北师大初中八年级数学下册第一周周测题
北师大版八年级数学下册第一章三角形的证明测试题 (1)
2018年北师大版八年级数学下册1.1《等腰三角形》综合训练题一、选择题1.在△ABC中,∠ABC=30°,∠BAC=70°.在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )A.7条 B.8条C.9条D.10条2. 如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为( )A.35° B.40° C.45° D.50°3. 如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD 等于( )A.36° B.54° C.18° D.64°4. 如图,在△ABC中,AB=AC,AD平分∠BAC,则下列结论错误的是( )A.∠B=∠C B.AD⊥BCC.∠BAD=∠CAD=∠C D.BD=CD5. 如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35°,则∠C 的度数为( )A.35° B.45° C.55° D.60°6. 如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为( )A.44° B.66° C.88° D.92°7. 如图,在△ABC中,AD⊥BC,垂足为D,AD=BD=CD,则下列结论错误的是( )A.AB=AC B.AD平分∠BAC C.AB=BC D.∠BAC=90°8. 如图,在△ABC中,D为AB上一点,E为BC上一点,且AC=CD =BD=BE,∠A=50°,则∠CDE的度数为( )A.50° B.51° C.51.5° D.52.5°9. 如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6 B.3 C.2.5 D.210. 如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为( )A.5 B.6 C.8 D.10二、填空题11.如图,在△ABC中,∠1=∠2,BE=CD,AB=5,AE=2,则CE =____.12. 如图,在△ABC中,AB=AC,AD⊥BC,垂足为D.(1)若∠BAC=80°,则∠BAD=____;(2)若AB+CD=12 cm,则△ABC的周长为____ cm.13. 如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于____.14. 如图钢架中,焊上等长的13根钢条来加固钢架.若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是____.三、解答题15. 如图,在△ABC中,AB=AC,AD平分∠BAC,点M,N分别在边AB,AC上,AM=2MB,AN=2NC,求证:DM=DN.16. 如图,在△ABC中,AB=AC,AD⊥BC,CE⊥AB.AE=CE,求证:(1)△AEF≌△CEB;(2)AF=2CD.17. 如图,AB=AE,BC=DE,∠B=∠E,点F是CD的中点.求证:AF⊥CD.18. 在△ABC中,∠C是最小内角.若过顶点B的一条直线把这个三角形分成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC的关于点B的伴侣分割线.例如:如图1,△ABC中,∠A=90°,∠C=20°,若过顶点B的一条直线BD交AC于点D,且∠DBC=20°,则直线BD是△ABC的关于点B的伴侣分割线.(1)如图2,△ABC中,∠C=20°,∠ABC=110°.请在图中画出△ABC关于点B的伴侣分割线,并注明角度;(2)△ABC中,设∠B的度数为y,最小内角∠C的度数为x.试探索y 与x应满足什么要求时,△ABC存在关于点B的伴侣分割线.19. 如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)20. 如图,在△ABC中,AB=AC,∠BAC=90°,BD是∠ABC的平分线,CE⊥BD,垂足是E,BA和CE的延长线交于点F.(1) 在图中找出与△ABD全等的三角形,并证明你的结论;(2) 证明:BD=2EC.参考答案1.B2.A3.B4.C5.C6.D7.C8.D9.C 10.C11.3 12.40°24 13.20°14.12°15.证明:∵AM=2MB,AN=2NC,AB=AC,∴AM=AN,∵AD平分∠BAC,∴∠MAD=∠NAD,在△AMD与△AND中,∴△AMD≌△AND(SAS),∴DM=DN.16.证明:(1)∵AD⊥BC,CE⊥AB,∴∠BCE+∠CFD=90°,∠BCE+∠B=90°,∴∠CFD=∠B,∵∠CFD=∠AFE,∴∠AFE=∠B在△AEF与△CEB中,∴△AEF≌△CEB(AAS);(2)∵AB=AC,AD⊥BC,∴BC=2CD,∵△AEF≌△CEB,∴AF=BC,∴AF=2CD.17.证明:如图,连接AC,AD,在△ABC和△AED中,∴△ABC≌△AED(SAS),∴AC=AD,∵点F是CD的中点,∴AF⊥CD.18.解:(1)如图所示,BD即为△ABC关于点B的伴侣分割线;(2)设BD为△ABC的伴侣分割线,分两种情况:①△BDC是等腰三角形,△ABD是直角三角形,易知∠C和∠DBC必为底角,∴∠DBC=∠C=x.当∠A=90°时,△ABC存在伴侣分割线,此时y=90°-x,当∠ABD=90°时,△ABC存在伴侣分割线,此时y=90°+x,当∠ADB=90°时,△ABC存在伴侣分割线,此时x=45°且90°≥y>45°;②△BDC是直角三角形,△ABD是等腰三角形,当∠DBC=90°时,若BD=AD,则△ABC存在伴侣分割线,此时180°-x-y=y-90°,当∠BDC=90°时,若BD=AD,则△ABC存在伴侣分割线,此时∠A=45°,∴y=135°-x.综上所述,当y=90°-x,或y=90°+x,或x=45°且y>x且90°≥y>45°,或或y=135°-x时,△ABC存在伴侣分割线.19.解:满足条件的所有图形如图所示:共5个.20.证明:(1)△ABD≌△ACF.∵AB=AC,∠BAC=90°,∴∠FAC=∠BAC=90°,∵BD⊥CE,∠BAC=90°,∴∠ADB=∠EDC,∴∠ABD=∠ACF,∵在△ABD和△ACF中,∴△ABD≌△ACF(ASA). (2)∵△ABD≌△ACF,∴BD=CF,∵BD⊥CE,∴∠BEF=∠BEC,∵BD是∠ABC的平分线,∴∠FBE=∠CBE,∵在△FBE和△CBE中,∴△FBE ≌△CBE (ASA ), ∴EF=EC , ∴CF=2CE , ∴BD=2CE .北师大版九年级数学上册期中测试题 一、选择题(本大题共10小题,每小题3分,共30分) 1.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.12 C.13 D.14 2. 关于方程x 2-2=0的理解错误的是 A.这个方程是一元二次方程 B.方C.这个方程可以化成一元二次方程的一般形式D.这个方程可以用公式法求解 3.下列说法正确的个数是 ①菱形的对角线相等 ②对角线互相垂直的四边形是菱形; ③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形 ⑤矩形的对角线相等且互相垂直平分 A.1 B.2 C.3 D.4 4.方程x 2-3x+6=0的根的情况是 A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.不能确定乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上"”的频率一定是0.620.其中合理的是A.①②B.②③C.①③D.①②③ 6.将一张正方形纸片按如图所示步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是 7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..A.23B.12C.13D.498.如图,在菱形ABCD 中,AB =13,对角线AC =10,若过点A 作AE ⊥BC 垂足为E ,则AE 的长为 A.8 B.6013 C.12013 D.24013 9.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为 A.5 B.4 C.342 D.34 10.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =725,在以上4个结论中,正确的有 A.1个 B.2个 C.3个 D.4个乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..二、填空题(本题共6小题,每小题4分,共24分)11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是________.12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,则菱形ABCD 的周长为________.13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P ,再随机摸出一张卡片,其数字记为q ,则关于的方程x 2+px+q =0有实数根的概率是________. 14.某种油菜籽在相同条件下的发芽试验结果如下: 由此可以估计油菜籽发芽的概率约为________.(精确到乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..0.1)15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27,若设个位数字为x ,则列出的方程为________. 16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________. 三、解答题(本题共7小题,共66分) 17.(8分)解方程: (1)2x 2-4x+1=0 (2)(x+8)(x+1)=-12乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..18.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转(1)请用画树状图法或列表法列出所有可能的结果;(2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获胜.问他们两人谁获胜的概率大?请分析说明19.(10分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件村衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,且让顺客尽可能多得实惠,则每件衬衫应降价多少元?乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(2)商场平均每天可能盈利1700元吗?请说明理由.20.(10分)如图,矩形ABCD 中AB =3,BC =2,过对角线BD 的中点O 的直线分別交AB 、CD 边于点E 、F.(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.21.(10分)如图,若要建一个长方形鸡场,鸡场的一边靠墙,另三边用竹篱笆園成,篱笆总长33米,墙对面有一个2米宽的门,国成长方形的鸡场除门之外四周不能有空隙.求: (1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米? (2)能围成面积为200平方米的鸡场吗?乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..22.(10分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y 与销售单价x 之间的函数关系式;(2)若某月该茶叶专卖店销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x.23.(10分)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F. (1)求证:△BDF 是等腰三角形; (2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FC 交BD 于点O ①判断四边形BFDC 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..。
北师大八年级数学下册第1周周末练习题含答案
普宁培青中学八年级数学下册第1周周测试卷组卷人:家长签名:班级:_________________ 姓名:_________________ 座号:________________一. 选择题(共10小题,答案写在表格内)题号 1 2 3 4 5 6 7 8 9 10 答案1.等腰三角形的顶角是50°,则这个三角形的一个底角的大小是(*)A.65°B.40°C.50°D.80°2.等腰三角形一边长是2,一边长是5,则此三角形的周长是(*)A.9B.12C.15D.9或123.如图,在△ABC中,AD是角平分线,且AD=AC,若∠BAC=60°,则∠B的度数是(*)(第3题图)(第4题图)(第5题图)A.45°B.50°C.52°D.58°4.如图,在△ABC中,AC=AD=BD,∠B=35°,则∠CAD的度数为(*)A.70°B.55°C.40°D.35°5.如图,△ABC是等边三角形,点D在AC边上,∠DBC=40°,则∠ADB的度数为(*)A.25°B.60°C.90°D.100°6.如图,在△ABC中,AB=AC,AD为BC边上的中线,∠B=25°,则∠CAD的度数为(*)(第6题图)(第7题图)A.55°B.65°C.75°D.85°7.如图,在△ABC中,AC=DC=DB,∠ACB=105°,则∠B的大小为(*)A.15°B.20°C.25°D.40°8.如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC交AC于点D,则图中的等腰三角形共有(*)个.(第8题图)(第9题图)(第10题图)A.2B.3C.4D.59.如图,△ABC中,AB=AC,AD=BD=BC,则∠A的度数是(*)A.30°B.36°C.45°D.20°10.如图,△ABC是等边三角形,∠CBD=90°,BD=BC,则∠1的度数是(*)A.45°B.60°C.75°D.90°二.填空题(共7小题)11.如图,在△ABC中,AB=AC,∠A=80°,则∠B=.(第11题图)(第13题图)12.等腰三角形的一个内角是80°,则它顶角的度数是.13.如图,在△ABC中,AB=AC,AD平分∠BAC交BC于点D,BC=16cm,则BD=cm.14.如图,AC=AD,∠1=∠2,只添加一个条件使△ABC≌△AED,你添加的条件是.15.若(a﹣3)2+|b﹣7|=0,则以a、b为边长的等腰三角形的周长为.16.如图,在△ABC中,∠B=90°,∠C=30°,DE垂直平分AC,交BC于点E,CE=2,则BC=.17.如图,一个边长是1的等边三角形ABC,将它沿直线l作顺时针方向滚动,求滚动100次,B点所经过的路程(结果保留π).三.解答题18.如图,在△ABC中,AB=AD=DC,∠BAD=50°,求∠B和∠C的度数.19.已知:如图,AD是等腰三角形ABC的底边BC上的中线,DE∥AB,交AC于点E.求证:△AED是等腰三角形.20.如图,四边形ABCD中,AB∥DC,DB平分∠ADC,∠A=60°.求证:△ABD是等边三角形.21.如图,△ABC中,AB=AC,AB的垂直平分线DE分别交AC、AB于点D、E.(1)若∠A=50°,求∠CBD的度数;(2)若AB=7,△CBD周长为12,求BC的长.22.如图,在△ABC中,AB=AC,D为AC延长线上一点,且DE⊥BC交AB于点F.(1)求证:△ADF是等腰三角形;(2)若AC=10,BE=3,F为AB中点,求DF的长.普宁培青中学八年级数学下册第1周周测试卷参考答案一. 选择题(每小题3分,共10小题)题号 1 2 3 4 5 6 7 8 9 10答案 A B A C D B C B B C二.填空题(每小题4分,共7小题)11. 50°12. 80°或20°13. 814. ∠C=∠D或∠B=∠E或AB=AE.15. 1716. 3 17. .三.解答题18.解:在△ABD中,AB=AD,∠BAD=50°,∴∠B=∠ADB=(180°﹣50°)65°,又∵AD=DC,∴∠C=∠CAD∠ADB65°=32.5°.故∠B=65°,∠C=32.5°.19.解:∵△ABC是等腰三角形,AB=AC,AD是底边BC上的中线,∴∠BAD=∠CAD,∵DE∥AB,∴∠ADE=∠BAD,∴∠ADE=∠CAD∴AE=ED,∴△AED是等腰三角形.20.证明:∵AB∥DC,∠A=60°,∴∠ADC=120°,∵DB平分∠ADC,∴∠ADB60°=∠A,∴△ADB是等边三角形.21.解:(1)∵AB=AC,∠A=50°,∴∠ABC=∠C=65°,又∵DE垂直平分AB,∴DA=DB,∴∠ABD=∠A=50°,∴∠CBD=15°;(2)∵DE垂直平分AB,∴DA=DB,∴DB+DC=DA+DC=AC,又∵AB=AC=7,△CBD周长为12,∴BC=5.22.(1)证明:∵AB=AC,∴∠B=∠C,∵DE⊥BC,∴∠DEC=∠DEB=90°,∴∠B+∠BFE=90°,∠C+∠D=90°,∴∠D=∠BFE,∵∠BFE=∠AFD,∴∠D=∠AFD,∴AD=AF,∴△ADF是等腰三角形;(2)过点A作AG⊥DE,垂足为G,∵AB=AC,AC=10,∴AB=10,∵F为AB中点,∴AF=BF AB=5,在Rt△BFE中,BE=3,∴EF4,∵∠AGF=∠BEF=90°,∠AFG=∠BFE,∴△AFG≌△BFE(AAS),∴GF=EF=4,∵AD=AF,AG⊥DF,∴DF=2GF=8.。
北师大版八年级数学下册第一章三角形的证明测试题 (2)
1.1等腰三角形一、选择题1.已知等腰三角形的一边长为3cm,且它的周长为12cm,则它的底边长为()A. 3cmB. 6cmC. 9cmD. 3cm或6cm2.下列能判定△ABC为等腰三角形的是()A. ∠A=50°,∠B=40°B. ∠A=70°,∠B=40°C. AB=AC=4,BC=8D. AB=3,BC=8,周长为163.若等腰三角形中有一个角为50度,则这个等腰三角形的顶角的度数为()A. 50°B. 80°C. 65°或50°D. 50°或80°4.在平面直角坐标中,已知点A(2,1),O为坐标原点,在y轴上确定点P,使得△AOP 为等腰三角形,则符合条件的点P的个数为()A. 3B. 4C. 5D. 65.把16个边长为a的正方形拼在一起,如图,连接BC,CD,则△BCD是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 任意三角形6.如图,在△ABC中,∠B=∠C,D为BC边上的一点,E点在AC边上,∠ADE=∠AED,若∠BAD=20°,则∠CDE=()A. 10°B. 15°C. 20°D. 30°7.如图,在△ABC中,∠B=45°,∠D=64°,AC=BC,则∠E的度数是()A. 45°B. 26°C. 36°D. 64°8.等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是()A. 72°B. 36°或90°C. 36°D. 45°9.若等腰三角形的两边长分别为6和8,则周长为()A. 20或22B. 20C. 22D. 无法确定10.等腰三角形中有一内角等于80°,那么这个三角形的最小内角的度数为()A. 50B. 20C. 40或50D. 20或5011.如图:等边三角形ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A. 45°B. 55°C. 60°D. 75°二、填空题12.已知等腰三角形的一边长等于4cm,另一边长等于9cm,则此三角形的周长为 ________cm.13.一个等腰三角形的一腰上的高与另一腰的夹角为40°,则它的顶角为:________.14.如图,在△ABC中,AB=AC,∠A=50°,P是△ABC内一点,且∠PBC=∠PCA,则∠BPC=________15.△ABC中,AB=AC,∠A=36°,BC=6,则角平分线BD=________.16.在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若三角形ABC的边长为1,AE=2,则CD的长为________.17.若△ABC为等腰三角形,顶角∠B=100°,则底角∠A=________.18.如图所示,在△ABC中,AB=AC,点D、E在BC边上,∠ABD=∠DAE=∠EAC=36°,则图中共有等腰三角形的个数是________.19.如图,在△ABC中,点D是BC上一点,∠BAD=84°,AB=AD=DC,则∠CAD=________三、解答题20.在△ABC中,AB=AC,AC上的中线BD把三角形的周长分为24cm和30cm的两个部分,求三角形的三边长.21.如图,点D在AC上,点E在AB上,且AB=AC,BD=BC,AD=DE=BE.求∠A的度数.22.如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.23.如图,已知△ABC中,AB=AC,BD,CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.参考答案1.A2.B3.D4.B5.B6.A7.B8.B9.A 10.D 11.C 12.22 13.50°或130°14.115°15.6 16.1或3 17.40°18.6个19.24°20.解:设三角形的腰AB=AC=x若AB+AD=24cm,∴x=16三角形的周长为24+30=54(cm)所以三边长分别为16cm,16cm,22cm;若AB+AD=30cm,∴x=20∵三角形的周长为24+30=54(cm)∴三边长分别为20cm,20cm,14cm;因此,三角形的三边长为16cm,16cm,22cm或20cm,20cm,14cm.21.解:设∠A=x°,∵AD=DE=BE,∴∠ABD=∠BDE,∠A=∠AED,由三角形的外角性质得,∠AED=∠ABD+∠BDE=2∠ABD,∵BD=BC,∴C=∠BDC,∵AB=AC,∴∠C=∠ABC,在△ABC中,由三角形内角和定理得,x+解得x=45,所以,∠A=45°.22.证明:∵AB=AC(已知),∴∠ABC=∠ACB(等边对等角).∵BD、CE分别是高,∴BD⊥AC,CE⊥AB(高的定义).∴∠CEB=∠BDC=90°.∴∠ECB=90°-∠ABC,∠DBC=90°-∠ACB.∴∠ECB=∠DBC (等量代换). ∴FB=FC (等角对等边), 在△ABF 和△ACF 中,∴△ABF ≌△ACF (SSS ),∴∠BAF=∠CAF (全等三角形对应角相等), ∴AF 平分∠BAC .23.(1)证明:∵AB=AC , ∴∠ABC=∠ACB ,∵BD 、CE 是△ABC 的两条高线, ∴∠BEC=∠BDC=90° ∴△BEC ≌△CDB ∴∠DBC=∠ECB , ∴OB=OC ;(2)∵∠ABC=50°,AB=AC , ∴∠A=180°-2×50°=80°, ∴∠ABD=90°-80°=10°, ∴∠OBC=50°-10°=40°,∴∠BOC=180°-40°-40°=100°.北师大版九年级数学上册期中测试题一、选择题(本大题共10小题,每小题3分,共30分) 1.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.12C.13D.142. 关于方程x 2-2=0的理解错误的是A.这个方程是一元二次方程B.方2C.这个方程可以化成一元二次方程的一般形式D.这个方程可以用公式法求解乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..3.下列说法正确的个数是①菱形的对角线相等 ②对角线互相垂直的四边形是菱形;③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形⑤矩形的对角线相等且互相垂直平分 A.1 B.2 C.3 D.4 4.方程x 2-3x+6=0的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.不能确定5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上"”的频率一定是0.620.其中合理的是乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________………………………密………………………………….封……………………….线…………………………………………………………………………..A.①②B.②③C.①③D.①②③ 6.将一张正方形纸片按如图所示步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是A.23B.12C.13D.498.如图,在菱形ABCD 中,AB =13,对角线AC =10,若过点A 作AE ⊥BC 垂足为E ,则AE 的长为 A.8 B.6013 C.12013 D.240139.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..A.5B.4C.342D.3410.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =725,在以上4个结论中,正确的有 A.1个 B.2个 C.3个 D.4个二、填空题(本题共6小题,每小题4分,共24分) 11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是________.12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..则菱形ABCD的周长为________.13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P,再随机摸出一张卡片,其数字记为q,则关于的方程x2+px+q=0有实数根的概率是________.14.某种油菜籽在相同条件下的发芽试验结果如下:由此可以估计油菜籽发芽的概率约为________.(精确到0.1)15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27,若设个位数字为x ,则列出的方程为________.16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________. 三、解答题(本题共7小题,共66分) 17.(8分)解方程: (1)2x 2-4x+1=0 (2)(x+8)(x+1)=-12 18.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转 (1)请用画树状图法或列表法列出所有可能的结果;乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获胜.问他们两人谁获胜的概率大?请分析说明19.(10分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件村衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,且让顺客尽可能多得实惠,则每件衬衫应降价多少元? (2)商场平均每天可能盈利1700元吗?请说明理由. 20.(10分)如图,矩形ABCD 中AB =3,BC =2,过对角线BD 的中点O 的直线分別交AB 、CD 边于点E 、F.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.21.(10分)如图,若要建一个长方形鸡场,鸡场的一边靠墙,另三边用竹篱笆園成,篱笆总长33米,墙对面有一个2米宽的门,国成长方形的鸡场除门之外四周不能有空隙.求: (1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米? (2)能围成面积为200平方米的鸡场吗? 22.(10分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量(千克)与销售单价x(元/千克)之间存在如图所示的变化规律. (1)求每月销售量y 与销售单价x 之间的函数关系式; (2)若某月该茶叶专卖店销售这种绿茶获得利润1350元,乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..试求该月茶叶的销售单价x. 23.(10分)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F. (1)求证:△BDF 是等腰三角形; (2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FC 交BD 于点O ①判断四边形BFDC 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长. 乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..。
(最新整理)北师大版八年级下册数学第一章周测试题
北师大版八年级下册数学第一章周测试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北师大版八年级下册数学第一章周测试题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北师大版八年级下册数学第一章周测试题的全部内容。
北师大版八年级下册数学第一章周测试题一.选择题(共10小题)1.(2016•贺州)一个等腰三角形的两边长分别为4,8,则它的周长为( )A.12B.16C.20D.16或202.(2016•枣庄)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为( )A.15°B.17。
5°C.20°D.22.5°3.(2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为( )A.50°B.51°C.51。
5°D.52.5°4.(2016•湘西州)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是( )A.13cm B.14cm C.13cm或14cm D.以上都不对5.(2016•泰安)如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为( )A.44°B.66°C.88°D.92°6.(2016•雅安)如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为( )A.2+2B.2+C.4D.37.(2016•孝感模拟)如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是( )A.∠1=2∠2B.3∠1﹣∠2=180°C.∠1+3∠2=180°D.2∠1+∠2=180°8.(2016•鞍山二模)如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于( )A.110°B.120°C.130°D.140°9.(2016春•乳山市期末)如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF=( )A.55°B.60°C.65°D.70°10.(2016•六盘水)如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n 的度数为( )A.B.C.D.二.填空题(共10小题)11.(2016•淮安)已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是 .12.(2016•通辽)等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为 .13.(2016•厦门校级模拟)在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为 .14.(2016•哈尔滨模拟)等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为 .15.(2016•红桥区二模)如图,在△ABC中,AB=AC,D为BC上一点,CD=AD,AB=BD,则∠B的大小为 .16.(2016•哈尔滨校级模拟)已知:等腰三角形ABC的面积为30m2,AB=AC=10m,则底边BC的长度为 .17.(2016•黄浦区三模)如果两个等腰三角形的腰长相等、面积也相等,那么我们把这两个等腰(用三角形称为一对合同三角形.已知一对合同三角形的底角分别为x°和y°,则y= .x的代数式表示)18.(2016•河南模拟)如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,设运动时间为t秒,当t为 时,△ACP 是等腰三角形.19.(2016春•东港市期末)等腰三角形两内角度数之比为1:2,则它的顶角度数为 .20.(2016•河北模拟)如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为 .三.解答题(共10小题)21.(2016•西城区一模)如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.22.(2016•徐州模拟)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△OAB是等腰三角形.23.(2016春•太仓市期末)如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.24.(2016春•埇桥区期末)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC 的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.25.(2016春•鄄城县期末)如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.26.(2016春•深圳校级期中)如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.求证:△ABC是等腰三角形.27.(2016春•吉安校级月考)如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC 引垂线,垂足分别为E,F,CG是AB边上的高.(1)当D点在BC的什么位置时,DE=DF?并证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明:(3)若D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?(2015•北京)如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.28.29.(2015秋•当涂县期末)如图,△ABC是等腰三角形,D,E分别是腰AB及AC延长线上的一点,且BD=CE,连接DE交底BC于G.求证GD=GE.30.(2015秋•顺义区期末)已知:如图,△ABC中,AB=AC=6,∠A=45°,点D在AC上,点E在BD 上,且△ABD、△CDE、△BCE均为等腰三角形.(1)求∠EBC的度数;(2)求BE的长.北师大版八年级下册数学第一章周测试题参考答案与试题解析一.选择题(共10小题)1.(2016•贺州)一个等腰三角形的两边长分别为4,8,则它的周长为( )A.12B.16C.20D.16或20【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选C.2.(2016•枣庄)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE 的平分线相交于点D,则∠D的度数为( )A.15°B.17。
北师大版八年级数学下册第一章特殊的平行四边形专项测试题-附答案解析(一)
矩形形、正方形、菱形都属于平行四边形,
它们之间的关系是: .
二、填空题(本大题共有5小题,每小题5分,共25分)
16、已知矩形的一条对角线长 ,则另一条对角线的一半是 .
【答案】4
【解析】解:
根据矩形的对角线相等,另一条对角线长 ,则另一条对角线的一半是 .
故正确答案是 .
14、将四根长度相等的细木条首尾相接,用钉子钉成四边形 ,转动这个四边形,使它形状改变,当 时,如图 ,测得 ,当 时,如图 , ( )
A.
B.
C.
D.
15、如图所示,设 表示平行四边形, 表示矩形, 表示菱形, 表示正方形,则下列四个图形中,能表示它们之间关系的是( )
A.
B.
C.
D.
二、填空题(本大题共有5小题,每小题5分,共25分)
四条边相等的四边形是菱形,不一定是正方形,该说法错误,符合题意;
对角线相等的菱形是正方形,该说法正确,不符合题意;
对角线垂直的矩形是正方形,该说法正确,不符合题意.
故正确答案选:四条边相等的四边形是正方形.
3、矩形、菱形、正方形都具有的性质是( ).
A. 对角线互相垂直
B. 对角线平分每一组对角
C. 对角线互相平分
6、 在 中, , 是边 上一点, 交 于点 , 交 于点 ,若要使四边形 是菱形,只需添加条件( ).
A.
B.
C.
D.
【答案】C
【解析】解:只需添加
,
四边形 是平行四边形
四边形 是菱形
故正确答案是:
7、过矩形 的四个顶点作对角线 、 的平行线分別交于 、 、 、 四点,则四边形 是().
北师大版八年级数学下册第一章测试题及答案
北八(下)第一章1.4-1.6章节水平测试题一、填空题:(每题3分,共24分)1.已知不等式7)1(68)2(5+-<+-x x 的最小整数解为方程42=-ax x 解,则a 值是 .2.已知)1(645)25(3+-<++x x x ,化简xx --+11= .3.a 取正整数 时,方程73-=a x 的解是负整数.4.k 为整数 时,方程425+-=-x k x 的解在1和3之间.7.如果三角形的三边长分别是 3 cm 、(1-2a ) cm 、8 cm ,那么a 的取值范围是________.8.如图,某航空公司托运行李的费用与托运行李的重量的关系为一次函数,由图可知行李的重量只要不超过________千克,就可以免费托运.二、选择题:(每题3分,共24分)9.不等式3(x -2)≤x +4的非负整数解有几个( ) A .4 B .5 C .6D .无数个10.不等式4x -41141+<x 的最大的整数解为( ) A .1B .0C .-1D .不存在A .5B .4C .3D .无数个A .a =3 b =5B .a =-3 b =-5C .a =-3 b =5D .a =3 b =-513.若方程4152435-=-m m x 的解是非正数,则m 的取值范围是( ). A 3m ≤ B 2m ≤ C 3m ≥ D 2m ≥14.七年级(3)班同学假日外出游玩,要拍合影留念,若一张彩色底片要0.57,冲印一张要0.35元,每人预定要一张,花钱不超过0.45元,则参加合影的同学至少有( )个人?A 5 B.6 C.7 D.815.如果关于x 、y 的方程组⎩⎨⎧=+=-a y x y x 53102的解满足x >0且y <0,则实数a 的取值范围是( ).A2<a<3 B-3<a<2 C-2<a <3 D-3<a<-216.某单位准备和一个体车主或一国营出租车公司中的一家签订月租车合同,设汽车每月行驶x 千米,个体车主收费y 1元,国营出租车公司收费为y 2元,观察下列图象可知,当x( )时,选用个体车较合算.A. x<1500B. x=1500C. x>1200D. x >1500 三、解答题:(共30分)17(10分)解下列不等式(组),并把解集在数轴上表示出来:(1)612312531+-≥--x x (2)18.(10分)已知5x -2y =6,当x 满足6≤7x -1<13时,请确定y 的取值范围.19.(10分)如果方程组,⎩⎨⎧-=++=+m y x my x 13313的解满足x +y >0,求m 的取值范围,并把m 的值表示在数轴上. 是多少?四、综合探究题:(22分)20.(10分)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需调往A 县10辆,调至B 县8辆,已知从甲仓库调往A 县和B 县的费用分别40元和80元;从乙仓库调往A 县和B 县的费用分别为30元和50元.(1)设从乙仓库调往A 县农用车x 辆.求总运费y 与x 的函数关系式. (2)若要求总运费不超过900元.问共有几种调配方案? (3)求出总运费最低的调运方案,最低运费是多少?21.(12分)某企业现有工人80人,平均每人每年可创产值a 元.为适应市场经济改革,现决定从中分流一部分人员从事服务行业.分流后企业工人平均每人每年创造产值可增加30%,服务行业人员平均每人每年可创产值2.5a 元.要使分流后企业工人的全年总产值不低于原来全年总产值,而且服务行业人员全年创产值不低于原企业全年总产值的一半.假设你是企业管理者,请你确定分流到服务行业的人数. 五、备选题22.弟弟上午八点钟出发步行去郊游,速度为每小时4千米;上午十点钟哥哥从同一地点骑自行车去追弟弟.如果哥哥要在上午十点四十分之前追上弟弟,问哥哥的速度至少是多少? 23.某初一新生中,有若干住宿生,分住若干间宿舍,若每间住4人,则有21人无处住;若每间住7人,则有一间不空也不满.求住宿生人数.24.某商场计划投入一笔资金采购一批紧销商品,经过市场调查发现:如果月初出售可获利15%,并把本利再投资其他商品,到月末又可获利10%,如果月末出售可获利30%.但要付出仓储费用700元.请问:根据商场的资金状况,如何购销获利较多? 新 课 标 第一网 参考答案:一、1.4=a (提示:3->x ,则最小的整数解是2-=x ,原方程424=+-a .∴ 4=a ) 2.-2(提示:不等式的解集是1-<x ,∴2)1(111-=----=--+x x x x )3.4,1(解方程37-=a x ,∵ 07<-a ,7<a ,∴ 符合条件的a 值是4,1)4.2,3,4,5,6(∵32+=k x ,即3321<+<k )5. a ≤26. 2≤x <57. -5<a <-28. 20二、9.C 10.B 11.B 12.D 13.A (提示:3-=m x .∵ 0≤x ∴ 03≤-m 即3≤m ) 14.B (6人 提示:设至少x 人合影,依题意,得x x 45.035.057.0≤+)15.C 提示:解方程组⎩⎨⎧=+=-a y x y x 53102得这个方程组的解是⎩⎨⎧-=+=622a y a x∵ x >0且y <0, ∴ ⎩⎨⎧<->+06202a a 解得:-2<a <316.D三、17. (1)720≤x (2)x ≤1 (数轴略) 新 课标第 一 网18.解法一:由6≤7x -1<13得:1≤x <2由5x -2y =6 得:x =526y+, ∴ 1≤526y+<2则5≤6+2y <10 -1≤2y <4∴ -21≤y <2解法二:由6≤7x -1<13得:1≤x <2由5x -2y =6得:y =265-x∵ 1≤x <2,5≤5x <10 -1≤5x -6<4∴ -21≤265-x <2即-21≤y <219. 由方程组⎩⎨⎧-=++=+②13①313my x m y x①+②得:4x +4y =2+2m ,∴ x +y =21m+∵ x +y >0,∴21m+>0, 解得:m >-120.小于或等于11km ,大于10km .(提示:设甲、乙两地间距离为x km .根据题意,得2.1710)5(2.116≤+-<x ∴ 1110≤<x )21.解:设分流x人从事服务行业,则剩余(80-x )人从事企业生产.根据题意得:⎪⎩⎪⎨⎧⨯≥≥-+a ax a x a 80215.280)80(%)301(即⎩⎨⎧≥≤a ax aax 405.2243.1∴ ⎪⎩⎪⎨⎧≥≤1613618x x又∵ x 是整数∴ x =16,17或18即可分流16人或17人、18人去从事服务行业. 五、22.解:设哥哥的速度为x 千米/小时根据题意得:6040x ≥4(2+6040)解得:x ≥16答:哥哥的速度至少是16千米/小时.23.解:设有x 间宿舍,则总人数为(4x +21)人. 由题意得:解不等式①得x >7.解不等式②得x <328.∴这个不等式组的解集是7<x <328.∵房间数只能取正整数. ∴x =8或9.当x =8时,人数:4×8+21=53(人) 当x =9时,人数:4×9+21=57(人)24.解:设商场投入资金x 元,第一种投资情况下,获总利用y 1元表示.第2种投资情况下获总利用y 2元表示.由题意得:y1=x(1+15%)(1+10%)-xy1=0.265x.y2=x(1+30%)-x-700y2=0.3x-700(1)当y1>y2时,0.265x>0.3x-700,x<2000;(2)当y1=y2时,0.265x=0.3x-700,x=2000;(3)当y1<y2时,0.265x<0.3x-700,x>2000.答:(1)当投资超过2000元时,选择第二种投资方式;(2)当投资为2000元时,两种选择都行;(3)当投资在2000元内时,选择第一种投资方式.新课标第一网。
北师大版初中数学八下第一章综合测试试题试卷含答案
第一章综合测试一、选择题(共10小题,满分30分)1.如图已知100BAC ︒∠=,AB AC =,AB AC 、的垂直平分线分别交BC 于D E 、,则DAE ∠=( )A .40︒B .30︒C .20︒D .10︒2.如图,ABC △中,AB AC =,高BD CE 、相交于点O ,连接AO 并延长交BC 于点F ,则图中全等的直角三角形共有( )A .4对B .5对C .6对D .7对 3.如果一个三角形一条边上的中点到其它两边距离相等,那么这个三角形一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .斜三角形 4.Rt ABC △中,9046C B ︒︒∠=∠=,,则A ∠=( ) A .44︒ B .34︒ C .54︒ D .64︒ 5.在ABC △中,若0A B C ∠+∠−∠=,则ABC △是( ) A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形6.如图,AC AD BC BD ==,,则( )A .AB 垂直平分CD B .CD 垂直平分ABC .CD 平分ACB ∠D .以上结论均不对7.如图,ABC △中,D 为BC 上一点,ABD △的周长为12cm ,DE 是线段AC 的垂直平分线,5AE =cm ,则ABC △的周长是( )A .17cmB .22cmC .29cmD .32cm8.如图,在ABC △中,AF 平分BAC ∠,AC 的垂直平分线交BC 于点E ,60B ︒∠=,30C ︒∠=,则FAE ∠为( )A .10︒B .15︒C .20︒D .30︒9.如图,AD 是ABC △的角平分线,,DF AB ⊥,垂足分别为点F ,DE DG =,若ADG △和ADE △的面积分别为50和39,则DEF △的面积为( )A .11B .7C .5.5D .3.510.如图,ABC △中,90C ︒∠=,AD 平分BAC ∠,过点D 作DE AB ⊥于E ,若4DC =,则DE =( )A .3B .5C .4D .6二、填空题(共7小题,满分28分)11.若等腰三角形的一个内角为50︒,则这个等腰三角形的顶角为________.12.下列四组数:①5,12,13;②7,24,25;③1,2,4;④5,6,8其中可以作为直角三角形三边长的有________.(把所有你认为正确的序号都写上)13.如图,在ABC △中,90C ∠=︒,AC BC =,BD 平分ABC ∠交AC 于点D ,DE AB ⊥于点E .若AB =10cm ,则ADE △的周长为________cm .14.在ABC △中,AB AC =,AB 的垂直平分线交AC 于D ,交AB 于E ,连接BD ,若40ADE ︒∠=,则ABC ∠=________.15.如图,BD 垂直平分线段AC ,AE BC ⊥,垂足为E ,交BD 于点P ,3cm PE =,则点P 到直线AB 的距离是________cm .16.如图,在ABC △中,点D 是BC 边上一点,12∠=∠,34∠=∠,63BAC ︒∠=,则DAC ∠的度数为________.17.如图,在Rt ABC △中,90C ︒∠=,AD 平分BAC ∠,交BC 于点D ,若103AB CD ==,,则ABC S =△________.三、解答题(共8小题,满分62分)18.如图,ABC △中,90C =∠,4AC =,8BC =.(1)用直尺和圆规作AB 的垂直平分线;(保留作图痕迹,不要求写作法) (2)若(1)中所作的垂直平分线交BC 于点D ,求BD 的长.19.如图,已知ABC ∠,求作:(1)ABC ∠的平分线BD (写出作法,并保留作图痕迹);(2)在BD 上任取一点P ,作直线PQ ,使PQ AB ⊥(不写作法,保留作图痕迹).20.如图,ABC △中,D 是BC 上的一点,若10AB =,6BD =,8AD =,17AC =,求ABC △的面积.21.如图所示、AOB △和D CO ∆均为等腰直角三角形,90AOB COD ︒∠=∠=,D 在AB 上.(1)求证:AOC BOD △≌△;(2)若12AD BD ==,,求CD 的长.22.如图,已知ABC △中,AB AC BD CE =,、是高,BD 与CE 相交于点O . (1)求证:OB OC =;(2)若50ABC ︒∠=,求BOC ∠的度数.23.已知锐角ABC △,45ABC AD BC ︒∠=⊥,于D ,BE AC ⊥于E ,交AD 于F . (1)求证:BDF ADC △≌△;(2)若43BD DC ==,,求线段BE 的长度.24.如图,AB BC ⊥,射线CM BC ⊥,且5cm BC =,1cm AB =,点P 是线段BC (不与点B C 、重合)上的动点,过点P 作DP AP ⊥交射线CM 于点D ,连结AD .(1)如图1,若4cm BP =,则CD =________;(2)如图2,若DP 平分ADC ∠,试猜测PB 和PC 的数量关系,并说明理由;(3)若PDC △是等腰三角形,则CD =________cm .(请直接写出答案)25.如图,在ABC △中,20AB AC ==厘米,B C ∠=∠,16BC =厘米,点D 为AB 的中点,如果点P 在线段BC 上以6厘米/秒的速度由点向点运动,同时点Q 在线段CA 上由C 点向A 点运动.当一个点停止运动时,另一个点也随之停止运动.(1)用含有t 的代数式表示CP ,则CP =________厘米;(2)若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;(3)若点Q 的运动速度与点P 的运动速度不相等,那么当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?第一章综合测试答案解析一、 1.【答案】C【解析】解:100BAC AC AB ︒∠==,,18040B C BAC ︒︒∴∠=∠=−∠=(),DM EN 、分别是边AB 和AC 的垂直平分线, BD AD AE CE ∴==,,4040B BAD C CAE ︒︒∴∠=∠=∠=∠=,, =100404020DAE ︒︒︒︒∴∠−−=.故选C. 2.【答案】D【解析】解:有7对全等三角形: ①BDC CEB △≌△,理由是:AB AC =, ABC ACB ∴∠=∠,BD 和CE 是两腰上的高, 90BDC CEB ︒∴∠=∠=,在BDC △和CEB △中,BDC CEB ACB ABC BC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,BDC CEB AAS ∴△≌△(), BE DC ∴=.②BEO CDO △≌△,理由是:在BEO △和CDO △中,BEO CDO BOE COD BE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,BEO CDO AAS ∴△≌△(). ③AEO ADO △≌△,理由是: 由BEO CDO △≌△得:EO DO =,在Rt AEO △和Rt ADO △中,AO AO EO OD =⎧⎨=⎩,,Rt Rt AEO ADO HL ∴△≌△(), EAO DAO ∴∠=∠.④ABF ACF △≌△,理由是:在ABF △和ACF △中,AB AC EAO DAO AF AF =⎧⎪∠=∠⎨⎪=⎩,,,⑤BOF COF △≌△,理由是:AB AC BAF CAF =∠=∠,, BF FC AFB AFC ∴=∠=∠,,在BOF △和COF △中,OF OF AFB ADC BF FC =⎧⎪∠=∠⎨⎪=⎩,,,BOF COF SAS ∴△≌△(). ⑥AOB AOC △≌△,理由是:在AOB △和AOC △中,AO AO BAO CAO AB AC =⎧⎪∠=∠⎨⎪=⎩,,,AOB AOC SAS ∴△≌△(). ⑦ABD ACE △≌△,理由是: 在ABD △和ACE △中, ABD ACE SAS ∴△≌△(). 故选:D. 3.【答案】B 【解析】如右图,DE AB DF AC ⊥⊥,,90BED DFC ︒∴∠=∠=,在BDE △和CDF △,BD CD DE DF ==,,DBE DFC HL ∴△≌△(), B C ∴∠=∠, AB AC ∴=,∴这个三角形一定是等腰三角形. 故选B. 4.【答案】A【解析】解:9046904644C B A ︒︒︒︒︒∠=∠=∴∠=−=,,.故选A. 5.【答案】A【解析】解:0A B C ∠+∠−∠=,A B C ∴∠+∠=∠,180A B C ︒∠+∠+∠=,90C ︒∴∠=,ABC ∴△是直角三角形.故选择:A. 6.【答案】A 【解析】解:AC AD BC BD AB AB ===,,,CAB DAB ∴∠=∠,且AC AD =,AB ∴垂直平分CD .故选:A. 7.【答案】B【解析】因为DE 是AC 的垂直平分线,所以AD CD =,AE EC =,而5cm AE =,所以10cm AC =,而ABC C AB BC AC =++△,ABC C AB BD AD AB BD CD AB BC =++=++=+△,所以ABC ABD C C AC =+=△△cm 10c m 12m c 22+=.8.【答案】B【解析】解:在ABC ∆中,60B ︒∠=,30C ︒∠=,180690030BAC ︒︒︒︒∴−−=∠=,AF 平分BAC ∠,11904522CAF BAC ︒︒⨯∴∠=∠==;DE 垂直平分AC , AE CE ∴=,30EAD C ︒∴∠=∠=,453015FAE CAF CAE ︒︒︒∴∠=∠−∠=−=.故选:B. 9.【答案】C【解析】作DM DE =交AC 于M ,作DN AC ⊥于点N ,DE DG =, DM DG ∴=,AD 是ABC △的角平分线,DF AB ⊥, DF DN ∴=,在Rt DEF △和Rt DMN △中,DN DFDM DE ==⎧⎨⎩, Rt Rt DEF DMN HL ∴△≌△(), ADG △和AED △的面积分别为50和39, 503911MDG ADG ADM S S S ∴=−=−=△△△,1152.5112DNM EDF MDG S S S ===⨯=△△△.故选C. 10.【答案】C【解析】解:90C ︒∠=,AD 平分BAC DE AB ∠⊥,于E ,DE DC ∴=, 4DC =,4DE ∴=.故选:C. 二、11.【答案】50︒或80︒ 【解析】如右图所示,ABC △中,AB AC =,有两种情况:①顶角50A ︒∠=; ②当底角是50︒时,AB AC =,50B C ︒∴∠=∠=, 180A B C ︒∠+∠+∠=, 180505080A ︒︒︒︒∴∠=−−=,∴这个等腰三角形的顶角为50︒或80︒. 故答案为50︒或80︒. 12.【答案】①②【解析】解:①22251213+=,能构成直角三角形; ②22272425+=,能构成直角三角形; ③222124+≠,不能构成直角三角形; ④222568+≠,不能构成直角三角形, 所以可以作为直角三角形三边长的有①②, 故答案为:①②. 13.【答案】10 【解析】BD 平分ABC ∠交AC 于D ,DE AB ⊥于E ,90DBE DBC BED C BD BD ︒∴∠=∠∠=∠==,,,BDE BDC AAS ∴△≌△(), DE DC BE BC ∴==,,ADE ∴△的周长10cm DE DA AE DC DA AE CA AE BC AE BE AE AB =++=++=+=+=+==.故答案为:10. 14.【答案】65︒ 【解析】DE 是AB 的垂直平分线,DE AB ∴⊥,90AED ︒∴∠=.又40ADE ︒∠=,50A ︒∴∠=.又AB AC =,18050265ABC ACB ︒︒︒∴∠=∠=−÷=().故答案为65︒. 15.【答案】3【解析】过点P 作PM AB ⊥与点M ,BD 垂直平分线段AC , AB CB ∴=,ABD DBC ∴∠=∠,即BD 为角平分线,又PM AB PE CB ⊥⊥,,3PM PE ∴==.16.【答案】24︒【解析】设12x ∠=∠=,则43122x ∠=∠=∠+∠=,63DAC ︒∠=, 63DAC x ︒∴∠=−,在ABC △中,有263180x x ︒︒++=,39x ︒=,°°6324DAC x ∴∠=−=,故答案为:24︒. 17.【答案】15 【解析】解:作DE AB ⊥于E ,90C ︒∠=, DC AC ∴⊥,AD 平分BAC DC AC DE A ∠⊥⊥,,, DE CD ∴=, 103AB CD ==,,∴111031522ABDSAB DE =⨯⨯=⨯⨯=. 故答案为15. 三、18.【答案】(1)如图直线MN 即为所求.(2)5BD =【解析】(2)MN 垂直平分线段AB ,DA DB ∴=,设DA DB x ==,在Rt ACD △中,222AD AC CD =+,()22248x x ∴=+−,解得5x =, 5BD ∴=.19.【答案】解:(1)如下图所示,作法:①以B 点为圆心,任意长为半径画弧分别交BA BC 、于M N 、点; ②再以M N 、为圆心,以大于它们之间的距离的二分之一为半径画弧,两弧在ABC ∠内相交于E ,则BD 为所作;(2)如下图,PQ 为所作.20.【答案】解:2222226810BD AD AB +=+==,ABD ∴△是直角三角形,AD BC ∴⊥,在Rt ACD △中,15CD ===,()111 21884222ABC BC AD BD CD S AD ∴==+=⨯⨯=△, 因此ABC △的面积为84.答:ABC △的面积是84.21.【答案】解:(1)证明:如右图,1903︒∠=−∠,2903︒∠=−∠,12∴∠=∠.又OC OD =,OA OE =,AOC BOD ∴△≌△.(2)由AOC BOD △≌△有:2AC BD ==,45CAO BOD ︒∠=∠=,90CAB ︒∴∠=,故CD =22.【答案】解:(1)证明:AB AC =,ABC ACB ∴∠=∠,BD CE 、是ABC △的两条高线,DBC ECB ∴∠=∠,OB OC ∴=.(2)50ABC AB AC ︒∠==,,18025080A ︒︒︒∴∠=−⨯=,18080100BOC ︒︒︒∴∠=−=.23.【答案】解:(1)证明:45AD BC ABC ︒⊥∠=,, 45ABC BAD ︒∴∠=∠=,AD BD ∴=,DA BC BE AC ⊥⊥,,9090C DAC C CBE ︒︒∴∠+∠=∠+∠=,,CBE DAC ∴∠=∠,且90AD BD ADC ADB ︒=∠=∠,=,BDF ADC ASA ∴△≌△(). (2)BDF ADC △≌△,43AD BD CD DF BF AC ∴=====,,,5BF ∴=,5AC ∴=,11 22ABCBC A S AD C BE =⨯⨯=⨯⨯, 745BE =∴⨯⨯, 285BE ∴=. 24.【答案】(1)4cm (2)PB PC =,理由:如图2,延长线段AP DC 、交于点E , DP 平分ADC ∠,ADP EDP =∴∠∠.DP AP ⊥,90DPA DPE ︒∴∠==∠,在DPA △和DPE △中,ADP EDP DP DP DPA DPE ∠=∠⎧⎪=⎨⎪∠=∠⎩DPA DPE ASA ∴△≌△(), PA PE ∴=.AB BP CM CP ⊥⊥,,ABP ECP Rt ∴∠=∠=∠.在APB △和EPC △中,ABP ECP APB EPC PA PE ∠=∠⎧⎪∠=⎨⎪=⎩APB EPC AAS ∴△≌△(), PB PC ∴=.(3)4【解析】(1)5cm 4cm BC BP ==,,1cm PC ∴=,AB PC ∴=,DP AP ⊥,90APD ︒=∴∠,90APB CPD ︒∴∠=∠+,90APB CPD ︒∠=∠+,90APB BAP ︒∠=+∠, BAP CPD =∴∠∠,在ABP △和PCD △中,B CBAP CPD AB PC∠=∠⎧⎪∠=∠⎨⎪=⎩,ABP PCD ∴△≌△,4cm BP CD =∴=.(3)PDC △是等腰三角形,PCD ∴△为等腰直角三角形,即45DPC ︒∠=, 又DP AP ⊥,45APB ︒∴∠=,1cm BP AB ∴==,4cm PC BC BP ∴=−=,4cm CD CP ∴==.25.【答案】(1)166t −(2)当1t =时,616BP CQ ==⨯=(厘米), 20AB =厘米,点D 为AB 的中点,10BD ∴=厘米.又PC BC BP =−,16BC ∴=厘米,16610PC ∴=−=(厘米),PC BD =在BPD △和CQP △中,BD PC B C BP CQ =∠=∠=,,,BPD CQP SAS ∴△≌△()(3)P Q v v ≠BP CQ ∴≠又BPD CPQ △≌△,B C ∠=∠,8cm BP PC ∴==,10cm CQ BD ==, ∴点P ,点Q 运动的时间4863t =÷=(秒),107.543Q CQv t ∴===(厘米/秒).【解析】(1)6BP t =,则166PC BC BP t =−=−.。
2020春北师大版数学八年级下册(BS)周周测第一章 三角形的证明 周周测8(1.4)
·1.4角平分线一、选择题1.到三角形三条边的距离都相等的点是这个三角形的()A. 三条中线的交点B. 三条高的交点C. 三条边的垂直平分线的交点D. 三条角平分线的交点2.如图,在△ABC中,=90°,AE平分,CE=6,则点E到AB的距离是()A. 8B. 7C. 6 D . 53.如图,△ABC的外角∠CBD和∠BCE的平分线相交于点F,则下列结论正确的是()A. 点F在BC边的垂直平分线上B. 点F在∠BAC的平分线上C. △BCF是等腰三角形D. △BCF是直角三角形4.△ABC中,∠C=90°,AD为角平分线,BC=32,BD:DC=9:7,则点D到AB的距离为()A. 18cmB. 16cmC. 14cmD. 12c m5.如图,直线a,b,c表示交叉的公路,现要建一货物中转站,要求它到三条公路的距离相等,则可供选择的站址有()A. 一处B. 两处C. 三处D. 四处6.如图,OP平分∠AOB,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论正确的是()A. PD=PEB. PE=OEC. ∠DPO=∠EOPD. PD=OD7.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A. 5B. 7C. 10D.38.如图,在△ABC中,∠BAC的平分线AD=10,AC=8,CD=6,则点D到AB边的距离是()A. 8B. 7C. 6D. 无法确定9.如图,∠AOP=∠BOP=15°,PC//OA,PD⊥OA,若PC=4,则PD等于()A. 4B. 3C. 2 D . 110.如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=8,ED=2,AC=3,则AB的长是()A. 5B. 6C. 7 D . 811.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若CD=BD,点D到边AB的距离为6,则BC的长是()A. 6B. 12C. 18D.24二、填空题12.如图,在△ABC中,∠C=90°,AD是角平分线,AC=5,DC=3,则点D到AB的距离是________.13.如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为________.14.如图,在Rt△ABC中,∠C=90°,AB=8,AD平分∠BAC,交BC边于点D,若CD=2,则△ABD的面积为________ .15.如图,在△ABC中,∠ACB=90°,AD平分∠BAC,BC=10cm,BD:DC=3:2,则点D 到AB的距离________cm.16.如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AD=2,BC=5,则△BCD的面积是________.17.如图,在△ABC中,∠C=90°,BD平分∠ABC,若BD=5,BC=4,则点D到边AB的距离为________.18.点O是△ABC内一点,且点O到三边的距离相等,∠A=70°,则∠BOC的度数为________.19.表示三条相互交叉直线工路上,现要建一个货运中转站,要求它到三条公路的距离相等,则选择的地址有________处.20.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是________.21.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④DA平分∠CDE;⑤S△ABD:S△ACD=AB:AC.其中,正确的有________个.三、解答题22.如图,已知PB⊥AB,PC⊥AC,且PB=PC,D是AP上的一点,求证:BD=CD.23.现要在三角地ABC内建一中心医院,使医院到A、B两个居民小区的距离相等,并且到公路AB和AC的距离也相等,请确定这个中心医院的位置.24.如图,BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=DC,求证:AD是∠BAC的平分线.25.如图,在△ABC中,AD平分∠BAC.(1)求证:S△ABD:S△ACD=AB:AC;(2)若AB=4,AC=5,BC=6,求BD的长.答案:1. A2.C3.B4.C5.D6.A7.A8.C9.C 10.A 11.C 12.3 13.6 14.8 15.4 16.5 17.3 18.125°19.4 20.30 21.522.证明:∵PB⊥BA,PC⊥CA在Rt△PAB与Rt△PAC中∴Rt△PAB≌Rt△PAC(HL)∴∠APB=∠APC在△PBD与△PCD中∴△PBD≌△PCD(SAS)∴BD=CD23.解:作AB的垂直平分线EF,作∠BAC的角平分线AM,两线交于P,则P为这个中心医院的位置.24.证明:∵DE⊥AB的延长线于点E,DF⊥AC于点F,∴∠BED=∠CFD,∴△BDE与△CDF是直角三角形,∴Rt△BDE≌Rt△CDF,∴DE=DF,∴AD是∠BAC的平分线.25.(1)证明:过D作DE⊥AB于E,DF⊥AC于F,∵AD平分∠BAC,∴DE=DF,(2)解:∵S△ABD:S△ACD=AB:AC=BD:CD,∵BC=6,。
数学(北师大版)八年级下册第一~第六章单元测试题-含答案
第一章:一元一次不等式一、填空题(每小题3分,共30分)1.若代数式2151--+t t 的值不小于-3,则t 的取值范围是_________. 2.不等式03≤-k x 的正数解是1,2,3,那么k 的取值范围是________. 3.若0)3)(2(>-+x x ,则x 的取值范围是________. 4.若b a <,用“<”或“>”号填空:2a______b a +,33ab -_____. 5.若11|1|-=--x x ,则x 的取值范围是_______. 6.如果不等式组⎩⎨⎧><m x x 5有解,那么m 的取值范围是_______.7.若不等式组⎩⎨⎧>-<-3212b x a x 的解集为11<<-x ,那么)3)(3(+-b a 的值等于_______.8.函数2151+-=x y ,1212+=x y ,使21y y <的最小整数是________. 9.如果关于x 的不等式5)1(+<-a x a 和42<x 的解集相同,则a 的值为________. 10.一次测验共出5道题,做对一题得一分,已知26人的平均分不少于4.8分,最低的得3分,至少有3人得4分,则得5分的有_______人.二、选择题(每小题3分,共30分)1.当21-=x 时,多项式12-+kx x 的值小于0,那么k 的值为 [ ]. A .23-<k B .23<k C .23->k D .23>k2.同时满足不等式2124xx -<-和3316-≥-x x 的整数x 是 [ ].A .1,2,3B .0,1,2,3C .1,2,3,4D .0,1,2,3,43.若三个连续正奇数的和不大于27,则这样的奇数组有 [ ]. A .3组 B .4组 C .5组 D .6组 4.如果0>>a b ,那么 [ ]. A .b a 11->-B .b a 11<C .ba 11-<- D .a b ->-5.某数的2倍加上5不大于这个数的3倍减去4,那么该数的范围是 [ ].A .9>xB .9≥xC .9<xD .9≤x 6.不等式组⎩⎨⎧<>+72013x x 的正整数解的个数是 [ ].A .1B .2C .3D .47.关于x 的不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32有四个整数解,则a 的取值范围是 [ ].A .25411-≤<-a B .25411-<≤-a C .25411-≤≤-a D .25411-<<-a 8.已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,则a b的值为 [ ].A .-2B .21-C .-4D .41- 9.不等式组⎩⎨⎧>-<+-mx x x 62的解集是4>x ,那么m 的取值范围是 [ ].A .4≥mB .4≤mC .4<mD .4=m10.现用 甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排 [ ].A .4辆B .5辆C .6辆D .7辆 三、解答题(本大题,共40分) 1.(本题8分)解下列不等式(组): (1)1312523-+≥-x x ;(2)⎪⎩⎪⎨⎧<--+->++-.,021331215)1(2)5(7x x x x2.(本题8分)已知关于x ,y 的方程组⎩⎨⎧=+=+3135y x my x 的解为非负数,求整数m 的值.3.(本题6分)若关于x 的方程52)4(3+=+a x 的解大于关于x 的方程3)43(4)14(-=+x a x a 的解,求a 的取值范围.4.(本题8分)有人问一位老师,他所教的班有多少学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐,七分之一的学生念外语,还剩下不足6位同学在操场踢足球”.试问这个班共有多少位学生?5.(本题10分)某食品厂生产的一种巧克力糖每千克成本为24元,其销售方案有如下两种:方案一:若直接给本厂设在武汉的门市部销售,则每千克售价为32元,但门市部每月需上缴有关费用2400元;方案二:若直接批发给本地超市销售,则出厂价为每千克28元.若每月只能按一种方案销售,且每种方案都能按月销售完当月产品,设该厂每月的销售量为xkg.(1)你若是厂长,应如何选择销售方案,可使工厂当月所获利润更大?(2)厂长看到会计送来的第一季度销售量与利润关系的报表后(下表),发现该表填写的销售量...与实际有不符之处,请找出不符之处,并计算第一季度的实际销量总量.四、探索题(每小题10,共20分)1.甲从一个鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊上买了两条鱼,平均每条b元,后来他又以每条2ba元的价格把鱼全部卖给了乙,请问甲会赚钱还是赔钱?并说明原因.2.随着教育改革的不断深入,素质教育的全面推进,某市中学生利用假期参加社会实践活动的越来越多.王伟同学在本市丁牌公司实习时,计划发展部给了他一份实习作业:在下述条件下规划出下月的产量.假如公司生产部有工人200名,每个工人每2小时可生产一件丁牌产品,每个工人的月劳动时间不超过192小时,本月将剩余原料60吨,下个月准备购进300吨,每件丁牌产品需原料20千克.经市场调查,预计下个月市场对丁牌产品需求量为16000件,公司准备充分保证市场需求.请你和王伟同学一起规划出下个月产量范围.第一章一元一次不等式和一元一次不等式组单元测试参考答案一、填空题 1.337≤t 2.129<≤k提示:不等式03≤-k x 的解集为 3k x ≤.因为不等式03≤-k x 的正数解是1,2,3,所以 433<≤k.所以129<≤k . 3.3>x 或2-<x 提示:由题意,得 ⎩⎨⎧>->+0302x x 或⎩⎨⎧<-<+0302x x前一个不等式的解集为3>x ,后一个不等式的解集为2-<x 4.<,> 5.1<x 6.5<m 7.-2提示:不等式组⎩⎨⎧>-<-3212b x a x 的解集为 2123+<<+a x b ,由题意,得⎪⎩⎪⎨⎧=+-=+121123a b 解得 ⎩⎨⎧-==21b a 所以2)32()31()3)(3(-=+-⨯-=+-b a . 8.0 9.7 10.22提示:设得5分的有x 人,若最低得3分的有1人,得4分的有3人,则22≤x ,且8.4284)25(35⨯≥⨯-++x x ,解得 8.21≥x .应取最小整数解,得 x=22.二、选择题 1.C2.B 3.B提示:设三个连续奇数中间的一个为x ,则 27)2()2(≤+++-x x x . 解得 9≤x .所以72≤-x .所以 2-x 只能取1,3,5,7. 4.C 5.B 6.C 7.B提示:不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32的解集为a x 428-<<.因为不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32有四个整数解,所以134212≤-<a .解得25411-<≤-a . 8.A提示:不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为212++<≤+b a x b a .由题意,得⎪⎩⎪⎨⎧=++=+52123b a b a 解得⎩⎨⎧=-=63b a .则2163-=-=a b . 9.B 10.C 三、解答题1.解:(1)去分母,得 15)12(5)23(3-+≥-x x . 去括号,得1551069-+≥-x x 移项,合并同类项,得 4-≥-x . 两边都除以-1,得4≤x .(2)⎪⎩⎪⎨⎧<--+->++-.,021331215)1(2)5(7x x x x解不等式①,得 2>x . 解不等式②,得25>x . 所以,原不等式组的解集是25>x . 2.解:解方程组⎩⎨⎧=+=+3135y x m y x 得⎪⎪⎩⎪⎪⎨⎧-=-=23152331m y m x .由题意,得⎪⎪⎩⎪⎪⎨⎧≥-≥-0231502331m m解得 331531≤≤m . 因为m 为整数,所以m 只能为7,8,9,10.3.解:因为方程52)4(3+=+a x 的解为372-=a x ,方程3)43(4)14(-=+x a x a 的解为a x 316-=.由题意,得a a 316372->-.解得 187>a . 4.解:设该班共有x 位同学,则 6)742(<++-x x x x .∴6283<x .∴56<x .又∵x ,2x ,4x ,7x都是正整数,则x 是2,4,7的最小公倍数.∴28=x .故该班共有学生28人. 5.解:(1)设利润为y 元.方案1:240082400)2432(1-=--=x x y , 方案2:x x y 4)2428(2=-=. 当x x 424008>-时,600>x ; 当x x 424008=-时,600=x ; 当x x 424008<-时,600<x . 即当600>x 时,选择方案1; 当600=x 时,任选一个方案均可; 当600<x 时,选择方案2.① ②(2)由(1)可知当600=x 时,利润为2400元.一月份利润2000<2400,则600<x ,由4x=2000,得 x=500,故一月份不符. 三月份利润5600>2400,则600>x ,由560024008=-x ,得 x=1000,故三月份不符.二月份600=x 符合实际.故第一季度的实际销售量=500+600+1000=2100(kg ). 四、探索题1.解:买5条鱼所花的钱为:b a 23+,卖掉5条鱼所得的钱为:2)(525b a b a +=+⨯.则2)23(2)(5ab b a b a -=+-+. 当b a >时,02<-ab ,所以甲会赔钱. 当b a <时,02>-ab ,所以甲会赚钱. 当b a =时,02=-ab ,所以甲不赔不赚. 2.解:设下个月生产量为x 件,根据题意,得⎪⎩⎪⎨⎧≥⨯+≤⨯≤.,,160001000)30060(202001922x x x 解得 1800016000≤≤x .即下个月生产量不少于16000件,不多于18000件.第二章因式分解单元测试AB 卷仔细审题,细心答题,相信你一定会有出色的表现! (时间90分钟 满分120分)一、精心选一选(每题4分,总共32分)1.下列各式中从左到右的变形属于分解因式的是( ).A.2(1)a a b a ab a +-=+-B.22(1)2a a a a --=--C.2249(23)(23)a b a b a b -+=-++D.121(2)x x x+=+2.把多项式-8a 2b 3c +16a 2b 2c 2-24a 3bc 3分解因式,应提的公因式是( ), A.-8a 2bc B. 2a 2b 2c 3C.-4abcD. 24a 3b 3c 33. 下列因式分解错误的是()A .22()()x y x y x y -=+-B .2269(3)x x x ++=+C .2()x xy x x y +=+D .222()x y x y +=+4.下列多项式中,可以用平方差公式分解因式的是( ) A.x 2+1 B.-x 2+1 C.x 2-2 D.-x 2-1 5.把-6(x -y)2-3y(y -x)2分解因式,结果是( ). A.-3(x -y)2(2+y) B. -(x -y)2(6-3y) C.3(x -y)2(y +2)D. 3(x -y)2(y -2)6.下列各式中,能用完全平方公式分解因式的是( ). A.4x 2-2x +1 B.4x 2+4x -1 C.x 2-xy +y 2 D .x 2-x +127.把代数式269mx mx m -+分解因式,下列结果中正确的是A .2(3)m x +B .(3)(3)m x x +-8.式分解公式( ). A.))((22b a b a b a -+=-B.(a +C.2222)(b ab a b a +-=- D.)(2b a a ab a -=- 二、耐心填一填(每空4分,总共32分)1.2a 2b -6ab 2分解因式时,应提取的公因式是 . 2.-x -1=-(____________).3. 因式分解:=-822a .4.多项式92-x 与962++x x 的公因式是 . 5.若a +b=2011,a -b=1,z 则a 2-b 2=_________________. 6.因式分解:1+4a 2-4a=______________________.7.已知长方形的面积是2916a -(43a >),若一边长为34a +,则另一边长为________________.8.如果a 2+ma +121是一个完全平方式,那么m =________或_______. 三、用心算一算(共36分) 1.(20分)因式分解:(1)4x 2-16y 2; (2)()()()()a b x y b a x y ----+(3)x 2-10x +25; (4)()22241x x -+2.(5分)利用因式分解进行计算:(1)0.746×136+0.54×13.6+27.2;3.(满分5分)若2m n -=-,求m n n m -+222的值?4.(6分)3221-可以被10和20之间某两个数整除,求这两个数.八年级数学下册第二章整章水平测试(B )仔细审题,细心答题,相信你一定会有出色的表现! (时间90分钟 满分120分)一、精心选一选(每题4分,总共32分)1.下列各式从左到右的变形中,是因式分解的为( )A.bx ax b a x -=-)(B.222)1)(1(1y x x y x ++-=+-C.)1)(1(12-+=-x x xD.c b a x c bx ax ++=++)( 2.下列多项式,不能运用平方差公式分解的是( )A.42+-m B.22y x -- C.122-y x D.412-x 3.若4x 2-mxy +9y 2是一个完全平方式,则m 的值为( ) A.6 B.±6 C.12 D.±12 4.下列多项式分解结果为()()y x y x -+-22的是( )A.224y x +B.224y x -C.224y x +-D.224y x -- 5.对于任何整数m ,多项式2(45)9m +-都能( )A.被8整除B.被m 整除C.被(m -1)整除D.被(2m -1)整除6.要在二次三项式x 2+□x-6的□中填上一个整数,使它能按x 2+(a +b )x +ab 型分解为(x +a )(x +b )的形式,那么这些数只能是 ( )A .1,-1;B .5,-5;C .1,-1,5,-5;D .以上答案都不对7.已知a=2012x+2009,b=2012x+2010,c=2012x+2011,则多项式a 2+b 2+c 2-ab-bc-ca 的值为( )A.0B.1C.2D.38.满足m 2+n 2+2m -6n +10=0的是( )A.m=1, n=3B.m=1,n=-3C.m=-1,n=-3D.m=-1,n=3 二、耐心填一填(每空4分,总共36分)1.分解因式a 2b 2-b 2= .2.分解因式2x 2-2x +21=______________ 3.已知正方形的面积是2269y xy x ++ (0x >,0y >),利用分解因式,写出表示该正方形的边长的代数式 . 4.若x 2+mx +16=(x -4)2,那么m =___________________.5.若x -y=2,xy=3则-x 2y +xy 2的值为________ . 6.学习了用平方差公式分解因式后,在完成老师布置的练习时,小明将一道题记错了一个符号,他记成了-4x 2-9y 2,请你帮小明想一想,老师布置的原题可能是________. 7.如果多项式142+x 加上一个单项式以后,将成为一个整式完全平方式,那么加上的单项式是 .8.请写出一个三项式,使它能先“提公因式”,再“运用公式”来分解.你编写的三项式是________,分解因式的结果是________. 三、用心算一算(共44分)1.(16分)分解因式(1)-x 3+2x 2-x (2) a 2-b 2+2b -12.(8分) 利用分解因式计算:20112010201020082010220102323-+-⨯-3.(10分)在三个整式2222,2,x xy y xy x ++中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解4.(10分)若3-=+b a ,1=ab ,求32232121ab b a b a ++的值四、拓广探索(共28分)1. (14分)阅读下题的解题过程:已知a 、b 、c 是△ABC 的三边,且满足222244a cbc a b -=-,试判断△ABC 的形状. 解:∵ 222244a cbc a b -=- (A )∴ 2222222()()()c a b a b a b -=+- (B ) ∴ 222c a b =+ (C )∴ △ABC 是直角三角形 (D ) 问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号 ; (2)错误的原因为 ; (3)本题正确的结论是 ;参考答案:一、1.C 2.A 3.D 4.B 5.A 6.D 7.D 8.A二、1. 2ab 2. x +1 3. 2(a +2)(a -2) 4. x +3 5. 2011 6. (2a-1)27. 3a-4 8.22 、-22三、1.(1)解原式=4(x 2-4y 2)=4(x +2y)(x -2y) (2)解原式=(a -b)(x -y +x +y)=2x(a -b)(3)解原式=(x -5)2(4)解原式=(x 2+1+2x)(x 2+1-2x)=(x +1)2(x -1)22.解原式=13.6(7.46+0.54+2)13.6×10=1363.解当m -n=-2时,原式=22)2(2)(222222=-=-=+-n m n mn m 4.因为()()()()()161616882121212121+-=++-,()()()()1684421212121=+++-,又因为42117+=,42115-=,所以3221-可以被10和20之间的15,17两个数整除.四、1.长为a +2b ,宽为a +b2. 解:(1)原式=x 2-4x +4-1=(x -2)2-1=(x -2+1)(x -2-1)=(x -1)(x -3)(2) 原式=x 2+2x +1+1=(x +1)2+1 因为(x +1)2≥0 所以原式有最小值,此时,x=-1参考答案:一、1.C 2.B 3.D 4.C 5.A 6.C 7.D 8.D 二、1.b2(a +1)(a -1) 2. 2(x -21)23. 3x +y4. -85.-66. -4x 2+9y 2或4x 2-9y 27. -4x 2、4x 、-4x 、4x 4、-18.答案不唯一如:a 2x -2ax +x x(a -1)2三、1.解原式=-x(x 2-2x +1)=-x(x -1)22. 解原式=a 2-(b 2-2b +1)=a 2-(b -1)2=(a +b -1)(a -b +1)3.解:222(2)222();x xy x x xy x x y ++=+=+ 或222(2)();y xy x x y ++=+或2222(2)(2)()();x xy y xy x y x y x y +-+=-=+- 或2222(2)(2)()().y xy x xy y x y x y x +-+=-=+- 4.解:当a +b=-3,ab=1时, 原式=21ab(a 2+2ab +b 2)=21ab(a +b)2=21×1×(-3)2=29 四、 1. (1)(C )(2)()22a b -可以为零(3)本题正确的结论是:由第(B )步2222222()()()c a b a b a b -=+-可得:()()222220a bca b ---=所以△ABC 是直角三角形或等腰三角第三章分式单元测试一、选择题(每小题3分,共30分)1.在下列各式mam x x b a x x a ,),1()3(,43,2,3222--÷++π中,是分式的有( ) A.2个 B.3个 C.4个 D.5个 2.要使分式733-x x有意义,则x 的取值范围是( )A.x=37B.x>37C.x<37D.x ≠=373.若分式4242--x x 的值为零,则x 等于( )A.2B.-2C.2±D.0 4.如果分式x+16的值为正整数,则整数x 的值的个数是( ) A.2个 B.3个 C.4个 D.5个5.有游客m 人,若果每n 个人住一个房间,结果还有一个人无房住,这客房的间数为( )A.n m 1- B.1-n m C.n m 1+ D.1+nm6.把a 千克盐溶于b 千克水中,得到一种盐水,若有这种盐水x 千克,则其中含盐( )A.b a ax +千克 B.b a bx +千克 C.b a x a ++千克 D.b ax 千克 7.计算)1(1x x x x -÷-所得的正确结论wei ( ) A.11-x B.1 C.11+x D.-1 8.把分式2222-+-+-x x x x 化简的正确结果为( ) A.482--x x B.482+-x x C.482-x x D.48222-+x x 9.当x=33时,代数式)23(232x x x x x -+÷--的值是( ) A.213- B.213+ C.313- D.313+ 10.某工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走。
北师大版八年级数学下册第一章三角形的证明测试题(原题版 )
【北师大版八年级数学(下)单元测试卷】第一章:三角形的证明一.选择题:(每小题3分共30分)1.等腰三角形两边长分别为4和9,则该三角形第三边的长为( )A .4B .9C .4或9D .大于5且小于132.如图,在ABC 中,90ACB ∠=︒,CD 是高,30A ∠=︒,若3BD a =,则AD 的长度为( )A .6aB .9aC .12aD .15a3.如图,在ABC 中,DE 是AC 的垂直平分线,若ABC 的周长为19cm ,ABD △的周长为13cm ,则AE 的长为( )A .2cmB .3cmC .4cmD .6cm4.如图,在Rt ABC △中,90C ∠=︒,30B ∠=︒,点D 是AB 的中点,ED AB ⊥于点D,交BC 于点E,连接AE ,若2DE =,则BC 的值是( )A .3B .4C .5D .65.如图,在△ABC 中,∠C=90°,∠B=15°,AB 的垂直平分线交BC 于D,交AB 于E,若DB=10cm,则CD 的长为( )6.如图,点C 为∠AOB 的角平分线l 上一点,D,E 分别为OA,OB 边上的点,且CD =CE,作CF ⊥OA,垂足为F,若OF =5,则OD+OE 的长为( )A .10B .11C .12D .157.如图,等腰三角形ABC 的底边BC 长为4,面积是18,腰AC 的垂直平分线EF 分别交AC 、AB 边于点E 、F .若点D 为BC 的中点,点M 为线段EF 上一动点,则CDM 周长的最小值为( )A .6B .8C .9D .118.如图,ABC 中,AB BC =,点D 在AC 上,BD BC ⊥.设BDC α∠=,ABD β∠=,则下列关系式正确的是( )A .3180αβ+=︒B .2180αβ+=︒C .3180αβ-=︒D .290αβ-=︒9.如图,已知等边ABC 和等边ADE ,其中点A 、D 、B 在同一条直线上,连接BE 交AC 于点M ,连接DC 交AE 于点N ,BE 和DC 交于点P ,则下列结论中:(1)MN BD ∥;(2)60BPC ∠=︒;(3)DN DE =;(4)BAM CAN ≅△△.正确的个数有( )A .1个B .2个C .3个D .4个侧作等边△ADE 和等边△ADF,分别和AB,AC 交于点G,H,连接GH .若∠BOC=120°,AB=a,AC=b,AD=c .则下列结论中正确的个数有( )①∠BAC=60°;②△AGH 是等边三角形;③AD 与GH 互相垂直平分;④()12ABC S a b c =+△. A .1个 B .2个 C .3个 D .4个 二.填空题:(每小题3分共15分)11.在ABC 中,AB AC =,64BAC ∠=︒,BAC ∠的角平分线与AB 的垂直平分线交于点O ,将C ∠沿EF 折叠,点C 与点O 恰好重合,则CFO ∠的度数为__________.12.如图,已知CD 是△ABC 的角平分线,DE ⊥BC,垂足为E,若AC =4,BC =10,△ABC 的面积是14,则DE =_____.13.如图,1230∠=∠=︒,A B ∠=∠,AE BE =,点D 在边AC 上,AE 与BD 相交于点O,则∠C 的度数为______.14.如图,在等腰△ABC 中,AB=AC=10,BC=16,AD 是BC 边上的中线且AD=6,F 是AD 上的动点,E 是AC 边上的动点,则CF+EF 的最小值等于______.15.如图,已知等腰△ABC,AB=AC,∠BAC=120°,AD ⊥BC 于点D,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP=OC,下面结论:①∠ACO=15°;②∠APO+∠DCO=30°;③△OPC 是等边三角形;④AC=AO+AP ; 其中正确的有 ______(填上所有正确结论的序号).三.解答题:(共55分)16.(5分)如图,在ABC 和ADE 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒.BD ,CE 相交于点F .BD ,AC 相交于点M .(1)求证:BD CE =;(2)求BFC ∠的度数.17.(8分)如图,在ABC 中,60ACB ∠=︒,点D 在AC 上,BC CD =,以AB 为边向左侧作等边三角形ABE ,连ED .(1)求证:ABC EBD ≌△△; (2)过点B 作BF ED ⊥于点F ,2DF =,求BD 的长.18.(8分)点C 、D 都在线段AB 上,且AD =BC,AE =BF,∠A =∠B,CE 与DF 相交于点G .(1)求证∠E =∠F ;(2)若CE =10,DG =4,求 EG 的长.19.(8分)在平面直角坐标系中,等腰直角△ABC 顶点A 、C 分别在y 轴、x 轴上,且∠ACB=90°,AC=BC .(1)如图1,当A(0,−2),C(1,0),点B 在第四象限时,求点B 的坐标.(2)如图2,当点C 在x 轴正半轴上运动,点A(0,a)在y 轴正半轴上运动,点B(m,n)在第四象限时,作BD ⊥y 轴于点D,求a,m,n 之间的关系.20.(8分)如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,AD 是BC 的中线,AE BF =.(1)求证:DE DF =(2)DEF 是什么形状的三角形?请说明理由.连接AD,作∠ADE =40°,DE 交线段AC 于E .(1)当∠BDA =115°时,∠EDC =______,∠DEC =_____;(2)当DC 等于多少时,△ABD ≌△DCE,请说明理由;(3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数.若不可以,请说明理由.22.(9分)如图,在平面直角坐标系中,直线()140y x m m=-+>分别与x 轴,y 轴交于A,B 两点,把线段(1)当54m 时,求点C的坐标;(2)当m值发生变化时,△BOC的面积是否保持不变?若不变,计算其大小;若变化,请说明理由;(3)当S△AOB=2S△BOC时,在x轴上找一点P,使得△PAB是等腰三角形,求满足条件的所有P点的坐标.。
北师大版八年级下册数学第一章三角形的证明单元测试题(含详细解析)
北师大版八年级下册数学第一章三角形的证明单元测试题一.选择题(共12小题)1.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3B.4C.6D.52.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.363.已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或104.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.25.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为()A.18cm B.22cm C.24cm D.26cm6.如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm7.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.8.如图,△ABC中,∠B=40°,AC的垂直平分线交AC于D,交BC于E,且∠EAB:∠CAE=3:1,则∠C等于()A.28°B.25°C.22.5°D.20°9.若一个等腰三角形至少有一个内角是88°,则它的顶角是()A.88°或2°B.4°或86°C.88°或4°D.4°或46°10.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.811.如图,在Rt△ABC中,∠ACB=30°,CD=4,BD平分∠ABC,交AC于点D,则点D到BC的距离是()A.1B.2C.D.12.如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°二.填空题(共6小题)13.如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为_________.14.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是_________.15.如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=_________.16.如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO= _________.17.在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是_________.18.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB= _________度.三.解答题(共12小题)19.如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求△ABD的周长.20.如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证:CE⊥CF.21.如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.22.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.23.如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点,求证:CE=DE.24.如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F.点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.25.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.26.已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.27.如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.28.如图,Rt△ABC中,∠C=90°,AC=6,∠A=30°,BD平分∠ABC交AC于点D,求点D到斜边AB的距离.29.如图,在△ABC中,∠CAB=90°,AB=3,AC=4,AD是∠CAB的平分线,AD交BC于D,求BD的长.30.如图,四边形ABCD中,AB=BC,AB∥CD,∠D=90°,AE⊥BC于点E,求证:CD=CE.参考答案与试题解析一.选择题(共12小题)1.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3B.4C.6D.5考点:角平分线的性质.专题:几何图形问题.分析:过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.解答:解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.2.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.36考点:线段垂直平分线的性质.分析:根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.解答:解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.3.已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或10考点:等腰三角形的性质;非负数的性质:偶次方;非负数的性质:算术平方根;解二元一次方程组;三角形三边关系.分析:先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.解答:解:∵|2a﹣3b+5|+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选:A.点评:本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.4.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.2考点:直角三角形斜边上的中线;勾股定理;勾股定理的逆定理.专题:几何图形问题.分析:连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.解答:解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF===2,∵H是AF的中点,∴CH=AF=×2=.故选:B.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.5.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为()A.18cm B.22cm C.24cm D.26cm考点:线段垂直平分线的性质.分析:根据线段垂直平分线上的点到线段两端点的距离相等可得AD=CD,然后求出△ABD的周长=AB+BC,再求出AC的长,然后根据三角形的周长公式列式计算即可得解.解答:解:∵DE是AC的垂直平分线,∴AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵AE=4cm,∴AC=2AE=2×4=8cm,∴△ABC的周长=AB+BC+AC=14+8=22cm.故选B.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,求出△ABD的周长=AB+BC是解题的关键.6.如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm考点:线段垂直平分线的性质;勾股定理.专题:探究型.分析:连接AD,先由三角形内角和定理求出∠BAC的度数,再由线段垂直平分线的性质可得出∠DAB的度数,根据线段垂直平分线的性质可求出AD的长及∠DAC的度数,最后由直角三角形的性质即可求出AC的长.解答:解:连接AD,∵DE是线段AB的垂直平分线,BD=15,∠B=15°,∴AD=BD=10,∴∠DAB=∠B=15°,∴∠ADC=∠B+∠DAB=15°+15°=30°,∵∠C=90°,∴AC=AD=5cm.故选C.点评:本题考查的是直角三角形的性质及线段垂直平分线的性质,熟知线段垂直平分的性质是解答此题的关键.7.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.分析:由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.解答:解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE==,∴OP=2PE=2,∵PD⊥OA,点M是OP的中点,∴DM=OP=.故选:C.点评:此题考查了等腰三角形的性质与判定、含30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,注意掌握数形结合思想的应用.8.如图,△ABC中,∠B=40°,AC的垂直平分线交AC于D,交BC于E,且∠EAB:∠CAE=3:1,则∠C等于()A.28°B.25°C.22.5°D.20°考点:线段垂直平分线的性质.专题:计算题.分析:设∠CAE=x,则∠EAB=3x.根据线段的垂直平分线的性质,得AE=CE,再根据等边对等角,得∠C=∠CAE=x,然后根据三角形的内角和定理列方程求解.解答:解:设∠CAE=x,则∠EAB=3x.∵AC的垂直平分线交AC于D,交BC于E,∴AE=CE.∴∠C=∠CAE=x.根据三角形的内角和定理,得∠C+∠BAC=180°﹣∠B,即x+4x=140°,x=28°.则∠C=28°.故选A.点评:此题综合运用了线段垂直平分线的性质、等腰三角形的性质以及三角形的内角和定理.9.若一个等腰三角形至少有一个内角是88°,则它的顶角是()A.88°或2°B.4°或86°C.88°或4°D.4°或46°考点:等腰三角形的性质.分析:分88°内角是顶角和底角两种情况讨论求解.解答:解:88°是顶角时,等腰三角形的顶角为88°,88°是底角时,顶角为180°﹣2×88°=4°,综上所述,它的顶角是88°或4°.故选C.点评:本题考查了等腰三角形的两底角相等的性质,难点在于要分情况讨论.10.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.8考点:线段垂直平分线的性质;勾股定理;矩形的性质.专题:计算题.分析:根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AE=CE,设CE=x,表示出ED的长度,然后在Rt△CDE中,利用勾股定理列式计算即可得解.解答:解:∵EO是AC的垂直平分线,∴AE=CE,设CE=x,则ED=AD﹣AE=4﹣x,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4﹣x)2,解得x=2.5,即CE的长为2.5.故选:C.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,把相应的边转化为同一个直角三角形的边是解题的关键.11.如图,在Rt△ABC中,∠ACB=30°,CD=4,BD平分∠ABC,交AC于点D,则点D到BC的距离是()A.1B.2C.D.考点:角平分线的性质;含30度角的直角三角形;勾股定理.分析:根据直角三角形两锐角互余求出∠ABC=60°,再根据角平分线的定义求出∠ABD=∠DBC=30°,从而得到∠DBC=∠ACB,然后利用等角对等边的性质求出BD的长度,再根据直角三角形30°角所对的直角边等于斜边的一半求出AD,过点D作DE⊥BC于点E,然后根据角平分线上的点到角的两边的距离相等解答即可.解答:解:∵Rt△ABC中,∠ACB=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠DBC=∠ACB,∴BD=CD=4,在Rt△ABD中,∵∠ABD=30°,∴AD=BD=×4=2,过点D作DE⊥BC于点E,则DE=AD=2.故选B.点评:本题考查了角平分线上的点到角的两边的距离相等的性质,30°角所对的直角边等于斜边的一半的性质,以及等角对等边的性质,小综合题,但难度不大,熟记各性质是解题的关键.12.如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°考点:等腰三角形的性质.专题:几何图形问题.分析:根据此题的条件,找出等腰三角形,找出相等的边与角度,设出未知量,找出满足条件的方程.解答:解:∵AC=AE,BC=BD∴设∠AEC=∠ACE=x°,∠BDC=∠BCD=y°,∴∠A=180°﹣2x°,∠B=180°﹣2y°,∵∠ACB+∠A+∠B=180°,∴100+(180﹣2x)+(180﹣2y)=180,得x+y=140,∴∠DCE=180﹣(∠AEC+∠BDC)=180﹣(x+y)=40°.故选D.点评:根据题目中的等边关系,找出角的相等关系,再根据三角形内角和180°的定理,列出方程,解决此题.二.填空题(共6小题)13.如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为15.考点:角平分线的性质.专题:几何图形问题.分析:要求△ABD的面积,现有AB=7可作为三角形的底,只需求出该底上的高即可,需作DE⊥AB于E.根据角平分线的性质求得DE的长,即可求解.解答:解:作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3.∴△ABD的面积为×3×10=15.故答案是:15.点评:此题主要考查角平分线的性质;熟练运用角平分线的性质定理,是很重要的,作出并求出三角形AB边上的高时解答本题的关键.14.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是2.考点:含30度角的直角三角形;线段垂直平分线的性质.分析:根据同角的余角相等、等腰△ABE的性质推知∠DBE=30°,则在直角△DBE中由“30度角所对的直角边是斜边的一半”即可求得线段BE的长度.解答:解:∵∠ACB=90°,FD⊥AB,∴∠ACB=∠FDB=90°,∵∠F=30°,∴∠A=∠F=30°(同角的余角相等).又∵AB的垂直平分线DE交AC于E,∴∠EBA=∠A=30°,∴直角△DBE中,BE=2DE=2.故答案是:2.点评:本题考查了线段垂直平分线的性质、含30度角的直角三角形.解题的难点是推知∠EBA=30°.15.如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=55°.考点:角平分线的性质.分析:首先过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,由△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,易证得AE是∠CAH的平分线,继而求得答案.解答:解:过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,∵△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,∴EH=EF,EG=EF,∴EH=EG,∴AE是∠CAH的平分线,∵∠BAC=70°,∴∠CAH=110°,∴∠CAE=∠CAH=55°.故答案为:55°.点评:此题考查了角平分线的性质与判定.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.16.如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO= 4:5:6.考点:角平分线的性质.专题:压轴题.分析:首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.解答:解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO:S△BCO:S△CAO=(AB•OD):(BC•OF):(AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.点评:此题考查了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.17.在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是15°.考点:线段垂直平分线的性质;等腰三角形的性质.分析:由DE垂直平分AC,∠A=50°,根据线段垂直平分线的性质,易求得∠ACD的度数,又由AB=AC,可求得∠ACB的度数,继而可求得∠DCB的度数.解答:解:∵DE垂直平分AC,∴AD=CD,∴∠ACD=∠A=50°,∵AB=AC,∠A=50°,∴∠ACB=∠B==65°,∴∠DCB=∠ACB﹣∠ACD=15°.故答案为:15°.点评:此题考查了线段垂直平分线的性质与等腰三角形的性质.此题比较简单,注意数形结合思想的应用.18.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB= 72度.考点:线段垂直平分线的性质;菱形的性质.专题:计算题.分析:欲求∠CPB,可根据菱形、线段垂直平分线的性质、对称等方面去寻求解答方法.解答:解:先连接AP,由四边形ABCD是菱形,∠ADC=72°,可得∠BAD=180°﹣72°=108°,根据菱形对角线平分对角可得:∠ADB=∠ADC=×72°=36°,∠ABD=∠ADB=36度.EP是AD的垂直平分线,由垂直平分线的对称性可得∠DAP=∠ADB=36°,∴∠PAB=∠DAB﹣∠DAP=108°﹣36°=72度.在△BAP中,∠APB=180°﹣∠BAP﹣∠ABP=180°﹣72°﹣36°=72度.由菱形对角线的对称性可得∠CPB=∠APB=72度.点评:本题开放性较强,解法有多种,可以从菱形、线段垂直平分线的性质、对称等方面去寻求解答方法,在这些方法中,最容易理解和表达的应为对称法,这也应该是本题考查的目的.灵活应用菱形、垂直平分线的对称性,可使解题过程更为简便快捷.三.解答题(共12小题)19.如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求△ABD的周长.考点:线段垂直平分线的性质.分析:先根据线段垂直平分线的性质得出AD=CD,故可得出BD+AD=BD+CD=BC,进而可得出结论.解答:解:∵DE垂直平分,∴AD=CD,∴BD+AD=BD+CD=BC=11cm,又∵AB=10cm,∴△ABD的周长=AB+BC=10+11=21(cm).点评:本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.20.如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证:CE⊥CF.考点:等腰三角形的性质.专题:证明题.分析:根据三线合一定理证明CF平分∠ACB,然后根据CF平分∠ACB,根据邻补角的定义即可证得.解答:证明:∵CD=CA,E是AD的中点,∴∠ACE=∠DCE.∵CF平分∠ACB,∴∠ACF=∠BCF.∵∠ACE+∠DCE+∠ACF+∠BCF=180°,∴∠ACE+∠ACF=90°.即∠ECF=90°.∴CE⊥CF.点评:本题考查了等腰三角形的性质,顶角的平分线、底边上的中线和高线、三线合一.21.如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.考点:含30度角的直角三角形;相似三角形的判定与性质.专题:计算题.分析:延长DA,CB,交于点E,可得出三角形ABE与三角形CDE相似,由相似得比例,设AB=x,利用30角所对的直角边等于斜边的一半得到AE=2x,利用勾股定理表示出BE,由BC+BE表示出CE,在直角三角形DCE中,利用30度角所对的直角边等于斜边的一半得到2DC=CE,即可求出AB的长.解答:解:延长DA,CB,交于点E,∵∠E=∠E,∠ANE=∠D=90°,∴△ABE∽△CDE,∴=,在Rt△ABE中,∠E=30°,设AB=x,则有AE=2x,根据勾股定理得:BE==x,∴CE=BC+BE=4+x,在Rt△DCE中,∠E=30°,∴CD=CE,即(4+x)=3,解得:x=,则AB=.点评:此题考查了相似三角形的判定与性质,含30度直角三角形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.22.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.考点:角平分线的性质;勾股定理.分析:(1)根据角平分线性质得出CD=DE,代入求出即可;(2)利用勾股定理求出AB的长,然后计算△ADB的面积.解答:解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=AB•DE=×10×3=15.点评:本题考查了角平分线性质和勾股定理的运用,注意:角平分线上的点到角两边的距离相等.23.如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点,求证:CE=DE.考点:直角三角形斜边上的中线.专题:证明题.分析:由于AB是Rt△ABC和Rt△ABD的公共斜边,因此可以AB为媒介,再根据斜边上的中线等于斜边的一半来证CE=ED.解答:证明:在Rt△ABC中,∵E为斜边AB的中点,∴CE=AB.在Rt△ABD中,∵E为斜边AB的中点,∴DE=AB.∴CE=DE.点评:本题考查的是直角三角形的性质:在直角三角形中,斜边上的中线等于斜边的一半.24.如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F.点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.考点:等腰三角形的性质;三角形中位线定理;相似三角形的判定与性质.专题:几何综合题.分析:(1)在等腰△ACD中,CF是顶角∠ACD的平分线,根据等腰三角形三线合一的性质知F是底边AD的中点,由此可证得EF是△ABD的中位线,即可得到EF∥BC的结论;(2)易证得△AEF∽△ABD,根据两个相似三角形的面积比(即相似比的平方),可求出△ABD的面积,而四边形BDFE的面积为△ABD和△AEF的面积差,由此得解.解答:(1)证明:∵在△ACD中,DC=AC,CF平分∠ACD;∴AF=FD,即F是AD的中点;又∵E是AB的中点,∴EF是△ABD的中位线;∴EF∥BC;(2)解:由(1)易证得:△AEF∽△ABD;∴S△AEF:S△ABD=(AE:AB)2=1:4,∴S△ABD=4S△AEF=6,∴S△AEF=1.5.∴S四边形BDFE=S△ABD﹣S△AEF=6﹣1.5=4.5.点评:此题主要考查的是等腰三角形的性质、三角形中位线定理及相似三角形的判定和性质.25.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.考点:直角三角形全等的判定;全等三角形的性质.专题:证明题.分析:此题根据直角梯形的性质和CE⊥BD可以得到全等条件,证明△ABD≌△BCE,然后利用全等三角形的性质证明题目的结论.解答:证明:∵AD∥BC,∴∠ADB=∠DBC.∵CE⊥BD,∴∠BEC=90°.∵∠A=90°,∴∠A=∠BEC.∵BD=BC,∴△ABD≌△BCE.∴AD=BE.点评:本题考查了直角三角形全等的判定及性质;此题把全等三角形放在梯形的背景之下,利用全等三角形的性质与判定解决题目问题.26.已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.考点:等腰三角形的性质;全等三角形的判定与性质.专题:计算题;证明题.分析:根据已知利用SAS判定△ABE≌△CBF,由全等三角形的对应边相等就可得到AE=CF;根据已知利用角之间的关系可求得∠EFC的度数.解答:(1)证明:在△ABE和△CBF中,∵,∴△ABE≌△CBF(SAS).∴AE=CF.(2)解:∵AB=BC,∠ABC=90°,∠CAE=30°,∴∠CAB=∠ACB=(180°﹣90°)=45°,∠EAB=45°﹣30°=15°.∵△ABE≌△CBF,∴∠EAB=∠FCB=15°.∵BE=BF,∠EBF=90°,∴∠BFE=∠FEB=45°.∴∠EFC=180°﹣90°﹣15°﹣45°=30°.点评:此题主要考查了全等三角形的判定方法及等腰三角形的性质等知识点的掌握情况;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.27.如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.考点:角平分线的性质;全等三角形的判定与性质;线段垂直平分线的性质.专题:几何综合题;压轴题.分析:(1)根据AD是∠EAF的平分线,那么DE=DF,如果证得EA=FA,那么我们就能得出AD是EF的垂直平分线,那么就证得EF⊥AD了.因此证明EA=FA是问题的关键,那么就要先证得三角形AED和AFD全等.这两个三角形中已知的条件有∠EAD=∠FAD,一条公共边,一组直角,因此两三角形全等,那么就可以得出EA=AF了.(2)要求AD的长,在直角三角形AED中,有了DE的值,如果知道了∠ADE或∠EAD的度数,那么就能求出AD了.如果DE∥AC,那么∠EAC=90°,∠EAD=45°,那么在直角三角形AED中就能求出AD的长了.解答:(1)证明:∵AD是∠EAF的平分线,∴∠EAD=∠DAF.∵DE⊥AE,DF⊥AF,∴∠DEA=∠DFA=90°又AD=AD,∴△DEA≌△DFA.∴EA=FA∵ED=FD,∴AD是EF的垂直平分线.即AD⊥EF.(2)解:∵DE∥AC,∴∠DEA=∠FAE=90°.又∠DFA=90°,∴四边形EAFD是矩形.由(1)得EA=FA,∴四边形EAFD是正方形.∵DE=1,∴AD=.点评:本题考查了全等三角形的判定,角平分线的性质,线段垂直平分线的性质等知识点.本题中利用全等三角形得出线段相等是解题的关键.。
(完整版)北师大版八年级下册数学第一章测试题
2017—2018 学年度第二学期阶段性测试题八年级下册数学(第一章)出题人:分数:注意事项1.本试卷满分150 分,考试时间120 分钟。
2.请将密封线内的项目填写清楚。
3.请在密封线外答题。
题号一二三总分得分一、选择题(每小题3 分,共36 分)1、已知△ABC 的三边长分别是 6cm、8cm、10cm,则△ABC 的面积是()A.24cm2B.30cm2C.40cm2D.48cm22、已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是()A.7㎝B.9㎝C.12㎝或者9㎝D.12㎝3、面积相等的两个三角形()A.必定全等B.必定不全等C.不一定全等D.以上答案都不对4、△ABC中,AB = AC,BD 平分∠ABC交AC 边于点D,∠BDC= 75°,则∠A的度数为()A 35°B 40°C 70°D 110°5、如图,△ABC中,AC=BC,直线l 经过点C,则 ( )A.l 垂直ABB.l 平分ABC.l 垂直平分ABD.不能确定6、已知△ABC中,AB=AC,AB 的垂直平分线交 AC 于D,△ABC和△DBC的周长分别是60 cm 和38 cm,则△ABC的腰和底边长分别为 ( ) A.24 cm 和12 cm B.16 cm 和22 cm C.20 cm 和16 cm D.22 cm 和 16 cm7、下列条件中能判定△ABC≌△DEF的是( )A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠B=∠E,∠C=∠FC.AC=DF,∠B=∠F,AB=DE D.∠B=∠E,∠C=∠F,AC=DF8、下列命题中正确的是( )A.有两条边相等的两个等腰三角形全等B.两腰对应相等的两个等腰三角形全等C.两角对应相等的两个等腰三角形全等D.一边对应相等的两个等边三角形全等9、对“等角对等边”这句话的理解,正确的是( )A.只要两个角相等,那么它们所对的边也相等B.在两个三角形中,如果有两个角相等,那么它们所对的边也相等C.在一个三角形中,如果有两个角相等,那么它们所对的边也相等D.以上说法都是错误的10、△ABC 中,AB=AC,BD 平分∠ABC 交 AC 于点 D,∠BDC=75°,则∠A的度数为()A. 35°B. 40°C. 70°D. 110°11、如图,D 在AB 上,E 在AC 上,且∠B=∠C,那么补充下列一个B条件后,仍无法判断△ABE≌△ACD的是()DA E CA. AD=AEB. ∠AEB=∠ADCC. BE=CDD. AB=AC 图 5图图12、如图,AD∥BC,∠ABC的平分线 BP 与∠BAD的平分线 AP 相交于点P,作PE⊥AB于点E,若PE=2,则两平行线 AD 与BC 间的距离为()A. 2B. 3C. 4D. 5二、填空题。
北师大版八年级数学下册第一章测试卷及答案
北师大版八年级数学下册第一章测试卷及答案一.选择题(共10小题,每小题3分,共30分)1.若等腰三角形的顶角为40°,则它的底角度数为( )A.40° B.50° C.60° D.70°2.已知等腰三角形两边长是8 cm和4 cm,那么它的周长是( )A.12 cm B.16 cm C.16 cm或20 cm D.20 cm3. 已知在△ABC中,AB≠AC,求证:∠B≠∠C.若用反证法来证明这个结论,可假设( )A.∠A=∠B B.AB=BC C.∠B=∠C D.∠A=∠C4.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A..6,7,8 D.2,3,45.如图,已知AB⊥BD,CD⊥BD,若用"HL"判定Rt△ABD和Rt△CDB全等,则需要添加的条件是( )A.AD=CB B.∠A=∠C C.BD=DC D.AB=CD6.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=( )A.40° B.50° C.60° D.75°7.如图,在△ABC中,AB=AC,AD平分∠BAC,点E是AD上的点,且AE=EC,若∠BAC=45°,BD=3,则CE的长为( )A.3 B.C.D.48.为了加快灾后重建的步伐,某市某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址( )A.仅有一处B.有四处 C.有七处D.有无数处9.如图,在四边形ABCD中,AC,BD是对角线,△ABC是等边三角形.∠ADC=30°,AD=3,BD=5,则CD的长为( )A ..4 C ..4.510. 如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O,过点O 作EF ∥BC 交AB 于点E,交AC 于点F,过点O 作OD ⊥AC 于点D,下列结论:①EF =BE +CF ;②∠BOC =90°+12∠A ;③点O 到△ABC 各边的距离都相等;④设OD =m,AE +AF =n,则S △AEF =mn ;⑤S △EOB =S FOC .其中,正确的有( )A .2个B .3个C .4个D .5个二.填空题(共8小题,每小题3分,共24分)11.如图,在△ABC 中,∠C =40°,CA =CB ,则△ABC 的外角∠ABD =________.12. 如图,在△ABC 中,AB =AC =BC =4,AD 平分∠BAC ,点E 是AC 的中点,则DE 的长为________.13.已知命题:"如果两个三角形全等,那么这两个三角形的面积相等."写出它的逆命题:____________________________________________,该逆命题是________(填"真"或"假")命题.14.如图,已知直线l 1∥l 2,将等边三角形如图放置,若∠α=40°,则∠β=________.15.若△ABC 的三边长分别为a ,b ,c ,则下列条件中能判定△ABC 是直角三角形的有________个.①∠A =∠B -∠C ;②∠A ∶∠B ∶∠C =3∶4∶5;③a 2=(b +c )(b -c );④a ∶b ∶c =5∶12∶13.16.如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB .若AC =2,DE =1,则S △ACD =________.17.如图,E是等边三角形ABC中AC边上的点,∠1=∠2,BE=CD ,则△ADE是________三角形.18.如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(点E 在BC上,点F在AC上)折叠,点C与点O恰好重合,则∠OEC的度数为________.三.解答题(共7小题, 66分)19.(8分) 如图,△ABC,△CDE均为等边三角形,连接BE,AD交于点O,BE与AC交于点P.求证:∠AOB=60°.20.(8分) 如图,在△ABC中,AB=AC,BD⊥AC,CE⊥AB,O是BD与CE的交点,求证:BO=CO.21.(8分) 如图,四边形ABCD是长方形,用尺规作∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连接QD,在新图形中,你发现了什么?请写出一条.22.(8分)如图,已知等腰三角形ABC中,AB=AC,点D,E分别在边AB,AC上,且AD=AE,连接BE,CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A,F的直线垂直平分线段BC.23.(10分)如图,已知∠1=∠2,P BN上的一点,PF⊥BC于点F,PA=PC.(1)求证:∠PCB+∠BAP=180°;(2)若BC=12 cm,AB=6 cm,PA=5 cm,求BP的长.24.(10分) 如图,点P是等边三角形ABC内一点,AD⊥BC于点D,PE⊥AB于点E,PF⊥AC于点F,PG⊥BC于点G.求证:AD=PE+PF+PG.25.(14分) 如图,已知△ABC是边长为6 cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速运动,其中点P运动的速度是1 c m/s,点Q运动的速度是2 c m/s,当点Q到达点C时,P,Q两点都停止运动,设运动时间为ts,解答下列问题:(1)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.(2)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t;若不能,请说明理由.参考答案1-5DDCBA 6-10BBABB11. 110°12. 2 13. 如果两个三角形的面积相等,那么这两个三角形全等;假14. 20°15. 316.117. 等边18. 108°19. 证明:∵△ABC和△ECD都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠ACE=∠DCE+∠ACE,即∠ACD=∠BCE,在△ACD和△BCE中,{AC=BC∠ACD=∠BCECD=CE∴△ACD≌△BCE(SAS),∴∠CAD=∠CBE,∵∠APO=∠BPC,∴∠AOP=∠BCP=60°,即∠AOB=60°.20.证明:∵AB=AC,∴∠ABC=∠ACB.∵BD⊥AC,CE⊥AB,∴∠BDC=∠CEB=90°,在△BCE和△CBD中, {∠ABC=∠ACB∠CEB=∠BDC=90°BC=CB∴△BCE≌△CBD(AAS),∴∠BCE=∠CBD,∴BO=CO.21. 解:如图所示.发现:QD=AQ或∠QAD=∠QDA等22. 解:(1)∠ABE=∠ACD.理由:在△ABE和△ACD中,{AB=AC∠A=∠AAE=AD∴△ABE≌△ACD,∴∠ABE=∠ACD(2)连接AF.∵AB=AC,∴∠ABC=∠ACB,由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC,∵AB=AC,∴点A,F均在线段BC的垂直平分线上,即直线AF垂直平分线段BC23.解:(1)证明:过点P作PE⊥AB于点E,∵∠1=∠2,PF⊥BC,PE⊥AB,∴PE=PF.在△APE和△CPF中, {PA=PCPE=PF∴△APE≌△CPF(HL),∴∠PAE=∠PCB.∵∠PAE+∠PAB=180°,∴∠PCB+∠BAP=180°.(2)∵△APE≌△CPF,∴AE=FC,∵BC=12 cm,AB=6 cm,∴AE=12×(12-6)=3 (cm),BE=AB+AE=6+3=9(cm),在Rt△PAE中,PE 4 (cm),在Rt△PBE中,PB.24. 证明:连接PA,PB,PC,如图.∵AD⊥BC于点D,PE⊥AB于点E,PF⊥AC于点F,PG⊥BC于点G,∴S△ABC=1 2×BC×AD,S△PAB=12×AB×PE,S△PAC=12×AC×PF,S△PBC=12×BC×PG.∵S△ABC =S△PAB+S△PAC+S△PBC,∴12×BC×AD=12(AB×PE+AC×PF+BC×PG).∵△ABC是等边三角形,∴AB=BC=AC,∴BC×AD=BC×(PE+PF+PG),∴AD=PE+PF+PG.25. 解:(1)当点Q到达点C时,PQ与AB垂直.理由:∵点Q到达点C时,BQ=BC=6 cm,∴t=62=3.∴AP=3cm.∴BP=AB-AP=3 cm=AP.∴点P为AB的中点.∴PQ⊥AB.(2)能.∵∠B=60°,∴当BP=BQ时,△BPQ为等边三角形.∴6-t=2t,解得t=2.∴当t=2时,△BPQ是等边三角形.。
最新北师大版八年级数学下册单元测试题全套及答案
最新北师大版八年级数学下册单元测试题全套及答案第1章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.如图,直线l 1∥l 2,以直线l 1上的点A 为圆心,适当长为半径画弧,分别交直线l 1,l 2于点B ,C ,连接AC ,BC.若∠ABC =67°,则∠1的度数为( B )A .23°B .46°C .67°D .78°2.如图,在△ABC 中,AB =AC ,D 为BC 的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F.则下列结论错误的是( D )A .AD ⊥BCB .∠BAD =∠CADC .DE =DFD .BE =DE,第2题图) ,第3题图) ,第4题图)3.如图,在△ABC 中,∠C =90°,∠B =30°,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD =3,则BC 的长为( C )A .6B .6 3C .9D .3 34.如图,在△ABC 中,∠B =40°,∠BAC =75°,AB 的垂直平分线交BC 于点D ,垂足为E.则∠CAD 等于( B )A .30°B .35°C .40°D .50°5.如图,AC =BD ,则补充下列条件后仍不能判定△ABC ≌△BAD 的是( D ) A .AD =BC B .∠BAC =∠ABD C .∠C =∠D =90° D .∠ABC =∠BAD6.已知三角形三内角之间有∠A =12∠B =13∠C ,它的最长边为10,则此三角形的面积为( D )A .20B .10 3C .5 3 D.2532,第5题图) ,第7题图) ,第8题图) ,第10题图)7.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当∠B =90°时,如图①,测得AC =2,当∠B =60°时,如图②,AC 等于( A )A. 2 B .2 C. 6 D .2 28.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C.若P 是BC边上一动点,则DP 长的最小值为( C )A .2B .2 2C .4D .4 29.下列说法:①斜边和一条直角边分别相等的两个直角三角形全等;②两个锐角分别相等的两个直角三角形全等;③有一个角和底边分别相等的两个等腰三角形全等;④一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等.其中正确的有( B )A .1个B .2个C .3个D .4个10.如图,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 在同一条直线上,连接BD ,BE.下列四个结论:①BD =CE ;②BD ⊥CE ;③∠ACE +∠DBC =45°;④BE 2=2(AD 2+AB 2).其中结论正确的个数是( C )A .1B .2C .3D .4二、填空题(每小题3分,共24分)11.如图,在△ABC 中,∠C =90°,∠A =30°,若AB =6 cm ,则BC =__3__cm .12.如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,CD =4,则点D 到AB 的距离为__4__.,第11题图 第12题图 第13题图 第14题图)13.如图,已知点B ,C ,F ,E 在同一条直线上,∠1=∠2,BC =EF ,要使△ABC ≌△DEF ,还需添加一个条件,这个条件可以是__AC =DF (答案不唯一)__.(只需写出一个)14.如图,△ABC 的周长为22 cm ,AB 的垂直平分线交AC 于点E ,垂足为D ,若△BCE 的周长为14 cm ,则AB =__8__cm .15.如图,在等边△ABC 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE =CD ,DM ⊥BC ,垂足为M.若AB =4 cm ,则DE =__23__cm .,第15题图) ,第16题图) ,第17题图)16.如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边上的中点,E 是AB 边上一动点,则EC +ED 的最小值是__5__.17.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2米,坡角∠A =30°,∠B =90°,BC =6米.当正方形DEFH 运动到什么位置,即当AE =__143__米时,有DC 2=AE 2+BC 2.18.下列命题:①到三角形三边距离相等的点是这个三角形三条角平分线的交点;②三角形三边的垂直平分线的交点到这个三角形的三个顶点的距离相等;③一个锐角和一条边分别相等的两个直角三角形全等;④顶角和底边对应相等的两个等腰三角形全等.其中真命题是__①②④__(填序号)三、解答题(共66分)19.(8分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.解:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,又∵AB=DC,∠B=∠C,∴△ABF≌△DCE(SAS),∴∠A=∠D20.(8分)如图,在△ABC中,AB=AC,AB的垂直平分线交AC于点E,垂足为D.若△ABC的周长为20 cm,△BCE的周长为12 cm,求BC的长.解:∵DE垂直平分AB,∴AE=BE,∵△BCE的周长为12 cm,即BC+BE+CE=12,∴BC+AE +CE=12,即BC+AC=12,又∵△ABC的周长为20 cm,即AB+BC+AC=20,∴AB+12=20,则AB =8,∴AC=8,∴BC=20-AB-AC=20-8-8=4(cm)21.(8分)如图,锐角三角形ABC的两条高BE,CD相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.解:(1)∵OB=OC,∴∠OBC=∠OCB,∵BE,CD是两条高,∴∠BDC=∠CEB=90°,又∵BC =CB,∴△BDC≌△CEB(AAS),∴∠DBC=∠ECB,∴AB=AC,∴△ABC是等腰三角形(2)点O 在∠BAC 的平分线上.理由:如图,连接AO.∵△BDC ≌△CEB ,∴DC =EB ,∵OB =OC ,∴OD =OE ,∵∠BDC =∠CEB =90°,∴点O 在∠BAC 的平分线上(或通过证Rt △ADO ≌Rt △AEO (HL ),得出∠DAO =∠EAO 也可)22.(8分)如图,∠AOB =90°,OM 平分∠AOB ,将直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA ,OB 相交于点C ,D ,问PC 与PD 相等吗?试说明理由.解:PC =PD.理由:过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点F ,∵OM 平分∠AOB ,点P 在OM 上,∴PE =PF ,又∵∠AOB =90°,∴∠EPF =90°,∴∠EPF =∠CPD ,∴∠EPC =∠FPD.又∵∠PEC =∠PFD =90°,∴△PCE ≌△PDF (ASA ),∴PC =PD23.(10分)如图,为了测出某塔CD 的高度,在塔前的平地上选择一点A ,用测角仪测得塔顶D 的仰角为30°,在A ,C 之间选择一点B(A ,B ,C 三点在同一直线上).用测角仪测得塔顶D 的仰角为75°,且AB 间的距离为40 m .(1)求点B 到AD 的距离;(2)求塔高CD.(结果用根号表示)解:(1)过点B 作BE ⊥AD ,垂足为E ,∴∠AEB =90°,又∵∠A =30°,∴BE =12AB =12×40=20 m(2)AE =AB 2-BE 2=203,∵∠A +∠ADB =∠DBC =75°,∴∠ADB =75°-∠A =45°,∵BE ⊥AD ,∴∠BED =90°,∴∠DBE =∠ADB =45°,∴DE =BE =20,∴AD =AE +DE =203+20,∵CD ⊥AC ,∴∠C =90°,又∵∠A =30°,∴CD =12AD =12(203+20)=(103+10) m24.(12分)在△ABC 中,∠B =22.5°,边AB 的垂直平分线DP 交AB 于点P ,交BC 于点D ,且AE ⊥BC 于点E ,DF ⊥AC 于点F ,DF 与AE 交于点G ,求证:EG =EC.解:如图所示:连接AD ,∵∠B =22.5°,且DP 为AB 的垂直平分线,∴DB =DA ,∴∠B =∠BAD ,∴∠ADE =2∠B =45°,在Rt △ADE 中,∠ADE =45°,∴∠DAE =45°,∴AE =DE ,∵AE ⊥DE ,∴∠1+∠2=90°,∵DF ⊥AC ,∴∠2+∠C =90°,∴∠1=∠C.在△DEG 和△AEC 中,⎩⎨⎧∠1=∠C ,∠DEG =∠AEC =90°,DE =AE ,∴△DEG ≌△AEC (AAS ),∴EG =EC25.(12分)如图,已知△ABC 是边长为6 cm 的等边三角形,动点P ,Q 同时从A ,B 两点出发,分别沿AB ,BC 方向匀速运动,其中点P 运动的速度是1 cm /s ,点Q 运动的速度是2 cm /s ,当点Q 到达点C 时,P ,Q 两点都停止运动,设运动时间为t s ,解答下列问题:(1)当点Q 到达点C 时,PQ 与AB 的位置关系如何?请说明理由;(2)在点P 与点Q 的运动过程中,△BPQ 是否能成为等边三角形?若能,请求出t 的值;若不能,请说明理由.解:(1)当点Q 到达点C 时,PQ 与AB 垂直,即△BPQ 为直角三角形.理由:∵AB =AC =BC =6 cm ,∴当点Q 到达点C 时,AP =3 cm ,∴点P 为AB 的中点.∴QP ⊥BA (等腰三角形三线合一的性质) (2)假设在点P 与点Q 的运动过程中,△BPQ 能成为等边三角形,则有BP =BQ ,∴6-t =2t ,解得t =2,又∠B =60°,∴当t =2时,△BPQ 是等边三角形第2章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.据中央气象台报道,某日上海最高气温是22 ℃,最低气温是11 ℃,则当天上海气温t (℃)的变化范围是( D )A .t >22B .t ≤22C .11<t <22D .11≤t ≤222.(2016·新疆)不等式组⎩⎪⎨⎪⎧3x <2x +4,x -1≥2的解集是( C )A .>4B .x ≤3C .3≤x <4D .无解3.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( A ) A .3<x <5 B .-3<x <5 C .-5<x <3 D .-5<x <-34.如图a ,b ,c 分别表示苹果、梨、桃子的质量,同类水果质量相等,则下列关系正确的是( C )A .a >c >bB .b >a >cC .a >b >cD .c >a >b5.如果点P(3-m ,1)在第二象限,那么关于x 的不等式(2-m)x +2>m 的解集是( B ) A .x >-1 B .x <-1 C .x >1 D .x <16.如图是一次函数y =kx +b 的图象,当y <2时,x 的取值范围是( C ) A .x <1 B .x >1 C .x <3 D .x >37.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2无解,则实数a 的取值范围是( D )A .a ≥-1B .a <-1C .a ≤1D .a ≤-18.已知关于x 的不等式组⎩⎪⎨⎪⎧x -a ≥b ,2x -a <2b +1的解集为3≤x <5,则a ,b 的值为( A )A .a =-3,b =6B .a =6,b =-3C .a =1,b =2D .a =0,b =39.如图,函数y =2x 和y =ax +4的图象相交于点A(m ,3),则不等式2x <ax +4的解集为( A )A .x <32 B .x <3C .x >32D .x >310.某镇有甲,乙两家液化气站,它们每罐液化气的价格,质地和重量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年需购买8罐液化气,则购买液化气最省钱的方法是( B )A .买甲站的B .买乙站的C .买两站的都一样D .先买甲站的1罐,以后买乙站的 二、填空题(每小题3分,共24分)11.(2016·绍兴)不等式3x +134>x3+2的解是__x >-3__.12.(2016·巴中)不等式组⎩⎪⎨⎪⎧3x -1<x +1,2(2x -1)≤5x +1的最大整数解为__0__.13.如果关于x 的不等式组⎩⎪⎨⎪⎧x >m -1,x >m +2的解集是x >-1,那么m =__-3__.14.要使关于x 的方程5x -2m =3x -6m +1的解在-3与4之间,m 的取值范围是__-74<m <74__.15.如图,函数y =ax -1的图象经过点(1,2),则不等式ax -1>2的解集是__x >1__.,第15题图),第16题图)16.已知不等式组⎩⎪⎨⎪⎧x +2a ≥1,2x -b <3的解集如图所示,则a -b 的值为__0__.17.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +y =3k -1,x +2y =-2的解满足x +y >1,则k 的取值范围是__k >2__.18.商店购进一批文具盒,进价每个4元,零售价每个6元,为促进销售,决定打折销售,但利润率仍不低于20%,那么该文具盒实际价格最多可打__8__折销售.三、解答题(共66分)19.(10分)解下列不等式组,并把解集在数轴上表示出来:(1)⎩⎪⎨⎪⎧2(x +1)≤x +3,x -4<3x ; (2)⎩⎪⎨⎪⎧2x >3x -2,①2x -13≥12x -23.② 解:-2<x ≤1 数轴表示略 解:-2≤x <2 数轴表示略20.(7分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧5x +2y =11a +18,2x -3y =12a -8的解满足x >0,y >0,求实数a 的取值范围.解:解方程组得⎩⎨⎧x =3a +2,y =4-2a ,∵x >0,y >0,∴⎩⎨⎧3a +2>0,4-2a >0,解得-23<a <221.(8分)解不等式组⎩⎪⎨⎪⎧3(x -2)≥x -4,①2x +13>x -1,②并写出它所有的整数解.解:解不等式①得x ≥1,解不等式②得x <4,∴原不等式的解集是1≤x <4,∴原不等式组的整数解是x =1,2,322.(8分)若关于x 的不等式组⎩⎪⎨⎪⎧x 2+x +13>0,3x +5a +4>4(x +1)+3a 恰有三个整数解,求实数a 的取值范围. 解:解不等式x 2+x +13>0得x >-25,解不等式3x +5a +4>4(x +1)+3a 得x <2a ,∵不等式组恰有三个整数解,∴2<2a ≤3,∴1<a ≤3223.(9分)如图,一次函数y 1=kx -2和y 2=-3x +b 的图象相交于点A(2,-1).(1)求k ,b 的值;(2)利用图象求当x 取何值时,y 1≥y 2?(3)利用图象求当x 取何值时,y 1>0且y 2<0?解:(1)将A 点坐标代入y 1=kx -2,得2k -2=-1,即k =12;将A 点坐标代入y 2=-3x +b 得-6+b=-1,即b =5 (2)从图象可以看出当x ≥2时,y 1≥y 2 (3)直线y 1=12x -2与x 轴的交点为(4,0),直线y 2=-3x +5与x 轴的交点为(53,0),从图象可以看出当x >4时,y 1>0;当x >53时,y 2<0,∴当x >4时,y 1>0且y 2<024.(12分)甲,乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x 元,其中x >100.(1)根据题意,填写下表(物购计累 费花际实 130 290 … x 在甲商场127…在乙商场 126 …(2)当x 取何值时,(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?解:(1)271 100+(x -100)×90% 278 50+(x -50)×95% (2)根据题意得100+(x -100)×90%=50+(x -50)×95%,解得x =150.即当x =150时,小红在甲、乙两商场的实际花费相同 (3)由100+(x -100)×90%<50+(x -50)×95%,解得x >150;由100+(x -100)×90%>50+(x -50)×95%,解得x <150.∴当小红累计购物超过150元时,选择甲商场实际花费少,当小红累计购物超过100元而不到150元时,选择乙商场实际花费少25.(12分)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲,乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件,则运输部门安排甲,乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:(1)设饮用水有x 件,则蔬菜有(x -80)件,由题意得x +(x -80)=320,解得x =200,∴x -80=120.则饮用水和蔬菜分别为200件和120件 (2)设租用甲种货车m 辆,则租用乙种货车(8-m )辆,由题意得⎩⎨⎧40m +20(8-m )≥200,10m +20(8-m )≥120,解得2≤m ≤4.∵m 为正整数,∴m =2或3或4.故安排甲、乙两种货车时有3种方案,设计方案分别为①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆 (3)3种方案的运费分别为①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元);∴方案①运费最少,最少运费是2960元.则运输部门应安排甲车2辆,乙车6辆,可使运费最少,最少运费是2960元第3章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分) 1.把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到点B ,则点B 的坐标是( B ) A .(-5,3) B .(1,3) C .(1,-3) D .(-5,-1)2.如图,下列四个图形中,△ABC 经过旋转之后不能得到△A ′B ′C ′的是( D )3.(2016·青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是( B )4.如图,△OAB 绕点O 逆时针旋转80°得到△OCD ,若∠A =110°,∠D =40°,则∠α的度数是( C )A .30°B .40°C .50°D .60°5.一个图形无论经过平移还是旋转,下列说法:①对应线段相等;②对应线段平行;③对应角相等;④图形的形状和大小都没有发生变化.其中正确的有( C )A.①②③B.①②④C.①③④D.②③④6.(2016·枣庄)已知点P(a+1,-a2+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( C )7.如图,将△ABC沿射线BC向右平移到△DCE的位置,连接AD,则下列结论:①AB∥CD;②AC=DE;③AD=BC;④∠B=∠ADC;⑤△ACD≌△EDC.其中正确的结论有( A )A.5个B.4个C.3个D.2个,第7题图),第8题图),第9题图),第10题图)8.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2.△A′B′C可以由△ABC绕点C 顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A,B′,A′在同一条直线上,则AA′的长为( A )A.6 B.4 3 C.3 3 D.39.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′是点B的对应点,点C′是点C的对应点),连接CC′,则∠CC′B′的度数是( D ) A.45°B.30°C.25°D.15°10.将等腰直角三角形AOB按如图所示放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点B的横坐标为2,则点A′的坐标为( C )A.(1,1) B.(2,2) C.(-1,1) D.(-2,2)二、填空题(每小题3分,共24分)11.如图,点D是等边三角形ABC内的一点,如果△ABD绕点A逆时针旋转后能与△ACE重合,那么旋转了__60__度.12.如图,△A′B′C′是由△ABC沿BC方向平移得到的,若BC=5 cm,AC=4.5 cm,B′C=2 cm,那么A′C′=__4.5__cm,A,A′两点之间的距离为__3__cm.,第11题图),第12题图),第14题图),第15题图)13.在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-2,3),B(-4,-1),C(2,0),将△ABC平移至△A1B1C1的位置,点A,B,C,的对应点分别是A1,B1,C1,若点A1的坐标为(3,1),则点C1的坐标为__(7,-2)__.14.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为__2α__.15.如图,在△ABC中,∠BAC=115°,∠ACB=25°,把△ABC以AC为对称轴作对称变换得△ADC,又把△ABC绕点B逆时针旋转55°得△FBE,则∠α的度数为__145°__.16.如图,等腰直角三角形ABC的直角边AB的长为6 cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,则图中阴影部分的面积等于__63__cm2.,第16题图),第17题图),第18题图)17.如图是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的阴影部分构成一个中心对称图形,则这个白色小正形内的数字是__3__.18.如图,在△ABC中,∠ACB=90°,∠BAC=30°,将△ABC绕点C按逆时针方向旋转α(0°<α<90°)后得到△DEC,设CD交AB于点F,连接AD,当旋转角α的度数为__40°或20°__时,△ADF是等腰三角形.三、解答题(共66分)19.(7分)如图,将△ABC沿直线AB向右平移后到达△BDE的位置.(1)若AC=6 cm,则BE=__6__cm;(2)若∠CAB=50°,∠BDE=100°,求∠CBE的度数.解:根据平移的性质得AC∥BE,∠ABC=∠BDE=100°,∴∠C=180°-∠CAB-∠ABC=180°-50°-100°=30°,由AC∥BE得∠CBE=∠C=30°20.(7分)如图,边长为4的正方形ABCD绕点D旋转30°后能与四边形A′B′C′D重合.(1)旋转中心是哪一点?(2)四边形A ′B ′C ′D 是什么图形?面积是多少?(3)求∠C ′DC 和∠CDA ′的度数;(4)连接AA ′,求∠DAA ′的度数.解:(1)点D (2)四边形A ′B ′C ′D ′是正方形,面积为4×4=16 (3)由题意得∠C ′DC =30°,∠CDA ′=90°-∠C ′DC =60° (4)∵AD =A ′D ,∠ADA ′=30°,∴∠DAA ′=(180°-30°)×12=75°21.(8分)(1)在平面直角坐标系中找出点A(-3,4),B(-4,1),C(-1,1),D(-2,3)并将它们依 次连接;(2)将(1)中所画图形先向右平移4个单位,再向下平移3个单位,画出第二次平移后的图形;(3)如何将(1)中所画图形经过一次平移得到(2)中所画图形?平移前后对应点的横坐标有什么关系?纵坐标呢?解:(1)画图略 (2)画图略 (3)将A 点与它的对应点A ′连接起来,则AA ′=32+42=5,∴将(1)中所画图形沿A 到A ′的方向平移5个单位长度得到(2)中所画图形.四边形A ′B ′C ′D ′与四边形ABCD 相比,对应点的横坐标分别增加了4,纵坐标分别减少了322.(10分)(2016·巴中)如图,方格中,每个小正方形的边长都是单位1,△ABC 在平面直角坐标系中的位置如图.(1)画出将△ABC 向右平移2个单位得到的△A 1B 1C 1;(2)画出将△ABC 绕点O 顺时针方向旋转90°得到的△A 2B 2C 2;(3)画出△ABC 关于原点对称的△A 3B 3C 3.解:图略23.(10分)如图,在△ABC中,∠BAC=120°,以BC为边向图形外作等边△BCD,把△ABD绕点D按顺时针方向旋转60°到△ECD的位置,若AB=3,AC=2.(1)求∠BAD的度数;(2)求AD的长.解:(1)因为△DCE是由△DBA旋转后得到的,∴DE=DA,∵∠BDC=60°,∴∠ADE=60°,∴△ADE是等边三角形,∴∠DAE=60°,∠BAD=∠BAC-∠DAE=120°-60°=60°(2)AD=AE =AC+CE=AC+AB=2+3=524.(12分)如图,在平面直角坐标系xOy中,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5,∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中△OMN的边NM重合;(3)求OE的长.解:(1)△OMN如图所示(2)△A′B′C′如图所示(3)设OE=x,则ON=x,作MF⊥A′B′于点F,由作图可知B′C′平分∠A′B′O,且C′O⊥OB ′,∴B ′F =B ′O =OE =x ,FC ′=OC ′=OD =3.∵A ′C ′=AC =5,∴A ′F =52-32=4,∴A ′B ′=x +4,A ′O =5+3=8.在Rt △A ′B ′O 中,x 2+82=(4+x )2,解得x =6,即OE =625.(12分)如图,小明将一张长方形纸片沿对角线剪开,得到两张三角形纸片(如图②),量得它们的斜边长为10 cm ,较小的锐角为30°,再将这两张三角形纸片摆成如图③的形状,且点B ,C ,F ,D 在同一条直线上,且点C 与点F 重合(在图③至图⑥中统一用F 表示).小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮忙解决:(1)将图③中的△ABF 沿BD 向右平移到图④的位置,使点B 与点F 重合,请你求出平移的距离;(2)将图③中的△ABF 绕点F 顺时针方向旋转30°到图⑤的位置,A 1F 交DE 于点G ,请你求出线段FG 的长度;(3)将图③中的△ABF 沿直线AF 翻折到图⑥的位置,AB 1交DE 于点H ,请证明:AH =DH.解:(1)图形平移的距离就是线段BC 的长,∵在Rt △ABC 中,斜边长为10 cm ,∠BAC =30°,∴BC =5 cm.∴平移的距离为5 cm (2)∵∠A 1FA =30°,∴∠GFD =60°,又∵∠D =30°,∴∠FGD =90°.在Rt △DFG 中,由勾股定理得FD =5 3 cm ,∴FG =12FD =532cm (3)在△AHE 与△DHB 1中,∵∠FAB 1=∠EDF =30°,FD =FA ,EF =FB =FB 1,∴FD -FB 1=FA -FE ,即AE =DB 1.又∵∠AHE =∠DHB 1.∴△AHE ≌△DHB 1(AAS ).∴AH =DH期中检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.(2016·哈尔滨)下列图形中既是轴对称图形又是中心对称图形的是( D )2.若a >b ,则下列不等式变形错误的是( D )A .a +3>b +3 B.a 3>b 3C .2a -3>2b -3D .3-2a >3-2b3.(2016·临沂)不等式组⎩⎪⎨⎪⎧3x <2x +4,3-x 3≥2的解集,在数轴上表示正确的是( A )4.在平面直角坐标系中,将点A(x ,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A 的坐标是( D )A .(2,5)B .(-8,5)C .(-8,-1)D .(2,-1)5.如图,在△ABC 中,∠CAB =75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′等于( A )A .30°B .35°C .40°D .50°,第5题图) ,第6题图) ,第7题图),第8题图)6.在△ABC 中,∠C =90°,AD 平分∠BAC ,DE 垂直平分AB ,垂足为E.若CD =2,则BD 的长为( C )A .2B .3C .4D .57.如图,AD ⊥CD ,AE ⊥BE ,垂足分别为D ,E ,且AB =AC ,AD =AE.则下列结论:①△ABE ≌△ACD ;②AM =AN ;③△ABN ≌△ACM ;④BO =EO.其中正确的有( B )A .4个B .3个C .2个D .1个8.如图,将△ABC 沿直线DE 折叠后,使得点B 与点A 重合,已知AC =5 cm ,△ADC 的周长为17 cm ,则BC 的长为( C )A .7 cmB .10 cmC .12 cmD .22 cm9.如图,已知MN 是△ABC 的边AB 的垂直平分线,垂足为点F ,∠CAB 的平分线AD 交BC 于点D ,且MN 与AD 交于点O ,连接BO 并延长交AC 于点E ,则下列结论中不一定成立的是( B ) A .∠CAD =∠BAD B .OE =OF C .AF =BF D .OA =OB,第9题图) ,第10题图)10.如图,将边为3的正方形ABCD 绕点A 沿逆时针方向旋转30°后得到正方形AEFH ,则图中阴影部分的面积为( B ) A.32- 3 B .3- 3 C .2- 3 D .2-32 二、填空题(每小题3分,共24分)11.如图,已知∠B =∠C ,添加一个条件使△ABD ≌△ACE(不标注新的字母,不添加辅助线).则添加的条件是__AB =AC (答案不唯一)__.12.如图,在△ABC 中,∠C =90°,AD 平分∠BAC ,若AB =10 cm ,BC =8 cm ,BD =5 cm ,则△ABD 的面积为__15_cm 2__.,第11题图) ,第12题图) ,第13题图),第14题图)13.如图,在等边△ABC 中,AB =6,D 是BC 的中点,将△ABD 绕点A 旋转后得到△ACE ,那么线段DE 的长度为__33__.14.如图,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a +b =__2__.15.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2有解,则a 的取值范围__a >-1__. 16.如图,OA ⊥OB ,△CDE 的边CD 在OB 上,∠ECD =45°,CE =4,若将△CDE 绕点C 逆时针旋转75°,点E 的对应点N 恰好落在OA 上,则OC 的长度为__2__.,第16题图) ,第17题图),第18题图)17.如图,点E 是正方形ABCD 内的一点,连接AE ,BE ,CE ,将△ABE 绕点B 顺时针旋转90°到△CBE ′的位置.若AE =1,BE =2,CE =3,则∠BE ′C =__135__°.18.如图,在△ABC 中,∠ACB =90°,AC =BC ,O 是AB 的中点,点D 在AC 上,点E 在BC 上,且∠DOE =90°.则下列结论:①OA =OB =OC ;②CD =BE ;③△ODE 是等腰直角三角形;④四边形CDOE 的面积等于△ABC 的面积的一半;⑤AD 2+BE 2=2OD 2;⑥CD +CE =2OA.其中正确的有__①②③④⑤⑥__(填序号)三、解答题(共66分)19.(8分)如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,交CB 于点D ,过点D 作DE ⊥AB 于点E.(1)求证:△ACD ≌△AED ;(2)若∠B =30°,CD =1,求BD 的长.解:(1)∵AD 平分∠CAB ,∴∠CAD =∠EAD ,∵∠C =90°,DE ⊥AB ,∴∠C =∠DEA =90°,又∵AD =AD ,∴△ACD ≌△AED (AAS ) (2)∵DE ⊥AB ,∴∠DEB =90°,又∵由(1)得△ACD ≌△AED ,∴DE =CD =1,在Rt △BDE 中,∵∠B =30°,∴BD =2DE =220.(8分)解不等式组⎩⎪⎨⎪⎧3(x -1)<5x +1,x -12≥2x -4,并指出它的所有非负整数解. 解:解不等式组得-2<x ≤73,∴不等式组的非负整数解是0,1,221.(8分)如图,△ABO 与△CDO 关于O 点中心对称,点E ,F 在线段AC 上,且AF =CE.求证:FD =BE.解:根据中心对称的性质可得BO =DO ,AO =CO ,又∵AF =CE ,∴AO -AF =CO -CE ,即OF =OE.在△ODF 和△OBE 中,DO =BO ,∠DOF =∠BOE (对顶角相等),OF =OE ,∴△ODF ≌△OBE (SAS ),∴FD =BE22.(8分)如图,OA ⊥OB ,OA =45海里,OB =15海里,我国某岛位于O 点,我国渔政船在点B 处发现有一艘不明国籍的渔船,自A 点出发沿着AO 方向匀速驶向该岛所在地O 点,我国渔政船立即从B 处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C 处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国渔政船行驶的航程BC.解:(1)如答图,连接AB,作AB的垂直平分线与OA交于点C.点C即为所求(2)连接BC,设BC=x海里,则CA=x海里,OC=(45-x)海里,在Rt△OBC中,BO2+OC2=BC2,即152+(45-x)2=x2,解得x=25.则我国渔政船行驶的航程BC为25海里23.(10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-4,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标.解:(1)图略(2)(2,-1)24.(12分)已知△ABC是等边三角形,将一块含有30°角的直角三角板DEF如图放置,让三角板在BC所在的直线上向右平移.如图①,当点E与点B重合时,点A恰好落在三角形的斜边DF上.(1)利用图①证明:EF=2BC;(2)在三角板的平移过程中,在图②中线段EB =AH 是否始终成立(假定AB ,AC 与三角板斜边的交点为G ,H)?如果成立,请证明;如果不成立,请说明理由.解:(1)∵△ABC 是等边三角形,∴∠ACB =60°,AC =BC.∵∠F =30°,∴∠CAF =60°-30°=30°,∴∠CAF =∠F ,∴CF =AC.∴CF =AC =BC ,∴EF =2BC (2)成立.∵△ABC 是等边三角形,∴∠ACB =60°,AC =BC ,∵∠F =30°,∴∠CHF =60°-30°=30°.∴∠CHF =∠F .∴CH =CF .∵EF =2BC ,∴EB +CF =BC.又∵AH +CH =AC ,AC =BC ,∴EB =AH25.(12分)某文具商店销售功能相同的A ,B 两种品牌的计算器,购买2个A 品牌和3个B 品牌的计算器共需156元;购买3个A 品牌和1个B 品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A 品牌计算器按原价的八折销售,B 品牌计算器5个以上超出部分按原价的七折销售.设购买x 个A 品牌的计算器需要y 1元,购买x 个B 品牌的计算器需要y 2元,分别求出y 1,y 2关于x 的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.解:(1)设A 品牌计算器的单价为x 元,B 品牌计算器的单价为y 元,根据题意得⎩⎨⎧2x +3y =156,3x +y =122, 解得⎩⎨⎧x =30,y =32 (2)根据题意得y 1=0.8×30x ,即y 1=24x.当0≤x ≤5时,y 2=32x ;当x >5时,y 2=32×5+32(x -5)×0.7,即y 2=22.4x +48 (3)当购买数量超过5个时,y 2=22.4x +48.①当y 1<y 2时,24x <22.4x +48,解得x <30,即当购买数量超过5个而小于30个时,购买A 品牌的计算器更合算;②当y 1=y 2时,24x =22.4x +48,解得x =30,即当购买数量为30个时,购买A 品牌和B 品牌的计算器花费相同;③当y 1>y 2时,24x >22.4x +48,解得x >30,即当购买数量超过30个时,购买B 品牌的计算器更合算第4章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列从左边到右边的变形,属于因式分解的是( C )A .(3-x )(3+x )=9-x 2B .(y +1)(y -3)=-(3-y )(y +1)C .m 4-n 4=(m 2+n 2)(m +n )(m -n )D .4yz -2y 2z +z =2y (2z -yz )+z2.多项式mx 2-m 与多项式x 2-2x +1的公因式是( A )A .x -1B .x +1C .x 2-1D .(x -1)2 3.下列各式中,能用公式法分解因式的有( B )①-x 2-y 2;②-14a 2b 2+1;③a 2+ab +b 2;④-x 2+2xy -y 2;⑤14-mn +m 2n 2.A .2个B .3个C .4个D .5个4.把代数式3x 3-12x 2+12x 分解因式,结果正确的是( D ) A .3x (x 2-4x +4) B .3x (x -4)2 C .3x (x +2)(x -2) D .3x (x -2)25.一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是( B ) A .4x 2-4x +1=(2x -1)2 B .x 3-x =x (x 2-1) C .x 2y -xy 2=xy (x -y ) D .x 2-y 2=(x +y )(x -y ) 6.若a 2-b 2=14,a -b =12,则a +b 的值为( B )A .-12 B.12C .1D .27.已知多项式2x 2+bx +c 因式分解后为2(x -3)(x +1),则b ,c 的值为( D )A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-6 8.计算(-2)99+(-2)100的结果为( A ) A .299 B .2100 C .-299 D .-29.若多项式x 2-2(k -1)x +4是一个完全平方式,则k 的值为( D ) A .3 B .-1 C .3或0 D .3或-110.若三角形的三边长分别是a ,b ,c ,且满足a 2b -a 2c +b 2c -b 3=0,则这个三角形是( A ) A .等腰三角形 B .直角三角形C .等边三角形D .三角形的形状不确定 二、填空题(每小题3分,共24分)11.分解因式:4+12(x -y)+9(x -y)2=__(2+3x -3y )2__.12.若2a -b +1=0,则8a 2-8ab +2b 2的值为__2__.13.已知实数x ,y 满足x 2+4x +y 2-6y +13=0,则x +y 的值为__1__. 14.多项式2ax 2-8a 与多项式2x 2-8x +8的公因式为__2(x -2)__.15.若多项式(3x +2)(2x -5)+(5-2x)(2x -1)可分解为(2x +m)(x +n),其中m ,n 均为整数,则mn 的值为__-15__.16.已知长方形的面积为6m 2+60m +150(m >0),长与宽的比为3∶2,则这个长方形的周长为__10m +50__.17.已知代数式a 2+2a +2,当a =__-1__时,它有最小值,最小值为__1__.18.从边长为a 的正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形,如图甲,然后拼成一个平行四边形,如图乙,那么通过计算两个图形阴影部分的面积,可以验证成立的为__a 2-b 2=(a +b )(a -b )__.三、解答题(共66分)19.(12分)将下列各式分解因式:(1)2x 2y -8xy +8y; (2)a 2(x -y)-9b 2(x -y); 解:2y (x -2)2 解:(x -y )(a +3b )(a -3b )(3)9(m +2n )2-4(m -2n )2; (4)(y 2-1)2+6(1-y 2)+9. 解:(5m +2n )(m +10n ) 解:(y +2)2(y -2)220.(10分)先分解因式,再求值:(1)已知x -y =-23,求(x 2+y 2)2-4xy(x 2+y 2)+4x 2y 2的值;解:原式=(x -y )4,当x -y =-23时,原式=1681(2)已知x +y =1,xy =-12,求x (x +y )(x -y )-x (x +y )2的值.解:原式=-2xy (x +y ),当x +y =1,xy =-,原式=-2×(-12)×1=121.(6分)下列三个多项式:12x 3+2x 2-x ,12x 3+4x 2+x ,12x 3-2x 2,请选择你喜欢的两个多项式进行加法运算,再将结果因式分解.解:12x 3+2x 2-x +12x 3+4x 2+x =x 3+6x 2=x 2(x +6)(答案不唯一)22.(8分)甲,乙两同学分解因式x 2+mx +n ,甲看错了n ,分解结果为(x +2)(x +4);乙看错了m ,分解结果为(x +1)(x +9),请分析一下m ,n 的值及正确的分解过程.解:∵(x +2)(x +4)=x 2+6x +8,甲看错了n 的值,∴m =6,又∵(x +1)(x +9)=x 2+10x +9,乙看错了m 的值,∴n =9,∴原式为x 2+6x +9=(x +3)223.(8分)阅读下列解题过程:已知a,b,c为三角形的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4, (A)∴c2(a2-b2)=(a2+b2)(a2-b2), (B)则c2=a2+b2, (C)∴△ABC为直角三角形. (D)(1)上述解题过程中,从哪一步开始出现错误?请写出该步的代号__C__;(2)错误的原因__忽略了a2-b2=0,即a=b的可能__;(3)请写出正确的解答过程.解:∵a2c2-b2c2=a4b4,∴c2(a2-b2)=(a2+b2)(a2-b2),即c2(a2-b2)-(a2+b2)(a2-b2)=0,∴(a2-b2)(c2-a2-b2)=0,∴a2-b2=0或c2-a2-b2=0,即a=b或c2=a2+b2,∴△ABC为等腰三角形或直角三角形24.(10分)有足够多的长方形和正方形的卡片,如图①(1)如果选取1号,2号,3号卡片分别为1张,2张,3张(如图②),可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系将多项式a2+3ab+2b2分解因式;(2)小明想用类似的方法将多项式2a2+7ab+3b2分解因式,那么需要1号卡片__2__张,2号卡片__3__张,3号卡片__7__张.试画出草图,写出将多项式2a2+7ab+3b2分解因式的结果.解:(1)画图略.a2+3ab+2b2=(a+b)(a+2b)(2)2,3,7.画图略.2a2+7ab+3b2=(2a+b)(a+3b)25.(12分)阅读下列计算过程:多项式x2-11x+24分解因式,可以采取以下两种方法:①将-11x拆成两项,即-6x-5x;将24拆成两项,即9+15,则:x2-11x+24=x2-6x+9-5x+15=(x2-6x+9)-5(x-3)=(x-3)2-5(x-3)=(x-3)(x-3-5)=(x-3)(x-8);②添加一个数(112)2,再减去这个数(112)2,则:x 2-11x +24=x 2-11x +(112)2-(112)2+24=[x 2-11x +(112)2]-254=(x -112)2-(52)2=(x -112+52)(x -112-52)=(x -3)(x -8). (1)根据上面的启发,请任选一种方法将多项式x 2+4x -12分解因式;(2)已知A =a +10,B =a 2-a +7,其中a >3,指出A 与B 哪个大,并说明理由.解:(1)x 2+4x -12=x 2+4x +4-16=(x +2)2-16=(x +6)(x -2) (2)B >A.理由:B -A =a 2-a +7-a -10=a 2-2a +1-4=(a -3)(a +1),∵a >3,∴a -3>0,a +1>0,∴B -A >0,即B >A第5章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.在式子1a ,2xy π,3ab 2c 4,56+x ,x 7+y 8,9x +10y ,x 2x 中,分式的个数是( B )A .5B .4C .3D .22.若分式x 2-1x +1的值为零,则x 的值为( B )A .0B .1C .-1D .±1 3.在下列分式中,最简分式是( B ) A.x +1x 2-1 B.x +2x 2+1 C.y 2y 2 D.63y +34.下列各式从左到右的变形中正确的是( A ) A.x -12y12xy =2x -y xy B.0.2a +b a +2b =2a +b a +2b C .-x +1x -y =x -1x -y D.a +b a -b =a -b a +b5.计算a b +b a -a 2-b 2ab 的结果是( B )A.2a bB.2ba C.-2ab D.-2b a6.分式方程2x -2+3x 2-x =1的解为( A )A .1B .2 C.13D .0。
北师大版八年级数学下册第一章《三角形的证明》单元过关测试卷(含答案)
北师大版八年级数学下册第一章《三角形的证明》单元过关测试卷一.选择题(共8小题,满分24分)1.如图,△ABC是等边三角形,DE∥BC,若AB=10,BD=6,则△ADE的周长为()A.4B.30C.18D.122.已知实数a,b满足|a﹣2|+(b﹣4)2=0,则以a,b的值为两边的等腰三角形的周长是()A.10B.8或10C.8D.以上都不对3.如图,在△ABC中,∠ACB=90°,∠A=30°,CE=2,边AB的垂直平分线交AB于点D,交AC于点E,那么AE的为()A.6B.4C.3D.24.如图,OP平分∠MON,P A⊥ON,PB⊥OM,垂足分别为A、B,若P A=3,则PB=()A.2B.3C.1.5D.2.55.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的中垂线,E、N在BC上,则∠EAN=()A.58°B.32°C.36°D.34°6.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题为真命题的()A.如果∠A=2∠B=3∠C,则△ABC是直角三角形B.如果∠A:∠B:∠C=3:4:5,则△ABC是直角三角形C.如果a:b:c=1:2:2,则△ABC是直角三角形D.如果a:b;c=3:4:,则△ABC是直角三角形7.如图,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC,当用反证法证明时,第一步应假设()A.AB≠AC B.PB=PC C.∠APB=∠APC D.∠B≠∠C8.如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根B.8根C.9根D.10根二.填空题(共8小题,满分24分)9.在Rt△ABC中,∠B=90°,∠A=30°,AB=3,则AC=.10.如图,已知△ABC中,BC=4,AB的垂直平分线交AC于点D,若AC=6,则△BCD 的周长=.11.如图,小艾同学坐在秋千上,秋千旋转了80°,小艾同学的位置也从A点运动到了A'点,则∠OAA'的度数为.12.如图,Rt△ABC中,∠C=90°,AB=10,AD平分∠BAC,交BC于点D,CD=4,则S△ABD=.13.如图,在△ABC中,OB、OC分别是∠ABC和∠ACB的平分线,过点O作EF∥BC,分别与边AB、AC相交于点E、F,AB=8,AC=7,那么△AEF的周长等于.14.如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE ⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是.15.如图,△ABC是等边三角形,过它的三个顶点分别作对边的平行线,则图中共有个等边三角形.16.如图,△ABC是边长为8的等边三角形,D为AC的中点,延长BC到E,使CE=CD,DF⊥BC于点F,求线段BF的长,BF=.三.解答题(共7小题,满分52分)17.用反证法证明等腰三角形的底角必为锐角.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.19.如图:△ABC中,∠ACB=90°,点D在AB上,CE是斜边AB上的高,且AC=AD.(1)若∠DCE=15°,求∠B的度数;(2)若∠B﹣∠A=20°,求∠DCB的度数.20.如图,在△ABC中,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于点E.(1)若∠ABE=50°,求∠EBC的度数;(2)若△ABC的周长为43cm,BC的长为11cm,求△BCE的周长21.如图,在等边三角形ABC中,D是AB上的一点,E是CB延长线上一点,连结CD,DE,已知∠EDB=∠ACD.(1)求证:△DEC是等腰三角形.(2)当∠BDC=5∠EDB,BD=2时,求EB的长.22.如图,在△ABC中,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.(1)若∠BAC=90°(图1),求∠DAE的度数;(2)若∠BAC=120°(图2),求∠DAE的度数;(3)当∠BAC>90°时,探求∠DAE与∠BAC之间的数量关系,直接写出结果.23.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒时,M、N两点重合?(2)点M、N运动几秒时,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.参考答案一.选择题(共8小题)1.【解答】解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,∵DE∥BC,∴∠ADE=∠AED=∠B=∠C=60°,∴△ADE为等边三角形,∵AB=10,BD=6,∴AD=AB﹣BD=10﹣6=4,∴△ADE的周长为12.故选:D.2.【解答】解:根据题意得a﹣2=0,b﹣4=0,解得a=2,b=4,①a=2是底长时,三角形的三边分别为4、4、2,∵4、4、2能组成三角形,∴三角形的周长为10,②a=2是腰边时,三角形的三边分别为4、2、2,2+2=4,不能组成三角形.综上所述,三角形的周长是10.故选:A.3.【解答】解:连接BE,∵DE是边AB的垂直平分线,∴BE=AE,∴∠EBA=∠A=30°,∴∠CBE=180°﹣90°﹣30°﹣30°=30°,∴BE=2CE=4,∴AE=BE=4,故选:B.4.【解答】解:∵OP平分∠MON,P A⊥ON,PB⊥OM,∴PB=P A=3,故选:B.5.【解答】解:∵△ABC中,∠BAC=106°,∴∠B+∠C=180°﹣∠BAC=180°﹣106°=74°,∵EF、MN分别是AB、AC的中垂线,∴∠B=∠BAE,∠C=∠CAN,即∠B+∠C=∠BAE+∠CAN=74°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=106°﹣74°=32°.故选:B.6.【解答】解:A、∵∠A=2∠B=3∠C,∠A+∠B+∠C=180°,∴∠A≈98°,错误不符合题意;B、如果∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=75°,错误不符合题意;C、如果a:b:c=1:2:2,12+22≠22,不是直角三角形,错误不符合题意;D、如果a:b;c=3:4:,,则△ABC是直角三角形,正确;故选:D.7.【解答】解:假设结论PB≠PC不成立,即:PB=PC成立.故选:B.8.【解答】解:∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠EDF=∠EFD=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个,∴添加这样的钢管的根数最多是8根.故选:B.二.填空题(共8小题)9.【解答】解:如图,∵∠B=90°,∠A=30°,∴设BC=x,则AC=2BC=2x,∵AB=3,∴x2+32=(2x)2解得:x=或﹣(舍去),∴AC=2x=2,故答案为:2.10.【解答】解:∵DE是线段AB的垂直平分线,∴DA=DB,∴△BCD的周长=BC+CD+DB=BC+CD+DA=BC+AC=10,故答案为:10.11.【解答】解:∵秋千旋转了80°,小林的位置也从A点运动到了A'点,∴AOA′=80°,OA=OA′,∴∠OAA'=(180°﹣80°)=50°.故答案为50°.12.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=4,∴S△ABD=AB•DE=×10×4=20,故答案为20.13.【解答】解:∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠EBO=∠OBC,∠FCO=∠OCB,∴∠EOB=∠EBO,∠FOC=∠FCO,∴EO=EB,FO=FC,∵AB=8cm,AC=7cm,∴△AEF的周长为:AE+EF+AF=AE+EO+FO+AF=AE+EB+FC+AF=AB+AC=8+7=15(cm).故△AEF的周长为15,故答案为:15.14.【解答】解:∵AD平分∠CAB,∠CAD=20°,∴∠CAB=2∠CAD=40°,∵∠ACB=90°,∴∠B=90°﹣40°=50°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣50°=40°,故答案为:40°.15.【解答】解:∵△ABC是等边三角形,∴∠ABC=∠BCA=∠CAB=60°,∵DF∥BC,∴∠F AC=∠ACB=60°,∠DAB=∠ABC=60°,同理:∠ACF=∠BAC=60°在△AFC中,∠F AC=∠ACF=60°∴△AFC是等边三角形,同理可证:△ABD△BCE都是等边三角形,因此∠E=∠F=∠D=60°,△DEF是等边三角形,故有5个等边三角形,故答案为:5.16.【解答】解:连接BD,∵△ABC是边长为8的等边三角形,D为AC的中点,∴AC=BC=8,AD=DC=4,∠DBF=ABC==30°,由勾股定理得:BD==4,∵DF⊥BC,∴∠DFB=90°,∴DF=BD==2,在Rt△DFB中,由勾股定理得:BF===6,故答案为:6.三.解答题(共7小题)17.【解答】证明:①设等腰三角形底角∠B,∠C都是直角,则∠B+∠C=180°,而∠A+∠B+∠C=180°+∠A>180°,这与三角形内角和等于180°矛盾.②设等腰三角形的底角∠B,∠C都是钝角,则∠B+∠C>180°,而∠A+∠B+∠C>180°,这与三角形内角和等于180°矛盾.综上所述,假设①,②错误,所以∠B,∠C只能为锐角.故等腰三角形两底角必为锐角18.【解答】解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.19.【解答】解:(1)∵CE⊥AB,∴∠CED=90°,∵∠ECD=15°,∴∠ADC=75°,∵AC=AD,∴∠ACD=∠ADC=75°,∵∠ACD=90°,∴∠DCB=15°,∵∠ADC=∠B+∠DCB,∴∠B=75°﹣15°=60°.(2)设∠DCB=x,则∠ADC=∠ACD=∠B+x=90°﹣x,∴2x=90°﹣∠B,∵∠A+∠B=90°,∠B﹣∠A=20°,∴∠B=55°,∴2x=35°,∴x=17.5°,∴∠DCB=17.5°20.【解答】解:(1)∵DE垂直平分AB∴∠A=∠ABE=50°,又∵AB=AC,∴∠ABC=∠ACB,而∠A+∠ABC+∠ACB=180°,∴∠ABC=×(180°﹣50°)=65°,∴∠EBC=∠ABC﹣∠ABE=65°﹣50°=15°;(2)∵△ABC的周长为43cm,BC=11cm∴AB=AC=16cm,又∵DE垂直平分AB∴EA=EB,∴△BCE的周长为:BC+BE+CE=BC+AE+CE=BC+AC=16+11=27cm.21.【解答】(1)证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵∠E+∠EDB=∠ABC=60°,∠ACD+∠DCB=60°,∠EDB=∠ACD,∴∠E=∠DCE,∴△DEC是等腰三角形;(2)解:设∠EDB=α,则∠BDC=5α,∴∠E=∠DCE=60°﹣α,∴6α+60°﹣α+60°﹣α=180°,∴α=15°,∴∠E=∠DCE=45°,∴∠EDC=90°,过D作DH⊥CE于H,∵BD=2,∠DBH=60°,∴BH=BD=1,DH==,DH=EH=,∴BE=EH﹣BH=﹣1.22.【解答】解:(1)如图1,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵BD=BA,∴∠BAD=∠BDA=(180°﹣∠B)=67.5°,∵CE=CA,∴∠CAE=∠E=∠ACB=22.5°,∴∠BAE=180°﹣∠B﹣∠E=112.5°,∴∠DAE=∠BAE﹣∠BAD=45°,(2)如图2,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=30°,∵BA=BD,∴∠BAD=∠BDA=75°,∴∠DAC=45°,∵CA=CE,∴∠E=∠CAE=15°,∴∠DAE=∠DAC+∠CAE=60°;(3)∠DAE=∠BAC,理由:设∠CAE=x,∠BAD=y,则∠B=180°﹣2y,∠E=∠CAE=x,∴∠BAE=180°﹣∠B﹣∠E=2y﹣x,∴∠DAE=∠BAE﹣∠BAD=2y﹣x﹣y=y﹣x,∠BAC=∠BAE﹣∠CAE=2y﹣x﹣x=2y﹣2x∴∠DAE=∠BAC.23.【解答】解:(1)设点M、N运动x秒时,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒时,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=12﹣2t,∵三角形△AMN是等边三角形,∴t=12﹣2t,解得t=4,∴点M、N运动4秒时,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,CM=NB,y﹣12=36﹣2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N 运动的时间为16秒.。
北师大版八年级数学下册第一章学情评估 (2)
北师大版八年级数学下册第一章学情评估一、选择题(每题3分,共30分)1.下列各组数中能作为直角三角形的三边长的是( )A.2,2,3 B.6,8,10C.5,2,2 D.1.5,2.5,3.52.如图,直线AD垂直平分线段BC,∠B=50°,则∠C的度数为( ) A.60°B.50°C.40°D.30°(第2题) (第5题) (第6题)3.已知在Rt△ABC中,∠C为直角,∠B是∠A的2倍,则∠A的度数是( ) A.30°B.50°C.70°D.90°4.用反证法证明“一个三角形的三个内角分别是∠1,∠2,∠3,如果∠2+∠3<90°,那么∠1>90°.”时,应先假设( )A.∠1≠90°B.∠1=90°C.∠1<90°D.∠1≤90°5.如图,已知AB⊥BD,CD⊥BD,若用“HL”判定Rt△ABD和Rt△CDB全等,则需要添加的条件是( )A.AD=CB B.∠A=∠CC.BD=DC D.AB=CD6.某地兴建的幸福小区的三个出口A,B,C的位置如图所示,物业公司想在小区内修建一个电动车充电桩,以方便业主,要求到三个出口的距离都相等,则充电桩应该在△ABC( )A.三条高线的交点处B.三条中线的交点处C.三个角的平分线的交点处D.三条边的垂直平分线的交点处7.如图,点B在AC上,AB=5,BC=3,△BCD是等边三角形,则AD的长为( )A .3B .4C .5D .7(第7题) (第9题)8.已知等腰三角形的两边长分别为x ,y ,且满足|2x -y +1|+(x +y -13)2=0,则该等腰三角形的周长为( ) A .22或26B .17C .17或22D .229.如图,在△ABC 中,∠A =90°,∠C =30°,∠ABC 的平分线与线段AC 相交于点D ,若AD =4,则CD 的长为( ) A .10B .8C .6D .410.如图,正方形ABCD 的边长为1,其面积为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为S 2,…,按此规律继续下去,则S 100的值为( )A.⎝ ⎛⎭⎪⎫2299B.⎝ ⎛⎭⎪⎫22100C.⎝ ⎛⎭⎪⎫1299 D.⎝ ⎛⎭⎪⎫12100 二、填空题(每题3分,共15分)11.命题“等腰三角形有两个角相等”的逆命题是______(填“真”或“假”)命题.12.如图,BD 是等边三角形ABC 的角平分线,AB =10,则AD =______. 13.若△ABC 的三边长分别为a ,b ,c ,则下列条件中能判定△ABC 是直角三角形的有________个.①∠A =∠B -∠C ;②∠A ∶∠B ∶∠C =3∶4∶5;③a 2=(b +c )(b -c );④a ∶b ∶c =5∶12∶13.(第12题) (第14题)14.如图,S△ABC=21,∠BAC的平分线AD交BC于点D,点E为AD的中点.连接BE,点F为BE上一点,且BF=2EF,连接DF.若S=2,则AB AC=________.△DEF15.如图,在平面直角坐标系中有点A(0,3)和B(4,0),点M(8,m)为坐标平面内一动点,且△ABM为等腰三角形,则点M的坐标为________________.三、解答题(一)(每题8分,共24分)16.用一条长为40 cm的细绳围成一个一边长为12 cm的等腰三角形,求这个三角形的三边长.17.如图,在△ABC中,AE=5,BE=13,AC=12,DE是BC的垂直平分线,求证:△ABC为直角三角形.18.如图,在△ABC中,∠C=90°.(1)作∠ABC的平分线交AC于点D(尺规作图,保留作图痕迹,标注有关字母,不用写作法和证明);(2)若CD=3,AB+BC=16,求△ABC的面积.四、解答题(二)(每题9分,共27分)19.在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于点D,CE⊥DE于点E.(1)如图①,若点B,C在DE的同侧,AD=CE,求证:AB⊥AC.(2)如图②,若点B,C在DE的两侧,AD=CE,AB与AC仍垂直吗?若垂直,请给出证明;若不垂直,请说明理由.20.如图,在△ABC中,AB=AC,∠BAC=40°,AD是BC边上的高.线段AC的垂直平分线交AD于点E,交AC于点F,连接BE.(1)填空:∠BAD的度数为__________;∠ABC的度数为______;∠ACB的度数为________.(2)线段AE与BE的长相等吗?请说明理由;(3)求∠EBD的度数.21.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC,交AB于点E,交AC于点F.(1)求证:点E在OB的垂直平分线上;(2)过点O作OH⊥BC于点H,连接OA,当∠BAC=60°时,试探究OH与OA的数量关系,并说明理由.五、解答题(三)(每题12分,共24分)22.如图,在△ABC中,AC=BC,点F为AB的中点,连接CF.边AC的垂直平分线交AC,CF,CB于点D,O,E,连接OA,OB.(1)求证:△OBC为等腰三角形;(2)若∠ACF=23°,求∠BOE的度数;(3)若AB=10,CF=25,求线段OA的长.23.如图①,用两条线段(虚线),将一个顶角为36°的等腰三角形分成了三个小等腰三角形,并标出了三个小等腰三角形顶角的度数.(1)请你仿照图①的方法,在图②中,用两种不同的方法将顶角为45°的等腰三角形分成三个小等腰三角形;(2)在△ABC中,∠B=30°,请用线段AD和DE(点D在BC边上,点E在AC边上)将△ABC分成三个小等腰三角形,且AD=BD,DE=CE.试仿照图①,在备用图中画出示意图,并求出∠C的所有可能度数.答案一、1.B 2.B 3.A 4.D 5.A 6.D 7.D 8.D 9.B10.C 提示:由题意易得规律为S 1=12=1,S 2=12S 1=12,S 3=12S 2=14,S 4=12S 3=18,…,∴S n =⎝ ⎛⎭⎪⎫12 n -1,∴S 100=⎝ ⎛⎭⎪⎫12 99.故选C.二、11.真 12.5 13.3 14.4315.(8,3)或⎝⎛⎭⎪⎫8,192 提示:由题意得OA =3,OB =4, ∴AB =32+42=5.△ABM 为等腰三角形,可分三种情况:①当BM =AB 时,如图①,(8-4)2+m 2=5,∴m =3或m =-3(A ,B ,M 三点共线,舍去),∴M (8,3);②当AM =BM 时,如图②,82+(m -3)2=(8-4)2+m 2,∴m =192,∴M ⎝⎛⎭⎪⎫8,192;③当AM=AB 时,易知不符题意.故答案为(8,3)或⎝⎛⎭⎪⎫8,192.三、16.解:当12 cm 为等腰三角形的腰长时,则底边长为40-12×2=16(cm), 此时三角形的三边长分别为12 cm ,12 cm ,16 cm ; 当12 cm 为等腰三角形的底边长时,则腰长为40-122=14(cm),此时三角形的三边长分别为14 cm ,14 cm ,12 cm.综上,这个三角形的三边长分别为12 cm ,12 cm ,16 cm 或14 cm ,14 cm ,12 cm.17.证明:如图,连接CE .∵DE 是BC 的垂直平分线,∴EC=BE=13.在△AEC中,AE=5,EC=13,AC=12,∵AC2+AE2=122+52=169,EC2=132=169,∴AC2+AE2=EC2,∴△AEC是直角三角形,∠A=90°,∴△ABC是直角三角形.18.解:(1)∠ABC的平分线如图所示.(2)如图,作DH⊥AB于点H.∵BD平分∠ABC,DC⊥BC,DH⊥AB,∴CD=DH=3,∴△ABC的面积=S△BCD+S ABD=12BC·CD+12AB·DH=12×3BC+12×3AB=12×3(BC+AB)=12×3×16=24.四、19.(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°.在Rt△ABD和Rt△CAE中,∵AB=CA,AD=CE,∴Rt△ABD≌Rt△CAE(HL),∴∠DBA=∠EAC.∵∠DAB+∠DBA=90°,∴∠DAB+∠EAC=90°,∴∠BAC=180°-(∠DAB+∠EAC)=180°-90°=90°,∴AB⊥AC.(2)解:AB与AC仍垂直.证明如下:同(1)可证得Rt△ABD≌Rt△CAE,∴∠DAB=∠ECA.∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC. 20.解:(1)20°;70°;70°(2)线段AE与BE的长相等,理由如下:如图,连接CE,∵AB=AC,AD是BC边上的高,∴BD=CD,∴BE=CE.∵EF是线段AC的垂直平分线,∴AE=CE,∴AE=BE.(3)∵AE=BE,∴∠ABE=∠BAD=20°,∴∠EBD=∠ABC-∠ABE=70°-20°=50°.21.(1)证明:∵BO平分∠ABC,∴∠CBO=∠ABO.∵EF∥BC,∴∠EOB=∠CBO,∴∠ABO=∠EOB,∴EB=EO,∴点E在OB的垂直平分线上.(2)解:OH=12OA.理由如下:过O点作OG⊥AE于点G,OQ⊥AC于点Q,如图,∵BO平分∠ABC,OH⊥BC,OG⊥AB,∴OH=OG.∵CO平分∠ACB,OH⊥BC,OQ⊥AC,∴OH=OQ,∴OG=OQ,∴AO平分∠BAC,∴∠GAO=12∠BAC=30°,∴OG=12OA,∴OH=12OA.五、22.(1)证明:∵AC=BC,点F为AB的中点,∴CF⊥AB,∴CF垂直平分AB,∴OA=OB.∵DE垂直平分AC,∴OA=OC,∴OB=OC,∴△OBC为等腰三角形.(2)解:∵CA=CB,CF⊥AB,∴CF平分∠ACB,∴∠BCF=∠ACF=23°.∵OB=OC,∴∠OBC=∠OCB=23°.∵∠EDC=90°,∴∠DEC=90°-∠DCE=90°-23°-23°=44°,∴∠BOE=44°-23°=21°.(3)解:由题意得CF⊥AB,AF=12AB=5.∵DE垂直平分AC,∴AO=CO,∴FO=25-AO.∵AO2=AF2+OF2,∴AO2=52+(25-AO)2,解得AO=13,∴线段OA的长为13.23.解:(1)如图①.(2)如图②,作△ABC.设∠C=x,当AD=AE时,∵AD=BD,∠B=30°,∴∠BAD=30°,∵DE=CE,∠C=x,∴∠EDC=x,∴∠AED=∠ADE=2x,∴2x+x=60°,∴x=20°;当AD=DE时,∵AD=BD,∠B=30°,∴∠BAD=30°,∵DE=CE,∠C=x,∴∠EDC=x,∴∠AED=∠DAE=2x,∴60°=180°-x-2x,∴x=40°,∴∠C的度数是20°或40°.北师大版八年级数学下册期中学情评估一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的)1.下列图标中,既是轴对称图形,又是中心对称图形的是()2.已知实数a ,b 满足a +1>b +1,则下列结论不一定成立的是()A .a >b B .a +2>b +2C .-a <-b D .2a >3b3.如图,AD 是等腰三角形ABC 的顶角平分线,BD =5,则CD 等于()A .10B .5C .4D .3(第3题)(第5题)(第6题)4-1≥0,+8>4x +2的解集在数轴上表示正确的是()5.如图,已知线段DE 是由线段AB 平移得到的,且AB =DC =4cm ,EC =3cm ,则△DCE 的周长是()A .9cm B .10cm C .11cm D .12cm6.如图,一次函数y =kx +b 的图象经过点(2,0)与(0,3),则关于x 的不等式kx +b >0的解集是()A .x <2B .x >2C .x <3D .x >37.如图,在△ABC 中,∠C =90°,AC =8,DC =13,BD 平分∠ABC ,则点D 到AB 的距离等于()。
八年级数学下册第一章《三角形的证明》综合测试题-北师大版(含答案)
八年级数学下册第一章《三角形的证明》综合测试题-北师大版(含答案)一.选择题(共7小题,满分28分)1.满足下列条件的△ABC(a、b、c分别是∠A、∠B、∠C的对边)不是直角三角形的是()A.a2﹣b2=c2B.∠A﹣∠B=∠CC.∠A:∠B:∠C=3:4:5D.a:b:c=7:24:252.等腰三角形的一个内角等于70°,则它的底角是()A.70°B.55°C.60°D.70°或55°3.如图,a∥b,△ABC为等边三角形,若∠1=45°,则∠2的度数为()A.75°B.95°C.105°D.120°4.如图,在△ABC中,∠B=∠C,BF=CD,BD=CE,∠FDE=65°,则∠A的度数是()A.45°B.70°C.65°D.50°5.等腰三角形一腰上的中线把三角形周长分为15和12两部分,则此三解形的底边长为()A.7B.11C.7或11D.无法确定6.如图,在Rt△ABC中,∠A=90°,边BC的垂直平分线MN交AB于D,连结CD,下列说法不一定正确的是()A.∠BDN=∠CDN B.∠ADC=2∠BC.∠ACD=∠DCB D.2∠B+∠ACD=90°7.如图,在△ABC中,AB=AC,中线AD与角平分线CE相交于点F,已知∠ACB=40°,则∠AFC的度数为()A.70°B.110°C.40°D.140°二.填空题(共7小题,满分28分)8.已知等腰三角形的底边长为2,腰长为8,则它的周长为.9.如图,BD是△ABC的角平分线,DE⊥AB于E,△BDC的面积为24,BC=12,则DE =.10.如图,在△ABC中,AC的垂直平分线交AB于点D,垂足为点E,CD平分∠ACB,若∠B=30°,则∠A为度.11.如图,DF垂直平分AB,EG垂直平分AC,点D、E在BC边上,且点D在点B和点E 之间.若∠BAC=100°,则∠DAE=.12.如图,∠ABD=∠BCD=90°,DB平分∠ADC过点B作BM∥CD交AD于M.连接CM交DB于N.若CD=6,AD=8,则BD=,MN=.13.如图,△ABC是等腰三角形,AB=AC=12cm,S△ABC=24cm2,点D是底边BC边上的任意一点,DE⊥AB于点E,DF⊥AC于点F.则DE+DF=cm.14.如图所示,已知△ABC中,BC=16cm,AC=20cm,AB=12cm,点P是BC边上的一个动点,点P从点B开始沿B→C→A方向运动,且速度为每秒2cm,设运动的时间为t (s),若△ABP是以AB为腰的等腰三角形,则运动时间t=.三.解答题(共6小题,满分64分)15.如图,在△ABC中,AB=AC,DE垂直平分AB于E,交AC于D,连接BD.(1)如果∠A=40°,求∠CBD的度数;(2)若AB=AC=9cm,BC=5cm,求△BCD的周长.16.如图,在△ABC中,∠C=90°,BD分∠ABC交AC于点D,过点D作DE∥AB交BC 于点E,DF⊥AB,垂足为点F.(1)求证:BE=DE;(2)若DE=2,,求BD的长.17.如图,在△ABC中,∠ABC=2∠ACB,BD为△ABC的角平分线;(1)若AB=BD,则∠A的度数为°(直接写出结果);(2)如图1,若E为线段BC上一点,∠DEC=∠A;求证:AB=EC.(3)如图2,若E为线段BD上一点,∠DEC=∠A,求证:AB=EC.18.如图,A、B两点分别在射线OM,ON上,点C在∠MON的内部,且AC=BC,CD⊥OM,CE⊥ON,垂足分别为D,E,且AD=BE.(1)求证:OC平分∠MON;(2)若AD=3,BO=4,求AO的长.19.在边长为9的等边三角形ABC中,点Q是BC上一点,点P是AB上一动点,以每秒1个单位的速度从点A向点B移动,设运动时间为t秒.(1)如图1,若BQ=6,PQ∥AC,求t的值;(2)如图2,若点P从点A向点B运动,同时点Q以每秒2个单位的速度从点B经点C 向点A运动,当t为何值时,△APQ为等边三角形?20.已知,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.(1)【特殊情况,探索结论】如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”、“<”或“=”).(2)【特例启发,解答题目】如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论,AE DB(填“>”、“<”或“=”);理由如下,过点E作EF∥BC,交AC 于点F.(请你完成以下解答过程).(3)【拓展结论,设计新题】在等边三角形ABC中,点E在直线AB上,点D在线段CB的延长线上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你画出相应图形,并直接写出结果).参考答案一.选择题(共7小题,,满分28分)1.解:A、∵a2﹣b2=c2,∴a2=b2+c2,即△ABC是直角三角形,故本选项不符合题意;B、∵∠A﹣∠B=∠C,∠A+∠B+∠C=180°,∴∠A=90°,即△ABC是直角三角形,故本选项不符合题意;C、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=180°×=45°,∠B=180°×=60°,∠C=180°×=75°,即△ABC不是直角三角形,故本选项符合题意;D、∵a:b:c=7:24:25,∴a2+b2=c2,即△ABC是直角三角形,故本选项不符合题意.故选:C.2.解:①当这个角为顶角时,底角=(180°﹣70°)÷2=55°;②当这个角是底角时,底角=70°.故选:D.3.解:∵△ABC为等边三角形,∴∠ACB=60°,∵∠1=45°,∴∠1+∠ACB=105°,∵a∥b,∴∠2=∠1+∠ACB=105°.故选:C.4.解:如图,在△ABC中,∠B=∠C,BF=CD,,∴△BDF≌△CED(SAS),∴∠BFD=∠CDE,∵∠FDE+∠EDC=∠B+∠BFD,∴∠B=∠FDE=65°,∴∠C=∠B=65°,∴∠A=180°﹣∠B﹣∠C=180°﹣65°﹣65°=50°,故选:D.5.解:根据题意,①当AC+AC=15,解得AC=10,所以底边长=12﹣×10=7;②当AC+AC=12,解得AC=8,所以底边长=15﹣×8=11.所以底边长等于7或11.故选:C.6.解:∵MN垂直平分线段BC,∴DB=DC,MN⊥BC,∴∠BDN=∠CDN,∠DBC=∠DCB,∴∠ADC=∠B+∠DCB=2∠B,∵∠A=90°,∴∠ADC+∠ACD=90°,∴2∠B+∠ACD=90°,故选项A,B,D正确,故选:C.7.解:在△ABC中,AB=AC,AD是中线,∴AD⊥BC,∴∠ADC=90°,∵CE是角平分线,∠ACB=40°,∴∠DCF=20°,∴∠AFC=∠ADC+∠DCF=90°+20°=110°.故选:B.二.填空题(共7小题,满分28分)8.解:∵等腰三角形的底边长为2,腰长为8,∴它的周长=2+8+8=18,故答案为:18.9.解:过点D作DF⊥BC于点F,∵BD是△ABC的角平分线,DE⊥AB于E,∴DE=DF,∵,BC=12,∴,∴DF=4,∴DE=DF=4.故答案为:4.10.解:∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD又∵CD平分∠ACB,∴∠ACD=∠BCD,∴3∠A+∠B=180°,∵∠A==50°.故答案为:50.11.解:∵∠BAC=100°,∴∠B+∠C=180°﹣100°=80°,∵DF垂直平分AB,EG垂直平分AC,∴DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∴∠DAB+∠EAC=∠B+∠C=80°,∴∠DAE=100°﹣80°=20°,故答案为:20°.12.解:∵BM∥CD,∠BCD=90°,∴∠MBD=∠CDB,BM⊥BC,又∵DB平分∠ADC,∴∠MDB=∠CDB,∴∠MBD=∠MDB,∴MB=MD,∵∠A+∠ADB=90°,∠ABM+∠MBD=90°,∴∠A=∠ABM,∴MA=MB,∴MA=MB=MD=AD=4,∵DB平分∠ADC,∴∠ADB=∠CDB,∵∠ABD=∠BCD=90°,∴△ABD∽△BCD,∴BD:CD=AD:BD,∴BD2=AD•CD;∵CD=6,AD=8,∴BD2=8×6=48,∴BD=4,在Rt△BCD中,BC2=BD2﹣CD2=48﹣62=12,在Rt△BCM中,MC===2.∵BM∥CD,∴,∴,∴MN=.故答案为:4.13.解:∵S△ABC=S△ABD+S△ACD,S,S,∴S,∵AB=AC=12cm,S△ABC=24cm2,∴S,即=24,∴DE+DF=4cm,故答案为:4.14.解:∵BC=16cm,AC=20cm,AB=12cm,∴BC2+AB2=AC2,∴∠B=90°,如图1,AB=PB=12cm,∴t=12÷2=6s;如图2,AP=AB=12cm,∴BC+PC=(16+20﹣12)cm=24cm,∴t=24÷2=12s;如图3,AB=BP=12cm,过点B作BD⊥AC于D,则AD=PD,∵S△ABC=×AB×BC=×AC×BD,∴12×16=20BD,∴BD=9.6cm,由勾股定理得:AD===7.2cm,∴AP=2AD=14.4cm,∴t=(12+20﹣14.4)÷2=8.8s,综上所述,t的值是6s或12s或8.8s.故答案为:6s或12s或8.8s.三.解答题(共6小题,满分64分)15.解:(1)∵AB=AC,∠A=40°,∴∠ABC=∠C=70°,∵DE垂直平分AB,∴AD=BD,∵∠DBA=∠A=40°,∴∠DBC=70°﹣40°=30°;(2)由(1)得DA=DB,∴△BCD的周长=BD+CD+BC=AC+BC=9+5=14(cm),答:△BCD的周长为14cm.16(1)证明:∵BD分∠ABC,∴∠ABD=∠CBD.∵DE∥AB,∴∠EDB=∠ABD.∴∠CBD=∠EDB.∴DE=EB.(2)解:∵∠C=90°,∴DC⊥BC.又∵BD分∠ABC交AC于点D,DF⊥AB,∴CD=DF=.在Rt△CDE中,CE==1.∵DE=EB=2,∴BC=CE+EB=3.在Rt△CDB中,BD===2.17.(1)解:如图1中,设∠C=x.∵∠ABC=2∠C,∴∠ABC=2x,∵BD平分∠ABC,∴∠ABD=∠CBD=x,∵AB=BD,∴∠A=∠ADB=∠DBC+∠C=2x,∵∠A+∠ABC+∠C=180°,∴2x+2x+x=180°,∴x=36°,∴∠A=2x=72°,故答案为:72.(2)证明:如图1中,∵∠ABD=∠DBC=∠C,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(AAS),∴AB=EC.(3)证明:如图2中,延长BD到T,使得CD=CT.∵CD=CT,∴∠T=∠CDT=∠ADB,∵BD=CD,∴BD=CT,在△ABD和△ECT中,,∴△ABD≌△ECT(AAS),∴AB=EC.18.(1)证明:∵CD⊥OM,CE⊥ON,∴∠ADC=∠CEB=90°,在Rt△ADC和Rt△BEC中,,∴Rt△ADC≌Rt△BEC(HL),∴CD=CE,∵CD⊥OM,CE⊥ON,∴OC平分∠MON;(2)解:∵Rt△ADC≌Rt△BEC,AD=3,∴BE=AD=3,∵BO=4,∴OE=OB+BE=4+3=7,∵CD⊥OM,CE⊥ON,∴∠CDO=∠CEO=90°,在Rt△DOC和Rt△EOC中,,∴Rt△DOC≌Rt△EOC(HL),∴OD=OE=7,∵AD=3,∴OA=OD+AD=7+3=10.19.解:(1)如图1,∵△ABC是等边三角形,PQ∥AC,∴∠BQP=∠C=60°,∠BPQ=∠A=60°,又∠B=60°,∴∠B=∠BQP=∠BPQ,∴△BPQ是等边三角形,∴BP=BQ,由题意可知:AP=t,则BP=9﹣t,∴9﹣t=6,解得:t=3,∴当t的值为3时,PQ∥AC;(2)如图2,①当点Q在边BC上时,此时△APQ不可能为等边三角形;②当点Q在边AC上时,若△APQ为等边三角形,则AP=AQ,由题意可知,AP=t,BC+CQ=2t,∴AQ=BC+AC﹣(BC+CQ)=9+9﹣2t=18﹣2t,即:18﹣2t=t,解得:t=6,∴当t=6时,△APQ为等边三角形.20.解:(1)当E为AB的中点时,AE=DB;(2)AE=DB,理由如下,过点E作EF∥BC,交AC于点F,证明:∵△ABC为等边三角形,∴△AEF为等边三角形,∴AE=EF,BE=CF,∵ED=EC,∴∠D=∠ECD,∵∠DEB=60°﹣∠D,∠ECF=60°﹣∠ECD,∴∠DEB=∠ECF,在△DBE和△EFC中,,∴△DBE≌△EFC(SAS),∴DB=EF,则AE=DB;(3)点E在AB延长线上时,作EF∥AC,则△EFB为等边三角形,如图所示,同理可得△DBE≌△CFE,∵AB=1,AE=2,∴BE=1,∵DB=FC=FB+BC=2,则CD=BC+DB=3.故答案为:(1)=;(2)=。
北师大版八年级数学下册第三章图形的平移与旋转周周测1(3.1)附答案.doc
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】3.1图形的平移同步练习一、单选题(共8题)1、下列图案中,可以利用平移来设计的图案是()A、B、C、D、2、如图,在△ABC中,BC=5,∠A=80°,∠B=70°,把△ABC沿RS的方向平移到△DEF 的位置,若CF=4,则下列结论中错误的是()A、BE=4B、∠F=30°C、AB∥DED、DF=53、在下列实例中,属于平移过程的个数有()①时针运行过程;②电梯上升过程;③火车直线行驶过程;④地球自转过程;⑤生产过程中传送带上的电视机的移动过程.A、1个B、2个C、3个D、4个4、如图,在方格纸中,线段a,b,c,d的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有()A、3种B、6种C、8种D、12种5、如图五幅图案中,②、③、④、⑤哪一个图案可以通过平移图案①得到?()A、②B、③C、④D、⑤6、已知点A(﹣1,0)和点B(1,2),将线段AB平移至A′B′,点A′于点A对应,若点A′的坐标为(1,﹣3),则点B′的坐标为()A、(3,0)B、(3,﹣3)C、(3,﹣1)D、(﹣1,3)7、如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A、6B、8C、10D、128、如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是()A、先向左平移5个单位,再向下平移2个单位B、先向右平移5个单位,再向下平移2个单位C、先向左平移5个单位,再向上平移2个单位D、先向右平移5个单位,再向下平移2个单位二、填空题(共5题)9、将图1剪成若干小块,再图2中进行拼接平移后能够得到①、②、③中的________.10、如图是一块长方形ABCD的场地,长AB=m米,宽AD=n米,从A、B两处入口的小路宽都为1米,两小路汇合处路宽为2米,其余部分种植草坪,则草坪面积为________.11、如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y= x上一点,则点B与其对应点B′间的距离为________.12、如图,△ABC中,∠B=90°,AB=6,将△ABC平移至△DEF的位置,若四边形DGCF 的面积为15,且DG=4,则CF=________.13、要在台阶上铺设某种红地毯,已知这种红地毯每平方米的售价是40元,台阶宽为3米,侧面如图所示.购买这种红地毯至少需要________元.三、解答题(共5题)14、请把下面的小船图案先向上平移3格,再向右平移4格,最后为这个图案配上一句简短的解说词.15、如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?16、16、如图所示,在平面直角坐标系中,每个小方格的边长是1,把△ABC先向右平移4个单位,再向下平移2个单位,得到△A′B′C′.在坐标系中画出△A′B′C′,并写出△A′B′C′各顶点的坐标.17、如图,一块边长为8米的正方形土地,在上面修了三条道路,宽都是1米,空白的部分种上各种花草.①请利用平移的知识求出种花草的面积.②若空白的部分种植花草共花费了4620元,则每平方米种植花草的费用是多少元?18、如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC;(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由;答案解析一、单选题1、D3、C4、B5、D6、C7、C8、A二、填空题9、①②10、(m-2)(n-1)米2 11、5 12、13、1200三、解答题14、解:如图所示:解说词:两只小船在水中向前滑行15、解:路等宽,得BE=DF,16、△ABE≌△CDF,17、由勾股定理,得BE= =80(m)18、S△ABE=60×80÷2=2400(m2)19、路的面积=矩形的面积﹣两个三角形的面积20、=84×60﹣2400×221、=240(m2).22、答:这条小路的面积是240m2.23、16、解:△A′B′C′如图所示;A'(2,2);B'(3,﹣2);C'(0,﹣6).17、解:①(8-2)×(8-1)=6×7=42 (米2)答:种花草的面积为42米2.②4620÷42=110(元)答:每平方米种植花草的费用是110元.初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( ) A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
北师大版八年级数学下册 第一章 三角形的证明 单元测试题含答案
北师大版八年级数学下册第一章三角形的证明单元测试题一.选择题(共10小题,每小题3分,共30分)1.等腰三角形的对称轴是()A.底边上的高所在的直线B.底边上的高C.底边上的中线D.顶角平分线2.如图在3×3的网格中,点A、B在格点处:以AB为一边,点P在格点处,则使△ABP为等腰三角形的点P有()个.A.2个B.3个C.4个D.5个3.如图,在△ABC中,∠B与∠C的角平分线相交于点I,过点I作BC的平行线,分别交AB、AC于点D、E.若AB=9,AC=6,BC=8,则△ADE的周长是()A.14 B.15 C.174.如图所示,在等边三角形ABC中,AD⊥BC,E为AD上一点,∠CED=50°,则∠ABE等于()A.10°B.15°C.20°D.25°5.在△ABC中,AB=AC,∠A=60°,BC=6,则AB的值是()A.12 B.8 C.6 D.36.用反证法证明“a≥b”,对于第一步的假设,下列正确的是()A.a≤b B.a≠b C.a<b D.a=b7.下列说法:①一个底角和一条边分别相等的两个等腰三角形全等;②底边及底边上的高分别相等的两个等腰三角形全等;③两边分别相等的两个直角三角形全等;④一个锐角和一条边分别相等的两个直角三角形全等,其中正确的个数是()A.1 B.2 C.3 D.48.如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB,AC于点D,E,则下列结论正确的是()A.AE=3CE B.AE=2CE C.AE=BD D.BC=2CE9.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是边AB的中点,AB=10,DE =4,则S△AEC=()A.8 B.7.5 C.7 D.610.如图,在△ABC中,CD⊥AB于点D,BE平分∠ABC,交CD于点E,若S△BCE=10,BC=5,则DE等于()A.10 B.7 C.5 D.4二.填空题(共8小题,每小题3分,共24分)11.等腰三角形的周长为12cm,其中一边长为3cm,则该等腰三角形的腰长为.12.如图:已知∠B=20°,AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4,以此类推∠A的度数是.13.如图,在△ABC中,AB=AC=10,AD平分∠BAC,点E为AC中点,则DE=.14.在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分AC,交AC于点E,交AB于点D,连接CD,若BD=2,则AD的长是.15.如图,DE是△ABC的边AC上的垂直平分线,AB=5cm,BC=8cm,则△ABD的周长为cm.16.如图,点D,P在△ABC的边BC上,DE,PF分别垂直平分AB,AC,连接AD、AP,若∠DAP=20°,则∠BAC=.17.如图,AB∥CD,∠BAC与∠ACD的平分线交于点P,过P作PE⊥AB于E,交CD于F,EF=10,则点P到AC的距离为.18.如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=40,DE=4,AC=12,则AB长是.三.解答题(共7小题,共66分)19.如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,求∠DBA的度数.20.如图,已知AB∥CD,∠BCF=180°,BD平分∠ABC,CE平分∠DCF,∠ACE=90°.求证:AC⊥BD.21.已知:如图,在△ABC中,∠ACB=90°,CD是高,AE是△ABC内部的一条线段,AE交CD于点F,交CB于点E,且∠CFE=∠CEF.求证:AE平分∠CAB.22.如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD于点F,交CB于点E,且∠EAB=∠DCB.(1)求∠B的度数:(2)求证:BC=3CE.23.如图,直线l与m分别是△ABC边AC和BC的垂直平分线,l与m分别交边AB,BC于点D 和点E.(1)若AB=10,则△CDE的周长是多少?为什么?(2)若∠ACB=125°,求∠DCE的度数.24.如图,已知AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D.(1)求∠DBC的度数;(2)若△DBC的周长为14cm,BC=5cm,求AB的长.25.如图,已知AC∥BD,AE,BE分别平分∠CAB和∠DBA,点E在线段CD上.(1)求∠AEB的度数;(2)求证:CE=DE.参考答案一.选择题1.解:等腰三角形的对称轴是底边的垂直平分线,故选:A.2.解:如图所示,以AB为腰的等腰三角形的点P有2个,以AB为底边的等腰三角形的点P有3个,∴△ABP为等腰三角形的点P有5个;故选:D.3.解:∵BI平分∠DBC,∴∠DBI=∠CBI,又∵DE∥BC,∴∠DIB=∠IBC,∴∠DIB=∠DBI,∴BD=DI.同理CE=EI.∴△ADE的周长=AD+DI+IE+EA=AB+AC=15,故选:B.4.解:∵在等边三角形ABC中,AD⊥BC,∴AD是BC的线段垂直平分线,∵E是AD上一点,∴EB=EC,∴∠EBD=∠ECD,∵∠CED=50°,∴∠ECD=40°,又∵∠ABC=60°,∠ECD=40°,∴∠ABE=60°﹣40°=20°,故选:C.5.解:∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴AB=BC=6,故选:C.6.解:反证法证明“a≥b”,第一步是假设,a<b,故选:C.7.解:①一个底角和一条边分别相等的两个等腰三角形不一定全等;②底边及底边上的高分别相等的两个等腰三角形全等,正确;③两边分别相等的两个直角三角形不一定全等;④如果在两个直角三角形中,例如:两个30°角的直角三角形,一个三角形的直角边与另一个三角形的斜边相等,这两个直角三角形肯定不全等,错误;故选:A.8.解:连接BE,∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC﹣∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE,故选:B.9.解:∵在△ABC中,∠ACB=90°,C点E是边AB的中点,∴AE=BE=CE=AB=5,∵CD⊥AB,DE=4,∴CD==3,∴S△AEC=S△BEC=BE•CD=3=7.5,故选:B.10.解:作EF⊥BC于F,∵S△BCE=10,∴×BC×EF=10,即×5×EF=10,解得,EF=4,∵BE平分∠ABC,CD⊥AB,EF⊥BC,∴DE=EF=4,故选:D.二.填空题11.解:由题意知,应分两种情况:(1)当腰长为3cm时,则另一腰也为3cm,底边为12﹣2×3=7cm,∵3+3<7,∴边长分别为3,3,7不能构成三角形;(2)当底边长为3cm时,腰的长=(12﹣3)÷2=4.5cm,∵0<3<4.5+4.5=9,∴边长为3,4.5,4.5,能构成三角形,则该等腰三角形的一腰长是4.5cm.故答案为:4.5cm.12.解:∵∠B=20°,AB=A1B,∴∠A=(180°﹣∠B)=80°,故答案为:80°.13.解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°,又点E为AC中点,∴DE=AC=5,故答案为:5.14.解:∵DE垂直平分AC,∴CD=AD,∴∠ACD=∠A=30°,∵在Rt△ABC中,∠B=90°,∠A=30°,∴∠ACB=90°﹣∠A=60°,∴∠BCD=∠ACB﹣∠ACD=30°,∴CD=2BD=2×2=4,∴AD=CD=4.故答案为:4.15.解:∵DE是△ABC中的边AC上的垂直平分线,∴AD=CD,∵AB=5cm,BC=8cm,∴△ABD的周长为:AB+BD+AD=AB+BD+CD=AB+BC=13(cm).故答案是:13.16.解:∵DE,PF分别垂直平分AB,AC,∴∠B=∠BAD,∠C=∠CAP,又∵∠DAP=20°,∴∠B+∠C=(180°﹣20°)=80°,∴∠BAC=180°﹣80°=100°,故答案为:100°.17.解:作PH⊥AC于H,∵AP平分∠BAC,PE⊥AB,PH⊥AC,∴PE=PH,∵AB∥CD,PE⊥AB,∴PF⊥CD,∵CP平分∠ACD,PF⊥CD,PH⊥AC,∴PF=PH,∴PH=PE=PF=EF=5,即点P到AC的距离为5,故答案为:5.18.解:作DF⊥AC于F,如图,∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DF=DE=4,∵S△ABD+S△ADC=S△ABC,∴•4•AB+•12•4=40,∴AB=8.故答案为8.三.解答题19.解:∵在△ABC中,AB=BC,∠ABC=110°,∴∠A=∠C=35°,∵AB的垂直平分线DE交AC于点D,∴AD=BD,∴∠DBA=∠A=35°20.证明:∵AB∥CD,∴∠ABC=∠DCF.(两直线平行,同位角相等)∵BD平分∠ABC,CE平分∠DCF,∴∠2=∠ABC,∠4=∠DCF.(角平分线的定义)∴∠2=∠4.∴BD∥CE.(同位角相等,两直线平行)∴∠BGC=∠ACE.(两直线平行,内错角相等)∵∠ACE=90°,∴∠BGC=90°,即AC⊥BD.(垂直的定义)21.证明:∵CD⊥AB,∴在△ADF中,∠DAF=90°﹣∠AFD=90°﹣∠CFE.∵∠ACE=90°,∴在△AEC中,∠CAE=90°﹣∠CEF.∵∠CFE=∠CEF,∴∠DAF=∠CAE,即AE平分∠CAB.22.解:(1)∵AE⊥CD,∴∠AFC=∠ACB=90°,∴∠CAF+∠ACF=∠ACF+∠ECF=90°,∴∠ECF=∠CAF,∵∠EAD=∠DCB,∴∠CAD=2∠DCB,∵CD是斜边AB上的中线,∴CD=BD,∴∠B=∠DCB,∴∠CAB=2∠B,∵∠B+∠CAB=90°,∴∠B=30°;(2)∵∠B=∠BAE=∠CAE=30°,∴AE=BE,CE=AE,∴BC=3CE.23.解:(1)△CDE的周长为10.∵直线l与m分别是△ABC边AC和BC的垂直平分线,∴AD=CD,BE=CE,∴△CDE的周长=CD+DE+CE=AD+DE+BE=AB=10;(2)∵直线l与m分别是△ABC边AC和BC的垂直平分线,∴AD=CD,BE=CE,∴∠A=∠ACD,∠B=∠BCE,又∵∠ACB=125°,∴∠A+∠B=180°﹣125°=55°,∴∠ACD+∠BCE=55°,∴∠DCE=∠ACB﹣(∠ACD+∠BCE)=125°﹣55°=70°.24.解:(1)∵AB=AC,∴∠ABC=∠ACB,∵∠A=40°,∴∠ABC=∠ACB=70°,∵MN是AB的垂直平分线,∴DA=DB,∴∠A=∠ABD=40°,∴∠DBC=∠ABC﹣∠ABD=70﹣40°=30°;(2)∵MN是AB的垂直平分线,∴BD=AD,∵△DBC的周长为14cm,∴BD+BC+CD=14cm,∵BC=5cm,∴BD+CD=AD+CD=AC=9cm,∵AB=AC,∴AB=9cm.25.解:(1)∵AC∥BD,∴∠CAB+∠ABD=180°.∵AE平分∠CAB,∴∠EAB=∠CAB.同理可得∠EBA=∠ABD.∴∠EAB+∠EBA=90°,∴∠AEB=90°;(2)如图,在AB上截取AF=AC,连接EF,在△ACE和△AFE中,∴△ACE≌△AFE(SAS).∴CE=FE,∠CEA=∠FEA.∵∠CEA+∠DEB=90°,∠FEA+∠FEB=90°,∴∠DEB=∠FEB.在△DEB和△FEB中∴△DEB≌△FEB(ASA).∴ED=EF.∴ED=CE.。
最新北师大版八年级数学下册第一章测试题及答案
北师八(下)第一章有理数1.1-1.3水平测试题河北饶阳县第二中学 郭杏好 053900一、选择题(每题3分,共24分)1.绝对值小于3的非负整数有( )A .1,2B .0,1C .0,1,2D .0,1,2,32.有理数a 、b 在数轴上的位置如图所示,在下列各式中对a 、b 之间的关系表达不正确的是( )A .b -a >0B .ab >0C .c -b <c -aD .ab 11 3.下列判断中,正确的个数为( )①若-a >b >0,则ab <0②若ab >0,则a >0,b >0③若a >b ,c ≠0,则ac >bc④若a >b ,c ≠0,则ac 2>bc 2⑤若a >b ,c ≠0,则-a -c <-b -cA .2B .3C .4D .54.不等式-4≤x <2的所有整数解的和是( )A .-4B .-6C .-8D .-95.若不等式(a +1)x <a +1的解集为x <1,那么a 必须满足( )A .a <0B .a ≤-1C .a >-1D .a <-16.已知ax <2a (a ≠0)是关于x 的不等式,那么它的解集是( )A .x <2B .x >-2C .当a >0时,x <2D .当a >0时,x <2;当a <0时,x >27.不等式3(x -2)≤x +4的非负整数解有几个( )A .4B .5C .6D .无数个8.下列说法错误的是( )A .-3x >9的解集为x <-3B .不等式2x >-1的整数解有无数多个C .-2是不等式3x <-4的解D .不等式x >-5的负整数解有无数多个二、填空题(每题3分,共24分)9.已知a >0,b <0,且a +b <0,将a ,-b ,-|a |,-|b |用“<”号按从小到大的顺序连接起来是 .10.已知|x -5|=5-x ,则x 的取值范围是 .11.若a <b ,则-3a +1________-3b +1.12.若a >b ,c ≤0,则ac ________bc .13.若ba b a --||=-1,则a -b ________0. 14.大于________的每一个数都是不等式5x >15的解. 15.如果不等式(a -3)x <b 的解集是x <3-a b ,那么a 的取值范围是________. 16.方程x +2m =4(x +m )+1的解为非负数,则m 的取值应为________.三、解答题(3小题,共30分)17、(10分)已知不等式2x -1>x 与ax -6>5x 同解,试求a 的值. 18、(10分)爱心援助:小明和小刚在学习时,遇到以下两题,被难住了,请你伸出援助之手……(1)不等式a (x -1)>x +1-2a 的解集是x <-1,请确定a 是怎样的值.(2)如果不等式4x -3a >-1与不等式2(x -1)+3>5的解集相同,请确定a 的值.19. (10分)已知方程组⎩⎨⎧-=+=-k y x k y x 5132的解x 与y 的和为负数,求k 的取值范围. 四、综合探索题:(22分)20、(10分)小宁一家10点10分离家赶11点整的火车去某地旅游,他们家离火车站10千米.他们先以3千米/时的速度走了5分钟到达汽车站,然后乘公共汽车去火车站.公共汽车每小时至少走多少千米他们才能不误当次火车?21、(12分)某校校长带领该校市级“三好学生”外出旅游,甲旅行社说:如果买一张全票则其余学生可享受半价优惠.乙旅行社说:包括校长在内全部按票价的6折优惠(即按全价的60%收费).已知全票价为240元.(1)设学生人数为x ,甲、乙旅行社收费分别用y 甲、y 乙表示,分别写出y 甲、y 乙与x 的函数关系式.(2)当学生是多少时,两家旅行社收费相同?(3)当x >4时,选择哪家旅行社较合算?五、备选题:22. 一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成任务,以后几天平均每天至少要完成多少土方?23. 不等式的解集中是否一定有无限多个数?不等式|x|≤0、x2<0的解集是什么?不等式x2>0和x2+4>0的解集分别又是什么?24.请写出满足下列条件的一个不等式(1)0是这个不等式的一个解.(2)-2,-1,0,1都是不等式的解.(3)0不是这个不等式的解.(4)与x ≤-1的解集相同的不等式.(5)不等式的整数解只有-1,0,1,2.参考答案:一、1.C 2.D 3.B 4.D(提示:满足-4≤x <2的整数解有-4,-3,-2,-1,0,1,切勿漏解或多解 5.C 6.D(提示:因a 的符号未知,因此应用不等式的哪条性质不定,故需分类讨论) 7. C(提示:非负整数包括正整数和零) 8. D(提示:x >-5的负整数解有-4,-3,-2,-1)二、9.-|b |<-|a |<a <-b 10.x ≤5 11.> 12.≤(提示:勿丢c=0) 13.<(提示:由于a-b 在分母上,故a-b ≠0) 14.3 15.a >3(提示:因为在解的过程中不等号的方向没变,由不等式的性质2可知,a-3>0,故a>3) 16.m ≤-21 三、17、218、(1)解:不等式a (x -1)>x +1-2a 可变形为ax -a >x +1-2a (a -1)x >1-a∵ 原不等式的解集为x <-1 ∴ a -1<0,即a <1(2)解:解2(x -1)+3>5得:x >2解不等式4x -3a >-1得:x >413-a ∵ 以上两个不等式的解集相同∴413-a =2,解得a =3 19. k >31(提示:注意观察方程组的结构特点,让两个方程巧相加,可使运算简便) 20.设公共汽车速度为x 千米/时 根据题意得:3×6045605+x ≥10 解得:x ≥13,所以公共汽车每小时至少行13千米.21.解:(1)y 甲=240+240x ·50%,即y 甲=240+120xy 乙=240(x +1)·60%,即y 乙=144x +144(2)若y 甲=y 乙,则240+120x =144x +144解得:x =4(3)y 甲-y 乙=240+120x -(144x +144)=-24x +96当x >4时,-24x +96<0,即y 甲<y 乙这时选择甲旅行社较合算22. 8023.不等式的解集中不一定有无数多个数.|x|≤0的解集是x =0,x2<0无解.x2>0的解集为x >0或x <0,x2+4>0的解集为一切实数.24. (1)x >-1(或x ≥0,x >-2等都可以)(2)x <2(或x ≤1,x ≥-2,x >-5等均可)(3)x >1(或x <-1等均可=(4)2x ≤-2(或x +1≤0,2x +2≤0等均可)(5)-1≤x ≤2(或-1.5<x <2.1等)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
木石中学八年级数学下册第一周周测题(共120份)
一、选择题(每小题3分,共30分) 1 2 3 4 5 6 7 8 9 10
1.已知一个等腰三角形有一个角为50o ,则顶角是 ( )
A.50o B .80o C .50o 或80o D. 不能确定 2. 如图2,在△ABC 与△DEF 中,已有条件AB =
DE ,还需添加两个条
件才能使△ABC ≌△DEF ,不能..添加的一组条件是( ) A .∠B =∠E ,BC =EF B. BC =EF ,AC =DF
C . ∠A =∠
D ,∠B =∠
E D. ∠A =∠D ,BC =EF
3、如图(1),在△ABC 中,AB=AC,D 、E 在BC 上,BD=CE,AF ⊥BC 于F ,
则图中全等三角形的对数为( )
A.、1 B 、2 C 、3 D 、4
4、等腰△ABC 的顶角A 为120º,过底边上一点D 作底边BC 的垂线交AC 于E ,交BA 的延长线于F, 则△AEF 是( )
A 、等边三角形
B 、直角三角形
C 、等腰直角三角形
D 、等腰但非等边三角形
5、等腰三角形的一边为4,另一边为9,则这个三角形的周长为 ( ) A 、17 B 、22 C 、13 D 、17或22
6、满足下述条件的三角形中,不是直角三角形的是( )
A 、三内角之比为3∶4∶5
B 、三边之比为1∶2∶3
C 、三边长分别为41、40、9
D 、三边长分别为7、24、25
7、分别以下列四组数为一个三角形的边长① 6,8,10 ② 5,12,13 ③ 8,15,16
④ 4,5,6,其中能构成直角三角形的有( )
A .①④
B .②③
C .①②
D .②④ 8、不能判断两个直角三角形全等的条件是( ) A 、两锐角对应相等的两个直角三角形;
B 、一锐角和斜边对应相等的两个直角三角形;
A
B
C D
E
F
图2
C、两条直角边对应相等的两个直角三角形;
D、一条直角边和斜边对应相等的两个直角三角形。
9.若一等腰三角形的腰长为4cm,腰上的高为2cm,则等腰三角形的顶角为()A.30° B.150° C.30°或150° D.以上都不对
10、在Rt△ABC中,已知∠C=90º,∠A=30º,BD是∠B的平分线,AC=18,则BD的值为( )
3 B.9 C.12 D.6
A.3
二、填空题(每小题3分,共24分)
11、如图⑶,在△ABC和△FED中,AD=FC, AB=FE, 当添加条件时,就可得到△ABC ≌△EFD(只须填写你认为正确的条件)
12、如果一个三角形一边上的中线等于这边的一半,那么这条边所对的角等于度。
3、一个等腰三角形的顶角是120º,底边上的高线长是1cm, 则它的腰长是 cm。
14.用反证法证明“三角形中最多有一个是直角或钝角”时应假设。
15、若在△ABC中,AB=5cm,BC=6cm,BC边上的中线AD=4cm,则∠ADC的度数是。
16. 如果直角三角形的边长分别是3,4,X,则X的值是。
17、如图⑷,AD⊥CD,AB=13,BC=12,CD=4.AD=3,则四边形ABCD的面积是。
18、如图⑸,已知CD⊥AD, BE⊥AC, 垂足为D、E, BE、CD交于点O,且AO平分∠BAC,那么图中
共有全等三角形对。
三、解答题
19、(8分)如图⑹,下面四个条件中,请你以其中两个为已知条
件,第三个为结论,写出一个正确的命题并证明(只需写出一种
情况) ①AE=AD, ②AB=AC, ③OB=OC, ④∠B=∠C
20(8分)如图⑺,∠1=∠2,AB=AD, ∠B=∠D=90º,请判断△AEC
的形状,并说明理由.
21、(8分)已知,如图,D 是△ABC 的BC 边的中点,DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,且DE=DF 。
求证:△ABC 是等腰三角形 22、(8分)正方形ABCD 中,点G 是BC 上任意一点,连接AG ,过B,D 两点分别作BE ⊥AG,DF ⊥AG,垂足分别为E,F 两点,求证:△ADF ≌△BAE
23、(8分)已知如图5,在△ABC 中,AB =AC ,∠BAC =120°,AD ⊥AC ,DC =6 求BD 的长。
D F
E
C B A A
B
C
D
图5
24、(8分)如图,△ABC 和△DCE 都是等腰直角三角形,其中∠BCA =∠DCE =90°. 请问BE 与AD 是否垂直?如果成立请证明,不成立说明理由.
25、(8分)如图,在△ABC 中,AD ⊥BC,垂足为D ,∠B=60°,∠C=45°. (1)求∠BAC 的度数。
(2)若AC=2,求AD 的长。
26、(10分)如图,已知点D 为等腰直角△ABC 内一点,∠CAD =∠CBD =15°,E 为AD 延长线上的一点,且CE =CA . (1)求证:DE 平分∠BDC ;
(2)若点M 在DE 上,且DC=DM ,求证: ME=BD .
A
B C
D
E。