最新初中数学中考测试题库(含答案)

合集下载

初中数学中招试题及答案

初中数学中招试题及答案

初中数学中招试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.1010010001…(每两个1之间0的个数依次增加)B. 2.5C. πD. √42. 一个正数的平方根是2,那么这个正数是:A. 4B. -4C. 2D. -23. 一个三角形的三个内角之和是:A. 90°B. 180°C. 360°D. 720°4. 一个数的绝对值是其本身,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数或零D. 可以是负数或零5. 以下哪个是二次方程?A. x + 5 = 0B. x^2 + 5x + 6 = 0C. x^3 - 2x^2 + 3x - 4 = 0D. 2x - 3 = 06. 一个数乘以分数的意义是:A. 求这个数的几倍B. 求这个数的几分之几C. 求这个数的相反数D. 求这个数的倒数7. 一个数的倒数是1/2,那么这个数是:A. 2B. 1/2C. 1D. 08. 一个数的立方根是3,那么这个数是:A. 27B. 9C. 3D. 19. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 1010. 以下哪个选项是不等式?A. 3x + 5 = 8B. 2x - 4 > 6C. 7x = 35D. 5x - 3答案:1. C2. A3. B4. C5. B6. B7. A8. A9. A10. B二、填空题(每题3分,共30分)11. 一个数的相反数是-7,那么这个数是______。

12. 一个数的绝对值是5,那么这个数可以是______。

13. 一个三角形的两个内角分别是30°和60°,那么第三个内角是______。

14. 如果一个数的平方是25,那么这个数可以是______。

15. 一个数的立方是-8,那么这个数是______。

16. 一个数的1/3是4,那么这个数是______。

初三数学试卷(含答案)

初三数学试卷(含答案)

初三数学试卷(含答案)一、选择题(每小题3分,共30分)1. 若a²4a+4=0,则a的值为()A. 2B. 2C. 0D. 2或22. 下列各式中,正确的是()A. (a+b)²=a²+b²B. (a+b)³=a³+b³C. (a+b)²=a²+2ab+b²D. (a+b)³=a³+3ab²+b³3. 下列各式中,正确的是()A. (a+b)²=(a+b)(a+b)B. (a+b)³=(a+b)(a+b)(a+b)C.(a+b)⁴=(a+b)(a+b)(a+b)(a+b) D.(a+b)⁵=(a+b)(a+b)(a+b)(a+b)(a+b)4. 若a²4a+4=0,则a的值为()A. 2B. 2C. 0D. 2或25. 下列各式中,正确的是()A. (a+b)²=a²+b²B. (a+b)³=a³+b³C. (a+b)²=a²+2ab+b²D. (a+b)³=a³+3ab²+b³6. 下列各式中,正确的是()A. (a+b)²=(a+b)(a+b)B. (a+b)³=(a+b)(a+b)(a+b)C.(a+b)⁴=(a+b)(a+b)(a+b)(a+b) D.(a+b)⁵=(a+b)(a+b)(a+b)(a+b)(a+b)7. 若a²4a+4=0,则a的值为()A. 2B. 2C. 0D. 2或28. 下列各式中,正确的是()A. (a+b)²=a²+b²B. (a+b)³=a³+b³C. (a+b)²=a²+2ab+b²D. (a+b)³=a³+3ab²+b³9. 下列各式中,正确的是()A. (a+b)²=(a+b)(a+b)B. (a+b)³=(a+b)(a+b)(a+b)C.(a+b)⁴=(a+b)(a+b)(a+b)(a+b) D.(a+b)⁵=(a+b)(a+b)(a+b)(a+b)(a+b)10. 若a²4a+4=0,则a的值为()A. 2B. 2C. 0D. 2或2二、填空题(每小题3分,共30分)11. 若a²4a+4=0,则a的值为______。

2024年云南省中考真题数学试卷含答案解析

2024年云南省中考真题数学试卷含答案解析

2024年云南省中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.中国是最早使用正负数表示具有相反意义的量的国家.若向北运动100米记作100+米,则向南运动100米可记作()A .100米B .100-米C .200米D .200-米【答案】B【分析】本题考查了正负数的意义,根据正负数的意义即可求解,理解正负数的意义是解题的关键.【详解】解:若向北运动100米记作100+米,则向南运动100米可记作100-米,故选:B .2.某市今年参加初中学业水平考试的学生大约有57800人,57800用科学记数法可以表示为()A .45.7810⨯B .357.810⨯C .257810⨯D .578010⨯【答案】A【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:457800 5.7810=⨯,故选:A .3.下列计算正确的是()A .33456x x x +=B .635x x x ÷=C .()327a a =D .()333ab a b =【答案】D【分析】本题考查了合并同类项、幂的乘方、积的乘方、同底数幂的除法,熟练掌握运算法则是解答的关键.利用合并同类项法则、幂的乘方运算法则、同底数幂的除法运算法则、积的乘方运算法则进行运算,并逐项判断即可.【详解】解:A 、33356x x x +=,选项计算错误,不符合题意;B 、633x x x ÷=,选项计算错误,不符合题意;C 、()326a a =,选项计算错误,不符合题意;D 、()333ab a b =,选项计算正确,符合题意;故选:D .4在实数范围内有意义,则x的取值范围是()A .0x >B .0x ≥C .0x <D .0x ≤5.某图书馆的一个装饰品是由几个几何体组合成的.其中一个几何体的三视图(主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是()A .正方体B .圆柱C .圆锥D .长方体【答案】D【分析】本题考查了几何体的三视图,熟悉各类几何体的三视图是解决本题的关键.根据长方体三视图的特点确定结果.【详解】解:根据三视图的特点:几何体的三视图都是长方形,确定该几何体为长方体.故选:D .6.一个七边形的内角和等于()A .540︒B .900︒C .980︒D .1080︒【答案】B【分析】本题考查多边形的内角和,根据n 边形的内角和为()2180n -⋅︒求解,即可解题.【详解】解:一个七边形的内角和等于()72180900-⨯︒=︒,故选:B .7.甲、乙、丙、丁四名运动员参加射击项目选拔赛,每人10次射击成绩的平均数x 环)和方差2s 如下表所示:甲乙丙丁x9.99.58.28.52s 0.090.650.162.85根据表中数据,从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A .甲B .乙C .丙D .丁【答案】A【分析】本题考查根据平均数和方差作决策,重点考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.结合表中数据,先找出平均数最大的运动员;再根据方差的意义,找出方差最小的运动员即可.【详解】解:由表中数据可知,射击成绩的平均数最大的是甲,射击成绩方差最小的也是甲,∴中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择甲,故选:A .8.已知AF 是等腰ABC 底边BC 上的高,若点F 到直线AB 的距离为3,则点F 到直线AC 的距离为()A .32B .2C .3D .72【答案】C【分析】本题考查了等腰三角形的性质,角平分线的性质定理,熟练掌握知识点是解题的关键.由等腰三角形“三线合一”得到AF 平分BAC ∠,再角平分线的性质定理即可求解.【详解】解:如图,∵AF 是等腰ABC 底边BC 上的高,∴AF 平分BAC ∠,∴点F 到直线AB ,AC 的距离相等,∵点F 到直线AB 的距离为3,∴点F 到直线AC 的距离为3.故选:C .9.两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x ,根据题意,下列方程正确的是()A .()280160x -=B .()280160x -=C .()80160x -=D .()801260x -=【答案】B【分析】本题考查了一元二次方程的应用,根据甲种药品成本的年平均下降率为x ,利用现在生产1千克甲种药品的成本=两年前生产1千克甲种药品的成本年⨯(1-平均下降率)2,即可得出关于的一元二次方程.【详解】解: 甲种药品成本的年平均下降率为x ,根据题意可得()280160x -=,故选:B .10.按一定规律排列的代数式:2x ,23x ,34x ,45x ,56x ,L ,第n 个代数式是()A .2nx B .()1nn x-C .1n nx +D .()1nn x+【答案】D【分析】本题考查了数列的规律变化,根据数列找到变化规律即可求解,仔细观察和总结规律是解题的关键.【详解】解:∵按一定规律排列的代数式:2x ,23x ,34x ,45x ,56x ,L ,∴第n 个代数式是()1nn x +,11.中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A .爱B .国C .敬D .业【答案】D【分析】本题主要考查轴对称图形的定义,根据轴对称图形的定义(如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,)进行逐一判断即可.【详解】解:A 、图形不是轴对称图形,不符合题意;B 、图形不是轴对称图形,不符合题意;C 、图形不是轴对称图形,不符合题意;D 、图形是轴对称图形,符合题意;故选:D .12.在Rt ABC △中,90B Ð=°,已知34AB BC ==,,则tan A 的值为()A .45B .35C .43D .3413.如图,CD 是O 的直径,点A 、B 在O 上.若 AC BC=,36AOC ∠= ,则D ∠=()A .9B .18C .36oD .4514.分解因式:39a a -=()A .()()33a a a -+B .()29a a +C .()()33a a -+D .()29a a -【答案】A【分析】本题考查了提取公因式和公式法进行因式分解,熟练掌握知识点是解题的关键.将39a a -先提取公因式,再运用平方差公式分解即可.【详解】解:()()()329933a a a a a a a -=-=+-,故选:A .15.某校九年级学生参加社会实践,学习编织圆锥型工艺品.若这种圆锥的母线长为40厘米,底面圆的半径为30厘米,则该圆锥的侧面积为()A .700π平方厘米B .900π平方厘米C .1200π平方厘米D .1600π平方厘米【答案】C【分析】本题考查了圆锥的侧面积,先求出圆锥底面圆的周长,再根据圆锥的侧面积计算公二、填空题16.若关于x 的一元二次方程220x x c -+=无实数根,则c 的取值范围是.【答案】1c >/1c<【分析】利用判别式的意义得到Δ=(-2)2-4c <0,然后解不等式即可.【详解】解:根据题意得Δ=(-2)2-4c <0,解得c >1.故答案为:c >1.【点睛】本题考查了根的判别式,一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2-4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.17.已知点()2,P n 在反比例函数10y x=的图象上,则n =.18.如图,AB 与CD 交于点O ,且AC BD ∥.若12OA OC AC OB OD BD ++=++,则AC BD=.19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用.学校数学兴趣小组为给学校提出合理的采购意见,随机抽取了该校学生100人,了解他们喜欢的体育项目,将收集的数据整理,绘制成如下统计图:注:该校每位学生被抽到的可能性相等,每位被抽样调查的学生选择且只选择一种喜欢的体育项目.若该校共有学生1000人,则该校喜欢跳绳的学生大约有人.【答案】120【分析】本题考查了条形统计图和扇形统计图,用1000乘以12%即可求解,看懂统计图是解题的关键.【详解】解:该校喜欢跳绳的学生大约有100012%120⨯=人,故答案为:120.三、解答题20.计算:12117sin3062-⎛⎫++---⎪⎝⎭.21.如图,在ABC 和AED △中,AB AE =,BAE CAD ∠=∠,AC AD =.求证:ABC AED ≌△△.【答案】见解析【分析】本题考查了全等三角形的判定和性质,熟练掌握三角形全等的判定定理是解题关键.利用“SAS ”证明ABC AED ≌△△,即可解决问题.【详解】证明: BAE CAD ∠=∠,∴BAE EAC CAD EAC ∠+∠=∠+∠,即BAC EAD ∠=∠,在ABC 和AED △中,AB AEBAC EAD AC AD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABC AED ≌.22.某旅行社组织游客从A 地到B 地的航天科技馆参观,已知A 地到B 地的路程为300千米,乘坐C 型车比乘坐D 型车少用2小时,C 型车的平均速度是D 型车的平均速度的3倍,求D 型车的平均速度.【答案】D 型车的平均速度为100km /h【分析】本题考查分式方程的应用,设D 型车的平均速度为km /h x ,则C 型车的平均速度23.为使学生更加了解云南,热爱家乡,热爱祖国,体验“有一种叫云南的生活”.某校七年级年级组准备从博物馆a、植物园b两个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等;八年级年级组准备从博物馆a、植物园b、科技馆c三个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等.记选择博物馆a为a,选择植物园b为b,选择科技馆c为c,记七年级年级组的选择为x,八年级年级组的选择为y.(1)请用列表法或画树状图法中的一种方法,求(),x y所有可能出现的结果总数;(2)求该校七年级年级组、八年级年级组选择的研学基地互不相同的概率P.24.如图,在四边形ABCD 中,点E 、F 、G 、H 分别是各边的中点,且AB CD ∥,AD BC ∥,四边形EFGH 是矩形.(1)求证:四边形ABCD 是菱形;(2)若矩形EFGH 的周长为22,四边形ABCD 的面积为10,求AB 的长. ∴四边形ABCD 是平行四边形,四边形ABCD 中,点E 、25.A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见下表:成本(单位:元/个)销售价格(单位:元/个)A型号35aB型号42b若顾客在该超市购买8个A种型号吉祥物和7个B种型号吉祥物,则一共需要670元;购买4个A种型号吉祥物和5个B种型号吉祥物,则一共需要410元.(1)求a、b的值;(2)若某公司计划从该超市购买A、B两种型号的吉祥物共90个,且购买A种型号吉祥物的数量x(单位:个)不少于B种型号吉祥物数量的43,又不超过B种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y元,求y的最大值.注:该超市销售每个吉祥物获得的利润等于每个吉祥物的销售价格与每个吉祥物的成本的差.26.已知抛物线21y x bx =+-的对称轴是直线2x =.设m 是抛物线21y x bx =+-与x 轴交点的横坐标,记533109m M -=.(1)求b 的值;(2)比较M27.如图,AB 是O 的直径,点D 、F 是O 上异于A 、B 的点.点C 在O 外,CA CD =,延长BF 与CA 的延长线交于点M ,点N 在BA 的延长线上,AMN ABM ∠∠=,AM BM AB MN ⋅=⋅.点H 在直径AB 上,90AHD ∠= ,点E 是线段DH 的中点.(1)求AFB ∠的度数;(2)求证:直线CM 与O 相切:(3)看一看,想一想,证一证:以下与线段CE 、线段EB 、线段CB 有关的三个结论:CE EB CB +<,CE EB CB +=,CE EB CB +>,你认为哪个正确?请说明理由.【答案】(1)90︒(2)见解析(3)CE EB CB +=,理由见解析∴点O在线段AD的中垂线上,=,∵CA CD∴点C在线段AD的中垂线上,⊥,∴OC AD。

吉林省中考数学试题含答案

吉林省中考数学试题含答案

吉林省中考数学试题含答案2024年吉林省中考数学试题及答案一、选择题1、在下列四个数中,数值最大的是()。

A. π B. 2π C. 3π D. 4π2、若方程 x² + mx + 2 = 0 的两个实数根分别为 x1 和 x2 ,且 x1³ + x2³ = 7,则 m 的值为()。

A. -1 B. 1 C. -2 D. 23、等边三角形 ABC 的边长为 4,点 D 在边 AB 上,且∠ADC = 120°,则 AD 的长为()。

A. 2 B. 3 C. 4 D. 54、若点 P 在直线 y = x 上,且到原点的距离为√5,则 P 点的坐标为()。

A. (2,2) B. (-2,-2) C. (2,2)或(-2,-2) D. (1,1)或(-1,-1)二、填空题5、已知实数 a,b,c 满足 a² + b² = c²,且 a > b > c,则 |a|+|b|-|c| 的值为________。

51、在 Rt△ABC 中,∠C = 90°,斜边 AB = 5,一条直角边的长为2,则另一条直角边的长为________。

511、若 x + y = 5,则 (x² + y²) / 5 的值为________。

三、解答题8、已知二次函数 y = ax² + bx + c 的图象经过点 A(0,3),且对称轴为 x = -2,点 B 在抛物线上。

若 AB = 4√5,求点 B 的坐标。

81、在四边形 ABCD 中,∠A = 90°,∠B = 60°,AD = AB = 4,CD = 3。

求四边形 ABCD 的面积。

811、求根号下 (4 - sin²80°) 的值。

四、附加题11、在平面直角坐标系中,O 为原点,A(-3,0),B(0,4),C(3,0),D 为第一象限内一点,且∠DAO + ∠DCO = α,求 tanα的值。

中考数学试卷及答案解析

中考数学试卷及答案解析

中考数学试卷及答案解析一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.(3分)下列实数中,是无理数的是()A.0B.﹣3C.D.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、0是有理数,故A错误;B、﹣3是有理数,故B错误;C、是有理数,故C错误;D、是无理数,故D正确;故选:D.【点评】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.2.(3分)如图,直线a∥b,直线AB⊥AC,若∠1=50°,则∠2=()A.50°B.45°C.40°D.30°【分析】根据垂直的定义和余角的定义列式计算得到∠3,根据两直线平行,内错角相等可得∠3=∠1.【解答】解:∵直线a∥b,∠1=50°,∴∠1=∠3=50°,∵直线AB⊥AC,∴∠2+∠3=90°.∴∠2=40°.故选:C.【点评】本题考查了平行线的性质,余角角的定义,熟记性质并准确识图是解题的关键.3.(3分)如图是一个L形状的物体,则它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看可得到两个左右相邻的长方形,并且左边的长方形的宽度远小于右面长方形的宽度.故选:B.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.(3分)下列计算正确的是()A.2a+a=2a2B.(﹣a)2=﹣a2C.(a﹣1)2=a2﹣1D.(ab)2=a2b2【分析】直接利用合并同类项法则以及积的乘方运算法则、完全平方公式分别化简得出答案.【解答】解:A、2a+a=3a,故此选项错误;B、(﹣a)2=a2,故此选项错误;C、(a﹣1)2=a2﹣2a+1,故此选项错误;D、(ab)2=a2b2,正确.故选:D.【点评】此题主要考查了合并同类项以及积的乘方运算、完全平方公式,正确掌握相关运算法则是解题关键.5.(3分)矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如,矩形的对角线相等.6.(3分)一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):组员甲乙丙丁戊平均成绩众数得分8177■808280■则被遮盖的两个数据依次是()A.80,80B.81,80C.80,2D.81,2【分析】根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.【解答】解:根据题意得:80×5﹣(81+77+80+82)=80(分),则丙的得分是80分;众数是80,故选:A.【点评】考查了众数及平均数的定义,解题的关键是根据平均数求得丙的得分,难度不大.7.(3分)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x米,则根据题意所列的方程是()A.﹣=15B.﹣=15C.﹣=20D.﹣=20【分析】设原计划每天铺设钢轨x米,根据如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务可列方程.【解答】解:设原计划每天铺设钢轨x米,可得:,故选:A.【点评】本题考查由实际问题抽象出分式方程,关键是设出未知数以时间为等量关系列出方程.8.(3分)如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=()A.3B.3C.4D.2【分析】连接AC,如图,根据圆内接四边形的性质和圆周角定理得到∠1=∠CDA,∠2=∠3,从而得到∠3=∠CDA,所以AC=AD=5,然后利用勾股定理计算AE的长.【解答】解:连接AC,如图,∵BA平分∠DBE,∴∠1=∠2,∵∠1=∠CDA,∠2=∠3,∴∠3=∠CDA,∴AC=AD=5,∵AE⊥CB,∴∠AEC=90°,∴AE===2.故选:D.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).也考查了勾股定理.9.(3分)一列数按某规律排列如下:,,,,,,,,,,…,若第n个数为,则n=()A.50B.60C.62D.71【分析】根据题目中的数据可以发现,分子变化是1,(1,2),(1,2,3),…,分母变化是1,(2,1),(3,2,1),…,从而可以求得第n个数为时n的值,本题得意解决.【解答】解:,,,,,,,,,,…,可写为:,(,),(,,),(,,,),…,∴分母为11开头到分母为1的数有11个,分别为,∴第n个数为,则n=1+2+3+4+…+10+5=60,故选:B.【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.10.(3分)如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20B.﹣16C.﹣12D.﹣8【分析】根据A(﹣8,0),B(﹣8,4),C(0,4),可得矩形的长和宽,易知点D的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示另外一个坐标,由三角形相似和对称,可用求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.【解答】解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:则△BDE≌△FDE,∴BD=FD,BE=FE,∠DFE=∠DBE=90°易证△ADF∽△GFE∴,∵A(﹣8,0),B(﹣8,4),C(0,4),∴AB=OC=EG=4,OA=BC=8,∵D、E在反比例函数y=的图象上,∴E(,4)、D(﹣8,)∴OG=EC=,AD=﹣,∴BD=4+,BE=8+∴,∴AF=,在Rt△ADF中,由勾股定理:AD2+AF2=DF2即:(﹣)2+22=(4+)2解得:k=﹣12故选:C.【点评】此题综合利用轴对称的性质,相似三角形的性质,勾股定理以及反比例函数的图象和性质等知识,发现BD与BE的比是1:2是解题的关键.二、填空题(本题有6个小题,每小题3分,共18分)11.(3分)分解因式:a2+2a=a(a+2).【分析】直接提公因式法:观察原式a2+2a,找到公因式a,提出即可得出答案.【解答】解:a2+2a=a(a+2).【点评】考查了对一个多项式因式分解的能力.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.该题是直接提公因式法的运用.12.(3分)如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为24.【分析】根据菱形的对角线互相平分可得BO=DO,然后求出OE是△BCD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求出CD,然后根据菱形的周长公式计算即可得解.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,BO=DO,∵点E是BC的中点,∴OE是△BCD的中位线,∴CD=2OE=2×3=6,∴菱形ABCD的周长=4×6=24;故答案为:24.【点评】本题考查了菱形的性质以及三角形中位线定理;熟记菱形性质与三角形中位线定理是解题的关键.13.(3分)我市“创建文明城市”活动正如火如荼的展开.某校为了做好“创文”活动的宣传,就本校学生对“创文”有关知识进行测试,然后随机抽取了部分学生的测试成绩进行统计分析,并将分析结果绘制成如下两幅不完整的统计图:若该校有学生2000人,请根据以上统计结果估计成绩为优秀和良好的学生共有1400人.【分析】先根据及格人数及其对应百分比求得总人数,总人数乘以优秀对应的百分比求得其人数,继而用总人数乘以样本中优秀、良好人数所占比例.【解答】解:∵被调查的总人数为28÷28%=100(人),∴优秀的人数为100×20%=20(人),∴估计成绩为优秀和良好的学生共有2000×=1400(人),故答案为:1400.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.14.(3分)对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2﹣(a﹣b)2.若(m+2)◎(m﹣3)=24,则m=﹣3或4.【分析】利用新定义得到[(m+2)+(m﹣3)]2﹣[(m+2)﹣(m﹣3)]2=24,整理得到(2m﹣1)2﹣49=0,然后利用因式分解法解方程.【解答】解:根据题意得[(m+2)+(m﹣3)]2﹣[(m+2)﹣(m﹣3)]2=24,(2m﹣1)2﹣49=0,(2m﹣1+7)(2m﹣1﹣7)=0,2m﹣1+7=0或2m﹣1﹣7=0,所以m1=﹣3,m2=4.故答案为﹣3或4.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.15.(3分)如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C的位置,则图中阴影部分的面积为6π.【分析】根据图形可知,阴影部分的面积是半圆的面积与扇形ABC的面积之和减去半圆的面积.【解答】解:由图可得,图中阴影部分的面积为:=6π,故答案为:6π.【点评】本题考查扇形面积的计算、旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.16.(3分)如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF 绕点A旋转,当∠ABF最大时,S△ADE=6.【分析】作DH⊥AE于H,如图,由于AF=4,则△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,当BF为此圆的切线时,∠ABF最大,即BF⊥AF,利用勾股定理计算出BF=3,接着证明△ADH≌△ABF得到DH=BF=3,然后根据三角形面积公式求解.【解答】解:作DH⊥AE于H,如图,∵AF=4,当△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,∴当BF为此圆的切线时,∠ABF最大,即BF⊥AF,在Rt△ABF中,BF==3,∵∠EAF=90°,∴∠BAF+∠BAH=90°,∵∠DAH+∠BAH=90°,∴∠DAH=∠BAF,在△ADH和△ABF中,∴△ADH≌△ABF(AAS),∴DH=BF=3,∴S△ADE=AE•DH=×3×4=6.故答案为6.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.三、解答题(本题有9个小题,共72分)17.(5分)计算:(﹣1)3+|1﹣|+.【分析】原式利用乘方的意义,绝对值的代数意义,以及立方根定义计算即可求出值.【解答】解:原式=﹣1+﹣1+2=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)先化简,再求值:(1﹣)÷(﹣2),其中a=+1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:(1﹣)÷(﹣2)===,当a=+1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.(7分)如图,拦水坝的横断面为梯形ABCD,AD=3m,坝高AE=DF=6m,坡角α=45°,β=30°,求BC的长.【分析】过A点作AE⊥BC于点E,过D作DF⊥BC于点F,得到四边形AEFD是矩形,根据矩形的性质得到AE=DF=6,AD=EF=3,解直角三角形即可得到结论.【解答】解:过A点作AE⊥BC于点E,过D作DF⊥BC于点F,则四边形AEFD是矩形,有AE=DF=6,AD=EF=3,∵坡角α=45°,β=30°,∴BE=AE=6,CF=DF=6,∴BC=BE+EF+CF=6+3+6=9+6,∴BC=(9+6)m,答:BC的长(9+6)m.【点评】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形和矩形,利用锐角三角函数的概念和坡度的概念求解.20.(7分)第一盒中有2个白球、1个黄球,第二盒中有1个白球、1个黄球,这些球除颜色外无其他差别.(1)若从第一盒中随机取出1个球,则取出的球是白球的概率是.(2)若分别从每个盒中随机取出1个球,请用列表或画树状图的方法求取出的两个球中恰好1个白球、1个黄球的概率.【分析】(1)直接利用概率公式计算可得;(2)先画出树状图展示所有6种等可能的结果数,再找出恰好1个白球、1个黄球的结果数,然后根据概率公式求解;【解答】解:(1)若从第一盒中随机取出1个球,则取出的球是白球的概率是,故答案为:;(2)画树状图为:,共有6种等可能的结果数,取出的两个球中恰好1个白球、1个黄球的有3种结果,所以取出的两个球中恰好1个白球、1个黄球的概率为.【点评】本题考查了列表法与树状图法:运用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.21.(7分)已知于x的元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)若x12+x22﹣x1x2≤30,且a为整数,求a的值.【分析】(1)根据根的判别式,可得到关于a的不等式,则可求得a的取值范围;(2)由根与系数的关系,用a表示出两根积、两根和,由已知条件可得到关于a的不等式,则可求得a的取值范围,再求其值即可.【解答】解:(1)∵关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2,∴△>0,即(﹣6)2﹣4(2a+5)>0,解得a<2;(2)由根与系数的关系知:x1+x2=6,x1x2=2a+5,∵x1,x2满足x12+x22﹣x1x2≤30,∴(x1+x2)2﹣3x1x2≤30,∴36﹣3(2a+5)≤30,∴a≥﹣,∵a为整数,∴a的值为﹣1,0,1.【点评】本题主要考查根与系数的关系及根的判别式,利用根的判别式求得k的取值范围是解题的关键,注意方程根的定义的运用.22.(8分)如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为C延长线上一点,且∠CDE=∠BAC.(1)求证:DE是⊙O的切线;(2)若AB=3BD,CE=2,求⊙O的半径.【分析】(1)根据圆周角定理得出∠ADC=90°,按照等腰三角形的性质和已知的2倍角关系,证明∠ODE为直角即可;(2)通过证得△CDE∽△DAE,根据相似三角形的性质即可求得.【解答】解:(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=∠BAC,∵∠CDE=∠BAC.∴∠CDE=∠CAD,∵OA=OD,∴∠CAD=∠ADO,∵∠ADO+∠ODC=90°,∴∠ODC+∠CDE=90°∴∠ODE=90°又∵OD是⊙O的半径∴DE是⊙O的切线;(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD==2x,∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴=,即==∴DE=4,x=,∴AC=3x=14,∴⊙O的半径为7.【点评】本题考查了圆的切线的判定定理、圆周角定理、等腰三角形的性质、三角形相似的判定和性质,解题的关键是作出辅助线构造直角三角形或等腰三角形.23.(10分)某超市拟于中秋节前50天里销售某品牌月饼,其进价为18元/kg.设第x天的销售价格为y(元/kg),销售量为m(kg).该超市根据以往的销售经验得出以下的销售规律:①当1≤x≤30时,y=40;当31≤x≤50时,y与x满足一次函数关系,且当x=36时,y=37;x=44时,y=33.②m与x的关系为m=5x+50.(1)当31≤x≤50时,y与x的关系式为;(2)x为多少时,当天的销售利润W(元)最大?最大利润为多少?(3)若超市希望第31天到第35天的日销售利润W(元)随x的增大而增大,则需要在当天销售价格的基础上涨a元/kg,求a的最小值.【分析】本题是通过构建函数模型解答销售利润的问题.(1)依据题意利用待定系数法,易得出当31≤x≤50时,y与x的关系式为:y=x+55,(2)根据销售利润=销售量×(售价﹣进价),列出每天的销售利润w(元)与销售价x (元/箱)之间的函数关系式,再依据函数的增减性求得最大利润.(3)要使第31天到第35天的日销售利润W(元)随x的增大而增大,则对称轴=≥35,求得a即可【解答】解:(1)依题意,当x=36时,y=37;x=44时,y=33,当31≤x≤50时,设y=kx+b,则有,解得∴y与x的关系式为:y=x+55(2)依题意,∵W=(y﹣18)•m∴整理得,当1≤x≤30时,∵W随x增大而增大∴x=30时,取最大值W=30×110+1100=4400当31≤x≤50时,W=x2+160x+1850=∵<0∴x=32时,W取得最大值,此时W=4410综上所述,x为32时,当天的销售利润W(元)最大,最大利润为4410元(3)依题意,W=(y+a﹣18)•m=∵第31天到第35天的日销售利润W(元)随x的增大而增大∴对称轴x==≥35,得a≥3故a的最小值为3.【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).24.(10分)如图1,△ABC中,CA=CB,∠ACB=α,D为△ABC内一点,将△CAD绕点C按逆时针方向旋转角α得到△CBE,点A,D的对应点分别为点B,E,且A,D,E 三点在同一直线上.(1)填空:∠CDE=(用含α的代数式表示);(2)如图2,若α=60°,请补全图形,再过点C作CF⊥AE于点F,然后探究线段CF,AE,BE之间的数量关系,并证明你的结论;(3)若α=90°,AC=5,且点G满足∠AGB=90°,BG=6,直接写出点C到AG 的距离.【分析】(1)由旋转的性质可得CD=CE,∠DCE=α,即可求解;(2)由旋转的性质可得AD=BE,CD=CE,∠DCE=60°,可证△CDE是等边三角形,由等边三角形的性质可得DF=EF=,即可求解;(3)分点G在AB的上方和AB的下方两种情况讨论,利用勾股定理可求解.【解答】解:(1)∵将△CAD绕点C按逆时针方向旋转角α得到△CBE∴△ACD≌△BCE,∠DCE=α∴CD=CE∴∠CDE=故答案为:(2)AE=BE+CF理由如下:如图,∵将△CAD绕点C按逆时针方向旋转角60°得到△CBE∴△ACD≌△BCE∴AD=BE,CD=CE,∠DCE=60°∴△CDE是等边三角形,且CF⊥DE∴DF=EF=∵AE=AD+DF+EF∴AE=BE+CF(3)如图,当点G在AB上方时,过点C作CE⊥AG于点E,∵∠ACB=90°,AC=BC=5,∴∠CAB=∠ABC=45°,AB=10∵∠ACB=90°=∠AGB∴点C,点G,点B,点A四点共圆∴∠AGC=∠ABC=45°,且CE⊥AG∴∠AGC=∠ECG=45°∴CE=GE∵AB=10,GB=6,∠AGB=90°∴AG==8∵AC2=AE2+CE2,∴(5)2=(8﹣CE)2+CE2,∴CE=7(不合题意舍去),CE=1若点G在AB的下方,过点C作CF⊥AG,同理可得:CF=7∴点C到AG的距离为1或7.【点评】本题是几何变换综合题,考查了全等三角形的性质,旋转的性质,等边三角形的性质,勾股定理,利用勾股定理列出方程是本题的关键.25.(12分)已知抛物线y=a(x﹣2)2+c经过点A(﹣2,0)和C(0,),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出D点的坐标;(2)如图,点E,F分别在线段AB,BD上(E点不与A,B重合),且∠DEF=∠A,则△DEF能否为等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)若点P在抛物线上,且=m,试确定满足条件的点P的个数.【分析】(1)利用待定系数法,转化为解方程组即可解决问题.(2)可能.分三种情形①当DE=DF时,②当DE=EF时,③当DF=EF时,分别求解即可.(3)如图2中,连接BD,当点P在线段BD的右侧时,作DH⊥AB于H,连接PD,PH,PB.设P[n,﹣(n﹣2)2+3],构建二次函数求出△PBD的面积的最大值,再根据对称性即可解决问题.【解答】解:(1)由题意:,解得,∴抛物线的解析式为y=﹣(x﹣2)2+3,∴顶点D坐标(2,3).(2)可能.如图1,∵A(﹣2,0),D(2,3),B(6,0),∴AB=8,AD=BD=5,①当DE=DF时,∠DFE=∠DEF=∠ABD,∴EF∥AB,此时E与B重合,与条件矛盾,不成立.②当DE=EF时,又∵△BEF∽△ADE,∴△BEF≌△ADE,∴BE=AD=5③当DF=EF时,∠EDF=∠DEF=∠DAB=∠DBA,△FDE∽△DAB,∴=,∴==,∵△B EF∽△ADE∴==,∴EB=AD=,答:当BE的长为5或时,△CFE为等腰三角形.(3)如图2中,连接BD,当点P在线段BD的右侧时,作DH⊥AB于H,连接PD,PH,PB.设P[n,﹣(n﹣2)2+3],则S△PBD=S△PBH+S△PDH﹣S△BDH=×4×[﹣(n﹣2)2+3]+×3×(n﹣2)﹣×4×3=﹣(n﹣4)2+,∵﹣<0,∴n=4时,△PBD的面积的最大值为,∵=m,∴当点P在BD的右侧时,m的最大值==,观察图象可知:当0<m<时,满足条件的点P的个数有4个,当m=时,满足条件的点P的个数有3个,当m>时,满足条件的点P的个数有2个(此时点P在BD的左侧).【点评】本题属于二次函数综合题,考查了待定系数法,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会构建二次函数解决最值问题,学会用转化的思想思考问题,属于中考压轴题.。

2024年中考数学试卷(附答案)

2024年中考数学试卷(附答案)

2024年中考数学试卷(附答案)学校:___________班级:___________姓名:___________考号:___________数学试卷共7页,包括六道大题,共26道小题,全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必将姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内. 2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效. 一、单项选择题(每小题2分,共12分) 1.若()3-⨯的运算结果为正数,则内的数字可以为( )A .2B .1C .0D .1-2.长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为( )A .102.0410⨯B .92.0410⨯C .820.410⨯D .100.20410⨯3.葫芦在我国古代被看作吉祥之物.下图是—个工艺葫芦的示意图,关于它的三视图说法正确的是( )A .主视图与左视图相同B .主视图与俯视图相同C .左视图与俯视图相同D .主视图、左视图与俯视图都相同4.下列方程中,有两个相等实数根的是( ) A .()221x -=- B .()220x -= C .()221x -=D .()222x -=5.如图,在平面直角坐标系中,点A 的坐标为()4,0-,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为( )A .()4,2--B .()4,2-C .()2,4D .()4,26.如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是( )A .50︒B .100︒C .130︒D .150︒二、填空题:本题共4小题,每小题5分,共20分. 7.当分式11x +的值为正数时,写出一个满足条件的x 的值为 . 8.因式分解:a 2﹣3a= .9.不等式组2030x x ->⎧⎨-<⎩的解集为 .10.如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是 .11.正六边形的每个内角等于 °.12.如图,正方形ABCD 的对角线AC BD ,相交于点O ,点E 是OA 的中点,点F 是OD 上一点.连接EF .若45FEO ∠=︒则EFBC的值为 .13.图①中有一首古算诗,根据诗中的描述可以计算出红莲所在位置的湖水深度,其示意图如图②,其中AB AB '=,AB B C '⊥于点C ,0.5BC =尺,2B C '=尺.设AC 的长度为x 尺,可列方程为 .14.某新建学校因场地限制,要合理规划体育场地,小明绘制的铅球场地设计图如图所示,该场地由O 和扇形OBC 组成,,OB OC 分别与O 交于点A ,D .OA=1m ,OB=10m ,40AOD ∠=︒则阴影部分的面积为 2m (结果保留π).三、解答题(每小题5分,共20分)15.先化简,再求值:()()2111a a a +-++,其中a =16.吉林省以“绿水青山就是金山银山,冰天雪地也是金山银山”为指引,不断加大冰雪旅游的宣传力度,推出各种优惠活动,“小土豆”“小砂糖橘”等成为一道靓丽的风景线,某滑雪场为吸引游客,每天抽取一定数量的幸运游客,每名幸运游客可以从“滑雪”“滑雪圈”“雪地摩托”三个项目中随机抽取一个免费游玩.若三个项目被抽中的可能性相等,用画树状图或列表的方法,求幸运游客小明与小亮恰好抽中同一个项目的概率. 17.如图,在ABCD 中,点O 是AB 的中点,连接CO 并延长,交DA 的延长线于点E ,求证:AE=BC .18.钢琴素有“乐器之王”的美称,键盘上白色琴键和黑色琴键共有88个,白色琴键比黑色琴键多16个.求白色琴键和黑色琴键的个数.四、解答题(每小题7分,共28分)19.图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A,B,C,D,E,O均在格点上.图①中已画出四边形ABCD,图②中已画出以OE为半径的O,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD的一条对称轴.(2)在图②中,画出经过点E的O的切线.20.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R的取值范围).(2)当电阻R为3Ω时,求此时的电流I.-年全国居民人均可支配收入及其增长速度情况如图所示.21.中华人民共和国20192023根据以上信息回答下列问题:(1)20192023-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多多少元? (2)直接写出20192023-年全国居民人均可支配收入的中位数. (3)下列判断合理的是______(填序号).①20192023-年全国居民人均可支配收入里逐年上升趋势.②20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.因此这5年中,2020年全国居民人均可支配收入最低.22.图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin370.60︒= cos370.80︒= tan370.75︒=)五、解答题(每小题8分,共16分) 23.综合与实践某班同学分三个小组进行“板凳中的数学”的项目式学习研究,第一小组负责调查板凳的历史及结构特点;第二小组负责研究板凳中蕴含的数学知识:第三小组负责汇报和交流,下面是第三小组汇报的部分内容,请你阅读相关信息,并解答“建立模型”中的问题. 【背景调查】图①中的板凳又叫“四脚八叉凳”,是中国传统家具,其榫卯结构体现了古人含蓄内敛的审美观.榫眼的设计很有讲究,木工一般用铅笔画出凳面的对称轴,以对称轴为基准向两边各取相同的长度,确定榫眼的位置,如图②所示.板凳的结构设计体现了数学的对称美.【收集数据】y,小组收集了一些板凳并进行了测量.设以对称轴为基准向两边各取相同的长度为x,凳面的宽度为mm记录如下:【分析数据】如图③,小组根据表中x,y的数值,在平面直角坐标系中描出了各点.【建立模型】请你帮助小组解决下列问题:(1)观察上述各点的分布规律,它们是否在同一条直线上?如果在同一条直线上,求出这条直线所对应的函数解析式;如果不在同一条直线上,说明理由.(2)当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度是多少? 24.小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程:【探究论证】(1)如图①,在ABC 中,AB=BC ,BD AC ⊥垂足为点D .若CD=2,BD=1,则ABCS =______.(2)如图②,在菱形A B C D ''''中4''=A C ,2B D ''=则A B C D S ''''=菱形______.(3)如图③,在四边形EFGH 中,EG FH ⊥,垂足为点O .若5EG =,FH=3,则EFGH S =四边形______;若EG a =,FH=b ,猜想EFGH S 四边形与a ,b 的关系,并证明你的猜想. 【理解运用】(4)如图④,在MNK △中,MN=3,KN=4,MK=5,点P 为边MN 上一点. 小明利用直尺和圆规分四步作图:(ⅰ)以点K 为圆心,适当长为半径画弧,分别交边KN ,KM 于点R ,I ; (ⅱ)以点P 为圆心,KR 长为半径画弧,交线段PM 于点I ';(ⅲ)以点I '为圆心,IR 长为半径画弧,交前一条弧于点R ',点R ',K 在MN 同侧; (ⅳ)过点P 画射线PR ',在射线PR '上截取PQ KN =,连接KP ,KQ ,MQ . 请你直接写出MPKQ S 四边形的值. 六、解答题(每小题10分,共20分)25.如图,在ABC 中,∠C=90°,∠B=30°,AC=3cm ,AD 是ABC 的角平分线.动点P 从点A 出发,以/s 的速度沿折线AD DB -向终点B 运动.过点P 作PQ AB ∥,交AC 于点Q ,以PQ 为边作等边三角形PQE ,且点C ,E 在PQ 同侧,设点P 的运动时间为()()s 0t t >,PQE 与ABC 重合部分图形的面积为()2cm S .(1)当点P 在线段AD 上运动时,判断APQ △的形状(不必证明),并直接写出AQ 的长(用含t 的代数式表示).(2)当点E 与点C 重合时,求t 的值.(3)求S 关于t 的函数解析式,并写出自变量t 的取值范围.26.小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x 的值为2-时,输出y 的值为1;输入x 的值为2时,输出y 的值为3;输入x 的值为3时,输出y 的值为6.(1)直接写出k ,a ,b 的值.(2)小明在平面直角坐标系中画出了关于x 的函数图像,如图(2). Ⅰ.当y 随x 的增大而增大时,求x 的取值范围.Ⅱ.若关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解,求t 的取值范围.Ⅲ.若在函数图像上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为1m -+.小明对P ,Q 之间(含P ,Q 两点)的图像进行研究,当图像对应函数的最大值与最小值均不随m 的变化而变化,直接写出m 的取值范围.参考答案1.D【分析】本题主要考查了有理数的乘法计算,根据有理数的乘法计算法则,分别计算出3-与四个选项中的数的乘积即可得到答案.【详解】解:()326-⨯=- ()313-⨯=- ()300-⨯= ()()313-⨯-= 四个算式的运算结果中,只有3是正数 故选:D . 2.B【分析】本题主要考查了科学记数法,科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案. 【详解】解:92040000000 2.0410⨯= 故选B . 3.A【分析】本题主要考查了简单几何体的三视图,根据三视图的定义找到葫芦的三视图即可得到答案. 【详解】解:葫芦的俯视图是两个同心圆,且带有圆心,主视图和俯视图都是下面一个较大的圆,中间一个较小的圆,上面是一条线段 故选:A . 4.B【分析】本题考查了一元二次方程的根,解一元二次方程,熟练掌握开平方法解方程是解题的关键. 分别对每一个选项运用直接开平方法进行解方程即可判断.【详解】解:A 、()2210x -=-<故该方程无实数解,故本选项不符合题意; B 、()220x -=解得:122x x ==,故本选项符合题意;C 、()221x -= 21x -=±解得123,1x x ==,故本选项不符合题意;D 、()222x -= 2x -=1222x x == 故选:B .5.C【分析】本题主要考查了坐标与图形变化—旋转,矩形的性质等等,先根据题意得到42OA OC ==,,再由矩形的性质可得290AB OC ABC ===︒,∠,由旋转的性质可得42OA OA A B AB '''====,90OA B ''∠=︒ 据此可得答案.【详解】解:∵点A 的坐标为()4,0-,点C 的坐标为()0,2 ∴42OA OC ==, ∵四边形OABC 是矩形 ∴290AB OC ABC ===︒,∠∵将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''' ∴42OA OA A B AB '''====, 90OA B ''∠=︒ ∴A B y ''⊥轴 ∴点B '的坐标为()2,4 故选:C . 6.C【分析】本题考查了平行线的性质,圆的内接四边形的性质,熟练掌握知识点是解题的关键.先根据BE AD ∥得到50D BEC ∠=∠=︒,再由四边形ABCD 内接于O 得到180ABC D ∠+∠=︒,即可求解. 【详解】解:∵BE AD ∥ 50BEC ∠=︒ ∴50D BEC ∠=∠=︒ ∵四边形ABCD 内接于O ∴180ABC D ∠+∠=︒ ∴18050130ABC ∠=︒-︒=︒ 故选:C .7.0(答案不唯一)【分析】本题主要考查了根据分式的值的情况求参数,根据题意可得10x +>,则1x >-,据此可得答案. 【详解】解:∵分式11x +的值为正数 ∴10x +> ∴1x >-∴满足题意的x 的值可以为0 故答案为:0(答案不唯一).8.a (a ﹣3)【分析】直接把公因式a 提出来即可.【详解】解:a 2﹣3a=a (a ﹣3).故答案为a (a ﹣3).9.23x <<##32x >>【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可. 【详解】解:2030x x ->⎧⎨-<⎩①② 解不等式①得:2x >解不等式②得:3x <∴原不等式组的解集为23x <<故答案为:23x <<.10.两点之间,线段最短【分析】本题考查了两点之间线段最短,熟记相关结论即可.【详解】从长春站去往胜利公园,走人民大街路程最近其蕴含的数学道理是:两点之间,线段最短故答案为:两点之间,线段最短.11.120【详解】解:六边形的内角和为:(6-2)×180°=720° ∴正六边形的每个内角为:7201206︒=︒ 故答案为:12012.12【分析】本题主要考查了相似三角形的性质与判定,正方形的性质,先由正方形的性质得到45OAD ∠=︒ AD BC = 再证明EF AD ∥,进而可证明OEF OAD △∽△,由相似三角形的性质可得12EF OE AD OA ==,即12EF BC =. 【详解】解:∵正方形ABCD 的对角线AC BD ,相交于点O∴45OAD ∠=︒,AD=BC∵点E 是OA 的中点 ∴12OE OA = ∵45FEO ∠=︒∴EF AD ∥∴OEF OAD △∽△ ∴12EF OE AD OA ==,即12EF BC = 故答案为:12.13.()22220.5x x +=+【分析】本题考查了勾股定理的实际应用,正确理解题意,运用勾股定理建立方程是解题的关键. 设AC 的长度为x 尺,则0.5AB AB x '==+,在Rt AB C '△中,由勾股定理即可建立方程.【详解】解:设AC 的长度为x 尺,则0.5AB AB x '==+∵AB B C '⊥由勾股定理得:222AC B C AB ''+=∴()22220.5x x +=+故答案为:()22220.5x x +=+.14.11π【分析】本题考查了扇形面积公式,熟练掌握扇形面积公式是解题的关键.利用阴影部分面积等于大扇形减去小扇形面积,结合扇形面积公式即可求解.【详解】解:由题意得:()224010111360S ππ-==阴影故答案为:11π.15.22a 6【分析】本题考查了整式的化简求值,平方差公式,先利用平方差公式化简,再进行合并同类项,最后代入求值即可.【详解】解:原式2211a a =-++22a =当a =原式22=⨯ 6=.16.13【分析】本题考查了用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.画出树状图,可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有3种,再由概率公式求解即可.【详解】解:将“滑雪”“滑雪圈”“雪地摩托”三个项目分别记为事件A 、B 、C ,可画树状图为:由树状图可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有3种 ∴幸运游客小明与小亮恰好抽中同一个项目的概率3193P ==. 17.证明见解析【分析】本题主要考查了全等三角形的性质与判定,平行四边形的性质,先根据平行四边形对边平行推出OAE OBC OCB E ==∠∠,∠∠,再由线段中点的定义得到OA OB =,据此可证明()AAS AOE BOC △≌△,进而可证明AE BC =.【详解】证明:∵四边形ABCD 是平行四边形∴AD BC ∥∴OAE OBC OCB E ==∠∠,∠∠∵点O 是AB 的中点∴OA OB =∴()AAS AOE BOC △≌△∴AE BC =.18.白色琴键52个,黑色琴键36个【分析】本题考查了列一元一次方程解应用题,正确理解题意是解题的关键.设黑色琴键x 个,则白色琴键()16x +个,可得方程()1688x x ++=,再解方程即可.【详解】解:设黑色琴键x 个,则白色琴键()16x +个由题意得:()1688x x ++=解得:36x =∴白色琴键:361652+=(个)答:白色琴键52个,黑色琴键36个.19.(1)见解析(2)见解析【分析】本题主要考查了正方形的性质与判定,矩形的性质与判定,切线的判定,画对称轴等等:(1)如图所示,取格点E 、F ,作直线EF ,则直线EF 即为所求;(2)如图所示,取格点G H 、,作直线GH ,则直线GH 即为所求.【详解】(1)解:如图所示,取格点E 、F ,作直线EF ,则直线EF 即为所求;易证明四边形ABCD 是矩形,且E 、F 分别为AB CD ,的中点;(2)解:如图所示,取格点G H 、,作直线GH ,则直线GH 即为所求;易证明四边形OGTH 是正方形,点E 为正方形OGTH 的中心,则OE GH ⊥.20.(1)36I R= (2)12A 【分析】本题主要考查了反比例函数的实际应用:(1)直接利用待定系数法求解即可;(2)根据(1)所求求出当3R =Ω时I 的值即可得到答案.【详解】(1)解:设这个反比例函数的解析式为()0U I U R=≠ 把()94,代入()0U I U R=≠中得:()409U U =≠ 解得36U = ∴这个反比例函数的解析式为36I R =; (2)解:在36I R =中,当3R =Ω时 3612A 3I == ∴此时的电流I 为12A .21.(1)8485元 (2)35128元 (3)①【分析】本题主要考查了频数分布直方图,频数分布折线图,中位数:(1)用2023年的全国居民人均可支配收入减去2019年全国居民人均可支配收入即可得到答案;(2)根据中位数的定义求解即可;(3)根据统计图的数据即可得到答案.【详解】(1)解:39218307338485-=元答:20192023-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多8485元.(2)解:20192023-年这五年的全国居民人均可支配收入分别为30733元,32189元,35128元,36883元,39218元∴20192023-年全国居民人均可支配收入的中位数为35128元;(3)解:由统计图可知20192023-年全国居民人均可支配收入里逐年上升趋势,故①正确;由统计图可知20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.但这5年中,2019年全国居民人均可支配收入最低,故②错误;故答案为:①.22.218.3m【分析】本题考查了解直角三角形的应用,正确理解题意和添加辅助线是解题的关键.先解Rt GAD 得到873tan DG AG DG EAD===∠,再解Rt GAC △ tan 8730.75654.75CG AG EAC =⋅∠=⨯=,即可求解CD .【详解】解:延长DC 交AE 于点G ,由题意得873m AB DG == 90DGA ∠=︒在Rt GAD 中45EAD ∠=︒ ∴873tan DG AG DG EAD===∠ 在Rt GAC △中37EAC ∠=︒∴tan 8730.75654.75CG AG EAC =⋅∠=⨯=∴873654.75218.3m CD DG CG =-=-≈答:吉塔的高度CD 约为218.3m .23.(1)在同一条直线上,函数解析式为:533y x =+ (2)36mm【分析】本题考查了一次函数的实际应用,待定系数法求函数解析式,已知函数值求自变量,熟练掌握知识点,正确理解题意是解题的关键.(1)用待定系数法求解即可;(2)将213y =代入函数解析式,解方程即可.【详解】(1)解:设函数解析式为:()0y kx b k =+≠∵当16.5,115.5x y == 23.1,148.5x y ==∴16.5115.523.1148.5k b k b +=⎧⎨+=⎩解得:533k b =⎧⎨=⎩ ∴函数解析式为:533y x =+经检验其余点均在直线533y x =+上∴函数解析式为533y x =+,这些点在同一条直线上;(2)解:把213y =代入533y x =+得:533213x +=解得:36x =∴当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度为36mm .24.(1)2,(2)4,(3)152 12EFGH ab S =四边形 证明见详解,(4)10 【分析】(1)根据三角形的面积公式计算即可;(2)根据菱形的面积公式计算即可;(3)结合图形有,EFG EHG EFGH S S S =+四边形,即可得()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形,问题随之得解; (4)先证明MNK △是直角三角形,由作图可知:MKN MPQ ∠=∠,即可证明KM PQ ⊥,再结合(3)的结论直接计算即可.【详解】(1)∵在ABC 中,AB=BC BD AC ⊥ 2CD =∴2AD CD ==∴4AC = ∴122ABC S AC BD =⨯⨯= 故答案为:2;(2)∵在菱形A B C D ''''中4''=A C 2B D ''= ∴142A B C D S B D A C ''''''''=⨯⨯=菱形 故答案为:4;(3)∵EG FH ⊥ ∴12EFG S EG FO =⨯⨯ 12EHG S EG HO =⨯⨯ ∵EFG EHG EFGH S S S =+四边形 ∴()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形 ∴()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯⨯四边形 ∵5EG = 3FH = ∴11522EFGH S EG FH =⨯⨯=四边形 故答案为:152猜想:12EFGH ab S =四边形 证明:∵EG FH ⊥ ∴12EFG S EG FO =⨯⨯ 12EHG S EG HO =⨯⨯ ∵EFG EHG EFGH S S S =+四边形 ∴()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形 ∴()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯⨯四边形 ∵EG a = FH b = ∴12EFGH ab S =四边形; (4)根据尺规作图可知:QPM MKN ∠=∠∵在MNK △中3MN = 4KN = 5MK =∴222MK KN MN =+∴MNK △是直角三角形,且90MNK ∠=︒∴90NMK MKN ∠+∠=︒∵QPM MKN ∠=∠∴90NMK QPM ∠+∠=︒∴MK PQ ⊥∵4PQ KN == 5MK =∴根据(3)的结论有:1102MPKQ S MK PQ =⨯⨯=四边形. 【点睛】本题考查了等腰三角形的性质,菱形的性质,作一个角等于已知角的尺规作图,勾股定理的逆定理等知识,难度不大,掌握作一个角等于已知角的尺规作图方法,是解答本题的关键.25.(1)等腰三角形AQ t = (2)32t =(3))2223,023221,24S t S t S t t ⎧=<≤⎪⎪⎪⎪=+<<⎨⎪⎪=-≤<⎪⎪⎩【分析】(1)过点Q 作QH AD ⊥于点H ,根据“平行线+角平分线”即可得到QA QP =,由QH AP ⊥,得到12HA AP ==,解Rt AHQ △得到AQ t =; (2)由PQE 为等边三角形得到QE QP =,而QA QP =,则QE QA =,故223AE AQ t ===,解得32t =;(3)当点P 在AD 上,点E 在AC 上,重合部分为PQE ,过点P 作PG QE ⊥于点G 12PG AP == 则212S QE PG =⋅=,此时302t <≤;当点P 在AD 上,点E 在AC 延长线上时,记PE 与AC 交于点F ,此时重合部分为四边形FPQC ,此时)tan 23CF CE E t =⋅∠-,因此)21232FCE SCE CF t =⋅=-,故可得2PQE FCE S S S =-=+△△322t <<;当点P 在DB 上,重合部分为PQC △, 此时PD =-)1PC CD PD t =+- 解直角三角形得1tan PC QC t PQC ==-∠,故)2112S QC PC t =⋅=-,此时24t ≤<,再综上即可求解.【详解】(1)解:过点Q 作QH AD ⊥于点H ,由题意得:AP =∵90C ∠=︒ 30B ∠=︒∴60BAC ∠=︒∵AD 平分BAC ∠∴30PAQ BAD ∠=∠=︒∵PQ AB ∥∴30APQ BAD ∠=∠=︒∴PAQ APQ =∠∠∴QA QP =∴APQ △为等腰三角形 ∵QH AP ⊥∴12HA AP == ∴在Rt AHQ △中cos AH AQ t PAQ==∠; (2)解:如图∵PQE 为等边三角形 ∴QE QP =由(1)得QA QP = ∴QE QA =即223AE AQ t === ∴32t =;(3)解:当点P 在AD 上,点E 在AC 上,重合部分为PQE ,过点P 作PG QE ⊥于点G∵30PAQ ∠=︒∴12PG AP == ∵PQE 是等边三角形 ∴QE PQ AQ t ===∴212S QE PG =⋅= 由(2)知当点E 与点C 重合时32t =∴2302S t ⎛⎫<≤ ⎪⎝⎭; 当点P 在AD 上,点E 在AC 延长线上时,记PE 与AC 交于点F ,此时重合部分为四边形FPQC ,如图∵PQE 是等边三角形∴60E ∠=︒而23CE AE AC t =-=-∴)tan 23CF CE E t =⋅∠-∴()))21123232322FCE S CE CF t t t =⋅=--=-∴)2223234PQE FCE S S S t =-=-=+当点P 与点D 重合时,在Rt ADC 中cos AC AD AP DAC ===∠ ∴2t =∴2322S t ⎫=+<<⎪⎭; 当点P 在DB 上,重合部分为PQC △,如图∵30DAC ∠=︒90DCA ∠=︒由上知DC =∴AD =∴此时PD =-∴)1PC CD PD t =+=-∵PQE 是等边三角形∴60PQE ∠=︒∴1tan PC QC t PQC ===-∠∴)2112S QC PC t =⋅=- ∵30B BAD ∠=∠=︒∴DA DB ==∴当点P 与点BAD DB =+=解得:4t =∴)()2124S t t =-≤<综上所述:)2223,023221,24S t S t S t t ⎧=<≤⎪⎪⎪⎪=+<<⎨⎪⎪=-≤<⎪⎪⎩. 【点睛】本题考查了直角三角形的性质,解直角三角形的相关计算,等腰三角形的判定与性质,等边三角形的性质,平行线的性质,熟练掌握知识点,正确添加辅助线是解决本题的关键.26.(1)1,1,2k a b ===-(2)Ⅰ:0x ≤或1x ≥;Ⅱ:2t <或11t ≥;Ⅲ:10m -≤≤或12m ≤≤【分析】本题考查了二次函数与一次函数的图像与性质,待定系数法求函数解析式,一元二次方程的解,正确理解题意,利用数形结合的思想是解决本题的额关键.(1)先确定输入x 值的范围,确定好之后将x ,y 的值代入所给的y 关于x 的函数解析式种解方程或方程组即可;(2)Ⅰ:可知一次函数解析式为:3y x ,二次函数解析式为:223y x x =-+,当0x >时223y x x =-+对称为直线1x =,开口向上,故1x ≥时,y 随着x 的增大而增大;当0x ≤时3y x ,10k =>故0x ≤时,y 随着x 的增大而增大;Ⅱ:问题转化为抛物线223y x x =-+与直线y t =在04x <<时无交点,考虑两个临界状态,当2t =时,抛物线223y x x =-+与直线y t =在04x <<时正好一个交点,因此当2t <时,抛物线223y x x =-+与直线y t =在04x <<时没有交点;当4x =,11y =故当11t =时,抛物线223y x x =-+与直线y t =在04x <≤时正好一个交点,因此当11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,当2t <或11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,即方程230ax bx t ++-=无解; Ⅲ: 可求点P 、Q 关于直线12x =对称,当1x =,2y =最小值当0x =时3y =最大值 当图像对应函数的最大值与最小值均不随m 的变化而变化,而当2x =时,y=3,x=-1时,y=2,故①当12m >,由题意得:11012m m -≤-+≤⎧⎨≤≤⎩,则12m ≤≤;②当12m <,由题意得:10112m m -≤≤⎧⎨≤-+≤⎩,则10m -≤≤,综上:10m -≤≤或12m ≤≤. 【详解】(1)解:∵20x =-<∴将2x =-,1y =代入3y kx =+得:231k -+=解得:1k =∵20,30x x =>=>∴将2,3x y ==,3,6x y ==代入23y ax bx =++得:42339336a b a b ++=⎧⎨++=⎩ 解得:12a b =⎧⎨=-⎩; (2)解:Ⅰ,∵1,1,2k a b ===-∴一次函数解析式为:3y x ,二次函数解析式为:223y x x =-+当0x >时223y x x =-+,对称为直线1x =,开口向上∴1x ≥时,y 随着x 的增大而增大;当0x ≤时3y x 10k =>∴0x ≤时,y 随着x 的增大而增大综上,x 的取值范围:0x ≤或1x ≥;Ⅱ,∵230ax bx t ++-=∴23ax bx t ++=,在04x <<时无解∴问题转化为抛物线223y x x =-+与直线y t =在04x <<时无交点 ∵对于223y x x =-+,当1x =时2y =∴顶点为()1,2,如图:∴当2t =时,抛物线223y x x =-+与直线y t =在04x <<时正好一个交点 ∴当2t <时,抛物线223y x x =-+与直线y t =在04x <<时没有交点; 当4x = 168311y =-+=∴当11t =时,抛物线223y x x =-+与直线y t =在04x <≤时正好一个交点 ∴当11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点 ∴当2t <或11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点 即:当2t <或11t ≥时,关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解; Ⅲ:∵,1P Q x m x m ==-+∴()1122m m +-+= ∴点P 、Q 关于直线12x =对称 当1x =,1232y =-+=最小值当0x =时3y =最大值∵当图像对应函数的最大值与最小值均不随m 的变化而变化,而当2x =时3y =,=1x -时2y = ∴①当12m >,如图:由题意得:11012m m -≤-+≤⎧⎨≤≤⎩∴12m ≤≤; ②当12m <,如图:由题意得:10112m m -≤≤⎧⎨≤-+≤⎩ ∴10m -≤≤综上:10m -≤≤或12m ≤≤.。

初中数学中考试题及答案

初中数学中考试题及答案

初中数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正数?A. -2B. 0C. 3D. -52. 计算下列哪个表达式的结果为负数?A. 3 - 2B. 2 - 3C. 4 - 1D. 5 - 53. 哪个选项是方程2x + 3 = 7的解?A. x = 1B. x = 2C. x = 3D. x = 44. 一个数的平方是9,这个数是?A. 3B. -3C. 3或-3D. 以上都不是5. 圆的周长公式是?A. C = πrB. C = 2πrC. C = πdD. C = 2πd6. 一个三角形的两边长分别为3cm和4cm,第三边的长度范围是?A. 1cm到7cmB. 1cm到5cmC. 3cm到7cmD. 3cm到5cm7. 下列哪个选项是不等式3x - 5 > 2的解?A. x > 2B. x < 2C. x > 3D. x < 38. 计算下列哪个表达式的结果为0?A. 5 + (-5)B. 5 - (-5)C. 5 × (-5)D. 5 ÷ (-5)9. 一个直角三角形的两个直角边长分别为3cm和4cm,斜边的长度是?A. 5cmB. 6cmC. 7cmD. 8cm10. 一个数的立方是-8,这个数是?A. 2B. -2D. -8二、填空题(每题3分,共15分)11. 一个数的绝对值是5,这个数可能是______。

12. 一个数除以-2等于3,这个数是______。

13. 一个数的相反数是-4,这个数是______。

14. 一个数的倒数是2,这个数是______。

15. 一个数的平方根是3,这个数是______。

三、解答题(每题5分,共55分)16. 计算表达式:(-3) × (-2) + 4 ÷ 2。

17. 解方程:5x - 3 = 2x + 8。

18. 计算一个数的平方,如果这个数是-4。

19. 一个长方形的长是6cm,宽是4cm,求它的周长和面积。

精选初中数学中考测试题库(含答案)

精选初中数学中考测试题库(含答案)

精选初中数学中考测试题库(含答案)精选初中数学中考测试题库(含答案)同学们,数学是我们初中生活中非常重要的一门学科,也是中考中必考的科目之一。

为了帮助大家更好地备战中考,我为大家准备了精选初中数学中考测试题库,并提供了答案。

希望这些题目能够帮助大家巩固知识,提高解题能力。

祝愿大家在中考中取得优异成绩!一、选择题1. 下列哪个数是分数 2/3 的两倍?A) 1/2 B) 1 1/4 C) 1 2/3 D) 2 1/22. 如果 a + b = 10,且 a^2 + b^2 = 34,那么 ab 的值等于多少?A) 11 B) 10 C) 9 D) 83. 有一个面积为 64 平方米的正方形花坛,若要在这个花坛内铺设宽度为 1 米的小石子边行道,需要多少条石子边行道?A) 8 B) 16 C) 32 D) 644. 一根长为15 厘米的绳子剪成两段,其中一段比另一段长7 厘米。

较短一段的长度是多少厘米?A) 7 B) 8 C) 9 D) 10二、填空题1. 若对任意正数 a,b,都有 a ÷ b + b ÷ a = 2,那么 a 的值为______,b 的值为______。

2. 若 x-2y = 5,3x+y = 10,则 x 的值为______,y 的值为______。

3. 甲、乙两班学生的平均身高都是 160 厘米,但甲班身高的标准差为 5 厘米,乙班身高的标准差为 8 厘米。

根据这些信息,我们可以推断甲班和乙班学生身高的分布情况是(填写正确选项):A) 甲班的学生身高更集中,乙班的学生身高更分散;B) 甲班和乙班的学生身高都很集中;C) 甲班和乙班的学生身高都很分散;D) 无法判断。

三、解答题1. 一辆以每小时 60 公里的速度行驶的列车从 A 站开往 B 站,经过两小时后,又以每小时 90 公里的速度行驶到达 B 站。

求 A、B 两站之间的距离。

2. 某书店原价出售一本书,72 元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年初中数学中考复习试题(含答案)
学校:__________ 姓名:__________ 班级:__________ 考号:__________
题号 一 二 三 总分 得分
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人 得分
一、选择题
1.若关于x 的方程mx 2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是----------------------------------------------------------------------------------------------------------------------------------------( ) (A )m <
14 (B )m >-14 (C )m <14,且m ≠0 (D )m >-1
4
,且m ≠0 2.若变量y 与x 成正比例,变量x 又与z 成反比例,则y 与z 的关系是( ) A .成反比例 B .成正比例 C .y 与2z 成正比例 D .y 与2
z 成反比例
3.二次函数y =ax 2+bx +c 的图象如图所示,下列结论错误..的是 【 ▲ 】 A .ab <0 B .ac <0
C .当x <2时,y 随x 增大而增大;当x >2时,y 随x 增大而减小
D .二次函数y =ax 2+bx +c 的图象与x 轴交点的横坐标就是方程ax 2+bx +c =0的根 4.下列图形中既是中心对称图形又是轴对称图形的是 【 ▲ 】
A B C D
5.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件
大约只占0.000 000 7 (平方毫米),这个数用科学记数法表示为 【 ▲ 】 A .6
107-⨯ B .6
107.0-⨯ C .7
107-⨯ D .8
1070-⨯
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人 得分
二、填空题
6.正方形ABCD 中,E F 、分别为AB BC 、的中点,AF 与DE 相交于点O , 则=DO
AO
__________.
7.计算下列各式
(1)n b b b ⋅-⋅-23)( (2) n n 21
2)3(3)
3(-⋅+-+
8.已知函数y= ax 2+bx+c 的一些对应值如下:
判断方程ax 2+bx+c =0(a ≠0,a ,b ,c 为常数)一个解x 的范围是_________________ 9. 已知039,0=++=+-c b a c b a ,则二次函数c bx ax y ++=2
的图象的顶点
x -2 -1 0 1 y -5
-2
3
10
可能在第_______________象限
10.已知实数y x y x x y x +=-++则满足,033,2
的最大值为 ;
11.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点D ,下列结论①AE=BF ;②AE ⊥BF ;③ AO=OE

④DEOF AOB S S 四边形=∆中,错误的有_______________个
12.如图,□ABCD 的周长为16cm ,AC 、BD 相交于点O ,OE ⊥AC 交AD 于E ,则△DCE 的周长为________________ 13.
25
的相反数是 ▲ ,9的平方根是 ▲ ,计算:24(2)3x x -⋅= ▲ ,23--= ▲ .
14.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼关于原点对称,若小鱼上的 点P (a ,b )对应大鱼上的点Q ,则点Q 的坐标为
15.若方程0132
=--x x 的两根分别是1x 和2x ,则
2
111x x += . 16.如图4,点A 、B 、C 、D 、E 、F 、G 、H 、K 都是7×8方格纸 中的格点,为使△D EM ∽△ABC ,则点M 应是F 、G 、H 、K 四点中的_________________
17.在△ABC 中,D 、E 是AB 上的点,且AD=DE=EB,DF ∥EG ∥BC ,则△ABC 被分成的三部分的面积比S △ADF :S 四边形DEGF :S 四边形EBCG 等于 。

A
B
C
O
E
D
图 4
K
H G F
E
D C
B
A
A
18.在Rt △ABC 中,∠C =90°,AB =5,AC =4,则sinA 的值为_____________
19. 如图,为了测量小河的宽度,小明先在河岸边任意取一点A ,再在河岸这边取两点B 、C ,测得∠ABC =45°,∠ACB =30°,量得BC 为20米,根据以上数据,请帮小明算出河的宽度d (结果保留根号).
20.若函数 5
2
)2(--=m
x m y 是反比例函数,则m 的值为
21.函数5)2(32
+--=x y 的图象的开口向 ,对称轴为 ,顶点坐标为 ;当
=x 时,函数取最 值=y ;当 时,y 随着x 的增大而减小
22.如图,AB ⊥BE ,BC ⊥BD ,AB=BE ,BC=BD ,求证:AD=CE
C
C
B
A
三、解答题
23.
1.已知函数y =x 2
,-2≤x ≤a ,其中a ≥-2,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x 的值。

24.菱形的面积为2
24cm ,两条对角线分别为xcm 和ycm , 求(1)y 与x 之间的函数关系式
(2)当其中一条对角线x=6cm 时,求另一条对角线的长
25.已知x 1和x 2是一元二次方程2x 2+5x -3=0的两根,利用根与系数的关系求下列各式的值:
(1)求| x 1-x 2|的值; (2)求2212
11x x +的值; (3)x 13+x 23.
26.ABC ∆中,三边,,a b c 满足222
.a b c ab bc ca ++=++试判断ABC ∆的形状. 27.已知:抛物线y =ax 2
+bx 点A (7,4),且对称轴l 与x 轴交于点B (5,0). (1)求抛物线的表达式;
(2)如图,点E 、F 分别是y 轴、对称轴l 上的点,且四边形EOBF 是矩形,点C 5
(5,)2

BF 上一点,将△BOC 沿着直线OC 翻折,点B 与线段EF 上的点D 重合,求D 点的坐标;
(3)在(2)的条件下,点G 是对称轴l 上的点, 直线DG 交
CO 于点H ,
:1:4DOH DHC S S ∆∆=,求点G 的坐标.
28.小明想把一个三角形拼接成面积与它相等的矩形. 他先进行了如下部分操作,如图1所示: ①取△ABC 的边AB 、AC 的中点D 、E ,联结DE ; ②过点A 作AF ⊥DE 于点F ;
(1)请你帮小明完成图1的操作,把△ABC 拼接成面积与它相等的矩形.
(2)若把一个三角形通过类似的操作拼接成一个与原三角形面积相等的正方形,那么原三角形的一边与这边上的高之间的数量关系是________________.
(3)在下面所给的网格中画出符合(2)中条件的三角形,并将其拼接成面积与它相等的正方形.
A
B
C
D
E
F
29.如图,EF 是平行四边形ABCD 的对角线BD 的垂直平分线,EF 与边AD 、BC 分别交于点E 、F .
(1)求证:四边形BFDE 是菱形;
(2)若E 为线段AD 的中点,求证:AB ⊥BD .
30.解方程和不等式组:
(1)解方程:()033=-+-x x x (2)解不等式组:21113x x x +<⎧⎪
⎨-≥⎪⎩
A
D
E
B
F
C
第23题图
O。

相关文档
最新文档