2020-2021下海西南模范中学初二数学下期末试卷附答案

合集下载

2020-2021八年级数学下期末试卷带答案(3)

2020-2021八年级数学下期末试卷带答案(3)

2020-2021八年级数学下期末试卷带答案(3)一、选择题1.已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形 2.如图,在四边形ABCD 中,AB ∥CD ,要使得四边形ABCD 是平行四边形,可添加的条件不正确的是 ( )A .AB=CDB .BC ∥AD C .BC=AD D .∠A=∠C 3.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4)AOB DEOF S S 四边形∆=中正确的有 A .4个B .3个C .2个D .1个 4.已知正比例函数y kx =(k ≠0)的图象如图所示,则在下列选项中k 值可能是( )A .1B .2C .3D .4 5.4133的结果为( ).A.32B.23C.2D.26.下列计算正确的是()A.2(4)-=2B.52=3-C.52=10⨯D.62=3÷7.如图,菱形中,分别是的中点,连接,则的周长为()A.B.C.D.8.下列计算中正确的是()A.325+=B.321-=C.3333+=D.33 4=9.如图(1),四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD的面积为S,S关于t的函数图象如图(2)所示,当P运动到BC中点时,△APD 的面积为()A.4B.5C.6D.710.如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是()A.6B.12C.24D.不能确定11.一列火车由甲市驶往相距600km的乙市,火车的速度是200km/时,火车离乙市的距离s(单位:km)随行驶时间t(单位:小时)变化的关系用图象表示正确的是( )A.B.C.D.12.正方形具有而菱形不一定具有的性质是()A.对角线互相平分B.每条对角线平分一组对角C.对边相等D.对角线相等二、填空题13.在函数41xyx-=+中,自变量x的取值范围是______.14.如图.过点A1(1,0)作x轴的垂线,交直线y=2x于点B1;点A2与点O关于直线A1B1对称,过点A2作x轴的垂线,交直线y=2x于点B2;点A3与点O关于直线A2B2对称.过点A3作x轴的垂线,交直线y=2x于点B3;…按此规律作下去.则点A3的坐标为_____,点B n的坐标为_____.15.2+1的倒数是____.16.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为____________海里/时.17.如图,将边长为的正方形折叠,使点落在边的中点处,点落在处,折痕为,则线段的长为____.18.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF 交AD 于点H ,那么DH 的长是______.19.如图,在平行四边形ABCD 中,AB =3,BC =5,∠B 的平分线BE 交AD 于点E ,则DE 的长为____________.20.计算:1822-=__________. 三、解答题21.如图,在平面直角坐标系中,直线4y x =-+过点(6,m)A 且与y 轴交于点B ,把点A 向左平移2个单位,再向上平移4个单位,得到点C .过点C 且与3y x =平行的直线交y 轴于点D .(1)求直线CD 的解析式;(2)直线AB 与CD 交于点E ,将直线CD 沿EB 方向平移,平移到经过点B 的位置结束,求直线CD 在平移过程中与x 轴交点的横坐标的取值范围.22.如图所示,在△ABC 中,点O 是AC 上的一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的平分线于E ,交∠BCA 的外角平分线于F .(1)请猜测OE 与OF 的大小关系,并说明你的理由;(2)点O 运动到何处时,四边形AECF 是矩形?写出推理过程;(3)点O 运动到何处且△ABC 满足什么条件时,四边形AECF 是正方形?(写出结论即可)23.某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?24.已知:如图,在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:∠EBF=∠EDF.25.某经销商从市场得知如下信息:A品牌手表B品牌手表进价(元/块)700100售价(元/块)900160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x 块,这两种品牌手表全部销售完后获得利润为y元.(1)试写出y与x之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;(3)选择哪种进货方案,该经销商可获利最大;最大利润是多少元.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.【详解】如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,故选B.【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.2.C解析:C【解析】【分析】根据平行四边形的判定方法,逐项判断即可.【详解】∵AB∥CD,∴当AB=CD时,由一组对边平行且相等的四边形为平行四边形可知该条件正确;当BC∥AD时,由两组对边分别平行的四边形为平行四边形可知该条件正确;当∠A=∠C时,可求得∠B=∠D,由两组对角分别相等的四边形为平行四边形可知该条件正确;当BC=AD时,该四边形可能为等腰梯形,故该条件不正确;故选:C.【点睛】本题主要考查平行四边形的判定,掌握平行四边形的判定方法是解题的关键.3.B解析:B【解析】【分析】根据正方形的性质得AB=AD=DC ,∠BAD=∠D=90°,则由CE=DF 易得AF=DE ,根据“SAS”可判断△ABF ≌△DAE ,所以AE=BF ;根据全等的性质得∠ABF=∠EAD , 利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则AE ⊥BF ;连结BE ,BE >BC ,BA≠BE ,而BO ⊥AE ,根据垂直平分线的性质得到OA≠OE ;最后根据△ABF ≌△DAE 得S △ABF =S △DAE ,则S △ABF -S △AOF =S △DAE -S △AOF ,即S △AOB =S 四边形DEOF .【详解】解:∵四边形ABCD 为正方形,∴AB=AD=DC ,∠BAD=∠D=90°,而CE=DF ,∴AF=DE ,在△ABF 和△DAE 中AB DA BAD ADE AF DE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DAE ,∴AE=BF ,所以(1)正确;∴∠ABF=∠EAD ,而∠EAD+∠EAB=90°,∴∠ABF+∠EAB=90°,∴∠AOB=90°,∴AE ⊥BF ,所以(2)正确;连结BE ,∵BE >BC ,∴BA≠BE ,而BO ⊥AE ,∴OA≠OE ,所以(3)错误;∵△ABF≌△DAE,∴S△ABF=S△DAE,∴S△ABF-S△AOF=S△DAE-S△AOF,∴S△AOB=S四边形DEOF,所以(4)正确.故选B.【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了正方形的性质.4.B解析:B【解析】由图象可得2535kk<⎧⎨>⎩,解得5532k<<,故符合的只有2;故选B.5.D解析:D【解析】【分析】根据二次根式的除法法则进行计算即可.【详解】原式2===.故选:D.【点睛】本题考查二次根式的除法,掌握二次根式的除法法则是解答本题的关键.6.C解析:C【解析】【分析】根据二次根式的性质与二次根式的乘除运算法则逐项进行计算即可得.【详解】,故A选项错误;不是同类二次根式,不能合并,故B选项错误;C选项正确;D选项错误,故选C.【点睛】本题考查了二次根式的化简、二次根式的加减运算、乘除运算,解题的关键是掌握二次根式的性质与运算法则.7.D解析:D【解析】【分析】首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等边三角形三线合一的性质又可推出△AEF是等边三角形.根据勾股定理可求出AE的长,继而求出周长.【详解】解:∵四边形ABCD是菱形,∴AB=AD=BC=CD=2cm,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴AE=AF,∠BAE=∠DAF.连接AC,∵∠B=∠D=60°,∴△ABC与△ACD是等边三角形,∴AE⊥BC,AF⊥CD,∴∠BAE=∠DAF=30°,∴∠EAF=60°,BE=AB=1cm,∴△AEF是等边三角形,AE=,∴周长是.故选:D.【点睛】本题主要考查了菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质以及勾股定理,涉及知识点较多,也考察了学生推理计算的能力.8.D解析:D【解析】分析:根据二次根式的加减法则对各选项进行逐一计算即可.详解:AB不是同类项,不能合并,故本选项错误;C、3不是同类项,不能合并,故本选项错误;D2,故本选项正确.故选:D.点睛:本题考查的是二次根式的加减法,在进行二次根式的加减运算时要把各二次根式化为最简二次根式,再合并同类项即可.9.B解析:B【解析】【分析】根据函数图象和三角形面积得出AB+BC=6,CD=4,AD=4,AB=1,当P运动到BC中点时,梯形ABCD的中位线也是△APD的高,求出梯形ABCD的中位线长,再代入三角形面积公式即可得出结果.【详解】解:根据题意得:四边形ABCD是梯形,AB+BC=6,CD=10-6=4,∵12AD×CD=8,∴AD=4,又∵12AD×AB=2,∴AB=1,当P运动到BC中点时,梯形ABCD的中位线也是△APD的高,∵梯形ABCD的中位线长=12(AB+CD)=52,∴△PAD的面积1545 22;=⨯⨯=故选B.【点睛】本题考查了动点问题的函数图象、三角形面积公式、梯形中位线定理等知识;看懂函数图象是解决问题的关键.10.B解析:B【解析】【分析】由矩形ABCD可得:S△AOD=14S矩形ABCD,又由AB=15,BC=20,可求得AC的长,则可求得OA 与OD 的长,又由S △AOD =S △APO +S △DPO =12OA •PE+12OD •PF ,代入数值即可求得结果.【详解】 连接OP ,如图所示:∵四边形ABCD 是矩形,∴AC =BD ,OA =OC =12AC ,OB =OD =12BD ,∠ABC =90°, S △AOD =14S 矩形ABCD , ∴OA =OD =12AC , ∵AB =15,BC =20, ∴AC 22AB BC +221520+25,S △AOD =14S 矩形ABCD =14×15×20=75, ∴OA =OD =252, ∴S △AOD =S △APO +S △DPO =12OA •PE +12OD •PF =12OA •(PE +PF )=12×252(PE +PF )=75,∴PE +PF =12. ∴点P 到矩形的两条对角线AC 和BD 的距离之和是12.故选B .【点睛】本题考查了矩形的性质、勾股定理、三角形面积.熟练掌握矩形的性质和勾股定理是解题的关键.11.A解析:A【解析】【分析】首先写出函数的解析式,根据函数的特点即可确定.【详解】由题意得:s 与t 的函数关系式为s=600-200t ,其中0≤t≤3,所以函数图象是A .故选A.【点睛】本题主要考查函数的图象的知识点,解答时应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.12.D解析:D【解析】【分析】列举出正方形具有而菱形不一定具有的所有性质,由此即可得出答案.【详解】正方形具有而菱形不一定具有的性质是:①正方形的对角线相等,而菱形不一定对角线相等;②正方形的四个角是直角,而菱形的四个角不一定是直角.故选D.【点睛】本题考查了正方形、菱形的性质,熟知正方形及菱形的性质是解决问题的关键.二、填空题13.x≥4【解析】【分析】根据被开方数为非负数及分母不能为0列不等式组求解可得【详解】解:根据题意知解得:x≥4故答案为x≥4【点睛】本题考查函数自变量的取值范围自变量的取值范围必须使含有自变量的表达式解析:x≥4【解析】【分析】根据被开方数为非负数及分母不能为0列不等式组求解可得.【详解】解:根据题意,知4010xx-≥⎧⎨+≠⎩,解得:x≥4,故答案为x≥4.【点睛】本题考查函数自变量的取值范围,自变量的取值范围必须使含有自变量的表达式都有意义:①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零..③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.14.(40)(2n﹣12n)【解析】【分析】先根据题意求出A2点的坐标再根据A2点的坐标求出B2的坐标以此类推总结规律便可求出点A3Bn的坐标【详解】解:∵点A1坐标为(10)∴OA1=1过点A1作x轴解析:(4,0)(2n﹣1,2n)【解析】【分析】先根据题意求出A2点的坐标,再根据A2点的坐标求出B2的坐标,以此类推总结规律便可求出点A3、B n的坐标.【详解】解:∵点A1坐标为(1,0),∴OA1=1,过点A1作x轴的垂线交直线于点B1,可知B1点的坐标为(1,2),∵点A2与点O关于直线A1B1对称,∴OA1=A1A2=1,∴OA2=1+1=2,∴点A2的坐标为(2,0),B2的坐标为(2,4),∵点A3与点O关于直线A2B2对称.故点A3的坐标为(4,0),B3的坐标为(4,8),此类推便可求出点A n的坐标为(2n﹣1,0),点B n的坐标为(2n﹣1,2n).故答案为(4,0),(2n﹣1,2n).考点:一次函数图象上点的坐标特征.15.【解析】【分析】由倒数的定义可得的倒数是然后利用分母有理化的知识求解即可求得答案【详解】∵∴的倒数是:故答案为:【点睛】此题考查了分母有理化的知识与倒数的定义此题比较简单注意二次根式有理化主要利用了1.【解析】【分析】,然后利用分母有理化的知识求解即可求得答案.【详解】=.11.1.【点睛】此题考查了分母有理化的知识与倒数的定义.此题比较简单,注意二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.16.【解析】【分析】设该船行驶的速度为x海里/时由已知可得BC=3xAQ⊥BC∠BAQ=60°∠CAQ=45°AB=80海里在直角三角形ABQ中求出AQBQ 再在直角三角形AQC中求出CQ得出BC=40+解析:40403+【解析】【分析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+403=3x,解方程即可.【详解】如图所示:该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°−60°=30°,∴AQ=12AB=40,BQ3AQ=3在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+33x,解得:x 40403+40403+/时;40403+【点睛】本题考查的是解直角三角形,熟练掌握方向角是解题的关键.17.3【解析】【分析】根据折叠的性质只要求出DN就可以求出NE在直角△CEN 中若设CN=x则DN=NE=8-xCE=4根据勾股定理就可以列出方程从而解出CN的长【详解】设CN=x则DN=8-x由折叠的性解析:【解析】【分析】根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8-x,CE=4,根据勾股定理就可以列出方程,从而解出CN的长.【详解】设CN=x,则DN=8-x,由折叠的性质知EN=DN=8-x,而EC=BC=4,在Rt△ECN中,由勾股定理可知,即整理得16x=48,所以x=3.故答案为:3.【点睛】本题考查翻折变换、正方形的性质、勾股定理等知识,解题的关键是设未知数利用勾股定理列出方程解决问题,属于中考常考题型.18.【解析】【分析】思路分析:把所求的线段放在构建的特殊三角形内【详解】如图所示连接HCDF且HC与DF交于点P∵正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG∴∠BCF=∠DCG=30解析:3.【解析】【分析】思路分析:把所求的线段放在构建的特殊三角形内【详解】如图所示.连接HC、DF,且HC与DF交于点P∵正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG∴∠BCF=∠DCG=30°,FC =DC,∠EFC=∠ADC=90°∠BCG=∠BCD+∠DCG=90°+30°=120°∠DCF=∠BCG-∠BCF-∠DCG=120°-30°-30°=60°∴△DCF是等边三角形,∠DFC=∠FDC=60°∴∠EFD=∠ADF=30°,HF=HD∴HC是FD的垂直平分线,∠FCH=∠DCH=12∠DCF=30°在Rt△HDC中,HD=DC·tan∠∵正方形ABCD的边长为3∴HD=DC·tan∠DCH=3×tan30°=3×3试题点评:构建新的三角形,利用已有的条件进行组合.19.2【解析】【分析】根据平行四边形的性质可得出AD∥BC则∠AEB=∠CBE 再由∠ABE=∠CBE则∠AEB=∠ABE则AE=AB从而求出DE【详解】解:∵四边形ABCD是平行四边形∴AD∥BC∴∠A解析:2【解析】【分析】根据平行四边形的性质,可得出AD∥BC,则∠AEB=∠CBE,再由∠ABE=∠CBE,则∠AEB=∠ABE,则AE=AB,从而求出DE.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠B的平分线BE交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB,∵AB=3,BC=5,∴DE=AD-AE=BC-AB=5-3=2.故答案为2.【点睛】本题考查了平行四边形的性质、角平分线的定义,解题的关键是掌握平行四边形的性质:对边相等.20.【解析】【分析】【详解】试题分析:先根据二次根式的性质化简根号再合并同类二次根式即可得到结果考点:二次根式的化简点评:本题属于基础应用题只需学生熟练掌握二次根式的性质即可完成【解析】【分析】【详解】试题分析:先根据二次根式的性质化简根号,再合并同类二次根式即可得到结果.==考点:二次根式的化简点评:本题属于基础应用题,只需学生熟练掌握二次根式的性质,即可完成.三、解答题21.(1)y=3x-10;(2)410 33x-≤≤【解析】【分析】(1)先把A(6,m)代入y=-x+4得A(6,-2),再利用点的平移规律得到C(4,2),接着利用两直线平移的问题设CD的解析式为y=3x+b,然后把C点坐标代入求出b即可得到直线CD的解析式;(2)先确定B(0,4),再求出直线CD与x轴的交点坐标为(103,0);易得CD平移到经过点B时的直线解析式为y=3x+4,然后求出直线y=3x+4与x轴的交点坐标,从而可得到直线CD在平移过程中与x轴交点的横坐标的取值范围.【详解】解:(1)把A(6,m)代入y=-x+4得m=-6+4=-2,则A(6,-2),∵点A向左平移2个单位,再向上平移4个单位,得到点C,∴C(4,2),∵过点C且与y=3x平行的直线交y轴于点D,∴CD的解析式可设为y=3x+b,把C(4,2)代入得12+b=2,解得b=-10,∴直线CD的解析式为y=3x-10;(2)当x=0时,y=4,则B(0,4),当y=0时,3x-10=0,解得x=103,则直线CD与x轴的交点坐标为(103,0),易得CD平移到经过点B时的直线解析式为y=3x+4,当y=0时,3x+4=0,解得x=43-,则直线y=3x+4与x轴的交点坐标为(43-,0),∴直线CD在平移过程中与x轴交点的横坐标的取值范围为410 33x-≤≤.【点睛】本题考查了一次函数与几何变换:求直线平移后的解析式时要注意平移时k的值不变,会利用待定系数法求一次函数解析式.22.(1)猜想:OE=OF,理由见解析;(2)见解析;(3)见解析.【解析】【分析】(1)猜想:OE=OF ,由已知MN ∥BC ,CE 、CF 分别平分∠BCO 和∠GCO ,可推出∠OEC=∠OCE ,∠OFC=∠OCF ,所以得EO=CO=FO .(2)由(1)得出的EO=CO=FO ,点O 运动到AC 的中点时,则由EO=CO=FO=AO ,所以这时四边形AECF 是矩形.(3)由已知和(2)得到的结论,点O 运动到AC 的中点时,且△ABC 满足∠ACB 为直角的直角三角形时,则推出四边形AECF 是矩形且对角线垂直,所以四边形AECF 是正方形.【详解】(1)猜想:OE=OF ,理由如下:∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠GCF,又∵CE 平分∠BCO,CF 平分∠GCO,∴∠OCE=∠BCE,∠OCF=∠GCF,∴∠OCE=∠OEC,∠OCF=∠OFC,∴EO=CO,FO=CO ,∴EO=FO.(2)当点O 运动到AC 的中点时,四边形AECF 是矩形.∵当点O 运动到AC 的中点时,AO=CO ,又∵E O=FO ,∴四边形AECF 是平行四边形,∵FO=CO,∴AO=CO=EO=FO,∴AO+CO=EO+FO,即AC=EF ,∴四边形AECF 是矩形.(3)当点O 运动到AC 的中点时,且△ABC 满足∠ACB 为直角的直角三角形时,四边形AECF 是正方形.∵由(2)知,当点O 运动到AC 的中点时,四边形AECF 是矩形,已知MN∥BC,当∠ACB=90°,则 ∠AOF=∠CO E=∠COF=∠AOE=90°,∴AC⊥EF,∴四边形AECF 是正方形.【点睛】此题考查的知识点是正方形和矩形的判定及角平分线的定义,解题的关键是由已知得出EO=FO ,然后根据(1)的结论确定(2)(3)的条件.23.(1)2140(4058)82(5871)x x y x x -+⎧=⎨-+<⎩剟…;(2)55元 【解析】【分析】(1)分情况讨论,利用待定系数法进行求解即可解题,(2)根据收支平衡的含义建立收支之间的等量关系进行求解是解题关键.【详解】解:(1)当40≤x≤58时,设y 与x 之间的函数关系式为y =kx+b (k≠0),将(40,60),(58,24)代入y =kx+b ,得:40605824k b k b +=⎧⎨+=⎩ ,解得:2140k b =-⎧⎨=⎩, ∴当40≤x≤58时,y 与x 之间的函数关系式为y =2x+140;当理可得,当58<x≤71时,y 与x 之间的函数关系式为y =﹣x+82.综上所述:y与x之间的函数关系式为2140(4058)82(5871)x xyx x-+⎧=⎨-+<⎩剟….(2)设当天的销售价为x元时,可出现收支平衡.当40≤x≤58时,依题意,得:(x﹣40)(﹣2x+140)=100×3+150,解得:x1=x2=55;当57<x≤71时,依题意,得:(x﹣40)(﹣x+82)=100×3+150,此方程无解.答:当天的销售价为55元时,可出现收支平衡.【点睛】本题考查了用待定系数法求解一次函数,一次函数的实际应用,中等难度,熟悉待定系数法,根据题意建立等量关系是解题关键.24.证明见解析.【解析】【分析】先连接BD,交AC于O,由于AB=CD,AD=CB,根据两组对边相等的四边形是平行四边形,可知四边形ABBCD是平行四边形,于是OA=OC,OB=OD,而AF=CF,根据等式性质易得OE=OF,再根据对角线互相平分的四边形是平行四边形可证四边形DEBF是平行四边形,于是∠EBF=∠FDE.【详解】解:连结BD,交AC于点O.∵四边形ABCD是平行四边形,∴OB=OD,OA=OC.∵AE=CF,∴OE=OF,∴四边形BFDE是平行四边形,∴∠EBF=∠EDF.25.(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.【解析】【分析】(1)根据利润y=(A售价﹣A进价)x+(B售价﹣B进价)×(100﹣x)列式整理即可;(2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;(3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.【详解】解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.由700x+100(100﹣x)≤40000得x≤50.∴y与x之间的函数关系式为y=140x+6000(x≤50)(2)令y≥12600,即140x+6000≥12600,解得x≥47.1.又∵x≤50,∴经销商有以下三种进货方案:∴x=50时y取得最大值.又∵140×50+6000=13000,∴选择方案③进货时,经销商可获利最大,最大利润是13000元.【点睛】本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用.。

2020-2021八年级数学下期末试卷(及答案)(2)

2020-2021八年级数学下期末试卷(及答案)(2)

2020-2021八年级数学下期末试卷(及答案)(2)一、选择题1.若63n 是整数,则正整数n 的最小值是( )A .4B .5C .6D .72.直角三角形两直角边长为a ,b ,斜边上高为h ,则下列各式总能成立的是( ) A .ab=h 2B .a 2+b 2=2h 2C .111a b h+= D .222111a b h += 3.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h 随时间t 变化的函数图象是( )A .B .C .D .4.一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >5.已知一次函数y=-0.5x+2,当1≤x≤4时,y 的最大值是( ) A .1.5B .2C .2.5D .-66.如图2,四边形ABCD 的对角线AC 、BD 互相垂直,则下列条件能判定四边形ABCD为菱形的是( )A .BA =BCB .AC 、BD 互相平分 C .AC =BD D .AB ∥CD7.下列计算中正确的是( )A .325+=B .321-=C .3333+=D .3342=8.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是( ) A .矩形B .一组对边相等,另一组对边平行的四边形C .对角线互相垂直的四边形D .对角线相等的四边形9.如图1,四边形ABCD 中,AB ∥CD ,∠B =90°,AC =AD .动点P 从点B 出发沿折线B →A →D →C 方向以1单位/秒的速度运动,在整个运动过程中,△BCP 的面积S 与运动时间t (秒)的函数图象如图2所示,则AD 等于( )A .10B .89C .8D .4110.如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A ,则点A 表示的数是( )A .-2B .﹣1+2C .﹣1-2D .1-211.无论m 为任何实数,关于x 的一次函数y =x +2m 与y =-x +4的图象的交点一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限12.一列火车由甲市驶往相距600km 的乙市,火车的速度是200km/时,火车离乙市的距离s(单位:km)随行驶时间t(单位:小时)变化的关系用图象表示正确的是( )A .B .C .D .二、填空题13.如图,在ABC V 中,AC BC =,点D E ,分别是边AB AC ,的中点,延长DE 到点F ,使DE EF =,得四边形ADCF .若使四边形ADCF 是正方形,则应在ABC V 中再添加一个条件为__________.14.如图,在▱ABCD中,E为CD的中点,连接AE并延长,交BC的延长线于点G,BF⊥AE,垂足为F,若AD=AE=1,∠DAE=30°,则EF=_____.15.若ab<0,则代数式2a b可化简为_____.16.菱形的边长为5,一条对角线长为6,则该菱形的面积为__________.17.如果一组数据1,3,5,a,8的方差是0.7,则另一组数据11,13,15,10a+,18的方差是________.18.若一个多边形的内角和是900º,则这个多边形是边形.19.有一组数据如下:2,3,a,5,6,它们的平均数是4,则这组数据的方差是.20.将一组数据中的每一个数都加上1得到一组新的数据,那么在众数、中位数、平均数、方差这四个统计量中,值保持不变的是_____.三、解答题21.2019年4月23日是第24个世界读书日.为迎接第24个世界读书日的到来,某校举办读书分享大赛活动:现有甲、乙两位同学的各项成绩如下表所示:若“推荐语”“读书心得”“读书讲座”的成绩按2:3:5确定综合成绩,则甲、乙二人谁能获胜?请通过计算说明理由参赛者推荐语读书心得读书讲座甲878595乙94888822.先化简代数式1﹣1xx-÷2212xx x-+,并从﹣1,0,1,3中选取一个合适的代入求值.23.某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张709080小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩.①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?24.如图,长方体的长为15cm,宽为10cm,高为20cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是多少?25.如图,将□ABCD的对角线BD向两个方向延长至点E和点F,使BE=DF,证:四边形AECF是平行四边形.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】63n63n273n7n7n是完全平方数,满足条件的最小正整数n为7.【详解】∴7n 是完全平方数; ∴n 的最小正整数值为7. 故选:D . 【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.==.解题关键是分解成一个完全平方数和一个代数式的积的形式.2.D解析:D 【解析】 【分析】 【详解】解:根据直角三角形的面积可以导出:斜边c=abh. 再结合勾股定理:a 2+b 2=c 2.进行等量代换,得a 2+b 2=222a b h,两边同除以a 2b 2, 得222111a b h +=. 故选D .3.A解析:A 【解析】试题分析:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h 随时间t 的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A . 考点:函数的图象.4.B解析:B 【解析】 【分析】根据两函数图象平行k 相同,以及平移规律“左加右减,上加下减”即可判断 【详解】∵将直线1l 向下平移若干个单位后得直线2l , ∴直线1l ∥直线2l ,∴12k k =,∵直线1l 向下平移若干个单位后得直线2l , ∴12b b >,∴当x 5=时,12y y > 故选B . 【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.5.A解析:A 【解析】 【分析】根据一次函数的系数k=-0.5<0,可得出y 随x 值的增大而减小,将x=1代入一次函数解析式中求出y 值即可. 【详解】在一次函数y=-0.5x+2中k=-0.5<0, ∴y 随x 值的增大而减小,∴当x=1时,y 取最大值,最大值为-0.5×1+2=1.5, 故选A . 【点睛】本题考查了一次函数的性质,牢记“k <0,y 随x 的增大而减小”是解题的关键.6.B解析:B 【解析】 【分析】 【详解】解:对角线互相垂直平分的四边形为菱形.已知对角线AC 、BD 互相垂直, 则需添加条件:AC 、BD 互相平分 故选:B7.D解析:D 【解析】分析:根据二次根式的加减法则对各选项进行逐一计算即可.详解:AB 不是同类项,不能合并,故本选项错误;C、3与3不是同类项,不能合并,故本选项错误;D、34=33=4,故本选项正确.故选:D.点睛:本题考查的是二次根式的加减法,在进行二次根式的加减运算时要把各二次根式化为最简二次根式,再合并同类项即可.8.D解析:D【解析】【分析】如图,根据三角形的中位线定理得到EH∥FG,EH=FG,EF=12BD,则可得四边形EFGH是平行四边形,若平行四边形EFGH是菱形,则可有EF=EH,由此即可得到答案.【详解】如图,∵E,F,G,H分别是边AD,DC,CB,AB的中点,∴EH=12AC,EH∥AC,FG=12AC,FG∥AC,EF=12BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形,假设AC=BD,∵EH=12AC,EF=12BD,则EF=EH,∴平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选D.【点睛】本题考查了中点四边形,涉及到菱形的判定,三角形的中位线定理,平行四边形的判定等知识,熟练掌握和灵活运用相关性质进行推理是解此题的关键.9.B解析:B【解析】【分析】当t=5时,点P到达A处,根据图象可知AB=5;当s=40时,点P到达点D处,根据三角形BCD的面积可求出BC的长,再利用勾股定理即可求解.【详解】解:当t=5时,点P到达A处,根据图象可知AB=5,过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,∵AC=AD,∴DE=CE=12 CD,当s=40时,点P到达点D处,则S=12CD•BC=12(2AB)•BC=5×BC=40,∴BC=8,∴AD=AC22225889AB BC++=故选B.【点睛】本题以动态的形式考查了函数、等腰三角形的性质、勾股定理等知识.准确分析图象,并结合三角形的面积求出BC的长是解题的关键.10.D解析:D【解析】【分析】【详解】∵边长为122112+=∴2-1∵A在数轴上原点的左侧,∴点A表示的数为负数,即12故选D11.C解析:C【解析】由于直线y=-x+4的图象不经过第三象限.因此无论m取何值,直线y=x+2m与y=-x+4的交点不可能在第三象限.故选C.12.A解析:A【解析】【分析】首先写出函数的解析式,根据函数的特点即可确定.【详解】由题意得:s与t的函数关系式为s=600-200t,其中0≤t≤3,所以函数图象是A.故选A.【点睛】本题主要考查函数的图象的知识点,解答时应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.二、填空题13.答案不唯一如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF是平行四边形再证明AC=DF即可再利用∠ACB=90°得出答案即可【详解】∠ACB=90°时四边形AD解析:答案不唯一,如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90°得出答案即可.【详解】∠ACB=90°时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE=12 BC,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D. E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90°,∴∠AED=90°,∴矩形ADCF是正方形.故答案为∠ACB=90°.【点睛】此题考查正方形的判定,解题关键在于掌握判定法则14.﹣1【解析】【分析】首先证明△ADE≌△GCE推出EG=AE=AD=CG=1再求出FG即可解决问题【详解】∵四边形ABCD是平行四边形∴AD∥BGAD=BC∴∠DAE=∠G=30°∵DE=EC∠AE1【解析】【分析】首先证明△ADE≌△GCE,推出EG=AE=AD=CG=1,再求出FG即可解决问题.【详解】∵四边形ABCD是平行四边形,∴AD∥BG,AD=BC,∴∠DAE=∠G=30°,∵DE=EC,∠AED=∠GEC,∴△ADE≌△GCE,∴AE=EG=AD=CG=1,在Rt△BFG中,∵∴,-1.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质、锐角三角函数等知识,解题的关键是熟练掌握基本知识.15.【解析】【分析】二次根式有意义就隐含条件b>0由ab<0先判断出ab的符号再进行化简即可【详解】若ab<0且代数式有意义;故有b>0a<0;则代数式=|a|=-a故答案为:-a【点睛】本题主要考查二解析:【解析】【分析】二次根式有意义,就隐含条件b>0,由ab<0,先判断出a、b的符号,再进行化简即可.【详解】若ab<0故有b>0,a<0;.故答案为:-a b.【点睛】本题主要考查二次根式的化简方法与运用:当a>0时,2a=a;当a<0时,2a=-a;当a=0时,2a=0.16.24【解析】【分析】根据菱形的性质利用勾股定理求得另一条对角线再根据菱形的面积等于两对角线乘积的一半求得菱形的面积【详解】解:如图当BD=6时∵四边形ABCD是菱形∴AC⊥BDAO=COBO=DO=解析:24【解析】【分析】根据菱形的性质利用勾股定理求得另一条对角线,再根据菱形的面积等于两对角线乘积的一半求得菱形的面积.【详解】解:如图,当BD=6时,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO=3,∵AB=5,∴AO==4,∴AC=4×2=8,∴菱形的面积是:6×8÷2=24,故答案为:24.【点睛】本题考查了菱形的面积公式,以及菱形的性质和勾股定理,关键是掌握菱形的面积等于两条对角线的积的一半.17.7【解析】【分析】根据题目中的数据和方差的定义可以求得所求数据的方差【详解】设一组数据135a8的平均数是另一组数据111315+1018的平均数是+10∵=07∴==07故答案为07【点睛】本题考解析:7【解析】【分析】根据题目中的数据和方差的定义,可以求得所求数据的方差.【详解】设一组数据1,3,5,a,8的平均数是x,另一组数据11,13,15,x+10,18的平均数是x+10,∵22222 (1)(3)(5)()(8)5x x x a x x-+-+-+-+-=0.7,∴222 (1110)(1310)(1810)5x x x--+--+⋯--=22222 (1)(3)(5)()(8)5x x x a x x -+-+-+-+-=0.7,故答案为0.7.【点睛】本题考查方差,解答本题的关键是明确题意,利用方差的知识解答.18.七【解析】【分析】根据多边形的内角和公式列式求解即可【详解】设这个多边形是边形根据题意得解得故答案为【点睛】本题主要考查了多边形的内角和公式熟记公式是解题的关键解析:七【解析】【分析】根据多边形的内角和公式()2180n-⋅︒,列式求解即可.【详解】设这个多边形是n边形,根据题意得,()2180900n-⋅︒=︒,解得7n=.故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.19.2【解析】试题分析:先由平均数计算出a=4×5-2-3-5-6=4再计算方差(一般地设n个数据x1x2…xn的平均数为=()则方差=)==2考点:平均数方差解析:2【解析】试题分析:先由平均数计算出a=4×5-2-3-5-6=4,再计算方差(一般地设n个数据,x1,x2,…x n的平均数为x,x=1n(12nx x x++⋯+),则方差2 S=1n[222 12nx xx x x x-+-+⋯+-()()()]),2 S=15[222222434445464-+-+-+-+-()()()()()]=2.考点:平均数,方差20.方差【解析】【分析】设原数据的众数为a 中位数为b 平均数为方差为S2数据个数为n 根据数据中的每一个数都加上1利用众数中位数的定义平均数方差的公式分别求出新数据的众数中位数平均数方差与原数据比较即可得答 解析:方差【解析】【分析】设原数据的众数为a 、中位数为b 、平均数为x 、方差为S 2,数据个数为n ,根据数据中的每一个数都加上1,利用众数、中位数的定义,平均数、方差的公式分别求出新数据的众数、中位数、平均数、方差,与原数据比较即可得答案.【详解】设原数据的众数为a 、中位数为b 、平均数为x 、方差为S 2,数据个数为n ,∵将一组数据中的每一个数都加上1,∴新的数据的众数为a+1,中位数为b+1, 平均数为1n (x 1+x 2+…+x n +n )=x +1, 方差=1n[(x 1+1-x -1)2+(x 2+1-x -1)2+…+(x n +1-x -1)2]=S 2, ∴值保持不变的是方差,故答案为:方差【点睛】本题考查的知识点众数、中位数、平均数、方差,熟练掌握方差和平均数的计算公式是解答本题的关键.三、解答题21.甲获胜;理由见解析.【解析】【分析】根据加权平均数的计算公式列出算式,进行计算即可.【详解】甲获胜;Q 甲的加权平均成绩为87285395590.4235⨯+⨯+⨯=++(分), 乙的加权平均成绩为94288388589.2235⨯+⨯+⨯=++(分), ∵90.489.2>,∴甲获胜.【点睛】此题考查了加权平均数的概念及应用,用到的知识点是加权平均数的计算公式,解题的关键是根据公式列出算式.22.-11x+,-14.【解析】试题分析:根据分式的除法和减法可以化简题目中的式子,然后在﹣1,0,1,3中选取一个使得原分式有意义的x的值代入即可解答本题.试题解析:原式=1﹣()()()21·11x xxx x x+-+-=1﹣21xx++=121x xx+--+=-11x+,当x=3时,原式=﹣131+=-14.23.(1)80;(2)①80;②85.【解析】【分析】(1)直接利用算术平均数的定义求解可得;(2)根据加权平均数的定义计算可得.【详解】解:(1)小张的期末评价成绩为709080803++=(分);(2)①小张的期末评价成绩为70190280780127⨯+⨯+⨯=++(分);②设小王期末考试成绩为x分,根据题意,得:601752780127x⨯+⨯+++…,解得84.2x…,∴小王在期末(期末成绩为整数)应该最少考85分才能达到优秀.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.24.需要爬行的最短距离是cm.【解析】【分析】先将长方体沿CF、FG、GH剪开,向右翻折,使面FCHG和面ADCH在同一个平面内,连接AB;或将长方体沿DE、EF、FC剪开,向上翻折,使面DEFC和面ADCH在同一个平面内,连接AB,然后分别在Rt△ABD与Rt△ABH,利用勾股定理求得AB的长,比较大小即可求得需要爬行的最短路程.【详解】解:将长方体沿CF、FG、GH剪开,向右翻折,使面FCHG和面ADCH在同一个平面内,连接AB ,如图1,由题意可得:BD=BC+CD=5+10=15cm ,AD=CH=15cm ,在Rt △ABD 中,根据勾股定理得:AB=22BD AD +=152cm ;将长方体沿DE 、EF 、FC 剪开,向上翻折,使面DEFC 和面ADCH 在同一个平面内, 连接AB ,如图2,由题意得:BH=BC+CH=5+15=20cm ,AH=10cm ,在Rt △ABH 中,根据勾股定理得:AB=22BH AH +=105cm ,则需要爬行的最短距离是152cm .连接AB ,如图3,由题意可得:BB′=B′E+BE=15+10=25cm ,AB′=BC=5cm ,在Rt △AB ′B 中,根据勾股定理得:AB=22BB AB ''+=526cm ,∵152<105<526,∴则需要爬行的最短距离是152cm .考点:平面展开-最短路径问题.25.答案见解析【解析】【分析】首先连接AC 交EF 于点O ,由平行四边形ABCD 的性质,可知OA=OC ,OB=OD ,又因为BE=DF ,可得OE=OF ,即可判定AECF 是平行四边形.【详解】证明:连接AC 交EF 于点O ;∵平行四边形ABCD∴OA=OC ,OB=OD∵BE=DF,∴OE=OF∴四边形AECF是平行四边形.【点睛】此题主要考查平行四边形的判定定理,关键是找出对角线互相平分,即可解题.。

2020-2021学年下学期期末考试八年级数学试卷(解析版)

2020-2021学年下学期期末考试八年级数学试卷(解析版)

八年级数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的。

1. 用配方法解方程2470--=时,原方程应变形为x xA. 2x+=(2)11(2)11x-= B. 2C. 2(4)23x+=x-= D. 2(4)23考点:解一元二次方程-配方法..专题:计算题.分析:方程常数项移到右边,两边加上4变形得到结果即可.解答:解:方程x2﹣4x﹣7=0,变形得:x2﹣4x=7,配方得:x2﹣4x+4=11,即(x﹣2)2=11,故选A点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键2. 下列各曲线中,不表示y是x的函数的是A B C D考点:函数的概念..分析:根据函数是一一对应的关系,给自变量一个值,有且只有一个函数值与其对应,就是函数,如果不是,则不是函数.解答:解:A、x取一个值,y有唯一值对应,正确;B、x取一个值,y有唯一值对应,正确;C、很明显,给自变量一个值,不是有唯一的值对应,所以不是函数,错误;D、x取一个值,y有唯一值对应,正确.故选:C.点评:此题主要考查了函数的定义,题目比较典型,是中考中热点问题.3. 对于函数21x=时,对应的函数值是y x=-,当自变量 2.5A. 2B. 2-C. 2±D. 4考点:函数值..分析:把自变量x的值代入函数关系式进行计算即可得解.解答:解:x=2.5时,y===2.故选A.点评:本题考查了函数值的求解,算术平方根的定义,准确计算是解题的关键.4. 在社会实践活动中,某小组对甲、乙、丙、丁四个地区三到六月的黄瓜价格进行调查。

四个地区四个月黄瓜价格的平均数均为3.60元,方差分别为218.1S=甲,217.2S=乙,220.1S=丙,212.8S=丁。

三到六月份黄瓜的价格最稳定的地区是A. 甲B. 乙C. 丙D. 丁考点:方差..分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵=18.1,S2乙=17.2,=20.1,=12.8,∴>>S2乙>,∴三到六月份黄瓜的价格最稳定的地区是丁.故选D.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5. 关于x的方程230x x c-+=有实数根,则整数c的最大值为A. 3B. 2C. 1D. 0根的判别式.. 分析:若一元二次方程有实数根,则根的判别式△=b2﹣4ac >0,建立关于c 的不等式,求出c 的取值范围,进而得到整数c 的最大值. 解答:解:∵关于x 的方程x2﹣3x+c=0有实数根, ∴△=9﹣4c >0, 解得c <2,故整数c 的最大值为2, 故选B . 点评:考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系: (1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6. 如图1,在矩形ABCD 中,有以下结论:①△AOB 是等腰三角形;②ABO ADO S S ∆∆=;③AC BD =;④AC BD ⊥;⑤当∠45ABD =︒时,矩形ABCD 会变成正方形。

2020-2021八年级数学下期末试卷(含答案)(4)

2020-2021八年级数学下期末试卷(含答案)(4)

2020-2021八年级数学下期末试卷(含答案)(4)一、选择题1.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m ,先到终点 的人原地休息.已知甲先出发2s .在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①a =8;②b =92;③c =123.其中正确的是( )A .①②③B .仅有①②C .仅有①③D .仅有②③2.1x +有意义,则x 的取值范围是( ) A .x >﹣1且x≠1 B .x≥﹣1C .x≠1D .x≥﹣1且x≠13.三角形的三边长为22()2a b c ab +=+,则这个三角形是( ) A .等边三角形B .钝角三角形C .直角三角形D .锐角三角形4.对于函数y =2x +1下列结论不正确是( ) A .它的图象必过点(1,3) B .它的图象经过一、二、三象限 C .当x >12时,y >0 D .y 值随x 值的增大而增大5.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是( ) A .矩形B .一组对边相等,另一组对边平行的四边形C .对角线互相垂直的四边形D .对角线相等的四边形6.下列结论中,错误的有( )①在Rt △ABC 中,已知两边长分别为3和4,则第三边的长为5;②△ABC 的三边长分别为AB ,BC ,AC ,若BC 2+AC 2=AB 2,则∠A =90°; ③在△ABC 中,若∠A :∠B :∠C =1:5:6,则△ABC 是直角三角形; ④若三角形的三边长之比为3:4:5,则该三角形是直角三角形; A .0个B .1个C .2个D .3个7.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S 甲2=1.5,S 乙2=2.6,S 丙2=3.5,S 丁2=3.68,你认为派谁去参赛更合适( ) A .甲B .乙C .丙D .丁8.函数的自变量取值范围是( ) A .x ≠0B .x >﹣3C .x ≥﹣3且x ≠0D .x >﹣3且x ≠09.如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A ,则点A 表示的数是( )A .-2B .﹣1+2C .﹣1-2D .1-210.无论m 为任何实数,关于x 的一次函数y =x +2m 与y =-x +4的图象的交点一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限11.如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为( )A .10mB .15mC .18mD .20m12.如图,将四边形纸片ABCD 沿AE 向上折叠,使点B 落在DC 边上的点F 处.若AFD V 的周长为18,ECF V 的周长为6,四边形纸片ABCD 的周长为( )A .20B .24C .32D .48二、填空题13.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠AEB=_________°.14.在函数41x y x -=+中,自变量x 的取值范围是______. 15.函数x____.16.已知13y x =-+,234y x =-,当x 时,12y y <.17.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x=a ﹣b 的解是x=3;④当x >3时,y 1<y 2中.则正确的序号有____________.18.如图,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFCG ,EF 交AD 于点H ,那么DH 的长是______.19.如图:长方形ABCD 中,AD=10,AB=4,点Q 是BC 的中点,点P 在AD 边上运动,当△BPQ 是等腰三角形时,AP 的长为___.20.已知3a b +=,2ab =a bb a的值为_________. 三、解答题21.某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中进球数(单位:个)进行统计,结果如下: 甲 10 6 10 6 8 乙79789经过计算,甲进球的平均数为8,方差为3.2. (1)求乙进球的平均数和方差;(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么?22.国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“每天在校体育活动时间”的问题随机抽样调查了321名初中学生.根据调查结果将学生每天在校体育活动时间t (小时)分成A ,B ,C ,D 四组,并绘制了统计图(部分).A 组:0.5tB <组:0.51tC <…组:1 1.5tD <…组: 1.5t …请根据上述信息解答下列问题: (1)C 组的人数是 ;(2)本次调查数据的中位数落在 组内;(3)若该市约有12840名初中学生,请你估算其中达到国家规定体育活动时间的人数大约有多少.23.如图,在ABC ∆中,13,23AB AC ==,点D 在AC 上,若10BD CD ==,AE 平分BAC ∠. (1)求AE 的长;(2)若F 是BC 中点,求线段EF 的长.24.在一条东西走向河的一侧有一村庄C ,河边原有两个取水点A ,B ,其中AB =AC ,由于某种原因,由C 到A 的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H (A 、H 、B 在一条直线上),并新修一条路CH ,测得CB =3千米,CH =2.4千米,HB =1.8千米.(1)问CH 是否为从村庄C 到河边的最近路?(即问:CH 与AB 是否垂直?)请通过计算加以说明;(2)求原来的路线AC 的长.25.如图,在正方形ABCD 中,E 、F 分别是边AB 、BC 的中点,连接AF 、DE 相交于点G ,连接CG .(1)求证:AF⊥DE;(2)求证:CG=CD.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】【详解】解:∵乙出发时甲行了2秒,相距8m,∴甲的速度为8/2=4m/ s.∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s.∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正确.∵100秒时乙到达终点,甲走了4×(100+2)=408 m,∴b=500-408=92 m.因此②正确.∵甲走到终点一共需耗时500/4=125 s,,∴c=125-2=123 s.因此③正确.终上所述,①②③结论皆正确.故选A.2.D解析:D【解析】【分析】此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.【详解】依题意,得x+1≥0且x-1≠0,解得x≥-1且x≠1.故选A.【点睛】本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负.3.C解析:C 【解析】 【分析】利用完全平方公式把等式变形为a 2+b 2=c 2,根据勾股定理逆定理即可判断三角形为直角三角形,可得答案. 【详解】∵22()2a b c ab +=+, ∴a 2+2ab+b 2=c 2+2ab , ∴a 2+b 2=c 2,∴这个三角形是直角三角形, 故选:C . 【点睛】本题考查了勾股定理的逆定理,如果一个三角形的两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角.4.C解析:C 【解析】 【分析】利用k 、b 的值依据函数的性质解答即可. 【详解】解:当x =1时,y =3,故A 选项正确,∵函数y =2x +1图象经过第一、二、三象限,y 随x 的增大而增大, ∴B 、D 正确, ∵y >0, ∴2x +1>0, ∴x >﹣12, ∴C 选项错误, 故选:C . 【点睛】此题考查一次函数的性质,熟记性质并运用解题是关键.5.D解析:D【解析】 【分析】如图,根据三角形的中位线定理得到EH ∥FG ,EH=FG ,EF=12BD ,则可得四边形EFGH 是平行四边形,若平行四边形EFGH 是菱形,则可有EF=EH ,由此即可得到答案. 【详解】如图,∵E ,F ,G ,H 分别是边AD ,DC ,CB ,AB 的中点,∴EH=12AC ,EH ∥AC ,FG=12 AC ,FG ∥AC ,EF=12BD , ∴EH ∥FG ,EH=FG ,∴四边形EFGH 是平行四边形, 假设AC=BD ,∵EH=12AC ,EF=12 BD , 则EF=EH ,∴平行四边形EFGH 是菱形,即只有具备AC=BD 即可推出四边形是菱形, 故选D .【点睛】本题考查了中点四边形,涉及到菱形的判定,三角形的中位线定理,平行四边形的判定等知识,熟练掌握和灵活运用相关性质进行推理是解此题的关键.6.C解析:C 【解析】 【分析】根据勾股定理可得①中第三条边长为57∠C =90°,根据三角形内角和定理计算出∠C =90°,可得③正确,再根据勾股定理逆定理可得④正确. 【详解】①Rt △ABC 中,已知两边分别为3和4,则第三条边长为5,说法错误,第三条边长为5或7.②△ABC 的三边长分别为AB ,BC ,AC ,若2BC +2AC =2AB ,则∠A =90°,说法错误,应该是∠C =90°.③△ABC 中,若∠A :∠B :∠C =1:5:6,此时∠C=90°,则这个三角形是一个直角三角形,说法正确.④若三角形的三边比为3:4:5,则该三角形是直角三角形,说法正确.故选C.【点睛】本题考查了直角三角形的判定,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.7.A解析:A【解析】【分析】根据方差的概念进行解答即可.【详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【点睛】本题考查了方差,解题的关键是掌握方差的定义进行解题.8.B解析:B【解析】【分析】【详解】由题意得:x+3>0,解得:x>-3.故选B.9.D解析:D【解析】【分析】【详解】∵边长为1=∴∵A在数轴上原点的左侧,∴点A表示的数为负数,即1故选D10.C解析:C【解析】由于直线y=-x+4的图象不经过第三象限.因此无论m取何值,直线y=x+2m与y=-x+4的交点不可能在第三象限.故选C .11.C解析:C 【解析】∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m ,AB=12m , ∴22AB BC +22125+=13m ,∴这棵树原来的高度=BC+AC=5+13=18m. 故选C.12.B解析:B 【解析】 【分析】根据折叠的性质易知矩形ABCD 的周长等于△AFD 和△CFE 的周长的和. 【详解】由折叠的性质知,AF=AB ,EF=BE .所以矩形的周长等于△AFD 和△CFE 的周长的和为18+6=24cm . 故矩形ABCD 的周长为24cm . 故答案为:B . 【点睛】本题考查了折叠的性质,解题关键是折叠前后图形的形状和大小不变,对应边和对应角相等.二、填空题13.15°【解析】【分析】【详解】解:由题意可知:是等腰三角形故答案为解析:15° 【解析】 【分析】 【详解】解:由题意可知:90,60.BAD DAE ∠=∠=oo.AB AD AE ==150.BAE o∴∠= ABE △是等腰三角形 15.AEB ∴∠=o 故答案为15.o14.x≥4【解析】【分析】根据被开方数为非负数及分母不能为0列不等式组求解可得【详解】解:根据题意知解得:x≥4故答案为x≥4【点睛】本题考查函数自变量的取值范围自变量的取值范围必须使含有自变量的表达式解析:x≥4【解析】【分析】根据被开方数为非负数及分母不能为0列不等式组求解可得.【详解】解:根据题意,知4010xx-≥⎧⎨+≠⎩,解得:x≥4,故答案为x≥4.【点睛】本题考查函数自变量的取值范围,自变量的取值范围必须使含有自变量的表达式都有意义:①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零..③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.15.【解析】【分析】由根式的被开方数大于等于0分式的分母不等于0联立不等式组求解x的取值即可【详解】根据题意得解得故答案为:【点睛】本题考查了函数的定义域及其求法函数的定义域就是使函数解析式有意义的自变解析:0x>.【解析】【分析】由根式的被开方数大于等于0,分式的分母不等于0联立不等式组求解x的取值即可.【详解】根据题意得,0 xx≥⎧⎨≠⎩解得,0x>故答案为:0x>.【点睛】本题考查了函数的定义域及其求法,函数的定义域,就是使函数解析式有意义的自变量的取值范围,是基础题.16.【解析】【分析】根据题意列出不等式求出解集即可确定出x的范围【详解】根据题意得:-x+3<3x-4移项合并得:4x>7解得:x故答案为:解析:74 >.【解析】【分析】根据题意列出不等式,求出解集即可确定出x的范围.【详解】根据题意得:-x+3<3x-4,移项合并得:4x>7,解得:x74 >.故答案为:7 4 >17.①③④【解析】【分析】根据y1=kx+b和y2=x+a的图象可知:k<0a<0所以当x>3时相应的x的值y1图象均低于y2的图象【详解】根据图示及数据可知:①k<0正确;②a<0原来的说法错误;③方解析:①③④【解析】【分析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x>3时,相应的x的值,y1图象均低于y2的图象.【详解】根据图示及数据可知:①k<0正确;②a<0,原来的说法错误;③方程kx+b=x+a的解是x=3,正确;④当x>3时,y1<y2正确.故答案是:①③④.【点睛】考查一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.18.【解析】【分析】思路分析:把所求的线段放在构建的特殊三角形内【详解】如图所示连接HCDF且HC与DF交于点P∵正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG∴∠BCF=∠DCG=30【解析】【分析】思路分析:把所求的线段放在构建的特殊三角形内【详解】如图所示.连接HC、DF,且HC与DF交于点P∵正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG ∴∠BCF=∠DCG=30°,FC =DC,∠EFC=∠ADC=90°∠BCG=∠BCD+∠DCG=90°+30°=120°∠DCF=∠BCG-∠BCF-∠DCG=120°-30°-30°=60°∴△DCF是等边三角形,∠DFC=∠FDC=60°∴∠EFD=∠ADF=30°,HF=HD∴HC是FD的垂直平分线,∠FCH=∠DCH=12∠DCF=30°在Rt△HDC中,HD=DC·tan∠DCH=3∵正方形ABCD的边长为3∴HD=DC·tan∠DCH=3×tan30°=3×3=3试题点评:构建新的三角形,利用已有的条件进行组合.19.2或25或3或8【解析】【分析】【详解】解:∵AD=10点Q是BC的中点∴BQ=BC=×10=5如图1PQ=BQ=5时过点P作PE⊥BC于E根据勾股定理QE=∴BE=BQ﹣QE=5﹣3=2∴AP=B解析:2或2.5或3或8.【解析】【分析】【详解】解:∵AD=10,点Q是BC的中点,∴BQ=12BC=12×10=5,如图1,PQ=BQ=5时,过点P作PE⊥BC于E,根据勾股定理,QE=2222543PQ PE -=-=,∴BE=BQ ﹣QE=5﹣3=2,∴AP=BE=2;②如图2,BP=BQ=5时,过点P 作PE ⊥BC 于E ,根据勾股定理,BE=2222543PB PE -=-=,∴AP=BE=3;③如图3,PQ=BQ=5且△PBQ 为钝角三角形时,BE=QE+BQ=3+5=8,AP=BE=8,④若BP=PQ ,如图4,过P 作PE ⊥BQ 于E ,则BE=QE=2.5,∴AP=BE=2.5. 综上所述,AP 的长为2或3或8或2.5.故答案为2或3或8或2.5.【点睛】本题考查等腰三角形的判定;勾股定理;矩形的性质;注意分类讨论是本题的解题关键.20.【解析】【分析】先把二次根式进行化简然后把代入计算即可得到答案【详解】解:=∵∴原式=;故答案为:【点睛】本题考查了二次根式的混合运算以及二次根式的化简求值解题的关键是熟练掌握二次根式的混合运算的运 解析:322【解析】【分析】先把二次根式进行化简,然后把3a b +=,2ab =,代入计算,即可得到答案.【详解】b a=+=(a b ab+, ∵3a b +=,2ab =,∴原式=3=22;故答案为:2. 【点睛】 本题考查了二次根式的混合运算,以及二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算的运算法则进行解题.三、解答题21.(1)乙平均数为8,方差为0.8;(2)乙.【解析】【分析】(1)根据平均数、方差的计算公式计算即可;(2)根据平均数相同时,方差越大,波动越大,成绩越不稳定;方差越小,波动越小,成绩越稳定进行解答.【详解】(1)乙进球的平均数为:(7+9+7+8+9)÷5=8,乙进球的方差为:15[(7﹣8)2+(9﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2]=0.8;(2)∵二人的平均数相同,而S 甲2=3.2,S 乙2=0.8,∴S 甲2>S 乙2,∴乙的波动较小,成绩更稳定,∴应选乙去参加定点投篮比赛.【点睛】本题考查了方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 21n=[(x 1x -)2+(x 2x -)2+…+(x n x -)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了平均数.22.(1)141;(2)C ;(3)估算其中达到国家规定体育活动时间的人数大约有8040 人.【解析】【分析】(1)C 组的人数为总人数减去各组人数;(2))根据中位数的概念即中位数应是第161个数据,即可得出答案;(3)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数.【详解】(1)C 组人数为321(2010060)141-++=(人),故答案为:141;(2)本次调查数据的中位数是第161个数据,而第161个数据落在C 组,所以本次调查数据的中位数落在C 组内,故答案为:C .(3)估算其中达到国家规定体育活动时间的人数大约有14160128408040321+⨯=(人). 【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数的求法:给定n 个数据,按从小到大排序,如果n 为奇数,位于中间的那个数就是中位数;如果n 为偶数,位于中间两个数的平均数就是中位数.23.(1)12;(2)5【解析】【分析】(1)先证明△ABD 是等腰三角形,再根据三线合一得到AE BD ⊥,利用勾股定理求得AE 的长;(2)利用三角线的中位线定理可得:12EF CD =,再进行求解. 【详解】解:(1)13AD AC CD =-=∴AB AD =∵AE 平分BAC ∠,∴5,EB ED AE BD ==⊥根据勾股定理,得12AE == (2)由(1),知EB ED =,又∵FB FC =, ∴152EF CD ==. 【点睛】 考查了三角形中位线定理,解题关键是利用三线合一和三角形的中位线.24.(1)CH 是从村庄C 到河边的最近路,理由见解析;(2)原来的路线AC 的长为2.5千米.【解析】【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可【详解】(1)是,理由是:在△CHB 中,∵CH 2+BH 2=(2.4)2+(1.8)2=9BC 2=9∴CH 2+BH 2=BC 2∴CH ⊥AB ,所以CH 是从村庄C 到河边的最近路(2)设AC =x在Rt △ACH 中,由已知得AC =x ,AH =x ﹣1.8,CH =2.4由勾股定理得:AC 2=AH 2+CH 2∴x 2=(x ﹣1.8)2+(2.4)2解这个方程,得x =2.5,答:原来的路线AC 的长为2.5千米.【点睛】此题考查勾股定理及其逆定理的应用,熟练掌握基础知识是解题的关键.25.(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)正方形ABCD 中,AB=BC ,BF=AE ,且∠ABF=∠DAE=90°,即可证明△ABF ≌△DAE ,即可得∠DGA=90°,结论成立.(2)延长AF 交DC 延长线于M ,证明△ABF ≌△MCF ,说明△DGM 是直角三角形,命题得证.试题解析:(1)∵四边形ABCD 为正方形∴AB=BC=CD=AD ,∠ABF=∠DAE=90°,又∵E ,F 分别是边AB .BC 的中点∴AE=12AB .BF=12BC ∴AE=BF .在△ABF 与△DAE 中, {DA ABDAE ABF AE BF=∠=∠=,∴△DAE ≌△ABF (SAS ).∴∠ADE=∠BAF ,∵∠BAF+∠DAG=90°,∴∠ADG+∠DAG=90°,∴∠DGA=90°,即AF ⊥DE .(2)证明:延长AF 交DC 延长线于M ,∵F 为BC 中点, ∴CF=FB又∵DM ∥AB , ∴∠M=∠FAB . 在△ABF 与△MCF 中, {M FABCFM BFA CF FB===∠∠∠∠ ∴△ABF ≌△MCF (AAS ), ∴AB=CM .∴AB=CD=CM ,∵△DGM 是直角三角形, ∴GC=12DM =DC . 考点:1.全等三角形的判定与性质;2.直角三角形的性质;3.正方形的性质.。

2020-2021初二数学下期末试卷(及答案)(1)

2020-2021初二数学下期末试卷(及答案)(1)

2020-2021初二数学下期末试卷(及答案)(1)一、选择题1.若2(5)x -=x ﹣5,则x 的取值范围是( ) A .x <5B .x ≤5C .x ≥5D .x >52.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示: 型号(厘米) 38 39 40 41 42 43 数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数B .中位数C .众数D .方差3.如图,矩形ABCD 的对角线AC 与数轴重合(点C 在正半轴上),5AB =,12BC =,若点A 在数轴上表示的数是-1,则对角线AC BD 、的交点在数轴上表示的数为( )A .5.5B .5C .6D .6.54.要使函数y =(m ﹣2)x n ﹣1+n 是一次函数,应满足( ) A .m ≠2,n ≠2 B .m =2,n =2C .m ≠2,n =2D .m =2,n =05.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形 ③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有( )个. A .4 B .3C .2D .16.4133的结果为( ). A .32 B .23C 2D .27.下列计算正确的是( ) A 2(4)-=2B 52=3C 52=10D 62=38.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A.参加本次植树活动共有30人B.每人植树量的众数是4棵C.每人植树量的中位数是5棵D.每人植树量的平均数是5棵9.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=8,则HE等于()A.20B.16C.12D.810.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m211.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A.10m B.15m C.18m D.20m12.下列运算正确的是()A.235+=B.32﹣2=3C.236⨯=D.632÷=二、填空题13.如图,直线l1:y=x+n–2与直线l2:y=mx+n相交于点P(1,2).则不等式mx+n<x+n–2的解集为______.14.如图,一次函数y=kx+b的图象与x轴相交于点(﹣2,0),与y轴相交于点(0,3),则关于x的方程kx=b的解是_____.15.如图所示,将四根木条组成的矩形木框变成▱ABCD的形状,并使其面积变为原来的一半,则这个平行四边形的一个最小的内角的度数是_____.16.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.17.菱形的边长为5,一条对角线长为6,则该菱形的面积为__________.18.如图,直线y=kx+b(k>0)与x轴的交点为(﹣2,0),则关于x的不等式kx+b<0的解集是_____.19.一组数据:1、2、5、3、3、4、2、4,它们的平均数为_______,中位数为_______,方差是_______.20.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y 米与时间x 小时(0≦x ≦5)的函数关系式为___三、解答题21.某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中进球数(单位:个)进行统计,结果如下: 甲 10 6 10 6 8 乙79789经过计算,甲进球的平均数为8,方差为3.2. (1)求乙进球的平均数和方差;(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么? 22.计算:0221218(2020)()(21)2π-+---+-.23.A 、B 两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B 城,乙车驶往A 城,甲车在行驶过程中速度始终不变.甲车距B 城高速公路入口处的距离y (千米)与行驶时间x (时)之间的关系如图.(1)求y 关于x 的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s (千米).请直接写出s 关于x 的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a (千米/时)并保持匀速行驶,结果比甲车晚20分钟到达终点,求乙车变化后的速度a .在下图中画出乙车离开B 城高速公路入口处的距离y (千米)与行驶时间x (时)之间的函数图象.24.某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为9元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE 表示日销售量y (件)与销售时间x (天)之间的函数关系,已知线段DE 表示的函数关系中,时间每增加1天,日销售量减少4件,(1)请直接写出y 与x 之间的函数关系式;(2)日销售利润不低于960元的天数共有多少天?试销售期间,日销售最大利润是多少元?(3)工作人员在统计的过程中发现,有连续两天的销售利润之和为1980元,请你算出是哪两天.25.如图,在正方形ABCD中,E、F分别是边AB、BC的中点,连接AF、DE相交于点G,连接CG.(1)求证:AF⊥DE;(2)求证:CG=CD.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】2a(a≤0),由此性质求得答案即可.【详解】()2-,5x∴5-x≤0∴x≥5.故选C.【点睛】2a(a≥02a(a≤0).解析:C【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数.详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.故选C.点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.3.A解析:A【解析】【分析】连接BD交AC于E,由矩形的性质得出∠B=90°,AE=12AC,由勾股定理求出AC,得出OE,即可得出结果.【详解】连接BD交AC于E,如图所示:∵四边形ABCD是矩形,∴∠B=90°,AE=12 AC,∴222251213AB BC+=+=,∴AE=6.5,∵点A表示的数是-1,∴OA=1,∴OE=AE-OA=5.5,∴点E表示的数是5.5,即对角线AC、BD的交点表示的数是5.5;故选A.【点睛】本题考查了矩形的性质、勾股定理、实数与数轴;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.4.C【解析】【分析】根据y=kx+b(k、b是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案.【详解】解:∵y=(m﹣2)x n﹣1+n是一次函数,∴m﹣2≠0,n﹣1=1,∴m≠2,n=2,故选C.【点睛】本题考查了一次函数,y=kx+b,k、b是常数,k≠0,x的次数等于1是解题关键.5.C解析:C【解析】【分析】【详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C.考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.6.D解析:D【解析】【分析】根据二次根式的除法法则进行计算即可.【详解】===.原式2故选:D.【点睛】本题考查二次根式的除法,掌握二次根式的除法法则是解答本题的关键.7.C解析:C【解析】根据二次根式的性质与二次根式的乘除运算法则逐项进行计算即可得.【详解】,故A选项错误;不是同类二次根式,不能合并,故B选项错误;C选项正确;D选项错误,故选C.【点睛】本题考查了二次根式的化简、二次根式的加减运算、乘除运算,解题的关键是掌握二次根式的性质与运算法则.8.D解析:D【解析】试题解析:A、∵4+10+8+6+2=30(人),∴参加本次植树活动共有30人,结论A正确;B、∵10>8>6>4>2,∴每人植树量的众数是4棵,结论B正确;C、∵共有30个数,第15、16个数为5,∴每人植树量的中位数是5棵,结论C正确;D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植树量的平均数约是4.73棵,结论D不正确.故选D.考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.9.D解析:D【解析】【分析】根据三角形中位线定理得出AC的长,再根据直角三角形斜边上的中线等于斜边的一半即可求出【详解】∵D、F分别是AB、BC的中点,∴DF是△ABC的中位线,∴DF=12 AC;∵FD=8∴AC=16又∵E是线段AC的中点,AH⊥BC,∴EH=12 AC,∴EH=8.故选D.【点睛】本题综合考查了三角形中位线定理、直角三角形斜边上的中线.熟记性质与定理并准确识图是解题的关键.10.B解析:B【解析】【分析】【详解】解:如图,设直线AB的解析式为y=kx+b,则4+=1200 {5k+b=1650k b,解得450 {600 kb==-故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2)故选B.【点睛】本题考查一次函数的应用.11.C解析:C【解析】∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m,AB=12m,∴=13m,∴这棵树原来的高度=BC+AC=5+13=18m.故选C.12.C解析:C【解析】【分析】根据二次根式得加减法法则及乘除法法则逐一计算即可得答案.【详解】B.,故该选项计算错误,,故该选项计算正确,,故该选项计算错误.故选:C.【点睛】本题考查二次根式得运算,熟练掌握运算法则是解题关键.二、填空题13.>1【解析】∵直线l1:y=x+n-2与直线l2:y=mx+n相交于点P(12)∴关于x的不等式mx+n<x+n-2的解集为x>1故答案为x>1解析:x>1【解析】∵直线l1:y=x+n-2与直线l2:y=mx+n相交于点P(1,2),∴关于x的不等式mx+n<x+n-2的解集为x>1,故答案为x>1.14.x=2【解析】【分析】依据待定系数法即可得到k和b的值进而得出关于x的方程kx=b的解【详解】解:∵一次函数y=kx+b的图象与x轴相交于点(﹣20)与y轴相交于点(03)∴解得∴关于x的方程kx=解析:x=2【解析】【分析】依据待定系数法即可得到k和b的值,进而得出关于x的方程kx=b的解.【详解】解:∵一次函数y=kx+b的图象与x轴相交于点(﹣2,0),与y轴相交于点(0,3),∴0=-2k+b3=b⎧⎨⎩,解得3 2 3kb⎧=⎪⎨⎪=⎩,∴关于x的方程kx=b即为:32x=3,解得x=2,故答案为:x=2.【点睛】本题主要考查了待定系数法的应用,任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.15.30°【解析】【分析】过A作AE⊥BC于点E由四根木条组成的矩形木框变成▱ABCD的形状面积变为原来的一半可得AE=AB由此即可求得∠ABE=30°即平行四边形中最小的内角为30°【详解】解:过A作解析:30°【解析】【分析】过A作AE⊥BC于点E,由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,可得AE=12AB,由此即可求得∠ABE=30°,即平行四边形中最小的内角为30°.【详解】解:过A作AE⊥BC于点E,如图所示:由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,得到AE=12AB,又△ABE为直角三角形,∴∠ABE=30°,则平行四边形中最小的内角为30°.故答案为:30°【点睛】本题考查了平行四边形的面积公式及性质,根据题意求得AE=12AB是解决问题的关键.16.【解析】在Rt△ABC中AB=5米BC=3米∠ACB=90°∴AC=∴AC+BC=3+4=7米故答案是:7解析:【解析】在Rt△ABC中,AB=5米,BC=3米,∠ACB=90°,∴AC=224-=AB BC∴AC+BC=3+4=7米.故答案是:7.17.24【解析】【分析】根据菱形的性质利用勾股定理求得另一条对角线再根据菱形的面积等于两对角线乘积的一半求得菱形的面积【详解】解:如图当BD=6时∵四边形ABCD是菱形∴AC⊥BDAO=COBO=DO=解析:24【解析】【分析】根据菱形的性质利用勾股定理求得另一条对角线,再根据菱形的面积等于两对角线乘积的一半求得菱形的面积.【详解】解:如图,当BD=6时,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO=3,∵AB=5,∴AO==4,∴AC=4×2=8,∴菱形的面积是:6×8÷2=24,故答案为:24.【点睛】本题考查了菱形的面积公式,以及菱形的性质和勾股定理,关键是掌握菱形的面积等于两条对角线的积的一半.18.x<﹣2【解析】【分析】根据一次函数的性质得出y随x的增大而增大当x<﹣2时y<0即可求出答案【详解】解:∵直线y=kx+b(k>0)与x轴的交点为(﹣20)∴y随x的增大而增大当x<﹣2时y<0即解析:x<﹣2【解析】【分析】根据一次函数的性质得出y随x的增大而增大,当x<﹣2时,y<0,即可求出答案.【详解】解:∵直线y=kx+b(k>0)与x轴的交点为(﹣2,0),∴y 随x 的增大而增大,当x <﹣2时,y <0,即kx +b <0.故答案为:x <﹣2.【点睛】本题主要考查对一次函数与一元一次不等式,一次函数的性质等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.19.33【解析】【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:12233445解析:3, 3,32. 【解析】【分析】根据平均数的公式即可求出答案,将数据按照由小到大的顺序重新排列,中间两个数的平均数即是中位数,根据方差的公式计算即可得到这组数据的方差.【详解】平均数=1(12533424)38⨯+++++++=,将数据重新排列是:1、2、2、3、3、4、4、5,∴中位数是3332+=, 方差=222221(13)2(23)2(33)2(43)(53)8⎡⎤⨯-+⨯-+⨯-+⨯-+-⎣⎦=32, 故答案为:3,3,32. 【点睛】 此题考查计算能力,计算平均数,中位数,方差,正确掌握各计算的公式是解题的关键.20.y=6+03x 【解析】试题分析:根据题意可得:水库的水位=初始水位高度+每小时上升的速度×时间即y=6+03x 考点:一次函数的应用解析:y=6+0.3x【解析】试题分析:根据题意可得:水库的水位=初始水位高度+每小时上升的速度×时间,即y=6+0.3x.考点:一次函数的应用.三、解答题21.(1)乙平均数为8,方差为0.8;(2)乙.【解析】【分析】(1)根据平均数、方差的计算公式计算即可;(2)根据平均数相同时,方差越大,波动越大,成绩越不稳定;方差越小,波动越小,成绩越稳定进行解答.【详解】(1)乙进球的平均数为:(7+9+7+8+9)÷5=8,乙进球的方差为:15[(7﹣8)2+(9﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2]=0.8;(2)∵二人的平均数相同,而S甲2=3.2,S乙2=0.8,∴S甲2>S乙2,∴乙的波动较小,成绩更稳定,∴应选乙去参加定点投篮比赛.【点睛】本题考查了方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S21n=[(x1x-)2+(x2x-)2+…+(x n x-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了平均数.22.﹣4.【解析】【分析】利用负指数幂的性质、零指数幂的性质、二次根式的性质进行化简再解答即可.【详解】解:原式=2×+1﹣﹣1=﹣﹣1=4.【点睛】本题考查了负指数幂的性质、零指数幂的性质、二次根式的性质,掌握各类代数式的性质是解答本题的关键.23.(1)y=-90x+300;(2)s=300-150x;(3)a=108(千米/时),作图见解析.【解析】【分析】(1)由图知y是x的一次函数,设y=kx+b.把图象经过的坐标代入求出k与b的值.(2)根据路程与速度的关系列出方程可解.(3)如图:当s=0时,x=2,即甲乙两车经过2小时相遇.再由1得出y=-90x+300.设y=0时,求出x的值可知乙车到达终点所用的时间.【详解】(1)由图知y是x的一次函数,设y=kx+b∵图象经过点(0,300),(2,120),∴300{2120 bk b=+=解得90{300k b =-=∴y=-90x+300.即y 关于x 的表达式为y=-90x+300.(2)由(1)得:甲车的速度为90千米/时,甲乙相距300千米.∴甲乙相遇用时为:300÷(90+60)=2,当0≤x≤2时,函数解析式为s=-150x+300,2<x≤103时,s=150x-300 103<x≤5时,s=60x ; (3)在s=-150x+300中.当s=0时,x=2.即甲乙两车经过2小时相遇.因为乙车比甲车晚20分钟到达,20分钟=13小时, 所以在y=-90x+300中,当y=0,x=103. 所以,相遇后乙车到达终点所用的时间为103+13-2=53(小时). 乙车与甲车相遇后的速度a=(300-2×60)÷53=108(千米/时). ∴a=108(千米/时).乙车离开B 城高速公路入口处的距离y (千米)与行驶时间x (时)之间的函数图象如图所示.考点:一次函数的应用.24.(1)20(018)4432(1830)x x y x x <≤≤⎧=⎨-+≤⎩;(2)试销售期间,日销售最大利润是1080元;(3)连续两天的销售利润之和为1980元的是第16,17两天和第25,26两天.【解析】【分析】(1)根据点D 的坐标利用待定系数法即可求出线段OD 的函数关系式,根据第23天销售了340件,结合时间每增加1天日销售量减少4件,即可求出线段DE 的函数关系式,联立两函数关系式求出交点D的坐标,此题得解;(2)分0≤x≤18和18<x≤30,找出关于x的一元一次不等式,解之即可得出x的取值范围,有起始和结束时间即可求出日销售利润不低于960元的天数,再根据点D的坐标结合日销售利润=单件利润×日销售数,即可求出日销售最大利润;(3) 设第x天和第(x+1)天的销售利润之和为1980元,据此列出方程,根据取值范围解答即可.【详解】(1)20(018),4432(1830).x xyx x≤≤⎧=⎨-+≤⎩<(2)当0≤x≤18时,根据题意得,(9﹣6)×20x≥960,解得:x≥16;当18<x≤30时,根据题意得,(9﹣6)×(-4x+432)≥960,解得:x≤28.∴16≤x≤28. 28-16+1=13(天),∴日销售利润不低于960元的天数共有13天.由20x=-4x+432解得,x=18,当x=18时,y=20x=360,∴点D的坐标为(18,360),∴日最大销售量为360件,360×(9-6)=1080(元),∴试销售期间,日销售最大利润是1080元.(3)设第x天和第(x+1)天的销售利润之和为1980元.∵1980÷(9﹣6)=660<340×2,∴x<17,或x+1>23,当x<17时,根据题意可得20x+20(x+1)=660,解得x=16,符合,当x+1>23时,-4x+432-4(x+1)+432=660,解得x=25,符合,∴连续两天的销售利润之和为1980元的是第16,17两天和第25,26两天.【点睛】本题考查了一次函数的应用、待定系数法一次函数解析式,解题的关键是利用待定系数法求出OD的函数关系式以及依照数量关系找出DE的函数关系式.25.(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)正方形ABCD中,AB=BC,BF=AE,且∠ABF=∠DAE=90°,即可证明△ABF≌△DAE,即可得∠DGA=90°,结论成立.(2)延长AF交DC延长线于M,证明△ABF≌△MCF,说明△DGM是直角三角形,命题得证.试题解析:(1)∵四边形ABCD为正方形∴AB=BC=CD=AD,∠ABF=∠DAE=90°,又∵E,F分别是边AB.BC的中点∴AE=12AB.BF=12BC∴AE=BF.在△ABF 与△DAE 中,{DA ABDAE ABF AE BF=∠=∠=,∴△DAE ≌△ABF (SAS ).∴∠ADE=∠BAF ,∵∠BAF+∠DAG=90°,∴∠ADG+∠DAG=90°,∴∠DGA=90°,即AF ⊥DE .(2)证明:延长AF 交DC 延长线于M ,∵F 为BC 中点,∴CF=FB又∵DM ∥AB ,∴∠M=∠FAB .在△ABF 与△MCF 中,{M FABCFM BFA CF FB===∠∠∠∠∴△ABF ≌△MCF (AAS ),∴AB=CM .∴AB=CD=CM ,∵△DGM 是直角三角形,∴GC=12DM =DC . 考点:1.全等三角形的判定与性质;2.直角三角形的性质;3.正方形的性质.。

2020-2021初二数学下期末试卷附答案(3)

2020-2021初二数学下期末试卷附答案(3)

2020-2021初二数学下期末试卷附答案(3)一、选择题1.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示: 型号(厘米) 38 39 40 41 42 43 数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数B .中位数C .众数D .方差2.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,),则点C 的坐标为( )A .(-,1)B .(-1,)C .(,1)D .(-,-1)3.下列各命题的逆命题成立的是( ) A .全等三角形的对应角相等 B .如果两个数相等,那么它们的绝对值相等 C .两直线平行,同位角相等 D .如果两个角都是45°,那么这两个角相等 4.顺次连接对角线互相垂直且相等的四边形各边中点所围成的四边形是( )A .矩形B .菱形C .正方形D .平行四边形5.估计()-⋅1230246的值应在( ) A .1和2之间 B .2和3之间C .3和4之间D .4和5之间6.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4)AOB DEOF S S 四边形∆=中正确的有 A .4个B .3个C .2个D .1个7.如图,以 Rt△ABC的斜边 BC为一边在△ABC的同侧作正方形 BCEF,设正方形的中心为O,连接 AO,如果 AB=4,AO=62,那么 AC 的长等于()A.12B.16C.43D.828.如图,长方形纸片ABCD中,AB=4,BC=6,点E在AB边上,将纸片沿CE折叠,点B落在点F处,EF,CF分别交AD于点G,H,且EG=GH,则AE的长为( )A.23B.1C.32D.29.如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于()A.2B.3C.4D.610.如图,D3081次六安至汉口动车在金寨境内匀速通过一条隧道(隧道长大于火车长),火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图象描述大致是()A.B.C .D .11.下列各组数,可以作为直角三角形的三边长的是( ) A .2,3,4 B .7,24,25C .8,12,20D .5,13,1512.正方形具有而菱形不一定具有的性质是( )A .对角线互相平分B .每条对角线平分一组对角C .对边相等D .对角线相等二、填空题13.若x=2-1, 则x 2+2x+1=__________.14.长、宽分别为a 、b 的矩形,它的周长为14,面积为10,则a 2b +ab 2的值为_____. 15.已知13y x =-+,234y x =-,当x 时,12y y <.16.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为 .17.在三角形ABC 中,点,,D E F 分别是,,BC AB AC 的中点,AH BC ⊥于点H ,若50DEF ∠=,则CFH ∠=________.18.在ABC ∆中,13AC BC ==, 10AB =,则ABC ∆面积为_______. 19.已知一次函数y=kx+b 的图象如图,则关于x 的不等式kx+b >0的解集是______.20.如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是_______三、解答题21.计算:0221218(2020)()(21)2π-+---+-22.如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是.23.如图为六个大小完全相同的矩形方块组合而成的图形,请仅用无刻度的直尺分别在下列方框内完成作图:(1)在图(1)中,作与MN平行的直线AB;(2)在图(2)中,作与MN垂直的直线CD.24.如图,直线l1的函数解析式为y=2x–2,直线l1与x轴交于点D.直线l2:y=kx+b与x 轴交于点A,且经过点B(3,1),如图所示.直线l1、l2交于点C(m,2).(1)求点D、点C的坐标;(2)求直线l2的函数解析式;(3)利用函数图象写出关于x、y的二元一次方程组22y xy kx b=-⎧⎨=+⎩的解.25.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲 78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77乙 93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:得出结论:a.估计乙部门生产技能优秀的员工人数为____________;b.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数.详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.故选C.点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2.A解析:A【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.∴点C的坐标为(-,1)故选A.考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质.3.C解析:C【解析】试题分析:首先写出各个命题的逆命题,再进一步判断真假.解:A、逆命题是三个角对应相等的两个三角形全等,错误;B、绝对值相等的两个数相等,错误;C、同位角相等,两条直线平行,正确;D、相等的两个角都是45°,错误.故选C.4.C解析:C【解析】【分析】根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其为平行四边形,再根据邻边互相垂直且相等,可得四边形是正方形.【详解】解:、、、分别是、、、的中点,,,EH=FG=BD,EF=HG=AC,四边形是平行四边形,,,,, 四边形是正方形,故选:C . 【点睛】本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.5.B解析:B 【解析】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围. 【详解】(130246=11302466=252,而25=45=20⨯ 20, 所以2<252<3, 所以估计(1302462和3之间, 故选B.【点睛】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.6.B解析:B 【解析】 【分析】根据正方形的性质得AB=AD=DC ,∠BAD=∠D=90°,则由CE=DF 易得AF=DE ,根据“SAS”可判断△ABF ≌△DAE ,所以AE=BF ;根据全等的性质得∠ABF=∠EAD , 利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则AE ⊥BF ;连结BE ,BE >BC ,BA≠BE ,而BO ⊥AE ,根据垂直平分线的性质得到OA≠OE ;最后根据△ABF ≌△DAE 得S △ABF =S △DAE ,则S △ABF -S △AOF =S △DAE -S △AOF ,即S △AOB =S 四边形DEOF . 【详解】解:∵四边形ABCD 为正方形, ∴AB=AD=DC ,∠BAD=∠D=90°, 而CE=DF , ∴AF=DE ,在△ABF 和△DAE 中AB DA BAD ADE AF DE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DAE , ∴AE=BF ,所以(1)正确; ∴∠ABF=∠EAD , 而∠EAD+∠EAB=90°, ∴∠ABF+∠EAB=90°, ∴∠AOB=90°,∴AE ⊥BF ,所以(2)正确; 连结BE ,∵BE >BC , ∴BA≠BE , 而BO ⊥AE ,∴OA≠OE ,所以(3)错误; ∵△ABF ≌△DAE , ∴S △ABF =S △DAE ,∴S △ABF -S △AOF =S △DAE -S △AOF , ∴S △AOB =S 四边形DEOF ,所以(4)正确. 故选B . 【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了正方形的性质.7.B解析:B 【解析】 【分析】首选在AC 上截取4CG AB ==,连接OG ,利用SAS 可证△ABO ≌△GCO ,根据全等三角形的性质可以得到:62OA OG ==AOB COG ∠=∠,则可证△AOG 是等腰直角三角形,利用勾股定理求出12AG =,从而可得AC 的长度. 【详解】解:如下图所示,在AC 上截取4CG AB ==,连接OG , ∵四边形BCEF 是正方形,90BAC ∠=︒, ∴OB OC =,90BAC BOC ∠=∠=︒, ∴点B 、A 、O 、C 四点共圆, ∴ABO ACO ∠=∠, 在△ABO 和△GCO 中,{BA CGABO ACO OB OC=∠=∠=, ∴△ABO ≌△GCO ,∴62OA OG ==,AOB COG ∠=∠, ∵90BOC COG BOG ∠=∠+∠=︒, ∴90AOG AOB BOG ∠=∠+∠=︒, ∴△AOG 是等腰直角三角形, ∴()()22626212AG =+=,∴12416AC =+=. 故选:B .【点睛】本题考查正方形的性质;全等三角形的判定与性质;勾股定理;直角三角形的性质.8.B解析:B 【解析】 【分析】根据折叠的性质得到∠F=∠B=∠A=90°,BE=EF ,根据全等三角形的性质得到FH=AE ,GF=AG ,得到AH=BE=EF ,设AE=x ,则AH=BE=EF=4-x ,根据勾股定理即可得到结论. 【详解】∵将△CBE 沿CE 翻折至△CFE , ∴∠F=∠B=∠A=90°,BE=EF , 在△AGE 与△FGH 中,A F AGE FGH EG GH ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AGE ≌△FGH (AAS ), ∴FH=AE ,GF=AG , ∴AH=BE=EF ,设AE=x ,则AH=BE=EF=4-x ∴DH=x+2,CH=6-x , ∵CD 2+DH 2=CH 2, ∴42+(2+x )2=(6-x )2, ∴x=1, ∴AE=1, 故选B . 【点睛】考查了翻折变换,矩形的性质,全等三角形的判定和性质,熟练掌握折叠的性质是解题的关键.9.C解析:C 【解析】 【分析】 【详解】解:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD=BC=8,CD=AB=6, ∴∠F=∠DCF , ∵∠C 平分线为CF , ∴∠FCB=∠DCF , ∴∠F=∠FCB , ∴BF=BC=8, 同理:DE=CD=6,∴AF=BF−AB=2,AE=AD−DE=2 ∴AE+AF=4 故选C10.A解析:A 【解析】 【分析】先分析题意,把各个时间段内y 与x 之间的关系分析清楚,本题是分段函数,分为三段. 【详解】解:根据题意可知:火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系具体可描当火车开始进入时y逐渐变大,火车完全进入后一段时间内y不变,当火车开始出来时y逐渐变小,反映到图象上应选A.故选:A.【点睛】本题考查了动点问题的函数图象,主要考查了根据实际问题作出函数图象的能力.解题的关键是要知道本题是分段函数,分情况讨论y与x之间的函数关系.11.B解析:B【解析】试题解析:A、∵22+32≠42,∴不能构成直角三角形;B、∵72+242=252,∴能构成直角三角形;C、∵82+122≠202,∴不能构成直角三角形;D、∵52+132≠152,∴不能构成直角三角形.故选B.12.D解析:D【解析】【分析】列举出正方形具有而菱形不一定具有的所有性质,由此即可得出答案.【详解】正方形具有而菱形不一定具有的性质是:①正方形的对角线相等,而菱形不一定对角线相等;②正方形的四个角是直角,而菱形的四个角不一定是直角.故选D.【点睛】本题考查了正方形、菱形的性质,熟知正方形及菱形的性质是解决问题的关键.二、填空题13.2【解析】【分析】先利用完全平方公式对所求式子进行变形然后代入x的值进行计算即可【详解】∵x=-1∴x2+2x+1=(x+1)2=(-1+1)2=2故答案为:2【点睛】本题考查了代数式求值涉及了因式解析:2【解析】【分析】先利用完全平方公式对所求式子进行变形,然后代入x的值进行计算即可.∵,∴x2+2x+1=(x+1)22=2,故答案为:2.【点睛】本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键.14.【解析】【分析】由周长和面积可分别求得a+b和ab的值再利用因式分解把所求代数式可化为ab(a+b)代入可求得答案【详解】∵长宽分别为ab的矩形它的周长为14面积为10∴a+b==7ab=10∴a2解析:【解析】【分析】由周长和面积可分别求得a+b和ab的值,再利用因式分解把所求代数式可化为ab(a+b),代入可求得答案【详解】∵长、宽分别为a、b的矩形,它的周长为14,面积为10,∴a+b=142=7,ab=10,∴a2b+ab2=ab(a+b)=10×7=70,故答案为:70.【点睛】本题主要考查因式分解的应用,把所求代数式化为ab(a+b)是解题的关键.15.【解析】【分析】根据题意列出不等式求出解集即可确定出x的范围【详解】根据题意得:-x+3<3x-4移项合并得:4x>7解得:x故答案为:解析:74 >.【解析】【分析】根据题意列出不等式,求出解集即可确定出x的范围.【详解】根据题意得:-x+3<3x-4,移项合并得:4x>7,解得:x74 >.故答案为:7 4 >16.【解析】试题解析:根据题意将周长为8的△ABC沿边BC向右平移1个单位得到△DEF则AD=1BF=BC+CF=BC+1DF=AC又∵AB+BC+AC=10∴四边形ABFD的周长=AD+AB+BF+D解析:【解析】试题解析:根据题意,将周长为8的△ABC 沿边BC 向右平移1个单位得到△DEF , 则AD=1,BF=BC+CF=BC+1,DF=AC ,又∵AB+BC+AC=10,∴四边形ABFD 的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.考点:平移的性质.17.80°【解析】【分析】先由中位线定理推出再由平行线的性质推出然后根据直角三角形斜边上的中线等于斜边的一半得到HF=CF 最后由三角形内角和定理求出【详解】∵点分别是的中点∴(中位线的性质)又∵∴(两直解析:80°【解析】【分析】先由中位线定理推出50EDB FCH ∠=∠=,再由平行线的性质推出CFH ∠,然后根据直角三角形斜边上的中线等于斜边的一半得到HF=CF ,最后由三角形内角和定理求出3AQ AP PQ =-=.【详解】∵点,,D E F 分别是,,BC AB AC 的中点∴//,//EF BC DE AC (中位线的性质)又∵//EF BC∴50DEF EDB ∠=∠=(两直线平行,内错角相等)∵//DE AC∴50EDB FCH ∠=∠=(两直线平行,同位角相等)又∵AH BC ⊥∴三角形AHC 是Rt 三角形∵HF 是斜边上的中线∴12HF AC FC == ∴50FHC FCH ∠=∠=(等边对等角)∴18050280CFH ∠=-⨯=【点睛】本题考查了中位线定理,平行线的性质,直角三角形斜边上的中线等于斜边的一半,和三角形内角和定理.熟记性质并准确识图是解题的关键.18.60【解析】【分析】根据题意可以判断为等腰三角形利用勾股定理求出AB 边的高即可得到答案【详解】如图作出AB 边上的高CD∵AC=BC=13AB=10∴△ABC 是等腰三角形∴AD=BD=5根据勾股定理C 解析:60【解析】【分析】根据题意可以判断ABC ∆为等腰三角形,利用勾股定理求出AB 边的高,即可得到答案.【详解】如图作出AB 边上的高CD∵AC=BC=13, AB=10,∴△ABC 是等腰三角形,∴AD=BD=5,根据勾股定理 CD 2=AC 2-AD 2, 22135-,12ABC SCD AB =⋅=112102⨯⨯=60, 故答案为:60.【点睛】 此题主要考查了等腰三角形的判定及勾股定理,关键是判断三角形的形状,利用勾股定理求出三角形的高.19.【解析】【分析】直接利用一次函数图象结合式kx+b >0时则y 的值>0时对应x 的取值范围进而得出答案【详解】如图所示:关于x 的不等式kx+b >0的解集是:x <2故答案为:x <2【点睛】此题主要考查了一解析:2x <【解析】【分析】直接利用一次函数图象,结合式kx+b >0时,则y 的值>0时对应x 的取值范围,进而得出答案.【详解】如图所示:关于x的不等式kx+b>0的解集是:x<2.故答案为:x<2.【点睛】此题主要考查了一次函数与一元一次不等式,正确利用数形结合是解题关键.20.—1【解析】【分析】首先根据勾股定理计算出AC的长进而得到AE的长再根据A点表示-1可得E点表示的数【详解】∵AD长为2AB长为1∴AC=∵A点表示-1∴E点表示的数为:-1故答案为-1【点睛】本题51【解析】【分析】首先根据勾股定理计算出AC的长,进而得到AE的长,再根据A点表示-1,可得E点表示的数.【详解】∵AD长为2,AB长为1,∴22+,215∵A点表示-1,∴E5-1,5【点睛】本题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方.三、解答题21.2﹣4.【解析】【分析】利用负指数幂的性质、零指数幂的性质、二次根式的性质进行化简再解答即可.【详解】解:原式=2×2+1﹣2﹣1=2﹣2﹣1=24.【点睛】本题考查了负指数幂的性质、零指数幂的性质、二次根式的性质,掌握各类代数式的性质是解答本题的关键.22.(1)证明见解析;(2)4.【解析】【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为:12AC•BD=12×4×2=4,故答案为4.【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.23.(1)见解析;(2)见解析【解析】试题分析:画图即可.试题解析:如图:24.(1)D(1,0),C(2,2);(2)y=–x+4;(3)22 xy=⎧⎨=⎩.【解析】【分析】(1)求函数值为0时一次函数y=2x-2所对应的自变量的值即可得到D点横坐标,把C (m,2)代入y=2x-2求出m得到C点坐标;(2)把C、B坐标代入y=kx+b中,利用待定系数法求直线l2的解析式;(3)利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】(1)∵点D为直线l1:y=2x–2与x轴的交点,∴当y=0时,0=2x–2,解得x=1,∴D(1,0);∵点C在直线l1:y=2x–2上,∴2=2m–2,解得m=2,∴点C的坐标为(2,2);(2)∵点C(2,2)、B(3,1)在直线l2上,∴22 31k bk b+=⎧⎨+=⎩,解得14kb=-⎧⎨=⎩,∴直线l2的解析式为y=–x+4;(3)由图可知二元一次方程组22y xy kx b=-⎧⎨=+⎩的解为22xy=⎧⎨=⎩.【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.25.a.240,b.乙;理由见解析.【解析】试题分析:(1)由表可知乙部门样本的优秀率为:12100%60%40⨯=,则整个乙部门的优秀率也是60%,因此即可求解;(2)观察图表可得出结论.试题解析:如图:整理、描述数据按如下分数段整理按如下分数段整理数据:a.估计乙部门生产技能优秀的员工人数为400×1240=240(人);b.答案不唯一,言之有理即可.可以推断出甲部门员工的生产技能水平较高,理由如下:①甲部门生产技能测试中,测试成绩的平均数较高,表示甲部门生产技能水平较高;②甲部门生产技能测试中,没有生产技能不合格的员工.可以推断出乙部门员工的生产技能水平较高,理由如下:①乙部门生产技能测试中,测试成绩的中位数较高,表示乙部门生产技能水平优秀的员工较多;②乙部门生产技能测试中,测试成绩的众数较高,表示乙部门生产技能水平较高.。

2020-2021学年度八年级数学第二学期期末试卷含答案

2020-2021学年度八年级数学第二学期期末试卷含答案

八年级数学注意事项:1.本试卷共3大题,28小题,满分100分,考试用时100分钟.2.答题必须答在答题卡上,答在试卷和草稿纸上一律无效.一、选择题(本大题10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.函数11y x =-的自变量x 的取值范围是 A .x ≠0 B .x ≠1 C .x ≥1D . x ≤12.下列各式计算中正确的是A .()()()()163616364624-⨯-=-⨯-=-⨯-= B .6393a a = C .221512*********-=+⨯-= D .22787815+=+= 3.已知a c b d=,那么下列各式中一定成立的是 A .a d c b = B .c ac b bd = C .22a b c d b d ++= D .11a c b d++= 4.△ABC 中,∠C =90°,AC =8,BC =6,则cosA 的值是A .45B .35C .43D .345.图中的两个三角形是位似图形,它们的位似中心是A .点PB .点DC .点MD .点N6.在一个不透明的口袋中装有若干个质地相同而颜色可能不全相同的球,如果口袋中只装有3个黄球,且摸出黄球的概率为13,那么袋中共有球A .6个B .7个C .9个D . 12个7.双曲线4y x =与2y x =在第一象限内的图象如图所示,作一条平行于y 轴的直线分别交双曲线于A 、B 两点,连接OA 、OB ,则△AOB 的面积为A .1B .2C .3D .48.某市为治理污水,需要辅设一段全长为300 m 的污水排放管道,铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务,如果设原计划每天铺设xm 管道,那么根据题煮,可得方程A .120300302x x +=B .120180302x x +=C .120300301.2x x +=D .120180301.2x x+= 9.已知下列命题:①若a>0,b>0,则a +b>0;②若a2≠b2,则a≠b :③角平分线上的点到这个角的两边距离相等;④平行四边形的对角线互相平分;⑤直角三角形斜边上的中线等于斜边的一半.其中原命题与逆命题均为真命题的是A .①③④B .①②④C .③④⑤D .②③⑤10.如图,已知□ABCD 中,AB =4,AD =2,E 是AB 边上的一动点(动点E 与点A 不重合,可与点B 重合),设AE =x ,DE 的延长线交CB 的延长线于点F ,设CF =y ,则下列图象能正确反映y与x 的函数关系的是二、填空题(本大题共8小题,每小题2分,共16分,把答案填在答题卡相应横线上)11. 3-22的相反数是 ▲ .12.如果分式282x x -+的值为零,那么x 的值为 ▲ .13.已知l<x ≤2,则()212x x -+- ▲ .14.如图,某河堤的横断面是梯形ABCD ,BC ∥AD ,已知背水坡CD 的坡度i =1:2.4,CD 长为13米,则河堤的高BE 为 ▲ 米.15.已知点A(-2,y1),B(-1,y2),C(3,y3)都在反比例函数52y x=-的图象上,则y1,y2,y3由小到大的顺序为 ▲ .16.如图,在AABC 中,DE ∥BC ,若AD =1,BD =3,若S △ADE =a ,则S 四边形DBCE = ▲ .17.表1给出了正比例函数y1=kx 的图象上部分点的坐标,表2给出了反比例函数2m y x = 的图象上部分点的坐标,则当y1=y2时,x 的值为 ▲ .18.如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 为AB 上一点,且AE :EB =4:1,EF ⊥AC 于F ,连结FB ,则tan ∠CFB 的值等于 ▲ .三、解答题(本大题共10小题,共64分,解答应写出必要的计算过程、推演步骤或文字说明)19.(本题8分)计算:(1)()101tan 6032cos302π-⎛⎫︒-+--︒ ⎪⎝⎭(2)()33336821+-+- 20.(本题4分)化简求值:9352422a a a a -⎛⎫÷+- ⎪--⎝⎭,其中a =3-3.21.(本题4分)解方程:1233x x x=+--. 22.(本题6分)在一个不透明的盒子里,装有三个分别标有数字1,2,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x ;放同盒子摇匀后,再由小华随机取山一个小球,记下数字为y .(1)写出(x ,y )的所有可能出现的结果;(2)求小明、小华各取一次小球所确定的点(x ,y )落在反比例函数4y x=的图象上的概率. 23.(本题6分)已知梯形ABCD 中,AD ∥BC ,∠A =90°,点E 为AB 上一点,且CE ⊥DE ,CB 、DE 的延长线交于点F .(1)求证:AD AE BE BC=; (2)已知EF =5,FB =3,求BC 的长.24.(本题6分)某市今年1月份起调整居民用水价格,每立方米水费上涨25%,小明家去年12月份的水费是18元,而今年5月份的水费是36元,已知小明家今年5月份的用水量比去年12月份多6 m3,求该市今年居民用水的价格.25.(本题7分)如图,函数ky=(x>0,k为常数)的图象经过xA(1,4),B(m,n),其中m>1,过点B作y轴的垂线,垂足为D,连结AD.(1)求k的值;(2)若△ABD的面积为4,求点B的坐标;并回答当x取何值时,直线AB的图象在反比例函数k=图象的上方.yx26.(本题7分)现有一张宽为12cm练习纸,相邻两条格线间的距离均为0.8cm.调皮的小聪在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上,测得∠a=32°.(1)求矩形图案的面积:(2)若小聪在第一个图案的右边以同样的方式继续盖印(如图),最多一共能印几个完整的图案?(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)27.(本题7分)如图,直线y=kx+2与x轴、y轴分别交于点A、B,点C(1,a)是直线与双曲线my=的一个交点,过点C作xCD⊥y轴,垂足为D,且△BCD的面积为1.(1)求双曲线的解析式与直线AB的解析式:(2)若在y轴上有一点E,使得以E、A、B为顶点的三角形与△BCD相似,求点E的坐标.28.(本题9分)如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D、E分别是边AB、AC的中点,点P从点D出发沿DE方向运动,过点P作PQ⊥BC于Q,过点Q 作QR∥BA交AC于R,当点Q 与点C重合时,点P停止运动.设BQ=x,QR=y.(1)求点D到BC的距离;(2)求y关于x的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P,使△PQR是以PQ为一腰的等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.。

2020-2021初二数学下期末试卷(及答案)(6)

2020-2021初二数学下期末试卷(及答案)(6)

2020-2021初二数学下期末试卷(及答案)(6)一、选择题1.顺次连接对角线互相垂直且相等的四边形各边中点所围成的四边形是()A.矩形B.菱形C.正方形D.平行四边形2.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:鞋的尺码/cm2323.52424.525销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,243.若代数式11xx+-有意义,则x的取值范围是( )A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠1 4.如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD 的面积是()A.30B.36C.54D.725.若点P在一次函数的图像上,则点P一定不在()A.第一象限B.第二象限C.第三象限D.第四象限6.4133的结果为().A.32B.23C2D.27.下列有关一次函数y=﹣3x+2的说法中,错误的是()A.当x值增大时,y的值随着x增大而减小B.函数图象与y轴的交点坐标为(0,2)C.函数图象经过第一、二、四象限D.图象经过点(1,5)8.对于函数y=2x+1下列结论不正确是()A.它的图象必过点(1,3)B.它的图象经过一、二、三象限C.当x>12时,y>0D.y值随x值的增大而增大9.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S (单位:m 2)与工作时间t (单位:h )之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )A .300m 2B .150m 2C .330m 2D .450m 210.如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑( )米A .0.4B .0.6C .0.7D .0.811.如图,在正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形,连接AC 交EF 于点G ,下列结论:①15BAE DAF ∠=∠=;②AG=3GC ;③BE +DF =EF ;④2CEF ABE S S ∆∆=.其中正确的是( )A .①②③B .①③④C .①②④D .①②③④12.正比例函数()0y kx k =≠的函数值y 随x 的增大而增大,则y kx k =-的图象大致是( )A .B .C.D.二、填空题13.在函数41xyx-=+中,自变量x的取值范围是______.14.已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是______.15.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.16.如图,在平行四边形ABCD中,AB=3,BC=5,∠B的平分线BE交AD于点E,则DE的长为____________.17.若二次根式2019x-在实数范围内有意义,则x的取值范围是_____.18.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于12MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为_____.19.如图,在□ABCD中,AE⊥BC于点E,AF⊥CD于点F.若4AE=,6AF=,且□ABCD的周长为40,则□ABCD的面积为_______.20.如图,矩形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是-1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则这个点E表示的实数是_______三、解答题21.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)22.如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙底端C的距离为0.7米.如果梯子的顶端沿墙面下滑0.4米,那么点B将向左滑动多少米?23.在创建文明城区的活动中,有两端长度相等的彩色道砖铺设任务,分别交给甲、乙两个施工队同时进行施工.如图是反映所铺设彩色道砖的长度(米)与施工时间(时)之间的关系的部分图像.请解答下列问题.(1)甲队在的时段内的速度是米/时.乙队在的时段内的速度是米/时. 6小时甲队铺设彩色道砖的长度是米,乙队铺设彩色道砖的长度是米.(2)如果铺设的彩色道砖的总长度为150米,开挖6小时后,甲队、乙队均增加人手,提高了工作效率,此后乙队平均每小时比甲队多铺5米,结果乙反而比甲队提前1小时完成总铺设任务.求提高工作效率后甲队、乙队每小时铺设的长度分别为多少米?24.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?25.在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其为平行四边形,再根据邻边互相垂直且相等,可得四边形是正方形.【详解】解:、、、分别是、、、的中点,,,EH=FG=BD,EF=HG=AC,四边形是平行四边形,,,,,四边形是正方形,故选:C.【点睛】本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.2.A解析:A【解析】【分析】根据众数和中位数的定义进行求解即可得.【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,故选A.【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.3.D解析:D【解析】【分析】此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.【详解】依题意,得x+1≥0且x-1≠0,解得x≥-1且x≠1.故选A.【点睛】本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.D解析:D【解析】【分析】求▱ABCD的面积,就需求出BC边上的高,可过D作DE∥AM,交BC的延长线于E,那么四边形ADEM也是平行四边形,则AM=DE;在△BDE中,三角形的三边长正好符合勾股定理的逆定理,因此△BDE是直角三角形;可过D作DF⊥BC于F,根据三角形面积的不同表示方法,可求出DF的长,也就求出了BC边上的高,由此可求出四边形ABCD的面积.【详解】作DE∥AM,交BC的延长线于E,则ADEM是平行四边形,∴DE=AM=9,ME=AD=10,又由题意可得,BM=12BC=12AD=5,则BE=15,在△BDE中,∵BD2+DE2=144+81=225=BE2,∴△BDE是直角三角形,且∠BDE=90°,过D作DF⊥BE于F,则DF=365 BD DEBE⋅=,∴S▱ABCD=BC•FD=10×365=72.故选D.【点睛】此题主要考查平行四边形的性质和勾股定理的逆定理,正确地作出辅助线,构造直角三角形是解题的关键.5.C解析:C【解析】【分析】根据一次函数的性质进行判定即可.【详解】一次函数y=-x+4中k=-1<0,b>0,所以一次函数y=-x+4的图象经过二、一、四象限,又点P在一次函数y=-x+4的图象上,所以点P一定不在第三象限,故选C.【点睛】本题考查了一次函数的图象和性质,熟练掌握是解题的关键.y=kx+b:当 k>0,b>0时,函数的图象经过一,二,三象限;当 k>0,b<0时,函数的图象经过一,三,四象限;当 k<0,b>0时,函数的图象经过一,二,四象限;当 k<0,b<0时,函数的图象经过二,三,四象限.6.D解析:D【解析】【分析】根据二次根式的除法法则进行计算即可.【详解】===.原式2故选:D.【点睛】本题考查二次根式的除法,掌握二次根式的除法法则是解答本题的关键.7.D解析:D【解析】【分析】A、由k=﹣3<0,可得出:当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、利用一次函数图象上点的坐标特征,可得出:函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、由k=﹣3<0,b=2>0,利用一次函数图象与系数的关系可得出:一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、利用一次函数图象上点的坐标特征,可得出:一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.此题得解.【详解】解:A、∵k=﹣3<0,∴当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、当x=0时,y=﹣3x+2=2,∴函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、∵k=﹣3<0,b=2>0,∴一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、当x=1时,y=﹣3x+2=﹣1,∴一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.故选:D.【点睛】此题考查一次函数图象上点的坐标特征以及一次函数的性质,逐一分析四个选项的正误是解题的关键.8.C解析:C【解析】【分析】利用k、b的值依据函数的性质解答即可.【详解】解:当x=1时,y=3,故A选项正确,∵函数y=2x+1图象经过第一、二、三象限,y随x的增大而增大,∴B、D正确,∵y>0,∴2x+1>0,∴x>﹣12,∴C选项错误,故选:C.【点睛】此题考查一次函数的性质,熟记性质并运用解题是关键. 9.B解析:B【解析】【分析】【详解】解:如图,设直线AB的解析式为y=kx+b,则4+=1200 {5k+b=1650k b,解得450 {600 kb==-故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300, 300÷2=150(m 2)故选B .【点睛】本题考查一次函数的应用.10.D解析:D【解析】【分析】【详解】解:∵AB =2.5米,AC =0.7米,∴BC 22AB AC -(米).∵梯子的顶部下滑0.4米,∴BE =0.4米,∴EC =BC ﹣0.4=2(米),∴DC 22DE EC -(米),∴梯子的底部向外滑出AD =1.5﹣0.7=0.8(米).故选D .【点睛】此题主要考查了勾股定理在实际生活中的应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.11.C解析:C【解析】【分析】易证Rt ABE Rt ADF ≌,从而得到BE DF =,求得15BAE DAF ∠=∠=︒;进而得到CE CF =,判断出AC 是线段EF 的垂直平分线,在Rt AGF 中,利用正切函数证得②正确;观察得到BE GE ≠,判断出③错误;设BE x =,CE y =,在Rt ABE 中,运用勾股定理就可得到2222x xy y +=,从而可以求出CEF 与ABE 的面积比.【详解】∵四边形ABCD 是正方形,AEF 是等边三角形,∴90B BCD D AB BC DC AD AE AF EF ∠=∠=∠=︒=====,,.在Rt ABE 和Rt ADF 中,AB AD AE AF⎧⎨⎩==∴()Rt ABE Rt ADF HL ≌. ∴BE DF =,∠BAE =∠DAF ∴()()1190601522BAE DAF BAD EAF ∠=∠=∠-∠=︒-︒=︒ 故①正确;∵BE DF BC DC ==,,∴CE BC BE DC DF CF =-=-=,∵AE AF =,CE CF =,∴AC 是线段EF 的垂直平分线,∵90ECF ∠=︒,∴GC GE GF ==,在Rt AGF 中,∵tan tan 60AG AG AFG GF GC ∠=︒===∴AG =,故②正确;∵BE DF GE GF ==,,15BAE ∠=︒,30GAE ∠=︒,90B AGE ∠=∠=︒∴BE GE ≠∴BE DF EF +≠,故③错误;设BE x =,CE y =,则CF CE y ==,AB BC x y AE EF ==+====,. 在Rt ABE 中,∵90B ∠=︒,AB x y BE x AE =+==,,,∴222())x y x ++=.整理得:2222x xy y +=.∴CEF S :ABE S11CE ?CF :AB?BE 22⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭()()•:?CE CF AB BE ==2y :()x y x ⎡⎤+⎣⎦()()2222:2:1x xy x xy =++=.∴CEF ABE 2S S =,故④正确;综上:①②④正确故选:C.【点睛】本题考查了正方形的性质、等边三角形的性质、全等三角形的判定与性质、勾股定理等知识,而采用整体思想(把2x xy+看成一个整体)是解决本题的关键.12.B解析:B【解析】【分析】由于正比例函数y=kx(k≠0)函数值随x的增大而增大,可得k>0,-k<0,然后判断一次函数y=kx-k的图象经过的象限即可.【详解】解:∵正比例函数y=kx(k≠0)函数值随x的增大而增大,∴k>0,∴-k<0,∴一次函数y=kx-k的图象经过一、三、四象限;故选:B.【点睛】本题主要考查了一次函数的图象,一次函数y=kx+b(k≠0)中k,b的符号与图象所经过的象限如下:当k>0,b>0时,图象过一、二、三象限;当k>0,b<0时,图象过一、三、四象限;k<0,b>0时,图象过一、二、四象限;k<0,b<0时,图象过二、三、四象限.二、填空题13.x≥4【解析】【分析】根据被开方数为非负数及分母不能为0列不等式组求解可得【详解】解:根据题意知解得:x≥4故答案为x≥4【点睛】本题考查函数自变量的取值范围自变量的取值范围必须使含有自变量的表达式解析:x≥4【解析】【分析】根据被开方数为非负数及分母不能为0列不等式组求解可得.【详解】解:根据题意,知4010xx-≥⎧⎨+≠⎩,解得:x≥4,故答案为x≥4.【点睛】本题考查函数自变量的取值范围,自变量的取值范围必须使含有自变量的表达式都有意义:①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零..③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.14.﹣1<x <1或x >2【解析】【分析】观察图象和数据即可求出答案【详解】y <0时即x 轴下方的部分∴自变量x 的取值范围分两个部分是−1<x <1或x >2【点睛】本题考查的是函数图像熟练掌握图像是解题的关键解析:﹣1<x <1或x >2.【解析】【分析】观察图象和数据即可求出答案.【详解】y <0时,即x 轴下方的部分,∴自变量x 的取值范围分两个部分是−1<x <1或x >2.【点睛】本题考查的是函数图像,熟练掌握图像是解题的关键.15.9【解析】∵四边形ABCD 是矩形∴∠ABC=90°BD=ACBO=OD ∵AB=6cmBC=8c m ∴由勾股定理得:(cm)∴DO=5cm ∵点E F 分别是AOAD 的中点(cm)故答案为25 解析:9【解析】∵四边形ABCD 是矩形,∴∠ABC =90°,BD =AC ,BO =OD ,∵AB =6cm ,BC =8cm ,∴由勾股定理得:10BD AC == (cm ),∴DO =5cm ,∵点E . F 分别是AO 、AD 的中点,1 2.52EF OD ∴== (cm ), 故答案为2.5.16.2【解析】【分析】根据平行四边形的性质可得出AD ∥BC 则∠AEB =∠CBE 再由∠ABE =∠CBE 则∠AEB =∠ABE 则AE =AB 从而求出DE 【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BC ∴∠A解析:2【解析】【分析】根据平行四边形的性质,可得出AD ∥BC ,则∠AEB =∠CBE ,再由∠ABE =∠CBE ,则∠AEB =∠ABE ,则AE =AB ,从而求出DE .【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AEB =∠CBE ,∵∠B的平分线BE交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB,∵AB=3,BC=5,∴DE=AD-AE=BC-AB=5-3=2.故答案为2.【点睛】本题考查了平行四边形的性质、角平分线的定义,解题的关键是掌握平行四边形的性质:对边相等.17.x>2019【解析】【分析】根据二次根式的定义进行解答【详解】在实数范围内有意义即x-20190所以x的取值范围是x2019【点睛】本题考查了二次根式的定义熟练掌握二次根式的定义是本题解题关键解析:x>2019【解析】【分析】根据二次根式的定义进行解答.【详解】x-2019≥ 0,所以x的取值范围是x≥ 2019.【点睛】本题考查了二次根式的定义,熟练掌握二次根式的定义是本题解题关键.18.【解析】试题解析:∵由题意可知AQ是∠DAB的平分线∴∠DAQ=∠BAQ∵四边形ABCD是平行四边形∴CD∥ABBC=AD=3∠BAQ=∠DQA∴∠DAQ=∠DAQ∴△AQD是等腰三角形∴DQ=AD解析:【解析】试题解析:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DAQ,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=12DQ=32,∴CD=DQ+CQ=3+32=92,∴平行四边形ABCD周长=2(DC+AD)=2×(92+3)=15.故答案为15.19.48【解析】∵▱ABCD的周长=2(BC+CD)=40∴BC+CD=20①∵AE⊥BC于EAF⊥CD于FAE=4AF=6∴S▱ABCD=4BC=6CD整理得BC=CD②联立①②解得CD=8∴▱ABC解析:48【解析】∵▱ABCD的周长=2(BC+CD)=40,∴BC+CD=20①,∵AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,∴S▱ABCD=4BC=6CD,整理得,BC=32CD②,联立①②解得,CD=8,∴▱ABCD的面积=AF⋅CD=6CD=6×8=48.故答案为48.20.—1【解析】【分析】首先根据勾股定理计算出AC的长进而得到AE的长再根据A点表示-1可得E点表示的数【详解】∵AD长为2AB长为1∴AC=∵A点表示-1∴E点表示的数为:-1故答案为-1【点睛】本题1【解析】【分析】首先根据勾股定理计算出AC的长,进而得到AE的长,再根据A点表示-1,可得E点表示的数.【详解】∵AD长为2,AB长为1,∴,∵A点表示-1,∴E-1,【点睛】本题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方.三、解答题21.(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.【解析】【分析】(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.(2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.(3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.【详解】(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=12 BD,∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG=12 BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形.(2)四边形EFGH是菱形.证明:如图2中,连接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵点E,F,G分别为边AB,BC,CD的中点,∴EF=12AC,FG=12BD,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.(3)四边形EFGH是正方形.证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.考点:平行四边形的判定与性质;中点四边形.22.点B将向左移动0.8米.【解析】【分析】根据勾股定理即可求AC的长度,根据AC=AA1+CA1即可求得CA1的长度,在直角三角形A1B1C中,已知AB=A1B1,CA1即可求得CB2的长度,根据BB1=CB1-CB即可求得BB1的长度.【详解】解:在△ABC中,∠C=90°,∴AC2+BC2=AB2,即AC2+0.72=2.52,∴AC=2.4.在△A1B1C中,∠C=90°,∴A1C2+B1C2=A1B12,即(2.4–0.4)2+B1C 2=2.52,∴B1C=1.5.∴B1B=1.5–0.7=0.8,即点B将向左移动0.8米.【点睛】本题考查的是勾股定理的应用及勾股定理在直角三角形中的正确运用,本题中求CB1的长度是解题的关键.23.(1)10, 5, 60, 50;(2)提高工作效率后甲队每小时铺设的长度分别为15米、乙队每小时铺设的长度为20米.【解析】【分析】(1)根据函数图象,速度=路程÷时间,即可解答;(2)根据题意列方程解答即可.【详解】解:(1)(1)由图象可得,甲队在0≤x≤6的时段内的速度是:60÷6=10(米/时);乙队在2≤x≤6的时段内的速度是:(50−30)÷(6−2)=5(米/时);6小时甲队铺设彩色道砖的长度是60米,乙队铺设彩色道砖的长度是50米.故答案为:10;5;60;50;(2)设提高工作效率后甲队每小时铺设的长度分别为米,由题意得:,整理得:,解得:,经检验:,都是原方程的解,不合题意,舍去.答:提高工作效率后甲队每小时铺设的长度分别为15米、乙队每小时铺设的长度为20米.【点睛】本题考查分式方程的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.24.(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.【解析】分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.详解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200-56-44-40=60(人),补全的条形统计图如图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×60200=108°,(3)1600×60+56200=928(名),答:使用A和B两种支付方式的购买者共有928名.点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.25.(1) ﹣4≤y<6;(2)点P的坐标为(2,﹣2) .【解析】【分析】利用待定系数法求一次函数解析式得出即可;(1)利用一次函数增减性得出即可.(2)根据题意得出n=﹣2m+2,联立方程,解方程即可求得.【详解】设解析式为:y=kx+b,将(1,0),(0,2)代入得:,解得:,∴这个函数的解析式为:y=﹣2x+2;(1)把x=﹣2代入y=﹣2x+2得,y=6,把x=3代入y=﹣2x+2得,y=﹣4,∴y的取值范围是﹣4≤y<6.(2)∵点P(m,n)在该函数的图象上,∴n=﹣2m+2,∵m﹣n=4,∴m﹣(﹣2m+2)=4,解得m=2,n=﹣2,∴点P的坐标为(2,﹣2).考点:1、待定系数法求一次函数的解析式,2、一次函数图象上点的坐标特征,3、一次函数的性质。

2020-2021初二数学下期末试题附答案(4)

2020-2021初二数学下期末试题附答案(4)

2020-2021初二数学下期末试题附答案(4)一、选择题1.已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形2.如图,矩形ABCD 中,对角线AC BD 、交于点O .若60,8AOB BD ∠==o ,则AB 的长为( )A .3B .4C .43D .53.一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >4.以下命题,正确的是( ). A .对角线相等的菱形是正方形 B .对角线相等的平行四边形是正方形 C .对角线互相垂直的平行四边形是正方形 D .对角线互相垂直平分的四边形是正方形5.三角形的三边长为22()2a b c ab +=+,则这个三角形是( ) A .等边三角形B .钝角三角形C .直角三角形D .锐角三角形6.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( ) A .众数 B .平均数C .中位数D .方差7.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表:尺码(厘米)2525.52626.527购买量(双)12322则这10双运动鞋尺码的众数和中位数分别为()A.25.5厘米,26厘米B.26厘米,25.5厘米C.25.5厘米,25.5厘米D.26厘米,26厘米8.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A.参加本次植树活动共有30人B.每人植树量的众数是4棵C.每人植树量的中位数是5棵D.每人植树量的平均数是5棵9.函数的自变量取值范围是( )A.x≠0B.x>﹣3C.x≥﹣3且x≠0D.x>﹣3且x≠0 10.如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.-2B.﹣1+2C.﹣1-2D.1-211.如图,D3081次六安至汉口动车在金寨境内匀速通过一条隧道(隧道长大于火车长),火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图象描述大致是()A.B.C.D.12.如图,已知△ABC中,AB=10 ,AC=8 ,BC = 6 ,DE是AC的垂直平分线,DE交AB于点D ,交AC于点E ,连接CD ,则CD的长度为()A.3B.4C.4.8D.5二、填空题13.如图,在▱ABCD中,E为CD的中点,连接AE并延长,交BC的延长线于点G,BF⊥AE,垂足为F,若AD=AE=1,∠DAE=30°,则EF=_____.14.化简24的结果是__________.15.在平面直角坐标系xOy中,一次函数y=kx和y=﹣x+3的图象如图所示,则关于x的一元一次不等式kx<﹣x+3的解集是_____.16.计算:182=______.17.如图,一次函数y=kx+b的图象与x轴相交于点(﹣2,0),与y轴相交于点(0,3),则关于x的方程kx=b的解是_____.18.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.19.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:笔试面试体能甲837990乙858075丙809073该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分,根据规定,可判定_____被录用.20.如图:长方形ABCD中,AD=10,AB=4,点Q是BC的中点,点P在AD边上运动,当△BPQ是等腰三角形时,AP的长为___.三、解答题21.已知:如图,在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:∠EBF=∠EDF.22.为了从甲、乙两名选手中选拔出一个人参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表.甲、乙射击成绩统计表平均数(环)中位数(环)方差命中10环的次数甲70乙1甲、乙射击成绩折线统计图(1)请补全上述图表(请直接在表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?23.如图,在正方形ABCD中,E、F分别是边AB、BC的中点,连接AF、DE相交于点G,连接CG.(1)求证:AF⊥DE;(2)求证:CG=CD.24.如图,长方体的长为15cm,宽为10cm,高为20cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是多少?25.计算:(2483276【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.【详解】如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,故选B.【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.2.B解析:B【解析】【分析】由四边形ABCD为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO为60°,据此即可求得AB长.【详解】∵在矩形ABCD中,BD=8,∴AO=12AC, BO=12BD=4,AC=BD,∴AO=BO,又∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=4,【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟练掌握矩形的对角线相等且互相平分是解本题的关键.3.B解析:B 【解析】 【分析】根据两函数图象平行k 相同,以及平移规律“左加右减,上加下减”即可判断 【详解】∵将直线1l 向下平移若干个单位后得直线2l , ∴直线1l ∥直线2l , ∴12k k =,∵直线1l 向下平移若干个单位后得直线2l , ∴12b b >,∴当x 5=时,12y y > 故选B . 【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.4.A解析:A 【解析】 【分析】利用正方形的判定方法分别判断后即可确定正确的选项. 【详解】A 、对角线相等的菱形是正方形,正确,是真命题;B 、对角线相等的平行四边形是矩形,故错误,是假命题;C 、对角线互相垂直的平行四边形是菱形,故错误,是假命题;D 、对角线互相垂直平分的四边形是菱形,故错误,是假命题, 故选:A . 【点睛】考查了命题与定理的知识,解题的关键是了解正方形的判定方法.5.C解析:C【分析】利用完全平方公式把等式变形为a 2+b 2=c 2,根据勾股定理逆定理即可判断三角形为直角三角形,可得答案. 【详解】∵22()2a b c ab +=+, ∴a 2+2ab+b 2=c 2+2ab , ∴a 2+b 2=c 2,∴这个三角形是直角三角形, 故选:C . 【点睛】本题考查了勾股定理的逆定理,如果一个三角形的两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角.6.D解析:D 【解析】 【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。

2020-2021初二数学下期末试卷附答案(6)

2020-2021初二数学下期末试卷附答案(6)

2020-2021初二数学下期末试卷附答案(6)一、选择题1.若2(5)x -=x ﹣5,则x 的取值范围是( )A .x <5B .x ≤5C .x ≥5D .x >52.如图,矩形ABCD 的对角线AC 与数轴重合(点C 在正半轴上),5AB =,12BC =,若点A 在数轴上表示的数是-1,则对角线AC BD 、的交点在数轴上表示的数为( )A .5.5B .5C .6D .6.53.下列各命题的逆命题成立的是( )A .全等三角形的对应角相等B .如果两个数相等,那么它们的绝对值相等C .两直线平行,同位角相等D .如果两个角都是45°,那么这两个角相等 4.若等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为( )A .7B .6C .5D .4 5.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC 是直角三角形的是( ) A .b 2﹣c 2=a 2B .a :b :c =3:4:5C .∠A :∠B :∠C =9:12:15D .∠C =∠A ﹣∠B 6.如图,在△ABC 中,D ,E ,F 分别为BC ,AC ,AB 边的中点,AH ⊥BC 于H ,FD =8,则HE 等于( )A .20B .16C .12D .87.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab=8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .38.如图,一次函数y =mx +n 与y =mnx (m ≠0,n ≠0)在同一坐标系内的图象可能是( )A .B .C .D .9.若正比例函数的图象经过点(,2),则这个图象必经过点( ). A .(1,2) B .(,) C .(2,) D .(1,)10.一列火车由甲市驶往相距600km 的乙市,火车的速度是200km/时,火车离乙市的距离s(单位:km)随行驶时间t(单位:小时)变化的关系用图象表示正确的是( )A .B .C .D .11.如图,在正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形,连接AC 交EF 于点G ,下列结论:①15BAE DAF ∠=∠=o ;②AG=3GC ;③BE +DF =EF ;④2CEF ABE S S ∆∆=.其中正确的是( )A .①②③B .①③④C .①②④D .①②③④12.如图,函数y =ax +b 和y =kx 的图像交于点P ,关于x ,y 的方程组0y ax b kx y -=⎧⎨-=⎩的解是( )A .23x y =-⎧⎨=-⎩B .32x y =-⎧⎨=⎩C .32x y =⎧⎨=-⎩D .32x y =-⎧⎨=-⎩ 二、填空题13.函数y=x 的定义域____.14.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB=120°,CE//BD ,DE//AC ,若AD=5,则四边形CODE 的周长______.15.已知()()1,32,1A B -、,点P 在y 轴上,则当y 轴平分APB ∠时,点P 的坐标为______.16.已知函数y =2x +m -1是正比例函数,则m =___________.17.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x=a ﹣b 的解是x=3;④当x >3时,y 1<y 2中.则正确的序号有____________.18.一组数据:1、2、5、3、3、4、2、4,它们的平均数为_______,中位数为_______,方差是_______.19.如图,已如长方形纸片,ABCD O 是BC 边上一点,P 为CD 中点,沿AO 折叠使得顶点B 落在CD 边上的点P 处,则OAB ∠的度数是______.20.一组数据1,2,3,x ,5的平均数是3,则该组数据的方差是_____.三、解答题 21.某学校抽查了某班级某月5天的用电量,数据如下表(单位:度):度数9 10 11 天数3 1 1(1)求这5天的用电量的平均数;(2)求这5天用电量的众数、中位数;(3)学校共有36个班级,若该月按22天计,试估计该校该月的总用电量.22.已知:如图,E,F 是正方形ABCD 的对角线BD 上的两点,且BE DF =. 求证:四边形AECF 是菱形.23.如图,在正方形网格中,小正方形的边长为1,A ,B ,C 为格点()1判断ABC V 的形状,并说明理由.()2求BC 边上的高.24.已知:如图,在▱ABCD 中,设BA u u u r =a r ,BC uuu r =b r .(1)填空:CA u u u r = (用a r 、b r 的式子表示)(2)在图中求作a r +b r.(不要求写出作法,只需写出结论即可)25.设a 8x =-b 3x 4=+c x 2=+(1)当x 取什么实数时,a ,b ,c 都有意义;(2)若Rt △ABC 三条边的长分别为a ,b ,c ,求x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】 因为2a =-a (a≤0),由此性质求得答案即可.【详解】∵()25x -=x-5,∴5-x≤0∴x≥5.故选C .【点睛】此题考查二次根式的性质:2a =a (a≥0),2a =-a (a≤0).2.A解析:A【解析】【分析】连接BD 交AC 于E ,由矩形的性质得出∠B=90°,AE=12AC ,由勾股定理求出AC ,得出OE ,即可得出结果.【详解】连接BD 交AC 于E ,如图所示:∵四边形ABCD 是矩形,∴∠B=90°,AE=12AC , ∴222251213AB BC +=+=,∴AE=6.5,∵点A表示的数是-1,∴OA=1,∴OE=AE-OA=5.5,∴点E表示的数是5.5,即对角线AC、BD的交点表示的数是5.5;故选A.【点睛】本题考查了矩形的性质、勾股定理、实数与数轴;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.3.C解析:C【解析】试题分析:首先写出各个命题的逆命题,再进一步判断真假.解:A、逆命题是三个角对应相等的两个三角形全等,错误;B、绝对值相等的两个数相等,错误;C、同位角相等,两条直线平行,正确;D、相等的两个角都是45°,错误.故选C.4.C解析:C【解析】【分析】【详解】∵等腰三角形ABC中,AB=AC,AD是BC上的中线,∴BD=CD=12BC=3,AD同时是BC上的高线,∴AB=22AD BD=5.故它的腰长为5.故选C.5.C解析:C【分析】根据勾股定理逆定理可判断出A、B是否是直角三角形;根据三角形内角和定理可得C、D 是否是直角三角形.【详解】A、∵b2-c2=a2,∴b2=c2+a2,故△ABC为直角三角形;B、∵32+42=52,∴△ABC为直角三角形;C、∵∠A:∠B:∠C=9:12:15,151807591215C︒︒∠=⨯=++,故不能判定△ABC是直角三角形;D、∵∠C=∠A-∠B,且∠A+∠B+∠C=180°,∴∠A=90°,故△ABC为直角三角形;故选C.【点睛】考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.6.D解析:D【解析】【分析】根据三角形中位线定理得出AC的长,再根据直角三角形斜边上的中线等于斜边的一半即可求出【详解】∵D、F分别是AB、BC的中点,∴DF是△ABC的中位线,∴DF=12 AC;∵FD=8∴AC=16又∵E是线段AC的中点,AH⊥BC,∴EH=12 AC,∴EH=8.故选D.【点睛】本题综合考查了三角形中位线定理、直角三角形斜边上的中线.熟记性质与定理并准确识图是解题的关键.7.D解析:D【解析】已知ab =8可求出四个三角形的面积,用大正方形面积减去四个三角形的面积得到小正方形的面积,根据面积利用算术平方根求小正方形的边长.【详解】a b -由题意可知:中间小正方形的边长为:,11ab 8422=⨯=Q 每一个直角三角形的面积为:, 214ab a b 252(),∴⨯+-= 2a b 25169∴-=-=(),a b 3∴-=,故选D.【点睛】本题考查勾股定理的推导,有较多变形题,解题的关键是找出图形间面积关系,同时熟练运用勾股定理以及完全平方公式,本题属于基础题型.8.C解析:C【解析】【分析】根据m 、n 同正,同负,一正一负时利用一次函数的性质进行判断.【详解】解:①当mn >0时,m 、n 同号,y =mnx 过一三象限;同正时,y =mx+n 经过一、二、三象限,同负时,y =mx+n 过二、三、四象限;②当mn <0时,m 、n 异号,y =mnx 过二四象限,m >0,n <0时,y =mx+n 经过一、三、四象限;m <0,n >0时,y =mx+n 过一、二、四象限;故选:C .【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.9.D解析:D【解析】设正比例函数的解析式为y=kx (k≠0),因为正比例函数y=kx 的图象经过点(-1,2),所以2=-k ,解得:k=-2,所以y=-2x ,把这四个选项中的点的坐标分别代入y=-2x 中,等号成立的点就在正比例函数y=-2x 的图象上,所以这个图象必经过点(1,-2).10.A解析:A【解析】【分析】首先写出函数的解析式,根据函数的特点即可确定.【详解】由题意得:s 与t 的函数关系式为s=600-200t ,其中0≤t≤3,所以函数图象是A .故选A .【点睛】本题主要考查函数的图象的知识点,解答时应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.11.C解析:C【解析】【分析】易证Rt ABE Rt ADF V V ≌,从而得到BE DF =,求得15BAE DAF ∠=∠=︒;进而得到CE CF =,判断出AC 是线段EF 的垂直平分线,在Rt AGF n 中,利用正切函数证得②正确;观察得到BE GE ≠,判断出③错误;设BE x =,CE y =,在Rt ABE V 中,运用勾股定理就可得到2222x xy y +=,从而可以求出CEF V 与ABE V 的面积比.【详解】∵四边形ABCD 是正方形,AEF V 是等边三角形,∴90B BCD D AB BC DC AD AE AF EF ∠=∠=∠=︒=====,,.在Rt ABE V 和Rt ADF V 中, AB AD AE AF ⎧⎨⎩==∴()Rt ABE Rt ADF HL V V ≌. ∴BE DF =,∠BAE =∠DAF ∴()()1190601522BAE DAF BAD EAF ∠=∠=∠-∠=︒-︒=︒ 故①正确;∵BE DF BC DC ==,,∴CE BC BE DC DF CF =-=-=,∵AE AF =,CE CF =,∴AC 是线段EF 的垂直平分线,∵90ECF ∠=︒,∴GC GE GF ==,在Rt AGF n 中,∵tan tan 60AG AG AFG GF GC∠=︒===∴AG =,故②正确;∵BE DF GE GF ==,,15BAE ∠=︒,30GAE ∠=︒,90B AGE ∠=∠=︒∴BE GE ≠∴BE DF EF +≠,故③错误;设BE x =,CE y =,则CF CE y ==,AB BC x y AE EF ==+====,. 在Rt ABE V 中,∵90B ∠=︒,AB x y BE x AE =+==,,,∴222())x y x ++=.整理得:2222x xy y +=.∴CEF S V :ABE S V 11CE ?CF :AB?BE 22⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭()()•:?CE CF AB BE ==2y :()x y x ⎡⎤+⎣⎦()()2222:2:1x xy x xy =++=.∴CEF ABE 2S S =V V ,故④正确;综上:①②④正确故选:C.【点睛】本题考查了正方形的性质、等边三角形的性质、全等三角形的判定与性质、勾股定理等知识,而采用整体思想(把2x xy +看成一个整体)是解决本题的关键. 12.D解析:D【解析】【分析】根据两图象的交点坐标满足方程组,方程组的解就是交点坐标.【详解】由图可知,交点坐标为(﹣3,﹣2),所以方程组的解是32x y =-⎧⎨=-⎩. 故选D .【点睛】本题考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.二、填空题13.【解析】【分析】由根式的被开方数大于等于0分式的分母不等于0联立不等式组求解x 的取值即可【详解】根据题意得解得故答案为:【点睛】本题考查了函数的定义域及其求法函数的定义域就是使函数解析式有意义的自变 解析:0x >.【解析】【分析】由根式的被开方数大于等于0,分式的分母不等于0联立不等式组求解x 的取值即可.【详解】根据题意得,00x x ≥⎧⎨≠⎩ 解得,0x >故答案为:0x >.【点睛】本题考查了函数的定义域及其求法,函数的定义域,就是使函数解析式有意义的自变量的取值范围,是基础题. 14.20【解析】【分析】通过矩形的性质可得再根据∠AOB=120°可证△AOD 是等边三角形即可求出OD 的长度再通过证明四边形CODE 是菱形即可求解四边形CODE 的周长【详解】∵四边形ABCD 是矩形∴∵∠解析:20【解析】【分析】通过矩形的性质可得OD OA OB OC ===,再根据∠AOB=120°,可证△AOD 是等边三角形,即可求出OD 的长度,再通过证明四边形CODE 是菱形,即可求解四边形CODE 的周长.【详解】∵四边形ABCD 是矩形∴OD OA OB OC ===∵∠AOB=120°∴18060AOD AOB =︒-=︒∠∠∴△AOD 是等边三角形∵5AD =∴5OD OA ==∴5OD OC ==∵CE//BD ,DE//AC∴四边形CODE 是平行四边形∵5OD OC ==∴四边形CODE 是菱形∴5OD OC DE CE ====∴四边形CODE 的周长20OD OC DE CE =+++=故答案为:20.【点睛】本题考查了四边形的周长问题,掌握矩形的性质、等边三角形的性质、菱形的性质以及判定定理是解题的关键.15.【解析】【分析】作点A 关于y 轴对称的对称点求出点的坐标再求出直线的解析式将代入直线解析式中即可求出点P 的坐标【详解】如图作点A 关于y 轴对称的对称点∵点A 关于y 轴对称的对称点∴设直线的解析式为将点和点 解析:()0,5【解析】【分析】作点A 关于y 轴对称的对称点A ',求出点A '的坐标,再求出直线BA '的解析式,将0x =代入直线解析式中,即可求出点P 的坐标.【详解】如图,作点A 关于y 轴对称的对称点A '∵()1,3A ,点A 关于y 轴对称的对称点A '∴()1,3A '-设直线BA '的解析式为y kx b =+将点()1,3A '-和点()2,1B -代入直线解析式中312k b k b =-+⎧⎨=-+⎩解得2,5k b ==∴直线BA '的解析式为25y x =+将0x =代入25y x =+中解得5y =∴()0,5P故答案为:()0,5.【点睛】本题考查了坐标点的问题,掌握角平分线的性质、轴对称的性质、一次函数的性质是解题的关键.16.1【解析】分析:依据正比例函数的定义可得m-1=0求解即可详解:∵y=2x+m-1是正比例函数∴m-1=0解得:m=1故答案为:1点睛:本题考查了正比例函数的定义解题的关键是掌握正比例函数的定义解析:1【解析】分析:依据正比例函数的定义可得m-1=0,求解即可,详解:∵y=2x+m-1是正比例函数,∴m-1=0.解得:m=1.故答案为:1.点睛:本题考查了正比例函数的定义,解题的关键是掌握正比例函数的定义.17.①③④【解析】【分析】根据y1=kx+b和y2=x+a的图象可知:k<0a<0所以当x>3时相应的x的值y1图象均低于y2的图象【详解】根据图示及数据可知:①k<0正确;②a<0原来的说法错误;③方解析:①③④【解析】【分析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x>3时,相应的x的值,y1图象均低于y2的图象.【详解】根据图示及数据可知:①k<0正确;②a<0,原来的说法错误;③方程kx+b=x+a的解是x=3,正确;④当x>3时,y1<y2正确.故答案是:①③④.【点睛】考查一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b 的图象有四种情况:①当k >0,b >0,函数y=kx+b 的图象经过第一、二、三象限;②当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限. 18.33【解析】【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:12233445解析:3, 3,32. 【解析】【分析】根据平均数的公式即可求出答案,将数据按照由小到大的顺序重新排列,中间两个数的平均数即是中位数,根据方差的公式计算即可得到这组数据的方差.【详解】平均数=1(12533424)38⨯+++++++=,将数据重新排列是:1、2、2、3、3、4、4、5,∴中位数是3332+=, 方差=222221(13)2(23)2(33)2(43)(53)8⎡⎤⨯-+⨯-+⨯-+⨯-+-⎣⎦=32, 故答案为:3,3,32. 【点睛】 此题考查计算能力,计算平均数,中位数,方差,正确掌握各计算的公式是解题的关键. 19.30°【解析】【分析】根据题意先通过△ADP 求出∠DAP 的因为△ABO ≌△A PO 即可求出∠OAB 的度数【详解】解:∵P 是CD 的中点沿折叠使得顶点落在边上的点∴DP=PC=CD △ABO ≌△APO ∵四边解析:30°【解析】【分析】根据题意先通过△ADP 求出∠DAP 的,因为△ABO ≌△APO ,即可求出∠OAB 的度数.【详解】解:∵ P 是CD 的中点,沿AO 折叠使得顶点B 落在CD 边上的点P∴DP=PC=12CD, △ABO ≌△APO ∵四边形ABCD 为长方形∴∠D=∠DAB=90°,AB=CD=AP=2DP∴∠DAP=30°∵△ABO ≌△APO∴∠PAO=∠OAP=12∠BAP∴∠OAP=12∠BAP=12(∠DAB-∠DAP)=12(90°-30°)=30°故答案为:30°【点睛】此题主要考查了全等三角形的性质和特殊直角三角形的性质,解题的关键是折叠前后图形全等.20.2【解析】【分析】先用平均数是3可得x的值再结合方差公式计算即可【详解】平均数是3(1+2+3+x+5)解得:x=4∴方差是S2(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)21解析:2【解析】【分析】先用平均数是3可得x的值,再结合方差公式计算即可.【详解】平均数是315=(1+2+3+x+5),解得:x=4,∴方差是S215=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]15=⨯10=2.故答案为2.【点睛】本题考查了平均数和方差的概念,解题的关键是牢记方差的计算公式,难度不大.三、解答题21.(1)9.6度;(2)9度;9度;(3)7603.2度.【解析】【分析】(1)用加权平均数的计算方法计算平均用电量即可;(2)分别利用众数、中位数及极差的定义求解即可;(3)用班级数乘以日平均用电量乘以天数即可求得总用电量.【详解】(1)平均用电量为:(9×3+10×1+11×1)÷5=9.6度;(2)9度出现了3次,最多,故众数为9度;第3天的用电量是9度,故中位数为9度;(3)总用电量为22×9.6×36=7603.2度.22.见解析【解析】【分析】连接AC ,交BD 于O ,由正方形的性质可得OA=OC ,OB=OD ,AC ⊥BD 根据BE=DF 可得OE=OF ,由对角线互相垂直平分的四边形是菱形即可判定,【详解】∵四边形ABCD 是正方形,∴OD=OB ,OA=OC ,BD ⊥AC ,∵BE=DF ,∴DE=BF ,∴OE=OF ,∵OA=OC ,AC ⊥EF ,OE=OF ,∴四边形AECF 为菱形.【点睛】本题考查了正方形对角线互相垂直平分的性质,考查了菱形的判定,对角线互相垂直且互相平分的四边形是菱形,熟练掌握菱形的判定方法是解题关键.23.(1)直角三角形,见解析;(2)655. 【解析】【分析】 ()1利用勾股定理的逆定理即可解问题.()2利用面积法求高即可.【详解】解:()1结论:ABC V 是直角三角形.理由:222BC 1865=+=Q ,222AC 2313=+=,222AB 6452=+=,222AC AB BC ∴+=,ABC ∴V 是直角三角形.()2设BC 边上的高为h.则有11AC AB BC h 22⋅⋅=⋅⋅, AC 13=Q AB 213=,BC 65=265h ∴=. 【点睛】本题考查勾股定理以及逆定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(1) a r -b r ;(2) BD u u u r【解析】【分析】(1)根据三角形法则可知:,CA CB BA =+u u u v u u u v u u u v延长即可解决问题; (2)连接BD .因为,BD BA AD =+u u u v u u u v u u u v ,AD BC =u u u v u u u v 即可推出.BD a b =+r u u u v r【详解】解:(1)∵,CA CB BA =+u u u v u u u v u u u v BA u u u v =a r ,BC uuu v =b r∴.CA a b =-r u u u v r故答案为a r -b r.(2)连接BD .∵,BD BA AD =+u u u v u u u v u u u v ,AD BC =u u u v u u u v ∴.BD a b =+r u u u v r ∴BD u u u v 即为所求;【点睛】本题考查作图﹣复杂作图、平行四边形的性质、平面向量等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(1)483x -≤≤;(2)x =25或2. 【解析】【分析】(1)根据二次根式的被开方数为非负数,列不等式组求解;(2)根据a 、b 、c 分别作直角三角形的斜边,由勾股定理分别求解.【详解】 解:(1)由二次根式的性质,得8034020x x x -≥⎧⎪+≥⎨⎪+≥⎩, 解得483x -≤≤; (2)当c 为斜边时,由a 2+b 2=c 2,即8-x+3x+4=x+2,解得x=-10,当b为斜边时,a2+c2=b2,即8-x+x+2=3x+4,解得x=2,当a为斜边时,b2+c2=a2,即3x+4+x+2=8-x,解得x=2 5∵48 3x-≤≤∴x=25或2.【点睛】本题考查二次根式的性质及勾股定理的运用.在没有指定直角三角形的斜边的情况下,注意分类讨论.。

2020-2021下海西南模范中学初二数学下期末试卷附答案

2020-2021下海西南模范中学初二数学下期末试卷附答案

2020-2021下海西南模范中学初二数学下期末试卷附答案2020-2021下海西南模范中学初二数学下期末试卷附答案一、选择题1.若63n 是整数,则正整数n 的最小值是()A .4B .5C .6D .72.顺次连接对角线互相垂直且相等的四边形各边中点所围成的四边形是() A .矩形B .菱形C .正方形D .平行四边形3.如图,矩形ABCD 中,对角线AC BD 、交于点O .若60,8AOB BD ∠==o,则AB 的长为( )A .3B .4C .43D .54.估计()-?1230246的值应在() A .1和2之间 B .2和3之间C .3和4之间D .4和5之间5.正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =-的图象大致是()A .B .C .D .6.已知y =(k -3)x |k |-2+2是一次函数,那么k 的值为()A.3±B.3C.3-D.无法确定7.小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s(千米)与所用时间t (分)之间的关系()A.B.C.D.8.若正比例函数的图象经过点(,2),则这个图象必经过点().A.(1,2)B.(,)C.(2,)D.(1,)9.如图,在?ABCD中,AB=6,BC=8,∠BCD的平分线交AD 于点E,交BA的延长线于点F,则AE+AF的值等于()A.2B.3C.4D.610.下列各组数,可以作为直角三角形的三边长的是( )A.2,3,4B.7,24,25C.8,12,20D.5,13,15.若11.如图,将四边形纸片ABCD沿AE向上折叠,使点B落在DC边上的点F处V的周长为6,四边形纸片ABCD的周长为()V的周长为18,ECFAFDA.20B.24C.32D.4812.如图,已知△ABC中,AB=10 ,AC=8 ,BC = 6 ,DE是AC 的垂直平分线,DE交AB于点D ,交AC于点E ,连接CD ,则CD 的长度为()A .3B .4C .4.8D .5二、填空题13.已知一次函数y =kx +b(k≠0)经过(2,-1),(-3,4)两点,则其图象不经过第________象限.14.一艘轮船在小岛A 的北偏东60°方向距小岛80海里的B 处,沿正西方向航行3小时后到达小岛的北偏西45°的C 处,则该船行驶的速度为____________海里/时.15.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x=a ﹣b 的解是x=3;④当x >3时,y 1<y 2中.则正确的序号有____________.16.在矩形ABCD 中,AD=5,AB=4,点E ,F 在直线AD 上,且四边形BCFE 为菱形,若线段EF 的中点为点M ,则线段AM 的长为. 17.计算:1822-=__________. 18.在三角形ABC 中,点,,D E F 分别是,,BC AB AC 的中点,AH BC ⊥于点H ,若50DEF ∠=o ,则CFH ∠=________.19.如图,直线y =kx +b (k >0)与x 轴的交点为(﹣2,0),则关于x 的不等式kx +b <0的解集是_____.20.在ABC ?中,13AC BC ==, 10AB =,则ABC ?面积为_______.三、解答题21.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD 中,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点.求证:中点四边形EFGH 是平行四边形;(2)如图2,点P 是四边形ABCD 内一点,且满足PA=PB ,PC=PD ,∠APB=∠CPD ,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)22.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.23.有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm2和32dm2的正方形木板.(1)求剩余木料的面积.(2)如果木工想从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出块这样的木条.24.在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB =1.8千米.(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB 是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.25.为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列各题:×(1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).统计量平均数(次)中位数(次)众数(次)方差…该班级男生3342…根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】63n63n27n7n是完全平方数,满足条件的最小73n正整数n为7.【详解】63n273n7n7n∴7n7n是完全平方数;∴n的最小正整数值为7.故选:D.【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则a b ab ?=,除法法则b ba a=.解题关键是分解成一个完全平方数和一个代数式的积的形式.2.C解析:C 【解析】【分析】根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其为平行四边形,再根据邻边互相垂直且相等,可得四边形是正方形.【详解】解:、、、分别是、、、的中点,,,EH =FG =BD ,EF =HG =AC ,四边形是平行四边形,,,,,四边形是正方形,故选:C .【点睛】本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.3.B解析:B 【解析】【分析】由四边形ABCD 为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB 为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO 为60°,据此即可求得AB 长. 【详解】∵在矩形ABCD 中,BD=8,∴AO=12AC, BO=12BD=4,AC=BD,∴AO=BO,又∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=4,故选B.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟练掌握矩形的对角线相等且互相平分是解本题的关键.4.B解析:B【解析】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围.【详解】(==2,而,所以2<2<3,所以估计(2和3之间,故选B.【点睛】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.5.B解析:B【解析】【分析】先根据正比例函数y kx=的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质进行解答即可.【详解】解:Q正比例函数y kx=的函数值y随x的增大而增大,00k k∴->,<,∴一次函数y x k=-的图象经过一、三、四象限.故选B.【点睛】本题考查的知识点是一次函数的图象与正比例函数的性质,解题关键是先根据正比例函数的性质判断出k的取值范围.6.C解析:C【解析】【分析】根据一次函数的定义可得k-3≠0,|k|-2=1,解答即可.【详解】一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.所以|k|-2=1,解得:k=±3,因为k-3≠0,所以k≠3,即k=-3.故选:C.【点睛】本题主要考查一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.7.D解析:D【解析】【分析】根据描述,图像应分为三段,学校离家最远,故初始时刻s最大,到家,s为0,据此可判断.【详解】因为小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家,所以图象应分为三段,根据最后离家的距离为0,由此可得只有选项DF 符合要求.故选D.【点睛】本题要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.8.D解析:D【解析】设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(-1,2),所以2=-k,解得:k=-2,所以y=-2x,把这四个选项中的点的坐标分别代入y=-2x中,等号成立的点就在正比例函数y=-2x的图象上,所以这个图象必经过点(1,-2).故选D.9.C解析:C【解析】【分析】【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵∠C平分线为CF,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF?AB=2,AE=AD?DE=2∴AE+AF=4故选C10.B解析:B【解析】试题解析:A、∵22+32≠42,∴不能构成直角三角形;B、∵72+242=252,∴能构成直角三角形;C、∵82+122≠202,∴不能构成直角三角形;D、∵52+132≠152,∴不能构成直角三角形.故选B.11.B解析:B【解析】【分析】根据折叠的性质易知矩形ABCD的周长等于△AFD和△CFE的周长的和.【详解】由折叠的性质知,AF=AB,EF=BE.所以矩形的周长等于△AFD和△CFE的周长的和为18+6=24cm.故矩形ABCD的周长为24cm.故答案为:B.【点睛】本题考查了折叠的性质,解题关键是折叠前后图形的形状和大小不变,对应边和对应角相等.12.D解析:D【解析】【分析】【详解】已知AB=10,AC=8,BC=8,根据勾股定理的逆定理可判定△ABC为直角三角形,又因DE为AC边的中垂线,可得DE⊥AC,AE=CE=4,所以DE为三角形ABC 的中位线,即可得DE=12BC=3,再根据勾股定理求出CD=5,故答案选D.考点:勾股定理及逆定理;中位线定理;中垂线的性质.二、填空题13.三【解析】设y=kx+b得方程组-1=2k+b4=-3k+b解得:k=-1b=1故一次函数为y=-x+1根据一次函数的性质易得图象经过一二四象限故不经过第三象限故答案:三解析:三【解析】设y=kx+b,得方程组解得:k=-1,b=1,故一次函数为y=-x+1,根据一次函数的性质,易得,图象经过一、二、四象限,故不经过第三象限.故答案:三.14.【解析】【分析】设该船行驶的速度为x海里/时由已知可得BC=3xAQ⊥BC ∠BAQ=60°∠CAQ=45°AB=80海里在直角三角形ABQ中求出AQBQ再在直角三角形AQC中求出CQ得出BC=40+40403+【解析】【分析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+3=3x,解方程即可.【详解】如图所示:该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°?60°=30°,∴AQ=12AB=40,BQ3AQ=3在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+33x,解得:x=4033+.40403+/时;40403+【点睛】本题考查的是解直角三角形,熟练掌握方向角是解题的关键.15.①③④【解析】【分析】根据y1=kx+b和y2=x+a的图象可知:k<0a<0所以当x>3时相应的x的值y1图象均低于y2的图象【详解】根据图示及数据可知:①k<0正确;②a<0原来的说法错误;③方解析:①③④【解析】【分析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x>3时,相应的x的值,y1图象均低于y2的图象.【详解】根据图示及数据可知:①k<0正确;②a<0,原来的说法错误;③方程kx+b=x+a的解是x=3,正确;④当x>3时,y1<y2正确.故答案是:①③④.【点睛】考查一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.16.5或05【解析】【分析】两种情况:①由矩形的性质得出CD=AB=4BC=AD=5∠ADB=∠CDF=90°由菱形的性质得出CF=EF=BE=BC=5由勾股定理求出DF得出MF即可求出AM;②同①得出解析:5或0.5.【解析】【分析】两种情况:①由矩形的性质得出CD=AB=4,BC=AD=5,∠ADB=∠CDF=90°,由菱形的性质得出CF=EF=BE=BC=5,由勾股定理求出DF,得出MF,即可求出AM;②同①得出AE=3,求出ME,即可得出AM的长.【详解】解:分两种情况:①如图1所示:∵四边形ABCD是矩形,∴CD=AB=4,BC=AD=5,∠ADB=∠CDF=90°,∵四边形BCFE为菱形,∴CF=EF=BE=BC=5,∴DF=2222=54CF CD--=3,∴AF=AD+DF=8,∵M是EF的中点,∴MF=12EF=2.5,∴AM=AF﹣DF=8﹣2.5=5.5;②如图2所示:同①得:AE=3,∵M是EF的中点,∴ME=2.5,∴AM=AE﹣ME=0.5;综上所述:线段AM的长为:5.5,或0.5;故答案为5.5或0.5.【点睛】本题考查矩形的性质;菱形的性质.17.【解析】【分析】【详解】试题分析:先根据二次根式的性质化简根号再合并同类二次根式即可得到结果考点:二次根式的化简点评:本题属于基础应用题只需学生熟练掌握二次根式的性质即可完成解析:2【解析】【分析】【详解】试题分析:先根据二次根式的性质化简根号,再合并同类二次根式即可得到结果.18222222-=-= 考点:二次根式的化简点评:本题属于基础应用题,只需学生熟练掌握二次根式的性质,即可完成.18.80°【解析】【分析】先由中位线定理推出再由平行线的性质推出然后根据直角三角形斜边上的中线等于斜边的一半得到HF=CF 最后由三角形内角和定理求出【详解】∵点分别是的中点∴(中位线的性质)又∵∴(两直解析:80° 【解析】【分析】先由中位线定理推出50EDB FCH ∠=∠=o ,再由平行线的性质推出CFH ∠,然后根据直角三角形斜边上的中线等于斜边的一半得到HF=CF ,最后由三角形内角和定理求出3AQ AP PQ =-=.【详解】∵点,,D E F 分别是,,BC AB AC 的中点∴//,//EF BC DE AC (中位线的性质)又∵//EF BC∴50DEF EDB o ∠=∠=(两直线平行,内错角相等)∵//DE AC∴50EDB FCH ∠=∠=o (两直线平行,同位角相等)又∵AH BC ⊥∴三角形AHC 是Rt 三角形∵HF 是斜边上的中线∴12HF AC FC == ∴50FHC FCH o ∠=∠=(等边对等角)∴18050280CFH ∠=-?=o o o 【点睛】本题考查了中位线定理,平行线的性质,直角三角形斜边上的中线等于斜边的一半,和三角形内角和定理.熟记性质并准确识图是解题的关键.19.x <﹣2【解析】【分析】根据一次函数的性质得出y 随x 的增大而增大当x <﹣2时y <0即可求出答案【详解】解:∵直线y =kx+b (k >0)与x 轴的交点为(﹣20)∴y 随x 的增大而增大当x <﹣2时y <0即解析:x <﹣2【解析】【分析】根据一次函数的性质得出y 随x 的增大而增大,当x <﹣2时,y <0,即可求出答案.【详解】解:∵直线y =kx +b (k >0)与x 轴的交点为(﹣2,0),∴y 随x 的增大而增大,当x <﹣2时,y <0,即kx +b <0.故答案为:x <﹣2.【点睛】本题主要考查对一次函数与一元一次不等式,一次函数的性质等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.20.60【解析】【分析】根据题意可以判断为等腰三角形利用勾股定理求出AB 边的高即可得到答案【详解】如图作出AB 边上的高CD∵AC=BC=13AB=10∴△AB C 是等腰三角形∴AD=BD=5根据勾股定理C解析:60 【解析】【分析】根据题意可以判断ABC ?为等腰三角形,利用勾股定理求出AB 边的高,即可得到答案. 【详解】如图作出AB 边上的高CD∵AC=BC=13, AB=10,∴△ABC 是等腰三角形,∴AD=BD=5,根据勾股定理 CD 2=AC 2-AD 2,,12ABC S CD AB =?V =112102=60,故答案为:60. 【点睛】此题主要考查了等腰三角形的判定及勾股定理,关键是判断三角形的形状,利用勾股定理求出三角形的高.三、解答题21.(1)证明见解析;(2)四边形EFGH 是菱形,证明见解析;(3)四边形EFGH 是正方形. 【解析】【分析】(1)如图1中,连接BD ,根据三角形中位线定理只要证明EH ∥FG ,EH=FG 即可.(2)四边形EFGH 是菱形.先证明△APC ≌△BPD ,得到AC=BD ,再证明EF=FG 即可.(3)四边形EFGH 是正方形,只要证明∠EHG=90°,利用△APC ≌△BPD ,得∠ACP=∠BDP ,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.【详解】(1)证明:如图1中,连接BD .∵点E ,H 分别为边AB ,DA 的中点,∴EH ∥BD ,EH=12BD ,∵点F ,G 分别为边BC ,CD 的中点,∴FG ∥BD ,FG=12BD ,∴EH ∥FG ,EH=GF ,∴中点四边形EFGH 是平行四边形.(2)四边形EFGH 是菱形.证明:如图2中,连接AC ,BD .∵∠APB=∠CPD ,∴∠APB+∠APD=∠CPD+∠APD ,即∠APC=∠BPD ,在△APC 和△BPD 中,∵AP=PB ,∠APC=∠BPD ,PC=PD ,∴△APC ≌△BPD ,∴AC=BD.∵点E,F,G分别为边AB,BC,CD的中点,∴EF=12AC,FG=12BD,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.(3)四边形EFGH是正方形.证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.考点:平行四边形的判定与性质;中点四边形.22.(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.【解析】【分析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B 型电脑每台利润×B电脑数量”可得函数解析式;(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.【详解】(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥1003,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,3313≤x≤60,①当0<a<100时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②a=100时,a﹣100=0,y=50000,即商店购进A型电脑数量满足3313≤x≤60的整数时,均获得最大利润;③当100<a<200时,a﹣100>0,y随x的增大而增大,∴当x=60时,y取得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.23.(1)剩余木料的面积为6dm2;(2)2.【解析】【分析】(1)先确定两个正方形的边长,然后结合图形解答即可;(2)估算的大小,结合题意解答即可.【详解】解:(1)∵两个正方形的面积分别为18dm2和32dm2,∴这两个正方形的边长分别为dm和dm,∴剩余木料的面积为(﹣)×=6(dm2);(2)4<<4.5,1<2,∴从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出2块这样的木条,故答案为:2.【点睛】本题考查的是二次根式的应用,掌握无理数的估算方法是解答本题的关键.24.(1)CH是从村庄C到河边的最近路,理由见解析;(2)原来的路线AC的长为2.5千米.【解析】【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可【详解】(1)是,理由是:在△CHB 中,∵CH 2+BH 2=(2.4)2+(1.8)2=9 BC 2=9 ∴CH 2+BH 2=BC 2 ∴CH ⊥AB ,所以CH 是从村庄C 到河边的最近路(2)设AC =x在Rt △ACH 中,由已知得AC =x ,AH =x ﹣1.8,CH =2.4 由勾股定理得:AC 2=AH 2+CH 2 ∴x 2=(x ﹣1.8)2+(2.4)2 解这个方程,得x =2.5,答:原来的路线AC 的长为2.5千米.【点睛】此题考查勾股定理及其逆定理的应用,熟练掌握基础知识是解题的关键. 25.(1)20,3;(2)25人;(3)男生比女生的波动幅度大.【解析】【分析】(1)将柱状图中的女生人数相加即可求得总人数,中位数为第10与11名同学的次数的平均数.(2)先求出该班女生对“两会”新闻的“关注指数”,即可得出该班男生对“两会”新闻的“关注指数”,再列方程解答即可.(3)比较该班级男、女生收看“两会”新闻次数的波动大小,需要求出女生的方差.【详解】(1)该班级女生人数是2+5+6+5+2=20,女生收看“两会”新闻次数的中位数是3.故答案为20,3.(2)由题意:该班女生对“两会”新闻的“关注指数”为1320=65%,所以,男生对“两会”新闻的“关注指数”为60%.设该班的男生有x 人,则136x x -++()=60%,解得:x =25.答:该班级男生有25人.(3)该班级女生收看“两会”新闻次数的平均数为122536455220+?+?+?+?=3,女生收看“两会”新闻次数的方差为:2222223153263353423520-+?-+?-+-+-()()()()()=1310.∵2>1310,∴男生比女生的波动幅度大.【点睛】本题考查了平均数,中位数,方差的意义.解题的关键是明确平均数表示一组数据的平均程度,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.。

2020-2021初二数学下期末试题带答案(4)

2020-2021初二数学下期末试题带答案(4)

2020-2021初二数学下期末试题带答案(4)一、选择题1.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,),则点C 的坐标为( )A .(-,1)B .(-1,)C .(,1)D .(-,-1)2.直角三角形两直角边长为a ,b ,斜边上高为h ,则下列各式总能成立的是( ) A .ab=h 2B .a 2+b 2=2h 2C .111a b h+= D .222111a b h += 3.下列各命题的逆命题成立的是( ) A .全等三角形的对应角相等 B .如果两个数相等,那么它们的绝对值相等 C .两直线平行,同位角相等 D .如果两个角都是45°,那么这两个角相等4.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC 是直角三角形的是( ) A .b 2﹣c 2=a 2B .a :b :c =3:4:5C .∠A :∠B :∠C =9:12:15D .∠C =∠A ﹣∠B5.估计()-⋅1230246的值应在( ) A .1和2之间 B .2和3之间C .3和4之间D .4和5之间6.如图,在四边形ABCD 中,AB ∥CD ,要使得四边形ABCD 是平行四边形,可添加的条件不正确的是 ( )A .AB=CDB .BC ∥AD C .BC=AD D .∠A=∠C7.某超市销售A ,B ,C ,D 四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是( )A .1.95元B .2.15元C .2.25元D .2.75元8.计算4133的结果为().A.32B.23C.2D.29.如图2,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD 为菱形的是()A.BA=BC B.AC、BD互相平分C.AC=BD D.AB∥CD10.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A.参加本次植树活动共有30人B.每人植树量的众数是4棵C.每人植树量的中位数是5棵D.每人植树量的平均数是5棵11.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=8,则HE等于()A.20B.16C.12D.812.直角三角形中,有两条边长分别为3和4,则第三条边长是()A.1B.5C7D.57二、填空题13.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,DF∥AB,交BC于点F,当△ABC满足_________条件时,四边形BEDF是正方形.14.如图,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1_____S 2;(填“>”或“<”或“=”)15.如图,直线l 1:y =x +n –2与直线l 2:y =mx +n 相交于点P (1,2).则不等式mx +n <x +n –2的解集为______.16.已知20n 是整数,则正整数n 的最小值为___17.一个三角形的三边长分别为15cm 、20cm 、25cm ,则这个三角形最长边上的高是_____ cm .18.某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表: 候选人甲 乙 测试成绩(百分制)面试8692笔试9083如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权。

2020-2021八年级数学下期末试卷附答案(1)

2020-2021八年级数学下期末试卷附答案(1)

2020-2021八年级数学下期末试卷附答案(1)一、选择题1.一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >2.以下命题,正确的是( ).A .对角线相等的菱形是正方形B .对角线相等的平行四边形是正方形C .对角线互相垂直的平行四边形是正方形D .对角线互相垂直平分的四边形是正方形3.若点P 在一次函数的图像上,则点P 一定不在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.随机抽取某商场4月份5天的营业额(单位:万元)分别为3.4,2.9,3.0,3.1,2.6,则这个商场4月份的营业额大约是( )A .90万元B .450万元C .3万元D .15万元5.正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =-的图象大致是( )A .B .C.D.6.下列有关一次函数y=﹣3x+2的说法中,错误的是()A.当x值增大时,y的值随着x增大而减小B.函数图象与y轴的交点坐标为(0,2)C.函数图象经过第一、二、四象限D.图象经过点(1,5)7.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=8,则HE等于()A.20B.16C.12D.88.如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B→A→D→C方向以1单位/秒的速度运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于()A.10B89C.8D419.如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是()A .6B .12C .24D .不能确定10.将根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,设筷子露在杯子外面的长度hcm ,则h 的取值范围是( )A .h 17cm ≤B .h 8cm ≥C .7cm h 16cm ≤≤D .15cm h 16cm ≤≤11.如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑( )米A .0.4B .0.6C .0.7D .0.812.如图,将四边形纸片ABCD 沿AE 向上折叠,使点B 落在DC 边上的点F 处.若AFD V 的周长为18,ECF V 的周长为6,四边形纸片ABCD 的周长为( )A .20B .24C .32D .48二、填空题13.如图,在▱ABCD 中,E 为CD 的中点,连接AE 并延长,交BC 的延长线于点G ,BF ⊥AE ,垂足为F ,若AD =AE =1,∠DAE =30°,则EF =_____.14.函数y=x 的定义域____. 15.观察下列各式:221111++=1+1212⨯, 221111++=1+2323⨯, 221111++=1+3434⨯, ……请利用你所发现的规律,计算22111++12+22111++23+22111++34+…+22111++910,其结果为_______. 16.如果一组数据1,3,5,a ,8的方差是0.7,则另一组数据11,13,15,10a +,18的方差是________.17.直角三角形两直角边长分别为23+1,23-1,则它的斜边长为____.18.一组数据:1、2、5、3、3、4、2、4,它们的平均数为_______,中位数为_______,方差是_______.19.如图,直线1y kx b =+过点A(0,2),且与直线2y mx =交于点P(1,m),则不等式组mx > +kx b > mx -2的解集是_________20.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y 米与时间x 小时(0≦x ≦5)的函数关系式为___三、解答题21.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,BE=2DE ,延长DE 到点F ,使得EF=BE ,连接CF .(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.22.已知:一次函数y=(1﹣m)x+m﹣3(1)若一次函数的图象过原点,求实数m的值.(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.23.将函数y=x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|x+b|(b为常数)的图象(1)当b=0时,在同一直角坐标系中分别画出函数112y x=+与y=|x+b|的图象,并利用这两个图象回答:x取什么值时,112x+比|x|大?(2)若函数y=|x+b|(b为常数)的图象在直线y=1下方的点的横坐标x满足0<x<3,直接写出b的取值范围24.如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)求证:四边形AECF是矩形;(2)若AB=6,求菱形的面积.25.观察下列一组等式,然后解答后面的问题21)(21)1=,(32)(32)1=,(43)(43)1=,(54)(54)1=⋯⋯(1)观察以上规律,请写出第n个等式:(n为正整数).(221324310099++++(3【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据两函数图象平行k 相同,以及平移规律“左加右减,上加下减”即可判断【详解】∵将直线1l 向下平移若干个单位后得直线2l ,∴直线1l ∥直线2l ,∴12k k =,∵直线1l 向下平移若干个单位后得直线2l ,∴12b b >,∴当x 5=时,12y y >故选B .【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.2.A解析:A【解析】【分析】利用正方形的判定方法分别判断后即可确定正确的选项.【详解】A 、对角线相等的菱形是正方形,正确,是真命题;B 、对角线相等的平行四边形是矩形,故错误,是假命题;C 、对角线互相垂直的平行四边形是菱形,故错误,是假命题;D 、对角线互相垂直平分的四边形是菱形,故错误,是假命题,故选:A .【点睛】考查了命题与定理的知识,解题的关键是了解正方形的判定方法.3.C解析:C【解析】【分析】根据一次函数的性质进行判定即可.【详解】一次函数y=-x+4中k=-1<0,b>0,所以一次函数y=-x+4的图象经过二、一、四象限,又点P在一次函数y=-x+4的图象上,所以点P一定不在第三象限,故选C.【点睛】本题考查了一次函数的图象和性质,熟练掌握是解题的关键.y=kx+b:当 k>0,b>0时,函数的图象经过一,二,三象限;当 k>0,b<0时,函数的图象经过一,三,四象限;当 k<0,b>0时,函数的图象经过一,二,四象限;当 k<0,b<0时,函数的图象经过二,三,四象限.4.A解析:A【解析】1x=++++=.所以4月份营业额约为3×30=90(万元).(3.4 2.9 3.0 3.1 2.6)355.B解析:B【解析】【分析】=的函数值y随x的增大而增大判断出k的符号,再根据一次函数先根据正比例函数y kx的性质进行解答即可.【详解】解:Q正比例函数y kx=的函数值y随x的增大而增大,>,<,∴-00k k=-的图象经过一、三、四象限.∴一次函数y x k故选B.【点睛】本题考查的知识点是一次函数的图象与正比例函数的性质,解题关键是先根据正比例函数的性质判断出k的取值范围.6.D解析:D【分析】A、由k=﹣3<0,可得出:当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、利用一次函数图象上点的坐标特征,可得出:函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、由k=﹣3<0,b=2>0,利用一次函数图象与系数的关系可得出:一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、利用一次函数图象上点的坐标特征,可得出:一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.此题得解.【详解】解:A、∵k=﹣3<0,∴当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、当x=0时,y=﹣3x+2=2,∴函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、∵k=﹣3<0,b=2>0,∴一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、当x=1时,y=﹣3x+2=﹣1,∴一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.故选:D.【点睛】此题考查一次函数图象上点的坐标特征以及一次函数的性质,逐一分析四个选项的正误是解题的关键.7.D解析:D【解析】【分析】根据三角形中位线定理得出AC的长,再根据直角三角形斜边上的中线等于斜边的一半即可求出【详解】∵D、F分别是AB、BC的中点,∴DF是△ABC的中位线,∴DF=12 AC;∵FD=8∴AC=16又∵E是线段AC的中点,AH⊥BC,∴EH=12 AC,故选D.【点睛】本题综合考查了三角形中位线定理、直角三角形斜边上的中线.熟记性质与定理并准确识图是解题的关键.8.B解析:B【解析】【分析】当t=5时,点P到达A处,根据图象可知AB=5;当s=40时,点P到达点D处,根据三角形BCD的面积可求出BC的长,再利用勾股定理即可求解.【详解】解:当t=5时,点P到达A处,根据图象可知AB=5,过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,∵AC=AD,∴DE=CE=12 CD,当s=40时,点P到达点D处,则S=12CD•BC=12(2AB)•BC=5×BC=40,∴BC=8,∴AD=AC22225889AB BC++=故选B.【点睛】本题以动态的形式考查了函数、等腰三角形的性质、勾股定理等知识.准确分析图象,并结合三角形的面积求出BC的长是解题的关键.9.B解析:B【解析】【分析】由矩形ABCD可得:S△AOD=14S矩形ABCD,又由AB=15,BC=20,可求得AC的长,则可求得OA 与OD 的长,又由S △AOD =S △APO +S △DPO =12OA •PE+12OD •PF ,代入数值即可求得结果.【详解】 连接OP ,如图所示:∵四边形ABCD 是矩形,∴AC =BD ,OA =OC =12AC ,OB =OD =12BD ,∠ABC =90°, S △AOD =14S 矩形ABCD , ∴OA =OD =12AC , ∵AB =15,BC =20, ∴AC 22AB BC +221520+25,S △AOD =14S 矩形ABCD =14×15×20=75, ∴OA =OD =252, ∴S △AOD =S △APO +S △DPO =12OA •PE +12OD •PF =12OA •(PE +PF )=12×252(PE +PF )=75,∴PE +PF =12. ∴点P 到矩形的两条对角线AC 和BD 的距离之和是12.故选B .【点睛】本题考查了矩形的性质、勾股定理、三角形面积.熟练掌握矩形的性质和勾股定理是解题的关键.10.C解析:C【解析】【分析】观察图形,找出图中的直角三角形,利用勾股定理解答即可.【详解】首先根据圆柱的高,知筷子在杯内的最小长度是8cm ,则在杯外的最大长度是24-8=16cm ;再根据勾股定理求得筷子在杯内的最大长度是(如图)AC=2222AB BC+=+=17,则在杯外的最小长度是24-17=7cm,158所以h的取值范围是7cm≤h≤16cm,故选C.【点睛】本题考查了勾股定理的应用,注意此题要求的是筷子露在杯外的取值范围.主要是根据勾股定理求出筷子在杯内的最大长度.11.D解析:D【解析】【分析】【详解】解:∵AB=2.5米,AC=0.7米,∴BC22-(米).AB AC∵梯子的顶部下滑0.4米,∴BE=0.4米,∴EC=BC﹣0.4=2(米),∴DC22DE EC-(米),∴梯子的底部向外滑出AD=1.5﹣0.7=0.8(米).故选D.【点睛】此题主要考查了勾股定理在实际生活中的应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.12.B解析:B【解析】【分析】根据折叠的性质易知矩形ABCD的周长等于△AFD和△CFE的周长的和.【详解】由折叠的性质知,AF=AB,EF=BE.所以矩形的周长等于△AFD和△CFE的周长的和为18+6=24cm.故矩形ABCD的周长为24cm.故答案为:B.【点睛】本题考查了折叠的性质,解题关键是折叠前后图形的形状和大小不变,对应边和对应角相等.二、填空题13.﹣1【解析】【分析】首先证明△ADE≌△GCE推出EG=AE=AD=CG=1再求出FG即可解决问题【详解】∵四边形ABCD是平行四边形∴AD∥BGAD=BC∴∠DAE=∠G=30°∵DE=EC∠AE1【解析】【分析】首先证明△ADE≌△GCE,推出EG=AE=AD=CG=1,再求出FG即可解决问题.【详解】∵四边形ABCD是平行四边形,∴AD∥BG,AD=BC,∴∠DAE=∠G=30°,∵DE=EC,∠AED=∠GEC,∴△ADE≌△GCE,∴AE=EG=AD=CG=1,在Rt△BFG中,∵∴,-1.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质、锐角三角函数等知识,解题的关键是熟练掌握基本知识.14.【解析】【分析】由根式的被开方数大于等于0分式的分母不等于0联立不等式组求解x的取值即可【详解】根据题意得解得故答案为:【点睛】本题考查了函数的定义域及其求法函数的定义域就是使函数解析式有意义的自变解析:0x>.【解析】【分析】由根式的被开方数大于等于0,分式的分母不等于0联立不等式组求解x的取值即可.【详解】根据题意得,0 xx≥⎧⎨≠⎩解得,0x>故答案为:0x>.【点睛】本题考查了函数的定义域及其求法,函数的定义域,就是使函数解析式有意义的自变量的取值范围,是基础题.15.【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案详解:由题意可得:+++…+=+1++1++…+1+=9+(1﹣+﹣+﹣+…+﹣)=9+=9故答案为9点睛:此题主要考查了数字变化规律正确解析:9 9 10【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:=11+12⨯+1+123⨯+1+134⨯+ (1)1910⨯=9+(1﹣12+12﹣13+13﹣14+…+19﹣110)=9+9 10=99 10.故答案为99 10.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.16.7【解析】【分析】根据题目中的数据和方差的定义可以求得所求数据的方差【详解】设一组数据135a8的平均数是另一组数据111315+1018的平均数是+10∵=07∴==07故答案为07【点睛】本题考解析:7【解析】【分析】根据题目中的数据和方差的定义,可以求得所求数据的方差.【详解】设一组数据1,3,5,a,8的平均数是x,另一组数据11,13,15,x+10,18的平均数是x+10,∵22222 (1)(3)(5)()(8)5x x x a x x-+-+-+-+-=0.7,∴222 (1110)(1310)(1810)5x x x--+--+⋯--=22222 (1)(3)(5)()(8)5x x x a x x -+-+-+-+-=0.7,故答案为0.7.【点睛】本题考查方差,解答本题的关键是明确题意,利用方差的知识解答.17.【解析】【分析】已知直角三角形的两条直角边由勾股定理直角三角形两条直角边的平方和等于斜边的平方即可求得斜边的长度【详解】由勾股定理得(2 +1)2+(2 −1)2=斜边2斜边=故答案为:【点睛】勾股【解析】【分析】已知直角三角形的两条直角边,由勾股定理直角三角形两条直角边的平方和等于斜边的平方,即可求得斜边的长度.【详解】由勾股定理得( +1)2+( −1)2=斜边2,斜边,【点睛】勾股定理:直角三角形两条直角边的平方和等于斜边的平方,我们应熟练正确的运用这个定理,在以后复杂的题目中这是最为常见也最为基础的定理公式.18.33【解析】【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:12233445解析:3, 3,32. 【解析】【分析】根据平均数的公式即可求出答案,将数据按照由小到大的顺序重新排列,中间两个数的平均数即是中位数,根据方差的公式计算即可得到这组数据的方差.【详解】平均数=1(12533424)38⨯+++++++=,将数据重新排列是:1、2、2、3、3、4、4、5,∴中位数是3332+=, 方差=222221(13)2(23)2(33)2(43)(53)8⎡⎤⨯-+⨯-+⨯-+⨯-+-⎣⎦=32, 故答案为:3,3,32. 【点睛】此题考查计算能力,计算平均数,中位数,方差,正确掌握各计算的公式是解题的关键.19.【解析】【分析】【详解】解:由于直线过点A (02)P (1m )则解得故所求不等式组可化为:mx >(m-2)x+2>mx-20>-2x+2>-2解得:1<x <2 解析:12x <<【解析】【分析】【详解】 解:由于直线过点A (0,2),P (1,m ), 则2k b m b +=⎧⎨=⎩,解得22k m b =-⎧⎨=⎩, 1(2)2y m x ∴=-+,故所求不等式组可化为:mx >(m-2)x+2>mx-2,0>-2x+2>-2,解得:1<x <2,20.y=6+03x 【解析】试题分析:根据题意可得:水库的水位=初始水位高度+每小时上升的速度×时间即y=6+03x 考点:一次函数的应用解析:y=6+0.3x【解析】试题分析:根据题意可得:水库的水位=初始水位高度+每小时上升的速度×时间,即y=6+0.3x.考点:一次函数的应用.三、解答题21.(1)见解析;(2)见解析【解析】【分析】(1)从所给的条件可知,DE 是△ABC 中位线,所以DE ∥BC 且2DE=BC ,所以BC 和EF 平行且相等,所以四边形BCFE 是平行四边形,又因为BE=FE ,所以四边形BCFE 是菱形.(2)因为∠BCF=120°,所以∠EBC=60°,所以菱形的边长也为4,求出菱形的高面积就可.【详解】解:(1)证明:∵D 、E 分别是AB 、AC 的中点,∴DE ∥BC 且2DE=BC .又∵BE=2DE ,EF=BE ,∴EF=BC ,EF ∥BC .∴四边形BCFE 是平行四边形.又∵BE=FE ,∴四边形BCFE 是菱形.(2)∵∠BCF=120°,∴∠EBC=60°.∴△EBC是等边三角形.∴菱形的边长为4,高为∴菱形的面积为4×22.(1)m=3;(2)1<m<3.【解析】【分析】根据一次函数的相关性质进行作答.【详解】(1)∵一次函数图象过原点,∴1030mm-≠⎧⎨-=⎩,解得:m=3(2)∵一次函数的图象经过第二、三、四象限,∴1030mm-<⎧⎨-<⎩,∴1<m<3.【点睛】本题考查了一次函数的相关性质,熟练掌握一次函数的相关性质是本题解题关键.23.(1)见解析,223x-<<;(2)21b--剟【解析】【分析】(1)画出函数图象,求出两个函数图象的交点坐标,利用图象法即可解决问题;(2)利用图象法即可解决问题.【详解】解:(1)当b=0时,y=|x+b|=|x|列表如下:∴如图所示:该函数图像为所求∵1y x12||y x⎧=+⎪⎨⎪⎩=∴2x=-32=-y3⎧⎪⎪⎨⎪⎪⎩或y=x=22⎧⎨⎩∴两个函数的交点坐标为A2233⎛⎫- ⎪⎝⎭,,B(2,2),∴观察图象可知:223x-<<时,112x+比||x大;(2)如图,观察图象可知满足条件的b的值为21b--剟,【点睛】本题主要考查了一次函数的图象,一次函数的性质,一次函数图象与几何变换,掌握一次函数的图象,一次函数的性质,一次函数图象与几何变换是解题的关键.24.(1)证明见解析;(2)3【解析】试题分析:(1)首先证明△ABC是等边三角形,进而得出∠AEC=90°,四边形AECF是平行四边形,即可得出答案;(2)利用勾股定理得出AE的长,进而求出菱形的面积.试题解析:(1)∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC,∴∠AEC=90°,∵E、F分别是BC、AD的中点,∴AF=12AD,EC=12BC,∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∴AF∥EC且AF=EC,∴四边形AECF是平行四边形,又∵∠AEC=90°,∴四边形AECF是矩形;(2)在Rt△ABE中,AE==,所以,S菱形ABCD考点:1.菱形的性质;2..矩形的判定.25.(1)1+=;(2)9;(3【解析】【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小.【详解】解:(1)根据题意得:第n个等式为1=;故答案为:1=;(2)原式111019 ==-=;(3-==,Q<∴【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.。

2020-2021初二数学下期末试卷(附答案)(3)

2020-2021初二数学下期末试卷(附答案)(3)

2020-2021初二数学下期末试卷(附答案)(3)一、选择题1.当12a <<时,代数式2(2)1a a -+-的值为( )A .1B .-1C .2a-3D .3-2a2.一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥3.下列说法: ①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分 其中正确的有( )个.A .4B .3C .2D .14.以下命题,正确的是( ).A .对角线相等的菱形是正方形B .对角线相等的平行四边形是正方形C .对角线互相垂直的平行四边形是正方形D .对角线互相垂直平分的四边形是正方形5.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b .若8ab =,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .3 6.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是( )A.参加本次植树活动共有30人B.每人植树量的众数是4棵C.每人植树量的中位数是5棵D.每人植树量的平均数是5棵7.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.38.如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B→A→D→C方向以1单位/秒的速度运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于()A.10B.89C.8D.419.如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法不一定成立的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD10.直角三角形中,有两条边长分别为3和4,则第三条边长是()A.1B.5C7D.5711.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A .10mB .15mC .18mD .20m12.如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 的中点C '上.若6AB =,9BC =,则BF 的长为( )A .4B .32C .4.5D .5二、填空题13.如图,在平面直角坐标系xOy 中,点(0,6)C ,射线//x CE 轴,直线y x b =-+交线段OC 于点B ,交x 轴于点A ,D 是射线CE 上一点.若存在点D ,使得ABD △恰为等腰直角三角形,则b 的值为_______.14.如图,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFCG ,EF 交AD 于点H ,那么DH 的长是______.15.已知实数a 、b 在数轴上的位置如图所示,则化简222()a b b a +--的结果为________16.如果将直线y=3x-1平移,使其经过点(0,2),那么平移后所得直线的表达式是______.17.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是_________.18.将一组数据中的每一个数都加上1得到一组新的数据,那么在众数、中位数、平均数、方差这四个统计量中,值保持不变的是_____.19.已知3a b +=,2ab =,则a b b a+的值为_________. 20.将正比例函数y =﹣3x 的图象向上平移5个单位,得到函数_____的图象.三、解答题21.如图,在ABCD 中,E ,F 分别是边AD ,BC 上的点,且AE CF =.求证:四边形BEDF 为平行四边形.22.2019年4月23日世界读书日这天,滨江初二年级的学生会,就2018年寒假读课外书数量(单位:本)做了调查,他们随机调查了甲、乙两个班的10名同学,调查过程如下 收集数据甲、乙两班被调查者读课外书数量(单位:本)统计如下:甲:1,9,7,4,2,3,3,2,7,2乙:2,6,6,3,1,6,5,2,5,4整理、描述数据绘制统计表如下,请补全下表:班级平均数 众数 中位数 方差 甲4 3 乙 63.2 分析数据、推断结论(1)该校初二乙班共有40名同学,你估计读6本书的同学大概有_____人;(2)你认为哪个班同学寒假读书情况更好,写出理由.23.如图,在四边形ABCD 中,//AD BC ,12AD cm =,15BC cm =,点P 自点A 向D 以/lcm s 的速度运动,到D 点即停止.点Q 自点C 向B 以2/cm s 的速度运动,到B 点即停止,点P ,Q 同时出发,设运动时间为()t s .()1用含t 的代数式表示:AP =______;DP =______;BQ =______.(2)当t 为何值时,四边形APQB 是平行四边形?24.如图,正方形ABCD 中,E 是BC 上的一点,连接AE ,过B 点作BH ⊥AE ,垂足为点H ,延长BH 交CD 于点F ,连接AF .(1)求证:AE=BF .(2)若正方形边长是5,BE=2,求AF 的长.25.观察下列一组等式,然后解答后面的问题21)(21)1=,(32)(32)1=,(43)(43)1=,(54)(54)1=⋯⋯(1)观察以上规律,请写出第n 个等式: (n 为正整数).(221324310099++++(318171918【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:首先由2(2)a -,即可将原式化简,然后由1<a <2,去绝对值符号,继而求得答案.详解:∵1<a <2, 2(2)a -(a-2),|a-1|=a-1, 2(2)a -(a-2)+(a-1)=2-1=1.故选A .点睛:此题考查了二次根式的性质与化简以及绝对值的性质,解答本题的关键在于熟练掌握二次根式的性质.解析:A【解析】【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤.故选:A .【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键.3.C解析:C【解析】【分析】【详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C .考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.4.A解析:A【解析】【分析】利用正方形的判定方法分别判断后即可确定正确的选项.【详解】A 、对角线相等的菱形是正方形,正确,是真命题;B 、对角线相等的平行四边形是矩形,故错误,是假命题;C 、对角线互相垂直的平行四边形是菱形,故错误,是假命题;D 、对角线互相垂直平分的四边形是菱形,故错误,是假命题,故选:A .【点睛】考查了命题与定理的知识,解题的关键是了解正方形的判定方法.5.D解析:D【分析】由题意可知:中间小正方形的边长为:-a b ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【详解】解:由题意可知:中间小正方形的边长为:-a b每一个直角三角形的面积为:118422ab =⨯= 214()252ab a b ∴⨯+-= 2()25169a b ∴-=-=3a b ∴-=故选:D【点睛】本题考查勾股定理的运用,稍有难度;利用大正方形与小正方形、直角三角形面积之间的等量关系是解答本题的关键.6.D解析:D【解析】试题解析:A 、∵4+10+8+6+2=30(人),∴参加本次植树活动共有30人,结论A 正确;B 、∵10>8>6>4>2,∴每人植树量的众数是4棵,结论B 正确;C 、∵共有30个数,第15、16个数为5,∴每人植树量的中位数是5棵,结论C 正确;D 、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植树量的平均数约是4.73棵,结论D 不正确.故选D .考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.7.D解析:D【解析】【分析】已知ab =8可求出四个三角形的面积,用大正方形面积减去四个三角形的面积得到小正方形的面积,根据面积利用算术平方根求小正方形的边长.【详解】a b -由题意可知:中间小正方形的边长为:,11ab 8422=⨯=每一个直角三角形的面积为:, 214ab a b 252(),∴⨯+-= 2a b 25169∴-=-=(),a b 3∴-=,故选D.【点睛】本题考查勾股定理的推导,有较多变形题,解题的关键是找出图形间面积关系,同时熟练运用勾股定理以及完全平方公式,本题属于基础题型.8.B解析:B【解析】【分析】当t =5时,点P 到达A 处,根据图象可知AB =5;当s =40时,点P 到达点D 处,根据三角形BCD 的面积可求出BC 的长,再利用勾股定理即可求解.【详解】解:当t =5时,点P 到达A 处,根据图象可知AB =5,过点A 作AE ⊥CD 交CD 于点E ,则四边形ABCE 为矩形,∵AC =AD ,∴DE =CE =12CD , 当s =40时,点P 到达点D 处,则S =12CD •BC =12(2AB )•BC =5×BC =40, ∴BC =8,∴AD =AC 22225889AB BC ++=故选B .【点睛】本题以动态的形式考查了函数、等腰三角形的性质、勾股定理等知识.准确分析图象,并结合三角形的面积求出BC 的长是解题的关键. 9.D【解析】【分析】根据矩形性质可判定选项A 、B 、C 正确,选项D 错误.【详解】∵四边形ABCD 为矩形,∴∠ABC=90°,AC=BD ,OA=OB ,故选D【点睛】本题考查了矩形的性质,熟练运用矩形的性质是解决问题的关键.10.D解析:D【解析】【分析】分第三边为直角边或斜边两种情况,根据勾股定理分别求第三边.【详解】当第三边为直角边时,4为斜边,第三边=2243-=7;当第三边为斜边时,3和4为直角边,第三边=2243+=5,故选:D .【点睛】本题考查了勾股定理.关键是根据第三边为直角边或斜边,分类讨论,利用勾股定理求解.11.C解析:C【解析】∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m ,AB=12m , ∴22AB BC +22125+=13m ,∴这棵树原来的高度=BC+AC=5+13=18m.故选C.12.A解析:A【解析】【分析】∵点C′是AB 边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC -BF=9-BF ,在Rt △C′BF 中,BF 2+BC′2=C′F 2,∴BF 2+9=(9-BF )2,解得,BF=4,故选A .二、填空题13.3或6【解析】【分析】先表示出AB 坐标分①当∠ABD=90°时②当∠ADB=90°时③当∠DAB=90°时建立等式解出b 即可【详解】解:①当∠ABD=90°时如图1则∠DBC+∠ABO=90°∴∠D解析:3或6【解析】【分析】先表示出A 、B 坐标,分①当∠ABD=90°时,②当∠ADB=90°时,③当∠DAB=90°时,建立等式解出b 即可.【详解】解:①当∠ABD=90°时,如图1,则∠DBC+∠ABO=90°,,∴∠DBC=∠BAO ,由直线y x b =-+交线段OC 于点B ,交x 轴于点A 可知OB=b ,OA=b ,∵点C (0,6),∴OC=6,∴BC=6-b ,在△DBC 和△BAO 中,DBC BAO DCB AOB BD AB ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△DBC ≌△BAO (AAS ),∴BC=OA ,即6-b=b ,∴b=3;②当∠ADB=90°时,如图2,作AF⊥CE于F,同理证得△BDC≌△DAF,∴CD=AF=6,BC=DF,∵OB=b,OA=b,∴BC=DF=b-6,∵BC=6-b,∴6-b=b-6,∴b=6;③当∠DAB=90°时,如图3,作DF⊥OA于F,同理证得△AOB≌△DFA,∴OA=DF,∴b=6;综上,b的值为3或6,故答案为3或6.本题考查了一次函数图像上点的坐标特征,等腰直角三角形的性质,三角形全等的判定和性质,作辅助线构建求得三角形上解题的关键.14.【解析】【分析】思路分析:把所求的线段放在构建的特殊三角形内【详解】如图所示连接HCDF且HC与DF交于点P∵正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG∴∠BCF=∠DCG=30解析:3.【解析】【分析】思路分析:把所求的线段放在构建的特殊三角形内【详解】如图所示.连接HC、DF,且HC与DF交于点P∵正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG∴∠BCF=∠DCG=30°,FC =DC,∠EFC=∠ADC=90°∠BCG=∠BCD+∠DCG=90°+30°=120°∠DCF=∠BCG-∠BCF-∠DCG=120°-30°-30°=60°∴△DCF是等边三角形,∠DFC=∠FDC=60°∴∠EFD=∠ADF=30°,HF=HD∴HC是FD的垂直平分线,∠FCH=∠DCH=12∠DCF=30°在Rt△HDC中,HD=DC·tan∠3∵正方形ABCD的边长为3∴HD=DC·tan∠DCH=3×tan30°33试题点评:构建新的三角形,利用已有的条件进行组合.15.0【解析】【分析】根据数轴所示a<0b>0b-a>0依据开方运算的性质即可求解【详解】解:由图可知:a<0b>0b-a>0∴故填:0【点睛】本题主要考查二次根式的性质和化简实数与数轴去绝对值号关键在解析:0【解析】根据数轴所示,a <0,b >0, b-a >0,依据开方运算的性质,即可求解.【详解】解:由图可知:a <0,b >0, b-a >0,()0a b b a a b b a -+--=-+-+=故填:0【点睛】本题主要考查二次根式的性质和化简,实数与数轴,去绝对值号,关键在于求出b-a >0,即|b-a|=b-a .16.【解析】【分析】根据平移不改变k 的值可设平移后直线的解析式为y=3x+b 然后将点(02)代入即可得出直线的函数解析式【详解】解:设平移后直线的解析式为y=3x+b 把(02)代入直线解析式得2=b 解得解析:32y x =+【解析】【分析】根据平移不改变k 的值可设平移后直线的解析式为y=3x+b ,然后将点(0,2)代入即可得出直线的函数解析式.【详解】解:设平移后直线的解析式为y=3x+b .把(0,2)代入直线解析式得2=b ,解得 b=2.所以平移后直线的解析式为y=3x+2.故答案为:y=3x+2.【点睛】本题考查一次函数图象与几何变换,待定系数法求一次函数的解析式,掌握直线y=kx+b (k≠0)平移时k 的值不变是解题的关键.17.a>b 【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2∴该函数中y 随着x 的增大而减小∵1<2∴a>b 故答案为a >b 【点睛】本题考查一次函数图象上点的坐标特征解析:a >b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y 随着x 的增大而减小,∵1<2,∴a >b .故答案为a >b .【点睛】本题考查一次函数图象上点的坐标特征.18.方差【解析】【分析】设原数据的众数为a 中位数为b 平均数为方差为S2数据个数为n 根据数据中的每一个数都加上1利用众数中位数的定义平均数方差的公式分别求出新数据的众数中位数平均数方差与原数据比较即可得答解析:方差【解析】【分析】设原数据的众数为a 、中位数为b 、平均数为x 、方差为S 2,数据个数为n ,根据数据中的每一个数都加上1,利用众数、中位数的定义,平均数、方差的公式分别求出新数据的众数、中位数、平均数、方差,与原数据比较即可得答案.【详解】设原数据的众数为a 、中位数为b 、平均数为x 、方差为S 2,数据个数为n ,∵将一组数据中的每一个数都加上1,∴新的数据的众数为a+1,中位数为b+1, 平均数为1n (x 1+x 2+…+x n +n )=x +1, 方差=1n[(x 1+1-x -1)2+(x 2+1-x -1)2+…+(x n +1-x -1)2]=S 2, ∴值保持不变的是方差,故答案为:方差【点睛】本题考查的知识点众数、中位数、平均数、方差,熟练掌握方差和平均数的计算公式是解答本题的关键.19.【解析】【分析】先把二次根式进行化简然后把代入计算即可得到答案【详解】解:=∵∴原式=;故答案为:【点睛】本题考查了二次根式的混合运算以及二次根式的化简求值解题的关键是熟练掌握二次根式的混合运算的运解析:2【解析】【分析】先把二次根式进行化简,然后把3a b +=,2ab =,代入计算,即可得到答案.【详解】=,∵3a b +=,2ab =,∴原式=3=22;故答案为:2. 【点睛】 本题考查了二次根式的混合运算,以及二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算的运算法则进行解题.20.y=-3x+5【解析】【分析】平移时k 的值不变只有b 发生变化【详解】解:原直线的k=-3b=0;向上平移5个单位得到了新直线那么新直线的k=-3b=0+5=5∴新直线的解析式为y=-3x+5故答案为解析:y=-3x+5【解析】【分析】平移时k 的值不变,只有b 发生变化.【详解】解:原直线的k=-3,b=0;向上平移5个单位得到了新直线,那么新直线的k=-3,b=0+5=5.∴新直线的解析式为y=-3x+5.故答案为y=-3x+5.【点睛】求直线平移后的解析式时要注意平移时k 和b 的值的变化,掌握这点很重要.三、解答题21.证明见解析.【解析】【分析】由平行四边形的性质,得到AD ∥BC ,AD=BC ,由AE CF =,得到ED BF =,即可得到结论.【详解】证明:四边形ABCD 是平行四边形,∴AD BC ∥,AD BC =.∵AE CF =,∴AD AE BC CF -=-.∴ED BF =,∵//ED BF ,ED BF =,∴四边形BEDF 是平行四边形.【点睛】本题考查了平行四边形的判定和性质,解题的关键是熟练掌握平行四边形的判定和性质进行证明.22.统计图补全见解析 (1)12 (2)乙班,理由见解析【解析】【分析】根据平均数、众数、中位数、方差的概念填表(1)根据样本求出读6本书的学生的占比,再用初二乙班总人数乘以占比即可求解; (2)根据方差的性质进行判断即可.【详解】甲组的众数是2,乙组中位数是45 4.52+= 乙组的平均数:()2663165254104+++++++++÷=甲组的方差:()()()()()()()()()()222222222214947444243434247424 6.610-+-+-+-+-+-+-+-+-+-=补全统计表如下:403012⨯=%(人)故估计读6本书的同学大概有12人;(2)乙班,乙班的方差较小,说明乙班学生普遍有阅读意识,而甲班方差较大,说明甲班虽然存在一部分读书意识较强的同学,但也存在一部分读书意识淡薄的同学.【点睛】本题考查了统计图的问题,掌握平均数、众数、中位数、方差的概念以及性质是解题的关键.23.(1)t ;12t -;152t -;(2)5.【解析】【分析】(1)直接利用P ,Q 点的运动速度和运动方法进而表示出各部分的长;(2)利用平行四边形的判定方法得出t 的值.【详解】()1由题意可得:AP t =,DP 12t =-,BQ 152t =-,故答案为t ,12t -,152t -;()2AD//BC,=时,四边形APQB是平行四边形,∴当AP BQ∴=-,t152t=.解得:t5【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题关键.24.(1)证明见解析;(2)34.【解析】【分析】(1)根据正方形的性质得AB=BC,再根据同角的余角相等得∠BAE=∠EBH,再利用“角角边”证明△ABE≌△BCF,根据全等三角形的对应边相等得AE=BF;(2)根据全等三角形的对应边相等得BE=CF,再利用勾股定理计算即可得出结论.【详解】(1)∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°.∴∠BAE+∠AEB=90°.∵BH⊥AE,∴∠BHE=90°.∴∠AEB+∠EBH=90°.∴∠BAE=∠EBH.在△ABE和△BCF中,∴△ABE≌△BCF(ASA).∴AE=BF.(2)由(1)得△ABE≌△BCF,∴BE=CF.∵正方形的边长是5,BE=2,∴DF=CD-CF=CD-BE=5-2=3.在Rt△ADF中,由勾股定理得:AF===.【点睛】本题考查了全等三角形的判定与性质和正方形的性质,解题的关键是熟练的掌握全等三角形的判定与性质和正方形的性质.25.(1)(1)(1)1+++=;(2)9;(318171918n n n n【解析】【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小.【详解】解:(1)根据题意得:第n个等式为1=;故答案为:1=;(2)原式111019 ==-=;-==,(3<∴【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.。

2020-2021初二数学下期末试题含答案(3)

2020-2021初二数学下期末试题含答案(3)

2020-2021初二数学下期末试题含答案(3)一、选择题1.当12a <<时,代数式2(2)1a a -+-的值为( ) A .1B .-1C .2a-3D .3-2a2.如图,矩形OABC 的顶点O 与平面直角坐标系的原点重合,点A ,C 分别在x 轴,y 轴上,点B 的坐标为(-5,4),点D 为边BC 上一点,连接OD ,若线段OD 绕点D 顺时针旋转90°后,点O 恰好落在AB 边上的点E 处,则点E 的坐标为( )A .(-5,3)B .(-5,4)C .(-5,52) D .(-5,2)3.要使函数y =(m ﹣2)x n ﹣1+n 是一次函数,应满足( ) A .m ≠2,n ≠2B .m =2,n =2C .m ≠2,n =2D .m =2,n =04.下列命题中,真命题是( ) A .两条对角线垂直的四边形是菱形 B .对角线垂直且相等的四边形是正方形 C .两条对角线相等的四边形是矩形 D .两条对角线相等的平行四边形是矩形 5.若点P 在一次函数的图像上,则点P 一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限6.将一张长方形纸片按如图所示的方式折叠,,BC BD 为折痕,则CBD ∠的度数为( )A .60︒B .75︒C .90︒D .95︒7.已知一次函数y=-0.5x+2,当1≤x≤4时,y 的最大值是( ) A .1.5B .2C .2.5D .-68.如图2,四边形ABCD 的对角线AC 、BD 互相垂直,则下列条件能判定四边形ABCD为菱形的是( )A.BA=BC B.AC、BD互相平分C.AC=BD D.AB∥CD9.下列结论中,错误的有()①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠A=90°;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形;A.0个B.1个C.2个D.3个10.如图,一次函数y=mx+n与y=mnx(m≠0,n≠0)在同一坐标系内的图象可能是()A.B.C.D.11.如图,D3081次六安至汉口动车在金寨境内匀速通过一条隧道(隧道长大于火车长),火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图象描述大致是()A.B.C.D.12.如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑()米A .0.4B .0.6C .0.7D .0.8二、填空题13.在平面直角坐标系中,已知一次函数21y x =-+的图象经过()()111222P x y P x y ,,,两点.若12x x <,则1y ______2y (填“>”“<”或“=”). 14.已知,x y 为实数,且22994y x x =---+,则x y -=______.15.观察下列各式:221111++=1+1212⨯, 221111++=1+2323⨯, 221111++=1+3434⨯, ……请利用你所发现的规律, 计算22111++12+22111++23+22111++34+…+22111++910,其结果为_______. 16.如果一组数据1,3,5,a ,8的方差是0.7,则另一组数据11,13,15,10a +,18的方差是________.17.如图,已知函数y=x+b 和y=ax+3的图象交点为P ,则不等式x+b >ax+3的解集为_____.18.如图,如果正方形ABCD 的面积为5,正方形BEFG 的面积为7,则ACE △的面积_________.19.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是_________.20.将正比例函数y =﹣3x 的图象向上平移5个单位,得到函数_____的图象.三、解答题21.计算:0221218(2020)()(21)2π-+---+-.22.在学校组织的“文明出行”知识竞赛中,8(1)和8(2)班参赛人数相同,成绩分为A 、B 、C 三个等级,其中相应等级的得分依次记为A 级100分、B 级90分、C 级80分,达到B 级以上(含B 级)为优秀,其中8(2)班有2人达到A 级,将两个班的成绩整理并绘制成如下的统计图,请解答下列问题:(1)求各班参赛人数,并补全条形统计图;(2)此次竞赛中8(2)班成绩为C 级的人数为_______人; (3)小明同学根据以上信息制作了如下统计表:平均数(分) 中位数(分) 方差 8(1)班 m 90 n 8(2)班919029请分别求出m 和n 的值,并从优秀率和稳定性方面比较两个班的成绩; 23.甲乙两位同学参加数学综合素质测试,各项成绩如下表:(单位:分)数与代数 空间与图形 统计与概率 综合与实践 学生甲 93 93 89 90 学生乙94929486(1)分别计算甲、乙同学成绩的中位数;(2)如果数与代数,空间与图形,统计与概率,综合与实践的成绩按4:3:1:2计算,那么甲、乙同学的数学综合素质成绩分别为多少分?24.如图,在菱形ABCD 中,AB=2,∠DAB=60°,点E 是AD 边的中点,点M 是AB 边上的一个动点(不与点A 重合),延长ME 交CD 的延长线于点N ,连接MD ,AN .(1)求证:四边形AMDN 是平行四边形.(2)当AM 的值为何值时,四边形AMDN 是矩形,请说明理由.25.将函数y =x +b (b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y =|x +b|(b 为常数)的图象(1)当b =0时,在同一直角坐标系中分别画出函数112y x =+与y =|x +b|的图象,并利用这两个图象回答:x 取什么值时,112x +比|x|大? (2)若函数y =|x +b|(b 为常数)的图象在直线y =1下方的点的横坐标x 满足0<x <3,直接写出b 的取值范围【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】分析:首先由2(2)a -,即可将原式化简,然后由1<a <2,去绝对值符号,继而求得答案. 详解:∵1<a <2,2(2)a -(a-2), |a-1|=a-1,∴2a +|a-1|=-(a-2)+(a-1)=2-1=1.(2)故选A.点睛:此题考查了二次根式的性质与化简以及绝对值的性质,解答本题的关键在于熟练掌握二次根式的性质.2.A解析:A【解析】【分析】先判定△DBE≌△OCD,可得BD=OC=4,设AE=x,则BE=4﹣x=CD,依据BD+CD=5,可得4+4﹣x=5,进而得到AE=3,据此可得E(﹣5,3).【详解】由题可得:AO=BC=5,AB=CO=4,由旋转可得:DE=OD,∠EDO=90°.又∵∠B=∠OCD=90°,∴∠EDB+∠CDO=90°=∠COD+∠CDO,∴∠EDB=∠DOC,∴△DBE≌△OCD,∴BD=OC=4,设AE=x,则BE=4﹣x=CD.∵BD+CD=5,∴4+4﹣x=5,解得:x=3,∴AE=3,∴E(﹣5,3).故选A.【点睛】本题考查了全等三角形的判定与性质,矩形的性质以及旋转的性质的运用,解题时注意:全等三角形的对应边相等.3.C解析:C【解析】【分析】根据y=kx+b(k、b是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案.【详解】解:∵y=(m﹣2)x n﹣1+n是一次函数,∴m﹣2≠0,n﹣1=1,∴m≠2,n=2,故选C.【点睛】本题考查了一次函数,y=kx+b,k、b是常数,k≠0,x的次数等于1是解题关键.4.D解析:D【解析】A 、两条对角线垂直并且相互平分的四边形是菱形,故选项A 错误; B 、对角线垂直且相等的平行四边形是正方形,故选项B 错误; C 、两条对角线相等的平行四边形是矩形,故选项C 错误;D 、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D 正确; 故选D .5.C解析:C 【解析】 【分析】根据一次函数的性质进行判定即可. 【详解】一次函数y=-x+4中k=-1<0,b>0,所以一次函数y=-x+4的图象经过二、一、四象限, 又点P 在一次函数y=-x+4的图象上, 所以点P 一定不在第三象限, 故选C. 【点睛】本题考查了一次函数的图象和性质,熟练掌握是解题的关键.y=kx+b :当 k>0,b>0时,函数的图象经过一,二,三象限;当 k>0,b<0时,函数的图象经过一,三,四象限;当 k<0,b>0时,函数的图象经过一,二,四象限;当 k<0,b<0时,函数的图象经过二,三,四象限.6.C解析:C 【解析】 【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等,利用平角定义ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°,再通过等量代换可以求出CBD ∠. 【详解】解:∵长方形纸片按如图所示的方式折叠,,BC BD 为折痕 ∴A BC ABC '∠=∠,E BD EBD '∠=∠∵ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°(平角定义) ∴A BC '∠+A BC '∠+E BD '∠+E BD '∠=180°(等量代换)A BC '∠+E BD '∠=90°即CBD ∠=90° 故选:C . 【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.7.A解析:A 【解析】 【分析】根据一次函数的系数k=-0.5<0,可得出y 随x 值的增大而减小,将x=1代入一次函数解析式中求出y 值即可. 【详解】在一次函数y=-0.5x+2中k=-0.5<0, ∴y 随x 值的增大而减小,∴当x=1时,y 取最大值,最大值为-0.5×1+2=1.5, 故选A . 【点睛】本题考查了一次函数的性质,牢记“k <0,y 随x 的增大而减小”是解题的关键.8.B解析:B 【解析】 【分析】 【详解】解:对角线互相垂直平分的四边形为菱形.已知对角线AC 、BD 互相垂直, 则需添加条件:AC 、BD 互相平分 故选:B9.C解析:C 【解析】 【分析】根据勾股定理可得①中第三条边长为5∠C =90°,根据三角形内角和定理计算出∠C =90°,可得③正确,再根据勾股定理逆定理可得④正确. 【详解】①Rt △ABC 中,已知两边分别为3和4,则第三条边长为5,说法错误,第三条边长为5或.②△ABC 的三边长分别为AB ,BC ,AC ,若2BC +2AC =2AB ,则∠A =90°,说法错误,应该是∠C=90°.③△ABC中,若∠A:∠B:∠C=1:5:6,此时∠C=90°,则这个三角形是一个直角三角形,说法正确.④若三角形的三边比为3:4:5,则该三角形是直角三角形,说法正确.故选C.【点睛】本题考查了直角三角形的判定,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.10.C解析:C【解析】【分析】根据m、n同正,同负,一正一负时利用一次函数的性质进行判断.【详解】解:①当mn>0时,m、n同号,y=mnx过一三象限;同正时,y=mx+n经过一、二、三象限,同负时,y=mx+n过二、三、四象限;②当mn<0时,m、n异号,y=mnx过二四象限,m>0,n<0时,y=mx+n经过一、三、四象限;m<0,n>0时,y=mx+n过一、二、四象限;故选:C.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.11.A解析:A【解析】【分析】先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为三段.【详解】解:根据题意可知:火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,火车完全进入后一段时间内y不变,当火车开始出来时y逐渐变小,反映到图象上应选A.故选:A.【点睛】本题考查了动点问题的函数图象,主要考查了根据实际问题作出函数图象的能力.解题的关键是要知道本题是分段函数,分情况讨论y与x之间的函数关系.12.D解析:D【解析】【分析】【详解】解:∵AB=2.5米,AC=0.7米,∴BC(米).∵梯子的顶部下滑0.4米,∴BE=0.4米,∴EC=BC﹣0.4=2(米),∴DC(米),∴梯子的底部向外滑出AD=1.5﹣0.7=0.8(米).故选D.【点睛】此题主要考查了勾股定理在实际生活中的应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.二、填空题13.大于【解析】【分析】根据一次函数的性质当k<0时y随x的增大而减小【详解】∵一次函数y=−2x+1中k=−2<0∴y随x的增大而减小∵x1<x2∴y1>y2故答案为>【点睛】此题主要考查了一次函数的解析:大于【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小.【详解】∵一次函数y=−2x+1中k=−2<0,∴y随x的增大而减小,∵x1<x2,∴y1>y2.故答案为>.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.14.或【解析】【分析】根据二次根式有意义的条件可求出xy的值代入即可得出结论【详解】∵且∴∴∴或故答案为:或【点睛】本题考查了二次根式有意义的条件解答本题的关键由二次根式有意义的条件求出xy的值-或7-.解析:1【解析】【分析】根据二次根式有意义的条件可求出x、y的值,代入即可得出结论.【详解】∵290x -…且290x -≥,∴3x =±,∴4y =,∴1x y -=-或7-.故答案为:1-或7-.【点睛】本题考查了二次根式有意义的条件.解答本题的关键由二次根式有意义的条件求出x 、y 的值.15.【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案详解:由题意可得:+++…+=+1++1++…+1+=9+(1﹣+﹣+﹣+…+﹣)=9+=9故答案为9点睛:此题主要考查了数字变化规律正确 解析:9910【解析】 分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:=11+12⨯+1+123⨯+1+134⨯+…+1+1910⨯ =9+(1﹣12+12﹣13+13﹣14+…+19﹣110) =9+910=9910. 故答案为9910. 点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.16.7【解析】【分析】根据题目中的数据和方差的定义可以求得所求数据的方差【详解】设一组数据135a8的平均数是另一组数据111315+1018的平均数是+10∵=07∴==07故答案为07【点睛】本题考解析:7【解析】【分析】根据题目中的数据和方差的定义,可以求得所求数据的方差.【详解】设一组数据1,3,5,a ,8的平均数是x ,另一组数据11,13,15,x +10,18的平均数是x +10, ∵22222(1)(3)(5)()(8)5x x x a x x -+-+-+-+-=0.7,∴222(1110)(1310)(1810)5x x x --+--+⋯-- =22222(1)(3)(5)()(8)5x x x a x x -+-+-+-+- =0.7,故答案为0.7.【点睛】本题考查方差,解答本题的关键是明确题意,利用方差的知识解答.17.x >1【解析】试题分析:根据两直线的图象以及两直线的交点坐标来进行判断试题解析:由图知:当直线y=x+b 的图象在直线y=ax+3的上方时不等式x+b >ax+3成立;由于两直线的交点横坐标为:x=1观解析:x >1【解析】试题分析:根据两直线的图象以及两直线的交点坐标来进行判断.试题解析:由图知:当直线y=x+b 的图象在直线y=ax+3的上方时,不等式x+b >ax+3成立;由于两直线的交点横坐标为:x=1,观察图象可知,当x >1时,x+b >ax+3;考点:一次函数与一元一次不等式.18.【解析】【分析】根据正方形的面积分别求出BCBE 的长继而可得CE 的长再利用三角形面积公式进行求解即可【详解】∵正方形的面积为正方形的面积为∴BC=AB=BE=∴CE=BE-BC=-∴S △ACE==故解析:52 【解析】【分析】根据正方形的面积分别求出BC 、BE 的长,继而可得CE 的长,再利用三角形面积公式进行求解即可.【详解】∵正方形ABCD 的面积为5,正方形BEFG 的面积为7,∴,∴∴S △ACE =1122CE AB =⨯g ,. 【点睛】本题考查了算术平方根的应用,三角形面积,二次根式的混合运算等,熟练掌握并灵活运用相关知识是解题的关键.19.a>b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2∴该函数中y随着x的增大而减小∵1<2∴a>b故答案为a>b【点睛】本题考查一次函数图象上点的坐标特征解析:a>b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为a>b.【点睛】本题考查一次函数图象上点的坐标特征.20.y=-3x+5【解析】【分析】平移时k的值不变只有b发生变化【详解】解:原直线的k=-3b=0;向上平移5个单位得到了新直线那么新直线的k=-3b=0+5=5∴新直线的解析式为y=-3x+5故答案为解析:y=-3x+5【解析】【分析】平移时k的值不变,只有b发生变化.【详解】解:原直线的k=-3,b=0;向上平移5个单位得到了新直线,那么新直线的k=-3,b=0+5=5.∴新直线的解析式为y=-3x+5.故答案为y=-3x+5.【点睛】求直线平移后的解析式时要注意平移时k和b的值的变化,掌握这点很重要.三、解答题21.﹣4.【解析】【分析】利用负指数幂的性质、零指数幂的性质、二次根式的性质进行化简再解答即可.【详解】解:原式=2×+1﹣﹣1=﹣﹣1=72﹣4.【点睛】本题考查了负指数幂的性质、零指数幂的性质、二次根式的性质,掌握各类代数式的性质是解答本题的关键.22.(1)详见解析;(2)1人;(3)从优秀率看8(2)班更好,从稳定性看8(2)班的成绩更稳定;【解析】【分析】(1)由8(2)班A级人数及其所占百分比可得两个班的人数,班级人数减去A、B级人数可求出C等级人数;(2)班级人数乘以C等级对应的百分比可得其人数;(3)根据平均数和方差的定义求解可得;【详解】(1)∵8(2)班有2人达到A级,且A等级人数占被调查的人数为20%,∴8(2)班参赛的人数为2÷20%=10(人),∵8(1)和8(2)班参赛人数相同,∴8(1)班参赛人数也是10人,则8(1)班C等级人数为10-3-5=2(人),补全图形如下:(2)此次竞赛中8(2)班成绩为C级的人数为10×(1-20%-70%)=1(人),故答案为:1.(3)m=110×(100×3+90×5+80×2)=91(分),n=110×[(100-91)2×3+(90-91)2×5+(80-91)2×2]=49,∵8(1)班的优秀率为3510×100%=80%,8(2)班的优秀率为20%+70%=90%,∴从优秀率看8(2)班更好;∵8(1)班的方差大于8(2)班的方差,∴从稳定性看8(2)班的成绩更稳定;【点睛】此题考查条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.除此之外,本题也考查了对平均数、方差的认识.23.(1)甲的中位数91.5,乙的中位数93;(2)甲的数学综合成绩92,乙的数学综合成绩91.8.【解析】【分析】(1)由中位数的定义求解可得;(2)根据加权平均数的定义计算可得.【详解】(1)甲的中位数=9093=91.52+,乙的中位数=9294=932+;(2)甲的数学综合成绩=93×0.4+93×0.3+89×0.1+90×0.2=92,乙的数学综合成绩=94×0.4+92×0.3+94×0.1+86×0.2=91.8.【点睛】此题考查了中位数和加权平均数,用到的知识点是中位数和加权平均数,掌握它们的计算公式是本题的关键.24.(1)证明见解析;(2)AM=1.理由见解析.【解析】【分析】【详解】解:(1)∵四边形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∠DNE=∠AME,∵点E是AD中点,∴DE=AE,在△NDE和△MAE中,NDE MAEDNE AME DE AE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△NDE≌△MAE(AAS),∴ND=MA,∴四边形AMDN是平行四边形;(2)解:当AM=1时,四边形AMDN是矩形.理由如下:∵四边形ABCD是菱形,∴AD=AB=2,∵平行四边形AMDN是矩形,∴DM⊥AB,即∠DMA=90°,∵∠DAB=60°,∴∠ADM=30°,∴AM=12AD=1.【点睛】本题考查矩形的判定;平行四边形的判定;菱形的性质.25.(1)见解析,223x-<<;(2)21b--剟【解析】【分析】(1)画出函数图象,求出两个函数图象的交点坐标,利用图象法即可解决问题;(2)利用图象法即可解决问题.【详解】解:(1)当b=0时,y=|x+b|=|x|列表如下:x-101 112y x=+12112 y=|x|101∴如图所示:该函数图像为所求∵1y x12||y x⎧=+⎪⎨⎪⎩=∴2x=-32=-y3⎧⎪⎪⎨⎪⎪⎩或y=x=22⎧⎨⎩∴两个函数的交点坐标为A2233⎛⎫- ⎪⎝⎭,,B(2,2),∴观察图象可知:223x-<<时,112x+比||x大;(2)如图,观察图象可知满足条件的b的值为21b--剟,【点睛】本题主要考查了一次函数的图象,一次函数的性质,一次函数图象与几何变换,掌握一次函数的图象,一次函数的性质,一次函数图象与几何变换是解题的关键.。

2020-2021初二数学下期末试卷(附答案)(2)

2020-2021初二数学下期末试卷(附答案)(2)

2020-2021初二数学下期末试卷(附答案)(2)一、选择题1.若63n是整数,则正整数n的最小值是()A.4B.5C.6D.72.若等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为()A.7B.6C.5D.43.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h随时间t变化的函数图象是()A.B.C.D.4.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:鞋的尺码/cm2323.52424.525销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,245.如图,矩形OABC的顶点O与平面直角坐标系的原点重合,点A,C分别在x轴,y轴上,点B的坐标为(-5,4),点D为边BC上一点,连接OD,若线段OD绕点D顺时针旋转90°后,点O恰好落在AB边上的点E处,则点E的坐标为()A.(-5,3)B.(-5,4)C.(-5,52)D.(-5,2)6.如图,在四边形ABCD中,AB∥CD,要使得四边形ABCD是平行四边形,可添加的条件不正确的是 ( )A .AB=CDB .BC ∥AD C .BC=AD D .∠A=∠C7.将一张长方形纸片按如图所示的方式折叠,,BC BD 为折痕,则CBD ∠的度数为( )A .60︒B .75︒C .90︒D .95︒8.正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =-的图象大致是( )A .B .C .D .9.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表: 每天锻炼时间(分钟) 20 40 60 90 学生数2341则关于这些同学的每天锻炼时间,下列说法错误的是( )A .众数是60B .平均数是21C .抽查了10个同学D .中位数是5010.如图,在Y ABCD 中, 对角线AC 、BD 相交于点O. E 、F 是对角线AC 上的两个不同点,当E 、F 两点满足下列条件时,四边形DEBF 不一定是平行四边形( ).A .AE =CFB .DE =BFC .ADE CBF ∠=∠D .AED CFB ∠=∠11.如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 的中点C '上.若6AB =,9BC =,则BF 的长为( )A .4B .32C .4.5D .512.如图,函数y =ax +b 和y =kx 的图像交于点P ,关于x ,y 的方程组0y ax bkx y -=⎧⎨-=⎩的解是( )A .23x y =-⎧⎨=-⎩B .32x y =-⎧⎨=⎩C .32x y =⎧⎨=-⎩D .32x y =-⎧⎨=-⎩二、填空题13.如图,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1_____S 2;(填“>”或“<”或“=”)14.一次函数的图象过点()1,3且与直线21y x =-+平行,那么该函数解析式为__________.15.2+1的倒数是____.16.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、E 的面积分别为2,5,1,10.则正方形D 的面积是______.17.如图所示,将四根木条组成的矩形木框变成▱ABCD 的形状,并使其面积变为原来的一半,则这个平行四边形的一个最小的内角的度数是_____.18.函数1y x =-的自变量x 的取值范围是 . 19.某汽车生产厂对其生产的A 型汽车进行油耗试验,试验中汽车为匀速行驶汽在行驶过程中,油箱的余油量y (升)与行驶时间t (小时)之间的关系如下表: t (小时) 0 1 2 3 y (升)100928476由表格中y 与t 的关系可知,当汽车行驶________小时,油箱的余油量为0. 20.有一组数据如下:2,3,a ,5,6,它们的平均数是4,则这组数据的方差是 .三、解答题21.某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC 表示日销售量y(件)与销售时间x(天)之间的函数关系.(1)求y 与x 之间的函数表达式,并写出x 的取值范围;(2)若该节能产品的日销售利润为W(元),求W 与x 之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?(3)若5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元? 22.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积()2x m 之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0300x ≤≤和300x >时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共21200m ,若甲种花卉的种植面积不少于2200m ,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?23.如图,在正方形网格中,小正方形的边长为1,A ,B ,C 为格点()1判断ABC V 的形状,并说明理由. ()2求BC 边上的高.24.如图,在▱ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,若AB =5,AE =8,则BF 的长为______.25.如图,在□ABCD 中,∠ABD =90°,延长AB 至点E ,使BE =AB ,连接CE . (1)求证:四边形BECD 是矩形;(2)连接DE 交BC 于点F ,连接AF ,若CE =2,∠DAB =30°,求AF 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】63n 63n 273n ⨯7n 7n 是完全平方数,满足条件的最小正整数n 为7. 【详解】63n 273n ⨯7n 7n ∴7n 7n 是完全平方数; ∴n 的最小正整数值为7. 故选:D . 【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.a b ab =b ba a=.解题关键是分解成一个完全平方数和一个代数式的积的形式.2.C解析:C 【解析】 【分析】 【详解】∵等腰三角形ABC 中,AB =AC ,AD 是BC 上的中线, ∴BD =CD =12BC =3, AD 同时是BC 上的高线, ∴AB 22AD BD +故它的腰长为5.故选C.3.A解析:A【解析】试题分析:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h 随时间t的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A.考点:函数的图象.4.A解析:A【解析】【分析】根据众数和中位数的定义进行求解即可得.【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,故选A.【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.5.A解析:A【解析】【分析】先判定△DBE≌△OCD,可得BD=OC=4,设AE=x,则BE=4﹣x=CD,依据BD+CD=5,可得4+4﹣x=5,进而得到AE=3,据此可得E(﹣5,3).【详解】由题可得:AO=BC=5,AB=CO=4,由旋转可得:DE=OD,∠EDO=90°.又∵∠B=∠OCD=90°,∴∠EDB+∠CDO=90°=∠COD+∠CDO,∴∠EDB=∠DOC,∴△DBE≌△OCD,∴BD=OC=4,设AE=x,则BE=4﹣x=CD.∵BD+CD=5,∴4+4﹣x=5,解得:x=3,∴AE=3,∴E(﹣5,3).故选A.【点睛】本题考查了全等三角形的判定与性质,矩形的性质以及旋转的性质的运用,解题时注意:全等三角形的对应边相等.6.C解析:C 【解析】 【分析】根据平行四边形的判定方法,逐项判断即可. 【详解】 ∵AB ∥CD ,∴当AB=CD 时,由一组对边平行且相等的四边形为平行四边形可知该条件正确; 当BC ∥AD 时,由两组对边分别平行的四边形为平行四边形可知该条件正确; 当∠A=∠C 时,可求得∠B=∠D ,由两组对角分别相等的四边形为平行四边形可知该条件正确;当BC=AD 时,该四边形可能为等腰梯形,故该条件不正确; 故选:C . 【点睛】本题主要考查平行四边形的判定,掌握平行四边形的判定方法是解题的关键.7.C解析:C 【解析】 【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等,利用平角定义ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°,再通过等量代换可以求出CBD ∠. 【详解】解:∵长方形纸片按如图所示的方式折叠,,BC BD 为折痕 ∴A BC ABC '∠=∠,E BD EBD '∠=∠∵ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°(平角定义)∴A BC '∠+A BC '∠+E BD '∠+E BD '∠=180°(等量代换)A BC '∠+E BD '∠=90° 即CBD ∠=90° 故选:C . 【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.8.B解析:B 【解析】 【分析】先根据正比例函数y kx =的函数值y 随x 的增大而增大判断出k 的符号,再根据一次函数的性质进行解答即可. 【详解】解:Q 正比例函数y kx =的函数值y 随x 的增大而增大,00k k ∴->,<,∴一次函数y x k =-的图象经过一、三、四象限.故选B . 【点睛】本题考查的知识点是一次函数的图象与正比例函数的性质,解题关键是先根据正比例函数的性质判断出k 的取值范围.9.B解析:B 【解析】 【分析】根据众数、中位数和平均数的定义分别对每一项进行分析即可. 【详解】解:A 、60出现了4次,出现的次数最多,则众数是60,故A 选项说法正确; B 、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B 选项说法错误; C 、调查的户数是2+3+4+1=10,故C 选项说法正确;D 、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D 选项说法正确; 故选:B . 【点睛】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.10.B解析:B【解析】【分析】根据平行四边形的性质以及平行四边形的判定定理即可作出判断.【详解】解:A、∵在平行四边形ABCD中,OA=OC,OB=OD,若AE=CF,则OE=OF,∴四边形DEBF是平行四边形;B、若DE=BF,没有条件能够说明四边形DEBF是平行四边形,则选项错误;C、∵在平行四边形ABCD中,OB=OD,AD∥BC,∴∠ADB=∠CBD,若∠ADE=∠CBF,则∠EDB=∠FBO,∴DE∥BF,则△DOE和△BOF中,EDB FBO OD OBDOE BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DOE≌△BOF,∴DE=BF,∴四边形DEBF是平行四边形.故选项正确;D、∵∠AED=∠CFB,∴∠DEO=∠BFO,∴DE∥BF,在△DOE和△BOF中,DOE BOFDEO BFO OD OB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DOE≌△BOF,∴DE=BF,∴四边形DEBF是平行四边形.故选项正确.故选B.【点睛】本题考查了平行四边形的性质以及判定定理,熟练掌握定理是关键.11.A解析:A【解析】【详解】∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC-BF=9-BF,在Rt△C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9-BF)2,解得,BF=4,故选A.12.D解析:D【解析】【分析】根据两图象的交点坐标满足方程组,方程组的解就是交点坐标.【详解】由图可知,交点坐标为(﹣3,﹣2),所以方程组的解是32 xy=-⎧⎨=-⎩.故选D.【点睛】本题考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.二、填空题13.=【解析】【分析】利用矩形的性质可得△ABD的面积=△CDB的面积△MBK 的面积=△QKB的面积△PKD的面积=△NDK的面积进而求出答案【详解】解:∵四边形ABCD是矩形四边形MBQK是矩形四边形解析:=【解析】【分析】利用矩形的性质可得△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,进而求出答案.【详解】解:∵四边形ABCD是矩形,四边形MBQK是矩形,四边形PKND是矩形,∴△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,∴△ABD的面积﹣△MBK的面积﹣△PKD的面积=△CDB的面积﹣△QKB的面积=△NDK的面积,故答案为:=.【点睛】本题考查了矩形的性质,熟练掌握矩形的性质定理是解题关键.14.【解析】【分析】根据两直线平行可设把点代入即可求出解析式【详解】解:∵一次函数图像与直线平行∴设一次函数为把点代入方程得:∴∴一次函数的解析式为:;故答案为:【点睛】本题考查了一次函数的图像和性质解 解析:25y x =-+【解析】【分析】根据两直线平行,可设2y x b =-+,把点()1,3代入,即可求出解析式.【详解】解:∵一次函数图像与直线21y x =-+平行,∴设一次函数为2y x b =-+,把点()1,3代入方程,得:213b -⨯+=,∴5b =,∴一次函数的解析式为:25y x =-+;故答案为:25y x =-+.【点睛】本题考查了一次函数的图像和性质,解题的关键是掌握两条直线平行,则斜率相等. 15.【解析】【分析】由倒数的定义可得的倒数是然后利用分母有理化的知识求解即可求得答案【详解】∵∴的倒数是:故答案为:【点睛】此题考查了分母有理化的知识与倒数的定义此题比较简单注意二次根式有理化主要利用了1.【解析】【分析】,然后利用分母有理化的知识求解即可求得答案.【详解】1=.1.1.【点睛】此题考查了分母有理化的知识与倒数的定义.此题比较简单,注意二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.16.2【解析】【分析】设中间两个正方形和正方形D的面积分别为xyz然后有勾股定理解答即可【详解】解:设中间两个正方形和正方形D的面积分别为xyz则由勾股定理得:x=2+5=7;y=1+z;7+y=7+1解析:2【解析】【分析】设中间两个正方形和正方形D的面积分别为x,y,z,然后有勾股定理解答即可.【详解】解:设中间两个正方形和正方形D的面积分别为x,y,z,则由勾股定理得:x=2+5=7;y=1+z;7+y=7+1+z=10;即正方形D的面积为:z=2.故答案为:2.【点睛】本题考查了勾股定理的应用,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.17.30°【解析】【分析】过A作AE⊥BC于点E由四根木条组成的矩形木框变成▱ABCD的形状面积变为原来的一半可得AE=AB由此即可求得∠ABE=30°即平行四边形中最小的内角为30°【详解】解:过A作解析:30°【解析】【分析】过A作AE⊥BC于点E,由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,可得AE=12AB,由此即可求得∠ABE=30°,即平行四边形中最小的内角为30°.【详解】解:过A作AE⊥BC于点E,如图所示:由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,得到AE =12AB ,又△ABE 为直角三角形, ∴∠ABE =30°,则平行四边形中最小的内角为30°.故答案为:30°【点睛】 本题考查了平行四边形的面积公式及性质,根据题意求得AE =12AB 是解决问题的关键. 18.x >1【解析】【分析】【详解】解:依题意可得解得所以函数的自变量的取值范围是解析:x >1【解析】【分析】【详解】解:依题意可得10x ->,解得1x >,所以函数的自变量x 的取值范围是1x >19.5【解析】【分析】由表格可知开始油箱中的油为100L 每行驶1小时油量减少8L 据此可得y 与t 的关系式【详解】解:由题意可得:y=100-8t 当y=0时0=100-8t 解得:t=125故答案为:125【解析:5【解析】【分析】由表格可知,开始油箱中的油为100L ,每行驶1小时,油量减少8L ,据此可得y 与t 的关系式.【详解】解:由题意可得:y=100-8t ,当y=0时,0=100-8t解得:t=12.5.故答案为:12.5.【点睛】本题考查函数关系式.注意贮满100L 汽油的汽车,最多行驶的时间就是油箱中剩余油量为0时的t 的值.20.2【解析】试题分析:先由平均数计算出a=4×5-2-3-5-6=4再计算方差(一般地设n 个数据x1x2…xn 的平均数为=()则方差=)==2考点:平均数方差解析:2【解析】试题分析:先由平均数计算出a=4×5-2-3-5-6=4,再计算方差(一般地设n 个数据,x 1,x2,…x n的平均数为x,x=1n(12nx x x++⋯+),则方差2 S=1n[222 12nx xx x x x-+-+⋯+-()()()]),2 S=15[222222434445464-+-+-+-+-()()()()()]=2.考点:平均数,方差三、解答题21.(1)20320(110)1420(1030)x xyx x-+≤≤⎧=⎨-<≤⎩;(2)日销售利润不超过1040元的天数共有18天;(3)第5天的日销售利润最大,最大日销售利润是880元.【解析】【分析】(1)这是一个分段函数,利用待定系数法求y与x之间的函数表达式,并确定x的取值范围;(2)根据利润=(售价-成本)×日销售量可得w与x之间的函数表达式,并分别根据分段函数计算日销售利润不超过1040元对应的x的值;(3)分别根据5≤x≤10和10<x≤17两个范围的最大日销售利润,对比可得结论.【详解】(1)设线段AB段所表示的函数关系式为y=ax+b(1≤x≤10);BC段表示的函数关系式为y=mx+n(10<x≤30),把(1,300)、(10,120)带入y=ax+b中得,解得,∴线段AB表示的函数关系式为y=-20x+320(1≤x≤10);把(10,120),(30,400)代入y=mx+n中得,解得,∴线段BC表示的函数关系式为y=14x-20(10<x≤30),综上所述.(2)由题意可知单件商品的利润为10-6=4(元/件),∴当1≤x≤10时,w=4×(-20x+320)=-80x+1280;当10<x≤30时,w=4×(14x-20)=56x-80,∴,日销售利润不超过1040元,即w≤1040,∴当1≤x≤10时,w=-80x+1280≤1040,解得x≥3;当10<x≤30时,w=56x-80≤1040,解得x≤20,∴3≤x≤20,∴日销售利润不超过1040元的天数共有18天.(3)当5≤x≤17,第5天的日销售利润最大,最大日销售利润是880元.【点睛】本题考查应用题解方程,解题的关键是读懂题意.22.(1)()()130,03008015000.300x x y x x ⎧≤≤⎪=⎨+>⎪⎩;(2)应分配甲种花卉种植面积为2800m ,乙种花卉种植面积为2400m ,才能使种植总费用最少,最少总费用为119000元.【解析】分析:(1)由图可知y 与x 的函数关系式是分段函数,待定系数法求解析式即可. (2)设甲种花卉种植为 a m 2,则乙种花卉种植(12000-a )m 2,根据实际意义可以确定a 的范围,结合种植费用y (元)与种植面积x (m 2)之间的函数关系可以分类讨论最少费用为多少.详解:(1)()()130,03008015000.300x x y x x ⎧≤≤⎪=⎨+>⎪⎩(2)设甲种花卉种植面积为2am ,则乙种花卉种植面积为()21200a m -. ()200,21200a a a ≥⎧∴⎨≤-⎩200800a ∴≤≤. 当200300a ≤<时,()1130100120030120000W a a a =+-=+.当200a =时,min 126000W =元.当300800a ≤≤时,()2801500010020013500020W a a a =++-=-.当800a =时,min 119000W =元.119000126000<Q ,∴当800a =时,总费用最低,最低为119000元.此时乙种花卉种植面积为21200800400()m -=.答:应分配甲种花卉种植面积为2800m ,乙种花卉种植面积为2400m ,才能使种植总费用最少,最少总费用为119000元.点睛:本题是看图写函数解析式并利用解析式解决问题的题目,考查分段函数的表达和分类讨论的数学思想.23.(1)直角三角形,见解析;(2 【解析】【分析】 ()1利用勾股定理的逆定理即可解问题.()2利用面积法求高即可.【详解】解:()1结论:ABC V 是直角三角形.理由:222BC 1865=+=Q ,222AC 2313=+=,222AB 6452=+=,222∴+=,AC AB BC∴V是直角三角形.ABC()2设BC边上的高为h.则有11AC AB BC h⋅⋅=⋅⋅,22=,BC65=,=Q,AB213AC13265∴=.h【点睛】本题考查勾股定理以及逆定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.6【解析】【分析】先由角平分线的定义和平行线的性质得AB=BE=5,再利用等腰三角形三线合一得AH=EH=4,最后利用勾股定理得BH的长,即可求解.【详解】解:如图,∵AG平分∠BAD,∴∠BAG=∠DAG,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠DAG,∴∠BAG=∠AEB,∴AB=BE=5,由作图可知:AB=AF,∠BAE=∠FAE,∴BH=FH,BF⊥AE,∵AB=BE∴AH=EH=4,在Rt△ABH中,由勾股定理得:BH=3∴BF=2BH=6,故答案为:6.【点睛】本题考查了平行四边形的性质、勾股定理、角平分线的作法和定义、等腰三角形三线合一的性质,熟练掌握平行加角平分线可得等腰三角形,属于常考题型.25.(1)见解析(2)27【解析】【分析】(1)根据矩形的判定即可求解;(2)根据题意作出图形,根据直角三角形的性质及勾股定理即可求解.【详解】(1)∵四边形ABCD是平行四边形,又BE=AB∴四边形BECD是平行四边形,∵∠ABD=90°,∴平行四边形BECD是矩形;(2)如图,作PG⊥AE于G点,∵CE=2,∠DAB=30°,∴∠CBE=30°,PG=1,BE=23∴AB=23∵P为BC中点,∴G为BE中点,∴AG=AB+BG=33∴AP=22=27AG PG【点睛】此题主要考查矩形的性质,解题的关键是熟知矩形判定与性质.。

2020-2021初二数学下期末试题(含答案)(4)

2020-2021初二数学下期末试题(含答案)(4)

2020-2021初二数学下期末试题(含答案)(4)一、选择题 1.若63n 是整数,则正整数n 的最小值是( )A .4B .5C .6D .72.直角三角形两直角边长为a ,b ,斜边上高为h ,则下列各式总能成立的是( )A .ab=h 2B .a 2+b 2=2h 2C .111a b h +=D .222111a b h += 3.若等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为( )A .7B .6C .5D .4 4.已知函数y =11x x +-,则自变量x 的取值范围是( ) A .﹣1<x <1 B .x ≥﹣1且x ≠1 C .x ≥﹣1 D .x ≠15.如图,在平行四边形ABCD 中,ABC ∠和BCD ∠的平分线交于AD 边上一点E ,且4BE =,3CE =,则AB 的长是( )A .3B .4C .5D .2.56.对于函数y =2x +1下列结论不正确是( )A .它的图象必过点(1,3)B .它的图象经过一、二、三象限C .当x >12时,y >0 D .y 值随x 值的增大而增大7.如图,O 是矩形ABCD 对角线AC 的中点,M 是AD 的中点,若BC =8,OB =5,则OM 的长为( )A .1B .2C .3D .4 8.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是( ) A .矩形 B .一组对边相等,另一组对边平行的四边形C .对角线互相垂直的四边形D .对角线相等的四边形9.下列各组数,可以作为直角三角形的三边长的是( )A .2,3,4B .7,24,25C .8,12,20D .5,13,15 10.如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑( )米A .0.4B .0.6C .0.7D .0.8 11.正方形具有而菱形不一定具有的性质是( )A .对角线互相平分B .每条对角线平分一组对角C .对边相等D .对角线相等12.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .80二、填空题13.如图,一次函数y =kx+b 的图象与x 轴相交于点(﹣2,0),与y 轴相交于点(0,3),则关于x 的方程kx =b 的解是_____.14.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x=a ﹣b 的解是x=3;④当x >3时,y 1<y 2中.则正确的序号有____________.15.如图,已知ABC ∆中,10AB =,8AC =,6BC =,DE 是AC 的垂直平分线,DE 交AB 于点D ,连接CD ,则=CD ___16.如图,已知函数y=x+b 和y=ax+3的图象交点为P ,则不等式x+b >ax+3的解集为_____.17.如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是_______18.已知数据:﹣1,4,2,﹣2,x 的众数是2,那么这组数据的平均数为_____.19.一组数据:1、2、5、3、3、4、2、4,它们的平均数为_______,中位数为_______,方差是_______.20.将正比例函数y =﹣3x 的图象向上平移5个单位,得到函数_____的图象.三、解答题21.如图,在平面直角坐标系中,直线4y x =-+过点(6,m)A 且与y 轴交于点B ,把点A 向左平移2个单位,再向上平移4个单位,得到点C .过点C 且与3y x =平行的直线交y 轴于点D .(1)求直线CD 的解析式;(2)直线AB 与CD 交于点E ,将直线CD 沿EB 方向平移,平移到经过点B 的位置结束,求直线CD 在平移过程中与x 轴交点的横坐标的取值范围.22.某商场销售产品A ,第一批产品A 上市40天内全部售完.该商场对第一批产品A 上市后的销售情况进行了跟踪调查,调查结果如图所示:图①中的折线表示日销售量w 与上市时间t 的关系;图②中的折线表示每件产品A 的销售利润y 与上市时间t 的关系. (1)观察图①,试写出第一批产品A 的日销售量w 与上市时间t 的关系;(2)第一批产品A 上市后,哪一天这家商店日销售利润Q 最大?日销售利润Q 最大是多少元?(日销售利润=每件产品A的销售利润×日销售量)23.一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?24.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是.25.如图,在正方形网格中,小正方形的边长为1,A,B,C为格点()1判断ABCV的形状,并说明理由.()2求BC边上的高.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】7n 是完全平方数,满足条件的最小正整数n 为7.【详解】∴7n 是完全平方数;∴n 的最小正整数值为7.故选:D .【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.==.解题关键是分解成一个完全平方数和一个代数式的积的形式. 2.D解析:D【解析】【分析】【详解】解:根据直角三角形的面积可以导出:斜边c=ab h. 再结合勾股定理:a 2+b 2=c 2.进行等量代换,得a 2+b 2=222a b h , 两边同除以a 2b 2, 得222111a b h +=. 故选D . 3.C解析:C【解析】【分析】【详解】∵等腰三角形ABC中,AB=AC,AD是BC上的中线,∴BD=CD=12BC=3,AD同时是BC上的高线,∴AB=22AD BD+=5.故它的腰长为5.故选C.4.B解析:B【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.【详解】解:根据题意得:1010 xx+≥⎧⎨-≠⎩,解得:x≥-1且x≠1.故选B.点睛:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.5.D解析:D【解析】【分析】由▱ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,易证得△ABE,△CDE是等腰三角形,△BEC是直角三角形,则可求得BC的长,继而求得答案.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠CBE,∠DEC=∠BCE,∠ABC+∠DCB=90°,∵BE,CE分别是∠ABC和∠BCD的平分线,∴∠ABE=∠CBE=12∠ABC,∠DCE=∠BCE=12∠DCB,∴∠ABE=∠AEB,∠DCE=∠DEC,∠EBC+∠ECB=90°,∴AB=AE,CD=DE,∴AD=BC=2AB,∵BE=4,CE=3,∴5==,∴AB=12BC=2.5.故选D.【点睛】此题考查了平行四边形的性质、等腰三角形的判定与性质以及直角三角形的性质.注意证得△ABE,△CDE是等腰三角形,△BEC是直角三角形是关键.6.C解析:C【解析】【分析】利用k、b的值依据函数的性质解答即可.【详解】解:当x=1时,y=3,故A选项正确,∵函数y=2x+1图象经过第一、二、三象限,y随x的增大而增大,∴B、D正确,∵y>0,∴2x+1>0,∴x>﹣12,∴C选项错误,故选:C.【点睛】此题考查一次函数的性质,熟记性质并运用解题是关键.7.C解析:C【解析】【分析】由O是矩形ABCD对角线AC的中点,可求得AC的长,然后运用勾股定理求得AB、CD 的长,又由M是AD的中点,可得OM是△ACD的中位线,即可解答.【详解】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=AB=22AC BC-=22108-=6,∵M是AD的中点,∴OM=12CD=3.故答案为C.【点睛】本题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.8.D解析:D【解析】【分析】如图,根据三角形的中位线定理得到EH∥FG,EH=FG,EF=12BD,则可得四边形EFGH是平行四边形,若平行四边形EFGH是菱形,则可有EF=EH,由此即可得到答案.【详解】如图,∵E,F,G,H分别是边AD,DC,CB,AB的中点,∴EH=12AC,EH∥AC,FG=12AC,FG∥AC,EF=12BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形,假设AC=BD,∵EH=12AC,EF=12BD,则EF=EH,∴平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选D.【点睛】本题考查了中点四边形,涉及到菱形的判定,三角形的中位线定理,平行四边形的判定等知识,熟练掌握和灵活运用相关性质进行推理是解此题的关键.9.B解析:B试题解析:A、∵22+32≠42,∴不能构成直角三角形;B、∵72+242=252,∴能构成直角三角形;C、∵82+122≠202,∴不能构成直角三角形;D、∵52+132≠152,∴不能构成直角三角形.故选B.10.D解析:D【解析】【分析】【详解】解:∵AB=2.5米,AC=0.7米,∴BC(米).∵梯子的顶部下滑0.4米,∴BE=0.4米,∴EC=BC﹣0.4=2(米),∴DC(米),∴梯子的底部向外滑出AD=1.5﹣0.7=0.8(米).故选D.【点睛】此题主要考查了勾股定理在实际生活中的应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.11.D解析:D【解析】【分析】列举出正方形具有而菱形不一定具有的所有性质,由此即可得出答案.【详解】正方形具有而菱形不一定具有的性质是:①正方形的对角线相等,而菱形不一定对角线相等;②正方形的四个角是直角,而菱形的四个角不一定是直角.故选D.【点睛】本题考查了正方形、菱形的性质,熟知正方形及菱形的性质是解决问题的关键.12.C解析:C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴10==∴S阴影部分=S正方形ABCD-S Rt△ABE=102-168 2⨯⨯=76.故选C.考点:勾股定理.二、填空题13.x=2【解析】【分析】依据待定系数法即可得到k和b的值进而得出关于x 的方程kx=b的解【详解】解:∵一次函数y=kx+b的图象与x轴相交于点(﹣20)与y轴相交于点(03)∴解得∴关于x的方程kx=解析:x=2【解析】【分析】依据待定系数法即可得到k和b的值,进而得出关于x的方程kx=b的解.【详解】解:∵一次函数y=kx+b的图象与x轴相交于点(﹣2,0),与y轴相交于点(0,3),∴0=-2k+b3=b⎧⎨⎩,解得323kb⎧=⎪⎨⎪=⎩,∴关于x的方程kx=b即为:32x=3,解得x=2,故答案为:x=2.【点睛】本题主要考查了待定系数法的应用,任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.14.①③④【解析】【分析】根据y1=kx+b和y2=x+a的图象可知:k<0a<0所以当x>3时相应的x的值y1图象均低于y2的图象【详解】根据图示及数据可知:①k<0正确;②a<0原来的说法错误;③方解析:①③④【解析】【分析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x>3时,相应的x的值,y1图象均低于y2的图象.【详解】根据图示及数据可知:①k <0正确;②a <0,原来的说法错误;③方程kx+b=x+a 的解是x=3,正确;④当x >3时,y 1<y 2正确.故答案是:①③④.【点睛】考查一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b 的图象有四种情况:①当k >0,b >0,函数y=kx+b 的图象经过第一、二、三象限;②当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限. 15.5【解析】【分析】由是的垂直平分线可得AD=CD 可得∠CAD=∠ACD 利用勾股定理逆定理可得∠ACB=90°由等角的余角相等可得:∠DCB=∠B 可得CD=BD 可知CD=BD=AD=【详解】解:∵是的解析:5【解析】【分析】由DE 是AC 的垂直平分线可得AD=CD ,可得∠CAD=∠ACD ,利用勾股定理逆定理可得∠ACB=90°由等角的余角相等可得:∠DCB=∠B ,可得CD=BD ,可知CD=BD=AD=152AB = 【详解】解:∵DE 是AC 的垂直平分线∴AD=CD∴∠CAD=∠ACD∵10AB =,8AC =,6BC =又∵2226+8=10∴222AC BC AB +=∴∠ACB=90°∵∠ACD+∠DCB=90°, ∠CAB+∠B=90°∴∠DCB=∠B∴CD=BD∴CD=BD=AD=152AB = 故答案为5【点睛】本题考查了线段垂直平分线、勾股定理逆定理以及等腰三角形的性质,掌握勾股定理逆定理及利用等腰三角形求线段是解题的关键. 16.x >1【解析】试题分析:根据两直线的图象以及两直线的交点坐标来进行判断试题解析:由图知:当直线y=x+b的图象在直线y=ax+3的上方时不等式x+b >ax+3成立;由于两直线的交点横坐标为:x=1观解析:x>1【解析】试题分析:根据两直线的图象以及两直线的交点坐标来进行判断.试题解析:由图知:当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b>ax+3成立;由于两直线的交点横坐标为:x=1,观察图象可知,当x>1时,x+b>ax+3;考点:一次函数与一元一次不等式.17.—1【解析】【分析】首先根据勾股定理计算出AC的长进而得到AE的长再根据A点表示-1可得E点表示的数【详解】∵AD长为2AB长为1∴AC=∵A 点表示-1∴E点表示的数为:-1故答案为-1【点睛】本题1【解析】【分析】首先根据勾股定理计算出AC的长,进而得到AE的长,再根据A点表示-1,可得E点表示的数.【详解】∵AD长为2,AB长为1,∴,∵A点表示-1,∴E-1,【点睛】本题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方.18.【解析】试题分析:数据:﹣142﹣2x的众数是2即的2次数最多;即x=2则其平均数为:(﹣1+4+2﹣2+2)÷5=1故答案为1考点:1众数;2算术平均数解析:【解析】试题分析:数据:﹣1,4,2,﹣2,x的众数是2,即的2次数最多;即x=2.则其平均数为:(﹣1+4+2﹣2+2)÷5=1.故答案为1.考点:1.众数;2.算术平均数.19.33【解析】【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:12233445解析:3,3,3 2 .【解析】【分析】根据平均数的公式即可求出答案,将数据按照由小到大的顺序重新排列,中间两个数的平均数即是中位数,根据方差的公式计算即可得到这组数据的方差.【详解】平均数=1(12533424)38⨯+++++++=,将数据重新排列是:1、2、2、3、3、4、4、5,∴中位数是3332+=, 方差=222221(13)2(23)2(33)2(43)(53)8⎡⎤⨯-+⨯-+⨯-+⨯-+-⎣⎦=32, 故答案为:3,3,32. 【点睛】 此题考查计算能力,计算平均数,中位数,方差,正确掌握各计算的公式是解题的关键.20.y=-3x+5【解析】【分析】平移时k 的值不变只有b 发生变化【详解】解:原直线的k =-3b=0;向上平移5个单位得到了新直线那么新直线的k=-3b=0+5=5∴新直线的解析式为y=-3x+5故答案为解析:y=-3x+5【解析】【分析】平移时k 的值不变,只有b 发生变化.【详解】解:原直线的k=-3,b=0;向上平移5个单位得到了新直线,那么新直线的k=-3,b=0+5=5.∴新直线的解析式为y=-3x+5.故答案为y=-3x+5.【点睛】求直线平移后的解析式时要注意平移时k 和b 的值的变化,掌握这点很重要.三、解答题21.(1)y=3x-10;(2)41033x -≤≤ 【解析】【分析】(1)先把A (6,m )代入y=-x+4得A (6,-2),再利用点的平移规律得到C (4,2),接着利用两直线平移的问题设CD 的解析式为y=3x+b ,然后把C 点坐标代入求出b 即可得到直线CD 的解析式;(2)先确定B(0,4),再求出直线CD与x轴的交点坐标为(103,0);易得CD平移到经过点B时的直线解析式为y=3x+4,然后求出直线y=3x+4与x轴的交点坐标,从而可得到直线CD在平移过程中与x轴交点的横坐标的取值范围.【详解】解:(1)把A(6,m)代入y=-x+4得m=-6+4=-2,则A(6,-2),∵点A向左平移2个单位,再向上平移4个单位,得到点C,∴C(4,2),∵过点C且与y=3x平行的直线交y轴于点D,∴CD的解析式可设为y=3x+b,把C(4,2)代入得12+b=2,解得b=-10,∴直线CD的解析式为y=3x-10;(2)当x=0时,y=4,则B(0,4),当y=0时,3x-10=0,解得x=103,则直线CD与x轴的交点坐标为(103,0),易得CD平移到经过点B时的直线解析式为y=3x+4,当y=0时,3x+4=0,解得x=43-,则直线y=3x+4与x轴的交点坐标为(43-,0),∴直线CD在平移过程中与x轴交点的横坐标的取值范围为410 33x-≤≤.【点睛】本题考查了一次函数与几何变换:求直线平移后的解析式时要注意平移时k的值不变,会利用待定系数法求一次函数解析式.22.(1)当0≤t≤30时,日销售量w=2t;当30<t≤40时,日销售量w=﹣6t+240;(2)第一批产品A上市后30天,这家商店日销售利润Q最大,日销售利润Q最大是3600元.【解析】【分析】(1)根据题意和函数图象中的数据可以求得第一批产品A的日销售量w与上市时间t的关系;(2)根据函数图象中的数据可以求得第一批产品A上市后,哪一天这家商店日销售利润Q最大,并求出Q的最大值.【详解】解:(1)由图①可得,当0≤t≤30时,可设日销售量w=kt,∵点(30,60)在图象上,∴60=30k.∴k=2,即w=2t;当30<t≤40时,可设日销售量w=k1t+b.∵点(30,60)和(40,0)在图象上,∴116030k b 040k b =+⎧⎨=+⎩, 解得,k 1=﹣6,b =240,∴w =﹣6t+240.综上所述,日销售量w =2(030)6240(3040)t t t t ⎧⎨-+<⎩剟…; 即当0≤t≤30时,日销售量w =2t ;当30<t≤40时,日销售量w =﹣6t+240; (2)由图①知,当t =30(天)时,日销售量w 达到最大,最大值w =60,又由图②知,当t =30(天)时,产品A 的日销售利润y 达到最大,最大值y =60(元/件),∴当t =30(天)时,日销售量利润Q 最大,最大日销售利润Q =60×60=3600(元), 答:第一批产品A 上市后30天,这家商店日销售利润Q 最大,日销售利润Q 最大是3600元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.23.(1)该一次函数解析式为y=﹣x+60.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【解析】【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.【详解】(1)设该一次函数解析式为y=kx+b ,将(150,45)、(0,60)代入y=kx+b 中,得 ,解得:,∴该一次函数解析式为y=﹣x+60;(2)当y=﹣x+60=8时, 解得x=520, 即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米,∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.24.(1)证明见解析;(2)4.【解析】【分析】(1)欲证明四边形OCED 是矩形,只需推知四边形OCED 是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠COD=90°.∵CE ∥OD ,DE ∥OC ,∴四边形OCED 是平行四边形,又∠COD=90°,∴平行四边形OCED 是矩形;(2)由(1)知,平行四边形OCED 是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD 是菱形,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD 的面积为:12AC•BD=12×4×2=4, 故答案为4.【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.25.(1)直角三角形,见解析;(2 【解析】【分析】 ()1利用勾股定理的逆定理即可解问题.()2利用面积法求高即可.【详解】解:()1结论:ABC V 是直角三角形.理由:222BC 1865=+=Q ,222AC 2313=+=,222AB 6452=+=,222AC AB BC ∴+=,ABC ∴V 是直角三角形.()2设BC 边上的高为h.则有11AC AB BC h 22⋅⋅=⋅⋅,AC =Q AB =,BC =h ∴=. 【点睛】本题考查勾股定理以及逆定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。

2020-2021初二数学下期末试题(及答案)(1)

2020-2021初二数学下期末试题(及答案)(1)

2020-2021初二数学下期末试题(及答案)(1)一、选择题1.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,),则点C 的坐标为( )A .(-,1)B .(-1,)C .(,1)D .(-,-1)2.下列各命题的逆命题成立的是( ) A .全等三角形的对应角相等 B .如果两个数相等,那么它们的绝对值相等 C .两直线平行,同位角相等 D .如果两个角都是45°,那么这两个角相等 3.若等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为( )A .7B .6C .5D .44.估计()-⋅1230246的值应在( ) A .1和2之间B .2和3之间C .3和4之间D .4和5之间5.下列命题中,真命题是( ) A .两条对角线垂直的四边形是菱形 B .对角线垂直且相等的四边形是正方形 C .两条对角线相等的四边形是矩形 D .两条对角线相等的平行四边形是矩形6.将一张长方形纸片按如图所示的方式折叠,,BC BD 为折痕,则CBD ∠的度数为( )A .60︒B .75︒C .90︒D .95︒7.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表: 每天锻炼时间(分钟) 20 40 60 90 学生数2341则关于这些同学的每天锻炼时间,下列说法错误的是( ) A .众数是60B .平均数是21C .抽查了10个同学D .中位数是508.如图,一棵大树在离地面6米高的B 处断裂,树顶A 落在离树底部C 的8米处,则大树断裂之前的高度为( )A .10米B .16米C .15米D .14米9.如图,在ABCD 中, 对角线AC 、BD 相交于点O. E 、F 是对角线AC 上的两个不同点,当E 、F 两点满足下列条件时,四边形DEBF 不一定是平行四边形( ).A .AE =CFB .DE =BFC .ADE CBF ∠=∠D .AED CFB ∠=∠ 10.若正比例函数的图象经过点(,2),则这个图象必经过点( ).A .(1,2)B .(,)C .(2,)D .(1,)11.如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A ,则点A 表示的数是( )A .-2B .﹣1+2C .﹣1-2D .1-212.如图,四边形ABCD 是菱形,∠ABC =120°,BD =4,则BC 的长是( )A .4B .5C .6D .3二、填空题13.将一次函数y=3x ﹣1的图象沿y 轴向上平移3个单位后,得到的图象对应的函数关系式为__.14.24的结果是__________. 15.函数x____.16.某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表:如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权。

2020-2021八年级数学下期末试卷(及答案)(4)

2020-2021八年级数学下期末试卷(及答案)(4)

2020-2021八年级数学下期末试卷(及答案)(4)一、选择题1.如图,矩形ABCD 的对角线AC 与数轴重合(点C 在正半轴上),5AB =,12BC =,若点A 在数轴上表示的数是-1,则对角线AC BD 、的交点在数轴上表示的数为( )A .5.5B .5C .6D .6.52.直角三角形两直角边长为a ,b ,斜边上高为h ,则下列各式总能成立的是( )A .ab=h 2B .a 2+b 2=2h 2C .111a b h+= D .222111a b h += 3.若等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为( ) A .7 B .6 C .5 D .44.如图,矩形ABCD 中,对角线AC BD 、交于点O .若60,8AOB BD ∠==o,则AB 的长为( )A .3B .4C .43D .55.一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >6.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表: 每天锻炼时间(分钟) 20 40 60 90 学生数2341则关于这些同学的每天锻炼时间,下列说法错误的是()A.众数是60B.平均数是21C.抽查了10个同学D.中位数是507.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方ab ,大正方形的面积为形,设直角三角形较长直角边长为a,较短直角边长为b.若825,则小正方形的边长为()A.9B.6C.4D.38.已知一次函数y=-0.5x+2,当1≤x≤4时,y的最大值是()A.1.5B.2C.2.5D.-69.如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为()A.1B.2C.3D.410.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=8,则HE等于()A.20B.16C.12D.811.某商场对上周某品牌运动服的销售情况进行了统计,如下表所示:颜色黄色绿色白色紫色红色数量(件)12015023075430经理决定本周进货时多进一些红色的,可用来解释这一现象的统计知识的()A.平均数B.中位数C.众数D.平均数与众数12.一列火车由甲市驶往相距600km的乙市,火车的速度是200km/时,火车离乙市的距离s(单位:km)随行驶时间t(单位:小时)变化的关系用图象表示正确的是( )A.B.C.D.二、填空题13.计算:182=______.14.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:笔试面试体能甲837990乙858075丙809073该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分,根据规定,可判定_____被录用.15.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图6-Z-2所示,那么三人中成绩最稳定的是________.16.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于12MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为_____.17.某汽车生产厂对其生产的A型汽车进行油耗试验,试验中汽车为匀速行驶汽在行驶过程中,油箱的余油量y(升)与行驶时间t(小时)之间的关系如下表:t (小时) 0 1 2 3 y (升)100928476由表格中y 与t 的关系可知,当汽车行驶________小时,油箱的余油量为0. 18.有一组数据如下:2,3,a ,5,6,它们的平均数是4,则这组数据的方差是 . 19.一组数据:1、2、5、3、3、4、2、4,它们的平均数为_______,中位数为_______,方差是_______. 20.若m =+5,则m n =___.三、解答题21.如图,在ABCD Y 中,E ,F 分别是边AD ,BC 上的点,且AE CF =.求证:四边形BEDF 为平行四边形.22.在学校组织的“文明出行”知识竞赛中,8(1)和8(2)班参赛人数相同,成绩分为A 、B 、C 三个等级,其中相应等级的得分依次记为A 级100分、B 级90分、C 级80分,达到B 级以上(含B 级)为优秀,其中8(2)班有2人达到A 级,将两个班的成绩整理并绘制成如下的统计图,请解答下列问题:(1)求各班参赛人数,并补全条形统计图;(2)此次竞赛中8(2)班成绩为C 级的人数为_______人; (3)小明同学根据以上信息制作了如下统计表:平均数(分) 中位数(分) 方差 8(1)班 m 90 n 8(2)班919029请分别求出m 和n 的值,并从优秀率和稳定性方面比较两个班的成绩; 23.求证:三角形的一条中位线与第三边上的中线互相平分.要求:(1)根据给出的ABC ∆和它的一条中位线DE ,在给出的图形上,请用尺规作出BC 边上的中线AF,交DE于点O.不写作法,保留痕迹;(2)据此写出已知,求证和证明过程.24.如图,在正方形网格中,小正方形的边长为1,A,B,C为格点()1判断ABCV的形状,并说明理由.()2求BC边上的高.25.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】连接BD 交AC 于E ,由矩形的性质得出∠B=90°,AE=12AC ,由勾股定理求出AC ,得出OE ,即可得出结果. 【详解】连接BD 交AC 于E ,如图所示:∵四边形ABCD 是矩形, ∴∠B=90°,AE=12AC , ∴222251213AB BC +=+=,∴AE=6.5,∵点A 表示的数是-1, ∴OA=1, ∴OE=AE-OA=5.5, ∴点E 表示的数是5.5,即对角线AC 、BD 的交点表示的数是5.5; 故选A . 【点睛】本题考查了矩形的性质、勾股定理、实数与数轴;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.2.D解析:D 【解析】 【分析】 【详解】解:根据直角三角形的面积可以导出:斜边c=ab h. 再结合勾股定理:a 2+b 2=c 2.进行等量代换,得a 2+b 2=222a bh,两边同除以a 2b 2, 得222111a b h +=. 故选D .解析:C【解析】【分析】【详解】∵等腰三角形ABC中,AB=AC,AD是BC上的中线,∴BD=CD=12BC=3,AD同时是BC上的高线,∴AB=22AD BD=5.故它的腰长为5.故选C.4.B解析:B【解析】【分析】由四边形ABCD为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO为60°,据此即可求得AB长.【详解】∵在矩形ABCD中,BD=8,∴AO=12AC, BO=12BD=4,AC=BD,∴AO=BO,又∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=4,故选B.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟练掌握矩形的对角线相等且互相平分是解本题的关键.5.B【解析】 【分析】根据两函数图象平行k 相同,以及平移规律“左加右减,上加下减”即可判断 【详解】∵将直线1l 向下平移若干个单位后得直线2l , ∴直线1l ∥直线2l , ∴12k k =,∵直线1l 向下平移若干个单位后得直线2l , ∴12b b >,∴当x 5=时,12y y > 故选B . 【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.6.B解析:B 【解析】 【分析】根据众数、中位数和平均数的定义分别对每一项进行分析即可. 【详解】解:A 、60出现了4次,出现的次数最多,则众数是60,故A 选项说法正确; B 、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B 选项说法错误; C 、调查的户数是2+3+4+1=10,故C 选项说法正确;D 、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D 选项说法正确; 故选:B . 【点睛】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.7.D解析:D 【解析】 【分析】由题意可知:中间小正方形的边长为:-a b ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长. 【详解】解:由题意可知:中间小正方形的边长为:-a bQ 每一个直角三角形的面积为:118422ab =⨯= 214()252ab a b ∴⨯+-=2()25169a b ∴-=-=3a b ∴-= 故选:D 【点睛】本题考查勾股定理的运用,稍有难度;利用大正方形与小正方形、直角三角形面积之间的等量关系是解答本题的关键.8.A解析:A 【解析】 【分析】根据一次函数的系数k=-0.5<0,可得出y 随x 值的增大而减小,将x=1代入一次函数解析式中求出y 值即可. 【详解】在一次函数y=-0.5x+2中k=-0.5<0, ∴y 随x 值的增大而减小,∴当x=1时,y 取最大值,最大值为-0.5×1+2=1.5, 故选A . 【点睛】本题考查了一次函数的性质,牢记“k <0,y 随x 的增大而减小”是解题的关键.9.C解析:C 【解析】 【分析】由O 是矩形ABCD 对角线AC 的中点,可求得AC 的长,然后运用勾股定理求得AB 、CD 的长,又由M 是AD 的中点,可得OM 是△ACD 的中位线,即可解答. 【详解】解:∵O 是矩形ABCD 对角线AC 的中点,OB =5, ∴AC =2OB =10,∴CD =AB 6,∵M 是AD 的中点,∴OM=12CD=3.故答案为C.【点睛】本题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.10.D解析:D【解析】【分析】根据三角形中位线定理得出AC的长,再根据直角三角形斜边上的中线等于斜边的一半即可求出【详解】∵D、F分别是AB、BC的中点,∴DF是△ABC的中位线,∴DF=12 AC;∵FD=8∴AC=16又∵E是线段AC的中点,AH⊥BC,∴EH=12 AC,∴EH=8.故选D.【点睛】本题综合考查了三角形中位线定理、直角三角形斜边上的中线.熟记性质与定理并准确识图是解题的关键.11.C解析:C【解析】试题解析:由于销售最多的颜色为红色,且远远多于其他颜色,所以选择多进红色运动装的主要根据众数.故选C.考点:统计量的选择.12.A解析:A【解析】【分析】首先写出函数的解析式,根据函数的特点即可确定.【详解】由题意得:s 与t 的函数关系式为s=600-200t ,其中0≤t≤3,所以函数图象是A .故选A .【点睛】本题主要考查函数的图象的知识点,解答时应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.二、填空题13.【解析】【分析】先化简二次根式然后再合并同类二次根式【详解】解:=故答案为:【点睛】本题考查二次根式的减法化成最简二次根式再计算这是通常最直接的做法【解析】【分析】先化简二次根式,然后再合并同类二次根式.【详解】2=1(22-【点睛】本题考查二次根式的减法,化成最简二次根式再计算,这是通常最直接的做法. 14.乙【解析】【分析】由于甲的面试成绩低于80分根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩比较得出结果【详解】解:∵该公司规定:笔试面试体能得分分别不得低于80分80分70分∴甲淘汰;乙 解析:乙【解析】【分析】由于甲的面试成绩低于80分,根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩,比较得出结果.【详解】解:∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分, ∴甲淘汰;乙成绩=85×60%+80×30%+75×10%=82.5, 丙成绩=80×60%+90×30%+73×10%=82.3, 乙将被录取.故答案为:乙.【点睛】本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.15.乙【解析】【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点解析:乙【解析】【分析】通过图示波动的幅度即可推出.【详解】通过图示可看出,一至三次甲乙丙中,乙最稳定,波动最小,四至五次三人基本一样,故选乙【点睛】考查数据统计的知识点16.【解析】试题解析:∵由题意可知AQ是∠DAB的平分线∴∠DAQ=∠BAQ∵四边形ABCD是平行四边形∴CD∥ABBC=AD=3∠BAQ=∠DQA∴∠DAQ=∠DAQ∴△AQD 是等腰三角形∴DQ=AD解析:【解析】试题解析:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DAQ,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=12DQ=32,∴CD=DQ+CQ=3+32=92,∴平行四边形ABCD周长=2(DC+AD)=2×(92+3)=15.故答案为15.17.5【解析】【分析】由表格可知开始油箱中的油为100L每行驶1小时油量减少8L据此可得y与t的关系式【详解】解:由题意可得:y=100-8t当y=0时0=100-8t解得:t=125故答案为:125【解析:5【解析】【分析】由表格可知,开始油箱中的油为100L,每行驶1小时,油量减少8L,据此可得y与t的关系式.【详解】解:由题意可得:y=100-8t,当y=0时,0=100-8t解得:t=12.5.故答案为:12.5.【点睛】本题考查函数关系式.注意贮满100L汽油的汽车,最多行驶的时间就是油箱中剩余油量为0时的t的值.18.2【解析】试题分析:先由平均数计算出a=4×5-2-3-5-6=4再计算方差(一般地设n个数据x1x2…xn的平均数为=()则方差=)==2考点:平均数方差解析:2【解析】试题分析:先由平均数计算出a=4×5-2-3-5-6=4,再计算方差(一般地设n个数据,x1,x2,…x n的平均数为x,x=1n(12nx x x++⋯+),则方差2 S=1n[222 12nx xx x x x-+-+⋯+-()()()]),2 S=15[222222434445464-+-+-+-+-()()()()()]=2.考点:平均数,方差19.33【解析】【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:12233445解析:3,3,3 2 .【解析】【分析】根据平均数的公式即可求出答案,将数据按照由小到大的顺序重新排列,中间两个数的平均数即是中位数,根据方差的公式计算即可得到这组数据的方差.【详解】平均数=1(12533424)3 8⨯+++++++=,将数据重新排列是:1、2、2、3、3、4、4、5,∴中位数是333 2+=,方差=222221(13)2(23)2(33)2(43)(53)8⎡⎤⨯-+⨯-+⨯-+⨯-+-⎣⎦=32, 故答案为:3,3,32. 【点睛】此题考查计算能力,计算平均数,中位数,方差,正确掌握各计算的公式是解题的关键. 20.【解析】【分析】直接利用二次根式有意义的条件得出mn 的值进而得出答案【详解】∵m =n-2+2-n+5∴n =2则m =5故mn =25故答案为:25【点睛】此题主要考查了二次根式有意义的条件正确得出mn 的解析:【解析】【分析】直接利用二次根式有意义的条件得出m ,n 的值进而得出答案.【详解】∵m =+5,∴n =2,则m =5,故m n =25.故答案为:25.【点睛】此题主要考查了二次根式有意义的条件,正确得出m ,n 的值是解题关键. 三、解答题21.证明见解析.【解析】【分析】由平行四边形的性质,得到AD ∥BC ,AD=BC ,由AE CF =,得到ED BF =,即可得到结论.【详解】证明:四边形ABCD 是平行四边形,∴AD BC ∥,AD BC =.∵AE CF =,∴AD AE BC CF -=-.∴ED BF =,∵//ED BF ,ED BF =,∴四边形BEDF 是平行四边形.【点睛】本题考查了平行四边形的判定和性质,解题的关键是熟练掌握平行四边形的判定和性质进行证明.22.(1)详见解析;(2)1人;(3)从优秀率看8(2)班更好,从稳定性看8(2)班的成绩更稳定;【解析】【分析】(1)由8(2)班A级人数及其所占百分比可得两个班的人数,班级人数减去A、B级人数可求出C等级人数;(2)班级人数乘以C等级对应的百分比可得其人数;(3)根据平均数和方差的定义求解可得;【详解】(1)∵8(2)班有2人达到A级,且A等级人数占被调查的人数为20%,∴8(2)班参赛的人数为2÷20%=10(人),∵8(1)和8(2)班参赛人数相同,∴8(1)班参赛人数也是10人,则8(1)班C等级人数为10-3-5=2(人),补全图形如下:(2)此次竞赛中8(2)班成绩为C级的人数为10×(1-20%-70%)=1(人),故答案为:1.(3)m=110×(100×3+90×5+80×2)=91(分),n=110×[(100-91)2×3+(90-91)2×5+(80-91)2×2]=49,∵8(1)班的优秀率为3510×100%=80%,8(2)班的优秀率为20%+70%=90%,∴从优秀率看8(2)班更好;∵8(1)班的方差大于8(2)班的方差,∴从稳定性看8(2)班的成绩更稳定;【点睛】此题考查条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.除此之外,本题也考查了对平均数、方差的认识.23.(1)作线段BC的中段线,BC的中点为F,连结AF即可,见解析;(2) 见解析.【解析】【分析】(1)作BC 的垂直平分线得到BC 的中点F ,从而得到BC 边上的中线AF ;(2)写出已知、求证,连接DF 、EF ,如图,先证明EF 为AB 边的中位线,利用三角形中位线性质得到EF ∥AD ,EF=AD ,则可判断四边形ADFE 为平行四边形,从而得到DE 与AF 互相平分.【详解】解:(1)作线段BC 的中段线,BC 的中点为F ,连结AF 即可。

2020-2021初二数学下期末试卷含答案(3)

2020-2021初二数学下期末试卷含答案(3)

2020-2021初二数学下期末试卷含答案(3)一、选择题1.当12a <<时,代数式2(2)1a a -+-的值为( ) A .1B .-1C .2a-3D .3-2a2.下列各命题的逆命题成立的是( ) A .全等三角形的对应角相等 B .如果两个数相等,那么它们的绝对值相等 C .两直线平行,同位角相等D .如果两个角都是45°,那么这两个角相等3.要使函数y =(m ﹣2)x n ﹣1+n 是一次函数,应满足( ) A .m ≠2,n ≠2B .m =2,n =2C .m ≠2,n =2D .m =2,n =04.下列命题中,真命题是( ) A .两条对角线垂直的四边形是菱形 B .对角线垂直且相等的四边形是正方形 C .两条对角线相等的四边形是矩形 D .两条对角线相等的平行四边形是矩形5.已知一次函数y=-0.5x+2,当1≤x≤4时,y 的最大值是( ) A .1.5 B .2 C .2.5D .-6 6.如图,菱形中,分别是的中点,连接,则的周长为( )A .B .C .D .7.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( ) A .众数B .平均数C .中位数D .方差8.如图,在△ABC 中,D ,E ,F 分别为BC ,AC ,AB 边的中点,AH ⊥BC 于H ,FD =8,则HE 等于( )A .20B .16C .12D .89.()23- ) A .﹣3B .3或﹣3C .9D .310.如图,点P 是矩形ABCD 的边上一动点,矩形两边长AB 、BC 长分别为15和20,那么P 到矩形两条对角线AC 和BD 的距离之和是( )A .6B .12C .24D .不能确定11.如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 的中点C '上.若6AB =,9BC =,则BF 的长为( )A .4B .32C .4.5D .512.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( ) A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)二、填空题13.如图.过点A 1(1,0)作x 轴的垂线,交直线y=2x 于点B 1;点A 2与点O 关于直线A 1B 1对称,过点A 2作x 轴的垂线,交直线y=2x 于点B 2;点A 3与点O 关于直线A 2B 2对称.过点A 3作x 轴的垂线,交直线y=2x 于点B 3;…按此规律作下去.则点A 3的坐标为_____,点B n 的坐标为_____.1445与最简二次根式21a -是同类二次根式,则a =_____. 15.已知函数y =2x +m -1是正比例函数,则m =___________. 16.观察下列各式:221111++=1+1212⨯, 221111++=1+2323⨯, 221111++=1+3434⨯, ……请利用你所发现的规律, 计算22111++12+22111++23+22111++34+…+22111++910,其结果为_______. 17.A 、B 、C 三地在同一直线上,甲、乙两车分别从A ,B 两地相向匀速行驶,甲车先出发2小时,甲车到达B 地后立即调头,并将速度提高10%后与乙车同向行驶,乙车到达A 地后,继续保持原速向远离B 的方向行驶,经过一段时间后两车同时到达C 地,设两车之间的距离为y (千米),甲行驶的时间x (小时).y 与x 的关系如图所示,则B 、C 两地相距_____千米.18.如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是_______19.将一组数据中的每一个数都加上1得到一组新的数据,那么在众数、中位数、平均数、方差这四个统计量中,值保持不变的是_____.20.如图:长方形ABCD 中,AD=10,AB=4,点Q 是BC 的中点,点P 在AD 边上运动,当△BPQ 是等腰三角形时,AP 的长为___.三、解答题21.2019年4月23日世界读书日这天,滨江初二年级的学生会,就2018年寒假读课外书数量(单位:本)做了调查,他们随机调查了甲、乙两个班的10名同学,调查过程如下收集数据甲、乙两班被调查者读课外书数量(单位:本)统计如下:甲:1,9,7,4,2,3,3,2,7,2乙:2,6,6,3,1,6,5,2,5,4整理、描述数据绘制统计表如下,请补全下表:班级平均数众数中位数方差甲43乙6 3.2分析数据、推断结论(1)该校初二乙班共有40名同学,你估计读6本书的同学大概有_____人;(2)你认为哪个班同学寒假读书情况更好,写出理由.22.计算:(.23.甲、乙两名射击选示在10次射击训练中的成绩统计图(部分)如图所示:根据以上信息,请解答下面的问题;选手A平均数中位数众数方差甲a88c乙7.5b6和9 2.65(1)补全甲选手10次成绩频数分布图.(2)a=,b=,c=.(3)教练根据两名选手手的10次成绩,决定选甲选手参加射击比赛,教练的理由是什么?(至少从两个不同角度说明理由).24.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题: (1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A 种支付方式所对应的圆心角为 度. (3)若该超市这一周内有1600名购买者,请你估计使用A 和B 两种支付方式的购买者共有多少名?25.观察下列一组等式,然后解答后面的问题21)(21)1=,(32)(32)1=, (43)(43)1=, (54)(54)1=⋯⋯(1)观察以上规律,请写出第n 个等式: (n 为正整数). (221324310099++++(318171918【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】分析:首先由2(2)a -,即可将原式化简,然后由1<a <2,去绝对值符号,继而求得答案. 详解:∵1<a <2,2(2)a -(a-2), |a-1|=a-1,2(2)a -(a-2)+(a-1)=2-1=1. 故选A .点睛:此题考查了二次根式的性质与化简以及绝对值的性质,解答本题的关键在于熟练掌握二次根式的性质.2.C解析:C【解析】试题分析:首先写出各个命题的逆命题,再进一步判断真假.解:A、逆命题是三个角对应相等的两个三角形全等,错误;B、绝对值相等的两个数相等,错误;C、同位角相等,两条直线平行,正确;D、相等的两个角都是45°,错误.故选C.3.C解析:C【解析】【分析】根据y=kx+b(k、b是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案.【详解】解:∵y=(m﹣2)x n﹣1+n是一次函数,∴m﹣2≠0,n﹣1=1,∴m≠2,n=2,故选C.【点睛】本题考查了一次函数,y=kx+b,k、b是常数,k≠0,x的次数等于1是解题关键.4.D解析:D【解析】A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C、两条对角线相等的平行四边形是矩形,故选项C错误;D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;故选D.5.A解析:A【解析】【分析】根据一次函数的系数k=-0.5<0,可得出y随x值的增大而减小,将x=1代入一次函数解析式中求出y值即可.【详解】在一次函数y=-0.5x+2中k=-0.5<0,∴y随x值的增大而减小,∴当x=1时,y取最大值,最大值为-0.5×1+2=1.5,故选A.【点睛】本题考查了一次函数的性质,牢记“k<0,y随x的增大而减小”是解题的关键.6.D解析:D【解析】【分析】首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等边三角形三线合一的性质又可推出△AEF是等边三角形.根据勾股定理可求出AE的长,继而求出周长.【详解】解:∵四边形ABCD是菱形,∴AB=AD=BC=CD=2cm,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴AE=AF,∠BAE=∠DAF.连接AC,∵∠B=∠D=60°,∴△ABC与△ACD是等边三角形,∴AE⊥BC,AF⊥CD,∴∠BAE=∠DAF=30°,∴∠EAF=60°,BE=AB=1cm,∴△AEF是等边三角形,AE=,∴周长是.故选:D.【点睛】本题主要考查了菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质以及勾股定理,涉及知识点较多,也考察了学生推理计算的能力.7.D解析:D【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方程 kx﹣x=a﹣b 的解是 x=3;④当 x>3 时,y1<y2 中.则正确的序号有____________.
16.在矩形 ABCD 中,AD=5,AB=4,点 E,F 在直线 AD 上,且四边形 BCFE 为菱形,
若线段 EF 的中点为点 M,则线段 AM 的长为

17.计算: 8 2 1 __________. 2
四边形
是平行四边形,




四边形
是正方形,
故选:C.
【点睛】
本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形
的中位线定理解答.
3.B
解析:B 【解析】
【分析】
由四边形 ABCD 为矩形,根据矩形的对角线互相平分且相等,可得 OA=OB=4,又
∠AOB=60°,根据有一个角为 60°的等腰三角形为等边三角形可得三角形 AOB 为等边三 角形,根据等边三角形的每一个角都相等都为 60°可得出∠BAO 为 60°,据此即可求得
AB 长. 【详解】
∵在矩形 ABCD 中,BD=8,
∴AO= 1 AC, BO= 1 BD=4,AC=BD,
2
2
∴AO=BO,
又∵∠AOB=60°,
∴△AOB 是等边三角形,
∴AB=OB=4,
故选 B.
【点睛】
本题考查了矩形的性质,等边三角形的判定与性质,熟练掌握矩形的对角线相等且互相平
分是解本题的关键.
成一个完全平方数和一个代数式的积的形式.
2.C
解析:C 【解析】 【分析】 根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其为平行四边形,再根 据邻边互相垂直且相等,可得四边形是正方形. 【详解】 解: 、 、 、 分别是 、 、 、 的中点,

,EH=FG= BD,EF=HG= AC,
8.D
解析:D 【解析】 设正比例函数的解析式为 y=kx(k≠0), 因为正比例函数 y=kx 的图象经过点(-1,2), 所以 2=-k,
解得:k=-2, 所以 y=-2x, 把这四个选项中的点的坐标分别代入 y=-2x 中,等号成立的点就在正比例函数 y=-2x 的图象 上, 所以这个图象必经过点(1,-2). 故选 D.
4.B
解析:B
【解析】
【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围.
【详解】 2 30 24 1 6
= 2 30 1 24 1 ,
6
6
=2 52,
而 2 5= 4 5= 20 ,
4< 20 <5,
所以 2< 2 5 2 <3,
所以估计 2 30 24 1 的值应在 2 和 3 之间, 6
人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注
指数”比女生低 5%,试求该班级男生人数;
(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统 计量(如表).
统计量
平均数(次) 中位数(次) 众数(次) 方差 …
该班级男生 3
3
4
2…
21.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形. (1)如图 1,四边形 ABCD 中,点 E,F,G,H 分别为边 AB,BC,CD,DA 的中点.求 证:中点四边形 EFGH 是平行四边形; (2)如图 2,点 P 是四边形 ABCD 内一点,且满足 PA=PB,PC=PD,∠APB=∠CPD,点 E,F,G,H 分别为边 AB,BC,CD,DA 的中点,猜想中点四边形 EFGH 的形状,并证 明你的猜想; (3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形
18.在三角形 ABC 中,点 D, E, F 分别是 BC, AB, AC 的中点, AH BC 于点 H ,若 DEF 50 ,则 CFH ________.
19.如图,直线 y=kx+b(k>0)与 x 轴的交点为(﹣2,0),则关于 x 的不等式 kx+b<0 的解集是_____.
20.在 ABC 中, AC BC 13, AB 10,则 ABC 面积为_______. 三、解答题
根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两 会”新闻次数的波动大小.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D 解析:D 【解析】 【分析】
因为 63n 是整数,且 63n = 732 n =3 7n ,则 7n 是完全平方数,满足条件的最小
正整数 n 为 7. 【详解】
9.C
解析:C 【解析】 【分析】 【详解】 解:∵四边形 ABCD 是平行四边形, ∴AB∥CD,AD=BC=8,CD=AB=6, ∴∠F=∠DCF, ∵∠C 平分线为 CF, ∴∠FCB=∠DCF, ∴∠F=∠FCB, ∴BF=BC=8, 同理:DE=CD=6, ∴AF=BF−AB=2,AE=AD−DE=2 ∴AE+AF=4 故选 C
A.2
B.3
C.4
D.6
10.下列各组数,可以作为直角三角形的三边长的是( )
A.2,3,4
B.7,24,25
C.8,12,20
D.5,13,15
11.如图,将四边形纸片 ABCD 沿 AE 向上折叠,使点 B 落在 DC 边上的点 F 处 .若
AFD 的周长为 18, ECF 的周长为 6,四边形纸片 ABCD 的周长为 ( )
A.20
B.24
C.32
D.48
12.如图,已知△ABC 中,AB=10 ,AC=8 ,BC = 6 ,DE 是 AC 的垂直平分线,DE 交
AB 于点 D ,交 AC 于点 E ,连接 CD ,则 CD 的长度为( )
A.3
B.4
C.4.8
D.5
二、填空题
13.已知一次函数 y=kx+b(k≠0)经过(2,-1),(-3,4)两点,则其图象不经过第
EFGH 的形状.(不必证明)
22.某商店销售 A 型和 B 型两种电脑,其中 A 型电脑每台的利润为 400 元,B 型电脑每台 的利润为 500 元.该商店计划再一次性购进两种型号的电脑共 100 台,其中 B 型电脑的进 货量不超过 A 型电脑的 2 倍,设购进 A 型电脑 x 台,这 100 台电脑的销售总利润为 y 元. (1)求 y 关于 x 的函数关系式; (2)该商店购进 A 型、B 型电脑各多少台,才能使销售总利润最大,最大利润是多少? (3)实际进货时,厂家对 A 型电脑出厂价下调 a(0<a<200)元,且限定商店最多购进 A 型电脑 60 台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这 100 台 电脑销售总利润最大的进货方案. 23.有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为 18dm2 和 32dm2 的正方形木板.
A.Biblioteka B.C.D. 6.已知 y=(k-3)x|k|-2+2 是一次函数,那么 k 的值为( )
A. 3
B.3
C. 3
D.无法确定
7.小强所在学校离家距离为 2 千米,某天他放学后骑自行车回家,先骑了 5 分钟后,因故
停留 10 分钟,再继续骑了 5 分钟到家.下面哪一个图象能大致描述他回家过程中离家的距
2020-2021 下海西南模范中学初二数学下期末试卷附答案
一、选择题
1.若 63n 是整数,则正整数 n 的最小值是( )
A.4
B.5
C.6
D.7
2.顺次连接对角线互相垂直且相等的四边形各边中点所围成的四边形是( )
A.矩形
B.菱形
C.正方形
D.平行四边形
3.如图,矩形 ABCD中,对角线 AC、BD 交于点 O .若 AOB 60 , BD 8 ,则 AB
离 s(千米)与所用时间 t(分)之间的关系( )
A.
B.
C.
D.
8.若正比例函数的图象经过点( ,2),则这个图象必经过点( ).
A.(1,2)
B.( , ) C.(2, )
D.(1, )
9.如图,在▱ABCD 中,AB=6,BC=8,∠BCD 的平分线交 AD 于点 E,交 BA 的延长
线于点 F,则 AE+AF 的值等于( )
________象限.
14.一艘轮船在小岛 A 的北偏东 60°方向距小岛 80 海里的 B 处,沿正西方向航行 3 小时后
到达小岛的北偏西 45°的 C 处,则该船行驶的速度为____________海里/时.
15.一次函数 y1=kx+b 与 y2=x+a 的图象如图,则下列结论:①k<0;②a>0;③关于 x 的
的长为( )
A. 3
B. 4
C. 4 3
D. 5
4.估计 2 30 24 1 的值应在( ) 6
A.1 和 2 之间
B.2 和 3 之间
C.3 和 4 之间
D.4 和 5 之间
5.正比例函数 y kx(k 0) 的函数值 y 随 x 的增大而增大,则一次函数 y x k 的图象
大致是( )
(1)求剩余木料的面积. (2)如果木工想从剩余的木料中截出长为 1.5dm,宽为 ldm 的长方形木条,最多能截出 块这样的木条. 24.在一条东西走向河的一侧有一村庄 C,河边原有两个取水点 A,B,其中 AB=AC, 由于某种原因,由 C 到 A 的路现在已经不通,某村为方便村民取水决定在河边新建一个取 水点 H(A、H、B 在一条直线上),并新修一条路 CH,测得 CB=3 千米,CH=2.4 千 米,HB=1.8 千米. (1)问 CH 是否为从村庄 C 到河边的最近路?(即问:CH 与 AB 是否垂直?)请通过计 算加以说明; (2)求原来的路线 AC 的长.
相关文档
最新文档