20 米的一棵大树的树梢上发出友好的叫声,它立刻以 4 米/ 秒的速度飞向大树树梢.那么这只鸟至少几秒才能
到达大树和伙伴在一起.
13.如图∠ B=90o, AB = 16cm,BC= 12cm,AD = 21cm,CD=29cm
求四边形ABCD 的面积.
14.如图,一个梯子AB 长 2.5 米,顶端 A 靠在墙 AC 上,这时A
梯子下端 B 与墙角 C 距离为 1.5 米,梯子滑动后停在DE 的位置
上,测得 BD 长为 0.5 米,求梯子顶端 A 下落了多少米?E
C
B D 15.在加工如图的垫模时,请根据图中的尺寸,求垫模中AB 间的尺寸.
18.2 勾股定理的逆定理
考点四、判别一个三角形是否是直角三角形
1.若△ ABC 的三个外角的度数之比为3:4: 5,最大边 AB 与最小边 BC的关系是 _________.2.若一个三角形的周长12cm,一边长为 3cm,其他两边之差为cm,则这个三角形
是______________________ .
3.将直角三角形的三边扩大相同的倍数后,得到的三角形是().
A. 直角三角形
B.锐角三角形
C.钝角三角形
D. 不是直角三角形
4.下列命题中是假命题的是().
A.△ ABC 中 ,若∠ B=∠C-∠ A,则△ ABC 是直角三角形.
B.△ ABC 中 ,若 a2 =(b+c)(b- c),则△ ABC 是直角三角形 .
C.△ ABC 中 ,若∠ A∶∠ B∶∠ C=3∶4∶ 5 则△ABC 是直角三角形.
D.△ ABC 中 ,若 a∶ b∶ c=5∶ 4∶ 3 则△ ABC 是直角三角形 .
5.在△ABC中,a : b : c1: 1: 2 ,那么△ABC是().
A .等腰三角形B.钝角三角形C.直角三角形D.等腰直角三角形
6.如图,四边形ABCD 中, F 为 DC 的中点, E 为 BC 上一点,
1 BC .你能说明∠AFE是直角吗?
且 CE
4
考点五、开放型
1.在直 l 上依次 放着七个正方形 (如 所示 ).已知斜放置的三个正方形的面 分 是 1、
2、 3,正放置的四个正方形的面 依次是 S 1、S 2、 S
3、S 4 , S 1+ S 2 +S 3+ S 4= _______.
2
3
1
S 4
S 2
S 3
S 1
l
2.如 ①,分 以直角三角形
ABC 三 直径向外作三个半 ,其面 分 用
S 、S 、 S
1
2
3
表示, 不 明 S 1
2 3
=S +S .
(1) 如 ②,分 以直角三角形
ABC 三 向外作三个正方形,其面 分 用 S 1、
S 、 S 表示,那么 S 、 S 、 S 之 有什么关系? (不必 明 )
2
3
1
2
3
(2) 如 ③,分 以直角三角形 ABC 三 向外作三个正三角形,其面 分 用
S 、
1
S 2、 S 3 表示, 你确定
S 1、 S 2、 S 3 之 的关系并加以 明;
S 、S 、S
(3)
若分 以直角三角形 ABC 三 向外作三个正多 形,其面 分 用
1
2
3
表示, 你猜想 S 1、 S 2、 S 3 之 的关系 ?.
3. 示是一种
“羊 ”形 案,其作法是,从正方形 1 开始,以它的一 斜 ,向外
作等腰直角三角形,然后再以其直角 ,分 向外作正方形
若正方形 7 的
1cm , 正方形
1 的 __________cm.
2,和
2′, ⋯ ,依次 推,
参考答案
考点一、已知两边求第三边
1.5cm2.5或133. A4.略5.13+4.6=17.6
考点二、利用列方程求线段的长
1. 8cm.设两直角边为acm,bcm,则 a+b=10, ab=18, c2=a2+b2=(a+b) 2— 2ab=64, c=8 2. A .设 BE=x ,则 AE=8 — x, 42+x 2=(8— x) 2, x=3
3.设 AE=xkm ,则 x2+15 2=10 2+(25 — x)2, x=10
4.作 AB ⊥ L 于 B,则 AB=300 ,设 CD=x ,则 CB=400 — x, x2=(400— x)2 +3002, x=312.5 考点三、综合其它考点的应用
1. 15 2. 53. 100 4. 390 5. 37.56.(1);( 2)7. c=2, a+b+c=2+ , a+b=, a2+b2=c 2=4, a2+2ab+b 2=6,2ab=2,S 1
ab1 22
8.连 AD ,AD=BD=4 ,∠ DAC=30 0, DC=2 , AC=12
9. AB 2— AC 2=BD 2+AD 2—( DC2+AD 2)=BD 2— DC 2=BC ( BD — DC)
60
10.斜边长为13,高为
13
11.设旗杆高为 x 米,则 (x+1) 2 =x2+5 2,x=12
12. 5
13. AC=20 ,∠ DAC=90 0, 306
14. AC=2 , EC=1.5, AE=0.5
15. 50
考点四、判别一个三角形是否是直角三角形
1. AB=2BC 2.直角三角形3.A4. C5.C
6.连 AE ,设 BC=4a ,则 DF=2a , AF 2 =20a2,EF2=5a2, AE 2=25a2, AE 2=AF 2+EF2考点五、开放型试题
1. 4
2.( 1) S1=S2+S3;( 2) S1=S2+S3;(3) S1=S2+S3
3. 8。