第六章概率初步练习题
2023年北师大版七年级下册数学第六章《概率初步》单元测试卷
D.随机事件发生的概率介于0和1之间
·数学
5.书架上有2本数学书、3本语文书、3本英语书,从中随机 抽取一本,是数学书的概率是( A )
A.14
B.38
C.18
D.34
6.(跨学科融合)在单词statistics(统计学)中任意选择一个字母,
字母为“s”的概率是( C )
A.110
B.15
C.130
球的概率相同,那么a与b的关系是 a+b=10.
14.在x2 2xy y2的空格“ ”中,分别填上“+”或“-”,在
所得的代数式中,能构成完全平方式的概率是
1 2
.
·数学
15.如图,在4×4的正方形网格中,有3个小正方形已经涂黑, 若再涂黑任意一个白色的小正方形(每一分的图形是轴对
奖”这一事件是 随机事件 (填“必然事件”“不可能事件”
或“随机事件”).
12.有5张仅有编号不同的卡片,编号分别是1,2,3,4,5.
从中随机抽取一张,编号是偶数的概率等于 2 5
.
·数学
13.一个袋中装有a个红球,10个黄球,b个白球,每个球除
颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄
顾客购物10元以上就能获得一次转动转盘的机会,
当转盘停止时,指针落在哪一区域就可以获得相应
的奖品.下表是活动进行中的几组统计数据. (1)计算并完成表格:
转动转盘的次数n 100 落在“铅笔”的次数m 67 落在“铅笔”的频率mn 0.670
200 145
0.725
500 357
0.714
800 552
(2)(1)(3)(5)(4).
·数学
21.暑假将至,某商场为了吸引顾客,设计了可以自由转动 的转盘(如图,转盘被均匀地分为20份),并规定:顾客每消 费200元的商品,就能获得一次转动转盘的机会.如果转盘停 止后,指针正好对准红色、黄色、绿色区域,那么顾客就可 以分别获得200元、100元、50元的购物券,凭购物券可以在 该商场继续购物.若某顾客购物300元. (1)求他此时获得购物券的概率是多少? (2)他获得哪种购物券的概率最大?请说明理由.
七年级数学下课本习题第6章概率初步
第六章概率初步第1节感受可能性1、P138-随堂练习-1下列事件中,哪些就是必然事件?哪些就是随机事件?(1)将油滴入水中,油会浮在水面上;(2)任意掷一枚质地均匀的骰子,掷出的点数就是奇数。
2、P138-随堂练习-2小明任意买一张电影票,座位号就是2的倍数与座位号就是5的倍数的可能性哪个大?3、P138-习题6、1-1下列事件中,哪些就是必然事件?哪些就是不可能事件?哪些就是随机事件?(1)抛出的篮球会下落;(2)一个射击运动员每次射击的命中环数;(3)任意买一张电影票,座位号就是2的倍数;(4)早上的太阳从西方升起。
4、P138-习题6、1-2一个袋中装有8个红球、2个白球,每个球除颜色外都相同。
任意摸出一个球,摸到哪种颜色球的可能性大?说说您的理由。
5、P138-习题6、1-3下图就是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在哪个区域的可能性大?说明您的理由。
6、P139-习题6、1-4下图表示各袋中球的情况,每个球除颜色外都相同,任意摸出一个球,请您按照摸到红球的可能性由大到小进行排列。
7、P139-习题6、1-5如图就是一个可以自由转动的转盘,利用这个转盘与同伴做下面的游戏:(1)自由转动转盘,每人分别将转出的数填入四个方格中的任意一个(2)继续转动转盘,每人再将转出的数填入剩下的任意一个方格中;(3)转动四次转盘后,每人得到一个“四位数”;(4)比较两人得到的“四位数”,谁的大谁就获胜。
多做几次上面的游戏,在做游戏的过程中,您的策略就是什么?您积累了什么样的获胜经验?第2节频率的稳定性8、P142-随堂练习某射击运动员在同一条件下进行射击,结果如下表所示:(1)完成上表;(2)根据上表,画出该运动员击中靶心的频率的折线统计图;(3)观察画出的折线统计图,击中靶心的频率的变化有什么规律?对某批产品的质量进行随机抽查,结果如下表所示: 随机抽取的产品数n 1 500 1000 合格的产品数m 9 19 47 93 187 467 935 合格率m n(1)完成上表;(2)根据上表,画出产品合格率变化的折线统计图;(3)观察画出的折线统计图,产品合格率的变化有什么规律?10、 P142-习题6、2-2抛一个如图所示的瓶盖,盖口向上或盖口向下的可能性就是否一样大?怎样才能验证自己结论的正确性?11、 P145-随堂练习-1小凡做了5次抛均匀硬币的试验,其中有3次正面朝上,2次正面朝下,因此她认为正面朝上的概率大约为35 ,朝下的概率约为25 ,您同意她的观点不?您认为她再多做一些试验,结果还就是这样不?掷一枚质地均匀的硬币,正面朝上的概率为12 ,那么,掷100次硬币,您能保证恰好50次正面朝上不?与同伴进行交流。
七年级数学下册第六章概率初步综合测试题试题
第六章概率初步制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日〔说明:全卷考试时间是是100分钟,满分是120分〕一、选择题〔每一小题3分,一共30分〕1.以下事件中是必然事件的是〔〕A.小菊上学一定乘坐公一共汽车B.某种彩票中奖率为,买10000张该种票一定会中奖C.一年中,大、小月份数刚好一样多D.将豆油滴入水中,豆油会浮在水面上2.从A地到C地,可供选择的方案是走水路、走陆路、走空中.从A地到B地有2条水路、2条陆路,从B地到C地有3条陆路可供选择,走空中从A地不经B地直接到C地.那么从A 地到C地可供选择的方案有〔〕A.20种 B.8种 C. 5种 D.13种3.一只小狗在如图1的方砖上走来走去,最终停在阴影方砖上的概率是〔〕A. B. C. D.4.以下事件发生的概率为0的是〔〕A.随意掷一枚均匀的硬币两次,至少有一次反面朝上;B.今年冬天会下雪;C.随意掷两个均匀的骰子,朝上面的点数之和为1;D.一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域。
5.某商店举办有奖储蓄活动,购货满100元者发对奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个。
假设某人购物满100元,那么他中一等奖的概率是〔〕A. B. C. D.6、有6张写有数字的卡片,它们的反面都一样,现将它们反面朝上〔如图2〕,从中任意一张是数字3的概率是〔〕A. B. C. D.7.在李咏主持的"幸运52"栏目中,曾有一种竞猜游戏,游戏规那么是:在20个商标牌中,有5个商标牌的反面注明了一定的奖金,其余商标牌的反面是一张"哭脸",假设翻到"哭脸"就不获奖,参与这个游戏的观众有三次翻牌的时机,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是〔〕A. B. C. D.8.如图3,一飞镖游戏板,其中每个小正方形的大小相等,那么随意投掷一个飞镖,击中黑色区域的概率是 ( )A. B. C. D.9.如图4,一小鸟受伤后,落在阴影局部的概率为〔〕A. B. C. D.110.连掷两次骰子,它们的点数都是4的概率是〔〕A. B. C. D.二、填空题〔每一小题3分,一共30分〕11. 〔08〕在一个袋子中装有除颜色外其它均一样的2个红球和3个白球,从中任意摸出一个球,那么摸到红球的概率是____________12.小明、小刚、小亮三人正在做游戏,如今要从他们三人中选出一人去帮王奶奶干活,那么小明被选中的概率为______,小明未被选中的概率为______13.在一次抽奖活动中,中奖概率是0.12,那么不中奖的概率是.14.从一副扑克牌〔除去大、小王〕中任抽一张,那么抽到红心的概率为;抽到黑桃的概率为;抽到红心3的概率为15.任意翻一下2021年日历,翻出1月6日的概率为 ;翻出4月31日的概率为。
第六章 概率初步单元测试题
第六章 概率初步单元测试题班级 姓名 成绩一、选择题(每小题3分,共30分) 1. 下列事件发生的概率为0的是( )A.小明的爸爸买体彩中了大奖B.小强的体重只有25公斤C.将来的某天会有370天 D .未来三天必有强降雨 2.下列说法正确的是( )A .事件“如果a 是实数,那么 ( )B .在一次抽奖活动中,100次就一定会中奖;C .随机抛一枚均匀硬币,落地后正面一定朝上;D .在一副52张扑克牌(没有大小王)中任意抽一张,抽到的牌是6 3.关于频率和概率的关系,下列说法正确的是 ( ) A. 频率等于概率 B. 当实验次数很大时,频率稳定在概率附近 C. 当实验次数很大时,概率稳定在频率附近 D. 实验得到的频率与概率不可能相等4.下列说法中正确的是( ) A .可能性很小的事件在一次实验中一定不会发生 B .不可能事件在一次实验中也可能发生 C .可能性很小的事件在一次实验中有可能发生 D .可能性很小的事件在一次实验中一定会发生5.任意掷一枚质地均匀的骰子,掷出的点数大于4的概率是 ( )A.21B.31C.32D.616. 一幅扑克去掉大小王后,从中任抽一张是红桃的概率是( )A.21B.41C.131D.5217.一个袋中有a 只红球,b 只红球,它们除颜色不同外,其它均相同,若从中摸出一个球是红球的概率为 ( )A.b aB. a bC. b a a + D . ba b+8. 小狗在如图所示的方砖上走来走去,最终停在黑色方砖上的概率为( )A.81B. 97C. 92 D . 167 9. 一次抽奖活动中,印发奖券1000张,其中一等奖20张,二等奖80张,三等奖200张,那么第一位抽奖者(仅买一张奖券)中奖的机会是( )A .150B .225 C .15 D .31010.图中有四个可以自由转动的转盘,每个转盘被分成若干等分,转动转盘,当转盘停止后,指针指向白色区域的概率相同的是( ).A.转盘2与转盘3B. 转盘2与转盘4C. 转盘3与转盘4D. 转盘1与转盘4二.填空题:(每小题3分,共24分)11、必然事件发生的概率是________,即P(必然事件)= _______;不可能事件发生的概 率是_______,即P (不可能事件)=_______;若A 是不确定事件,则______)<(<A P ____. 12.有一组卡片,制作的颜色,大小相同,分别标有0—10这11个数字,现在将它们背 面向上任意颠倒次序,然后放好后任取一组,则:(1)P (抽到两位数)= ; (2)P (抽到一位数)= ; (3)P (抽到的数大于8)= ;13. 小明在一个小正方体的六个面上分别标了1、2、3、4、5、6六个数字,随意地掷出 小正方体,则P(掷出地数字小于7)=________. P(掷出地数字等于7)=________. 14.王刚设计了一个转盘游戏:随意转动转盘,使指针最后落在红色区域的概率为1/3,如果他将转盘等分成12份,则红色区域应占的份数是 .15.一个袋子中装有5个白球,3个红球,甲摸到白球,乙摸到红球胜,为使甲、乙两人获胜的可能性一样大,那么必须往袋中再放入 个 球.16.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落 在黑色区域的概率是 .17.如图,是由边长分别为2a 和a 的两个正方形组成,闭上眼睛,由针随意扎这个图形,小孔出现在阴影部分的概率是.8题转盘1转盘2转盘3转盘4红 红 红红红 红 红红 红 红 红红 红 白 白 白 白 白 白 白白 白 黄 黄 蓝 蓝 蓝 蓝18.某路口南北方向红绿灯的设置时间为:红灯40s ,绿灯60s ,黄灯3s .小刚的爸爸随 机地由南往北开车经过该路口时遇到红灯的概率是_________. 三、解答题19.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复。
2023年北师大版七年级数学下册第六章《概率初步》试题卷附答案解析
2023年北师大版七年级数学下册第六章《概率初步》试题卷一、单选题1.下列事件中,是确定事件的是()A.掷一枚硬币,正面朝上B.三角形的内角和是180C.明天会下雨D.明天的数学测验,小明会得满分2.下列语句所描述的事件是随机事件的是()A.两点决定一直线B.清明时节雨纷纷C.没有水分,种子发芽D.太阳从东方升起3.小明过马路时,恰好是红灯.这个事件是()A.必然事件B.随机事件C.不可能事件D.不确定事件4.在“石头、剪刀、布”游戏中,对方出“剪刀”.这个事件是()A.必然事件B.随机事件C.不可能事件D.确定性事件5.一个不透明的袋子里装有3个红球,2个黄球,1个白球,这些球除颜色外无其他差别,从袋子中随机取出一个球,取出球的颜色可能性最大的是()A.红色B.黄色C.白色D.可能性一样大6.一个不透明的袋子中只装有8个除颜色外完全相同的小球,其中4个红球,3个黄球,1个黑球.从中随机摸出一个小球,摸到红球的概率是()A.12B.14C.18D.387.不透明的袋子中装有3个红球和2个白球,这些球除了颜色外都相同,从袋子中随机地摸出1个球,则这个球都是红球..的概率是()A.15B.35C.23D.138.有20瓶饮料,其中有2瓶已过保质期,小明从20瓶饮料中任取1瓶,那么他取到没有过保质期的饮料的概率是()A.910 B.110 C.118 D.1209.某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的实验最有可能的是()A.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球B.掷一枚质地均匀的硬币,落地时结果是“正面向上”C.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是2D.从一副扑克牌中随机抽取一张,抽到的牌是梅花10.一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同,若从布袋里任意摸出1个球是红球的概率为14,则a等于()A.1B.2C.3D.4二、填空题11.一只不透明的袋子中有1个白球,100个黄球,这些球除颜色外都相同,将球搅匀,从中任意摸出一个球是白球;这一事件是___________事件.(填“必然”、“随机”、“不可能”)12.一个不透明的布袋里装有6个只有颜色不同的球,其中有1个黑球、2个白球、3个红球,从布袋里随机摸出1个球,摸出白球的概率为_________.13.现分别有长2cm和5cm的两条线段,再从下列长度:1cm、2cm、3cm、4cm、5cm、6cm、7cm、8cm的线段中随机选取一条组成一个三角形,那么能组成三角形的概率是_____.14.在一个不透明的箱子中有黄球和红球共6个,它们除颜色外都相同,若任意摸出一个球,摸到红球的概率为23,则这个箱子中红球的个数为________个.15.某公司组织内部抽奖活动,共准备了100张奖券,设一等奖10个,二等奖20个,三等奖30个.若每张奖券获奖的可能性相同,则随机抽一张奖券中一等奖的概率为______.16.如图,一块飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖(每次飞镖均落在纸板上),则击中阴影区域的概率是___________.17.一个不透明的口袋中装有红色、黄色、蓝色玻璃球共200个,这些球除颜色外都相同.小明通过大量随机摸球试验后,发现摸到红球的频率稳定在30%左右,则可估计红球的个数约为_______.18.不透明的布袋中装有除颜色外完全相同的10个球,其中红色球有m个,如果从布袋中任意摸出一个球恰好为红色球的概率是15,那么m ________.19.不透明袋子中装有7个球,其中有4个红球,3个白球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_____.20.因疫情原因,杭州亚运会定于2023年9月23日至10月8日举行,名称仍为杭州2022年第19届亚运会.莲莲从网上购买杭州2022年第19届亚运会吉祥物(如图)一件,则物流配送的恰好是“莲莲”的概率为________.三、解答题21.在一个不透明的盒子里装有除颜色外完全相同的红、白、黑三种颜色的球.其中红球3个,白球5个,黑球若干个,若从中任意摸出一个白球的概率是1 3.(1)求任意摸出一个球是黑球的概率;(2)能否通过只改变盒子中白球的数量,使得任意摸出一个球是红球的概率1 4若能,请写出如何调整白球数量;若不能,请说明理由.21.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?23.“十一”黄金周期间,某购物广场举办迎国庆有奖销售活动,每购物满100元,就会有一次转动大转盘的机会,请你根据大转盘(如图)来计算:(1)享受七折优惠的概率;(2)得20元的概率;(3)得10元的概率;(4)中奖得钱的概率是多少?24.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?25.如图,有一个可以自由转动的转盘,被均匀分成5等份,分别标上1、2、3、4、5五个数字,转动转盘一次,当转盘停止后,指针指向的数字即为转出的数字.(1)转出的数字是3的概率是多少?(2)转出的数字小于4的概率是多少?(3)转出的数字是偶数的概率是多少?(4)甲乙两人玩一个游戏,其规则如下:任意转动转盘一次,如果转出的数字是偶数,则甲胜;如果转出的数字是奇数,则乙胜.你认为这样的游戏规则对甲、乙两人是否公平?为什么?26如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?解答1.B2.B3.B4.B5.A6.A7.B8.A9.C10.C11.随机12.1313.3814.415.0.116.5917.6018.2194720.1321.在一个不透明的盒子里装有除颜色外完全相同的红、白、黑三种颜色的球.其中红球3个,白球5个,黑球若干个,若从中任意摸出一个白球的概率是1 3.(1)求任意摸出一个球是黑球的概率;(2)能否通过只改变盒子中白球的数量,使得任意摸出一个球是红球的概率1 4若能,请写出如何调整白球数量;若不能,请说明理由.(1)解:∵红球3个,白球5个,黑球若干个,从中任意摸出一个白球的概率是1 3,∴盒子中球的总数为:15153÷=(个),∴盒子中黑球的个数为:15357--=(个);∴任意摸出一个球是黑球的概率为:7 15;(2)解:∵任意摸出一个球是红球的概率为1 4∴盒子中球的总量为:13124÷=,∴可以将盒子中的白球拿出3个.14.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?(1)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向奇数区域3,5,7有3种结果,所以指针指向奇数区域的概率是31 62 =;(2)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向的数小于或等于5区域2,3,4,5有4种结果,所以指针指向的数小于或等于5的概率是42 63 =.23.“十一”黄金周期间,某购物广场举办迎国庆有奖销售活动,每购物满100元,就会有一次转动大转盘的机会,请你根据大转盘(如图)来计算:(1)享受七折优惠的概率;(2)得20元的概率;(3)得10元的概率;(4)中奖得钱的概率是多少?解:(1)享受七折优惠的概率为802 3609=;(2)得20元的概率为901 3604=;(3)得10元的概率为1201 3603=;(4)中奖得钱的概率是906060736012++=.24.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?(1)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向奇数区域3,5,7有3种结果,所以指针指向奇数区域的概率是3162=;(3)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向的数小于或等于5区域2,3,4,5有4种结果,所以指针指向的数小于或等于5的概率是4263=.25.如图,有一个可以自由转动的转盘,被均匀分成5等份,分别标上1、2、3、4、5五个数字,转动转盘一次,当转盘停止后,指针指向的数字即为转出的数字.(1)转出的数字是3的概率是多少?(2)转出的数字小于4的概率是多少?(3)转出的数字是偶数的概率是多少?(4)甲乙两人玩一个游戏,其规则如下:任意转动转盘一次,如果转出的数字是偶数,则甲胜;如果转出的数字是奇数,则乙胜.你认为这样的游戏规则对甲、乙两人是否公平?为什么?解:(1)转盘共分为5份,数字3占其中一份,故转出的数字是3的概率为15(2)共有5种等可能结果,转出的数字小于4的有1、2、3共3个,所以转出的数字小于4的概率为35(3)共有5种等可能结果,转出的数字是偶数的有2、4两个数字,所以转出的数字是偶数的概率为25(4)不公平,转出的数字是偶数的概率为5转出的数字是奇数的概率为35.2355<,所以这样的游戏规则对甲、乙两人不公平26.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?(1)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向奇数区域3,5,7有3种结果,所以指针指向奇数区域的概率是31 62 =;(2)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向的数小于或等于5区域2,3,4,5有4种结果,所以指针指向的数小于或等于5的概率是42 63 =.。
七年级数学下册《第六章 概率初步》测试卷-附答案(北师大版)
七年级数学下册《第六章 概率初步》测试卷-附答案(北师大版)一、选择题(共10小题,每小题3分,共30分) 1. 下列事件中,是必然事件的是( ) A .小菊上学一定乘坐公共汽车B .某种彩票中奖率为415,买10 000张该种彩票一定会中奖C .一年中,大、小月份数刚好一样多D .将豆油滴入水中,豆油会浮在水面上2. 在一个布袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2个、红球6个、黑球4个.将布袋中的球搅匀,闭上眼睛随机从布袋中取出1个球,则取出黑球的概率是( ) A .12 B .14 C .13 D .163. 一个布袋中有10个球,其中6个红球、4个黑球,每个球除颜色不同外其余均相同.现在甲、乙进行摸球游戏,从中随机摸出一球,摸到红球,乙胜;摸到黑球,甲胜,则下列说法你认为正确的是( ) A .甲获胜的可能性大B .乙获胜的可能性大C .甲、乙获胜的可能性相等D .以上说法都不对4. 如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动转盘,当转盘停止时,指针落在有阴影的区域内的概率为a(若指针落在分界线上,则重转);如果投掷一枚质地均匀的硬币,正面向上的概率为b.关于a ,b 大小的判断正确的是( )A .a >bB .a =bC .a <bD .不能判断5. 有4张正面分别写有1、3、4、6的卡片,除数字外其他完全相同.将卡片的背面朝上并洗匀,从中抽取一张,抽到的数是奇数的概率为( ) A.14B.12C.34D .16. 某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是( )A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .掷一个质地均匀的正方体骰子,落地时面朝上的点数是6C .一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上D .用2,3,4三个数字随机排成一个三位数,排成的数是偶数7. 在下列四个转盘中,若让转盘自由转动一次,转盘停止后,指针落在阴影区域内的概率最大的转盘是( )8. 一个不透明的口袋中有红球和黑球若干个,这些球除颜色外都相同,每次摸出1个球,记下颜色后放回,进行大量的摸球试验后,发现摸到黑球的频率在0.4附近摆动,据此估计摸到红球的概率约为( ) A .0.4 B .0.5 C .0.6 D .0.79. 在边长为1的小正方形组成的网格中,有如图所示的A ,B 两点,在格点上任意放置点C ,恰好能使△ABC 的面积为1的概率为( )A.316B.38C.14D.51610. 在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数分布表:试验种子数n(粒) 5 50 100 200 500 1000 2000 3000 发芽频数m 4 45 92 188 476 951 1900 2850 发芽频率mn0.800.900.920.940.9520.9510.950.95A .2700B .2800C .3000D .4000二.填空题(共8小题,每小题3分,共24分)11. “一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是_____________.(填“必然事件”、“不可能事件”或“随机事件”)12. 将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为______.13. 某足球运动员在同一条件下进行射门,结果如下表所示:射门次数n2050100200500800踢进球门频数m133558104255400踢进球门频率0.650.70.580.520.520.514. 如图,质地均匀的小立方体的一个面上标有数字1,两个面上标有数字2,三个面上标有数字3,抛掷这个小立方体一次,则向上一面的数字是________的可能性最大.15. 一个袋子中装有5个白球和3个红球,甲摸到白球胜,乙摸到红球胜,为使甲、乙两人获胜的可能性一样大,那么必须往袋中再放入________个________球(只能再放入同一颜色的球).16. 现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片约有________张.17. 小明正在玩飞镖游戏,如果小明将飞镖随意投中如图所示的正方形木框中,那么投中阴影部分的概率为________.18. 若正整数n使得在计算n+(n+1)+(n+2)的过程中,各数位均不产生进位现象,则称n为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,任意抽取一个数,抽到偶数的概率为________ .三.解答题(共7小题,66分)19.(8分) 下列事件中,哪个是必然事件?哪个是不可能事件?哪个是随机事件?(1)打开电视机,正在播放新闻;(2)种瓜得瓜;(3)三角形三边之长为4 cm,5 cm,10 cm.20.(8分) 手机微信抢红包有多种玩法,其中一种为“拼手气红包”,用户设定好总金额以及红包个数后,可以随机生成不等金额的红包.现有一用户设定“拼手气红包”的红包个数为4,且随机被甲、乙、丙、丁四人抢到.(1)以下说法正确是__________. A .甲抢到的红包金额一定最多 B .乙抢到的红包金额一定最多 C .丙抢到的红包金额一定最多 D .丁不一定抢到金额最少的红包(2)若这四个红包的金额分别为35元、33元、20元、12元,则甲抢到红包的金额超过30元的概率是多少?21.(8分) 如图,在一个大的圆形区域内包含一个小的圆形区域,大圆的半径为2,小圆的半径为1.一只在天空自由飞翔的小鸟要落在它的上面,那么小鸟落在小圆区域外大圆区域内(阴影部分)的概率是多少?22.(8分) 在同样条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表.试验种子n(粒) 1 5 50 100 200 500 1 000 2 000 3 000 发芽频数m 1 4 45 92 188 476 951 1 900 2 850 发芽频率mn10.800.900.920.940.9520.951ab(1)(2)估计该小麦种子的发芽概率;(3)如果该小麦种子发芽后,只有87%的麦芽可以成活,现有100 kg 小麦种子,则有多少千克的小麦种子可以成活为秧苗?23.(10分) 将一副扑克牌中的13张红桃牌洗匀后正面向下放在桌子上,从中任意抽取1张,给出下列事件:(1)抽出的牌的点数是8; (2)抽出的牌的点数是0; (3)抽出的牌是“人像”; (4)抽出的牌的点数小于6; (5)抽出的牌是“红色的”.上述事件发生的可能性哪个最大?哪个最小?将这些事件的序号按发生的可能性从大到小的顺序排列.24.(10分) 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,由于该十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在该十字路口向右转的频率为25,向左转和直行的频率都为310.(1)假设平均每天通过路口的汽车为5000辆,求汽车在此左转、右转、直行的车辆是多少辆;(2)目前在此路口,汽车左转、右转、直行的绿灯的时间分别为30秒,在绿灯总时间不变的条件下,为了缓解交通拥挤,请你利用概率的知识对此路口三个方向的路灯亮的时间做出合理的调整.25.(14分) 综合与探究: 问题再现:(1)图①是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少? 类比设计:(2)请在图②中设计一个转盘:自由转动这个转盘,当它停止转动时,三等奖:指针落在红色区域的概率为38,二等奖:指针落在白色区域的概率为38,一等奖:指针落在黄色区域的概率为14.拓展运用:(3)某书城为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:顾客每购买100元的图书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域(若指针恰好指在分割线上,则重转一次,直到指针指向某一扇形区域为止),那么顾客就可以分别获得50元、30元、20元的购书券,凭购书券可以在书城继续购书.若甲顾客购书130元,转动一次转盘,求他获得购书券的概率.参考答案1-5DCBBB 6-10BACDA 11. 不可能事件 12. 2713. 0.52 14. 3 15. 2;红 16. 15 17. 518 18.71119. 解:(2)是必然事件,(3)是不可能事件,(1)是随机事件.20.解:(1)D(2)一共有4种可能出现的结果,其中红包的金额超过30元的有2种,所以甲抢到红包的金额超过30元的概率是24=12.21. 解:小圆的面积为π,大圆的面积为4π,所以阴影部分的面积为3π.所以小鸟落在小圆区域外大圆区域内的概率为3π4π=34.22. 解:(1)a =1 900÷2 000=0.95,b =2 850÷3 000=0.95.(2)观察发现:随着大量重复试验,发芽频率逐渐稳定到常数0.95附近,所以该小麦种子的发芽概率约为0.95. (3)100×0.95×87%=82.65(kg),所以约有82.65千克的小麦种子可以成活为秧苗. 23. 解:(1)抽出的牌的点数是8;发生的概率为113(2)抽出的牌的点数是0;发生的概率为0 (3)抽出的牌是“人像”;发生的概率为313(4)抽出的牌的点数小于6;发生的概率是513(5)抽出的牌是“红色的”,发生的概率为100%.由此可知:事件(5)可能性最大,事件(2)可能性最小;发生的可能性从大到小的顺序为(5)(4)(3)(1)(2) 24. 解:(1)汽车在此左转的车辆数为5000×310=1500(辆),在此右转的车辆数为5000×25=2000(辆),在此直行的车辆数为5000×310=1500(辆).(2)根据频率估计概率的知识,得P(汽车向左转绿灯时间)=30×310=9秒,P(汽车向右转绿灯时间)=30×25=12秒,P(汽车直行绿灯时间)=30×310=9秒.25. 解:(1)P(红色)=120360=13;P(白色)=240360=23.(2)(答案不唯一)如图.(3)因为转盘被平均分成12份,共有12种等可能的情况,其中红色占1份,黄色占2份,绿色占3份,所以任意转动一次转盘获得购书券的概率是1+2+312=12.。
北师大版数学七年级下册第六章概率初步 达标测试卷
第六章概率初步达标测试卷一、选择题(每题3分,共30分)1.下列事件属于必然事件的是()A.太阳从西边升起B.若今天星期一,则明天星期二C.两条直线被第三条直线所截,同位角相等D.抛掷1枚质地均匀的骰子,出现5点向上2.下列成语中,描述的事件是不可能事件的是()A.守株待兔B.猴子捞月C.旭日东升D.水涨船高3.在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干个,某小组做摸球试验:将球搅匀后从中随机摸出一个,记下颜色,再放入袋中,不断重复,下表是试验中的几组数据,则摸到白球的概率约是()A.0.4 B.0.5 C.0.6 D.0.74.有4张正面分别写有1、3、4、6的卡片,除数字外其他完全相同.将卡片的背面朝上并洗匀,从中抽取一张,抽到的数是奇数的概率为()A.14 B.12 C.34D.15.下列说法正确的是()A.概率很小的事情不可能发生B.抛掷一枚质地均匀的硬币1 000次,正面朝上的次数一定是500次C.从1、2、3、4、5中任取一个数是偶数的可能性比较大D.在13名同学中,至少有两人的出生月份相同是必然事件6.下列试验中,结果具有“等可能性”的是()A.掷一枚质地均匀的骰子B.篮球运动员定点投篮C.掷一个矿泉水瓶盖D.从装有若干个小球的透明袋子中摸球7.如图是一个可自由转动的转盘,转动转盘一次,当转盘停止转动时,指针落在数字“Ⅳ”所示区域内的概率是()A.13 B.16 C.14 D.388.小明和小亮做游戏,先是各自背着对方在纸上写一个正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏()A.对小明有利B.对小亮有利C.公平D.无法确定对谁有利9.已知粉笔盒里有8支红色粉笔和n支白色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,取出红色粉笔的概率是25,则n的值是()A.10 B.12 C.13 D.1410.一个小钢球在如图所示的区域内运动,三个圆的半径分别为r,2r,3r,则小钢球停止在蓝色区域的概率为()A.19 B.13 C.49 D.59 (第10题)(第15题)二、填空题(每题3分,共15分)3 11.生活中,为了强调某件事情一定会发生,有人会说“这件事百分之二百会发生”,这句话是______的.(填“正确”或“错误” )12.在不透明袋子中装有2个黑球、3个白球,这些球除了颜色外无其他差别.从袋子中随机摸出1个球,“摸出黑球”的概率是______.13.事件A 发生的概率为125,大量重复地做这种试验,事件A 平均每1 000次发生的次数是______.14.有5张相同的卡片,卡片正面分别标有-2,|-3|,(-2)2,-⎝ ⎛⎭⎪⎫140,(-1)-2,将卡片背面朝上,从中随机抽取1张,则抽取的卡片正面上的数是正数的概率为______.15.如图,是一张三角形纸板,其中AD =DF ,BE =ED ,EF =FC ,一只蚂蚁在这张纸板上自由爬行,则蚂蚁爬到阴影部分的概率为______. 三、解答题(一)(每题8分,共24分)16.下面的事件各属于随机事件、必然事件、不可能事件中的哪一类? (1)明年8月5日广东沿海没有台风;(2)抛掷一枚质地均匀的硬币,硬币落地时正面朝上; (3)投出铅球后,经过一段时间铅球落到地面上; (4)从一副扑克牌中任意抽出两张,都是“红桃A”; (5)买一张电影票,排号和座位号都是奇数.17.手机微信抢红包有多种玩法,其中一种为“拼手气红包”,用户设定好总金额以及红包个数后,可以随机生成不等金额的红包.现有一用户设定“拼手气红包”的红包个数为4,且随机被甲、乙、丙、丁四人抢到. (1)以下说法正确是__________. A .甲抢到的红包金额一定最多B.乙抢到的红包金额一定最多C.丙抢到的红包金额一定最多D.丁不一定抢到金额最少的红包(2)若这四个红包的金额分别为35元、33元、20元、12元,则甲抢到红包的金额超过30元的概率是多少?18.在一个不透明的袋子中装有2个黄球,3个黑球和5个红球,它们除颜色外其他都相同.(1)将袋子中的球摇匀后,求从袋子中随机摸出一个球是黄球的概率;(2)若向这个袋子再加入5个红球,求从袋子中随机摸出一个球,摸到不是红球的概率.四、解答题(二)(每题9分,共27分)19.现有四根长度为2cm,3cm,4cm,5cm的木棒,小明任意取一根木棒,能与手中长度为3cm,6cm的木棒拼成一个三角形木框的概率是多少?20.“草莓音乐节”组委会设置了甲、乙、丙三种门票,初一二班购买了甲种门票3张,乙种门票7张,丙种门票10张,班长采取在全班同学中随机抽取的方式来确定观众名单,且每名同学只有一次机会,已知该班有50名学生,请根据题意解决以下问题:(1)该班某名学生恰能去参加“草莓音乐节”活动的概率是多少?(2)该班同学强烈呼吁甲种门票太少,要求每人抽到甲种门票的概率要达到20%,则还要购买甲种门票多少张?521.小蒙设计了两个抽奖游戏,游戏一是转盘游戏,如图,转盘被等分成了4个扇形,共有红、黄和蓝三种颜色,自由转动转盘,指针停在红色时会得到奖励;游戏二是摸球游戏,袋子里有2个红球、2个黄球和1个蓝球,每个球除颜色外其他都相同,任意摸出一个球,摸到红球会得到奖励.小雨要参加抽奖游戏,应选择参加哪一个游戏获得奖励的可能性比较大?请说明理由.五、解答题(三)(每题12分,共24分)22.“校园手机”现象越来越受到社会的关注.九(1)班学生在“统计实习”实践活动中随机调查了学校若干名学生家长对“中学生带手机到学校”现象的态度,统计整理并制作了如下的统计图.(1)在图②中,AB是圆O的直径,求这次被调查的家长总人数,并补全图①;(2)求图②中表示家长“基本赞成”的圆心角的度数;(3)从这次接受调查的家长中,随机抽取一名,恰好是“无所谓”态度的家长的概率是多少?23.如图,端午节期间,某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定顾客每购买200元商品,就能获得一次转动转盘的机会,如果转盘停止后,指针对准红色、黄色、绿色的区域,顾客就可以分别获得50元、20元、10元的奖金,对准无色区域则无奖金(转盘被等分成16个扇形).(1)王老师购买了210元的商品,他获得奖金的概率是多少?(2)张老师购买了370元的商品,他获得20元奖金的概率是多少?(3)现商场想调整获得10元奖金的概率为14,其他金额的获奖率不变,则需要将多少个无色区域涂上绿色?7答案一、1.B 2.B 3.C 4.B 5.D 6.A7.D8.C9.B10.B点拨:蓝色区域的面积为π(2r)2-πr2=3πr2,总面积为π(3r)2=9πr2,则小钢球停止在蓝色区域的概率为3πr29πr2=13.故选B.二、11.错误12.2513.4014.3515.17三、16.解:(1)(2)(5)属于随机事件,(3)属于必然事件,(4)属于不可能事件.17.解:(1)D(2)一共有4种可能出现的结果,其中红包的金额超过30元的有2种,所以甲抢到红包的金额超过30元的概率是24=12.18.解:(1)因为不透明的袋子中装有2个黄球,3个黑球和5个红球,所以从袋子中随机摸出一个球是黄球的概率是22+3+5=15.(2)因为向这个袋子再加入5个红球,所以红球共有10个,球的总数为2+3+5+5=15(个),所以从袋子中随机摸出一个球,摸到不是红球的概率是15-1015=13.四、19.解:因为小明手中两根木棒的长度分别为3cm和6cm,所以易得第三边的长度应满足大于3cm,小于9cm.所以能与小明手中两根木棒拼成三角形的木棒的长度是4cm或5cm,所以能与长度为3cm,6cm的木棒拼成一个三角形木框的概率是24=12.20.解:(1)因为该班有50名学生,且每名同学抽中的可能性相等,三种门票共有3+7+10=20(张),所以该班某名学生恰能去参加“草莓音乐节”活动的概率是2050=25.(2)设还要购买甲种门票x张,则根据题意得3+x 50=20%,解得x=7.答:还要购买甲种门票7张.21.解:游戏一:由于转盘被等分成了4个扇形,红色占2个,因此指针停在红色的概率为24=12.游戏二:袋子里有2个红球、2个黄球和1个蓝球,摸出一个球是红色的概率为22+2+1=25,因为12>25,所以应选择参加游戏一获得奖励的可能性较大.五、22.解:(1)由于AB是圆O的直径,所以“不赞成”占被调查总人数的50%,所以这次调查的家长总人数为200÷50%=400(人).“非常赞成”的人数为400×26%=104(人),“基本赞成”的人数为400-200-104-16=80(人),补全的统计图如下.(2)360°×80400=72°.答:题图②中表示家长“基本赞成”的圆心角的度数为72°.(3)在这次被调查的400名家长中,“无所谓”态度的家长有16名,所以恰好是“无所谓”态度的家长的概率是16400=125.23. 解:(1)王老师购买了210元的商品,能获得一次转动转盘的机会,获得奖金的概率是616=38.(2)张老师购买了370元的商品,能获得一次转动转盘的机会,获得20元奖金的概率是216=18.(3)设需要将x个无色区域涂上绿色,则由题意得x+316=14,解得x=1.所以需要将1个无色区域涂上绿色.9。
最新北师大版七年级数学下册 第六章概率初步章节 经典习题
第六章 概率初步1.下列事件中,是不可能事件的是( D ) A .买一张电影票,座位号是奇数 B .射击运动员射击一次,命中9环 C .明天会下雨D .度量三角形的内角和,结果是360°2.“368人中一定有2人的生日是相同的”是( B ) A .随机事件 B .必然事件 C .不可能事件D .以上都不对3.下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100 ℃;③掷一次骰子,向上一面的点数是2.其中是随机事件的是 ①③ .(填序号)4.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( D ) A .3个 B .不足3个 C .4个D .5个或5个以上5.七年级(6)班共有学生54人,其中男生有30人,女生有24人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性 大 (填“大”或“小”).6.给出以下四个事件:①电灯通电时“发热”;②某人射击一次“中靶”;③掷一枚硬币“出现正面”;④在常温下“铁熔化”.你认为可能性最大的是 ① ,最小的是 ④ .7.下表记录了一名球员在罚球线上投篮的结果,这名球员投篮一次,投中的概率约是( C )8.某人在做掷硬币试验时,抛掷m 次,正面朝上有n 次⎝⎛⎭⎪⎫即正面朝上的频率是P =n m ,则下列说法中正确的是( D ) A .P 一定等于12B .P 一定不等于12C .多投一次,P 更接近12D .随着抛掷次数逐渐增加,P 稳定在12附近9.在一个不透明的布袋中有除颜色外其他都相同的红、黄、蓝球共200个,某位同学经过多次摸球试验后发现,其中摸到红球和蓝球的频率分别稳定在35%和55%,则口袋中可能有黄球 20 个.10.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题: (1)这种树苗成活的频率稳定在 0.9 ,成活的概率估计值为 0.9 . (2)该地区已经移植这种树苗5万棵. ①估计这种树苗成活 4.5 万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?解:(2)②18÷0.9-5=15(万棵). 答:该地区还需移植这种树苗约15万棵.11.一个不透明的盒子里装有只有颜色不同的黑、白两种颜色的球共40个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,活动进行中的一组统计数据如下所示:摸球的次数n 200 300 400 500 800 1 000 摸到白球的次数m 116 192 232 295 484 601 摸到白球的频率m n0.580.640.580.590.6050.601(1)(2)如果你从盒子中任意摸出一球,那么摸到白球的概率约是多少? (3)试估算盒子中黑、白两种颜色的球各有多少个?(4)请你应用上面频率与概率的关系的思想解决下面的问题:一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计口袋中白球的个数(可以借助其他工具及用品)?请写出解决这个问题的主要步骤及估算方法. 解:(1)0.60. (2)0.60.(3)盒子中白球的个数约为40×0.60=24(个), 则黑球的个数为40-24=16(个).(4)①添加:向口袋中添加一定数目的黑球,并充分搅匀;②试验:进行次数很多的摸球试验(有放回),记录摸到黑球和白球的次数,分别计算频率,由频率估计概率;③估算:黑球个数摸到黑球的概率=球的总个数,球的总个数×摸到白球的概率=白球的个数(答案不唯一).12.小军旅行箱的密码是一个六位数,但他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( A ) A.110 B.19 C.16 D.1513.如图,某农民在A ,B ,C ,D 四块田里插秧时,不慎将手表丢入田里,直到收工时才发现,则手表丢在哪一块田里的可能性大些( D )A .AB .BC .CD .D14.向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小正三角形是等可能的,扔沙包一次,击中阴影区域的概率等于( C )A.16B.14C.38D.5815.5张分别写有-1,2,0,-4,5的卡片(除数字不同以外其余都相同),现从中任意取出1张卡片,则该卡片上的数字是负数的概率是 25.16.小兰和小青两人做游戏,有一个质量分布均匀的正六面体骰子,骰子的六面分别标有1,2,3,4,5,6.如果掷出的骰子的点数是质数,则小兰赢;如果掷出的骰子的点数是3的倍数,则小青赢.该游戏规则对 小兰 有利.17.掷一个骰子,观察向上一面的点数,求下列事件的概率: (1)点数为偶数; (2)点数大于2且小于5.解:掷一个骰子,向上一面的点数可能为1,2,3,4,5,6,共6种情况,这些点数出现的可能性相等.(1)点数为偶数有3种可能,即点数为2,4,6, 所以P (点数为偶数)=36=12.(2)点数大于2且小于5有2种可能,即点数为3,4,所以P (点数大于2且小于5)=26=13.18.如图,小明家里的阳台地面铺设着黑、白两种颜色的18块方砖(除颜色不同外其余都相同),他从房间里向阳台抛小皮球,小皮球最终随机停留在某块方砖上. (1)求小皮球分别停留在黑色方砖与白色方砖上的概率;(2)上述哪个概率较大?要使这两个概率相等,应改变第几行第几列的哪块方砖的颜色?怎样改变?解:(1)由图可知,阳台地面共铺有18块方砖,其中白色方砖8块,黑色方砖10块,故小皮球停留在黑色方砖上的概率是59,停留在白色方砖上的概率是49.(2)因为59>49,所以小皮球停留在黑色方砖上的概率大于停留在白色方砖上的概率.要使这两个概率相等,可将任意一块黑色方砖改为白色方砖.。
北师大版数学七年级下册数学第6章概率初步单元练习卷含解析
第6章概率初步一.选择题(共10小题)1.下列事件中,是必然事件的是()A.直角三角形的两个锐角互余B.买一张电影票,座位号是偶数号C.投掷一个骰子,正面朝上的点数是7D.打开“学习强国APP”,正在播放歌曲《我和我的祖国》2.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的时间降雨D.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.14.下列说法正确的是()A.可能性很大的事件在一次试验中一定发生B.可能性很大的事件在一次试验中不一定会发生C.必然事件在一次试验中有可能不会发生D.不可能事件在一次试验中也可能发生5.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③6.如图,在一个不透明的小瓶里装有两种只有颜色不同的果味VC,其中白色的有30颗,橘色的有10颗,小宇摇匀后倒出一颗,回答:倒出哪种颜色的可能性大、可能性大概是()A.白色,B.白色,C.橘色,D.橘色,7.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为()A .B .C.D.8.某农科所在相相条件下做某作物种子发芽率的实验,结果如表所示:种子个数200 300 500 700 800 900 1000 发芽种子个数187 282 435 624 718 814 901发芽种子频率0.935 0.940 0.870 0.891 0.898 0.904 0.901下面有四个推断:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率是0.891;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);③实验的种子个数最多的那次实验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中合理的是()A.①②B.③④C.②③D.②④9.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革﹣﹣庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.某邮政局计划在庆祝改革开放40周年之际推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是()A.B.C.D.10.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中红球4个,黄球3个,其余的为绿球,从袋子中随机摸出一个球,“摸出黄球”的可能性为,则袋中绿球的个数是()A.12 B.5 C.4 D.2二.填空题(共6小题)11.抛掷一枚质地均匀的骰子(骰子六个面上分别标以1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的可能性大小是.12.某小组计划在本周的一个下午借用A、B、C三个艺术教室其中的一个进行元旦节目的彩排,他们去教学处查看了上一周A、B、C三个艺术教室每天下午的使用次数(一节课记为一次)情况,列出如下统计表:日期次数教室星期一星期二星期三星期四星期五A教室 4 1 1 2 0B教室 3 4 0 3 2C教室 1 2 1 4 3通过调查,本次彩排安排在星期的下午找到空教室的可能性最大.13.有6张质地、大小、背面完全相同的卡片,它们正面分别写着“我”“参”“与”“我”“快”“乐”这6个汉字,现将卡片正面朝下随机摆放在桌面上,从中随意抽出一张,则抽出的卡片正面写着“我”这个汉字的可能性是.14.一个不透明的摇奖箱内装有20张形状,大小,质地等完全相同的卡片,其中只有5张卡片标有中奖标志.在2020年新年联欢会的抽奖环节中,贝贝从这个摇奖箱内随机抽取一张卡片.则贝贝中奖的概率是.15.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为.16.桌子上有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,从6个杯子中随机取出1杯,请你将下列事件发生的可能性从大到小排列:.(填序号即可)①取到凉白开②取到白糖水③取到矿泉水④没有取到矿泉水三.解答题(共3小题)17.小明选择一家酒店订春节团圆饭.他借助网络评价,选择了A、B、C三家酒店,对每家酒店随机选择1000条网络评价统计如下:五星四星三星及三星以下合计评价条数等级酒店A412 388 x1000B420 390 190 1000C405 375 220 1000 (1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.①请你为小明从A、B、C中推荐一家酒店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.②如果小明选择了你推荐的酒店,是否一定能够享受到良好用餐体验?18.某地质量监管部门对辖区内的甲、乙两家企业生产的某同类产品进行检查,分别随机抽取了50件产品并对某一项关键质量指标做检测,获得了它们的质量指标值s,并对样本数据(质量指标值s)进行了整理、描述和分析.下面给出了部分信息.a.该质量指标值对应的产品等级如下:质量指标值20≤s<25 25≤s<30 30≤s<35 35≤s<40 40≤s<45 等级次品二等品一等品二等品次品说明:等级是一等品,二等品为质量合格(其中等级是一等品为质量优秀);等级是次品为质量不合格.b.甲企业样本数据的频数分布统计表如下(不完整):c.乙企业样本数据的频数分布直方图如下:甲企业样本数据的频数分布表分组频数频率20≤s<25 2 0.0425≤s<30 m30≤s<35 32 n35≤s<40 0.1240≤s<45 0 0.00合计50 1.00d.两企业样本数据的平均数、中位数、众数、极差、方差如下:平均数中位数众数极差方差甲企业31.92 32.5 34 15 11.87乙企业31.92 31.5 31 20 15.34根据以上信息,回答下列问题:(1)m的值为,n的值为;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为;若乙企业生产的某批产品共5万件,估计质量优秀的有万件;(3)根据图表数据,你认为企业生产的产品质量较好,理由为.(从某个角度说明推断的合理性)19.北京市第十五届人大常委会第十六次会议表决通过《关于修改<北京市生活垃圾管理条例>的决定》,规定将生活垃圾分为厨余垃圾、可回收物、有害垃圾、其它垃圾四大基本品类,修改后的条例将于2020年5月1日实施.某小区决定在2020年1月到3月期间在小区内设置四种垃圾分类厢:厨余垃圾、可回收物、有害垃圾、其它垃圾,分别记为A、B、C、D,进行垃圾分类试投放,以增强居民垃圾分类意识.(1)小明家按要求将自家的生活垃圾分成了四类,小明从分好类的垃圾中随机拿了一袋,并随机投入一个垃圾箱中,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区四类垃圾箱中共1000千克生活垃圾,数据统计如下(单位:千克):A B C D厨余垃圾400 100 40 60可回收物25 140 20 15有害垃圾 5 20 60 15其它垃圾25 15 20 40 求“厨余垃圾”投放正确的概率.参考答案与试题解析一.选择题(共10小题)1.下列事件中,是必然事件的是()A.直角三角形的两个锐角互余B.买一张电影票,座位号是偶数号C.投掷一个骰子,正面朝上的点数是7D.打开“学习强国APP”,正在播放歌曲《我和我的祖国》【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解:A、直角三角形的两个锐角互余是必然事件,符合题意;B、买一张电影票座位号是偶数号,是随机事件,不合题意;C、投掷一个骰子正面朝上的点数是7,是随机事件,不合题意;D、打开“学习强国APP”,正在播放歌曲《我和我的祖国》是随机事件,不合题意.故选:A.2.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的时间降雨D.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖【分析】事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.依据概率的意义进行判断即可.【解答】解:A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次不一定抛掷出5点,本选项错误;B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等,本选项正确;C.明天降雨的概率是80%,表示明天不一定有80%的时间降雨,本选项错误;D.某种彩票中奖的概率是1%,因此买100张该种彩票不一定会中奖,本选项错误;故选:B.3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.1【分析】根据概率=所求情况数与总情况数之比解答即可.【解答】解:∵共3个素数,分别是5,7,11,∴抽到的数是7的概率是;故选:C.4.下列说法正确的是()A.可能性很大的事件在一次试验中一定发生B.可能性很大的事件在一次试验中不一定会发生C.必然事件在一次试验中有可能不会发生D.不可能事件在一次试验中也可能发生【分析】根据不可能事件、随机事件、必然事件的有关概念和题意分别对每一项进行判断即可.【解答】解:A、可能性很大的事件在一次试验中不一定会发生,故本选项错误;B、可能性很大的事件在一次试验中不一定会发生,正确;C、必然事件在一次实验中一定会发生,故本选项错误;D、不可能事件在一次实验中不可能发生,故本选项错误;故选:B.5.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③【分析】随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.【解答】解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.45,故错误.故选:B.6.如图,在一个不透明的小瓶里装有两种只有颜色不同的果味VC,其中白色的有30颗,橘色的有10颗,小宇摇匀后倒出一颗,回答:倒出哪种颜色的可能性大、可能性大概是()A.白色,B.白色,C.橘色,D.橘色,【分析】利用概率公式求得概率后即可解得本题.【解答】解:∵白色的有30颗,橘色的有10颗,∴摇匀后倒出一颗,是白色的可能性为,橘色的可能性为,故选:B.7.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为()A.B.C.D.【分析】首先设设正方形的面积,再表示出阴影部分面积,然后可得概率.【解答】解:设“东方模板”的面积为4,则阴影部分三角形面积为1,平行四边形面积为,则点取自黑色部分的概率为:=,故选:C.8.某农科所在相相条件下做某作物种子发芽率的实验,结果如表所示:种子个数200 300 500 700 800 900 1000 发芽种子187 282 435 624 718 814 901 个数0.935 0.940 0.870 0.891 0.898 0.904 0.901发芽种子频率下面有四个推断:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率是0.891;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);③实验的种子个数最多的那次实验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中合理的是()A.①②B.③④C.②③D.②④【分析】根据某农科所在相同条件下做某作物种子发芽率的试验表,可得大量重复试验发芽率逐渐稳定在0.9左右,于是得到种子发芽的概率约为0.9,据此求出1000kg种子中大约有100kg种子是不能发芽的即可.【解答】解:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率大约是0.891;故错误;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);故正确;③实验的种子个数最多的那次实验得到的发芽种子的频率不一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽,故正确;其中合理的是②④,故选:D.9.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革﹣﹣庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.某邮政局计划在庆祝改革开放40周年之际推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是()A.B.C.D.【分析】分别求出背面印有“改革”字样的卡片数和总的卡片数,再根据概率公式计算即可.【解答】解:∵背面印有“改革”字样的卡片有2张,共有6张卡片,∴从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是=.故选:A.10.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中红球4个,黄球3个,其余的为绿球,从袋子中随机摸出一个球,“摸出黄球”的可能性为,则袋中绿球的个数是()A.12 B.5 C.4 D.2【分析】设袋中绿球的个数有x个,根据概率公式列出算式,求出x的值即可得出答案.【解答】解:设袋中绿球的个数有x个,根据题意得:=,解得:x=5,答:袋中绿球的个数有5个;故选:B.二.填空题(共6小题)11.抛掷一枚质地均匀的骰子(骰子六个面上分别标以1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的可能性大小是.【分析】根据掷得面朝上的点数大于4情况有2种,进而求出概率即可.【解答】解:掷一枚均匀的骰子时,有6种情况,出现点数大于4的情况有2种,掷得面朝上的点数大于4的概率是:=;故答案为:.12.某小组计划在本周的一个下午借用A、B、C三个艺术教室其中的一个进行元旦节目的彩排,他们去教学处查看了上一周A、B、C三个艺术教室每天下午的使用次数(一节课记为一次)情况,列出如下统计表:星期一星期二星期三星期四星期五日期次数教室A教室 4 1 1 2 0B教室 3 4 0 3 2C教室 1 2 1 4 3通过调查,本次彩排安排在星期三的下午找到空教室的可能性最大.【分析】找到使用次数最少的一天下午即可得到答案.【解答】解:观察表格发现星期三下午使用1+0+1=2次,最少,∴本次彩排安排在星期三的下午找到空教室的可能性最大,故答案为:三.13.有6张质地、大小、背面完全相同的卡片,它们正面分别写着“我”“参”“与”“我”“快”“乐”这6个汉字,现将卡片正面朝下随机摆放在桌面上,从中随意抽出一张,则抽出的卡片正面写着“我”这个汉字的可能性是.【分析】直接利用概率公式求解即可求得答案.【解答】解:∵有6张质地、大小、背面完全相同的卡片,在它们正面分别写着:“我”“参”“与”“我”“快”“乐”这6个汉字,∴抽出的卡片正面写着“我”字的可能性是:=.故答案为:.14.一个不透明的摇奖箱内装有20张形状,大小,质地等完全相同的卡片,其中只有5张卡片标有中奖标志.在2020年新年联欢会的抽奖环节中,贝贝从这个摇奖箱内随机抽取一张卡片.则贝贝中奖的概率是.【分析】根据题意分析可得:摇奖箱内装有20个小球,所以随机抽取一个小球共20种情况,其中有5种情况是小球中奖,故其概率是=.【解答】解:P(中奖)==.故本题答案为:.15.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【解答】解:根据题意可得:标号小于4的有1,2,3三个球,共5个球,任意摸出1个,摸到标号小于4的概率是.故答案为:16.桌子上有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,从6个杯子中随机取出1杯,请你将下列事件发生的可能性从大到小排列:④①③②.(填序号即可)①取到凉白开②取到白糖水③取到矿泉水④没有取到矿泉水【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【解答】解:∵有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,∴①取到凉白开的概率是=,②取到白糖水的概率是,③取到矿泉水的概率是=,④没有取到矿泉水的概率是=,∴按事件发生的可能性从大到小排列:④①③②;故答案为:④①③②.三.解答题(共3小题)17.小明选择一家酒店订春节团圆饭.他借助网络评价,选择了A、B、C三家酒店,对每家酒店随机选择1000条网络评价统计如下:评价条数等级五星四星三星及三星以下合计酒店A412 388 x1000B420 390 190 1000C405 375 220 1000 (1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.①请你为小明从A、B、C中推荐一家酒店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.②如果小明选择了你推荐的酒店,是否一定能够享受到良好用餐体验?【分析】(1)用1000减去五星和四星的条数,即可得出x的值;(2)①根据概率公式先求出A、B、C获得良好用餐体验的可能性,再进行比较即可得出答案;②根据概率的意义分析即可.【解答】解:(1)x=1000﹣412﹣388=200(条);(2)①选择A酒店获得良好用餐体验的可能性为=0.8,选择B酒店获得良好用餐体验的可能性为=0.81,选择C酒店获得良好用餐体验的可能性为=0.7,∵0.81>0.8>0.78,∴选择B酒店获得良好用餐体验的可能性最大.②不一定,根据可能性只能说明享受到良好用餐体验可能性大,但不一定能够享受到良好用餐体验.18.某地质量监管部门对辖区内的甲、乙两家企业生产的某同类产品进行检查,分别随机抽取了50件产品并对某一项关键质量指标做检测,获得了它们的质量指标值s,并对样本数据(质量指标值s)进行了整理、描述和分析.下面给出了部分信息.a.该质量指标值对应的产品等级如下:质量指标值20≤s<25 25≤s<30 30≤s<35 35≤s<40 40≤s<45 等级次品二等品一等品二等品次品说明:等级是一等品,二等品为质量合格(其中等级是一等品为质量优秀);等级是次品为质量不合格.b.甲企业样本数据的频数分布统计表如下(不完整):c.乙企业样本数据的频数分布直方图如下:甲企业样本数据的频数分布表分组频数频率20≤s<25 2 0.0425≤s<30 m30≤s<35 32 n35≤s<40 0.1240≤s<45 0 0.00合计50 1.00d.两企业样本数据的平均数、中位数、众数、极差、方差如下:平均数中位数众数极差方差甲企业31.92 32.5 34 15 11.87乙企业31.92 31.5 31 20 15.34 根据以上信息,回答下列问题:(1)m的值为10 ,n的值为0.64 ;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为0.96 ;若乙企业生产的某批产品共5万件,估计质量优秀的有 3.5 万件;(3)根据图表数据,你认为甲企业生产的产品质量较好,理由为甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好.(从某个角度说明推断的合理性)【分析】(1)根据题意和频数分布表中的数据,可以先求的n的值,然后再求m的值;(2)根据频数分布表可以求得从甲企业生产的产品中任取一件,估计该产品质量合格的概率,根据频数分布直方图可以求得乙企业生产的某批产品共5万件,质量优秀的有的件数;(3)根据频数分布直方图和分布表可以解答本题,注意本题答案不唯一,只要合理即可.【解答】解:(1)n=32÷50=0.64,m=50×(1﹣0.04﹣0.64﹣0.12﹣0.00)=10,故答案为:10,0.64;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为:1﹣0.04=0.96,乙企业生产的某批产品共5万件,估计质量优秀的有:5×=3.5(万件),故答案为:0.96,3.5;(3)我认为甲企业生产的产品质量较好,理由:甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好,故答案为:甲,甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好.19.北京市第十五届人大常委会第十六次会议表决通过《关于修改<北京市生活垃圾管理条例>的决定》,规定将生活垃圾分为厨余垃圾、可回收物、有害垃圾、其它垃圾四大基本品类,修改后的条例将于2020年5月1日实施.某小区决定在2020年1月到3月期间在小区内设置四种垃圾分类厢:厨余垃圾、可回收物、有害垃圾、其它垃圾,分别记为A、B、C、D,进行垃圾分类试投放,以增强居民垃圾分类意识.(1)小明家按要求将自家的生活垃圾分成了四类,小明从分好类的垃圾中随机拿了一袋,并随机投入一个垃圾箱中,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区四类垃圾箱中共1000千克生活垃圾,数据统计如下(单位:千克):A B C D厨余垃圾400 100 40 60可回收物25 140 20 15有害垃圾 5 20 60 15其它垃圾25 15 20 40求“厨余垃圾”投放正确的概率.【分析】(1)根据题意画出树状图得出所有情况数,再求出垃圾投放正确的情况数,最后根据概率公式计算即可.(2)用厨余垃圾数量除以总的数量即可.【解答】解:(1)四类垃圾随机投入四类垃圾箱的所有结果用树状图表示如下:。
第六章 概率初步单元测试卷(附答案)
第六章概率初步一、选择题1.下列说法正确的是()A. 不可能事件发生的概率为0B. 随机事件发生的概率为C. 概率很小的事件不可能发生D. 投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次2.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是()A. 甲组B. 乙组C. 丙组D. 丁组3.下列事件中,是必然事件的是()A. 两条线段可以组成一个三角形B. 400人中有两个人的生日在同一天C. 早上的太阳从西方升起D. 打开电视机,它正在播放动画片4.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A. B. C. D.5.动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.6,则现年20岁的这种动物活到25岁的概率是()A. 0.8B. 0.75C. 0.6D. 0.486.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A. 20B. 24C. 28D. 307.数学老师将全班分成7个小组开展小组合作学习,采用随机抽签确定一个小组进行展示活动,则第3个小组被抽到的概率是()A. B. C. D.8.从图中的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是中心对称图形的卡片的概率是()A. B. C. D. 19.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A. B. C. D.10.从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M,“这个四边形是等腰梯形”.下列推断正确的是()A. 事件M是不可能事件B. 事件M是必然事件C. 事件M发生的概率为D. 事件M发生的概率为二、填空题11.一个盒中装着大小、外形一模一样的x颗白色弹珠和y颗黑色弹珠,从盒中随机取出一颗弹珠,取得白色弹珠的概率是.如果再往盒中放进12颗同样的白色弹珠,取得白色弹珠的概率是,则原来盒中有白色弹珠______ 颗.12.现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为______ .13.不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是______.14.从数-2,-,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是______ .15.一个均匀的正方体各面上分别标有数字:1、2、3、4、5、6,这个正方体的表面展开图如图所示.抛掷这个正方体,则朝上一面所标数字恰好等于朝下一面所标数字的3倍的概率是______.三、计算题16.全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是______;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.17.四张扑克牌(方块2、黑桃4、黑桃5、梅花5)的牌面如图l,将扑克牌洗匀后,如图2背面朝上放置在桌面上.小亮和小明设计的游戏规则是两人同时抽取一张扑克牌,两张牌面数字之和为奇数时,小亮获胜;否则小明获胜.请问这个游戏规则公平吗?并说明理由.18.一只口袋中放着3只红球和2只黑球,这两种球除了颜色以外没有任何区别.袋中的球已经搅匀.蒙上眼睛从口袋中取一只球,(1)取出黑球与红球的概率分别是多少?(2)若第一次取出的是一只红球不放回去,第二次取出的是红球的概率是多少?19.在一个不透明的袋中装有5个只有颜色不同的球,其中3个黄球,2个黑球.(1)求从袋中同时摸出的两个球都是黄球的概率;(2)现将黑球和白球若干个(黑球个数是白球个数的2倍)放入袋中,搅匀后,若从袋中摸出一个球是黑球的概率是,求放入袋中的黑球的个数.答案和解析【答案】1. A2. D3. B4. C5. B6. D7. A8. A9. B10. B11. 412. 1513.14.15.16.17. 解:此游戏规则不公平.理由如下:画树状图得:共有12种等可能的结果,其中两张牌面数字之和为奇数的有8种情况,所以P(小亮获胜)==;P(小明获胜)=1-=,因为>,所以这个游戏规则不公平.18. 解:(1)根据题意得:P(黑球)=;P(红球)=;(2)根据题意得:P(第二次为红球)==.19. 解:(1)画树状图为:共有20种等可能的结果数,其中从袋中同时摸出的两个球都是黄球的结果数为6,所以从袋中同时摸出的两个球都是黄球的概率==;(2)设放入袋中的黑球的个数为x,根据题意得=,解得x=2,所以放入袋中的黑球的个数为2.【解析】1. 解:A、不可能事件发生的概率为0,故本选项正确;B、随机事件发生的概率P为0<P<1,故本选项错误;C、概率很小的事件,不是不发生,而是发生的机会少,故本选项错误;D、投掷一枚质地均匀的硬币1000次,是随机事件,正面朝上的次数不确定是多少次,故本选项错误;故选:A.根据不可能事件是指在任何条件下不会发生,随机事件就是可能发生,也可能不发生的事件,发生的机会大于0并且小于1,进行判断.本题考查了不可能事件、随机事件的概念.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2. 解:根据模拟实验的定义可知,实验相对科学的是次数最多的丁组.故选:D.大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.考查了模拟实验,选择和抛硬币类似的条件的试验验证抛硬币实验的概率,是一种常用的模拟试验的方法.3. 解:A、两条线段可以组成一个三角形是不可能事件,故A错误;B、400人中有两个人的生日在同一天是必然事件,故B正确;C、早上的太阳从西方升起是不可能事件,故C错误;D、打开电视机,它正在播放动画片是随机事件,故D错误;故选:B.根据必然事件指在一定条件下,一定发生的事件,可得答案.本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4. 解:根据题意可得:口袋里共有12只球,其中白球2只,红球6只,黑球4只,故从袋中取出一个球是黑球的概率:P(黑球)==,故选:C.根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.本题考查概率的求法与运用.一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5. 解:设共有这种动物x只,则活到20岁的只数为0.8x,活到25岁的只数为0.6x,故现年20岁到这种动物活到25岁的概率为=0.75.故选B.先设出所有动物的只数,根据动物活到各年龄阶段的概率求出相应的只数,再根据概率公式解答即可.考查了概率的意义,用到的知识点为:概率=所求情况数与总情况数之比.注意在本题中把20岁时的动物只数看成单位1.6. 解:根据题意得=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选D.根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n的值.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.7. 解:第3个小组被抽到的概率是,故选:A.根据概率是所求情况数与总情况数之比,可得答案.本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.8. 解:在这四个图片中只有第三幅图片是中心对称图形,因此是中心对称称图形的卡片的概率是.故选:A.根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.本题将两个简易的知识点,中心对称图形和概率组合在一起,是一个简单的综合问题,其中涉及的中心对称图形是指这个图形绕着对称中心旋转180°后仍然能和这个图形重合的图形,简易概率求法公式:P(A)=,其中0≤P(A)≤1.9. 解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:.故选:B.由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.也考查了轴对称图形的定义.10. 连接BE,根据正五边形ABCDE的性质得到BC=DE=CD=AB=AE,根据多边形的内角和定理求出∠A=∠ABC=∠C=∠D=∠AED=108°,根据等腰三角形的性质求出∠ABE=∠AEB=36°,求出∠CBE=72°,推出BE∥CD,得到四边形BCDE是等腰梯形,即可得出答案.11. 解:∵取得白色棋子的概率是,可得方程=又由再往盒中放进12颗白色棋子,取得白色棋子的概率是∴可得方程=,组成方程组解得:x=4,y=8故答案为4.根据从盒中随机取出一颗棋子,取得白色棋子的概率是,可得方程=又由再往盒中放进12颗白色棋子,取得白色棋子的概率是可得方程=联立即可求得x的值.本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12. 解:因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,所以估计抽到绘有孙悟空这个人物卡片的概率为0.3,则这些卡片中绘有孙悟空这个人物的卡片张数=0.3×50=15(张).所以估计这些卡片中绘有孙悟空这个人物的卡片张数约为15张.故答案为15.利用频率估计概率得到抽到绘有孙悟空这个人物卡片的概率为0.3,则根据概率公式可计算出这些卡片中绘有孙悟空这个人物的卡片张数,于是可估计出这些卡片中绘有孙悟空这个人物的卡片张数.本题考查了频率估计概率:用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.13. 解:∵在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是:=.故答案为:.由在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,直接利用概率公式求解,即可得到任意摸出一球恰好为红球的概率.此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.14. 解:从数-2,-,0,4中任取1个数记为m,再从余下,3个数中,任取一个数记为n.根据题意画图如下:共有12种情况,∵正比例函数y=kx的图象经过第三、第一象限,∴k=mn>0.由树状图可知符合mn>0的情况共有2种,∴正比例函数y=kx的图象经过第三、第一象限的概率是=.故答案为:.根据题意先画出图形,求出总的情况数,再求出符合条件的情况数,最后根据概率公式进行计算即可.本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.15. 解:由图可知1、3相对,2、6相对,4、5相对,那么3朝上或6朝上时,朝上一面所标数字恰好等于朝下一面所标数字的3倍,共有6种情况,则朝上一面所标数字恰好等于朝下一面所标数字的3倍的概率是.根据随机事件概率大小的求法,找准两点:①朝上一面所标数字恰好等于朝下一面所标数字的3倍的情况数目;②所有标法的总数.二者的比值就是其发生的概率的大小.本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16. 解:(1)第二个孩子是女孩的概率=;故答案为;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=.(1)直接利用概率公式求解;(2)画树状图展示所有4种等可能的结果数,再找出至少有一个孩子是女孩的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.17. 先利用树状图展示所有有12种等可能的结果,其中两张牌面数字之和为奇数的有8种情况,再根据概率公式求出P(小亮获胜)和P(小明获胜),然后通过比较两概率的大小判断游戏的公平性.本题考查了游戏公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.18. (1)根据5只小球中红球与黑球的个数求出所求概率即可;(2)取出一个红球,口袋中红球与黑球个数都为2,即可求出所求概率即可.此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.19. (1)画树状图展示所有20种等可能的结果数,再找出从袋中同时摸出的两个球都是黄球的结果数,然后根据概率公式求解;(2)设放入袋中的黑球的个数为x,利用概率公式得到=,然后解方程即可.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.。
北师大版初中数学七年级下册《第6章 概率初步》单元测试卷
北师大新版七年级下学期《第6章概率初步》单元测试卷一.填空题(共50小题)1.某足球运动员在同一条件下进行射门,结果如下表所示:踢进球门频率则该运动员射门一次,射进门的概率为:.2.在一个不透明的口袋中装有3个红球,1个白球,他们除了颜色外,其余均相同,若把它们搅匀后从中任意摸一个球,则摸到白球的可能性是.3.“九(1)”班为了选拔两名学生参加学校举行的“中华优秀传统文化知识竞赛”活动,在班级内先举行了预选赛,在预选赛中有两女、一男3位学生获得了一等奖,从获得等奖的3位学生中随机抽取2名学生参加学校的比赛,则选出的2名学生恰好为一男一女的概率为4.用2,3,4这三个数字排成一个三位数,则排成的三位数是奇数的概率是.5.在不透明的盒子中装有5个黑色棋子和若干个白色做子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是,则白色棋子的个数是.6.“赵爽弦图”是由四个全等的直角三角形和中间一个小正方形拼成的大正方形,小明同学向一个如图所示的“赵爽弦图”的飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上).若飞镖板中直角三角形的两条直角边的长分别为1和2,则投掷一次飞镖扎在中间小正方形区域的概率是.7.四张完全相同的卡片上,分别画有圆、平行四边形、等边三角形、角,现从中随机抽取一张,卡片上画的是轴对称图形的概率为.8.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为.9.一个不透明的袋中装有红、黄、白三种颜色的球共10个,它们除颜色外都相同,其中红球5个,黄球3个,白球2个,小英从中随机拿出一个小球再放回,前两次都不是红球,则她第三次拿出一个球是红球的概率是.10.下列事件:①打开电视机,它正在播广告;②从一只装有红球的口袋中,任意摸出一个球,恰是白球;③两次抛掷正方体骰子,掷得的数字之和<13;④抛掷硬币1000次,第1000次正面向上,其中为随机事件的有个.11.3.12日植树节,老师想从甲、乙、丙、丁4名同学中挑选2名同学代表班级去参加学校组织的植树活动,恰好选中甲和乙去参加的概率是.12.一儿童在如图所示的正方形地板上跳格子,当他随意停下时,停在阴影部分的概率.13.小明和小芳用编有数字1~10的10张纸片(除数字外大小颜色都相同)做游戏,小明从中任意抽取一张(不放回),小芳从剩余的纸片中任意抽取一张,谁抽到的数字大,谁就获胜(数字从小到大顺序为1,2,3,4,5,6,7,8,9,10)然后两人把抽到的纸片都放回,重新开始游戏,如果小明已经抽到的纸片上的数字为3,然后小芳抽纸片,则小芳获胜的概率是.14.在△ABC中,给出以下4个条件:(1)∠C=90°;(2)∠A+∠B=∠C;(3)a:b:c=3:4:5;(4)∠A:∠B:∠C=3:4:5;从中任取一个条件,可以判定出△ABC是直角三角形的概率是.15.在一个不透明的袋子中装有仅颜色不同的5个小球,其中红球3个,黑球2个,先从袋中取出m(m≥1)个红球,不放回,再从袋子中随机摸出1个球.将“摸出黑球”记为事件A.(1)若A为必然事件,则m的值为;(2)若A发生的概率为,则m的值为.16.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,估计盒子中小球的个数n=.17.将一个小球在如图所示的地撰上自由滚动,最终停在黑色方砖上的概率为.18.有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.19.有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是.20.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.21.周末期间小明和小华到影城看电影,影城同时在四个放映室(1室、2室、3室、4室)播放四部不同的电影,他们各自在这四个放映室任选一个,每个放映室被选中的可能性都相同,则小明和小华选择取同一间放映室看电影的概率是.22.若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是.23.在4张完全相同的卡片上分别画有等边三角形、平行四边形、正方形和圆,从中随机摸出两张,这两张卡片上的图形都是中心对称图形的概率是.24.取大小、质地都相同的四张卡片,正面分别写有数字﹣1,1,2,3,充分洗匀后任取两张,取卡片上标注的两个数作为点的坐标,那么该点刚好在一次函数y=x﹣2图象上的概率是25.从,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是.26.小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是27.不透明的袋子里装有2个红球和1个白球,这些球除了颜色外都相同,从中任意摸出一个,放回摇匀,再从中摸一个,则两次摸到球的颜色相同的概率是.28.在一个不透明的口袋中装有6个红球.2个绿球,这些球除颜色外无其它差别,从这个袋子中随机摸出一个球,摸到红球的概率为;29.安全问题大于天,为加大宣传力度,提高学生的安全意识,乐陵某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池.小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是.30.已知在一个不透明的袋子中装有2个白球、3个红球和n个黄球,它们除颜色外,其余均相同.若从中随机摸出一个球,摸到黄球的概率是,则n=.31.在一个不透明的袋子中,装有大小,形状,质地都相同,但颜色不同的红球3个,黄球2个,白球若干个,从袋子中随机摸出一个小球是黄球的概率是,则袋子中白色小球有个;32.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外完全相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个红球的概率为.33.一个不透明盒子内装有大小、形状相同的三个球,其中红球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是.34.分别写有数字0,|﹣2|,﹣4,,﹣5的五张卡片,除数字不同外其它均相同,从中任抽一张,那么抽到非负数的概率是35.如图,用一个可以自由转动的转盘(转盘被平均分成面积相等的三部分)做游戏,转动转盘两次,两次所得数字之乘积大于5的概率为.36.一枚质地均匀的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率是.37.在﹣2,﹣1,0,1,2这五个数中任取两数m,n,则二次函数y=(x﹣m)2+n的顶点在坐标轴上的概率为.38.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是.39.小明正在玩飞镖游戏,如果他将飞镖随意投向如图所示的正方形网格中,那么投中阴影部分的概率为.40.从﹣3,﹣1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是.41.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.42.如图所示,在1×2的正方形网格格点上已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.43.一个不透明的盒子中装有10个黑球和若干个白球,它们除颜色不同外,其余均相同,从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球大约有个.44.如图,管中放置着三根同样的绳子AA1、BB1、CC1.小明在左侧选两个打一个结,小红在右侧选两个打一个结,则这三根绳子能连结成一根长绳的概率为.45.从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为.46.在一个不透明的袋子中,有3个白球和1个红球,它们只有颜色上的区别,从袋子中随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为.47.甲、乙两人轮流做下面的游戏:掷一枚均匀的骰子(每个面分别标有1,2,3,4,5,6这六个数字),如果朝上的数字大于3,则甲获胜,如果朝上的数字小于3,则乙获胜,你认为获胜的可能性比较大的是.48.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a等于.49.李老师想从小明、小红、小丽和小亮四个人中用抽签的方式抽取两个人做流动值周生,则小红和小丽同时被抽中的概率是.50.一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1、2、3、4,口袋外有两张卡片,分别写有数字2、3,现随机从口袋里取出一张卡片,则这张卡片与口袋外的卡片上的数字能构成三角形的概率是.北师大新版七年级下学期《第6章概率初步》2019年单元测试卷参考答案与试题解析一.填空题(共50小题)1.某足球运动员在同一条件下进行射门,结果如下表所示:踢进球门频率则该运动员射门一次,射进门的概率为:0.52.【分析】根据表格中实验的频率,然后根据频率即可估计概率.【解答】解:由踢球进门的频率m/n分别为:0.65、0.7、0.58、0.52、0.53、0.5可知频率都在0.52上下波动,所以估计这个运动员射门一次,射进门的概率为0.52,故答案为:0.52.【点评】此题主要考查了利用频率估计概率,正确理解频率的意义是解题关键.2.在一个不透明的口袋中装有3个红球,1个白球,他们除了颜色外,其余均相同,若把它们搅匀后从中任意摸一个球,则摸到白球的可能性是.【分析】先求出袋子中球的总个数及白球的个数,再根据概率公式解答即可.【解答】解:∵在一个不透明的口袋中装有3个红球、1个白球,共4个球,∴任意摸出1个球,摸到白球的概率是,故答案为:.【点评】本题考查的是可能性的大小,即随机事件概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3.“九(1)”班为了选拔两名学生参加学校举行的“中华优秀传统文化知识竞赛”活动,在班级内先举行了预选赛,在预选赛中有两女、一男3位学生获得了一等奖,从获得等奖的3位学生中随机抽取2名学生参加学校的比赛,则选出的2名学生恰好为一男一女的概率为【分析】根据题意画出树状图,得出抽中一男一女的情况,再根据概率公式,即可得出答案.【解答】解:根据题意画树状图如下:共有6种情况,恰好抽中一男一女的有4种情况,则恰好抽中一男一女的概率是,故答案为:.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.4.用2,3,4这三个数字排成一个三位数,则排成的三位数是奇数的概率是.【分析】首先利用列举法可得:用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;且排出的数是奇数的有:243,423;然后直接利用概率公式求解即可求得答案.【解答】解:∵用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;且排出的数是奇数的有:243,423;∴排出的数是奇数的概率为:=,故答案为.【点评】此题考查了列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.5.在不透明的盒子中装有5个黑色棋子和若干个白色做子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是,则白色棋子的个数是15.【分析】黑色棋子除以相应概率算出棋子的总数,减去黑色棋子的个数即为白色棋子的个数;【解答】解:5÷﹣5=15.∴白色棋子有15个;故答案为:15.【点评】本题主要考查了概率的求法,概率=所求情况数与总情况数之比.6.“赵爽弦图”是由四个全等的直角三角形和中间一个小正方形拼成的大正方形,小明同学向一个如图所示的“赵爽弦图”的飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上).若飞镖板中直角三角形的两条直角边的长分别为1和2,则投掷一次飞镖扎在中间小正方形区域的概率是.【分析】求出大小正方形的面积,根据面积比即可解决问题;【解答】解:由题意大正方形的面积为5,小正方形的面积为1,∴投掷一次飞镖扎在中间小正方形区域的概率是.故答案为.【点评】本题考查概率、勾股定理、正方形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.四张完全相同的卡片上,分别画有圆、平行四边形、等边三角形、角,现从中随机抽取一张,卡片上画的是轴对称图形的概率为.【分析】用轴对称图形的个数除以总卡片数4即为卡片上画的是轴对称图形的概率.【解答】解:根据轴对称图形的概念,知圆、等边三角形、角是轴对称图形;所以现从中随机抽取一张,卡片上画的是轴对称图形的概率为.故答案为.【点评】本题考查了轴对称图形的概念和概率的求法.轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P (A)=.8.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为20.【分析】利用频率估计概率,然后解方程即可.【解答】解:设原来红球个数为x个;则有=,解得x=20.故答案为20.【点评】本题考查了利用频率估计概率:一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.9.一个不透明的袋中装有红、黄、白三种颜色的球共10个,它们除颜色外都相同,其中红球5个,黄球3个,白球2个,小英从中随机拿出一个小球再放回,前两次都不是红球,则她第三次拿出一个球是红球的概率是.【分析】用红球个数除以球的总个数即可得.【解答】解:∵袋子中共有10个球,其中红球有5个,∴她第三次拿出一个球是红球的概率是=,故答案为:.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.10.下列事件:①打开电视机,它正在播广告;②从一只装有红球的口袋中,任意摸出一个球,恰是白球;③两次抛掷正方体骰子,掷得的数字之和<13;④抛掷硬币1000次,第1000次正面向上,其中为随机事件的有2个.【分析】确定事件包括必然事件和不可能事件:必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【解答】解:①打开电视机,它正在播广告是随机事件;②从一只装有红球的口袋中,任意摸出一个球,恰是白球是不可能事件;③两次抛掷正方体骰子,掷得的数字之和<13是必然事件;④抛掷硬币1000次,第1000次正面向上是随机事件;故答案为:2.【点评】本题主要考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11.3.12日植树节,老师想从甲、乙、丙、丁4名同学中挑选2名同学代表班级去参加学校组织的植树活动,恰好选中甲和乙去参加的概率是.【分析】画树状图展示所有12种等可能的结果数,再找出恰好选中甲和乙的结果数,然后根据概率公式求解.【解答】解:画树形图得:由树状图知共有12种等可能结果,其中恰好抽到甲、乙两名同学的有2种结果,所以恰好选中甲和乙去参加的概率是=,故答案为:.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.12.一儿童在如图所示的正方形地板上跳格子,当他随意停下时,停在阴影部分的概率.【分析】根据几何概率的求法:最终停留在阴影上的概率就是阴影区域的面积与总面积的比值.【解答】解:观察这个图可知:阴影区域(3块)的面积占总面积(9块)的,故其概率为.故答案为:.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.13.小明和小芳用编有数字1~10的10张纸片(除数字外大小颜色都相同)做游戏,小明从中任意抽取一张(不放回),小芳从剩余的纸片中任意抽取一张,谁抽到的数字大,谁就获胜(数字从小到大顺序为1,2,3,4,5,6,7,8,9,10)然后两人把抽到的纸片都放回,重新开始游戏,如果小明已经抽到的纸片上的数字为3,然后小芳抽纸片,则小芳获胜的概率是.【分析】直接利用已知数据结合概率公式求出答案.【解答】解:由题意可得:小明已经抽到的纸片上的数字为3,则只有数字1,2小于3,而4,5,6,7,8,9,10都大于3,故小芳获胜的概率为:,故答案为:.【点评】本题考查了概率求法,解决本题的关键是确定摸牌前后牌的张数.14.在△ABC中,给出以下4个条件:(1)∠C=90°;(2)∠A+∠B=∠C;(3)a:b:c=3:4:5;(4)∠A:∠B:∠C=3:4:5;从中任取一个条件,可以判定出△ABC是直角三角形的概率是.【分析】根据直角三角形的定义、三角形的内角和定理及勾股定理对所列条件找到能判定△ABC是直角三角形的条件,再根据概率公式求解可得.【解答】解:因为在所列四个条件中判定△ABC是直角三角形的条件有(1)、(2)、(3)这3个,所以从中任取一个条件,可以判定出△ABC是直角三角形的概率是,故答案为:.【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.在一个不透明的袋子中装有仅颜色不同的5个小球,其中红球3个,黑球2个,先从袋中取出m(m≥1)个红球,不放回,再从袋子中随机摸出1个球.将“摸出黑球”记为事件A.(1)若A为必然事件,则m的值为3;(2)若A发生的概率为,则m的值为1.【分析】(1)由在一个不透明的袋子中装有仅颜色不同的5个小球,其中红球3个,黑球2个,根据必然事件的定义,即可求得答案.(2)根据“若A发生的概率为”可知袋子中的黑球有4个.【解答】解:(1)∵“摸出黑球”为必然事件,∴m=3.故答案是:3;(2)∵“摸出黑球”为必然事件,且m≥1,∴m=1;故答案为:1.【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,估计盒子中小球的个数n=30.【分析】根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n的值.【解答】解:根据题意得=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故答案为:30.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.17.将一个小球在如图所示的地撰上自由滚动,最终停在黑色方砖上的概率为.【分析】根据几何概率的求法:最终没有停在黑色方砖上的概率即停在白色方砖上的概率就是白色区域面积与总面积的比值.【解答】解:观察这个图可知:白色区域与黑色区域面积相等,各占,故其概率等于.故答案为:【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.18.有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.【分析】根据题意,使用列举法可得从4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【解答】解:根据题意,从4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5;2,4,5,3种;故其概率为:.【点评】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.19.有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是.【分析】直接利用中心对称图形的性质结合概率求法直接得出答案.。
第6章 概率初步 北师大版七年级数学下册单元测试卷(含答案)
北师大新版七年级下册《第6章概率初步》2024年单元测试卷一、选择题1.“任意买一张电影票,座位号是2的倍数”,此事件是( )A.不可能事件B.随机事件C.必然事件D.确定事件2.小军旅行箱的密码是一个三位数,每位上的数字是0至9中的一个,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( )A.B.C.D.3.下列事件发生的概率为0的是( )A.随意掷一枚硬币两次,有一次正面朝上B.早晨太阳从东方升起C.|a|=2,a=2D.从三个红球中摸出一个黑球4.在一个不透明的口袋中装有2个红球和若干个白球,它们除颜色外其他完全相同.通过多次摸球试验后发现,摸到红球的频率稳定在20%附近,则口袋中白球可能有( )A.5个B.6个C.7个D.8个5.如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则( )A.P1>P2B.P1<P2C.P1=P2D.以上都有可能6.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”.下列说法正确的是( )A.抽10次奖必有一次抽到一等奖B.抽一次不可能抽到一等奖C.抽10次也可能没有抽到一等奖D.抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖7.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是( )A.1B.C.D.8.小明要给朋友小林打电话,电话号码是七位正整数,他只记住了电话号码前四位顺序,后三位是3,6,7三位数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨对的概率是( )A.B.C.D.9.有一盒水彩笔除了颜色外无其他差别,其中各种颜色的数量统计如图所示.小腾在无法看到盒中水彩笔颜色的情形下随意抽出一支.小腾抽到蓝色水彩笔的概率为( )A.B.C.D.10.如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为3的概率是( )A.B.C.D.二、填空题11.数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是 .12.在一个不透明的口袋中装有仅颜色不同的红、白两种小球,其中红球3个,白球n个,若从袋中任取一个球,摸出红球的概率是0.2,则n= .13.小明和爸爸进行射击比赛,他们每人都射击10次.小明击中靶心的概率为0.6,则他击不中靶心的次数为 次;爸爸击中靶心8次,则他击不中靶心的概率为 .14.一个圆形转盘的半径为2cm,现将转盘分成若干个扇形,并分别相间涂上红、黄两种颜色.转盘转动10000次,指针指向红色部分有2500次.转盘上黄色部分的面积大约是 .15.已知一包糖共有5种颜色(糖果只有颜色差别),如图所示是这包糖果分布的百分比的统计图在这包糖中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是 .16.如图所示是一条线段,AB的长为10厘米,MN的长为2厘米,假设可以随意在这条线段上取一个点,那么这个点取在线段MN上的概率为 .17.在世界大学生运动会射击运动员选拔活动中,甲、乙两组各四名选手的射击平均环数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名选手,则这两名选手的射击平均环数为19的概率 .三、解答题18.抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后:(1)朝上的点数有哪些结果?他们发生的可能性一样吗?(2)朝上的点数是奇数与朝上的点数是偶数,这两个事件的发生可能性大小相等吗?(3)朝上的点数大于4与朝上的点数不大于4,这两个事件的发生可能性大小相等吗?如果不相等,那么哪一个可能性大一些?19.如图是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少?20.米奇家住宅面积为90平方米,其中客厅30平方米,大卧室18平方米,小卧室15平方米,厨房14平方米,大卫生间9平方米,小卫生间4平方米.如果一只小猫在该住宅内地面上任意跑.求:(1)P (在客厅捉到小猫);(2)P (在小卧室捉到小猫);(3)P (在卫生间捉到小猫);(4)P (不在卧室捉到小猫).21.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率0.580.640.580.590.6050.601(1)请估计:当n 很大时,摸到白球的频率将会接近 ;(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是 ;(精确到0.1)(3)试估算口袋中黑、白两种颜色的球各有多少只?22.用10个球设计一个摸球游戏,且分别满足下列要求:(1)使摸到红球的概率为;(2)使摸到红球和白球的概率都是.23.将正面分别写有数字1,2,3的三张卡片(卡片的形状、大小、质地、颜色等其他方面完全相同)洗匀后,背面朝上放在桌面上.甲从中随机抽取一张卡片,记该卡片上的数字为a,然后放回洗匀,背面朝上放在桌面上;再由乙从中随机抽取一张卡片,记该卡片上的数字为b,组成数对(a,b).(1)请写出数对(a,b)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽取一次卡片,按照得到的数对计算ab2的值,若ab2的值为奇数则甲赢;ab2的值为偶数则乙赢.你认为这个游戏公平吗?请说明理由.北师大新版七年级下册《第6章概率初步》2024年单元测试卷参考答案与试题解析一、选择题1.【解答】解:“任意买一张电影票,座位号是2的倍数”,此事件是随机事件.故选:B.2.【解答】解:∵末尾数字是0至9这10个数字中的一个,∴小军能一次打开该旅行箱的概率是,故选:A.3.【解答】解:A、随意掷一枚硬币两次,有一次正面朝上,是随机事件,发生的概率大于0并且小于1,不符合题意;B、早晨太阳从东方升起,是必然事件,发生的概率为1,不符合题意;C、|a|=2,a=2,是随机事件,发生的概率大于0并且小于1,不符合题意;D、从三个红球中摸出一个黑球,是不可能事件,发生的概率为0,符合题意;故选:D.4.【解答】解:设袋中白球的个数为x,根据题意,得:=20%,解得x=8,经检验x=8是分式方程的解,所以口袋中白球可能有8个,故选:D.5.【解答】解:由图甲可知,黑色方砖6块,共有16块方砖,∴黑色方砖在整个地板中所占的比值==,∴在甲种地板上最终停留在黑色区域的概率为P1是,由图乙可知,黑色方砖3块,共有9块方砖,∴黑色方砖在整个地板中所占的比值==,∴在乙种地板上最终停留在黑色区域的概率为P2是,∵>,∴P1>P2;故选:A.6.【解答】解:根据概率的意义可得“抽到一等奖的概率为0.1”就是说抽10次可能抽到一等奖,也可能没有抽到一等奖,故选:C.7.【解答】解:能够凑成完全平方公式,则4a前可是“﹣”,也可以是“+”,但4前面的符号一定是:“+”,此题总共有(﹣,﹣)、(+,+)、(+,﹣)、(﹣,+)四种情况,能构成完全平方公式的有2种,所以概率是.故选:B.8.【解答】解:因为后3位是3,6,7三个数字共6种排列情况,而正确的只有1种,故小明第一次就拨对的概率是.故选:B.9.【解答】解:图中共有水彩笔2+3+4+3+6+2=20支,其中蓝色水彩笔6支,则抽到蓝色水彩笔的概率为=;故选:C.10.【解答】解:列树状图得:共有6种情况,和为3的情况数有3种,所以概率为,故选:A.二、填空题11.【解答】解:P(答对)=.12.【解答】解:根据题意得:=0.2,解得:n=12,经检验:n=12是原分式方程的解.故答案为:12.13.【解答】解:由题意知:小明不中靶心的次数为10×(1﹣0.6)=4次,爸爸击中靶心8次,则他击不中靶心有2次,故其概率为0.2.故本题答案为:4;0.2.14.【解答】解:转盘转动10000次,指针指向红色部分为2500次,指针指向红色的概率2500÷10000=25%,即红色面积占总面积的25%;而黄色面积占75%,其面积为0.75×4π=3π(cm2).故答案为:3πcm2.15.【解答】解:棕色所占的百分比为:1﹣20%﹣15%﹣30%﹣15%=1﹣80%=20%,所以,P(绿色或棕色)=30%+20%=50%=,故答案为:.16.【解答】解:AB间距离为10,MN的长为2,故以随意在这条线段上取一个点,那么这个点取在线段MN上的概率为=.17.【解答】解:画树状图如图:∵共有16种等可能结果,两名同学的射击平均环数为19的结果有5种结果,∴这两名同学的射击平均环数为19的概率为,故答案为:.三、解答题18.【解答】解:(1)因为抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后朝上的点数可能是1、2、3、4、5、6,所以它们的可能性相同;(2)因为朝上的点数是奇数的有1,3,5,它们发生的可能性是,朝上的点数是偶数的有2,4,6,它们发生的可能性是所以发生的可能性大小相同;(3)因为朝上的点数大于4的数有5,6,发生可能性是=,朝上的点数不大于4的数有1,2,3,4,发生可能性是=,所以朝上的点数大于4与朝上的点数不大于4可能性大小不相等,朝上的点数不大于4发生的可能性大.19.【解答】解:根据几何概率的意义可得:P(红色区域)==,P(白色区域)===,答:指针落在白色区域的概率是,指针落在红色区域的概率是.20.【解答】解:(1)P(在客厅捉到小猫)==.(2)P(在小卧室捉到小猫)==.(3)P(在卫生间捉到小猫)==.(4)P(不在卧室捉到小猫)===.21.【解答】解:(1)根据题意可得当n很大时,摸到白球的频率将会接近0.60,故答案为:0.60;(2)因为当n很大时,摸到白球的频率将会接近0.60;所以摸到白球的概率是0.6;摸到黑球的概率是0.4;故答案为:0.6,0.4;(3)因为摸到白球的概率是0.6,摸到黑球的概率是0.4,所以口袋中黑、白两种颜色的球有白球有30×0.6=18个,黑球有30×0.4=12个.22.【解答】解:(1)10个除颜色外均相同的球,其中2个红球,8个黄球;(2)10个除颜色外均相同的球,其中4个红球,4个白球,2个其他颜色球.23.【解答】解:(1)如图所示:(2)由树状图知,共有9种等可能结果,其中ab2的值为奇数的有1、9、3、27这4种结果,ab2的值为偶数的有4、2、8、18、12这5种结果,所以甲赢的概率为,乙赢的概率为,∵≠,∴这个游戏不公平.。
第六章 概率初步达标测试题(含答案)
第六章 概率初步达标测试题姓名: 得分:一、选择题(20分)1、“任意买一张电影票,座位号是2的倍数”,此事件是( ) A .不可能事件 B .不确定事件 C .必然事件 D .以上都不是2、任意掷一枚质地均匀的骰子,掷出的点数大于4的概率是 ( )A .21B .31C .32D .613、一个袋中装有2个红球,3个蓝球和5个白球,它们除颜色外完全相同,现在从中任意摸出一个球,则P (摸到红球)等于 ( )A .21B . 32C .51D .1014、如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为1P ,在乙种地板上最终停留在黑色区域的概率为2P ,则 ( ) A .21P P > B . 21P P < C . 21P P = D .以上都有可能5、100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的是5的倍数编号的球的概率是 ( )A .201B . 10019C .51 D .以上都不对二、填空题(每空3分,共63分)6、必然事件发生的概率是________,即P(必然事件)= _______;不可能事件发生的概率是_______,即P (不可能事件)=_______;若A 是不确定事件,则______)<(<A P ______.7、一副扑克牌去掉大王、小王后随意抽取一张,抽到方块的概率是______,抽到3的概率是______. 8、任意掷一枚质地均匀的骰子,朝上的点数是奇数的概率是______.9、数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是_____.10、在数学兴趣小组中有女生4名,男生2名,随机指定一人为组长恰好是女生的概率是_______. 11、布袋中装有2个红球,3个白球,5个黑球,它们除颜色外均相同,则从袋中任意摸出一个球是白球的概率是_________.12、有一组卡片,制作的颜色,大小相同,分别标有0—10这11个数字,现在将它们背面向上任意颠倒次序,然后放好后任取一组,则: (1)P (抽到两位数)= ; (2)P (抽到一位数)= ; (3)P (抽到的数大于8)= ;13、某路口南北方向红绿灯的设置时间为:红灯40s ,绿灯60s ,黄灯3s .小刚的爸爸随机地由南往北开车经过该路口时遇到红灯的概率是_________.14、如图是一个可自由转动的转盘,转动转盘,停止后,指针指向3的概率是_______.15、(2011山东烟台中考题)如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是 .16、若从一个不透明的口袋中任意摸出一球是白球的概率为61,已知袋中白球有3个,则袋中球的总数是____________。
第六章 概率初步 单元测试卷-2022-2023学年北师大版七年级数学下册
第六章概率初步单元测试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共8小题,共24分。
在每小题列出的选项中,选出符合题目的一项)1. 正方形地板由9块边长均相等的小正方形组成,米粒随机地撒在如图所示的正方形地板上,那么米粒最终停留在黑色区城的概率是( )A. 13B. 29C. 23D. 492. 用力转动如图所示的转盘甲和转盘乙的指针,如果想让指针停在阴影区域,选取哪个转盘成功的机会比较大?( )A. 转盘甲B. 转盘乙C. 两个一样大D. 无法确定3. 有六张背面相同的扑克牌,正面上的数字分别是4,5,6,7,8,9.若将这六张牌背面朝上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是9的概率为( )A. 23B. 12C. 13D. 164. 不透明的袋子里有50张2022年北京冬奥会宣传卡片,卡片上印有会徽、吉祥物冰墩墩、吉祥物雪容融图案,每张卡片只有一种图案,除图案不同外其余均相同,其中印有冰墩墩的卡片共有n张.从中随机摸出1张卡片,若印有冰墩墩图案的概率是15,则n的值是( )A. 250B. 10C. 5D. 15. 下列各选项的事件中,是随机事件的是( )A. 向上抛的硬币会落下B. 打开电视机,正在播新闻C. 太阳从西边升起D. 长度分别为4、5、6的三条线段围成三角形6. 从长度分别为1cm、3cm、5cm、6cm四条线段中随机取出三条,则能够组成三角形的概率为( )A. 14B. 13C. 12D. 347. 如图,小球从A入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从F出口落出的概率是( )A. 12B. 13C. 14D. 168. 一个质地均匀的立方体的六个面上分别标有数字1,2,3,4,5,6,右图是这个立方体的展开图,抛掷这个立方体,则朝上一面上的数字恰好等于朝下一面上的数字的12的概率是( )A. 16B. 13C. 12D. 23二、填空题(本大题共7小题,共21分)9. 如图所示,一块飞镖游戏板由除颜色外都相同的9个小正方形构成.假设飞镖击中每1个小正方形是等可能的(击中小正方形的边界或没有击中游戏板,则重投一次).任意投掷飞镖一次,击中灰色区域的概率是__ _.10. 地球上陆地与海洋面积比约为3︰7,则宇宙飞来一块陨石落在海洋的概率为.11. 有两把不同的锁和四把钥匙,其中两把钥匙分别能打开这两把锁,另外两把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是______ .12. 一个小球在如图所示的地面上自由滚动,并随机地停留在某块方砖上,则小球停留在黑色区域的概率是______.13. 正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为.14. 如图,在圆形靶中,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD,且∠BAC=30∘,则射击到靶中阴影部分的概率是.15. 如图,在4×4的正方形网格中,任选一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是.三、解答题(本大题共9小题,共75分。
北师大版数学七年级下册第六章概率初步过关训练习题课件
率是 , 所以指针停在红色上和停在蓝色上的机会一样.
22.某市民政部门今年五一期间举行了“即开式社会福利彩票”
销售活动,设置彩票2 000万张(每张彩票 2 元).在这些彩票
中,设置了如下的奖项.
奖金/万元 数量/个
50
15
8
2
…
10
20
20
180
50 次
C. 抛掷 2n 次硬币,恰好有 n 次“正面朝上” D. 抛掷 n 次,当 n 越来越大时,“正面朝上”的频率会越来越稳
定于 0.5
11.在一个不透明的盒子里装着除颜色外完全相同的黑、白两种
小球共40个.小颖做摸球实验,她将盒子里面的球搅匀后从中随
机摸出一个球记下颜色后放回,不断重复上述过程,多次实验后,
实验的麦种数/粒 500 500 500 500 500
发芽的麦种数/粒 492 487 491 493 489
发芽率/%
98.40 97.40 98.20 98.60 97.80
估计在与实验条件相同的情况下,种一粒这样的麦种发芽的概率 约为 0.98 .(结果精确到0.01)
三、解答题(一)(本大题2小题,每小题8分,共16分) 19. 转动如图S6-5所示的转盘(转盘被等分成六份),转盘停止 后,指针对着某一数字. (1)“指针对着2”和“指针对着 1”哪个可能性大? (2)“指针对着3”和“指针对着 1”哪个可能性大?
7. 在一个不透明的盒子中装有红、白两种除颜色外完全相同 的球,其中有a个白球和3个红球,若每次将球充分搅匀后,任 意摸出1个球记下颜色再放回盒子.通过大量重复实验后,发现 摸到红球的频率稳定在20%左右,则a的值约为( B ) A. 9 B. 12 C. 15 D. 18
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
兴农中学乌当校区七年级数学(下)概率初步单元测试题
班级 姓名 成绩
一、选择题
1.下列事件是必然事件的是( )
A. 随机抛掷一枚均匀的硬币,落地后正面一定朝上
B.射击运动员射击一次,命中十环
C. 打开电视体育频道,正在播放NBA 球赛
D.若a 是实数,则0a ≥ 2.盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出黑色笔芯的概率是( )
A .23
B .1
5
C .2
5
D . 3
5
3. 书架上有数学书3本,英语书2本,语文书5本,从中任意抽取一本是数学书的概率是( ) A .
101 B .53 C .103 D .5
1 4.在一张边长为4cm 的正方形纸上做扎针随机试验,纸上有一个半径为1cm 的圆形阴影区域,则针头扎在阴影区域内的概率为( ) A.
116 B. 14 C. 16π D. 4
π 5.在10000张奖券中,有200张中奖,如果购买1张奖券中奖的概率是 ( ) A.0.2 B.0.02 C.0.002 D. 0.0002
6. 一个袋子中有4个珠子,其中2个是红色,2个蓝色,除颜色外其余特征均相同,若在这个袋中任取2个珠子,都是红色的概率是( ) A.
16 B.13 C. 41 D. 12
7. 如图所示的圆盘中三个扇形大小相同,则指针落在黄区域的 概率是( ) A.
21 B.31 C.41 D.61 8.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( ) A .154 B.31 C.51 D.15
2
9.在6件产品中,有2件次品,任取两件都是次品的概率是( ) A.
51
B. 61
C. 101
D. 15
1
10.在拼图游戏中,从图中的四张纸片中,任取两张纸片,能拼成“小房子”(如图所示)的概率等于( )
A .1
B .12
C .13
D .23
二、填空题
11. 一只口袋中有4只红球和5个白球,从袋中任摸出一个球,则P (抽到红球) P (抽到白球)(填“>”或“<”)。
12.如图所示是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止),两个指针所指区域的数字和为偶数的概率是 .
13.小明与小亮在一起做游戏时需要确定作游戏的先后顺序,他们约定用“锤子、剪刀、布”的方式确定,请问在一个回合中两个人都出“布”的概率是 .
14.晓芳抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为___ ___. 15.在一副去掉大、小王的扑克牌中任取一张,则P(抽到黑桃K)等于 ,P (抽到9) 等于 .
16.单项选择题是数学试题的重要组成部分,当你遇到不会做的题目时,如果你随便选一个答案(假设每个题目有4个选项),那么你答对的概率为 。
17. 在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同. 若从中随机摸出一个球,摸到黄球的概率是5
4
,则n =_________. 三、解答题
18. 如图是芳芳设计的自由转动的转盘,上面写有10个有理数。
想想看,转得下列各数的概率是多少? (1)转得正数; (2)转得正整数;
(3)转得绝对值小于6的数;
(4)转得绝对值大于等于8的数。
20.桌面上有4张背面相同的卡片,正面分别写着数字“1”、“2”、“3”、“4”.先将卡片的背面朝上洗匀.
(1)如果让小唐从中任意抽取一张,抽到奇数的概率是; (2)如果让小唐从中任意抽取两张,游戏规则规定:抽到的两张卡片上的数字之和为奇数,则小唐胜,否则小谢胜.你认为这个游戏公平吗?说出你的理由.
21. (1)计算并完成表格:
(2)请估计,当n 很大时,频率将会接近多少?
(3)假如你去转动该转盘一次,你获得钢笔的概率约是多少?
(4)在该转盘中,标有“钢笔”区域的扇形的圆心角大约是 多少?(精确到1°)
22. 如图是小明家地板的部分示意图,它由大小相同的黑白两色正方形拼接而成,家中的小猫在地板上行走,请问:
(1)小猫踩在白色的正方形地板上,这属于事件.
(2)小猫踩在白色或黑色的正方形地板上,这属于事件.
(3)小猫踩在红色的正方形地板上,这属于事件.
(4)小猫踩在颜色的正方形地板上可能性较大.
23.小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?。