江苏省对口单招高中数学复习知识点

合集下载

对口高考数学知识点全总结

对口高考数学知识点全总结

对口高考数学知识点全总结数学作为一门理科学科,在高中阶段的学习过程中占据着重要的地位。

对于即将参加对口高考的同学们来说,掌握数学知识点的全面总结尤为重要。

本文将对对口高考数学知识点进行全面梳理和总结,帮助同学们更好地备考。

一、函数与方程函数与方程作为高中数学的基础内容,是对口高考中数学知识的重点和难点。

其中,常见的函数有线性函数、二次函数、指数函数、对数函数、三角函数等等。

同学们需要熟练掌握这些函数的性质、图像特征以及相关的解题方法。

同时,方程的解法也是备考中的关键点,包括一元一次方程、一元二次方程、二次根式方程、不等式方程等等。

二、数列与数学归纳法数列作为高中数学的进阶内容,同样是对口高考数学考点之一。

数列的求和公式、常用数列的特征和性质都需要进行细致的学习和掌握。

特别要注意的是,对数学归纳法的理解和运用,数学归纳法是解决数列及其他数学问题的有效方法之一,同学们在备考过程中应该重点练习和掌握。

三、平面向量平面向量是对口高考中比较抽象和复杂的数学知识点之一。

同学们需要了解向量的定义、性质和运算法则,同时要能够熟练地进行向量的加减乘除运算。

掌握平面向量的知识对于解决几何等相关问题有很大的帮助,因此同学们需要在备考中进行充分的练习和应用。

四、立体几何与空间解析几何几何作为数学的一个重要分支,同样也是对口高考中的重点内容。

立体几何主要包括平面与空间的位置关系、角的性质和立体图形的刻画方法,同学们需要能够准确地判断和描述出立体图形的性质和特征。

空间解析几何则相对较为复杂,需要掌握空间的坐标表示方法及相应的运算法则,能够准确地解决空间几何问题。

五、概率与统计概率与统计作为高中数学中的重要应用分支,同样也是对口高考中的考点之一。

概率主要包括事件的概率计算、概率的性质以及条件概率等内容。

同学们需要熟练掌握这些概率计算方法,并能够灵活运用于实际问题的解决。

统计则是对实际数据进行整理和分析的方法,涉及到了频数、频率、统计图表等概念。

江苏省单招高一下期中数学复习资料-知识点

江苏省单招高一下期中数学复习资料-知识点

一、向量向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.23设4①5、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、()0b b ≠ 共线.6、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)7、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.8、平面向量的数量积:⑴a 与b若a 设a 设则cos 123456789、数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式.10、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式.11、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.12、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若2a cb +=,则称b 为a 与c 的等差中项. 13、若等差数列{}n a 的首项是1a ,公差是d ,则()11naa n d =+-.14、通项公式的变形:①()n m a a n m d =+-;②()11n a a n d =--;③11n a a d n -=-;,,. 22、若{}n a 是等比数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a ⋅=⋅;若{}n a 是等比数列,且2n p q =+(n 、p 、*q ∈N ),则2np q a a a =⋅.23、等比数列{}n a 的前n 项和的公式:()()()11111111n n n na q S a q a a q q q q =⎧⎪=-⎨-=≠⎪--⎩.24、等比数列的前n 项和的性质:①若项数为()*2n n ∈N ,则S q S =偶奇.,我们(5)直线系方程:即具有某一共同性质的直线 (一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)(二)过定点的直线系 (ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ;(ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。

【2021对口单招复习讲义】模块01:集合与常用逻辑用语

【2021对口单招复习讲义】模块01:集合与常用逻辑用语

江苏省2021年对口单招复习讲义数学第一部分江苏对口单招数学考试知识点分布第二部分 分模块知识讲解模块一 集合与常用逻辑用语1.1 集合的概念与运算一、考纲要求:1.理解集合、空集、子集的概念;掌握用符号表示元素与集合的关系; 2.掌握集合的表示方法;3.理解全集和补集的概念;掌握集合的交、并、补运算. 二、知识要点:1.集合:(1)集合的概念:一些能够确定的对象的全体构成的一个整体叫集合.集合中的每一对象叫元素;元素与集合间的关系用符号“∈”、“∉”表示.(2)常用到的数集有自然数集N (在自然数集内排除0的集合记作N + 或N *)、整数集Z 、有理数集Q 、实数集R .2.集合中元素的特征:∈确定性:a ∈A 和a ∉A ;二者必居其一; ∈互异性:若a ∈A ,b ∈A ,则a ≠b ;∈无序性:{a ,b }和{b ,a }表示同一个集合.3.集合的表示方法:列举法、性质描述法、图示法. 4.集合的分类:含有有限个元素的集合叫做有限集; 含有无限个元素的集合叫做无限集; 不含任何元素的集合叫做空集,记作Φ.5.集合间的关系:用符号“∈”或“∈”、“”或“”、“=”表示.子集:一般地,如果集合A 的任一个元素都是集合B 的元素,那么集合A 叫做集合B 的子集,记作A∈B 或B∈A ,读作A 包含于B ,或B 包含A .即:A∈B ⇔x ∈A ⇒x ∈B .真子集:如果集合A 是集合B 的子集,并且B 中至少有一个元素不属于A ,那么集合A 叫做集合B 的真子集,记作A B 或B A .等集:一般地,如果两个集合的元素完全相同,那么这两个集合相等,集合A 等于集合B ,记作A =B .即:A =B ⇔A ⊆B 且B ⊆A .6.集合的运算交集:一般地,对于两个给定的集合A 、B ,由既属于A 又属于B 的所有元素所构成的集合,叫做A 、B 的交集,记作A∩B ,读作A 交B .即:A∩B ⇔{x |x ∈A 且x ∈B }.并集:一般地,对于两个给定的集合A 、B ,把它们所有的元素合并在一起构成的集合,叫做A 、B 的并集,记作A∈B ,读作A 并B .即:A∈B ⇔{x |x ∈A 或x ∈B}.补集:一般地,如果集合A 是全集U 的一个子集,由U 中的所有不属于A 的元素构成的集合,叫做A 在U 中的补集,记作A C U .即:A C U = {x |x ∈U 且x ∉A}. 三、典型例题:例1:已知集合A ={x ∈Z | —3<x <2},B ={x ∈N | —1<x <2},则A∩B =( )A .{—1,0,1}B .{0,1}C .{0,1,2}D .{—1,0,1,2}变式训练1:1.已知集合A ={x | x >2},B ={x | 0<x <2},则A∈B =( )A .{x | 2 <x <4}B .{x | 0<x <2}C .{x | x >0}D .{x | x >4}2.已知集合U ={1,2,3,4,5,6,7},A ={2,4,5,7},B ={3,4,5},则(C U A )∈(C U B )等于 ( ) A .{1,2,3} B .{4,5} C .{2,3,4,5,7} D .{1,2,3,6,7}例2:若a ,b ∈R ,集合{1,a +b ,a }={0,ba,b },则b -a 的值为________.变式训练2:已知集合A ={a ,a +d ,a +2d },B ={a ,aq ,aq 2},若a ,d ,q ∈R 且A =B ,求q 的值.例3:设A ={x | x 2+4x =0},B ={x | x 2+2(a +1)x +a 2—1=0}.(1)若B ⊆A ,求实数a 的值; (2)若A ⊇B ,求实数a 的值.变式训练3:9.已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数m 的取值范围.四、归纳小结:1.任何一个集合A 都是它本身的子集,即A ⊆A .2.空集是任一集合的子集,是任一非空集合的真子集.3.对于集合A 、B 、C ,如果A∈B ; B∈C ,则A∈C ;A =B ⇔A ⊆B 且B ⊆A . 4.注意区别一些容易混淆的符号:∈∈与⊆的区别:∈是表示元素与集合之间的关系,⊆是表示集合与集合之间的关系; ∈a 与{a }的区别:一般地,a 表示一个元素,而{a }表示只有一个元素a 的集合; ∈{0}与Φ的区别:{0}表示含有一个元素0的集合,Φ是不含任何元素的集合.5.交集的性质:A∩A =A ;A∩Φ=Φ;A∩B =B∩A ;A∩B∈A ;A∩B∈B ;如果A∈B ,则A∩B =A.6.并集的性质:A∈A =A ;A∈Φ=A ;A∈B =B∈A ;A∈A∈B ;B ∈A∈B ;如果A∈B ;则A∈B =B . 7.补集的性质:A C A =Φ;ΦA C =A ;A∈A C U =U ;A∩(A C U )=Φ;A A C C U U =)(;)(B A C U ⋂=A C U ∈B C U ;)(B A C U ⋃=A C U ∩B C U .五、仿真训练: (一)选择题:1.下列条件不能确定一个集合的是( ) A .小于100的质数的全体 B .数轴上到原点的距离大于1的点的全体C .充分接近3的所有实数的全体D .身高不高于1.7m 的人的全体2.设M 、N 是两个非空集合,则M∈N 中的元素x 应满足的条件是( )A .x ∈M 或x ∈NB .x ∈M 且x ∈NC .x ∈M 但x ∉ND .x ∉M 但x ∈N 3.下列说法正确的是( ) A .∅中没有元素B .集合{x | x 2—2x +3=0}中有两个元素C .{1,2,3,4}与{4,1,2,3}是相同的集合D .{1,3,5,...}是无限集4.若A ={m ,n },则下列结论正确的是( )A .m ⊆AB .{n}∈ AC .m ∉AD .{n}⊆ A 5.全集{a ,b ,c }含有元素a 的所有子集的个数是( )A .3个B .4个C .5个D .6个 6.设全集为U ,对任意子集合A,B ,若AB ,则下列集合为空集的是( )A .A∩(BC U ) B .(A C U )∩(B C U ) C .(A C U )∩BD .A∩B7.已知集合A ={2,3,4},B ={0,1,2,3,4},则A∈B =( ) A .{0,3,4} B .{0,1,2,3,4} C .{2,3} D .{1,2} 8.已知全集U =R ,不等式| x |<4的解集的补集是( )A .{x | x <—4或x >4}B .{x | x ≤—4或x ≥4}C .{x | —4<x <4}D .以上都不对9.用列举法表示“大于2且小于9的偶数的全集”构成的集合为( ) A .∅ B .{4,6,8}C .{3,5,7}D .{3,4,5,6,7,8}10.已知全集U ={1,2,3,4,5},集合M ={1,2},N ={1,4,5},则集合{1,3,4,5}是( )A .()N M C U IB .()NC M U I C .()N M C U YD .()N C M U Y(二)填空题:1.集合{1,2,3}的子集有 个.2.已知A ={x |1≤x <4},B ={x | x <a },若A B ,则实数a 的取值集合为 . 3.已知非空集合M 满足:M ⊆{1,2,3,4,5},且若x ∈M ,则6—x ∈M ,则满足条件的集合M 的个数是 .4.已知集合A ={(x ,y ) | 2x +y =1},B ={(x ,y ) | x +2y =5},则A∩B = .5.已知集合A ={–1,3,2m –1},集合B ={3,m 2}.若B ⊆A ,则实数m =______. 6.已知全集U =R ,集合A ={x | x 2<5},集合B ={x | x 2—5x—6≥0}.则:B A I = ;B A Y = ;B AC U Y = .7.设集合A ={x |x +8>0},B ={x |x —3<0},C ={x |x 2+5x —24<0},(x ∈R ),则集合A 、B 、C 的关系是 .8.设M ={x |x 2—2x +p =0},N ={x |x 2+qx +r =0},且M∩N ={—3},M∈N ={2,—3,5},则实数p = ,q = ,r = . (三)解答题:1.设全集U =R ,集合A ={x | 0≤x <5},集合B ={x | x ≥1}.求:B A I ;B A Y ;B C A C U U Y .2.已知集合A ={a ,b ,2},B ={2a ,b 2,2},且满足A =B ,求a ,b 的值.3.已知集合}1|{≤=x x A ,}|{a x x B ≥=,且R B A =Y ,求实数a 的取值范围.4.已知集合A ={1,2,3,x },B ={x 2,3},且A∈B =A ,试求x 的值.5.若A={x|x2-ax+a2—19=0},B={x|x2—5x+6=0},C={x|x2+2x—8=0}.(1)若A∩B=A∈B,求a的值;(2)若∅A∩B且A∩C=∅,求a的值;(3)若A∩B=A∩C≠∅,求a的值.6.已知集合A={x| ax2+2x+1=0,a∈R,x∈R}.(1) 若A中只有一个元素,求a的值,并求出这个元素;(2) 若A中至多有一个元素,求a的取值范围.1.2 充要条件一、考纲要求:理解推出、充分条件、必要条件和充要条件.二、知识要点:在数学学习和日常语言中,我们经常会遇到“如果p那么q”形式的命题,其中有的命题为证明题,有的命题为假命题,例如下列两个命题:(1)设x,y∈R,如果x=—y,那么x2=y2.(2)设a,b∈R,如果ab=0,那么a=0.显然命题(1)为真命题,命题(2)为假命题.1.一般地,“如果p那么q”为真命题,是指由p通过推理得出q,记作“p⇒q”,并且说p是q的充分条件,q是p的必要条件;命题(1)是真命题,那么x=—y⇒x2=y2,所有说“x=—y”,是“x2=y2”的充分条件,“x2=y2”,是“x=—y”的必要条件.2.一般地,如果既有p⇒q,又有q⇒p,就记作“q⇔p”,此时我们就说,p是q的充要条件,那么q 也是p 的充要条件.注意:∈如果p ,则q (真命题);p ⇒q ;p 是q 的充分条件;q 是p 的必要条件.这四句话表述的是同一逻辑关系.∈p ⇔q ;p 是q 的充要条件;q 当且仅当p ;p 与q 等价.这四句话表述的是同一逻辑关系. 三、典型例题:例1:已知a ,b 都是实数,则“a 2>b 2”,是“a >b ”的( )A .充分不必要条件B ..必要不充分条件C .充要条件D .既不充分也不必要的条件 变式训练设x ,y 是实数,则“x 2=y 2”的充要条件是( )A .x =yB .x =—yC .x 3=y 3D .| x |=| y |四、归纳小结:1.命题联结词中,“非p ”形式复合命题的真假与p 的真假相反;“p 且q ”形式复合命题当p 与q 同时为真时为真,其它情况时为假;“p 或q ”形式复合命题当p 与q 同时为假时为假,其它情况时为真.2.符号“⇒”叫作推断符号,符号“⇔”叫作等价符号. 五、仿真训练:1.在下列命题中,是真命题的是( )A .x >y 和|x |>|y |互为充要条件B .x >y 和x 2>y 2互为充要条件C .a 2>b 2 (b ≠0)和2211b a >互为充要条件 D .b a 4131-<-和4a >3b 互为充要条件 2.“a <b <0”是“ba 11>”成立的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.既不充分又不必要条件3.“A∩B=A”是“A=B”的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.既不充分又不必要条件4.甲是乙的充分条件,乙是丙的充要条件,丙是丁的必要条件,则丁是甲的( ) A.充分条件B..必要条件C.充要条件D.既不充分也不必要的条件。

单招数学必考知识点公式

单招数学必考知识点公式

单招数学必考知识点公式一、集合。

1. 集合的基本概念。

- 集合元素的特性:确定性、互异性、无序性。

- 常用数集:自然数集N(N = {0,1,2,·s}),正整数集N^*或N_+={1,2,·s},整数集Z,有理数集Q,实数集R。

2. 集合的表示方法。

- 列举法:如A={1,2,3}。

- 描述法:如B = {xx^2 - 1=0}。

3. 集合间的关系。

- 子集:若对任意x∈ A,都有x∈ B,则A⊆ B。

- 真子集:若A⊆ B且A≠ B,则A⊂neqq B。

- 相等:若A⊆ B且B⊆ A,则A = B。

4. 集合的运算。

- 交集:A∩ B={xx∈ A且x∈ B}。

- 并集:A∪ B = {xx∈ A或x∈ B}。

- 补集:设U为全集,A⊆ U,∁_UA={xx∈ U且x∉ A}。

- 重要公式:∁_U(A∩ B)=(∁_UA)∪(∁_UB);∁_U(A∪ B)=(∁_UA)∩(∁_UB)二、函数。

1. 函数的概念。

- 设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A 到集合B的一个函数,记作y = f(x),x∈ A。

2. 函数的定义域。

- 分式函数:分母不为0,如y=(1)/(x),定义域为{xx≠0}。

- 偶次根式函数:被开方数非负,如y = √(x),定义域为{xx≥slant0}。

- 对数函数:y=log_a x,(a>0,a≠1),定义域为(0,+∞)。

3. 函数的单调性。

- 设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x_1,x_2,当x_1时:- 若f(x_1),那么就说函数y = f(x)在区间D上是增函数。

- 若f(x_1)>f(x_2),那么就说函数y = f(x)在区间D上是减函数。

4. 函数的奇偶性。

- 对于函数y = f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数y = f(x)是偶函数。

对口高考数学必考知识点梳理

对口高考数学必考知识点梳理

1对口高考数学必考知识点梳理第一部分预备部分1.⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫数)无理数(无限不循环小负分数正分数分数负整数自然数正整数整数有理数实数022.完全平方公式:2222)(b ab a b a ++=+,2222)(bab a b a +-=-3.平方差公式:22))((ba b a b a -=-+4.一元二次方程:①对于)0(02≠=++a c bx ax ,当042>-=∆ac b 时,方程有两个不相等的实数根;当042=-=∆ac b 时,方程有两个相等的实数根(即只有一个根);当042<-=∆ac b 时,方程没有实数根.3②求根公式:aac b b x 242-±-=.③韦达定理(根与系数的关系):a b x x -=+21;ac x x =⋅21.5.数轴:有三个要素,即正方向、单位长度、原点.数轴上任意两点中,右边的点对应的实数比左边的点对应的实数大.4第二部分集合1.集合元素的性质:确定性、互异性、无序性.2.元素与集合的关系:A a ∈或A a ∉.3.集合的分类:有限集、无限集、空集∅.54.常用的数集及记法5.集合的表示方法:列举法、性质描述法、图示法(维恩图)集合名称表示自然数集(非负整数集)N 正整数集*N 或+N 整数集Z 有理数集Q 实数集R66.集合之间的关系(1)子集B A ⊆或AB ⊇(2)真子集B A ≠⊂或AB ≠⊃(3)集合相等BA =7.假设集合A 中含有n 个元素,则有:(1)A 的子集的个数为n2;(2)A 的真子集的个数为12-n ;(3)A 的非空子集的个数为12-n ;(4)A 的非空真子集的个数为22-n .78.集合的运算:交集 、并集 、补集交集取公共、并集取全部、补集取剩余9.运算性质(1)并集:①交换律)(A B B A =;②)()(C B A C B A =(结合律);③A A A = ;④A A A =∅=∅ ;8⑤如果B B A B A =⊆ 则,,反之,也成立.(2)交集:①A B B A =(交换律);②)()C B A C B A =((结合律);③A A A = ;④∅=∅ A ;⑤如果B A ⊆,则A B A = ,反之,也成立.(3)补集:①U A ⊆,U A C U ⊆;9②U A C A U = ,∅=A C A U ;③()A A C C U U =,∅=U C U ,U C U =∅;④)()()(B C A C B A C U U U =,)()()(B C A C B A C U U U =10.①若的是,则q p q p ⇒充分条件;②若的是,则q p p q ⇒必要条件;10③若的是,则q p q p ⇔充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件.第三部分不等式1.不等式的性质(1)对称性:如果,b a >则a b <.(2)传递性:如果b a >,c b >,则c a >.(3)加法法则:如果b a >,则c b c a +>+.推论1:如果c b a >+,则b c a ->.11推论2:如果b a >,且d c >,则d b c a +>+.(4)乘法法则:如果b a >,0>c ,则bc ac >;如果b a >,0<c ,则bc ac <.推论3:如果0>>b a ,且0>>d c ,则bd ac >.122.一元二次不等式解法133.含有绝对值的不等式解法144.分式不等式的解法(1)0))((0>++⇔>++d cx b ax dcx b ax ;(2)⎩⎨⎧≠+≥++⇔≥++00))((0d cx d cx b ax d cx b ax ;(3)0))((0<++⇔<++d cx b ax dcx b ax ;15(4)⎩⎨⎧≠+≤++⇔≤++00))((0d cx d cx b ax d cx b ax .第四部分函数1.①增函数:在给定的区间上自变量增大(减小)时,函数值也随着增大(减小).②减函数:在给定的区间上自变量增大(减小)时,函数值也随着减小(增大).2.奇函数判定步骤:S1判断当A x ∈时,是否有A x ∈-;16S2当S1成立时,对于任意一个A x ∈:若()()x f x f -=-,则函数()x f y =是奇函数.3.偶函数判定步骤:S1判断当A x ∈时,是否有A x ∈-;S2当S1成立时,对于任意一个A x ∈:若()()x f x f =-,则函数()x f y =是偶函数.174.正比例函数:()0≠=k kxy18195.一次函数()0≠+=k b kxy206.反比例函数()0≠=k xky217.二次函数的一般式:()02≠++=a c bx ax y 顶点式:()()02≠+-=a k h x a y 两点式:()()21x x x x a y --=()0≠a228.二次函数的图像和性质2324第五部分指数函数和对数函数1.实数指数幂的运算法则:nm n m a a a +=⋅mnn m a a =)(nn n b a ab =)()0,(≠>=-a n m a a a n m n m 其中+∈N n m ,.2.零指数幂和负整指数幂)0(10≠=a a25),0(+-∈≠=N n a a a n n 3.分数指数幂:n n a a =1;m n n m n ma a a )(==,其中1,,>∈*n N n m .4.根式的性质:①a a n n =)(;26②当n 为奇数时,a a n n=)(;当n 为偶数时,⎩⎨⎧<-≥==0,0,a a a a a a n n .4.幂函数:()R x y ∈=αα27幂函数的图像和性质:2829总结幂函数αx y =共同性质:①随着指数α取不同值,函数αx y =的定义域、单调性和奇偶性会发生变化;②幂函数的图象都经过点()1,1;③当0>α时,函数在()+∞,0上是增函数;当0<α时,函数在()+∞,0上是减函数.6.指数函数:()10≠>=a a a y x 且30指数函数的图像及性质:317.指数式、对数式的互化:⇔=N a b bN a =log 8.对数的性质:①log 10a =,即1的对数等于0;)1(0=a ②log 1a a =,即底的对数等于1;()1(1=a )③0>N ,即零和负数没有对数;④对数恒等式:N a N a =log ),log (log N aN b N a N a b a ==⇒=.329.特殊对数:①以10为底的对数叫做常用对数,N 10log 简记为N lg .②以无理数e (为底的对数叫做自然对数,N e log 简记为N ln .10.积、商、幂的对数:N M MN a a a log log )(log +=;N M NM a a a log log log -=;33M b M a b a log log =.11.换底公式:)1,0;1,0(log log log ≠>≠>=a a b b bN N a a b 拓展:①a b b a log 1log =;②b b a n a n log log =;34③b nm b a m a n log log .12.对数函数的图像性质3536第六部分三角函数1.终边相同的角的集合:},360|{Z k k S ∈⋅+==o αββ.2.象限角概念:第一象限角的集合{}Z k k k ∈⋅+<<⋅,36090360o o o αα第二象限角的集合{}Z k k k ∈⋅+<<⋅+,36018036090o o o o αα第三象限角的集合{}Z k k k ∈⋅+<<⋅+,360270360180oo o o αα第四象限角的集合{}Z k k k ∈⋅+<<⋅+,360360360270oo o o αα3.弧度与角度的换算公式37rad rad 01745.0)(1801≈=πo 81573.57)180(1'≈≈=o o o πrad .4.扇形的弧长和面积r l ⋅=α;rl r r S 2121222==⋅=αππα5.任意角的三角函数r y =αsin ;r x =αcos ;xy =αtan .6.同角三角函数的基本关系381cos sin 22=+a α;αααcos sin tan =7.诱导公式ααπααπααπtan )2tan(cos )2cos(sin )2sin(=+=+=+k k k ααααααtan )360tan(cos )360cos(sin )360sin(=+⋅=+⋅=+⋅o o o k k k39ααααααtan )tan(cos )cos(sin )sin(-=-=--=-ααπααπααπtan )tan(cos )cos(sin )sin(=+-=+-=+ααπααπααπtan )tan(cos )cos(sin )sin(-=--=-=-8.和差角公式βαβαβαsin sin cos cos )cos(-=+40βαβαβαsin sin cos cos )cos(+=-βαβαβαsin cos cos sin )sin(+=+βαβαβαsin cos cos sin )sin(-=-βαβαβαtan tan 1tan tan )tan(-+=+41βαβαβαtan tan 1tan tan )tan(+-=-9.二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=42ααα2tan 1tan 22tan -=10.余弦定理A bc c b a cos 2222-+=B ac c a b cos 2222-+=Cab b a c cos 2222-+=余弦定理还可以变形成:43bc a c b A 2cos 222-+=ac b c a B 2cos 222-+=abc a b C 2cos 222-+=11.正弦定理44CcB b A a sin sin sin ==A bc B ac C ab S ABC sin 21sin 21sin 21===∆12.正弦型函数)sin(ϕω+=x A y 的性质与图象(1))0(sin >=A x A y 的值域是[]A A ,-,Ay A y -==min max ,45(2)))(1,0(sin R x x y ∈≠>=ωωω的周期ωπ2=T ,即ω的值决定函数的周期.第七部分数列1.数列:按照一定顺序排列的一列数.数列中每一个数叫该数列的项.2.数列表示:一般可以写成 ,,,,,321n a a a a ,其中n a 是数列的第n46项,简记作{}n a .3.数列的分类(1)根据数列项数的多少分:有穷数列(项数有限的数列)和无穷数列(项数无限的数列).(2)根据数列项的大小分:①递增数列:从第2项起,每一项都大于它的前一项的数列;②递减数列:从第2项起,每一项都小于它的前一项的数列;③常数数列:各项相等的数列;④摆动数列:从第2项起,有些项大于它的前一项,有些项小于47它的前一项的数列.4.等差数列与等比数列名称等差数列等比数列定义从第2项起,每一项与它的前一项的差都等于同一个常数的数列叫做等差数列,这个常数叫做公差,记为d .从第2项起,每一项与它的前一项的比都等于同一个常数的数列叫做等比数列,这个常数叫做公比,记为q .48通项公式()dn a a n 11-+=11-=n n q a a 中项等差中项2ba A +=等比中项ab G =2即()0>±=ab ab G 性质(1)若q p n m +=+,则qp n m a a a a +=+(2)mn a a d mn --=(1)若q p n m +=+,则qp n m a a a a ⋅=⋅(2)mn m n a a q =-49前n 项和2)(1n n a a n S +=()d n n na S n 211-+=()⎪⎩⎪⎨⎧=≠--=1,1,1111q na q qq a S n n n a 与n S 的关系⎩⎨⎧≥-==-2,1,11n S S n S a n n n ⎩⎨⎧≥-==-2,1,11n S S n S a n n n50第八部分平面向量1.概念数量:只有大小的量(也称为标量),比如距离、面积、质量等;向量:既有大小又有方向的量(也称为矢量),比如位移、速度、加速度等.注意:向量的两要素:大小和方向.2.向量的模已知向量AB ,则线段AB 的长度叫做AB 的长度(或模),记作.(1)相等向量:如果两个向量的大小相等,方向相同,则说这两个向。

对口高考数学知识点梳理

对口高考数学知识点梳理

对口高考数学知识点梳理一、预备知识1、有理数:整数、分数、有限小数、无限循环小数.2、平方差公式:2222)(b ab a b a ++=+,2222)(b ab a b a +-=-3、平方差公式:22))((b a b a b a -=-+4、一元二次方程:1、对于)0(02≠=++a c bx ax ,当042>-=∆ac b 时,方程有两个不相等的实数根;当042=-=∆ac b 时,方程有两个相等的实数根即只有一个根;当042<-=∆ac b 时,方程没有实数根.2、求根公式:aacb b x 242-±-=3、韦达定理根与系数的关系:a b x x -=+21;acx x =⋅21.5、一元二次函数:1、一般式)0(2≠++=a c bx ax y ,当0>a 时,函数开口向上,反之向下;对称轴:abx 2-=,顶点坐标)442(2ab ac a b --,2、顶点式)0()(2≠+-=a k h x a y ,对称轴为h x =,顶点坐标)(k h , 二、集合1、三要素:确定性,互异性,无序性.2、表示法:描述法,列举法,韦恩图法.3、自然数集N ;整数集Z ;实数集R ;正整数集N +;有理数集:Q.4、若集合中有n 个元素,则子集的个数为n 2个,真子集的个数为12-n 个,非空真子集的个数为22-n 个.空集是任一集合的子集,是任一非空集合的真子集5、交集:两个集合的公共部分并集:将两个中的元素合并后得到的集合 全集:所有研究对象构成的全体补集:在全集中不属于集合A 的元素构成的集合 6、充要条件1、若的是,则q p q p ⇒充分条件;2、若的是,则q p p q ⇒必要条件;3、若的是,则q p q p ⇔充要条件. 三、求函数定义域1、分母不为零2、二次根号中的式子大于等于零3、零次幂的底数不为零4、对数函数的真数大于零 四、函数的单调性1、单调性即增减性2、定义法证明函数的增减性 五、函数的奇偶性1、判断定义域,若定义域不关于原点对称,则函数是非奇非偶函数;若定义域关于原点对称,则求)(x f -.2、若)()(x f x f -≠,则函数是非奇非偶函数;若)()(x f x f -=,则函数为偶函数;若)()(x f x f -=-,则函数为奇函数.六、指数函数1、定义:形如)10(≠>=a a a y x ,的函数换底公式:)10(log log log ≠>=c c abb c c a ,推论:1log log =⋅a b b a 八、对数函数1、定义:一般地,形如)10(log ≠>=a a x y a ,的函数称为对数函数. 21、弧长公式:r l ⋅=α弧度制 180πnr l =角度制 2、扇形面积公式:360212πnr lr S ==3、直角坐标系中任意角α的终边上有一点)(y x P ,,则任意角α的三角函数定义:)(tan cos sin 22y x r xy r x r y +====其中,,ααα 4、同角三角函数的基本关系:1cos sin 22=+αα αααcos sin tan = 5、诱导公式记忆公式时一律将角α当成锐角: 1、终边相同的角的三角函数值相同2、判断所求角所在象限对应的三角函数值符号函数名不变,符号看象限3、奇变偶不变,符号看象限奇偶指2π的奇数倍或偶数倍6、和差公式7、二倍角公式8、正弦型函数:形如)sin(ϕω+=x A y ,其中00>>ϕ,A . 称为相位称为初相,称为振幅,ϕωϕ+x A ,周期ωπ2=T9、辅助角公式:10、正弦定理:k R C cB b A a ====2sin sin sin ,其中为常数的外接圆的半径,为△k ABC R 余弦定理:Abc c b a cos 2222-+=B ac c a b cos 2222-+=C ab b a c cos 2222-+=注:正弦定理和余弦定理适用于所有三角形. 11、三角形面积公式:B ac A bc C ab S sin 21sin 21sin 21=== 十、数列*∈N n 1、一般数列中:1、已知数列的前n 项和,则⎩⎨⎧-=-11n nn S S S a )2()1(≥=n n2、数列求和的方法:拆项法裂项相消法、累加法、错位相减法等.2、等差数列中:1、通项公式: d n a a n )1(1-+=2、前n 项和公式:2)(2)1(11na a d n n na S n n +=-+= 3、等差中项:若c a b c b a +=2成等差数列,则,, 4、等差数列中,间隔相同的项构成的数列仍为等差数列: ,,,,m k m k m k k a a a a 32+++ 5、 ,,,n n n n n S S S S S 232--也成等差数列. 6、等差数列中,若q p n m a a a a q p n m +=++=+,则 3、等比数列中:1、通项公式: )0(11≠=-q q a a n n2、前n 项和公式:qq a a q q a S n n n --=--=1)(1)1(113、等比中项:若ac b c b a =2成等比数列,则,,4、等比数列中,间隔相同的项构成的数列仍为等比数列: ,,,,m k m k m k k a a a a 32+++5、当为奇数时且或k q q 11-=-≠, ,,,n n n n n S S S S S 232--是成等比数列,当为偶数且k q 1-=时, ,,,n n n n n S S S S S 232--不是等比数列 6、等差数列中,若q p n m a a a a q p n m =+=+,则 十一、平面向量1、 共线向量平行向量:方向相同或相反的向量2、 相等向量:方向相同且模长相等的向量3、 相反向量:方向相反且模长相等的向量4、 向量平行的充要条件:0//1221=-⇔=⇔→→→→y x y x b a b a λ 5、 向量垂直的充要条件:002121=+⇔=⋅⇔⊥→→→→y y x x b a b a6、 向量内积:2121cos y y x x b a b a b a +>=<=⋅→→→→→→,7、 向量的模长:22||y x a +=→十二、平面解析几何 1、 中点坐标公式:)22(2121y y x x ++, 2、 斜率:1212tan x x y y k --==αα为直线的倾斜角3、 点到直线的距离公式:2200B A CBy Ax d +++=4、 两平行线间的距离公式:2221BA C C d +-=5、 过圆222)()(r b y a x =-+-上一点)(00y x M ,的切线方程为:200))(())((r b y b y a x a x =--+--过圆222r y x =+上一点)(00y x M ,的切线方程为:200r y y x x =+6、 椭圆上一点到两焦点的距离之和等于a 2,关系:222c b a +=,离心率:)10(<<=e ace 7、 双曲线上一点到两焦点的距离之差等于a 2,关系:222b a c += ,离心率:)1(>=e ace8、双曲线渐近线方程:焦点在x 轴时,渐近线方程为x a by ±=焦点在y 轴时,渐近线方程为x b ay ±=8、 抛物线上一点到焦点的距离等于到准线的距离,离心率:1=e 9、 弦长公式:2122124)(1x x x x k d -++=十三、立体几何1、 异面直线:不同在任何一个平面内的直线.2、 可以确定平面的条件:a 、 不在同一条直线上的三点b 、 直线与直线外一点c 、 两条相交直线d 、 两条平行直线3、 平行于同一条直线的两条直线相互平行4、 平面外一条直线与平面内一条直线平行,则这条直线与这个平面平行5、 若一个平面内的两条相交直线都与另一个平面平行,则两平面平行6、 若一个平面与两个平行平面相交,则交线平行7、 二面角:从一条直线出发的两个半平面所组成的图形比如书翻开一定的角度形成的立体图形8、 若一条直线与一个平面内的两条相交直线垂直,则直线与这个平面垂直. 9、 垂直于同一平面的两条直线互相平行10、一个平面经过另一个平面的一条垂线则两平面垂直 11、棱柱体积:Sh V =12、棱锥体积:Sh V 31=13、球表面积:24R S π= 球体积: 334R V π= 十四、排列组合1、公式:)!(!!m n m n C m n-= )!(!m n n P m n -=2、二项式定理:nn n m m n m n n n n nn b C b a C b a C a C b a +++++=+-- 110)( a 、其中等式右边的式子称为二项式的展开式,共有1+n 项. b 、二项式系数为m n Cc 、二项式的第1+m 通项公式为mm n m nm b a C T -+=1 d 、二项式展开式中的常数项是指未知数的指数等于零的项.十五、概率1、 设在n 次重复试验中,事件A 发生了m 次n m ≤≤0,m 叫做事件A 发生的频数,事件A的频数在试验总数中所占的比例nm叫做事件A 发生的频率. 2、 当试验次数n 无限大时,频率nm总稳定在某一个常数附近,则这个常数即为概率. 3、 必然事件发生的概率为1,不可能事件发生的概率为0,事件发生的概率范围为0,1. 4、 古典概型适用于有多种可能结果:设试验共包含n 个基本事件,并且每个基本事件发生的可能性都相同,事件A 中所包含的基本事件总数为m 个,则事件A 发生的概率为nm A P =)(6、 均值数学期望:n n p x p x p x p x E ++++= 332211)(ξ7、 方差:22)]([)()(ξξξE E D -=,其中n n p x p x p x p x E 23232221212)(++++= ξ 8、 独立重复试验适用于只有两种可能结果:在n 次独立重复实验中,每次只有两种可能的结果,且它们互相对立,在每次实验中每种结果出现的概率都相同,设事件A 发生的概率为p A P =)(,则在n 次独立重复实验中,事件A 恰好发生k 次的概率为9、 二项分布:独立重复试验的概率分布可看做二项分布,记为),(p n B ~ξ,二项分布的均值和方差分别为:np E =)(ξ,)1()(p np D -=ξ 十六、数据处理:1、 样本方差:[]222212)()()(11x x x x x x n s n -++-+--=用于样本数据处理 2、 总体方差:[]222212)()()(1x x x x x x ns n -++-+-= 用于总体数据处理。

高职单招考试必备数学知识点

高职单招考试必备数学知识点

高职单招考试必备数学知识点第一章、集合与函数概念§ 1.1.1、集合1 、 把研究的对象统称为 元素,把一些元素组成的总体叫做 集合。

集合三要素: 确定性、互 异性、无序性 。

2、 只要构成两个集合的元素是一样的,就称这两个 集合相等 。

3、 常见集合: 正整数集合: N * 或 N +, 整数集合: Z , 有理数集合: Q , 实数集合: R .4、集合的表示方法: 列举法、描述法 .§ 1.1.2、集合间的基本关系1 、 一般地,对于两个集合 A 、B ,如果集合 A 中任意一个元素都是集合 B 中的元素,则称 集合 A 是集合 B 的子集 。

记作 A 坚 B .2、 如果集合 A 坚 B , 但存在元素 x = B , 且 x 茫 A , 则称集合 A 是集合 B 的真子集.记作: A B.3 、 把不含任何元素的集合叫做 空集.记作: 气 .并规定:空集合是任何集合的子集 .4、 如果集合 A 中含有 n 个元素,则集合 A 有 2n 个子集.§ 1.1.3、集合间的基本运算1、 一般地, 由所有属于集合 A 或集合 B 的元素组成的集合, 称为集合 A 与 B 的并集.记作:A UB .2、 一般地, 由属于集合 A 且属于集合 B 的所有元素组成的集合, 称为 A 与 B 的交集.记作:A nB .3、 全集、补集? C U A = {x | x =U , 且x 茫U }§ 1.2.1、函数的概念1、 设 A 、B 是非空的数集,如果按照某种确定的对应关系 f ,使对于集合 A 中的任意一个 数 x ,在集合 B 中都有惟一确定的数 f(x) 和它对应,那么就称 f : A ) B 为集合 A 到 集合 B 的一个 函数,记作: y = f(x), x = A .2、 一个函数的构成要素为: 定义域、对应关系、值域 .如果两个函数的定义域相同,并且对应关系完全一致,则称 这两个函数相等 .§ 1.2.2、函数的表示法1、 函数的三种表示方法: 解析法、图象法、列表法 .§ 1.3.1、单调性与最大(小)值1、 注意函数单调性证明的一般格式:解:设 x 1 , x 2 =[a, b ]且x 1 < x 2 ,则: f(x 1 ) - f(x 2 ) =…§ 1.3.2、奇偶性1 、 一般地,如果对于函数 f(x) 的定义域内任意一个x , 都有 f(- x) = f(x) ,那么就称函 数 f(x) 为偶函数.偶函数图象关于 y 轴对称.2 、 一般地,如果对于函数 f(x) 的定义域内任意一个x , 都有 f(- x) = -f(x) ,那么就称函数f(x) 为奇函数.奇函数图象关于原点对称.第二章、基本初等函数(Ⅰ)§2.1.1、指数与指数幂的运算1 、一般地,如果x n = a ,那么x 叫做a 的n 次方根。

2014-2019年江苏省对口单招考试数学考点

2014-2019年江苏省对口单招考试数学考点

2014-2019年江苏省对口单招考试数学考点2020预测专题一集合与不等式1-1集合高考考查重点:集合运算(交并补,以简单不等式的解集为主)和关系1-2不等式高考考查重点:1.解不等式(绝对值不等式、解一元二次不等式、指数不等式、对数不等式)专题二函数高考考查重点1.求解析式函数概念与图像性质;求解析式定义域、值域、判断函数奇偶性、单调性及周期性,图像交换(平移)2.指数函数、对数函数、分段函数求解3.函数应用专题三线性规划高考考查重点1.图解线性规划2.线性规划实际应用(最润最大、费用最小、成本最小等问题)专题四三角函数高考考查重点:1.三角函数化简、求值、同角三角函数关系、正余弦定理、倍角公式、两角和差公式。

2.三角函数图像、性质函数周期、图像分析3.解三角形、面积公式、求面积最大值专题五数列高考考查重点:求和公式、通项公式、n S 与n a 关系、等差等比数列定义、基本性质、裂项相消、错位相减求和。

专题六 概率统计高考考查重点:1古典概型、几何概型 二类概率模型。

1.分类、分布计数原理。

专题七 平面解析几何高考考查重点:1.直线:直线方程、斜率、性质、直线之间的位置关系。

2.圆:圆的标准方程、直线与圆的方程、直线与圆的关系、圆几何参数。

3.椭圆的标准方程、性质圆锥曲线、椭圆的准线方程、参数方程及性质、直线与圆锥曲线关系(韦达法)、圆与椭圆关系。

专题八复数高考考查重点:1.复数概念:实部、虚部、共轭等概念及相关韦达定理。

2.复数运算:四则运算、模、相等。

3.实系数一元二次方程专题九立体几何高考考查重点1.几何体体积、面积计算。

2.线线、线面、面面关系的判断3.二面角求值线面角的求解专题十平面向量专题十一(第三册)1.逻辑代数高考考查重点:1.二进制和十进制的互换、逻辑运算、逻辑代数命题真假判断2.算法与逻辑框图高考考查重点:循环结构的填写与判断3.数据表格信息处理高考考查重点:1.数据表格2.数组运算3.识图4编制计划的原理与方法高考考查重点:1.网络图2.横道图3.路径与总工期。

江苏对口单招数学考试知识点分布汇总

江苏对口单招数学考试知识点分布汇总
江苏对口单招数学考试知识点分布
题型
选择填空 (60分)
解答题 (90分)
内容 01,集合化简与运算,简易逻辑 02,平面向量数量积与坐标运算 03,复数化简运算 04,三角函数图像以及化简运算求值求角 05,排列组合应用 06,分段函数、指对函数为载体,结合奇偶函数性质进行运算 07,基本不等式求最值 08,奇函数偶函数图像性质结合周期性进行化简 与圆、圆锥曲线的交点 11,空间结构体识别与计算 12,异面直线所成角计算 13,统计应用,几何概型 14,程序框图计算 15,进制转换(二进制十进制转换) 16,逻辑化简 17,网络工程图计算 18,指数对数不等式与方程,复合函数求定义域 19,以抽象函数为载体,奇偶函数性质应用 20,三角函数求最值,解三角形 21,排列组合求概率,频率直方图计算概率 22,应用二次函数求解最值,指数对数函数求解方程 23,应用线性规划求解实际应用问题最优解 24,数列求通项,求前n项和 25,圆锥曲线的综合性问题
分布
备注
高考常规考点,难度 相对比较简单
区别于正常高考,为 新增加内容,每年必 考,总分12分 简单计算,拿满分 简单计算,拿满分 简单计算,拿满分 简单计算,拿满分 考虑周全,注意细节 考虑周全,注意细节 综合性强,有难度 综合性强,有难度

江苏省对口单招高中数学复习知识点

江苏省对口单招高中数学复习知识点

高三数学总复习知识点主编:杨林森目录一、高一上1、数与式的计算 (3)2、集合 (6)3、函数及其性质 (8)4、几个基本初等函数 (10)5、三角函数 (13)二、高一下1、解析几何(Ⅰ) (14)2、三角函数(Ⅱ) (18)3、圆 (21)4、平面向量 (23)5、数列 (26)6、不等式 (29)三、高二上1、命题与逻辑推理 (31)2、解析几何(Ⅱ) (33)3、立体几何 (41)4、复数 (46)四、高二下1、计数法 (49)2、概率(Ⅱ) (54)3、统计(Ⅱ) (56)五、附录附录(Ⅰ) (59)附录(Ⅱ) (61)附录(Ⅲ)……………………………………………………………………… 62 六、附录答案(另附)高三数学总复习知识点..........高一数学(一)高一上学期:1.数与式的计算(实数的概念)(1)常用的数集符号:自然数集:N整数:Z 有理数集:Q 实数集:R (2)绝对值:⎪⎩⎪⎨⎧<-=>=时;当时;当时;当0,0,00,a a a a a ab a b a b a +≤±≤-.数轴上两点A,B 的坐标分别为B A x x ,,则A,B 之间的距离A B x x AB -=例:化简23---x x ()31<<x(实数的运算)(1)实数运算的顺序:先乘方、开方,然后乘除,再加减,有括号先进行括号内的运算.(2)指数幂的推广:正整数指数幂:nna a a a =⋅⋅⋅⋅⋅⋅••(a 为正整数) 分数指数幂: nn a a 1=- (0≠a ,n 为正整数) 10=a (0≠a ) 负整数指数幂、零指数幂: n m nm a a =,n manm 1=- (0≠a ) (3)实数指数幂的运算法则: βαβα+=•a a a)0(≠=÷-a a a a βαβα()αααb a b a •=• ④)0(≠=⎪⎭⎫⎝⎛b b a b a ααα例:1.()0110)12()21()1()2(5--+-⨯-+---2.030260cos 121)14.3(1+⎪⎭⎫⎝⎛⨯----π(式的计算) 乘法公式:平方差公式:22))((b a b a b a -=-+ 完全平方公式:2222)(b ab a b a +±=± 立方和、差公式:))((2233b ab a b a b a +±=± 例:计算222)3(a a ÷-.(分式运算与根式化简) 一、分式. 1.定义:式子BA叫做分式,其中B A ,表示两个整式,且B 中含有字母,0≠B .2.分式的基本性质:(1))0(,≠÷÷=⨯⨯=m mB mA B A m B m A B A 其中. (2)分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变. 3.分式的运算:(1)加减:;cba cbc a ±=± bdbcad d c b a ±=±. (2)乘除:bdacd c b a =•; bcad d c b a =÷. (3)乘方:n n nb a b a =⎪⎭⎫⎝⎛.二、二次根式. 1.二次根式的性质:(1)()a a =2)0(≥a ;(2)b a ab •= )0,0(≥≥b a (3)bab a = )0,0(>≥b a(4)⎩⎨⎧<-≥==)0()0(2a a a a a a2.二次根式的运算.(1)加减运算的实质是合并同类二次根式,其步骤是先化简,后找“同类”合并.(2)做乘法时,要灵活运用乘法公式;做除法时,有时要写为分数的形式,然后进行分母有理化.(3)化简2a 时要注意a 的正负性,尤其是隐含的正负性. 例:(1)当式子5452---x x x 的值为零时,x 的值是_________(2)化简:231421222+++•--÷⎪⎭⎫ ⎝⎛+-a a a a a a a a a ;2.集合(集合及其表示)(1)集合的中元素的三个特性: 元素的确定性 元素的互异性元素的无序性(2)集合的表示法:列举法;描述法;维恩图法.(3)集合的分类:有限集 含有有限个元素的集合 无限集 含有无限个元素的集合 空集 不含任何元素的集合例:1.下列四组对象,能构成集合的是 ( ) A.某班所有高个子的学生 B.著名的艺术家 C.一切很大的书 D.倒数等于它自身的实数(数集)(1)基本数集:非负整数集(即自然数集) 记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R (2)一般数集:除了基本数集以外的其他数集. 例:用填空或∉∈71_____N -9______Z 5______Q2+π________R(集合之间的关系) (1)“包含”关系—子集注意:B A ⊆有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合。

中职对口升学-高三数学第一轮复习:集合的关系及运算

中职对口升学-高三数学第一轮复习:集合的关系及运算

典例解析
例5 U为全集 ,集合M⫋U ,N⫋U ,且N⊆M , 则 ( ).
解析 根据各集合之间的关系作图(见图1-4),
这样就很容易做出判断,故选 之间的关系,用图形解答比较方便. (2)在数学中利用“数形结合”的思想,往往能使 问题简单化.
同学们!再见!
技巧 点拨
考查对集合运算的理解及性质的运用.
典例解析
例4 已知集合 求实数a的取值范围.
解析
如图1-3所示,要使
必须满足
解得-1≤a≤2
所以实数a的取值范围为{a|-1≤a≤2}.
技巧 点拨
图1-3
解题时利用数轴表示集合,便于寻求满足条件的实
数a.特别需要注意的是“端点值 ”的问题,要明
确是能取“=”还是不能取“=”.
技巧 两个集合包含或相等关系的问题,通过建立方程(组),然后 点拨 解出未知数,最后利用集合 元素的特征进行检验即可.
扩展:函数 y = ax^2 + bx + c :1、对称轴方程 x = -b/2a。 2、顶点坐标(-b/2a,(4ac-
典例解析
例3 设全集U=R,集合
集合
求A∩B,A∪B,
解析 所以
性质:任何一个集合是它本身的子集,即A ⊆ A ;空集是任何集合的子集,即∅ ⊆ A ;对集合A , B ,C,若A ⊆ B , B ⊆ C,则A ⊆ C.
注意:不能把子集说成由原来集合中的部分元素组成的集合,因为A的子集包括 它本身,而这个子集由A的全体元素组成;空集也是A的子集,但这个子集中不包 括A中的任何元素.
知识点二 集合的运算
1.交集
一般地,由既属于集合A 又属于集 合B 的所有元素组成的集合,称为

高三单招考试数学知识点

高三单招考试数学知识点

高三单招考试数学知识点高三单招考试是对学生在高中阶段所学习的各个学科知识进行综合考核的一种考试形式。

而数学作为其中最重要的科目之一,也是考生们最为关注和重视的科目之一。

为了帮助同学们更好地备考数学,下面将重点介绍高三单招考试中数学部分的知识点。

一、函数与方程在高三单招考试的数学部分中,函数与方程是其中的重点内容。

包括一元二次方程与一次不等式、二次函数与二次方程、指数与对数、三角函数与三角方程等等。

首先,一元二次方程与一次不等式是高三单招考试数学中的基础内容。

通过掌握解一元二次方程和一次不等式的方法,考生能够快速准确地求解各类相关问题,提高解题效率。

其次,二次函数与二次方程也是高三单招考试数学中的重点内容。

了解二次函数的性质、图像以及与二次方程的关系,对于解题非常有帮助。

另外,指数与对数也是高三单招考试中的重要部分。

掌握指数与对数的运算规则以及相关应用,能够提高解题的灵活性与准确性。

最后,三角函数与三角方程也是数学考试中的重点内容。

了解不同三角函数的定义、性质以及与三角方程的求解方法,可以帮助考生更好地解答相关题目。

二、平面几何与立体几何高三单招考试数学的另一个重要内容是平面几何与立体几何。

包括平面几何中的圆等于圆锥与圆柱,以及立体几何中的长方体与正方体等。

在平面几何中,圆是一个非常重要的概念。

通过了解圆的定义、性质以及相关定理,考生可以理解并运用相关几何问题的解法。

同时,在立体几何中,长方体与正方体是必须掌握的内容。

了解长方体与正方体的结构、表面积以及体积计算公式,可以帮助考生更好地解答相关题目。

三、概率与统计概率与统计是高三单招考试数学中的另一个重要部分。

包括概率的基本概念与计算、随机变量与概率模型以及统计的基本方法与应用等。

首先,概率的基本概念与计算是考生必须要掌握的内容。

包括事件、样本空间、概率的计算公式等。

其次,随机变量与概率模型也是概率与统计中的重要内容。

了解随机变量的定义、性质以及概率模型的构建方法,能够帮助考生更好地理解与运用概率与统计相关问题。

高考单招数学知识点归纳

高考单招数学知识点归纳

高考单招数学知识点归纳高考单招数学知识点归纳是针对那些不参加全国统一高考,而是通过单独招生考试进入高校的学生的数学复习资料。

以下是一些重要的数学知识点归纳:一、函数与方程- 函数的概念、性质和图像- 一次函数、二次函数、指数函数和对数函数- 函数的单调性、奇偶性、周期性- 函数的复合与反函数- 方程的解法,包括一元一次、一元二次、高次方程和分式方程二、不等式与数列- 不等式的基本性质和解法- 绝对值不等式和分式不等式- 一元一次不等式组和一元二次不等式组- 数列的概念和分类- 等差数列和等比数列的通项公式和求和公式三、三角函数与解析几何- 三角函数的定义、图像和性质- 正弦定理、余弦定理和正切定理- 解三角形- 圆的性质和方程- 椭圆、双曲线和抛物线的性质和方程四、立体几何- 空间直线与平面的位置关系- 空间向量及其在立体几何中的应用- 多面体和旋转体的体积和表面积五、概率与统计初步- 随机事件的概率- 条件概率和独立事件- 离散型随机变量和连续型随机变量- 统计数据的收集、整理和描述六、导数与微分- 导数的定义和几何意义- 基本初等函数的导数公式- 高阶导数和隐函数的导数- 微分的概念和应用七、积分与应用- 不定积分和定积分的概念- 定积分的几何意义和物理意义- 积分的基本公式和积分技巧八、解析几何的应用- 直线与圆锥曲线的位置关系- 极坐标和参数方程在解析几何中的应用九、复数- 复数的概念和运算- 复数的几何表示- 复数的级数展开结束语以上就是高考单招数学知识点的大致归纳。

考生在复习时,应注重基础知识的掌握和解题技巧的培养,同时通过大量的练习来提高解题速度和准确率。

希望每位考生都能在单招考试中取得优异的成绩。

高三计划单招数学知识点

高三计划单招数学知识点

高三计划单招数学知识点高三是每个考生的重要阶段,也是一个决定前途的关键时期。

对于有意向报考计划单招的同学来说,数学是一个不可忽视的重要科目。

在备战计划单招数学考试的过程中,我们需要掌握一些关键知识点,以提升自己的竞争力。

一、函数与方程函数与方程是数学中的基础概念,也是计划单招数学考试的重要考点。

在高三阶段,我们需要重点学习二次函数、指数函数和对数函数等内容。

对于二次函数,我们需要掌握其图像的性质、顶点坐标和对称轴等基本特征。

指数函数和对数函数则是数理化学和生物学等学科中经常出现的重要工具,对这两类函数的性质和运算规律需要有深入的理解。

二、向量与坐标系向量与坐标系是计划单招数学考试中较为抽象的概念。

在解题过程中,我们需要熟练掌握向量的定义和运算法则。

同时,向量的线性相关与线性无关、向量共面与共线的判定方法也是考试中常见的题型。

在研究坐标系时,我们需要熟悉直角坐标系、极坐标系和空间直角坐标系。

对于每种坐标系,我们需要了解其定义、性质和转换方法。

三、解析几何解析几何是计划单招数学考试中的一大重点内容,我们需要掌握直线、圆和曲线的方程和性质。

在直线方面,我们需要学习直线的一般式和截距式,掌握直线的斜率、倾斜角和与坐标轴的交点等重要特征。

在圆的研究中,我们需要了解圆的标准方程和一般方程的推导过程,掌握圆心、半径和与直线的位置关系等重要知识。

曲线的方程由多个变量的关系式构成,我们需要研究曲线的类型、图像和性质,了解椭圆、双曲线和抛物线的方程及其特征。

四、概率与统计概率与统计是计划单招数学考试中较为实用的部分。

在概率方面,我们需要了解概率的基本定义和性质,学习事件的互斥与独立、条件概率和贝叶斯定理等重要概念。

在统计学中,我们需要学习抽样方法和调查统计,掌握频率分布、概率分布和统计图表的制作方法,并学会用统计方法进行数据分析和结果推断。

总结起来,高三计划单招数学考试的重点知识点主要包括函数与方程、向量与坐标系、解析几何和概率与统计等内容。

江苏省单招高一下期中数学复习总结资料-知识点

江苏省单招高一下期中数学复习总结资料-知识点

一、向量向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 2、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b -≤+≤+.⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=. ⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 3、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y A B=--.4、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=. ⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.5、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线. 6、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,baC BAa b C C -=A -AB =B有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)7、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.8、平面向量的数量积:⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0.⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅=.②当a 与b 同向时,a b a b ⋅=;当a 与b 反向时,a b a b ⋅=-;22a a a a ⋅==或a a a =⋅.③ab a b ⋅≤.⑶运算律:①a b b a ⋅=⋅;②()()()a b a b a b λλλ⋅=⋅=⋅;③()a b c a c b c +⋅=⋅+⋅. ⑷坐标运算:设两个非零向量()11,a x y =,()22,b x y =,则1212a b x x y y ⋅=+. 若(),a x y =,则222a x y =+,或2a x y =+设()11,a x y =,()22,b x y =,则12120a b x x y y ⊥⇔+=. 设a 、b 都是非零向量,()11,a x y =,()22,b x y =,θ是a 与b 的夹角,则121cos a b a bx θ⋅==+.二、数列1、数列:按照一定顺序排列着的一列数.2、数列的项:数列中的每一个数.3、有穷数列:项数有限的数列.4、无穷数列:项数无限的数列.5、递增数列:从第2项起,每一项都不小于它的前一项的数列.6、递减数列:从第2项起,每一项都不大于它的前一项的数列.7、常数列:各项相等的数列.8、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 9、数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式.10、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式.11、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.12、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若2a cb +=,则称b 为a 与c 的等差中项. 13、若等差数列{}n a 的首项是1a ,公差是d ,则()11naa n d =+-.14、通项公式的变形:①()n m a a n m d =+-;②()11n a a n d =--;③11n a a d n -=-;④11n a a n d-=+;⑤n m a a d n m -=-.15、若{}n a 是等差数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a +=+;若{}n a 是等差数列,且2n p q =+(n 、p 、*q ∈N ),则2np q a a a =+.16、等差数列的前n 项和的公式:①()12n n n a a S +=;②()112n n n S na d -=+. 17、等差数列的前n 项和的性质:①若项数为()*2n n ∈N ,则()21nn n S n a a +=+,且S S nd-=偶奇,1n n S aS a +=奇偶. ②若项数为()*21n n -∈N ,则()2121n n Sn a -=-,且n S S a -=奇偶,1S nS n =-奇偶(其中n S na =奇,()1n S n a =-偶). 18、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.19、在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则G 称为a 与b 的等比中项.若2G ab =,则称G 为a 与b 的等比中项.20、若等比数列{}n a 的首项是1a ,公比是q ,则11n n a a q -=.21、通项公式的变形:①n m n m a a q -=;②()11n n a a q --=;③11n na qa -=;④n m n ma q a -=. 22、若{}n a 是等比数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a ⋅=⋅;若{}n a 是等比数列,且2n p q =+(n 、p 、*q ∈N ),则2np q a a a =⋅.23、等比数列{}n a 的前n 项和的公式:()()()11111111n n n na q S a q a a q q q q =⎧⎪=-⎨-=≠⎪--⎩.24、等比数列的前n 项和的性质:①若项数为()*2n n ∈N ,则S q S =偶奇.②n n mn m S S q S +=+⋅.③n S ,2n n S S -,32n n S S -成等比数列.三、直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。

数学高三单招基础知识点

数学高三单招基础知识点

数学高三单招基础知识点在高三单招考试中,数学作为一门重要的科目,是考生们必须要掌握的基础知识之一。

下面将对数学高三单招考试的基础知识点进行详细介绍和解析。

1. 函数与导数函数与导数是数学中的重要概念,也是高三单招考试中常见的问题。

函数是描述两个变量之间关系的规则,导数则是函数在某一点上的变化率。

掌握函数与导数的概念及其应用,可以帮助考生解决各种与函数相关的问题。

2. 三角函数三角函数是数学中的基础概念,也是高三单招考试中常见的内容。

在三角函数中,正弦、余弦和正切是最为常见的三个函数。

考生需要掌握三角函数的定义、性质和图像,以及在解题中的应用。

3. 平面向量平面向量是高三单招考试中较为复杂的内容之一。

平面向量可以表示具有大小和方向的量,并且可以进行向量的加减、数量积和向量积等运算。

掌握平面向量的基本概念和运算规则,能够帮助考生解决与平面向量相关的各种问题。

4. 不等式不等式在高三单招考试中常常出现,是数学中的重要知识点之一。

考生需要掌握不等式的定义、性质和解法,能够准确地判断和求解不等式,解决与不等式相关的各种问题。

5. 排列组合与概率排列组合与概率是数学中的常见内容,也是高三单招考试中常见的问题。

排列组合是描述对象的选择和排列方式,而概率则是描述事件发生的可能性。

考生需要掌握排列组合和概率的基本概念和计算方法,能够准确地解决与排列组合和概率相关的各种问题。

6. 数列与数列极限数列和数列极限是高三单招考试中的重点内容之一。

数列是按照一定规律排列的一组数,而数列极限则是描述数列中数值趋于无穷大或无穷小的情况。

考生需要掌握数列的定义、性质和求和公式,以及求数列极限的方法和技巧。

7. 解析几何解析几何是高三单招考试中的难点内容之一。

解析几何是利用坐标系统研究几何问题的方法。

考生需要掌握平面直角坐标系和空间直角坐标系的性质和应用,能够准确地描述和计算几何图形的性质和问题。

总结起来,数学高三单招基础知识点主要包括函数与导数、三角函数、平面向量、不等式、排列组合与概率、数列与数列极限以及解析几何等内容。

对口高考数学知识点归纳总结

对口高考数学知识点归纳总结

对口高考数学知识点归纳总结高中数学知识点总结一、圆及圆的相关量的定义1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。

定点称为圆心,定长称为半径。

2.圆上任意两点间的部分叫做圆弧,简称弧。

大于半圆的弧称为优弧,小于半圆的弧称为劣弧。

连接圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径。

3.顶点在圆心上的角叫做圆心角。

顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。

和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。

两圆圆心之间的距离叫做圆心距。

7.在圆上,由2条半径和一段弧围成的图形叫做扇形。

圆锥侧面展开图是一个扇形。

这个扇形的半径成为圆锥的母线。

二、有关圆的字母表示方法圆--⊙半径—r 弧--⌒直径—d扇形弧长/圆锥母线—l 周长—C 面积—S三、有关圆的基本性质与定理(27个)1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):P在⊙O外,POr;P在⊙O上,PO=r;P在⊙O内,PO2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。

圆也是中心对称图形,其对称中心是圆心。

3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

5.一条弧所对的圆周角等于它所对的圆心角的一半。

6.直径所对的圆周角是直角。

90度的圆周角所对的弦是直径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学总复习知识点主编:杨林森目录一、高一上1、数与式的计算 (3)2、集合 (6)3、函数及其性质 (8)4、几个基本初等函数 (10)5、三角函数 (13)二、高一下1、解析几何(Ⅰ) (14)2、三角函数(Ⅱ) (18)3、圆 (21)4、平面向量 (23)5、数列 (26)6、不等式 (29)三、高二上1、命题与逻辑推理 (31)2、解析几何(Ⅱ) (33)3、立体几何 (41)4、复数 (46)四、高二下1、计数法 (49)2、概率(Ⅱ) (54)3、统计(Ⅱ) (56)五、附录附录(Ⅰ) (59)附录(Ⅱ) (61)附录(Ⅲ) (62)六、附录答案(另附)高三数学总复习知识点..........高一数学(一)高一上学期:1.数与式的计算(实数的概念)(1)常用的数集符号:自然数集:N整数:Z 有理数集:Q 实数集:R (2)绝对值:⎪⎩⎪⎨⎧<-=>=时;当时;当时;当0,0,00,a a a a a ab a b a b a +≤±≤-.数轴上两点A,B 的坐标分别为B A x x ,,则A,B 之间的距离A B x x AB -=例:化简23---x x ()31<<x(实数的运算)(1)实数运算的顺序:先乘方、开方,然后乘除,再加减,有括号先进行括号内的运算.(2)指数幂的推广:正整数指数幂:nna a a a =⋅⋅⋅⋅⋅⋅••(a 为正整数) 分数指数幂: n n a a 1=- (0≠a ,n 为正整数)10=a (0≠a ) 负整数指数幂、零指数幂:n m nm a a =,n manm 1=-(0≠a ) (3)实数指数幂的运算法则: βαβα+=•a a a)0(≠=÷-a a a a βαβα()αααb a b a •=• ④)0(≠=⎪⎭⎫⎝⎛b b a b a ααα例:1.()0110)12()21()1()2(5--+-⨯-+---2.03260cos 121)14.3(1+⎪⎭⎫⎝⎛⨯----π(式的计算) 乘法公式:平方差公式:22))((b a b a b a -=-+ 完全平方公式:2222)(b ab a b a +±=± 立方和、差公式:))((2233b ab a b a b a +±=± 例:计算222)3(a a ÷-.(分式运算与根式化简) 一、分式.1.定义:式子BA叫做分式,其中B A ,表示两个整式,且B 中含有字母,0≠B .2.分式的基本性质:(1))0(,≠÷÷=⨯⨯=m mB m A B A m B m A B A 其中. (2)分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.3.分式的运算:(1)加减:;c b a c b c a ±=± bd bc ad d c b a ±=±. (2)乘除:bdac d c b a =•; bcad d c b a =÷. (3)乘方:n n nb a b a =⎪⎭⎫⎝⎛.二、二次根式. 1.二次根式的性质:(1)()a a =2)0(≥a ;(2)b a ab •= )0,0(≥≥b a (3)ba b a = )0,0(>≥b a(4)⎩⎨⎧<-≥==)0()0(2a a a a a a2.二次根式的运算.(1)加减运算的实质是合并同类二次根式,其步骤是先化简,后找“同类”合并.(2)做乘法时,要灵活运用乘法公式;做除法时,有时要写为分数的形式,然后进行分母有理化.(3)化简2a 时要注意a 的正负性,尤其是隐含的正负性. 例:(1)当式子5452---x x x 的值为零时,x 的值是_________(2)化简:231421222+++•--÷⎪⎭⎫ ⎝⎛+-a a a a a a a a a ;2.集合(集合及其表示)(1)集合的中元素的三个特性: 元素的确定性 元素的互异性 元素的无序性(2)集合的表示法:列举法;描述法;维恩图法. (3)集合的分类:有限集 含有有限个元素的集合 无限集 含有无限个元素的集合 空集 不含任何元素的集合例:1.下列四组对象,能构成集合的是 ( ) A.某班所有高个子的学生 B.著名的艺术家 C.一切很大的书 D.倒数等于它自身的实数(数集)(1)基本数集:非负整数集(即自然数集) 记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R (2)一般数集:除了基本数集以外的其他数集. 例:用填空或∉∈71_____N -9______Z 5______Q2+π________R(集合之间的关系) (1)“包含”关系—子集注意:B A ⊆有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合。

(2)“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x 2-1=0} B={-1,1} “元素相同则两集合相等”即:① 任何一个集合是它本身的子集。

A A②真子集:如果A B,且A B 那就说集合A 是集合B 的真子集,记作A B(或B A)③如果 A B, B C ,那么 A C ④ 如果A B 同时 B A 那么A=B(3) 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

有n 个元素的集合,含有n 2个子集,12-n 个真子集例:1.集合{a ,b ,c }的真子集共有 个2.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 .3.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是例:1.已知集合A={x| x 2+2x-8=0}, B={x| x 2-5x+6=0}, C={x| x 2-mx+m 2-19=0}, 若B ∩C ≠Φ,A ∩C=Φ,求m 的值.3.函数及其性质(函数的概念及表示方法)1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.(函数的定义域与值域)1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2.值域 : 先考虑其定义域(1)观察法(2)配方法(3)代换法例:求下列函数的定义域:⑴y=⑵y(函数的基本性质)1.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A) 定义法:○1任取x1,x2∈D,且x1<x2;○2作差f(x1)-f(x2);○3变形(通常是因式分解和配方);○4定号(即判断差f(x1)-f(x2)的正负);○5下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.8.函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:○1首先确定函数的定义域,并判断其是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.例:判断函数13+-=x y 的单调性并证明你的结论.另附:函数最大(小)值(定义见课本p36页)○1 利用二次函数的性质(配方法)求函数的最大(小)值 ○2 利用图象求函数的最大(小)值 ○3 利用函数单调性的判断函数的最大(小)值: 如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b);4.几个基本初等函数(幂函数)1、幂函数定义:一般地,形如αx y =)(R a ∈的函数称为幂函数,其中α为常数.2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);(2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸; (3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴.例:求下列函数的定义域和值域. (1)32x y = (2)43-=x y(指数函数及其图象) 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.注意:利用函数的单调性,结合图象还可以看出: (1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [;(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈;(3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =;(对数函数)1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式)说明:○1 注意底数的限制0>a ,且1≠a ; ○2 x N N a ax=⇔=log ; ○3 注意对数的书写格式. 两个重要对数:○1 常用对数:以10为底的对数N lg ;○2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln .指数式与对数式的互化幂值 真数对数 (二)对数的运算性质如果0>a ,且1≠a ,0>M ,0>N ,那么: ○1 M a(log ·=)N M a log +N a log ;○2 =NMalog M a log -N a log ; ○3 n aM log n =M a log )(R n ∈.注意:换底公式abb c c a log log log =(0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 利用换底公式推导下面的结论(1)b m nb a n a mlog log =;(2)ab b a log 1log =.(二)对数函数1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。

相关文档
最新文档