最新高考第一轮复习数学:7.5圆的方程教案(含习题及答案)
高中数学 7.5圆的方程及直线与圆的位置关系配套课件
![高中数学 7.5圆的方程及直线与圆的位置关系配套课件](https://img.taocdn.com/s3/m/a61b5558915f804d2a16c14c.png)
交,则
k <1, 解得 2<k< 2;所以,“k=1”是“直
12 12
线x-y+k=0与圆x2+y2=1相交”的充分不必要条件.
(2)因为点M(x0,y0)是圆x2+y2=r2(r>0)内的一点,所以
x02 y02<r2,圆心到直线x0x+y0y=r2的距离 d 所以直线与圆相离.
第五节 圆的方程及直线与圆的位置 关系
三年11考 高考指数:★★★ 1.掌握圆的标准方程和一般方程; 2.了解参数方程的概念,理解圆的参数方程.
1.圆的方程以及直线与圆的位置关系是考查的重点; 2.待定系数法、数形结合的思想、方程的思想是解决与圆有关 问题的重要方法和思想; 3.题型以选择题和填空题为主,重点考查圆的方程、切线、弦 长等问题.
3
(2)x2-2x+y2-3=0的圆心坐标为(1,0),它到直线
x+ 3y-3=0的距离为
1 0 3 1.
12 ( 3)2
(3)直线方程变为(x+1)a-x-y+1=0,
由x x1
y
0 1
0
得
x y
1 ,
2
∴C(-1,2).
∴所求圆的方程为(x+1)2+(y-2)2=5.
d<__r
Δ >0 有_两__组__不__同__
实数解
【即时应用】 (1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的________条 件. (2)已知点M(x0,y0)是圆x2+y2=r2(r>0)内异于圆心的一点,则 直线x0x+y0y=r2与此圆的位置关系是__________. 【解析】(1)当k=1时,圆心到直线的距离 d 1 2 <1 r, 此时直线与圆相交;若直线与圆相
1420_2023届高考数学一轮复习习题:圆的方程(含解析)新人教B版.doc_0
![1420_2023届高考数学一轮复习习题:圆的方程(含解析)新人教B版.doc_0](https://img.taocdn.com/s3/m/a7e3067d59fb770bf78a6529647d27284a733757.png)
圆的方程一、选择题1.(2021·浙江绍兴高三期末)圆x2+y2+2ax-23ay+3a2=0的圆心坐标和半径长依次为()A.(a,-3a),a B.(-a,3a),aC.(a,-3a),|a|D.(-a,3a),|a|D[圆x2+y2+2ax-23ay+3a2=0化为标准方程为(x+a)2+(y-3a)2=a2,所以圆心坐标为(-a,3a),半径为|a|.]2.若方程x2+y2+4x-6y+1-2m=0表示圆,则实数m的取值范围为()A.(-6,+∞)B.(6,+∞)C.(-7,+∞)D.(7,+∞)A[由42+62-4(1-2m)>0,得m>-6.]3.(2021·广西梧州高三期末)曲线x2+y2-2x+4y-20=0上的点到直线3x-4y+19=0的最大距离为()A.10B.11C.12D.13B[曲线为圆(x-1)2+(y+2)2=25,圆心(1,-2)到直线3x-4y+19=0的距离为d=|3+8+19|32+42=6,即直线与圆相离,故圆上的点到直线3x-4y+19=0的最大距离为6+5=11,故选B.] 4.与直线x=2相切于点(2,0)且半径为1的圆的方程为()A.(x-1)2+y2=1B.(x-3)2+y2=1C.(x+1)2+y2=1D.(x-1)2+y2=1或(x-3)2+y2=1D[如图所示,由图形知,与直线x =2相切于点(2,0)且半径为1的圆的圆心为(1,0)或(3,0),所以圆的方程为(x -1)2+y 2=1或(x -3)2+y 2=1.]5.动点A 在圆x 2+y 2=1上移动时,它与定点B (3,0)连线的中点的轨迹方程是()A.(x +3)2+y 2=4B.(x -3)2+y 2=4C.(2x -3)2+4y 2=1+y 2=12C[设中点M (x ,y ),则动点A (2x -3,2y ).∵点A 在圆x 2+y 2=1上,∴(2x -3)2+(2y )2=1,即(2x -3)2+4y 2=1.故选C.]6.过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN |=()A.26B.8C.46D.10C[设圆的方程为x 2+y 2+Dx +Ey +F =0,+3E +F +10=0,D +2E +F +20=0,-7E +F +50=0.=-2,=4,=-20.∴圆的方程为x 2+y 2-2x +4y -20=0.令x =0,得y =-2+26或y =-2-26,∴M (0,-2+26),N (0,-2-26)或M (0,-2-26),N (0,-2+26),∴|MN |=46,故选C.]二、填空题7.圆(x -1)2+(y -2)2=1关于直线y =x 对称的圆的方程为.(x -2)2+(y -1)2=1[设对称圆的方程为(x -a )2+(y -b )2=1,圆心(1,2)关于直线y=x 的对称点为(2,1),故对称圆的方程为(x -2)2+(y -1)2=1.]8.(2021·江苏南京高三期中)已知直线x +2y -4=0和坐标轴交于A 、B 两点,O 为原点,则经过O ,A ,B 三点的圆的方程为.(x -2)2+(y -1)2=5[直线x +2y -4=0和坐标轴交于A 、B 两点,则A (4,0),B (0,2),设圆的方程为:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),D +F +16=0,E +F +4=0,=0,=-4,=-2,=0,圆的方程为x 2+y 2-4x -2y =0,即(x -2)2+(y -1)2=5.]9.(2021·武汉高三模拟)已知两点A (-3,0),B (0,3),点C 是圆x 2+y 2-4x =0上任意一点,则△ABC 面积的最小值是.15-622[由题意可得,直线AB 的方程为x -3+y3=1,即x -y +3=0,由x 2+y 2-4x =0得(x -2)2+y 2=4,则圆心坐标为(2,0),半径为r =2;圆心(2,0)到直线AB 的距离为d =|2-0+3|2=522,根据圆的性质可得,圆上任意一点C 到直线AB 的最小距离为522-r =522-2;此时S △ABC =12×AB =12×32×=15-622.]三、解答题10.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程;(2)求圆P 的方程.[解](1)由已知得直线AB 的斜率k =1,AB 的中点坐标为(1,2).所以直线CD 的方程为y -2=-(x -1),即x +y -3=0.(2)设圆心P (a ,b ),则由P 在CD 上得a +b -3=0.①又直径|CD |=410,所以|PA |=210.所以(a +1)2+b 2=40.②=-3,=6=5,=-2,所以圆心P (-3,6)或P (5,-2),所以圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.11.如图,等腰梯形ABCD 的底边AB 和CD 长分别为6和26,高为3.(1)求这个等腰梯形的外接圆E 的方程;(2)若线段MN 的端点N 的坐标为(5,2),端点M 在圆E 上运动,求线段MN 的中点P 的轨迹方程.[解](1)由已知可知A (-3,0),B (3,0),C (6,3),D (-6,3),设圆心E (0,b ),由|EB |=|EC |可知(0-3)2+(b -0)2=(0-6)2+(b -3)2,解得b =1.所以r 2=(0-3)2+(1-0)2=10.所以圆的方程为x 2+(y -1)2=10.(2)设P (x ,y ),由点P 是MN 中点,得M (2x -5,2y -2).将M 点代入圆的方程得(2x -5)2+(2y -3)2=10,=52.1.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2b的最小值为()A.1B.5C.42D.3+22D[由题意知圆心C (2,1)在直线ax +2by -2=0上,∴2a +2b -2=0,整理得a +b =1,∴1a +2b =a +b )=3+b a +2ab ≥3+2b a ·2ab=3+22,当且仅当b a =2ab,即b =2-2,a =2-1时,等号成立.∴1a +2b的最小值为3+22.]2.已知圆C 截y 轴所得的弦长为2,圆心C 到直线l :x -2y =0的距离为55,且圆C 被x 轴分成的两段弧长之比为3∶1,则圆C 的方程为.(x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2[设圆C 的方程为(x -a )2+(y -b )2=r 2,则点C 到x 轴,y 轴的距离分别为|b |,|a |.=55,=-1,=-1,2=2,=1,=1,2=2.故所求圆C 的方程为(x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2.]3.动圆C 与x 轴交于A (x 1,0),B (x 2,0)两点,且x 1,x 2是方程x 2+2mx -4=0的两根.(1)若线段AB 是动圆C 的直径,求动圆C 的方程;(2)证明:当动圆C 过点M (0,1)时,动圆C 在y 轴上截得弦长为定值.[解](1)∵x 1,x 2是方程x 2+2mx -4=0的两根,∴x 1+x 2=-2m ,x 1x 2=-4.∵动圆C 与x 轴交于A (x 1,0),B (x 2,0)两点,且线段AB 是动圆C 的直径,∴动圆C 的圆心C 的坐标为(-m,0),半径为|AB |2=|x 2-x 1|2=x 1+x 22-4x 1x 22=m 2+4.∴动圆C 的方程为(x +m )2+y 2=m 2+4.(2)证明:设动圆C 的方程为x 2+y 2+Dx +Ey +F =0,∵动圆C 与y 轴交于M (0,1),N (0,y 1),令y =0,则x 2+Dx +F =0,由题意可知D =2m ,F =-4,又动圆C 过点M (0,1),∴1+E -4=0,解得E =3.令x =0,则y 2+3y -4=0,解得y =1或y =-4,∴y 1=-4.∴动圆C 在y 轴上截得弦长为|y 1-1|=5.故动圆C 在y 轴上截得弦长为定值.1.如图A (2,0),B (1,1),C (-1,1),D (-2,0),CD ︵是以OD 为直径的圆上一段圆弧,CB ︵是以BC 为直径的圆上一段圆弧,BA ︵是以OA 为直径的圆上一段圆弧,三段弧构成曲线W .给出以下4个结论:①曲线W 与x 轴围成的面积等于2π;②曲线W 上有5个整点(横、纵坐标均为整数的点);③CB ︵所在圆的方程为:x 2+(y -1)2=1;④CB ︵与BA ︵的公切线方程为:x +y =2+1.则上述结论正确的是()A.①②③④B.②③④C.①②③D.②③B[曲线W 与x 轴的图形为以(0,1)圆心,1为半径的半圆加上以(1,0)为圆心,1为半径的14圆,加上以(-1,0)为圆心,1为半径的14圆,加上长为2,宽为1的矩形构成,可得其面积为12π+2×14π+2=2+π≠2π,故①错误;曲线W 上有(-2,0),(-1,1),(0,2),(1,1),(2,0)共5个整点,故②正确;CB ︵是以(0,1)为圆心,1为半径的圆,其所在圆的方程为x 2+(y -1)2=1,故③正确;设CB ︵与BA ︵的公切线方程为y =kx +t (k <0,t >0),由直线和圆相切的条件可得|t -1|1+k 2=1=|k +t |1+k 2,解得k =-1,t =1+2(t =1-2舍去),则其公切线方程为y =-x +1+2,即x +y =1+2,故④正确.故选B.]2.在平面直角坐标系xOy 中,曲线Γ:y =x 2-mx +2m (m ∈R )与x 轴交于不同的两点A ,B ,曲线Γ与y 轴交于点C .(1)是否存在以AB 为直径的圆过点C ?若存在,求出该圆的方程;若不存在,请说明理由.(2)求证:过A ,B ,C 三点的圆过定点.[解]由曲线Γ:y =x 2-mx +2m (m ∈R ),令y =0,得x 2-mx +2m =0.设A (x 1,0),B (x 2,0),可得Δ=m 2-8m >0,则m <0或m >8,x 1+x 2=m ,x 1x 2=2m .令x =0,得y =2m ,即C (0,2m ).(1)若存在以AB 为直径的圆过点C ,则AC →·BC →=0,得x 1x 2+4m 2=0,即2m +4m 2=0,所以m =0(舍去)或m =-12.此时C (0,-1),AB 的中点M -14,0半径r =|CM |=174,+y 2=1716.(2)证明:设过A ,B 两点的圆的方程为x 2+y 2-mx +Ey +2m =0,将点C (0,2m )代入可得E =-1-2m ,所以过A ,B ,C 三点的圆的方程为x 2+y 2-mx -(1+2m )y +2m =0.整理得x 2+y 2-y -m (x +2y -2)=0.2+y2-y=0,+2y-2=0,=0,=1=25,=45,故过A,B,C。
高三数学第一轮复习讲义7.5 圆的方程(无答案)全国通用
![高三数学第一轮复习讲义7.5 圆的方程(无答案)全国通用](https://img.taocdn.com/s3/m/bceacaaa02d276a201292e01.png)
§7.5 圆的方程班级 姓名 学号例1:求圆x 2+y 2-x+2y=0关于直线L :x -y+1=0对称的圆的方程。
例2:一圆经过A (4,2),B (-1,3)两点,且在两坐标轴上的四个截距和为2,求此圆方程。
例3:设方程x 2+y 2-2(m+3)x+2(1-4m 2)y+16m 4+9=0。
(1)当且仅当m 在什么范围内,该方程表示一个圆。
(2)当m 在以上范围内变化时,求半径最大的圆的方程。
例4:已知圆和直线x -6y -10=0相切于(4,-1),且经过点(9,6),求圆的方程。
【备用题】已知圆x 2+y 2-6x -4y+10=0,直线L 1:y=kx, L 2:3x+2y+4=0, x 在什么范围内取值时,圆 与L 1交于两点?又设L 1与L 2交于P ,L 1与圆的相交弦中点为Q ,当k 于上述范围内变化时, 求证:|OP|·|OQ|为定值。
【基础训练】1、A=C ≠0,B=0是方程Ax 2+Bx+Cy 2+Dx+Ey+F=0表示圆的 ( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、不充分不必要条件2、圆x 2+y 2-2x=0和x 2+y 2+4y=0的位置关系是: ( ) A 、相离 B 、外切 C 、相交 D 、内切3、以点A(-5,4)为圆心,且与x 轴相切的圆的标准方程为: ( )A 、(x+5)2+(y -4)2=16B 、(x -5)2+(y+4)2=16C 、(x+5)2+(y -4)2=25D 、(x -5)2+(y+4)2=164、方程x 2+y 2+Dx+Ey+F=0,(D 2+E 2-4F>0)关于直线x -y=0对称的充分条件是: A 、D=E B 、E=F C 、E=F D 、D=E 且F ≠05、若两直线y=x+2a, 和y=2x+a+1的交点为P ,P 在圆x 2+y 2=4的内部,则a 的取值范围是 。
高考数学一轮复习第七章第三讲圆的方程课件
![高考数学一轮复习第七章第三讲圆的方程课件](https://img.taocdn.com/s3/m/56c0714f0a4e767f5acfa1c7aa00b52acfc79cb6.png)
∴圆的半径为 (a-3)2+(1-2a-0)2= (a-0)2+(1-2a-1)2,
求得 a=1,可得半径为 5,圆心 M(1,-1),
故⊙M 的方程为(x-1)2+(y+1)2=5. 答案:(x-1)2+(y+1)2=5
(1)xy的几何意义是圆上一点与原点连线的斜率,所以设xy=k, 即 y=kx.
当直线 y=kx 与圆相切时,斜率 k 取最大值或最小值,此时 |2kk2-+01|= 3,解得 k=± 3.
所以yx的最大值为 3,最小值为- 3(图 7-3-1). 图 7-3-1
(2)(方法一)y-x 可看作是直线 y=x+b 在 y 轴上的截距,当直
第三讲 圆的方程
1.回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握 圆的标准方程与一般方程.
2.能根据直线和圆的方程解决一些简单的数学问题与实际 问题.
1.圆的定义与方程
定义
平面上到定点的距离等于定长的点的集合叫做圆
方 程 标准式 (x-a)2+(y-b)2=r2(r>0)
圆心:(a,b) 半径:r
θ+2, θ+1,
θ∈[0,2π),
则 x-y=(3cos θ+2)-(3sin θ+1)=3(cos θ-sin θ)+1=
3 2cosθ+4π+1.
因为 cos θ+π4的最大值为 1,所以 x-y 的最大值为 3 2+ 1.故选 C.
答案:C
2.(考向 2)(2023 年北京市校级模拟)在平面直角坐标系 xOy 中, 已知 P 是圆 C:(x-3)2+(y-4)2=1 上的动点.若 A(-a,0),B(a,
新课标高三数学第一轮复习直线和圆的方程详细教案
![新课标高三数学第一轮复习直线和圆的方程详细教案](https://img.taocdn.com/s3/m/6b52596126d3240c844769eae009581b6bd9bd7d.png)
高三数学第一轮复习直线和圆的方程详细教案知识结构第一节直线的倾斜角和斜率学习目标1.了解直线的方程、方程的直线的定义;2.掌握直线的倾斜角、直线的斜率的定义及其取值范围;3.掌握过两点的直线的斜率公式,会运用公式求出有关直线的斜率和倾斜角.重点难点本节重点:正确地理解斜率的概念,熟练地掌握已知直线上两点求直线斜率的公式,这是学好直线这部分内容的关键.本节难点:正确理解直线倾斜角定义中的几个条件,如直线与x轴相交与不相交,按逆时针方向旋转、最小正角等.求倾斜角时,要特别注意其取值范围是高考中,由于本节内容是解析几何成果中最基础的部分,一般是隐含在综合题中进行考查.典型例题【分析】【解】【点评】【分析】【解】【点评】【解法一】代数方法:套两点斜率公式.【解法二】【点评】“解析几何的特点之一是数形结合,数无形时少直观,形无数时难入微.”在学习数学时,应该记住华罗庚的这段话.教材上还涉及证明三点共线的练习题,怎样证明三点共线呢?请看下面例4.【分析】证明三点共线,可以用代数方法、几何方法,可以用直接证法、间接证法,你能想出至少一个方法吗?下面是同学们讨论出的几种证法供参考.【证法一】【证法二】【证法三】第二节直线的方程学习目标掌握直线方程的点斜式、两点式、参数式、一般式,并能根据条件熟练地求出直线的方程式.重点难点本节重点:直线方程的点斜式和一般式,点斜式是推导直线方程其他形式的基础,一般式是直线方程统一的表述形式.本节难点:灵活运用直线方程的各种形式解题.在高考中几乎每年都要考查这部分内容,题型以选择题、填空题居多.典型例题【分析】关键是确定直线方程中的待定系数.【解】【点评】学习直线的方程常犯的错误是忽略方程各种形式的应用条件,因此造成丢解.本例中各个小题均为两解,你做对了吗?第(4)小题的解法一要用到下节学到的公式,解法二用到课外知识,供有兴趣的同学欣赏.【解法一】【解法二】【解法三】【点评】灵活运用直线方程的各种形式,常常要和平面几何的有关知识相结合.本题还有别的解法,不再一一列举.【解法一】【解法二】【解法三】【证明】【点评】【分析】【解法一】【解法二】【解法三】【点评】第三节两条直线的位置关系学习目标1.掌握两条直线平行与垂直的条件,以及两条直线的夹角和点到直线的距离公式.2.能够根据直线的方程判断两条直线的位置关系.重点难点本节重点:两条直线平行与垂直的条件,点到直线的距离公式.本节难点:了解解析几何的基本思想,并用解析几何方法研究角.在高考中,两条直线的位置关系几乎年年必考,常常单独出现在选择题和填空题中,或作为综合题的一部分出现在解答题中.典型例题学习了本节以后,应该对两条直线平行与垂直的充要条件,怎样求直线的斜率、距离与角有哪些公式等问题进行归纳小结,以便提纲挈领地掌握有关知识,并灵活运用这些知识解决问题.1.两条直线平行、垂直的充要条件是什么?答:2.怎样求直线的斜率?答:3.距离和角有哪些公式?能灵活运用吗?答:【解】用下面的例题检验是否理解和掌握了以上这些内容.1.两条直线的位置关系【解】2.两条直线所成的角【解】【解法一】【解法二】3.有关交点的问题(A)1 (B)2 (C)3 (D)4【解法一】【解】【解法二】4.点到直线的距离【错误的解】【正确的解】【解法一】【解法二】【解法三】【解法四】第四节简单的线性规划学习目标1.了解用二元一次不等式表示平面区域.2.了解线性规划的意义,并会简单的应用.重点难点典型例题学习了简单的线性规划以后,常见的题型是用二元一次不等式表示平面区域,以及用线性规划的知识来解决一些简单的问题.下面的例题可检验是否掌握了这些内容.1.二元一次不等式表示的区域【分析】【解】【点评】例2 试讨论点线距离公式中,去掉绝对值符号的规律?【分析】【解】【点评】2.线性规划初步例3钢管长11.1米,需要截下1.5米和2.5米两种不同长度的小钢管,问如何截取可使残料最少?【分析】关键是利用约束条件,列出线性目标函数.【解】【评析】例4 用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有().(A)5种(B)6种(C)7种(D)8种【解法一】【解法二】【解法三】列表数点.故选(C).【点评】本题为1999年全国高考试题第14题,难度系数0.47.如果有利用二元一次不等式表示平面区域的知识,此题将不再困难.【分析】甲的解法错误,错在(1)、(2)(3)、(4),反之不行,用必要不充分条件代替原条件,使解的范围扩大,[6,10]是[5,11]的子集.乙的解法正确.本题数形结合,利用本节的知识还可以有以下的解法.【解】【点评】第六节曲线和方程学习目标1.掌握曲线的方程、方程的曲线等概念.2.了解解析几何的基本思想和解析法,学习运动变化、对立统一等辩证唯物主义思想.重点难点本节重点:了解曲线的点集与方程的解集之间的一一对应关系,从而掌握曲线的方程和方程的曲线这两个重要概念,并掌握由曲线的已知条件求方程的方法和步骤,熟悉解析法.本节难点:理解曲线和方程的概念,以及求曲线的方程的方法.在高考中,曲线和方程常是重点考查的内容,出现在解答题中.典型例题学习了本节后主要要掌握求曲线的方程的步骤,以及用解析法解题的步骤,以下归纳供参考.求曲线的方程的步骤是:一建--选取适当的点和直线,建立坐标系;二设--设曲线上点,以及利用已知条件设出其他有关点的坐标等;三列式--根据动点符合的条件,列出含、的方程0;四化简--化方程0为最简形式;五证明--证曲线上点的坐标都是方程的解,以这个方程的解为坐标的点都在曲线上(这一步不要求写出).解析法的主要步骤是:一建--建立适当的坐标系.建系原则是使已知条件好用,使表达式简明,运算简便.因此,尽量利用已知点和已知直线;二设--选取一组基本量,用字母表示出题目涉及的点的坐标和曲线的方程;三算--通过运算,得到所要的结果.用以下例题检验是否理解和掌握了这些内容.1.怎样求轨迹方程【解法一】【解法二】【点评】【错误解法】【正确解法】【点评】【解法一】【解法二】【点评】2.解析法与综合法【证法一】【证法二】【证法三】【证法四】【点评】不同证法,以解析法较简便,复数将在高三年级学习,这里的证法实质和解析法一样,不过是换个说法.【分析】【解】【点评】解析法与综合法的特点,从中你体会到了吗?解析法的优点是程序固定(一建二设三算),操作简便,但一般运算量较大;综合法的优点是思路灵活,但如何添加辅助线不易掌握.【解法一】【解法二】【解法三】【解法四】【点评】“是否可以用代数中的计算过程代替几何中的证明?”“让代数和几何中一切最好的东西互相取长补短”等是笛卡儿创立解析几何的初衷.解析几何既然是用代数方法来研究几何对象的特征和性质,当然对运算能力要求较高.运算能力是一种计算化了的推理能力,是逻辑思维能力与计算知识、方法、技能和技巧的结合.在解析几何中,如果不注意运算方法上的特点和技能,就可能陷入有思路但算不出或很难算出正确结果的窘境,如本题的思路一、二.解析几何中常用的运算方法和技能是:①注意利用平面几何知识,如思路四;②不忘利用定义,尤其是圆锥曲线的定义解题;③充分利用一元二次方程根与系数的关系,并不忘对判别式的要求,如思路三;④合理利用曲线系;⑤数形结合,依形判数,就数论形;⑥灵活运用字母的可轮换性,减少同类量的重复运算.以上方法和技能,要在实际解题中逐步掌握.第七节圆的方程学习目标1.掌握圆的标准方程和一般方程,理解圆的参数方程.2.初步了解直线和圆中反映出的运动变化、对立统一等辩证思想和观点.重点难点本节重点:圆的标准方程、一般方程、参数方程及其相互转化.本节难点:直线和圆的综合运用.在高考中,圆的方程在选择题、填空题、解答题等各类题型中出现.本节要掌握三种类型的问题,之一是求圆的方程,之二是直线和圆的综合题,之三是应用直线和圆的知识解决一些问题.1.圆的方程有哪些形式?典型例题用下面的例题检验是否理解和掌握了圆的方程的三种形式:【解法一】【解法二】【解法三】【点评】怎样求圆的方程?这三条思路具有典型意义.【解法一】【解法二】【点评】【解法一】【解法二】【点评】【分析】关键确定圆心坐标和半径.【解】【点评】本题为1997年全国高考理科第25题,难度系数0.20.难在什么地方呢?第一文字叙述较长,有同学读不懂题;第二涉及众多知识,有同学不会运用;第三丢解,忽略了不同的位置关系.会不会用知识和怎样用知识,是一个人有没有能力和能力高低的重要标志,努力吧!2.直线和圆综合题【分析】【解】【点评】【解法一】【解法二】【分析】【点评】【解】【点评】【解法一】【解法二】【点评】分类是自然科学的基本方法,数学中的分类讨论的思想方法,就是依据数学对象的共同点和差异点,将其区分为不同种类,分类讨论并归纳结论,这一思想方法,在近代数学和现代数学中占有重要地位,是应该学习和掌握的重要思想方法.3.怎样利用直线和圆的知识解题?【分析】数形结合,将代数式或方程赋予几何意义.【解】【点评】从“数”中认识“形”,从“形”中认识“数”,数形结合相互转化,是数学思维的基本方法之一.“数学是一个有机的统一体,它的生命力的一个必要条件是所有的各个部分不可分离地结合.”(希尔伯特)数形结合的思维能力不仅是中学生的数学能力、数学素养的主要标志之一,而且也是学习高等数学和现代数学的基本能力.本题是利用直线和圆的知识求最值的典型题目.【解法一】【解法二】【解法三】【点评】。
圆的方程课件-2025届高三数学一轮复习
![圆的方程课件-2025届高三数学一轮复习](https://img.taocdn.com/s3/m/438a9743974bcf84b9d528ea81c758f5f71f2973.png)
解析:由题设知 = , = , = ,所以
< < ,要使,,三点中的一个点在圆内,一个点在圆上,
一个点在圆外,所以圆以 为半径,故圆的方程为
−
+ + ��
= .
求圆的方程的两种方法
1.(多选)(2024·重庆模拟)设圆的方程是 −
= ,故 = − −
⋅ = − −
+ −
+ ,所以
+ + − = − .由圆的方程
= ,易知 ≤ ≤ ,所以,当 = 时, ⋅ 的值最大,
最大值为 × − = .
建立函数关系式求最值
所以点到两点的距离相等且为半径,
所以
−
+ −
=
+ −
= ,
即 − + + − + = ,解得 = ,
所以 , − , = ,
所以⊙ 的方程为 −
+ +
= .
方法三:设点 , , , ,⊙ 的半径为,则 =
10
则 + 的最大值为____.
2.设点 , 是圆 −
解析:由题意知 = −, − , = −, − − ,
所以 + = −, − ,由于点 , 是圆上的点,故其坐标满足方
程 −
+ = ,
故 = − −
−
+ = ,即表示以点 , 为圆心, 为半径
的圆.
2024年高考数学一轮复习(新高考版)《圆的方程》课件ppt
![2024年高考数学一轮复习(新高考版)《圆的方程》课件ppt](https://img.taocdn.com/s3/m/cd2bb72fe418964bcf84b9d528ea81c759f52e7d.png)
设动点P的坐标为(x,y), 因为 M(1,0),N(2,0),且|PN|= 2|PM|, 所以 x-22+y2= 2· x-12+y2,
整理得x2+y2=2, 所以动点P的轨迹C的方程为x2+y2=2.
(2)已知点B(6,0),点A在轨迹C上运动,求线段AB上靠近点B的三等分点Q 的轨迹方程.
(3)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B
=0,D2+E2-4AF>0.( √ )
(4)若点 M(x0,y0)在圆 x2+y2+Dx+Ey+F=0 外,则 x20+y20+Dx0+Ey0+
F>0.( √ )
教材改编题
1.圆心为(1,1)且过原点的圆的方程是 A.(x-1)2+(y-1)2=1 B.(x+1)2+(y+1)2=1 C.(x+1)2+(y+1)2=2
若过(0,0),(4,0),(4,2),
F=0,
则16+4D+F=0, 16+4+4D+2E+F=0,
F=0,
解得D=-4, E=-2,
满足 D2+E2-4F>0,
所以圆的方程为x2+y2-4x-2y=0,
即(x-2)2+(y-1)2=5;
若过(0,0),(4,2),(-1,1),
F=0,
则1+1-D+E+F=0, 16+4+4D+2E+F=0,
方法二 设 AB 的中点为 D,由中点坐标公式得 D(1,0),由直角三角 形的性质知|CD|=12|AB|=2.由圆的定义知,动点 C 的轨迹是以 D(1,0) 为圆心,2 为半径的圆(由于 A,B,C 三点不共线,所以应除去与 x 轴 的交点). 所以直角顶点C的轨迹方程为(x-1)2+y2=4(y≠0).
设圆心坐标为(a,-2a+3),则圆的半径 r= a-02+-2a+3-02
高考数学(理科)一轮复习圆的方程学案(附答案)
![高考数学(理科)一轮复习圆的方程学案(附答案)](https://img.taocdn.com/s3/m/7f6a444ba98271fe910ef981.png)
高考数学(理科)一轮复习圆的方程学案(附答案)学案49圆的方程导学目标:1.掌握确定圆的几何要素.2.掌握圆的标准方程与一般方程.3.初步了解用代数方法处理几何问题的思想.自主梳理1.圆的定义在平面内,到________的距离等于________的点的________叫圆.2.确定一个圆最基本的要素是________和________.3.圆的标准方程(x-a)2+(y-b)2=r2(r>0),其中________为圆心,____为半径.4.圆的一般方程x2+y2+Dx+Ey+F=0表示圆的充要条件是__________________,其中圆心为___________________,半径r=____________________________.5.确定圆的方程的方法和步骤确定圆的方程主要方法是待定系数法,大致步骤为:(1)__________________________________________________________ ______________;(2)__________________________________________________________ ______________;(3)________________________________________________________________________.6.点与圆的位置关系点和圆的位置关系有三种.圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0),(1)点在圆上:(x0-a)2+(y0-b)2____r2;(2)点在圆外:(x0-a)2+(y0-b)2____r2;(3)点在圆内:(x0-a)2+(y0-b)2____r2.自我检测1.方程x2+y2+4mx-2y+5m=0表示圆的条件是()A.141C.m12.(2011•南平调研)圆心在y轴上,半径为1,且过点(1,2)的圆的方程是()A.x2+(y-2)2=1B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1D.x2+(y-3)2=13.点P(2,-1)为圆(x-1)2+y2=25的弦AB的中点,则直线AB的方程是()A.x-y-3=0B.2x+y-3=0C.x+y-1=0D.2x-y-5=04.已知点(0,0)在圆:x2+y2+ax+ay+2a2+a-1=0外,则a的取值范围是________________.5.(2011•安庆月考)过圆x2+y2=4外一点P(4,2)作圆的切线,切点为A、B,则△APB的外接圆方程为________.探究点一求圆的方程例1求经过点A(-2,-4),且与直线l:x+3y-26=0相切于点B(8,6)的圆的方程.变式迁移1根据下列条件,求圆的方程.(1)与圆O:x2+y2=4相外切于点P(-1,3),且半径为4的圆的方程;(2)圆心在原点且圆周被直线3x+4y+15=0分成1∶2两部分的圆的方程.探究点二圆的几何性质的应用例2(2011•滁州模拟)已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P,Q两点,且OP⊥OQ(O为坐标原点),求该圆的圆心坐标及半径.变式迁移2如图,已知圆心坐标为(3,1)的圆M与x轴及直线y=3x分别相切于A、B两点,另一圆N与圆M外切且与x轴及直线y=3x分别相切于C、D 两点.(1)求圆M和圆N的方程;(2)过点B作直线MN的平行线l,求直线l被圆N截得的弦的长度.探究点三与圆有关的最值问题例3已知实数x、y满足方程x2+y2-4x+1=0.(1)求y-x的最大值和最小值;(2)求x2+y2的最大值和最小值.变式迁移3如果实数x,y满足方程(x-3)2+(y-3)2=6,求yx的最大值与最小值.1.求圆的标准方程就是求出圆心的坐标与圆的半径,借助弦心距、弦、半径之间的关系计算可大大简化计算的过程与难度.2.点与圆的位置关系有三种情形:点在圆内、点在圆上、点在圆外,其判断方法是看点到圆心的距离d与圆半径r的关系.dr时,点在圆外.3.本节主要的数学思想方法有:数形结合思想、方程思想.(满分:75分)一、选择题(每小题5分,共25分)1.(2011•重庆)在圆x2+y2-2x-6y=0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.52B.102C.152D.2022.(2011•合肥期末)方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a的取值范围是()A.a23B.-23C.-23.圆x2+y2+2x-4y+1=0关于直线2ax-by+2=0(a、b∈R)对称,则ab的取值范围是()A.-∞,14B.0,14C.-14,0D.-∞,144.已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x +y-1=0的对称点也在圆C上,则实数a,b的值为()A.a=-3,b=3B.a=0,b=-3C.a=-1,b=-1D.a=-2,b=15.(2011•三明模拟)已知两点A(-2,0),B(0,2),点C是圆x2+y2-2x =0上任意一点,则△ABC面积的最小值是()A.3-2B.3+2C.3-22D.3-22二、填空题(每小题4分,共12分)6.(2010•天津)已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为________________.7.圆心在直线2x-3y-1=0上的圆与x轴交于A(1,0)、B(3,0)两点,则圆的方程为______________.8.设直线ax-y+3=0与圆(x-1)2+(y-2)2=4相交于A、B两点,且弦AB的长为23,则a=________.三、解答题(共38分)9.(12分)根据下列条件,求圆的方程:(1)经过A(6,5)、B(0,1)两点,并且圆心C在直线3x+10y+9=0上;(2)经过P(-2,4)、Q(3,-1)两点,并且在x轴上截得的弦长等于6. 10.(12分)(2011•舟山模拟)已知点(x,y)在圆(x-2)2+(y+3)2=1上.(1)求x+y的最大值和最小值;(2)求yx的最大值和最小值;(3)求x2+y2+2x-4y+5的最大值和最小值.11.(14分)如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度|AB|=20米,拱高|OP|=4米,每隔4米需用一支柱支撑,求支柱A2P2的高度(精确到0.01米)(825≈28.72).学案49圆的方程自主梳理1.定点定长集合2.圆心半径3.(a,b)r4.D2+E2-4F>0-D2,-E2D2+E2-4F25.(1)根据题意,选择标准方程或一般方程(2)根据条件列出关于a,b,r或D、E、F的方程组(3)解出a、b、r或D、E、F,代入标准方程或一般方程6.(1)=(2)>(3)自我检测1.D2.A3.A4.(-1-73,-1)∪(12,-1+73)5.(x-2)2+(y-1)2=5课堂活动区例1解题导引(1)一可以利用圆的一般式方程,通过转化三个独立条件,得到有关三个待定字母的关系式求解;二可以利用圆的方程的标准形式,由条件确定圆心和半径.(2)一般地,求圆的方程时,当条件中给出的是圆上若干点的坐标,较适合用一般式,通过解三元方程组求待定系数;当条件中给出的是圆心坐标或圆心在某直线上、圆的切线方程、圆的弦长等条件,适合用标准式.解方法一设圆心为C,所求圆的方程为x2+y2+Dx+Ey+F=0,则圆心C-D2,-E2.∴kCB=6+E28+D2.由kCB•kl=-1,∴6+E28+D2•-13=-1.①又有(-2)2+(-4)2-2D-4E+F=0,②又82+62+8D+6E+F=0.③解①②③,可得D=-11,E=3,F=-30.∴所求圆的方程为x2+y2-11x+3y-30=0.方法二设圆的圆心为C,则CB⊥l,从而可得CB所在直线的方程为y -6=3(x-8),即3x-y-18=0.①由A(-2,-4),B(8,6),得AB的中点坐标为(3,1).又kAB=6+48+2=1,∴AB的垂直平分线的方程为y-1=-(x-3),即x+y-4=0.②由①②联立后,解得x=112,y=-32.即圆心坐标为112,-32.∴所求圆的半径r=112-82+-32-62=1252.∴所求圆的方程为x-1122+y+322=1252.变式迁移1解(1)设所求圆的圆心Q的坐标为(a,b),圆Q的方程为(x -a)2+(y-b)2=42,又∵OQ=6,∴联立方程-+-=-1-+-=16,解得a=-3,b=33,所以所求圆的方程为(x+3)2+(y-33)2=16.(2)如图,因为圆周被直线3x+4y+15=0分成1∶2两部分,所以∠AOB =120°,而圆心(0,0)到直线3x+4y+15=0的距离d=1532+42=3,在△AOB中,可求得OA=6.所以所求圆的方程为x2+y2=36.例2解题导引(1)在解决与圆有关的问题中,借助于圆的几何性质,往往会使得思路简捷明了,简化思路,简便运算.(2)本题利用方程思想求m值,即“列出m的方程”求m值.解方法一将x=3-2y,代入方程x2+y2+x-6y+m=0,得5y2-20y+12+m=0.设P(x1,y1),Q(x2,y2),则y1、y2满足条件:y1+y2=4,y1y2=12+m5.∵OP⊥OQ,∴x1x2+y1y2=0.而x1=3-2y1,x2=3-2y2.∴x1x2=9-6(y1+y2)+4y1y2.∴9-6(y1+y2)+5y1y2=0,∴9-6×4+5×12+m5=0,∴m=3,此时1+36-3×4>0,圆心坐标为-12,3,半径r=52.方法二如图所示,设弦PQ中点为M,∵O1M⊥PQ,∴kO1M=2.又圆心坐标为-12,3,∴O1M的方程为y-3=2x+12,即y=2x+4.由方程组y=2x+4,x+2y-3=0,解得M的坐标为(-1,2).则以PQ为直径的圆可设为(x+1)2+(y-2)2=r2.∵OP⊥OQ,∴点O在以PQ为直径的圆上.∴(0+1)2+(0-2)2=r2,即r2=5,MQ2=r2.在Rt△O1MQ中,O1M2+MQ2=O1Q2.∴-12+12+(3-2)2+5=1+--4m4.∴m=3.∴半径为52,圆心为-12,3.变式迁移2解(1)∵M的坐标为(3,1),∴M到x轴的距离为1,即圆M 的半径为1,则圆M的方程为(x-3)2+(y-1)2=1.设圆N的半径为r,连接MA,NC,OM,则MA⊥x轴,NC⊥x轴,由题意知:M,N点都在∠COD的平分线上,∴O,M,N三点共线.由Rt△OAM∽Rt△OCN可知,|OM|∶|ON|=|MA|∶|NC|,即23+r=1r⇒r=3,则OC=33,则圆N的方程为(x-33)2+(y-3)2=9.(2)由对称性可知,所求的弦长等于过A点与MN平行的直线被圆N截得的弦的长度,此弦的方程是y=33(x-3),即x-3y-3=0,圆心N到该直线的距离d=32,则弦长为2r2-d2=33.例3解题导引与圆有关的最值问题,常见的有以下几种类型:(1)形如μ=y-bx-a形式的最值问题,可转化为动直线斜率的最值问题;(2)形如t=ax+by形式的最值问题,可转化为动直线截距的最值问题;(3)形如(x-a)2+(y-b)2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.解(1)y-x可看作是直线y=x+b在y轴上的截距,当直线y=x+b与圆相切时,纵截距b取得最大值或最小值,此时|2-0+b|2=3,解得b=-2±6.所以y-x的最大值为-2+6,最小值为-2-6.(2)x2+y2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点与圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为-+-=2,所以x2+y2的最大值是(2+3)2=7+43,x2+y2的最小值是(2-3)2=7-43.变式迁移3解设P(x,y),则P点的轨迹就是已知圆C:(x-3)2+(y-3)2=6.而yx的几何意义就是直线OP的斜率,设yx=k,则直线OP的方程为y=kx.当直线OP与圆相切时,斜率取最值.因为点C到直线y=kx的距离d=|3k-3|k2+1,所以当|3k-3|k2+1=6,即k=3±22时,直线OP与圆相切.即yx的最大值为3+22,最小值为3-22.课后练习区1.B圆的方程化为标准形式为(x-1)2+(y-3)2=10,由圆的性质可知最长弦|AC|=210,最短弦BD恰以E(0,1)为中心,设点F为其圆心,坐标为(1,3).故EF=5,∴BD=210-=25,∴S四边形ABCD=12AC•BD=102.]2.D3.A4.B5.A6.(x+1)2+y2=27.(x-2)2+(y-1)2=28.09.解(1)∵AB的中垂线方程为3x+2y-15=0,由3x+2y-15=0,3x+10y+9=0,解得x=7,y=-3.(3分)∴圆心为C(7,-3).又|CB|=65,故所求圆的方程为(x-7)2+(y+3)2=65.(6分)(2)设圆的方程为x2+y2+Dx+Ey+F=0,将P、Q点的坐标分别代入得2D-4E-F=20,3D-E+F=-10.①②(8分)又令y=0,得x2+Dx+F=0,③由|x1-x2|=6有D2-4F=36.④由①②④解得D=-2,E=-4,F=-8或D=-6,E=-8,F=0. 故所求圆的方程为x2+y2-2x-4y-8=0,或x2+y2-6x-8y=0.(12分)10.解(1)设t=x+y,则y=-x+t,t可视为直线y=-x+t的纵截距,所以x+y的最大值和最小值就是直线与圆有公共点时直线纵截距的最大值和最小值,即直线与圆相切时的纵截距.由直线与圆相切,得圆心到直线的距离等于半径,即|2+--t|2=1,解得t=2-1或t=-2-1,所以x+y的最大值为2-1,最小值为-2-1.(4分)(2)yx可视为点(x,y)与原点连线的斜率,yx的最大值和最小值就是过原点的直线与该圆有公共点时斜率的最大值和最小值,即直线与圆相切时的斜率.设过原点的直线方程为y=kx,由直线与圆相切,得圆心到直线的距离等于半径,即|2k--+k2=1,解得k=-2+233或k=-2-233,所以yx的最大值为-2+233,最小值为-2-233.(8分)(3)x2+y2+2x-4y+5,即x--+-,其最值可视为点(x,y)到定点(-1,2)的距离的最值,可转化为圆心(2,-3)到定点(-1,2)的距离与半径的和或差.又因为圆心到定点(-1,2)的距离为34,所以x2+y2+2x-4y+5的最大值为34+1,最小值为34-1.(12分)11.解建立如图所示的坐标系,设该圆拱所在圆的方程为x2+y2+Dx +Ey+F=0,由于圆心在y轴上,所以D=0,那么方程即为x2+y2+Ey+F=0.(3分)下面用待定系数法来确定E、F的值.因为P、B都在圆上,所以它们的坐标(0,4)、(10,0)都是这个圆的方程的解,于是有方程组42+4E+F=0,102+F=0,(7分)解得F=-100,E=21.∴这个圆的方程是x2+y2+21y-100=0.(10分) 把点P2的横坐标x=-2代入这个圆的方程,得(-2)2+y2+21y-100=0,y2+21y-96=0. ∵P2的纵坐标y>0,故应取正值,∴y=-21+212+4×962≈3.86(米).所以支柱A2P2的高度约为3.86米.(14分)。
圆的方程课件-2025届高三数学一轮复习
![圆的方程课件-2025届高三数学一轮复习](https://img.taocdn.com/s3/m/6a44a874b5daa58da0116c175f0e7cd184251892.png)
方法技巧
求与圆有关的轨迹问题的几种方法
1. 直接法:当题目条件中含有与该点有关的等式时,可设出该点的坐标,用坐标表
示等式,直接求解轨迹方程.
2. 定义法:当题目条件符合圆的定义时,可直接利用定义确定其圆心和半径,写出
圆的方程.
3. 相关点代入法:当题目条件中已知某动点的轨迹方程,而要求的点与该动点有关
或 m =2.(二次项系数相等)
当 m =-1时,原方程为 x 2+ y 2+8 x +4 y -5=0,(二次项系数化为1后再使用公式)
即( x +4)2+( y +2)2=25.
5
2
2
当 m =2时,原方程可化为 x + y +2 x + y + =0,
2
1
2
5
4
即( x +1)2+( y + )2=- ,不是圆的方程,∴ m =2不合题意.综上, m 的值为-1.
r ,设 M 的坐标为( x 0, y 0).
常用结论
向量法判断点与圆的位置关系
若点 P 是以 AB 为直径的圆 O 所在平面内的一点,则
· >0⇔点 P 在圆 O 外;
· =0⇔点 P 在圆 O 上;
· <0⇔点 P 在圆 O 内.
二、基础题练习
1. [2022北京高考]若直线2 x + y -1=0是圆( x - a )2 + y 2=1的一条对称轴,则 a =
则线段 AB 的中点 P 的轨迹方程为
[解析]
( x -3)2+( y -3)2=1 .
设点 P 的坐标为( x , y ),点 A 的坐标为( x 0 , y 0 ),由于点 B 的坐标
为(8,6),且 P 为线段 AB 的中点,∴ x =
2020高考数学理科大一轮复习导学案《圆的方程》(含答案)
![2020高考数学理科大一轮复习导学案《圆的方程》(含答案)](https://img.taocdn.com/s3/m/b337254258fb770bf78a55da.png)
第三节圆的方程知识点一 圆的方程 1.圆的定义在平面内,到定点的距离等于定长的点的集合叫圆. 2.圆的标准方程(x -a )2+(y -b )2=r 2(r >0),其中(a ,b )为圆心,r 为半径. 3.圆的一般方程x 2+y 2+Dx +Ey +F =0表示圆的充要条件是D 2+E 2-4F >0,其中圆心为(-D 2,-E 2),半径为12D 2+E 2-4F .1.圆x 2+y 2-4x +6y =0的圆心坐标是( D ) A .(2,3) B .(-2,3) C .(-2,-3)D .(2,-3)解析:圆的方程可化为(x -2)2+(y +3)2=13,所以圆心坐标是(2,-3).2.方程x 2+y 2+x +y -m =0表示一个圆,则m 的取值范围是( A )A.⎝⎛⎭⎪⎫-12,+∞ B.⎝⎛⎭⎪⎫-∞,-12C.⎝ ⎛⎦⎥⎤-∞,-12 D.⎣⎢⎡⎭⎪⎫-12,+∞ 解析:由题1+1+4m >0,所以m >-12.故选A.3.过点A (1,-1),B (-1,1),且圆心在直线x +y -2=0上的圆的方程为( C )A .(x -3)2+(y +1)2=4B .(x +3)2+(y -1)2=4C .(x -1)2+(y -1)2=4D .(x +1)2+(y +1)2=4解析:设圆心C 的坐标为(a ,b ),半径为r ,因为圆心C 在直线x +y -2=0上,所以b =2-a .因为|CA |2=|CB |2,所以(a -1)2+(2-a +1)2=(a +1)2+(2-a -1)2.所以a =1,b =1.所以r =2.所以圆的方程为(x -1)2+(y -1)2=4. 知识点二 点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系 1.若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. 2.若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. 3.若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2.4.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是(-1,1).解析:由条件知(1-a)2+(1+a)2<4,即2+2a2<4.∴a2<1.即-1<a<1.1.确定圆的方程的方法和步骤确定圆的方程主要方法是待定系数法,大致步骤:(1)根据题意,选择标准方程或一般方程.(2)根据条件列出关于a,b,r或D,E,F的方程组.(3)解出a,b,r或D,E,F代入标准方程或一般方程.2.点与圆的位置关系点和圆的位置关系有三种.已知圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0)(1)点在圆上:(x0-a)2+(y0-b)2=r2;(2)点在圆外:(x0-a)2+(y0-b)2>r2;(3)点在圆内:(x0-a)2+(y0-b)2<r2.考向一求圆的方程【例1】 (1)(2019·广东珠海四校联考)已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的标准方程为( )A .(x +1)2+(y -1)2=2B .(x -1)2+(y +1)2=2C .(x -1)2+(y -1)2=2D .(x +1)2+(y +1)2=2(2)(2018·天津卷)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________.【解析】 (1)由题意设圆心坐标为(a ,-a ),则有|a -(-a )|2=|a -(-a )-4|2,即|a |=|a -2|,解得a =1.故圆心坐标为(1,-1),半径r =22=2,所以圆C 的标准方程为(x -1)2+(y +1)2=2.故选B.(2)解法1:设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则⎩⎪⎨⎪⎧F =0,1+1+D +E +F =0,4+2D +F =0,解得D =-2,E =0,F =0,即圆的方程为x 2+y 2-2x =0.解法2:记A (0,0),B (2,0),C (1,1),连接AB ,由圆过点A (0,0),B (2,0),知AB 的垂直平分线x =1必过圆心.连接BC ,又圆过点C (1,1),BC 的中点为(32,12),BC 所在直线的斜率k BC =-1,所以BC 的垂直平分线为直线y=x -1,联立,得⎩⎪⎨⎪⎧y =x -1,x =1,得圆心的坐标为(1,0),半径为1,故圆的方程为(x -1)2+y 2=1,即x 2+y 2-2x =0.【答案】 (1)B (2)x 2+y 2-2x =0一般来说,求圆的方程有两种方法:(1)几何法,通过已知条件及圆的性质求出圆的基本量;(2)代数法,即设出圆的方程,用待定系数法求解.应用待定系数法求圆的方程时,如果由已知条件易求得圆心坐标和半径,常设为圆的标准方程求解;如果已知条件与圆心坐标、半径无直接关系,常设为圆的一般方程进行求解.(1)若圆C 过点(0,-1),(0,5),且圆心到直线x -y -2=0的距离为22,则圆C 的标准方程为x 2+(y -2)2=9或(x -8)2+(y -2)2=73.(2)过点(0,2)且与两坐标轴相切的圆的标准方程为(x -2)2+(y -2)2=4或(x +2)2+(y -2)2=4.解析:(1)依题意,设圆心的坐标为(a,2),圆C 的方程为(x -a )2+(y -2)2=r 2(r >0),则⎩⎪⎨⎪⎧a 2+9=r 2,|a -4|2=22,解得⎩⎪⎨⎪⎧ a =0,r =3或⎩⎪⎨⎪⎧a =8,r =73,故圆C 的方程为x 2+(y -2)2=9或(x -8)2+(y -2)2=73.(2)由题意可得所求圆的圆心在第一象限或第二象限,当圆心在第一象限时,圆心为(2,2),半径为2,故圆的方程为(x -2)2+(y -2)2=4.当圆心在第二象限时,圆心为(-2,2),半径为2,故圆的方程为(x +2)2+(y -2)2=4.考向二 与圆有关的最值问题 方向1 与基本不等式有关的最值【例2】 圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,则1a +3b 的最小值是( )A .2 3B.203 C .4D.163【解析】 由圆x 2+y 2+2x -6y +1=0知其标准方程为(x +1)2+(y -3)2=9,∵圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,∴该直线经过圆心(-1,3),即-a -3b +3=0,∴a +3b =3(a >0,b >0),∴1a +3b =13(a +3b )1a +3b =13⎝ ⎛⎭⎪⎫1+3a b +3b a +9≥1310+23a b ·3b a =163,当且仅当3b a =3ab ,即a =b 时取等号,故选D. 【答案】 D方向2 与距离有关的最值【例3】 (2018·全国卷Ⅲ)直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是( )A .[2,6]B .[4,8]C .[2,32]D .[22,32]【解析】 圆心(2,0)到直线的距离d =|2+0+2|2=22,所以点P 到直线的距离d 1∈[2,32].根据直线的方程可知A ,B 两点的坐标分别为A (-2,0),B (0,-2),所以|AB |=22,所以△ABP 的面积S =12|AB |d 1=2d 1.因为d 1∈[2,32],所以S ∈[2,6],即△ABP 面积的取值范围是[2,6].【答案】 A方向3 与斜率有关的最值【例4】 已知实数x ,y 满足方程x 2+y 2-4x +1=0,求yx 的最大值和最小值.【解】 原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆.y x 的几何意义是圆上一点与原点连线的斜率,所以设yx =k ,即y =kx . 当直线y =kx 与圆相切时(如图),斜率k 取最大值或最小值,此时|2k -0|k 2+1=3,解得k =±3.所以yx 的最大值为3,最小值为- 3.与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -bx -a 型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离的平方的最值问题.1.(方向1)已知圆C 1:x 2+y 2=4和圆C 2:(x -2)2+(y -2)2=4,若点P (a ,b )(a >0,b >0)在两圆的公共弦上,则1a +9b 的最小值为8.解析:由题意将两圆的方程相减,可得公共弦方程为x +y =2.点P (a ,b )(a >0,b >0)在两圆的公共弦上,∴a +b =2,∴1a +9b =12⎝ ⎛⎭⎪⎫1a +9b (a +b )=1210+b a +9a b ≥12×(10+6)=8,当且仅当b a =9a b ,即b =3a 时取等号,所以1a +9b 的最小值为8.2.(方向2)(2018·北京卷)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x -my -2=0的距离.当θ,m 变化时,d 的最大值为( C )A .1B .2C .3D .4解析:解法1:由已知得点P 在圆x 2+y 2=1上运动,d 的最大值为圆心(0,0)到直线x -my -2=0的距离与圆x 2+y 2=1的半径之和,即d max =21+m 2+1≤3(当且仅当m =0时取“=”).∴当θ,m 变化时d 的最大值为3.解法2:由题意可得d =|cos θ-m sin θ-2|m 2+1=|m sin θ-cos θ+2|m 2+1=|m 2+1(m m 2+1sin θ-1m 2+1cos θ)+2|m 2+1=|m 2+1sin (θ-φ)+2|m 2+1(其中cos φ=m m 2+1,sin φ=1m 2+1),∵-1≤sin(θ-φ)≤1,∴|2-m 2+1|m 2+1≤d ≤m 2+1+2m 2+1,m 2+1+2m 2+1=1+2m 2+1,∴当m =0时,d 取最大值3,故选C. 3.(方向3)若实数x ,y 满足x 2+y 2-2x -2y +1=0,则y -4x -2的取值范围为( B )A.⎣⎢⎡⎦⎥⎤0,43B.⎣⎢⎡⎭⎪⎫43,+∞ C.⎝ ⎛⎦⎥⎤-∞,-43 D.⎣⎢⎡⎭⎪⎫-43,0 解析:将原方程,整理得(x -1)2+(y -1)2=1,y -4x -2表示的是圆上的点和点(2,4)之间的连线的斜率,设y -4x -2=k ,即kx -y -2k +4=0,则由|k -1-2k +4|1+k2≤1,解得k ≥43,故选B. 考向三 与圆有关的轨迹问题【例5】 已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q为圆上的动点.(1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.【解】(1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).因为P点在圆x2+y2=4上,所以(2x-2)2+(2y)2=4.故线段AP中点的轨迹方程为(x-1)2+y2=1.(2)设PQ的中点为N(x,y).在Rt△PBQ中,|PN|=|BN|.设O为坐标原点,连接ON,则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,所以x2+y2+(x-1)2+(y-1)2=4.故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.求与圆有关的轨迹方程时,常用以下方法(1)直接法:根据题设条件直接列出方程;(2)定义法:根据圆的定义写出方程;(3)几何法:利用圆的性质列方程;(4)代入法:找出要求点与已知点的关系,代入已知点满足的关系式.(1)自圆C :(x -3)2+(y +4)2=4外一点P (x ,y )引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的距离,则点P 的轨迹方程为( D )A .8x -6y -21=0B .8x +6y -21=0C .6x +8y -21=0D .6x -8y -21=0(2)已知点A (1,0)和圆C :x 2+y 2=4上一点P ,动点Q 满足P A →=2AQ →,则点Q 的轨迹方程为( D )A.⎝⎛⎭⎪⎫x +322+y 2=1 B .x 2+⎝ ⎛⎭⎪⎫y +322=1 C .x 2+⎝ ⎛⎭⎪⎫y -322=1 D.⎝ ⎛⎭⎪⎫x -322+y 2=1 解析:(1)由题意得|PC |2-22=|PO |,所以(x -3)2+(y +4)2-4=x 2+y 2,即6x -8y -21=0,故选D.(2)设Q (x ,y ),P (x 0,y 0),由P A →=2AQ →,得x 0=-2x +3,y 0=-2y ,代入圆的方程,得⎝⎛⎭⎪⎫x -322+y 2=1.。
高考数学一轮复习第七章圆的方程学案理
![高考数学一轮复习第七章圆的方程学案理](https://img.taocdn.com/s3/m/1213dfde4693daef5ef73de3.png)
第七章圆的方程一、圆的方程1.圆的标准方程:圆心坐标是(a,b),半径是r的圆的标准方程是________.2.圆的一般方程:当方程x2+y2+Dx+Ey+F=0满足________时表示圆,此圆的圆心坐标为________,半径为________.二、直线、圆的位置关系1.直线与圆的位置关系:直线l:Ax+By+C=0与圆(x-a)2+(y-b)2=r2(r>0)的位置关系的判定方法(1)几何法:圆心O(a,b)到直线l:Ax+By+C=0的距离d=错误!未找到引用源。
.若d________________r⇔直线与圆相交;若d________________r⇔直线与圆相切;若d________________r⇔直线与圆相离.(2)代数法:由直线与圆的方程联立得方程组错误!未找到引用源。
消元后得到的关于x或y的一元二次方程的判别式为Δ,则:若Δ________0⇔直线与圆相交;若Δ________0⇔直线与圆相切;若Δ<0⇔直线与圆________.2.圆与圆的位置关系:三、空间直角坐标系 1.空间直角坐标系:空间直角坐标系中特殊点的坐标:(1)x 轴上的点________,y 轴上的点________,z 轴上的点________.(2)xOy 平面内的点________,xOz 平面内的点________,yOz 平面内的点________. 2.空间两点间的距离公式:在空间中,P 1(x 1,y 1,z 1)与P 2(x 2,y 2,z 2)的距离|P 1P 2|=________________.热点一 圆的方程【例1】(1)(2013·湖南学业水平考试真题)已知两点P(4,0),Q(0,2),则以线段PQ 为直径的圆的方程是 ( ) A.(x+2)2+(y+1)2=5 B.(x-2)2+(y-1)2=10 C.(x-2)2+(y-1)2=5 D.(x+2)2+(y+1)2=10(2)圆x 2+y 2-ax=0的圆心的横坐标为1,则a=________. 热点二 直线与圆的位置关系【例2】(1)圆x 2+y 2+2x+4y-3=0到直线x+y+1=0距离等于错误!未找到引用源。
高考数学一轮复习 7.5 圆的方程教案
![高考数学一轮复习 7.5 圆的方程教案](https://img.taocdn.com/s3/m/6717b830524de518974b7da5.png)
高考数学一轮复习 7.5 圆的方程教案●知识梳理 1.圆的方程(1)圆的标准方程圆心为(a ,b ),半径为r 的圆的标准方程为(x -a )2+(y -b )2=r 2. 说明:方程中有三个参量a 、b 、r ,因此三个独立条件可以确定一个圆. (2)圆的一般方程二次方程x 2+y 2+Dx +Ey +F =0.(*)将(*)式配方得(x +2D )2+(y +2E )2=4422FE D -+.当D 2+E 2-4F >0时,方程(*)表示圆心(-2D ,-2E ),半径r =21F E D 422-+的圆,把方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)叫做圆的一般方程.说明:(1)圆的一般方程体现了圆方程的代数特点:a.x 2、y 2项系数相等且不为零. b.没有xy 项.(2)当D 2+E 2-4F =0时,方程(*)表示点(-2D ,-2E ),当D 2+E 2-4F <0时,方程(*)不表示任何图形.(3)据条件列出关于D 、E 、F 的三元一次方程组,可确定圆的一般方程. (3)圆的参数方程 ①圆心在O (0,0),半径为r 的圆的参数方程为 x =r cos θ,y =r sin θ②圆心在O 1(a ,b ),半径为r 的圆的参数方程为 x =a +r cos θ,y =b +r sin θ 说明:在①中消去θ得x 2+y 2=r 2,在②中消去θ得(x -a )2+(y -b )2=r 2,把这两个方程相对于它们各自的参数方程又叫做普通方程.2.二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件 若上述二元二次方程表示圆,则有A =C ≠0,B =0,这仅是二元二次方程表示圆的必要条件,不充分.在A =C ≠0,B =0时,二元二次方程化为x 2+y 2+A D x +A E y +AF=0, 仅当(A D )2+(A E )2-4·A F >0,即D 2+E 2-4AF >0时表示圆. 故Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是:①A =C ≠0,②B =0,③D 2+E 2-4AF >0.●点击双基1.方程x 2+y 2-2(t +3)x +2(1-4t 2)y +16t 4+9=0(t ∈R )表示圆方程,则t 的取值范围是 A.-1<t <71 B.-1<t <21 C.-71<t <1 D .1<t <2 (θ为参数). ① (θ为参数). ②解析:由D 2+E 2-4F >0,得7t 2-6t -1<0,即-71<t <1.答案:C2.点P (5a +1,12a )在圆(x -1)2+y 2=1的内部,则a 的取值范围是 A.|a |<1 B.a <131 C.|a |<51 D .|a |<131 解析:点P 在圆(x -1)2+y 2=1内部⇔(5a +1-1)2+(12a )2<1⇔|a |<131. 答案:D3.已知圆的方程为(x -a )2+(y -b )2=r 2(r >0),下列结论错误的是A.当a 2+b 2=r 2时,圆必过原点 B.当a =r 时,圆与y 轴相切 C.当b =r 时,圆与x 轴相切 D .当b <r 时,圆与x 轴相交解析:已知圆的圆心坐标为(a ,b ),半径为r ,当b <r 时,圆心到x 轴的距离为|b |,只有当|b |<r 时,才有圆与x 轴相交,而b <r 不能保证|b |<r ,故D 是错误的.故选D .答案:D4.(2005年北京海淀区期末练习)将圆x 2+y 2=1按向量a 平移得到圆(x +1)2+(y -2)2=1,则a 的坐标为____________.解析:由向量平移公式即得a =(-1,2). 答案:(-1,2)5.已知P (1,2)为圆x 2+y 2=9内一定点,过P 作两条互相垂直的任意弦交圆于点B 、C ,则BC 中点M 的轨迹方程为____________.解析:Rt △OMC 中,|MP |=21|BC |(直角三角形斜边上的中线是斜边的一半).故所求轨迹方程为x 2+y 2-x -2y -2=0.答案:x 2+y 2-x -2y -2=0 ●典例剖析【例1】 (2003年春季北京)设A (-c ,0)、B (c ,0)(c >0)为两定点,动点P 到A 点的距离与到B 点的距离的比为定值a (a >0),求P 点的轨迹.剖析:给曲线建立方程是解析几何的两个主要问题之一,其基本方法就是把几何条件代数化;主要问题之二是根据方程研究曲线的形状、性质,即用代数的方法研究几何问题.解:设动点P 的坐标为(x ,y ),由||||PB PA =a (a >0)得2222)()(yc x y c x +-++=a ,化简,得(1-a 2)x 2+2c (1+a 2)x +c 2(1-a 2)+(1-a 2)y 2=0.当a =1时,方程化为x =0.当a ≠1时,方程化为(x -1122-+a a c )2+y 2=(122-a ac )2.所以当a =1时,点P 的轨迹为y 轴;当a ≠1时,点P 的轨迹是以点(1122-+a a c ,0)为圆心,|122-a ac|为半径的圆.评述:本题主要考查直线、圆、曲线和方程等基本知识,考查运用解析几何的方法解决问题的能力,对代数式的运算化简能力有较高要求.同时也考查了分类讨论这一数学思想.【例2】 一圆与y 轴相切,圆心在直线x -3y =0上,且直线y =x 截圆所得弦长为27,求此圆的方程.剖析: 利用圆的性质:半弦、半径和弦心距构成的直角三角形.解:因圆与y 轴相切,且圆心在直线x -3y =0上,故设圆方程为(x -3b )2+(y -b )2=9b 2.又因为直线y =x 截圆得弦长为27,则有(2|3|b b -)2+(7)2=9b 2,解得b =±1.故所求圆方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9.评述:在解决求圆的方程这类问题时,应当注意以下几点:(1)确定圆方程首先明确是标准方程还是一般方程;(2)根据几何关系(如本例的相切、弦长等)建立方程求得a 、b 、r 或D 、E 、F ;(3)待定系数法的应用,解答中要尽量减少未知量的个数.【例3】 已知⊙O 的半径为3,直线l 与⊙O 相切,一动圆与l 相切,并与⊙O 相交的公共弦恰为⊙O 的直径,求动圆圆心的轨迹方程.剖析:问题中的几何性质十分突出,切线、直径、垂直、圆心,如何利用这些几何性质呢?解:取过O 点且与l 平行的直线为x 轴,过O 点且垂直于l 的直线为y 轴,建立直角坐标系.设动圆圆心为M (x ,y ),⊙O 与⊙M 的公共弦为AB ,⊙M 与l 切于点C ,则|MA |=|MC |.∵AB 为⊙O 的直径,∴MO 垂直平分AB 于O .由勾股定理得|MA |2=|MO |2+|AO |2=x 2+y 2+9,而|MC |=|y +3|,∴922++y x =|y +3|.化简得x 2=6y ,这就是动圆圆心的轨迹方程.评述:求轨迹的步骤是“建系,设点,找关系式,除瑕点”. ●闯关训练 夯实基础1.方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)表示的曲线关于x +y =0成轴对称图形,则A.D +E =0B. B.D +F =0C.E +F =0D. D +E +F =0解析:曲线关于x +y =0成轴对称图形,即圆心在x +y =0上. 答案:A2.(2004年全国Ⅱ,8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有A.1条B.2条C.3条 D .4条解析:分别以A 、B 为圆心,以1、2为半径作圆,两圆的公切线有两条,即为所求. 答案:B3.(2005年黄冈市调研题)圆x 2+y 2+x -6y +3=0上两点P 、Q 关于直线kx -y +4=0对称,则k =____________.解析:圆心(-21,3)在直线上,代入kx -y +4=0,得k =2. 答案:24.(2004年全国卷Ⅲ,16)设P 为圆x 2+y 2=1上的动点,则点P 到直线3x -4y -10=0的 距离的最小值为____________.解析:圆心(0,0)到直线3x -4y -10=0的距离d =5|10|-=2. 再由d -r =2-1=1,知最小距离为1. 答案:15.(2005年启东市调研题)设O 为坐标原点,曲线x 2+y 2+2x -6y +1=0上有两点P 、Q ,满足关于直线x +my +4=0对称,又满足OP ·OQ =0.(1)求m 的值;(2)求直线PQ 的方程.解:(1)曲线方程为(x +1)2+(y -3)2=9表示圆心为(-1,3),半径为3的圆. ∵点P 、Q 在圆上且关于直线x +my +4=0对称, ∴圆心(-1,3)在直线上.代入得m =-1. (2)∵直线PQ 与直线y =x +4垂直, ∴设P (x 1,y 1)、Q (x 2,y 2),PQ 方程为y =-x +b .将直线y =-x +b 代入圆方程,得2x 2+2(4-b )x +b 2-6b +1=0.Δ=4(4-b )2-4×2×(b 2-6b +1)>0,得2-32<b <2+32. 由韦达定理得x 1+x 2=-(4-b ),x 1·x 2=2162+-b b .y 1·y 2=b 2-b (x 1+x 2)+x 1·x 2=2162+-b b +4b .∵OP ·OQ =0,∴x 1x 2+y 1y 2=0,即b 2-6b +1+4b =0. 解得b =1∈(2-32,2+32). ∴所求的直线方程为y =-x +1.6.已知实数x 、y 满足x 2+y 2+2x -23y =0,求x +y 的最小值.解:原方程为(x+1)2+(y-3)2=4表示一个圆的方程,可设其参数方程为x=-1+2cosθ,y=3+2sinθ22sin(θ+4π),当θ=4π5,即x=-1-2,y=3-2时,x+y的最小值为3-1-22.培养能力7.已知实数x、y满足方程x2+y2-4x+1=0.求(1)xy的最大值和最小值;(2)y-x的最小值;(3)x2+y2的最大值和最小值.解:(1)如图,方程x2+y2-4x+1=0表示以点(2,0)为圆心,以3为半径的圆.设xy=k,即y=kx,由圆心(2,0)到y=kx的距离为半径时直线与圆相切,斜率取得最大、最小值.由1|02|2+-kk=3,解得k2=3.所以k max=3,k min=-3.(也可由平面几何知识,有OC=2,OP=3,∠POC=60°,直线OP的倾斜角为60°,直线OP′的倾斜角为120°解之)(2)设y-x=b,则y=x+b,仅当直线y=x+b与圆切于第四象限时,纵轴截距b取最小值.由点到直线的距离公式,得2|2|b+-=3,即b=-2±6,故(y-x)min=-2-6.(3)x2+y2是圆上点与原点距离之平方,故连结OC,与圆交于B点,并延长交圆于C′,则(x2+y2)max=|OC′|=2+3,(x2+y2)min=|OB|=2-3.(θ为参数,0≤θ<2π),则x+y=3-1+2(sinθ+cosθ)=3-+18.(文)求过两点A (1,4)、B (3,2),且圆心在直线y =0上的圆的标准方程.并判断点M 1(2,3),M 2(2,4)与圆的位置关系.解:根据圆的标准方程,只要求得圆心坐标和圆的半径即可.因为圆过A 、B 两点,所以圆心在线段AB 的垂直平分线上.由k AB =3124--=-1, AB 的中点为(2,3),故AB 的垂直平分线的方程为y -3=x -2,即x -y +1=0. 又圆心在直线y =0上,因此圆心坐标是方程组 x -y +1=0,y =0半径r =22)40()11(-+--=20, 所以得所求圆的标准方程为(x +1)2+y 2=20.因为M 1到圆心C (-1,0)的距离为22)03()12(-++=18,|M 1C |<r ,所以M 1在圆C 内;而点M 2到圆心C 的距离|M 2C |=22)04()12(-++=25>20,所以M 2在圆C 外.(理)已知动圆M :x 2+y 2-2mx -2ny +m 2-1=0与圆N :x 2+y 2+2x +2y -2=0交于A 、B 两点,且这两点平分圆N 的圆周.(1)求动圆M 的圆心的轨迹方程; (2)求半径最小时圆M 的方程. 解:(1)如图所示(坐标系省略了),圆心N (-1,-1)为弦AB 的中点,在Rt △AMN 中,|AM |2=|AN |2+|MN |2,∴(m +1)2=-2(n +2)(*)故动圆圆心M 的轨迹方程为(x +1)2=-2(y +2).(2)由(*)式,知(m +1)2=-2(n +2)≥0,于是有n ≤-2. 而圆M 半径r =12+n ≥5,∴当r =5时,n =-2,m =-1,所求圆的方程为(x +1)2+(y +2)2=5.探究创新9.(2005年黄冈市调研考试题)如图,在平面斜坐标系xOy 中,∠xOy =60°,平面上任一点P 关于斜坐标系的斜坐标是这样定义的:若OP =x e 1+y e 2(其中e 1、e 2分别为与x 轴、y 轴同方向的单位向量),则P 点斜坐标为(x ,y ).的解,即圆心坐标为(-1,0).(1)若P 点斜坐标为(2,-2),求P 到O 的距离|PO |; (2)求以O 为圆心,1为半径的圆在斜坐标系xOy 中的方程. 解:(1)∵P 点斜坐标为(2,-2),∴OP =2e 1-2e 2.∴|OP |2=(2e 1-2e 2)2=8-8e 1·e 2=8-8×cos60°=4. ∴|OP |=2,即|OP |=2.(2)设圆上动点M 的斜坐标为(x ,y ),则OM =x e 1+y e 2.∴(x e 1+y e 2)2=1.∴x 2+y 2+2xy e 1·e 2=1.∴x 2+y 2+xy =1.故所求方程为x 2+y 2+xy =1. ●思悟小结1.不论圆的标准方程还是一般方程,都有三个字母(a 、b 、r 或D 、E 、F )的值需要确定,因此需要三个独立的条件.利用待定系数法得到关于a 、b 、r (或D 、E 、F )的三个方程组成的方程组,解之得到待定字母系数的值.2.求圆的方程的一般步骤:(1)选用圆的方程两种形式中的一种(若知圆上三个点的坐标,通常选用一般方程;若给出圆心的特殊位置或圆心与两坐标间的关系,通常选用标准方程);(2)根据所给条件,列出关于D 、E 、F 或a 、b 、r 的方程组;(3)解方程组,求出D 、E 、F 或a 、b 、r 的值,并把它们代入所设的方程中,得到所求圆的方程.3.解析几何中与圆有关的问题,应充分运用圆的几何性质帮助解题.●教师下载中心 教学点睛1.在二元二次方程中x 2和y 2的系数相等并且没有x 、y 项只是表示圆的必要条件而不是充分条件.2.如果问题中给出了圆心两坐标之间的关系或圆心的特殊位置时,一般用标准方程.如果给出圆上的三个点的坐标,一般用一般方程.3.在一般方程中,当D 2+E 2-4F =0时,方程表示一个点(-2D ,-2E ),当D 2+E 2-4F <0时,无轨迹.4.在解决与圆有关的问题时,要充分利用圆的特殊几何性质,这样会使问题简单化.5.数形结合、分类讨论、函数与方程的思想在解决圆的有关问题时经常运用,应熟练掌握.拓展题例【例1】 圆x 2+y 2=1内有一定点A (21,0),圆上有两点P 、Q ,若∠PAQ =90°,求过点P 和Q 的两条切线的交点M 的轨迹方程.分析:先求出PQ 中点E 的轨迹方程为x 2+y 2-21x -83=0.再求切点弦PQ 所在直线的方程.解:设P (x 1,y 1),Q (x 2,y 2),则过P 、Q 的切线方程分别是 x 1x +y 1y =1,x 2x +y 2y =1.又M (m ,n )在这两条切线上,有mx 1+ny 1=1,mx 2+ny 2=1,∵P 、Q 两点的坐标满足方程mx +ny =1,又两点确定唯一一条直线, ∴PQ 所在直线的方程是mx +ny =1.又∵E 为直线OM 与PQ 之交点,解方程组 mx +ny =1y =mn x ⇒x =22n m m +,y =22n m n+.将(22n m m +,22n m n +)代入中点E 的轨迹方程得x 2+y 2+34x -38=0. 这就是要求的过P 、Q 两点的切线交点M 的轨迹方程.【例2】 如图,过原点的动直线交圆x 2+(y -1)2=1于点Q ,在直线OQ 上取点P ,使P 到直线y =2的距离等于|PQ |,求动直线绕原点转一周时P 点的轨迹方程.解:设P (x ,y ),圆O 1:x 2+(y -1)2=1与直线y =2切于点A ,连结AQ ,易知|AQ |=|AR |=|x |, 又|PQ |=|PR |=2-y ,∴在Rt △OQA 中,|OA |2=|AQ |2+|OQ |2, 即22=|x |2+[22y x +-(2-y )]2,化简整理得x 2(x 2+y 2-4)=0,∴x =0或x 2+y 2=4为所求的轨迹方程.。
高三数学高考一本通解析几何第一轮复习第四课时 圆的方程教案人教版
![高三数学高考一本通解析几何第一轮复习第四课时 圆的方程教案人教版](https://img.taocdn.com/s3/m/1148160402020740be1e9b6a.png)
第四课时 圆的方程【考点诠释】:本讲主要涉及圆的标准方程和一般方程,圆的标准方程和一般方程的互化,用待定 系数法和轨迹法求出圆的方程,用圆的方程和性质解决有关题。
圆的内容高考每年都有考查,在本节主要考查:二元二次方程表示圆的充分必要条件;根据已知条件求圆的方程等,多数为中等难度选择题和填空题,也有难度较大的综合题。
【知识整合】:1.圆的定义:平面内与定点距离等于定长的点的 (轨迹)叫做圆,定点就 ,定长就是 。
2.圆的标准方程:圆心为(a,b),半径为r 的圆的方程为 。
3.圆的一般方程:二元二次方程x 2+y 2+Dx+Ey+F=0(*)(1)当 时, (*)表示圆的方程,圆心为 ,半径为 。
(2)当 时,(*)表示点 。
(3)当D 2+E 2-4F 2<0时,(*)不表示任何图形。
(4)圆的标准方程的优点在于它明确地指出了 和 ,而一般方程突出了方程形式的特点:①x 2和y 2的系数 。
②没有 这样的二次项。
(5)A=C ≠0且B=0是二元二次方程Ax 2+Bxy+Cy 2+Dx+Ey+F=0表示圆的 条件。
4.圆的参数方程:圆x 2+y 2=R 2(R>0)的参数方程为 ;圆(x-a)2+(y-b)2= R 2(R>0)的参数方程为 。
5.一般地,在取定的坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数, 即 x=f(t)y=g(t) 并且对于t 的每一个允许值,由上述方程组所确定的点M (x ,y )都在 上, 那么这个方程组就叫做 的参数方程,联系x ,y 之间关系的变数叫做参变数,简 称参数。
相对于参数方程来说,前面学过的直接给出曲线上点的坐标关系的方程,叫做曲线 的 。
【基础再现】:1.圆x 2+y 2+Dx+Ey-3=0的圆心在坐标轴上,半径为2,若D>E ,则D 等于()A.2B.0或2C.0D. 22.对于圆C :x 2+y 2+2Dx+2Ey+D 2=0,其中位于圆C 外的一定是()A.(0,0)B.(1,0)C.(D,-E)D.(D,E)3.圆x 2+y 2+4x-4y+7=0和x 2+y 2+4x-10y+13=0的公切线条数为()A.1B.2C.3D.44.直线L 截圆x 2+y 2-2y=0所得弦AB 的中点是(-23,21),则直线L 的方程为 ;|AB|= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.5 圆的方程●知识梳理 1.圆的方程(1)圆的标准方程 圆心为(a ,b ),半径为r 的圆的标准方程为(x -a )2+(y -b )2=r 2. 说明:方程中有三个参量a 、b 、r ,因此三个独立条件可以确定一个圆. (2)圆的一般方程二次方程x 2+y 2+Dx +Ey +F =0.(*) 将(*)式配方得(x +2D )2+(y +2E )2=4422F E D -+.当D 2+E 2-4F >0时,方程(*)表示圆心(-2D ,-2E),半径r =21F E D 422-+的圆,把方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)叫做圆的一般方程.说明:(1)圆的一般方程体现了圆方程的代数特点: a.x 2、y 2项系数相等且不为零. b.没有xy 项.(2)当D 2+E 2-4F =0时,方程(*)表示点(-2D ,-2E),当D 2+E 2-4F <0时,方程(*)不表示任何图形.(3)据条件列出关于D 、E 、F 的三元一次方程组,可确定圆的一般方程. (3)圆的参数方程 ①圆心在O (0,0),半径为r 的圆的参数方程为 x =r cos θ,y =r sin θ ②圆心在O 1(a ,b ),半径为r 的圆的参数方程为 x =a +r cos θ,y =b +r sin θ 说明:在①中消去θ得x 2+y 2=r 2,在②中消去θ得(x -a )2+(y -b )2=r 2,把这两个方程相对于它们各自的参数方程又叫做普通方程.2.二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件若上述二元二次方程表示圆,则有A =C ≠0,B =0,这仅是二元二次方程表示圆的必要条件,不充分.在A =C ≠0,B =0时,二元二次方程化为x 2+y 2+A D x +A E y +AF=0,仅当(A D )2+(A E )2-4·AF>0,即D 2+E 2-4AF >0时表示圆.故Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是:①A =C ≠0,②B =0,③D 2+E 2-4AF >0.●点击双基(θ为参数). ① (θ为参数). ②1.方程x 2+y 2-2(t +3)x +2(1-4t 2)y +16t 4+9=0(t ∈R )表示圆方程,则t 的取值范围是 A.-1<t <71 B.-1<t <21 C.-71<t <1 D .1<t <2 解析:由D 2+E 2-4F >0,得7t 2-6t -1<0,即-71<t <1.答案:C2.点P (5a +1,12a )在圆(x -1)2+y 2=1的内部,则a 的取值范围是A.|a |<1B.a <131C.|a |<51 D .|a |<131解析:点P 在圆(x -1)2+y 2=1内部 ⇔(5a +1-1)2+(12a )2<1⇔ |a |<131.答案:D3.已知圆的方程为(x -a )2+(y -b )2=r 2(r >0),下列结论错误的是 A.当a 2+b 2=r 2时,圆必过原点 B.当a =r 时,圆与y 轴相切 C.当b =r 时,圆与x 轴相切 D .当b <r 时,圆与x 轴相交解析:已知圆的圆心坐标为(a ,b ),半径为r ,当b <r 时,圆心到x 轴的距离为|b |,只有当|b |<r 时,才有圆与x 轴相交,而b <r 不能保证|b |<r ,故D 是错误的.故选D .答案:D4.(2005年北京海淀区期末练习)将圆x 2+y 2=1按向量a 平移得到圆(x +1)2+(y -2)2=1,则a 的坐标为____________.解析:由向量平移公式即得a =(-1,2). 答案:(-1,2)5.已知P (1,2)为圆x 2+y 2=9内一定点,过P 作两条互相垂直的任意弦交圆于点B 、C ,则BC 中点M 的轨迹方程为____________.解析:Rt △OMC 中,|MP |=21|BC |(直角三角形斜边上的中线是斜边的一半).故所求轨迹方程为x 2+y 2-x -2y -2=0. 答案:x 2+y 2-x -2y -2=0 ●典例剖析【例1】 (2003年春季北京)设A (-c ,0)、B (c ,0)(c >0)为两定点,动点P 到A 点的距离与到B 点的距离的比为定值a (a >0),求P 点的轨迹.剖析:给曲线建立方程是解析几何的两个主要问题之一,其基本方法就是把几何条件代数化;主要问题之二是根据方程研究曲线的形状、性质,即用代数的方法研究几何问题.解:设动点P 的坐标为(x ,y ),由||||PB PA =a (a >0)得2222)()(yc x y c x +-++=a ,化简,得(1-a 2)x 2+2c (1+a 2)x +c 2(1-a 2)+(1-a 2)y 2=0.当a =1时,方程化为x =0.当a ≠1时,方程化为(x -1122-+a a c )2+y 2=(122-a ac)2.所以当a =1时,点P 的轨迹为y 轴;当a ≠1时,点P 的轨迹是以点(1122-+a a c ,0)为圆心,|122-a ac|为半径的圆.评述:本题主要考查直线、圆、曲线和方程等基本知识,考查运用解析几何的方法解决问题的能力,对代数式的运算化简能力有较高要求.同时也考查了分类讨论这一数学思想.【例2】 一圆与y 轴相切,圆心在直线x -3y =0上,且直线y =x 截圆所得弦长为27,求此圆的方程.剖析: 利用圆的性质:半弦、半径和弦心距构成的直角三角形.解:因圆与y 轴相切,且圆心在直线x -3y =0上,故设圆方程为(x -3b )2+(y -b )2=9b 2.又因为直线y =x 截圆得弦长为27, 则有(2|3|b b -)2+(7)2=9b 2,解得b =±1.故所求圆方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9.评述:在解决求圆的方程这类问题时,应当注意以下几点:(1)确定圆方程首先明确是标准方程还是一般方程;(2)根据几何关系(如本例的相切、弦长等)建立方程求得a 、b 、r 或D 、E 、F ;(3)待定系数法的应用,解答中要尽量减少未知量的个数.【例3】 已知⊙O 的半径为3,直线l 与⊙O 相切,一动圆与l 相切,并与⊙O 相交的公共弦恰为⊙O 的直径,求动圆圆心的轨迹方程.剖析:问题中的几何性质十分突出,切线、直径、垂直、圆心,如何利用这些几何性质呢?解:取过O 点且与l 平行的直线为x 轴,过O 点且垂直于l 的直线为y 轴,建立直角坐标系.设动圆圆心为M (x ,y ),⊙O 与⊙M 的公共弦为AB ,⊙M 与l 切于点C ,则|MA |=|MC |.∵AB 为⊙O 的直径, ∴MO 垂直平分AB 于O .由勾股定理得|MA |2=|MO |2+|AO |2=x 2+y 2+9,而|MC |=|y +3|, ∴922++y x =|y +3|.化简得x 2=6y ,这就是动圆圆心的轨迹方程.评述:求轨迹的步骤是“建系,设点,找关系式,除瑕点”. ●闯关训练 夯实基础1.方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)表示的曲线关于x +y =0成轴对称图形,则A.D +E =0B. B.D +F =0C.E +F =0D. D +E +F =0 解析:曲线关于x +y =0成轴对称图形,即圆心在x +y =0上. 答案:A2.(2004年全国Ⅱ,8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有A.1条B.2条C.3条 D .4条解析:分别以A 、B 为圆心,以1、2为半径作圆,两圆的公切线有两条,即为所求. 答案:B3.(2005年黄冈市调研题)圆x 2+y 2+x -6y +3=0上两点P 、Q 关于直线kx -y +4=0对称,则k =____________.解析:圆心(-21,3)在直线上,代入kx -y +4=0,得k =2. 答案:24.(2004年全国卷Ⅲ,16)设P 为圆x 2+y 2=1上的动点,则点P 到直线3x -4y -10=0的 距离的最小值为____________.解析:圆心(0,0)到直线3x -4y -10=0的距离d =5|10|-=2. 再由d -r =2-1=1,知最小距离为1. 答案:15.(2005年启东市调研题)设O 为坐标原点,曲线x 2+y 2+2x -6y +1=0上有两点P 、Q ,满足关于直线x +my +4=0对称,又满足·=0.(1)求m 的值;(2)求直线PQ 的方程. 解:(1)曲线方程为(x +1)2+(y -3)2=9表示圆心为(-1,3),半径为3的圆. ∵点P 、Q 在圆上且关于直线x +my +4=0对称, ∴圆心(-1,3)在直线上.代入得m =-1.(2)∵直线PQ 与直线y =x +4垂直, ∴设P (x 1,y 1)、Q (x 2,y 2),PQ 方程为y =-x +b .将直线y =-x +b 代入圆方程,得2x 2+2(4-b )x +b 2-6b +1=0. Δ=4(4-b )2-4×2×(b 2-6b +1)>0,得2-32<b <2+32.由韦达定理得x 1+x 2=-(4-b ),x 1·x 2=2162+-b b .y 1·y 2=b 2-b (x 1+x 2)+x 1·x 2=2162+-b b +4b .∵·=0,∴x 1x 2+y 1y 2=0, 即b 2-6b +1+4b =0.解得b =1∈(2-32,2+32). ∴所求的直线方程为y =-x +1.6.已知实数x 、y 满足x 2+y 2+2x -23y =0,求x +y 的最小值.解:原方程为(x +1)2+(y -3)2=4表示一个圆的方程,可设其参数方程为x =-1+2cos θ,y =3+2sin θ 22sin (θ+4π),当θ=4π5,即x =-1-2,y =3-2时,x +y 的最小值为3-1-22.培养能力7.已知实数x 、y 满足方程x 2+y 2-4x +1=0.求(1)xy的最大值和最小值; (2)y -x 的最小值;(3)x 2+y 2的最大值和最小值.解:(1)如图,方程x 2+y 2-4x +1=0表示以点(2,0)为圆心,以3为半径的圆.设xy=k ,即y =kx ,由圆心(2,0)到y =kx 的距离为半径时直线与圆相切,斜率取得最大、最小值.由1|02|2+-k k =3,(θ为参数,0≤θ<2π),则x +y =3-1+2(sin θ+cos θ)=3-+1解得k 2=3.所以k max =3,k min =-3.(也可由平面几何知识,有OC =2,OP =3,∠POC =60°,直线OP 的倾斜角为60°,直线OP ′的倾斜角为120°解之)(2)设y -x =b ,则y =x +b ,仅当直线y =x +b 与圆切于第四象限时,纵轴截距b 取最小值.由点到直线的距离公式,得2|02|b +-=3,即b =-2±6,故(y -x )min =-2-6.(3)x 2+y 2是圆上点与原点距离之平方,故连结OC ,与圆交于B 点,并延长交圆于C ′,则(x 2+y 2)max =|OC ′|=2+3,(x 2+y 2)min =|OB |=2-3.8.(文)求过两点A (1,4)、B (3,2),且圆心在直线y =0上的圆的标准方程.并判断点M 1(2,3),M 2(2,4)与圆的位置关系.解:根据圆的标准方程,只要求得圆心坐标和圆的半径即可.因为圆过A 、B 两点,所以圆心在线段AB 的垂直平分线上.由k AB =3124--=-1, AB 的中点为(2,3),故AB 的垂直平分线的方程为y -3=x -2, 即x -y +1=0.又圆心在直线y =0上, 因此圆心坐标是方程组 x -y +1=0,y =0 半径r =22)40()11(-+--=20, 所以得所求圆的标准方程为(x +1)2+y 2=20.因为M 1到圆心C (-1,0)的距离为22)03()12(-++=18,|M 1C |<r ,所以M 1在圆C 内;而点M 2到圆心C 的距离|M 2C |=22)04()12(-++=25>20,所以M 2在圆C 外. (理)已知动圆M :x 2+y 2-2mx -2ny +m 2-1=0与圆N :x 2+y 2+2x +2y -2=0交于A 、B 两点,且这两点平分圆N 的圆周.(1)求动圆M 的圆心的轨迹方程; (2)求半径最小时圆M 的方程. 解:(1)如图所示(坐标系省略了),圆心N (-1,-1)为弦AB 的中点,在Rt △AMN 中,的解,即圆心坐标为(-1,0).|AM |2=|AN |2+|MN |2,∴(m +1)2=-2(n +2).(*)故动圆圆心M 的轨迹方程为(x +1)2=-2(y +2). (2)由(*)式,知(m +1)2=-2(n +2)≥0, 于是有n ≤-2.而圆M 半径r =12 n ≥5,∴当r =5时,n =-2,m =-1,所求圆的方程为(x +1)2+(y +2)2=5.探究创新9.(2005年黄冈市调研考试题)如图,在平面斜坐标系xOy 中,∠xOy =60°,平面上任一点P 关于斜坐标系的斜坐标是这样定义的:若OP =x e 1+y e 2(其中e 1、e 2分别为与x 轴、y 轴同方向的单位向量),则P 点斜坐标为(x ,y ).(1)若P 点斜坐标为(2,-2),求P 到O 的距离|PO |; (2)求以O 为圆心,1为半径的圆在斜坐标系xOy 中的方程. 解:(1)∵P 点斜坐标为(2,-2), ∴OP =2e 1-2e 2.∴|OP |2=(2e 1-2e 2)2=8-8e 1·e 2=8-8×cos60°=4. ∴||=2,即|OP |=2.(2)设圆上动点M 的斜坐标为(x ,y ),则=x e 1+y e 2.∴(x e 1+y e 2)2=1. ∴x 2+y 2+2xy e 1·e 2=1. ∴x 2+y 2+xy =1.故所求方程为x 2+y 2+xy =1. ●思悟小结1.不论圆的标准方程还是一般方程,都有三个字母(a 、b 、r 或D 、E 、F )的值需要确定,因此需要三个独立的条件.利用待定系数法得到关于a 、b 、r (或D 、E 、F )的三个方程组成的方程组,解之得到待定字母系数的值.2.求圆的方程的一般步骤:(1)选用圆的方程两种形式中的一种(若知圆上三个点的坐标,通常选用一般方程;若给出圆心的特殊位置或圆心与两坐标间的关系,通常选用标准方程);(2)根据所给条件,列出关于D 、E 、F 或a 、b 、r 的方程组;(3)解方程组,求出D 、E 、F 或a 、b 、r 的值,并把它们代入所设的方程中,得到所求圆的方程.3.解析几何中与圆有关的问题,应充分运用圆的几何性质帮助解题.●教师下载中心 教学点睛1.在二元二次方程中x 2和y 2的系数相等并且没有x 、y 项只是表示圆的必要条件而不是充分条件.2.如果问题中给出了圆心两坐标之间的关系或圆心的特殊位置时,一般用标准方程.如果给出圆上的三个点的坐标,一般用一般方程.3.在一般方程中,当D 2+E 2-4F =0时,方程表示一个点(-2D ,-2E),当D 2+E 2-4F <0时,无轨迹.4.在解决与圆有关的问题时,要充分利用圆的特殊几何性质,这样会使问题简单化.5.数形结合、分类讨论、函数与方程的思想在解决圆的有关问题时经常运用,应熟练掌握.拓展题例【例1】 圆x 2+y 2=1内有一定点A (21,0),圆上有两点P 、Q ,若∠P AQ =90°,求过点P 和Q 的两条切线的交点M 的轨迹方程.分析:先求出PQ 中点E 的轨迹方程为x 2+y 2-21x -83=0.再求切点弦PQ 所在直线的方程.解:设P (x 1,y 1),Q (x 2,y 2),则过P 、Q 的切线方程分别是 x 1x +y 1y =1,x 2x +y 2y =1.又M (m ,n )在这两条切线上,有mx 1+ny 1=1,mx 2+ny 2=1,∵P 、Q 两点的坐标满足方程mx +ny =1,又两点确定唯一一条直线, ∴PQ 所在直线的方程是mx +ny =1.又∵E 为直线OM 与PQ 之交点,解方程组 mx +ny =1 y =mn x ⇒x =22n m m +,y =22nm n+.将(22n m m +,22nm n +)代入中点E 的轨迹方程得x 2+y 2+34x -38=0. 这就是要求的过P 、Q 两点的切线交点M 的轨迹方程.【例2】 如图,过原点的动直线交圆x 2+(y -1)2=1于点Q ,在直线OQ 上取点P ,使P 到直线y =2的距离等于|PQ |,求动直线绕原点转一周时P 点的轨迹方程.解:设P (x ,y ),圆O 1:x 2+(y -1)2=1与直线y =2切于点A ,连结AQ ,易知|AQ |=|AR |=|x |, 又|PQ |=|PR |=2-y ,∴在Rt △OQA 中,|OA |2=|AQ |2+|OQ |2,即22=|x |2+[22y x +-(2-y )]2, 化简整理得x 2(x 2+y 2-4)=0, ∴x =0或x 2+y 2=4为所求的轨迹方程.。