高中数学不等式问题练习题及其参考答案(完整版)

合集下载

高中数学必修一第二章一元二次函数方程和不等式典型例题(带答案)

高中数学必修一第二章一元二次函数方程和不等式典型例题(带答案)

高中数学必修一第二章一元二次函数方程和不等式典型例题单选题1、已知x >0,则下列说法正确的是( ) A .x +1x −2有最大值0B .x +1x −2有最小值为0 C .x +1x−2有最大值为-4D .x +1x−2有最小值为-4答案:B分析:由均值不等式可得x +1x ≥2√x ×1x =2,分析即得解 由题意,x >0,由均值不等式x +1x≥2√x ×1x=2,当且仅当x =1x,即x =1时等号成立故x +1x −2≥0,有最小值0 故选:B2、不等式x (2x +7)≥−3的解集为( ) A .(−∞,−3]∪[−12,+∞)B .[−3,−12] C .(−∞,−2]∪[−13,+∞)D .[−2,−13] 答案:A分析:解一元二次不等式即可.x (2x +7)≥−3可变形为2x 2+7x +3≥0, 令2x 2+7x +3=0,得x 1=−3,x 2=−12,所以x ≤−3或x ≥−12,即不等式的解集为(−∞,−3]∪[−12,+∞).故选:A.3、已知命题“∀x ∈R ,4x 2+(a −2)x +14>0”是假命题,则实数a 的取值范围为( ) A .(−∞,0]∪[4,+∞)B .[0,4] C .[4,+∞)D .(0,4)答案:A分析:先求出命题为真时实数a的取值范围,即可求出命题为假时实数a的取值范围.若“∀x∈R,4x2+(a−2)x+14>0”是真命题,即判别式Δ=(a−2)2−4×4×14<0,解得:0<a<4,所以命题“∀x∈R,4x2+(a−2)x+14>0”是假命题,则实数a的取值范围为:(−∞,0]∪[4,+∞).故选:A.4、设a>b>c>0,则2a2+1ab +1a(a−b)−10ac+25c2取得最小值时,a的值为()A.√2B.2C.4D.2√5答案:A解析:转化条件为原式=1ab +ab+1a(a−b)+a(a−b)+(a−5c)2,结合基本不等式即可得解.2a2+1ab+1a(a−b)−10ac+25c2=1ab+ab+1a(a−b)+a(a−b)−ab−a(a−b)+2a2−10ac+25c2 =1ab+ab+1a(a−b)+a(a−b)+a2−10ac+25c2=1ab+ab+1a(a−b)+a(a−b)+(a−5c)2≥2√1ab ⋅ab+2√1a(a−b)⋅a(a−b)+0=4,当且仅当{ab=1a(a−b)=1a=5c,即a=√2,b=√22,c=√25时,等号成立.故选:A.小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.5、若“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,则实数m 的取值范围是( ) A .m ≥1B .m ≥2C .m ≥3D .m ≥4 答案:C分析:x 2+mx ﹣2m 2<0(m >0),解得﹣2m <x <m .根据“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,可得﹣2m ≤﹣2,3≤m ,m >0.解出即可得出. 解:x 2+mx ﹣2m 2<0(m >0),解得﹣2m <x <m .∵“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,∴﹣2m ≤﹣2,3≤m ,(两个等号不同时取)m >0. 解得m ≥3.则实数m 的取值范围是[3,+∞). 故选:C.6、关于x 的不等式ax 2−(a 2+1)x +a <0的解集为{x|x 1<x <x 2},且x 2−x 1=1,则a 2+a −2=( ) A .3B .32C .2D .23答案:A分析:根据一元二次不等式与解集之间的关系可得x 1+x 2=a +1a 、x 1x 2=1,结合 (x 2−x 1)2=(x 1+x 2)2−4x 1x 2计算即可.由不等式ax 2−(a 2+1)x +a <0的解集为{x |x 1<x <x 2}, 得a >0,不等式对应的一元二次方程为ax 2−(a 2+1)x +a =0, 方程的解为x 1、x 2,由韦达定理,得x 1+x 2=a 2+1a=a +1a ,x 1x 2=1,因为x 2−x 1=1,所以(x 2−x 1)2=(x 1+x 2)2−4x 1x 2=1, 即(a +1a )2−4=1,整理,得a 2+a −2=3. 故选:A7、已知关于x 的不等式ax 2+bx +c <0的解集为{x|x <−1或x >4},则下列说法正确的是( )A.a>0B.不等式ax2+cx+b>0的解集为{x|2−√7<x<2+√7}C.a+b+c<0D.不等式ax+b>0的解集为{x|x>3}答案:B分析:根据解集形式确定选项A错误;化不等式为x2−4x−3<0,即可判断选项B正确;设f(x)=ax2+ bx+c,则f(1)>0,判断选项C错误;解不等式可判断选项D错误.解:因为关于x的不等式ax2+bx+c<0的解集为{x|x<−1或x>4},所以a<0,所以选项A错误;由题得{a<0−1+4=−ba−1×4=ca,∴b=−3a,c=−4a,所以ax2+cx+b>0为x2−4x−3<0,∴2−√7<x<2+√7.所以选项B正确;设f(x)=ax2+bx+c,则f(1)=a+b+c>0,所以选项C错误;不等式ax+b>0为ax−3a>0,∴x<3,所以选项D错误.故选:B8、不等式1+x1−x≥0的解集为()A.{x|x≥1或x≤−1}B.{x∣−1≤x≤1} C.{x|x≥1或x<−1}D.{x|−1≤x<1}答案:D分析:不等式等价于x+1x−1≤0,即(x+1)(x−1)≤0,且x−1≠0,由此求得不等式的解集.不等式等价于x+1x−1≤0,即(x+1)(x−1)≤0,且x−1≠0,解得−1≤x<1,故不等式的解集为{x|−1≤x<1},故选:D.多选题9、已知关于x的不等式ax2+bx+c>0解集为{x|−2<x<3},则()A.a>0B.不等式ax+c>0的解集为{x|x<6}C.a+b+c>0D.不等式cx2−bx+a<0的解集为{x|−13<x<12}答案:BCD解析:根据已知条件得−2和3是方程ax2+bx+c=0的两个实根,且a<0,根据韦达定理可得b=−a,c=−6a,根据b=−a,c=−6a且a<0,对四个选项逐个求解或判断可得解.因为关于x的不等式ax2+bx+c>0解集为{x|−2<x<3},所以−2和3是方程ax2+bx+c=0的两个实根,且a<0,故A错误;所以−2+3=−ba ,−2×3=ca,所以b=−a,c=−6a,所以不等式ax+c>0可化为ax−6a>0,因为a<0,所以x<6,故B正确;因为a+b+c=a−a−6a=−6a,又a<0,所以a+b+c>0,故C正确;不等式cx2−bx+a<0可化为−6ax2+ax+a<0,又a<0,所以−6x2+x+1>0,即6x2−x−1<0,即(3x+1)(2x−1)<0,解得−13<x<12,故D正确.故选:BCD.小提示:利用一元二次不等式的解集求出参数a,b,c的关系是解题关键.本题根据韦达定理可得所要求的关系,属于中档题.10、设0<b<a<1,则下列不等式不成立的是()A.ab<b2<1B.√a<√b<1C.1<1a <1bD.a2<ab<1答案:ABD分析:对于ABD举例判断即可,对于C,利用不等式的性质判断对于A,取a=12,b=13,则ab=16>b2=19,所以A错误,对于B,取a=14,b=19,则√a=12>√b=13,所以B错误,对于C,因为0<b<a<1,所以1ab >0,所以b⋅1ab<a⋅1ab,即1a<1b,因为0<a<1,所以0<a⋅1a <1×1a,即1<1a,综上1<1a<1b,所以C正确,对于D,取a=12,b=13,则ab=16<a2=14,所以D错误,故选:ABD11、下面所给关于x的不等式,其中一定为一元二次不等式的是()A.3x+4<0B.x2+mx-1>0C.ax2+4x-7>0D.x2<0答案:BD分析:利用一元二次不等式的定义和特征对选项逐一判断即可.选项A是一元一次不等式,故错误;选项B,D,不等式的最高次是二次,二次项系数不为0,故正确;当a=0时,选项C是一元一次不等式,故不一定是一元二次不等式,即错误.故选:BD.填空题12、若x>0,y>0,xy=10,则2x +5y的最小值为_____.答案:2分析:化简2x +5y=2x+102y=2x+xy2y=2x+x2,结合基本不等式,即可求解.由x>0,y>0,xy=10,则2x +5y=2x+102y=2x+xy2y=2x+x2≥2√2x×x2=2,当且仅当x=2时取“=”,即2x +5y的最小值为2.所以答案是:2.13、已知x,y为正数,且12+x +4y=1,则x+y的最小值为________.答案:7解析:由题设等式有x+y+2=5+y2+x +4(x+2)y,利用基本不等式可求x+y+2的最小值,从而可得x+y的最小值.x+y+2=[(x+2)+y]×(1x+2+4y)=5+y2+x+4(x+2)y,由基本不等式有y2+x +4(x+2)y≥4,当且仅当x=1,y=6时等号成立,故x+y+2的最小值为9即x+y的最小值为7.所以答案是:7.小提示:应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.14、已知函数f(x)=√mx2+mx+1的定义域是R,则m的取值范围为______.答案:[0,4]分析:根据函数的定义域为R可得mx2+mx+1≥0对x∈R恒成立,对参数m的取值范围分类讨论,分别求出对应m 的范围,进而得出结果.因为函数f(x)=√mx2+mx+1的定义域为R,所以mx2+mx+1≥0对x∈R恒成立,当m=0时,mx2+mx+1=1>0,符合题意;当m>0时,由Δ=m2-4m≤0,解得0<m≤4;当m<0时,显然mx2+mx+1不恒大于或等于0.综上所述,m的取值范围是[0,4].所以答案是:[0,4].解答题15、设a,b,c∈R,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;(2)用max{a,b,c}表示a,b,c中的最大值,证明:max{a,b,c}≥√43.答案:(1)证明见解析(2)证明见解析.分析:(1)方法一:由(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=0结合不等式的性质,即可得出证明;(2)方法一:不妨设max{a,b,c}=a,因为a+b+c=0,abc=1,所以a>0,b<0,c<0,a=(−b)+(−c)≥2√bc=2√1a ,则a3≥4,a≥√43.故原不等式成立.(1)[方法一]【最优解】:通性通法∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=0,∴ab+bc+ca=−12(a2+b2+c2).∵abc=1,∴a,b,c均不为0,则a2+b2+c2>0,∴ab+bc+ca=−12(a2+b2+c2)<0.[方法二]:消元法由a+b+c=0得b=−(a+c),则ab+bc+ca=b(a+c)+ca=−(a+c)2+ac=−(a2+ac+c2)=−(a +c 2)2−34c 2≤0,当且仅当a =b =c =0时取等号,又abc =1,所以ab +bc +ca <0. [方法三]:放缩法方式1:由题意知a ≠0, a +b +c =0, a =−(c +b ), a 2=(c +b )2=c 2+b 2+2cb ≥4bc ,又ab +bc +ca =a (b +c )+bc =−a 2+bc ≤−a 2+a 24=−3a 24<0,故结论得证.方式2:因为a +b +c =0,所以0=(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ca=12[(a 2+b 2)+(b 2+c 2)+(c 2+a 2)]+2ab +2bc +2ca ≥12(2ab +2bc +2ca )+2ab +2bc +2ca =3(ab +bc +ca ).即ab +bc +ca ≤0,当且仅当a =b =c =0时取等号, 又abc =1,所以ab +bc +ca <0. [方法四]:因为a +b +c =0,abc =1,所以a ,b ,c 必有两个负数和一个正数,不妨设a ≤b <0<c,则a =−(b +c ), ∴ab +bc +ca =bc +a (c +b )=bc −a 2<0. [方法五]:利用函数的性质方式1:6b =−(a +c ),令f (c )=ab +bc +ca =−c 2−ac −a 2, 二次函数对应的图像开口向下,又abc =1,所以a ≠0, 判别式Δ=a 2−4a 2=−3a 2<0,无根, 所以f (c )<0,即ab +bc +ca <0.方式2:设f (x )=(x −a )(x −b )(x −c )=x 3+(ab +bc +ca )x −1, 则f (x )有a ,b ,c 三个零点,若ab +bc +ca ≥0, 则f (x )为R 上的增函数,不可能有三个零点, 所以ab +bc +ca <0.(2)[方法一]【最优解】:通性通法不妨设max {a,b,c }=a ,因为a +b +c =0,abc =1,所以a >0, b <0, c <0, a =(−b )+(−c )≥2√bc =2√1a,则a 3≥4,a ≥√43.故原不等式成立. [方法二]:不妨设max {a,b,c }=a ,因为a +b +c =0,abc =1,所以a >0,且{b +c =−a,bc =1a , 则关于x 的方程x 2+ax +1a =0有两根,其判别式Δ=a 2−4a ≥0,即a ≥√43. 故原不等式成立. [方法三]:不妨设max {a,b,c }=a ,则a >0, b =−(a +c ), abc =1, −(a +c )ac =1, ac 2+a 2c +1=0,关于c 的方程有解,判别式Δ=(a 2)2−4a ≥0,则a 3≥4,a ≥√43.故原不等式成立. [方法四]:反证法假设max {a,b,c }<√43,不妨令a ≤b <0<√43,则ab =1c >√43,−a −b =c <√43,又√43>−a −b ≥2√ab >√√43=21−13=√43,矛盾,故假设不成立.即max {a,b,c }≥√43,命题得证.【整体点评】(1)方法一:利用三项平方和的展开公式结合非零平方为正数即可证出,证法常规,为本题的通性通法,也是最优解法;方法二:利用消元法结合一元二次函数的性质即可证出;方法三:利用放缩法证出;方法四:利用符号法则结合不等式性质即可证出;方法五:利用函数的性质证出. (2)方法一:利用基本不等式直接证出,是本题的通性通法,也是最优解;方法二:利用一元二次方程根与系数的关系以及方程有解的条件即可证出;方法三:利用消元法以及一元二次方程有解的条件即可证出;方法四:利用反证法以及基本不等式即可证出.。

(完整)高中数学不等式习题及详细答案

(完整)高中数学不等式习题及详细答案

第三章 不等式一、选择题1.已知x ≥25,则f (x )=4-25+4-2x x x 有( ).A .最大值45B .最小值45C .最大值1D .最小值12.若x >0,y >0,则221+)(y x +221+)(xy 的最小值是( ).A .3B .27 C .4 D .29 3.设a >0,b >0 则下列不等式中不成立的是( ). A .a +b +ab1≥22B .(a +b )(a 1+b1)≥4 C22≥a +bD .ba ab+2≥ab 4.已知奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式xx f x f )()(--<0的解集为( ).A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)5.当0<x <2π时,函数f (x )=x xx 2sin sin 8+2cos +12的最小值为( ).A .2B .32C .4D .346.若实数a ,b 满足a +b =2,则3a +3b 的最小值是( ). A .18B .6C .23D .2437.若不等式组⎪⎩⎪⎨⎧4≤ 34 ≥30 ≥y x y x x ++,所表示的平面区域被直线y =k x +34分为面积相等的两部分,则k 的值是( ).A .73B .37C .43D .348.直线x +2y +3=0上的点P 在x -y =1的上方,且P 到直线2x +y -6=0的距离为35,则点P 的坐标是( ).A .(-5,1)B .(-1,5)C .(-7,2)D .(2,-7)9.已知平面区域如图所示,z =mx +y (m >0)在平面区域内取得最优解(最大值)有无数多个,则m 的值为( ).A .-207B .207 C .21D .不存在10.当x >1时,不等式x +11-x ≥a 恒成立,则实数a 的取值范围是( ).A .(-∞,2]B .[2,+∞)C .[3,+∞)D .(-∞,3]二、填空题11.不等式组⎩⎨⎧ 所表示的平面区域的面积是 .12.设变量x ,y 满足约束条件⎪⎩⎪⎨⎧ 若目标函数z =ax +y (a >0)仅在点(3,0)处取得最大值,则a 的取值范围是 .13.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是 . 14.设a ,b 均为正的常数且x >0,y >0,xa+y b =1,则x +y 的最小值为 .15.函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则m 1+n2的最小值为 . 16.某工厂的年产值第二年比第一年增长的百分率为p 1,第三年比第二年增长的百分率为p 2,若p 1+p 2为定值,则年平均增长的百分率p 的最大值为 .(x -y +5)(x +y )≥00≤x ≤3 x +2y -3≤0 x +3y -3≥0, y -1≤0(第9题)三、解答题17.求函数y =1+10+7+2x x x (x >-1)的最小值.18.已知直线l 经过点P (3,2),且与x 轴、y 轴正半轴分别交于A ,B 两点,当△AOB 面积最小时,求直线l 的方程.(第18题)19.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨.那么该企业可获得最大利润是多少?20.(1)已知x <45,求函数y =4x -1+5-41x 的最大值; (2)已知x ,y ∈R *(正实数集),且x 1+y 9=1,求x +y 的最小值;(3)已知a >0,b >0,且a 2+22b =1,求2+1b a 的最大值.参考答案1.D解析:由已知f (x )=4-25+4-2x x x =)()(2-21+2-2x x =21⎥⎦⎤⎢⎣⎡2-1+2-x x )(, ∵ x ≥25,x -2>0, ∴21⎥⎦⎤⎢⎣⎡2-1+2-x x )(≥21·2-12-2x x ⋅)(=1, 当且仅当x -2=2-1x ,即x =3时取等号. 2.C 解析:221+)(y x +221+)(xy =x 2+22241+++41+x x y y yy x =⎪⎭⎫ ⎝⎛2241+x x +⎪⎪⎭⎫ ⎝⎛2241+y y +⎪⎪⎭⎫⎝⎛x y y x +. ∵ x 2+241x ≥22241x x ⋅=1,当且仅当x2=241x ,x =22时取等号; 41+22y y ≥22241y y ⋅=1,当且仅当y 2=241y ,y =22时取等号; x yy x +≥2x y y x ⋅=2(x >0,y >0),当且仅当y x =xy,y 2=x 2时取等号. ∴⎪⎭⎫ ⎝⎛2241+x x +⎪⎪⎭⎫ ⎝⎛2241+y y +⎪⎪⎭⎫ ⎝⎛x y y x +≥1+1+2=4,前三个不等式的等号同时成立时,原式取最小值,故当且仅当x =y =22时原式取最小值4. 3.D 解析:方法一:特值法,如取a =4,b =1,代入各选项中的不等式,易判断只有ba ab+2≥ab 不成立.方法二:可逐项使用均值不等式判断 A :a +b +ab1≥2ab +ab1≥2abab 12⋅=22,不等式成立.B :∵ a +b ≥2ab >0,a 1+b 1≥2ab 1>0,相乘得 (a +b )( a 1+b1)≥4成立.C :∵ a 2+b 2=(a +b )2-2ab ≥(a +b )2-222⎪⎭⎫ ⎝⎛+b a =222⎪⎭⎫⎝⎛+b a ,又ab ≤2b a +⇒ab1≥b a +222≥a +b 成立. D :∵ a +b ≥2ab ⇒b a +1≤ab 21,∴b a ab +2≤ab ab 22=ab ,即ba ab+2≥ab 不成立.4.D解析: 因为f (x )是奇函数,则f (-x )=-f (x ),x x f x f )()(--<0x x f )(2⇔<0⇔xf (x )<0,满足x 与f (x )异号的x 的集合为所求.因为f (x )在(0,+∞)上是增函数,且f (1)=0,画出f (x )在(0,+∞)的简图如图,再根据f (x )是奇函数的性质得到f (x ) 在(-∞,0)的图象.由f (x )的图象可知,当且仅当x ∈(-1,0)∪(0,1)时,x 与f (x )异号. 5.C解析:由0<x <2π,有sin x >0,cos x >0. f (x )=x x x 2sin sin 8+2cos +12=x x x x cos sin 2sin 8+cos 222=xx sin cos +x x cos sin 4≥2x x x x cos sin 4sin cos· =4,当且仅当xx sin cos =x xcos sin 4,即tan x =21时,取“=”. ∵ 0<x <2π,∴ 存在x 使tan x =21,这时f (x )min =4.6.B解析:∵ a +b =2,故3a +3b ≥2b a 33⋅=2b a +3=6,当且仅当a =b =1时取等号.(第4题)故3a +3b 的最小值是6.7.A解析:不等式组表示的平面区域为如图所示阴影部分 △ABC .由⎩⎨⎧4343=+=+y x y x 得A (1,1),又B (0,4),C (0,43).由于直线y =k x +43过点C (0,43),设它与直线 3x +y =4的交点为D ,则由S △BCD =21S △ABC ,知D 为AB 的中点,即x D =21,∴ y D =25, ∴ 25=k ×21+34,k =37.8.A解析:设P 点的坐标为(x 0,y 0),则⎪⎪⎩⎪⎪⎨⎧解得⎩⎨⎧. 1=, 5=-00y x∴ 点P 坐标是(-5,1). 9.B解析:当直线mx +y =z 与直线AC 平行时,线段AC 上的每个点都是最优解.∵ k AC =1-5522-3=-207, ∴ -m =-207,即m =207. 10.D 解析:由x +1-1x =(x -1)+1-1x +1, ∵ x >1,∴ x -1>0,则有(x -1)+1-1x +1≥21-11-x x )·(+1=3,则a ≤3.. 53=56+2, 0<1--, 0=3+2+000000-y x y x y x二、填空题 11.24.解析:不等式(x -y +5)(x +y )≥0可转化为两个 二元一次不等式组. ⎩⎨⎧⎪⎩⎪⎨⎧⇔ 或⎪⎩⎪⎨⎧这两个不等式组所对应的区域面积之和为所求.第一个不等式组所对应的区域如图,而第二个不等式组所对应的区域不存在.图中A (3,8),B (3,-3),C (0,5),阴影部分的面积为25+113)(⨯=24. 12.⎭⎬⎫⎩⎨⎧21 >a a .解析:若z =ax +y (a >0)仅在点(3,0)处取得最大值,则直线z =ax +y 的倾斜角一定小于直线x +2y -3=0的倾斜角,直线z =ax +y 的斜率就一定小于直线x +2y -3=0的斜率,可得:-a <-21,即a >21.13.a b ≥9.解析:由于a ,b 均为正数,等式中含有ab 和a +b 这个特征,可以设想使用2+ba ≥ab 构造一个不等式.∵ ab =a +b +3≥ab 2+3,即a b ≥ab 2+3(当且仅当a =b 时等号成立), ∴ (ab )2-ab 2-3≥0,∴ (ab -3)(ab +1)≥0,∴ab ≥3,即a b ≥9(当且仅当a =b =3时等号成立). 14.(a +b )2. 解析:由已知xay ,y bx 均为正数,(x -y +5)(x +y )≥0 0≤x ≤3x -y +5≥0 x +y ≥0 0≤x ≤3 x -y +5≤0 x + y ≤0 0≤x ≤3(第11题)∴ x +y =(x +y )(x a+y b )=a +b +x ay +y bx ≥a +b +ybx x ay ·2 =a +b +2ab , 即x +y ≥(a +b )2,当且仅当1=+ =yb x a y bxx ay 即 ab b y ab a x +=+=时取等号. 15.8.解析:因为y =log a x 的图象恒过定点(1,0),故函数y =log a (x +3)-1的图象恒过定点A (-2,-1),把点A 坐标代入直线方程得m (-2)+n (-1)+1=0,即2m +n =1,而由mn >0知mn ,n m 4均为正,∴m 1+n2=(2m +n )(m 1+n 2)=4+m n +n m 4≥4+n m m n 42⋅=8,当且仅当1=+24=n m n m m n 即 21=41=n m 时取等号. 16.221p p +. 解析:设该厂第一年的产值为a ,由题意,a (1+p )2=a (1+p 1)(1+p 2),且1+p 1>0, 1+p 2>0,所以a (1+p )2=a (1+p1)(1+p 2)≤a 2212+1++1⎪⎭⎫ ⎝⎛p p =a 2212++1⎪⎭⎫ ⎝⎛p p ,解得p ≤2+21p p ,当且仅当1+p 1=1+p 2,即p 1=p 2时取等号.所以p 的最大值是2+21pp . 三、解答题17.解:令x +1=t >0,则x =t -1,y =t t t 10+1-7+1-2)()(=t t t 4+5+2=t +t4+5≥t t 42⋅+5=9,当且仅当t =t4,即t =2,x =1时取等号,故x =1时,y 取最小值9.18.解:因为直线l 经过点P (3,2)且与x 轴y 轴都相交, 故其斜率必存在且小于0.设直线l 的斜率为k , 则l 的方程可写成y -2=k (x -3),其中k <0. 令x =0,则y =2-3k ;令y =0,则x =-k2+3. S △AOB =21(2-3k )(-k 2+3)=21⎥⎦⎤⎢⎣⎡)()(k k 4-+9-+12≥⎥⎦⎤⎢⎣⎡⋅)()(k k 4-9-2+1221=12,当且仅当(-9k )=(-k 4),即k =-32时,S △AOB 有最小值12,所求直线方程为 y -2=-32(x -3),即2x +3y -12=0. 19.解:设生产甲产品x 吨,生产乙产品y 吨,则有关系:A 原料用量B 原料用量甲产品x 吨 3x 2x 乙产品y 吨y3y则有⎪⎪⎩⎪⎪⎨⎧++>> 18≤3213≤ 30 0y x y x y x ,目标函数z =5x +3y作出可行域后求出可行域边界上各端点的坐标,可知 当x =3,y =4时可获得最大利润为27万元.20.解:(1)∵ x <45,∴ 4x -5<0,故5-4x >0. y =4x -1+541x -=-(5-4x +x-451)+4.∵ 5-4x +x-451≥x -x -451452)(=2,∴ y ≤-2+4=2, 当且仅当5-4x =x -451,即x =1或x =23(舍)时,等号成立, 故当x =1时,y max =2.xOAy P (3,2)B(第18题)(第18题)第 11 页 共 11 页 (2)∵ x >0,y >0,x1+y 9=1, ∴ x +y =(x 1+y 9)(x +y )=x y +y x 9+10≥2yx x y 9 · +10=6+10=16. 当且仅当x y =y x 9,且x 1+y 9=1,即⎩⎨⎧12=, 4=y x 时等号成立, ∴ 当x =4,y =12时,(x +y )min =16.(3)a 2+1b =a ⎪⎪⎭⎫ ⎝⎛2+2122b =2·a 2+212b ≤22⎪⎪⎭⎫ ⎝⎛2+21+22b a =423, 当且仅当a =2+212b ,即a =23,b =22时,a 2+1b 有最大值423.。

高中数学不等式经典练习题1(含答案)

高中数学不等式经典练习题1(含答案)

高中数学不等式经典练习题1(含答案) 高中数学不等式经典练题【编著】黄勇权一、选择题1、若a∈R,下列不等式恒成立的是()A、a²+1≥a2、已知x>y>0,若x+y=1,则下列数中最大的是()D、x²+y²3、a∈R,b∈R,若a²+b²=1,则a+b()C、有最小值24、a,b为任意实数,若a>b,则有()A、a²>b²5、实数a,b>0,则a+b的最大值是。

C、36、已知x>0,y>0,z>0,且x+y+z=3,则xy+xz+yz的最大值是。

B、37、已知a,b,c∈R,若a>b,则以下不等式成立的是()A、ac>bc。

8、实数a≥1,b≥0,若3a²+6a+2b²=3,则(a+1)3b²+1的最大值。

D、39、已知a、b为正实数,且满足2ab=2a+b+3,则a+b/2的最小值是。

B、310、已知x,y,z为正数,若ab+bc+ca=1,则a+b+c的最小值是A、2.二、填空题1、已知实数x,y满足x+y=2xy,则xy的最小值是1/2.2、已知m>0,n>0,且m+n=1,则(m-1)(n-1)的最小值是1/4.3、函数y=x+2-x的最大值是2.4、已知x、y为正数,若2x+3y=4,则x/2+y/3的最小值是8/15.5、函数f(a)=a-a²的最大值是1/4.6、m、n均为正数,若m+n=1,则mn最小值是1/4.7、已知x,y,z为正数,若3x+2y+z=2,则9x²+4y²+z²的最小值是13/9.8、x+2y=4,则x/2+3y/4的最大值是8/3.9、已知a、b、c为正实数,若a+b+c=1,则ab+bc+ca的最小值为1/3.三道数学题的解答1.已知实数 $x,y,z$ 满足$x^2+y^2=2,y^2+z^2=3,z^2+x^2=3$,求$xy+yz+zx$ 的最大值。

高中数学等式与不等式练习题(含解析)

高中数学等式与不等式练习题(含解析)

高中数学等式与不等式练习题(含解析)一、单选题1.不等式21560x x +->的解集为( ) A .{1x x 或1}6x <-B .116x x ⎧⎫-<<⎨⎬⎩⎭C .{1x x 或3}x <-D .{}32x x -<<2.已知正数x y ,满足 4x y +=,则xy 的最大值( ) A . 2B .4C . 6D .83.若53x >,则4335x x +-的最小值为( )A .7B .C .9D .4.下列命题正确的是( ) A .若ac bc >,则a b > B .若ac bc =,则a b = C .若a b >,则11a b <D .若22ac bc >,则a b >5.已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( ) A .{4,1}- B .{1,5} C .{3,5}D .{1,3}6.当x R ∈时,不等式2210x x a ---≥恒成立,则实数a 的取值范围是( ) A .(],2-∞- B .(),2-∞- C .(],0-∞D .(),0∞-7.设a<b<0,则下列不等式中不一定正确的是( )A .22ab>B .ac <bcC .|a|>-bD >8.小李从甲地到乙地的平均速度为a ,从乙地到甲地的平均速度为(0)b a b >>,他往返甲乙两地的平均速度为v ,则( )A .2a bv +=B .v =C 2a bv +<D .b v <<9.已知0a >,0b >,若44a b ab +=,则a b +的最小值是( )A .2B 1C .94D .5210.已知命题“R x ∀∈,214(2)04x a x +-+>”是假命题,则实数a 的取值范围为( ) A .(][),04,-∞+∞ B .[]0,4 C .[)4,+∞D .()0,4二、填空题11.已知54x >,则函数1445y x x =+-的最小值为_______. 12.已知21P x =- ,22Q x x =- ,则P _______Q .(填“>”或“<”) 13.已知22451(,)x y y x y R +=∈,则22x y +的最小值是_______.14.已知a ,b ∈R ,若对任意0x ≤,不等式()()22210ax x bx ++-≤恒成立,则a b +的最小值为___________.三、解答题15.若命题“方程ax 2-3x +2=0有两个不相等的实数根”为真,求实数a 的取值范围. 16.当前新冠肺炎疫情防控形势依然严峻,要求每个公民对疫情防控都不能放松.科学使用防护用品是减少公众交叉感染、有效降低传播风险、防止疫情扩散蔓延、确保群众身体健康的有效途径.某疫情防护用品生产厂家年投入固定成本150万元,每生产()x x N ∈万件,需另投入成本()C x (万元).当年产量不足60万件时,21()3802C x x x =+;当年产量不小于60万件时,81000()4103000C x x x=+-.通过市场分析,若每万件售价为400万元时,该厂年内生产的防护用品能全部售完.(利润=销售收入-总成本) (1)求出年利润()L x (万元)关于年产量()x x N ∈(万件)的解析式;(2)年产量为多少万件时,该厂在这一防护用品生产中所获利润最大?并求出利润的最大值.17.已知关于x 的不等式210ax x a -+-≤. (1)当a ∈R 时,解关于x 的不等式;(2)当[]2,3a ∈时,不等式210ax x a -+-≤恒成立,求x 的取值范围. 18.记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==. (1)求数列{}n a 的通项公式n a ; (2)求使n n S a >成立的n 的最小值.参考答案:1.B【分析】解一元二次不等式,首先确保二次项系数为正,两边同时乘1-,再利用十字相乘法,可得答案,【详解】法一:原不等式即为26510x x --<,即()()6110x x +-<,解得116x -<<,故原不等式的解集为116x x ⎧⎫-<<⎨⎬⎩⎭.法二:当2x =时,不等式不成立,排除A ,C ;当1x =时,不等式不成立,排除D . 故选:B . 2.B【分析】直接使用基本不等式进行求解即可. 【详解】因为正数x y ,满足 4x y +=,所以有424x y xy =+≥⇒≤,当且仅当2x y ==时取等号, 故选:B 3.C【分析】利用基本不等式即可求解. 【详解】解:53x >,∴350x ->,则()443355593535x x x x +=-++≥=--, 当且仅当352x -=时,等号成立, 故4335x x +-的最小值为9, 故选:C . 4.D【分析】由不等式性质依次判断各个选项即可.【详解】对于A ,若0c <,由ac bc >可得:a b <,A 错误; 对于B ,若0c ,则0ac bc ==,此时a b =未必成立,B 错误; 对于C ,当0a b >>时,110a b>>,C 错误; 对于D ,当22ac bc >时,由不等式性质知:a b >,D 正确.故选:D. 5.D【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ⋂,得到结果.【详解】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =, 故选:D.【点睛】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目. 6.A【分析】由题意,保证当x R ∈时,不等式2210x x a ---≥恒成立,只需2(2)4(1)0a ∆=-++≤,求解即可【详解】由题意,当x R ∈时,不等式2210x x a ---≥恒成立, 故2(2)4(1)0a ∆=-++≤ 解得2a ≤-故实数a 的取值范围是(],2-∞- 故选:A 7.B【分析】利用不等式的性质对四个选项一一验证: 对于A ,利用不等式的可乘性进行证明; 对于B ,利用不等式的可乘性进行判断; 对于C ,直接证明;对于D ,由开方性质进行证明. 【详解】对于A ,因为a<b<0,所以20ab >,对a<b 同乘以2ab ,则有22a b>,故A 成立; 对于B ,当c>0时选项B 成立,其余情况不成立,则选项B 不成立; 对于C ,|a|=-a>-b ,则选项C 成立;对于D ,由-a>-b>0>D 成立. 故选:B 8.D【分析】平均速度等于总路程除以总时间【详解】设从甲地到乙地的的路程为s ,从甲地到乙地的时间为t 1,从乙地到甲地的时间为t 2,则1s t a=,2s t b =,1222211s s v s s t t a b a b ===+++,∴221111v ba bb b=>=++,2211ab v a b a b==<++ 故选:D. 9.C【分析】将44a b ab +=,转化为144b a +=,由()11414544a b a b a b b a b a ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭,利用基本不等式求解.【详解】因为44a b ab +=, 所以144b a+=,所以()11414544a b a b a b b a b a ⎛⎫⎛⎫+=++=++ ⎪⎪⎝⎭⎝⎭,19544⎛≥+= ⎝, 当且仅当1444b a a b b a⎧+=⎪⎪⎨⎪=⎪⎩,即3234a b ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立,故选:C 10.A【分析】先求出命题为真时实数a 的取值范围,即可求出命题为假时实数a 的取值范围.【详解】若“R x ∀∈,214(2)04x a x +-+>”是真命题, 即判别式()21Δ24404a =--⨯⨯<,解得:04a <<,所以命题“R x ∀∈,214(2)04x a x +-+>”是假命题, 则实数a 的取值范围为:(][),04,-∞+∞.故选:A. 11.7 【分析】由54x >,得450x ->,构造导数关系,利用基本不等式即可得到. 【详解】法一:54x >,450x ∴->, 114(45)52574545y x x x x =+=-++≥+=--, 当且仅当14545x x -=-,即32x =时等号成立,故答案为:7. 法二:54x >,令2440(45)y x '=-=-得1x =或32x =, 当5342x <<时'0y <函数单调递减, 当32x >时'0y >函数单调递增, 所以当32x =时函数取得最小值为:314732452⨯+=⨯-, 故答案为:7.【点晴】此题考基本不等式,属于简单题. 12.<【分析】作差判断正负即可比较.【详解】因为()222213121024P Q x x x x x x ⎛⎫-=---=-+-=---< ⎪⎝⎭,所以P Q <.故答案为:<. 13.45【分析】根据题设条件可得42215y x y -=,可得4222222114+555y y x y y y y-+=+=,利用基本不等式即可求解.【详解】∵22451x y y +=∴0y ≠且42215y x y -=∴42222221144+5555y y x y y y y -+=+=≥,当且仅当221455y y =,即2231,102x y ==时取等号. ∴22x y +的最小值为45.故答案为:45.【点睛】本题考查了基本不等式在求最值中的应用.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立). 14【分析】考虑两个函数()2g x ax =+,2()21f x x bx =+-,由此确定0a >,0x <时,()f x ,()g x 有相同的零点,得出,a b 的关系,检验此时()f x 也满足题意,然后计算出a b +(用a 表示),然后由基本不等式得最小值.【详解】设()2g x ax =+,2()21f x x bx =+-,()f x 图象是开口向上的抛物线,因此由0x ≤时,()()0f x g x ≤恒成立得0a >,()0g x =时,2x a =-,2x a <-时,()0g x <,20x a-<≤时,()0g x >, 因此2x a <-时,()0f x >,20x a -<≤时,()0f x <,2()0f a-=,所以24410b a a --=①,2b a->-②, 由①得14a b a =-,代入②得124a a a ->-,因为0a >,此式显然成立.134a a b a +=+≥134a a =,即a =所以a b +【点睛】关键点点睛:本题考查不等式恒成立问题,考查基本不等式求最值.解题关键是引入两个函数()f x 和()g x ,把三次函数转化为二次函数与一次函数,降低了难度.由两个函数的关系得出参数,a b 的关系,从而可求得a b +的最小值.15.9|8a a ⎧<⎨⎩且}0a ≠.【分析】方程ax 2-3x +2=0有两个不相等的实数根,说明是一元二次方程,根的判别式大于0,进而求出结果.【详解】由题意知()2Δ34200a a ⎧=--⨯>⎪⎨≠⎪⎩,解得a <98,且a ≠0,故实数a 的取值范围是9|8a a ⎧<⎨⎩且}0a ≠.16.(1)()2120150,60,281000285010,60,x x x x N L x x x x N x ⎧-+-<∈⎪⎪=⎨⎛⎫⎪-+≥∈ ⎪⎪⎝⎭⎩(2)当年产量为90万件时,该厂在这一防护商品生产中所获利润最大为1050万元【分析】(1)根据题意直接利用利润=销售收入-总成本,写出分段函数的解析式即可; (2)利用二次函数及其基本不等式分别求出各段的最大值,再取两个最大的即可. (1)当60x <且x ∈N 时,2211()4003801502015022L x x x x x x =---=-+-,当60x ≥且x ∈N 时, 8100081000()4004103000150285010L x x x x x x ⎛⎫=--+-=-+ ⎪⎝⎭ 综上:()2120150,60,281000285010,60,x x x x N L x x x x N x ⎧-+-<∈⎪⎪=⎨⎛⎫⎪-+≥∈ ⎪⎪⎝⎭⎩ (2)当60x <且x ∈N 时,2211()20150(20)5022L x x x x =-+-=--+∴当20x时,()L x 取最大值(20)50L =(万元)当60x ≥且x ∈N时,81000()28501028501050L x x x ⎛⎫=-+≤- ⎪⎝⎭当且仅当8100010x x=,即90x =时等号成立. ∴当90x =时,()L x 取最大值(90)1050L =(万元)∵501050<,综上所述,当年产量为90万件时,该厂在这一防护商品生产中所获利润最大为1050万元. 17.(1)答案见解析;(2)1,12⎡⎤-⎢⎥⎣⎦.【分析】(1)不等式210ax x a -+-≤可化为()()110x ax a -+-≤,然后分0a =,a<0,102a <<,12a =,12a >五种情况求解不等式;(2)不等式210ax x a -+-≤对[]2,3a ∈恒成立,把a 看成自变量,构造函数()()()211f a x a x =-+-+,则可得()()2030f f ⎧≤⎪⎨≤⎪⎩,解不等式组可求出x 的取值范围【详解】解:(1)不等式210ax x a -+-≤可化为()()110x ax a -+-≤, 当0a =时,不等式化为10x -≥,解得1x ≥, 当a<0时,不等式化为()110a x x a -⎛⎫--≥ ⎪⎝⎭,解得1ax a-≤,或1x ≥; 当0a >时,不等式化为()110a x x a -⎛⎫--≤ ⎪⎝⎭;①102a <<时,11a a ->,解不等式得11a x a-≤≤, ②12a =时,11aa-=,解不等式得1x =, ③12a >时,11aa -<,解不等式得11a x a-≤≤. 综上,当0a =时,不等式的解集为{|1}x x ≥, 当a<0时,不等式的解集为{1|ax x a-≤或1}x ≥, 102a <<时,不等式的解集为1{|1}a x x a-≤≤, 12a =时,不等式的解集为{}|1x x =, 12a >时,不等式的解集为1{|}1a ax x ≤≤-. (2)由题意不等式210ax x a -+-≤对[]2,3a ∈恒成立,可设()()()211f a x a x =-+-+,[]2,3a ∈,则()f a 是关于a 的一次函数,要使题意成立只需:()()222021030320f x x f x x ⎧≤⎧--≤⎪⇒⎨⎨≤--≤⎪⎩⎩, 解得:112x -≤≤,所以x 的取值范围是1,12⎡⎤-⎢⎥⎣⎦.18.(1)26n a n =-;(2)7.【分析】(1)由题意首先求得3a 的值,然后结合题意求得数列的公差即可确定数列的通项公式;(2)首先求得前n 项和的表达式,然后求解二次不等式即可确定n 的最小值. 【详解】(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-+++=-,从而:22d d -=-,由于公差不为零,故:2d =, 数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214252n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->, 解得:1n <或6n >,又n 为正整数,故n 的最小值为7.【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.。

(典型题)高中数学必修五第三章《不等式》测试卷(含答案解析)(1)

(典型题)高中数学必修五第三章《不等式》测试卷(含答案解析)(1)

一、选择题1.已知正数x ,y 满足1431x y +=+,则x y +的最小值为( ) A .53B .2C .73D .62.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( )A .2B .-2C .1D .-13.已知a b >,不等式220ax x b ++≥对于一切实数x 恒成立,且0x R ∃∈,使得20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1BC .2D.4.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D5.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .76.设,x y 满足约束条件321104150250x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z x y =+的最小值为( )A .3B .4C .5D .107.若函数()1xy a a =>的图象与不等式组40,20,1x y y x -≤⎧⎪-≥⎨⎪≤+⎩,表示的区域有公共点,则a 的取值范围为( ) A .[]2,4B.⎤⎦C .(][)1,24,⋃+∞D.([)2,⋃+∞8.已知函数()32f x x ax bx c =+++,且()()()01233f f f <-=-=-≤,则( )A .c 3≤B .3c 6<≤C .6c 9<≤D .c 9>9.设x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,则1z x y =-+的最小值是( )A .1-B .0C .1D .210.在ABC 中,BAC ∠的平分线交BC 于D .若3BAC π∠=,4AB AC +=,则AD 长度的最大值为( ) AB .2C .3D.11.设函数2()1f x mx mx =--,若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立,则实数m 的取值范围为( ) A .m ≤0 B .0≤m <57C .m <0或0<m <57D .m <5712.已知不等式230ax bx a --≥的解集是[]4,1-,则b a 的值为( ) A .-64B .-36C .36D .64二、填空题13.若正实数x 、y 、z ,满足3z x y +=,4z y x +=,则x y x y z++-的最小值为_______.14.已知x ,y 满足不等式组220,10,30x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则11x z y -=+,则z 的最大值为________.15.若关于x 的不等式250ax x b -+< 的解集为{|23}x x << ,则+a b 的值是__________.16.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________ 17.在下列函数中, ①1y x x=+②1123212y x x x ⎛⎫=++< ⎪-⎝⎭③()2114141x y x x x x ⎛⎫=++> ⎪+⎝⎭ ④22221πsin cos 0,sin cos 2y x x x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭其中最小值为2的函数是__________.18.若关于x 的不等式()0f x <和()0g x <的解集分别为(),a b 和11,b a ⎛⎫⎪⎝⎭,则称这两个不等式为“对偶不等式”.若不等式()2220x x θ-+<和不等式()224sin 210x x θ++<为“对偶不等式”,且,2πθπ⎛⎫∈ ⎪⎝⎭,则θ=______.19.若实数x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则3z x y =-的最小值为__________.20.记等差数列{}n a 的前n 项和为n S ,满足570a a ,1122S =,则7811572a a a a a 的最小值为_________.三、解答题21.2020年受疫情影响,全球经济均受到不同程度的冲击.为稳妥有序地推进复工复产,2月11日晚,郑州市相关政府部门印发了《郑州市关于应对新型冠状病毒肺炎疫情促进经济平稳健康发展的若干举措》的通知,并出台多条举措促进全市经济平稳健康发展.某工厂为拓宽市场,计划生产某种热销产品,经调查,该产品一旦投入市场就能全部售出.若不举行促销活动,该产品的年销售量为28万件,若举行促销活动,年销售量y (单位;万件)与年促销费用()0x x ≥(单位;万元)满足3010(ky k x =-+为常数).已知生产该产品的固定成本为80万元,每生产1万件该产品需要再投入生产成本160万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定成本和生产成本,不包括促销成本). (1)求k 的值,并写出该产品的利润L (单位:万元)与促销费用x (单位:万元)的函数关系﹔ (2)该工厂计划投入促销费用多少万元,才能获得最大利润?22.已知m R ∈,命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立;命题q :存在[]1,1x ∈-,使得m ax ≤成立.(1)若p 为真命题,求m 的取值范围;(2)当1a =时,若p q ∨为真,p q ∧为假,求m 的取值范围. 23.已知()f x 是偶函数,()g x 是奇函数,且2()()2f x g x x x +=+-. (1)求()f x 和()g x 的解析式;(2)设2()33h x mx mx =+-(其中m R ∈),解不等式()()h x g x <.24.已知函数2221,()?23,x ax x af x x ax x a ⎧-+<⎪⎪=⎨⎪+-≥⎪⎩,其中 0a >. (1)若()()01ff =,求a 的值.(2)若函数()f x 的图象在x 轴的上方,求a 的取值范围. 25.已知函数()()21,4f x ax bx a b R =++∈,且()10f -=,对任意实数x ,()0f x ≥成立.(1)求函数()f x 的解析式;(2)若0c ≥,解关于x 的不等式()2131424f x c x x c ⎛⎫⎛⎫>+-++ ⎪ ⎪⎝⎭⎝⎭. 26.某单位计划建造一间背面靠墙的小屋,其地面面积为12m 2,墙面的高度为3m ,经测算,屋顶的造价为5800元,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,设房屋正面地面长方形的边长为x m ,房屋背面和地面的费用不计. (1)用含x 的表达式表示出房屋的总造价; (2)当x 为多少时,总造价最低?最低造价是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等. 所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.2.C解析:C 【分析】先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解. 【详解】作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值, 解方程组2122x y x y -≤⎧⎨-≥⎩,求得10x y =⎧⎨=⎩,即(1,0)A ,代入求得101=+=z ,所以x y +的最小值是1, 故选:C. 【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下: (1)根据题中所给的约束条件画出可行域; (2)根据目标函数的意义找到最优解; (3)解方程组求得最优解的坐标; (4)代入求得最小值,得到结果.3.D解析:D 【分析】根据条件对于一切实数x 不等式恒成立和0x R ∃∈使得方程成立结合二次不等式、二次方程、二次函数,可得1ab =,将22a b a b+-化成2a b a b -+-,再结合基本不等式求解即可.【详解】解:因为不等式220ax x b ++≥对于一切实数x 恒成立,所以0440a ab >⎧⎨-≤⎩,又因为0x R ∃∈,使得20020ax x b ++=成立,所以440ab -≥,所以440ab -=, 即0,0,1a b ab >>=,所以222()2222a b a b ab a b a b a b a b+-+==-+≥---,当且仅当2a b a b-=-时取得最小值. 故选:D. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==,所以所求最小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.5.C解析:C【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】由实数x,y满足2424x yx yy-≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z=3x﹣2y变形为y=32x﹣2z,由24yx y=⎧⎨-=⎩,解得B(2,0)当此直线经过图中B时,在y轴的截距最大,z最小,所以z的最小值为3×2﹣2×0=6;故选C.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.B解析:B【分析】结合题意画出可行域,然后运用线性规划知识来求解【详解】如图由题意得到可行域,改写目标函数得y x z =-+,当取到点(3,1)A 时得到最小值,即314z =+=故选B 【点睛】本题考查了运用线性规划求解最值问题,一般步骤:画出可行域,改写目标函数,求出最值,需要掌握解题方法7.B解析:B 【分析】由约束条件作出可行域,再由指数函数的图象经过A ,B 两点求得a 值,则答案可求. 【详解】解:由约束条件40,20,1x y y x -⎧⎪-⎨⎪+⎩作出可行域如图:当1x =时,2y a =≤;当4x =时,42y a =≥,则42a ≥故a 的取值范围为42,2⎡⎤⎣⎦.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.8.C解析:C 【分析】由()()()123f f f -=-=-可求得a b ,的值,代回不等关系得出c 的取值范围 【详解】由()()()123f f f -=-=-可得184********a b c a b ca b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩解得611a b =⎧⎨=⎩则()32611f x x x x c =+++ 所以()16f c -=-,()013f <-≤所以0c 63-≤<,解得6c 9≤<, 故选C . 【点睛】本题主要考查了函数的性质,运用待定系数法求出参量的值,然后结合题意求出取值范围,较为基础.9.C解析:C 【分析】作出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入求解,即可得到答案. 【详解】作出x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,所对应的可行域,如图所示,目标函数1z x y =-+可化为1y x z =+-,当直线1y x z =+-过点A 时, 此时直线在y 轴上的截距最大值,此时目标函数取得最小值,又由2132y x y =⎧⎪⎨+=⎪⎩,解得(2,2)A , 所以目标函数的最小值为min 2211z =-+=. 故选:C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.10.A解析:A 【分析】根据题意,设,,,AD t AB c AC b ===由三角形面积公式1sin 2S a b θ=⋅⋅可表示出,,ACD ABD ABC ∆∆∆三者之间的关系,进而得边长关系为3,t bc =最后通过基本不等式求得AD 的最大值。

高中数学必修5基本不等式精选题目(附答案)

高中数学必修5基本不等式精选题目(附答案)

高中数学必修5基本不等式精选题目(附答案)1.重要不等式当a ,b 是任意实数时,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式(1)有关概念:当a ,b 均为正数时,把a +b2叫做正数a ,b 的算术平均数,把ab 叫做正数a ,b 的几何平均数.(2)不等式:当a ,b 是任意正实数时,a ,b 的几何平均数不大于它们的算术平均数,即ab ≤a +b2,当且仅当a =b 时,等号成立.(3)变形:ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,a +b ≥2ab (其中a >0,b >0,当且仅当a=b 时等号成立).题型一:利用基本不等式比较大小1.已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是( ) A .m >n B .m <n C .m =nD .不确定2.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b 2,则P ,Q ,R 的大小关系是________.题型二:利用基本不等式证明不等式3.已知a ,b ,c 均为正实数, 求证:2b +3c -a a +a +3c -2b 2b +a +2b -3c3c ≥3.4.已知a ,b ,c 为正实数, 且a +b +c =1,求证:⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥8.题型三:利用基本不等式求最值5.已知lg a +lg b =2,求a +b 的最小值.6.已知x >0,y >0,且2x +3y =6,求xy 的最大值.7.已知x >0,y >0,1x +9y =1,求x +y 的最小值.8.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5题型四:利用基本不等式解应用题9.某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:(1)仓库面积S 的最大允许值是多少?(2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?巩固练习:1.下列结论正确的是( ) A .当x >0且x ≠1时,lg x +1lg x ≥2 B .当x >0时,x +1x≥2 C .当x ≥2时,x +1x 的最小值为2 D .当0<x ≤2时,x -1x 无最大值2.下列各式中,对任何实数x 都成立的一个式子是( ) A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C.1x 2+1≤1 D .x +1x ≥23.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( ) A.1a +1b <1 B.1a +1b ≥1 C.1a +1b <2D.1a +1b ≥24.四个不相等的正数a ,b ,c ,d 成等差数列,则( ) A.a +d2>bcB.a +d2<bcC.a+d2=bc D.a+d2≤bc5.若x>0,y>0,且2x+8y=1,则xy有()A.最大值64B.最小值1 64C.最小值12D.最小值646.若a>0,b>0,且1a+1b=ab,则a3+b3的最小值为________.7.(2017·江苏高考)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是________.8.若对任意x>0,xx2+3x+1≤a恒成立,则a的取值范围是________.9.(1)已知x<3,求f(x)=4x-3+x的最大值;参考答案:1.解:因为a>2,所以a-2>0,又因为m=a+1a-2=(a-2)+1a-2+2,所以m≥2(a-2)·1a-2+2=4,由b≠0,得b2≠0,所以2-b2<2,n=22-b2<4,综上可知m>n.2.解:因为a>b>1,所以lg a>lg b>0,所以Q=12(lg a+lg b)>lg a·lg b=P;Q=12(lg a+lg b)=lg a+lg b=lg ab<lga+b2=R.所以P<Q<R.3.[证明]∵a,b,c均为正实数,∴2ba+a2b≥2(当且仅当a=2b时等号成立),3c a+a3c≥2(当且仅当a=3c时等号成立),3c 2b +2b3c ≥2(当且仅当2b =3c 时等号成立),将上述三式相加得⎝ ⎛⎭⎪⎫2b a +a 2b +⎝ ⎛⎭⎪⎫3c a +a 3c +⎝ ⎛⎭⎪⎫3c 2b +2b 3c ≥6(当且仅当a =2b =3c时等号成立),∴⎝ ⎛⎭⎪⎫2b a +a 2b -1+⎝ ⎛⎭⎪⎫3c a +a 3c -1+⎝ ⎛⎭⎪⎫3c 2b +2b 3c -1≥3(当且仅当a =2b =3c 时等号成立),即2b +3c -a a +a +3c -2b 2b +a +2b -3c 3c ≥3(当且仅当a =2b =3c 时等号成立).4.证明:因为a ,b ,c 为正实数,且a +b +c =1, 所以1a -1=1-a a =b +c a ≥2bc a . 同理,1b -1≥2ac b ,1c -1≥2abc . 上述三个不等式两边均为正,相乘得⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥2bc a ·2ac b ·2abc =8,当且仅当a =b =c =13时,取等号.5.解:由lg a +lg b =2可得lg ab =2, 即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2ab =2100 =20, 当且仅当a =b =10时,a +b 取到最小值20. 6.解:∵x >0,y >0,2x +3y =6, ∴xy =16(2x ·3y )≤16·⎝⎛⎭⎪⎫2x +3y 22=16·⎝ ⎛⎭⎪⎫622=32,当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32. 7.解:∵1x +9y =1, ∴x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +9y=1+9x y +y x +9=y x +9xy +10, 又∵x >0,y >0, ∴y x +9xy +10≥2y x ·9xy +10=16,当且仅当y x =9xy ,即y =3x 时,等号成立. 由⎩⎪⎨⎪⎧y =3x ,1x +9y=1,得⎩⎨⎧x =4,y =12,即当x =4,y =12时,x +y 取得最小值16.8.解析:选C 由已知,可得6⎝ ⎛⎭⎪⎫2a +1b =1,∴2a +b =6⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=6⎝ ⎛⎭⎪⎫5+2a b +2b a ≥6×(5+4)=54,当且仅当2a b =2b a 时等号成立,∴9m ≤54,即m ≤6,故选C.9.[解] (1)设铁栅长为x 米,一堵砖墙长为y 米,而顶部面积为S =xy ,依题意得,40x +2×45y +20xy =3 200,由基本不等式得3 200≥240x ×90y +20xy =120xy +20xy , =120S +20S .所以S +6S -160≤0,即(S -10)(S +16)≤0, 故S ≤10,从而S ≤100,所以S 的最大允许值是100平方米,(2)取得最大值的条件是40x =90y 且xy =100, 求得x =15,即铁栅的长是15米. 练习:1.解析:选B A 中,当0<x <1时,lg x <0,lg x +1lg x ≥2不成立;由基本不等式知B 正确;C 中,由对勾函数的单调性,知x +1x 的最小值为52;D 中,由函数f (x )=x -1x 在区间(0,2]上单调递增,知x -1x 的最大值为32,故选B.2.解析:选C 对于A ,当x ≤0时,无意义,故A 不恒成立;对于B ,当x =1时,x 2+1=2x ,故B 不成立;对于D ,当x <0时,不成立.对于C ,x 2+1≥1,∴1x 2+1≤1成立.故选C. 3.解析:选B 因为ab ≤⎝⎛⎭⎪⎫a +b 22≤⎝ ⎛⎭⎪⎫422=4,所以1a +1b ≥21ab ≥214=1.4.解析:选A 因为a ,b ,c ,d 成等差数列,则a +d =b +c ,又因为a ,b ,c ,d 均大于0且不相等,所以b +c >2bc ,故a +d2>bc .5.解析:选D 由题意xy =⎝ ⎛⎭⎪⎫2x +8y xy =2y +8x ≥22y ·8x =8xy ,∴xy ≥8,即xy 有最小值64,等号成立的条件是x =4,y =16.6.解析:∵a >0,b >0,∴ab =1a +1b ≥21ab ,即ab ≥2,当且仅当a =b =2时取等号,∴a 3+b 3≥2(ab )3≥223=42,当且仅当a =b =2时取等号,则a 3+b 3的最小值为4 2.7.解析:由题意,一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4⎝ ⎛⎭⎪⎫900x +x ≥8900x ·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.8.解析:因为x >0,所以x +1x ≥2.当且仅当x =1时取等号, 所以有xx 2+3x +1=1x +1x +3≤12+3=15, 即x x 2+3x +1的最大值为15,故a ≥15. 答案:⎣⎢⎡⎭⎪⎫15,+∞(2)已知x ,y 是正实数,且x +y =4,求1x +3y 的最小值. 9.解:(1)∵x <3, ∴x -3<0,∴f (x )=4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x +(3-x )+3≤-243-x·(3-x )+3=-1, 当且仅当43-x=3-x , 即x =1时取等号, ∴f (x )的最大值为-1. (2)∵x ,y 是正实数,∴(x +y )⎝ ⎛⎭⎪⎫1x +3y =4+⎝ ⎛⎭⎪⎫y x +3x y ≥4+2 3.当且仅当y x =3xy ,即x =2(3-1),y =2(3-3)时取“=”号. 又x +y =4, ∴1x +3y ≥1+32, 故1x +3y 的最小值为1+32.。

高中数学不等式经典练习题1(含答案)

高中数学不等式经典练习题1(含答案)

高中数学 不等式 经典练习题【编著】黄勇权一、选择题1、若a ∈R ,下列不等式恒成立的是( )A 、a ²+1≥ aB 、a ²+4>4aC 、 1a>1 D 、2a >2a-1 2、已知x >y >0,若x+y=1,则下列数中最大的是( ) A 、12 B 、 x+y 2C 、2xyD x ²+y ² 3、a ∈R ,b ∈R ,若a ²+b ²=1,则a+b ( )A 、 有最小值 - 2B 、有最小值-1C 、 有最小值 2D 、有最小值14、a ,b 为任意实数,若a >b ,则有( )A 、 a ²>b ²B 、(a-1 )²>(b-1)²C 、丨a-1丨> 丨b-1丨D 、2a-1>2b-15、实数a ,b >0,则ba b a ++的最大值是 。

A 、 1 B 、 2 C 、 3 D 、 26、已知 x >0,y >0,z >0,若 x+y+z= 3,则 xy+xz+yz 的最大值是 。

A 、3、B 、 3C 、 2D 、 17、已知a ,b ,c ∈R ,若a >b ,以下不等式成立的是( )A 、 ac >bcB 、 a ³>b ³C 、1b 11a 1++> D 、22b1a 1> 8、实数a ≥1,b ≥0,若3a ²+6a+2b ²=3,则(a+1)1b 32+的最大值 。

A 、 2B 、 3C 、 53 2D 、 523 9、已知a 、b 为正实数,且满足2ab=2a+b+3,则a+2b 的最小值是 。

A 、 1 B 、 3 C 、4 D 、610、已知x ,y ,z 为正数,若ab+bc+ca=1,则a+b+c 的最小值是A 、 2B 、 3C 、2D 、3二、填空题1、已知实数x ,y 满足 1x + 4y= 2 xy ,则xy 则最小值是 。

高中数学(必修一)第二章 基本不等式练习题

高中数学(必修一)第二章 基本不等式练习题

高中数学(必修一)第二章 基本不等式练习题(含答案解析)学校:___________姓名:___________班级:_____________一、解答题 1.已知a b ,比较2a ab +与23ab b -的大小,并证明.2.设a ,b 为正实数,求证:()()()2233338a b a b a b a b +++≥.3.求函数1(3)3y x x x =+>-的最小值.4.(1)把49写成两个正数的积,当这两个正数各取何值时,它们的和最小?(2)把12写成两个正数的和,当这两个正数各取何值时,它们的积最大?5.已知圆C 的圆心在坐标原点,且过点(M . (1)求圆C 的方程;(2)已知点P 是圆C 上的动点,试求点P 到直线40x y +-=的距离的最小值;(3)若直线l 与圆C 相切,且l 与,x y 轴的正半轴分别相交于,A B 两点,求ABC 的面积最小时直线l 的方程.6.已知a ,b R +∈,求证:()114a b a b ⎛⎫++≥ ⎪⎝⎭.7.函数π()2sin()10,||2f x x ωϕωϕ⎛⎫=++>< ⎪⎝⎭图像过点π,13⎛⎫ ⎪⎝⎭,且相邻对称轴间的距离为π2.(1)求,ωϕ的值;(2)已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若32A f ⎛⎫= ⎪⎝⎭,且2a =,求ABC 面积的最大值.8.小张于年初支出50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出万元,假定该车每年的运输收入均为25万元.小张在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售收入为25x -万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小张获得的年平均利润最大? (利润=累积收入+销售收入-总支出)9.高一(3)班的小北为我校设计的冬季运动会会徽《冬日雪花》获得一等奖.他的设计灵感来自三个全等的矩形的折叠拼凑,现要批量生产.其中会徽的六个直角(如图2阴影部分)要利用镀金工艺上色.已知一块矩形材料如图1所示,矩形 ABCD 的周长为4cm ,其中长边 AD 为 x cm ,将BCD △沿BD 向ABD △折叠,BC 折过去后交AD 于点E .(1)用 x 表示图1中BAE 的面积;(2)已知镀金工艺是2元/2cm ,试求一个会徽的镀金部分所需的最大费用.10.已知ABC 的内角A ,B ,C 的对边分别为a , b ,c ,A 为锐角,cos cos 3cos b A a B c A +=. (1)求cos A ;(2)若2a =,求ABC 面积的最大值.11.已知(2,5)x ∈-,求(2)(5)y x x =+-的最大值,以及y 取得最大值时x 的值.12.下列结论是否成立?若成立,试说明理由;若不成立,试举出反例.(1)若0ab >,则a b +≥(2)若0ab >2≥;(3)若0ab <,则2b aa b+≤-.13.已知a ,b ,c 均为正实数.(1)求证:a b c ++≥(2)若1a b +=,求证:11119a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.14.已知x >2,求函数4()2f x x x =+-的最小值.15.已知抛物线C :()220y px p =>的焦点为F ,直线l 过F 且与抛物线C 交于A ,B 两点,线段AB 的中点为M ,当3AB p =时,点M 的横坐标为2. (1)求抛物线C 的方程;(2)若直线l 与抛物线C 的准线交于点D ,点D 关于x 轴的对称点为E ,当DME 的面积取最小值时,求直线l 的方程.16.如图,动物园要以墙体为背面,用钢筋网围成四间具有相同面积的矩形虎笼.(1)现有可围36m 长钢筋网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼的面积最大?(2)若每间虎笼的面积为220m ,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小?17.已知 5<4x ,求函数14145y x x =-+- 的最大值.参考答案:1.见解析【解析】利用作差法比较大小. 【详解】解:223a ab ab b +>-,证明如下:()2222232()a ab ab b a ab b a b +--=-+=-.a b ≠2()0a b ∴-> 223a ab ab b ∴+>-【点睛】本题考查作差法比较两式的大小关系,属于基础题. 2.证明见解析【分析】利用基本不等式计算可得;【详解】解:因为a ,b 为正实数,所以a b +≥222a b ab +≥,332a b +≥=当a b =时取等号,所以()()()223333228a b a b a b ab a b +++≥⨯=,即()()()2233338a b a b a b a b +++≥,当且仅当a b =时取等号;3.5【分析】式子化为1333x x +-+-,再利用基本不等式即可求解. 【详解】因为3x >, 所以30x ->,所以133353y x x =+-+≥=-, 当且仅当133x x -=-即4x =时取等号,此时取得最小值5.4.(1)当7x y ==时,x y +取得最小值14;(2)当6x y ==时,xy 取得最大值36【解析】(1)设0x >,0y >,49xy =,然后利用基本不等式求得x y +的最小值,根据基本不等式等号成立的条件,求得,x y 的值.(2)设0x >,0y >,12x y +=,然后利用基本不等式求得x y ⋅的最大值,根据基本不等式等号成立的条件,求得,x y 的值.【详解】(1)设0x >,0y >,49xy =,由均值不等式,得214x y xy +=, 当且仅当x y =时,取等号.由,49,x y xy =⎧⎨=⎩得7x y ==,即当7x y ==时,x y +取得最小值14.(2)设0x >,0y >,12x y +=,由均值不等式,得22123622x y x y +⎛⎫⎛⎫⋅== ⎪ ⎪⎝⎭⎝⎭.当且仅当x y =时,取等号.由,12,x y x y =⎧⎨+=⎩得6x y ==.即当6x y ==时,xy 取得最大值36.【点睛】本小题主要考查利用基本不等式求最值,属于基础题. 5.(1)224x y +=(2)2(3)0x y +-【分析】(1)利用两点间距离公式可求得半径r ,由此可得圆C 方程; (2)利用点到直线距离公式可求得圆心到直线距离d ,可知最小值为d r -;(3)设():10,0x yl a b a b+=>>,由圆心到直线距离等于半径,结合基本不等式可知当a b ==ABC面积取得最小值,由此可得直线l 方程. (1)由题意知:圆心()0,0C ,半径2r CM ===,∴圆C 的方程为:224x y +=.(2)圆心到直线40x y +-=的距离d r ==,∴点P 到直线40x y +-=的距离最小值为2d r -=.(3)设直线():10,0x yl a b a b+=>>,即0bx ay ab , 则圆心到直线l 距离2d ==,ab ∴=≥a b ==,解得:8ab ≥, ∴当a b ==ABC 面积取得最小值142ab =,则直线1l =,即0x y +-=. 6.见解析【分析】()11a b a b ⎛⎫++ ⎪⎝⎭展开并运用基本不等式即可得证.【详解】()11224b a a b a b a b ⎛⎫++=++≥+= ⎪⎝⎭,当且仅当b a a b =即a b =时等号成立.【点睛】本题考查基本不等式的应用,属于基础题. 7.(1)2ω=,π3ϕ=;(2)2+【分析】(1)由题干条件得到最小正周期,进而求出2ω=,待定系数法求出π3ϕ=;(2)先由32A f ⎛⎫= ⎪⎝⎭求出π6A =,利用余弦定理,基本不等式求出8bc ≤+. (1)由题意得:()f x 的最小正周期πT =,由于0>ω,故2ππω=,解得:2ω=,又2π32sin()11ϕ++=,所以2ππ,3k k Z ϕ+=∈,即2ππ,3k k Z ϕ=-∈,又π||2ϕ<,所以2πππ,32k k Z <∈-,解得:1766k <<,k Z ∈,故1k =,此时π3ϕ=,综上:2ω=,π3ϕ=; (2)2sin()33π12A f A ⎛⎫= ⎪⎝++=⎭,所以sin()1π3A +=,因为()0,πA ∈,所以ππ4π,333A ⎛⎫+∈ ⎪⎝⎭,则ππ32A +=,解得:π6A =,又2a =,所以由余弦定理得:224cos 2b c A bc +-==,则224b c +=,由基本不等式得:222b c bc +≥,即42bc ≥,解得:8bc ≤+b c =时等号成立,故ABC 面积最大值为1sin 22bc A ≤8.(1)第三年;(2)第5年.【解析】(1)求出第x 年年底,该车运输累计收入与总支出的差,令其大于0,即可得到结论; (2)利用利润=累计收入+销售收入﹣总支出,可得平均利润,利用基本不等式,可得结论. 【详解】(1)设大货车运输到第x 年年底,该车运输累计收入与总支出的差为y 万元, 则y =25x ﹣[6x +x (x ﹣1)]﹣50=﹣x 2+20x ﹣50(0<x ≤10,x ∈N )由﹣x 2+20x ﹣50>0,可得10﹣<x <,∈2<10﹣<3,故从第3年,该车运输累计收入超过总支出; (2)∈利润=累计收入+销售收入﹣总支出,∈二手车出售后, 小张的年平均利润为(25)y x y x +-==19﹣(x +25x)≤19﹣10=9,当且仅当x =5时,等号成立, ∈小张应当在第5年年底将大货车出售,能使小张获得的年平均利润最大. 【点睛】思路点睛:首先构建函数的模型一元二次函数,再解一元二次不等式,再利用基本不等式求最值.9.(1)()223cm 12S x x x ⎡⎤⎛⎫=-+<< ⎪⎢⎥⎝⎭⎣⎦;(2)当 AD cm 时,一个会徽的镀金部分所需的最大费用为(36-元.【分析】(1)设ED a =cm ,根据条件可得222x x a x-+=,然后利用面积公式即得;(2)利用基本不等式即得.(1)因为AD x =cm ,所以()2AB x =-cm , 设 ED a = cm ,则()AE x a =-cm ,因为AEB C ED '∠=∠,EAB DC E '∠=∠,AB DC '=, 所以Rt Rt BAE DC E '≌△△,所以BE ED a ==cm , 在Rt BAE △中,由勾股定理得222BA AE BE +=, 即()()2222x x a a -+-=, 解得222x x a x-+=,所以22x AE x a x-=-=, 所以BAE 的面积()()22112232223cm 1222x x x S AB AE x x x x x x --+-⎡⎤⎛⎫=⋅=-⋅==-+<< ⎪⎢⎥⎝⎭⎣⎦. 所以BAE 的面积()223cm 12S x x x ⎡⎤⎛⎫=-+<< ⎪⎢⎥⎝⎭⎣⎦;(2)设一个会徽的镀金费用为y 元,则(26212312336BAE y Sx x ⎡⎤⎛⎫=⋅⋅=⨯-+≤⨯-=- ⎪⎢⎥⎝⎭⎣⎦当且仅当2xx=,12x <<,即x所以当AD cm 时,一个会徽的镀金部分所需的最大费用为(36-元. 10.(1)1cos 3A =;【分析】(1)由正弦定理、两角和的正弦公式求cos A 的值;(2)由同角三角函数间的基本关系求sin A 的值,根据余弦定理和基本不等式求bc 的最大值,最后根据三角形的面积公式求ABC 面积的最大值即可. (1)因为cos cos 3cos b A a B c A +=,由正弦定理得sin cos cos sin 3sin cos B A B A C A +=, 所以()sin 3sin cos A B C A +=,所以sin 3sin cos C C A =. 在ABC 中,sin 0C ≠, 所以1cos 3A =;(2)由(1)知1cos 3A =,由22sin cos 1A A +=,A 为锐角,得sin A =由余弦定理可知222123b c a bc +-=,因为2a =, 所以2233122b c bc +-=, 所以22212336bc b c bc +=+≥,所以3bc ≤,当且仅当b c ==所以1sin 2ABC S bc A =△所以ABC 11.当32x =时,y 取得最大值494【解析】根据基本不等式,求得y 的最大值,根据基本不等式等号成立的条件,求得此时x 的值.【详解】∈(2,5)x ∈-,∈20,50x x +>->,∈22549(2)(5)24x x y x x ++-⎛⎫=+-=⎪⎝⎭. 当且仅当25x x +=-,即32x =时,取等号.即当32x =时,y 取得最大值494.【点睛】本小题主要考查利用基本不等式求最值,属于基础题. 12.(1)不成立,理由见解析; (2)成立,理由见解析; (3)成立,理由见解析;【分析】取特殊值判断(1),由均值不等式判断(2)(3). (1)取1,2a b =-=-满足0ab >,此时a b +≥不成立; (2)0ab >,0,0a bb a∴>>,2,当a b =时等号成立. (3)0ab <,0,0b aa b∴<<,2b a b a a b a b ⎡⎤⎛⎫⎛⎫∴+=--+-≤-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,当a b =-时等号成立. 13.(1)证明见解析 (2)证明见解析【分析】(1)利用基本不等式证明即可;(2)由112111⎛⎫⎛⎫++=+ ⎪⎪⎝⎭⎝⎭a b ab 利用基本不等式求最值即可.(1)因为a ,b ,c 都是正数,所以 ()()()(1122++=+++++≥⎡⎤⎣⎦a b c a b b c a c=,当且仅当a b c ==时,等号成立,所以a b c ++≥ (2)211111122211111119142a b a b a b ab ab ab ab a b +⎛⎫⎛⎫++=+++=++=+≥+=+= ⎪⎪⎝⎭⎝⎭+⎛⎫⎪⎝⎭, 当且仅当12a b ==时等号成立. ∈11119a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭. 14.6【解析】利用基本不等式可求函数的最小值.【详解】解:∈2x >,∈20x ->,故44()222622f x x x x x =+=-++≥=--, 当且仅当4x =时等号成立,故()f x 的最小值为6.15.(1)24y x =(2)1x y =±+【分析】(1)设()()1122,,,A x y B x y ,根据焦点弦的性质得到12||AB x x p =++,从而求出p ,即可得解; (2)设:1l x ty =+,联立直线与抛物线,消元、利用韦达定理得到M y ,从而得到M x ,则()1||12DEM M S DE x =⋅+最后利用基本不等式求出最小值,即可得解; (1)解:设()()1122,,,A x y B x y ,由题知12||43AB x x p p p =++=+=时,2p =,故抛物线方程为24y x =;(2)解:设:1l x ty =+,联立抛物线方程得2440y ty --=,∈1222M y y y t +==,2121M M x ty t =+=+,而21,D t ⎛⎫-- ⎪⎝⎭,21,E t ⎛⎫- ⎪⎝⎭, 所以()()21141||1224||822||||DEM M S DE x t t t t ⎛⎫=⋅+=⋅⋅+=+≥ ⎪⎝⎭, 当且仅当||1t =时等号成立,故直线l 的方程为1x y =±+.16.(1)长为9m 2,宽为18m 5(2)长为5m ,宽为4m【分析】(1)设每间老虎笼的长为m x ,宽为m y ,则每间老虎笼的面积为S xy =,可得出4536x y +=,利用基本不等式可求得S 的最大值,利用等号成立的条件求出x 、y 的值,即可得出结论;(2)设每间老虎笼的长为m x ,宽为m y ,则20xy =,利用基本不等式可求得钢筋网总长45x y +的最小值,利用等号成立的条件求出x 、y 的值,即可得出结论.(1)解:设每间老虎笼的长为m x ,宽为m y ,则每间老虎笼的面积为S xy =,由已知可得4536x y +=,由基本不等式可得()2211458145m 202025x y S xy x y +⎛⎫==⋅⋅≤⨯= ⎪⎝⎭, 当且仅当454536x y x y =⎧⎨+=⎩,即当92185x y ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立, 因此,每间虎笼的长为9m 2,宽为18m 5时,可使得每间虎笼的面积最大. (2)解:设每间老虎笼的长为m x ,宽为m y ,则20xy =,钢筋网总长为()4540m x y +≥=,当且仅当4520x y xy =⎧⎨=⎩,即当54x y =⎧⎨=⎩时,等号成立, 因此,每间虎笼的长为5m ,宽为4m 时,可使围成四间虎笼的钢筋网总长最小. 17.2 【分析】将14145y x x =-+-变形为[()1]54454y x x=--++-,利用基本不等式即可求得答案. 【详解】根据题意,函数()114545444554y x x x x ⎡⎤=-++=--++⎢⎥--⎣⎦ , 又由54x <,则540x ->,则()154254x x -+≥-, 当且仅当15454x x -=-时,即1x =时取等号, 则1[(54)]424254y x x=--++≤-+=-, 故函数14145y x x =-+-的最大值为2.。

完整版)高中数学不等式习题及详细答案

完整版)高中数学不等式习题及详细答案

完整版)高中数学不等式习题及详细答案第三章不等式一、选择题1.已知 $x\geq 2$,则 $f(x)=\frac{x^2-4x+5}{2x-4}$ 的取值范围是()。

A。

最大值为 5,最小值为 1B。

最大值为 5,最小值为 $\frac{11}{2}$C。

最大值为 1,最小值为 $\frac{11}{2}$D。

最大值为 1,最小值为 02.若 $x>0$,$y>0$,则$(x+\frac{1}{y})^2+(y+\frac{1}{x})^2$ 的最小值是()。

A。

3B。

$\frac{7}{2}$C。

4D。

$\frac{9}{2}$3.设 $a>0$,$b>0$,则下列不等式中不成立的是()。

A。

$a+b+\frac{1}{ab}\geq 2\sqrt{2}$B。

$(a+b)(\frac{1}{a}+\frac{1}{b}+\frac{1}{2})\geq 4$C。

$\sqrt{a^2+b^2}\geq a+b-\sqrt{2ab}$D。

$\frac{2ab}{a+b}\geq \sqrt{ab}$4.已知奇函数 $f(x)$ 在 $(-\infty,+\infty)$ 上是增函数,且$f(1)=3$,则不等式 $f(x)-f(-x)<0$ 的解集为()。

A。

$(-1,+\infty)$B。

$(-\infty,-1)\cup (1,+\infty)$C。

$(-\infty,-1)\cup (1,+\infty)$D。

$(-1,1)$5.当 $0<x<\frac{\pi}{2}$ 时,函数 $f(x)=\frac{1+\cos^2 x+8\sin^2 x}{2\sin^2 x}$ 的最小值为()。

A。

2B。

$\frac{2}{3}$C。

4D。

$\frac{3}{2}$6.若实数 $a,b$ 满足 $a+b=2$,则 $3a+3b$ 的最小值是()。

A。

18B。

高中数学基本不等式综合测试题(附答案)

高中数学基本不等式综合测试题(附答案)

高中数学基本不等式综合测试题(附答案)
高中数学基本不等式综合测试题(附答案)
基本不等式的最大最小值问题随堂练习
1、在下列函数中,最小值是的是
且)
2、已知正数满足,则的最小值为
3、若,则的最大值。

4、设时,则函数的最小值。

三、解答题
5、为迎接北京奥运会,北京市决定在首都国际机场粘贴一幅“福娃”宣传画,要求画面面积为,左、右各留米,上、下各留米,问怎样设计画面的长和宽才能使宣传画
所用纸张面积最小?
6、函数的值域
7、若是正数,且,则有最值=
8、已知,则的最小值是。

9、已知,求的最值及相应的的值。

10、正数、满足则的最小值是
11、已知函数f(x)满足2f(x)-f( 1x ) = 1| x | ,则f(x)的最小值是
12、函数若恒成立,则b的最小值为_
13、函数的图象恒过定点,若点在直线上,其中,则的最小值为
4、解:
当且仅当,即时取等号,故当时,有最小值。

高中数学不等式问题练习题及其参考答案(完整版)

高中数学不等式问题练习题及其参考答案(完整版)

高中数学不等式问题练习题及其参考答案(完整版)[基础训练 A 组]一、选择题(六个小题,每题 5 分,共30 分)221.若,则等于()A...3 D.2.函数y=log1(x++1)(x &gt; 1 )的最大值是()A.-2 B.2 C.-3 D.33.不等式的解集是33≤x≤2} B.{x| ≤x<2} 443C.{x|x >2 或x≤} D.{x|x <2} 4A .{x|4.设a>1>b>-1,则下列不等式中恒成立的是( )A...a>b2 D.a2>2b abab225.如果实数x,y 满足x+y=1,则(1-xy) (1 +xy) 有( )13 和最大值 1 B.最大值 1 和最小值243C.最小值而无最大值D.最大值 1 而无最小值4A .最小值6.二次方程x+(a+1)x+a-2=0,有一个根比 1 大,另一个根比- 1 小, 则 a 的取值范围是( )A.-3<a<1 B.-2<a<0 C.-1<a<0 D.0<a<2二、填空题(五个小题,每题 6 分,共30 分)22.不等式组的负整数解是____________________ 。

2.一个两位数的个位数字比十位数字大2,若这个两位数小于30,则这个两位数为____________________。

x2 的解集是__________________。

3.不等式4.当时,函数有最_______值,其值是_________。

5.若连结起来为____________.三、解答题(四个小题,每题10 分,共40 分)21.解log(2x –3)(x-3)>0用不等号2n的解集为R,求实数m 的取值范围。

2.不等式.求的最大值,使式中的x、y 满足约束条件4.求证:[综合训练 B 组]一、选择题(六个小题,每题 5 分,共30 分)1.一元二次不等式ax+bx+的解集是(-211,),则a+b 的值是_____。

23A. 10B. -10C. 14D. -142.下列不等式中:①和②255 和③和④和不等价的是()A.①和②B.①和③C.②和③D.②、③和④3.关于x 的不等式(k-2k+251–x5x2)<(k-2k+)的解集是( ) 22A.x>11 B.x<C.x>2 D.x<2 22.y= sinx+(0,) xsinx2224 .下列各函数中,最小值为 2 的是( ) A .y=x +C .D.y=x+.如果x+y=1,则3x-4y 的最大值是( )A.3 B.21 C.4 D.5 56.已知函数y=ax+bx+c(a ≠的0)图象经过点(-1,3)和(1,1)两点,若0<c<1,则a 的取值范围是( )A.(1,3) B.(1,2) C.[2,3) D.[1,3]二、填空题(五个小题,每题 6 分,共30 分)1.设实数x、y 满足x+2xy-1=0,则x+y 的取值范围是___________。

高中数学必修不等式练习题(附答案)

高中数学必修不等式练习题(附答案)

高中数学必修不等式练习题学校:______姓名:_____班级:_____考号:______一.单选题(共__小题)1.设a=sin14°+cos14°,b=sin16°+cos16°,,则a,b,c大小关系()A.a<b<c B.b<a<c C.c<b<a D.a<c<b2.不等式||>的解集是()A.(0,2)B.(-∞,0)C.(2,+∞)D.(-∞,0)∪(0,+∞)3.若<<0,则下列不等式中不正确的是()A.ab<b2B.a+b<ab C.a2>b2D.+>24.设a=0.20.3,b=0.20.2,c=log20.4,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.a<b<c D.b<c<a5.已知a、b、c满足c<b<a,且ac<0,那么下列选项中一定不成立的()A.ab>ac B.c(b-a)<0C.cb2≤ab2D.ac(a-c)<06.下列各组的大小比较正确的是()B.>C.0.8-2<D.>A.>7.若关于x的不等式mx-2>0的解集是{x|x>2},则实数m等于()D.2A.-1B.-2C.1二.填空题(共__小题)8.不等式|2-x|+|x+1|≤a,对∀x∈[1,5]恒成立的实数a的取值范围______.9.已知正数a,b,c满足abc=1,求证:(a+2)(b+2)(c+2)≥27.10.若角α、β满足,则α-β的取值范围是______.11.已知,,,则a,b,c按从大到小的顺序排列为______.12.比较a=2,b=3,c=4的大小关系为______.三.简答题(共__小题)13.求证:-≤≤.14.已知3b=6a-2a,4a=8b-5b,试判断实数a,b的大小关系,并给出证明.15.设a,b,c都是正实数,求证:(Ⅰ)a+b+c≥++(Ⅱ)(a+b+c)(a2+b2+c2)≥9abc.16.设x,y均为正数,且x>y,求证:2x+≥2y+3.17.求证:-≤x≤.18.已知x1,x2,x3为正实数,若x1+x2+x3=1,求证:.19.解关于x的不等式|ax-1|>a+1(a>-1).20.(1)设x>0,y>0,且,求x+y的最小值.(2)若x∈R,y∈R,求证:.21.已知a>b>0,求证:.22.已知a>0,b>0,c>0,d>0,求证(ab+cd)(ac+bd)≥4abcd.23.已知实数a,b,c满足a>b>c,求证:++>0.24.求证:x∈R时,|x-1|≤4|x3-1|.参考答案一.单选题(共__小题)1.设a=sin14°+cos14°,b=sin16°+cos16°,,则a,b,c大小关系()A.a<b<c B.b<a<c C.c<b<a D.a<c<b答案:D解析:解:由题意知,a=sin14°+cos14°==,同理可得,b=sin16°+cos16°=,=,∵y=sinx在(0,90°)是增函数,∴sin59°<sin60°<sin61°,∴a<c<b,故选D.2.不等式||>的解集是()A.(0,2)B.(-∞,0)C.(2,+∞)D.(-∞,0)∪(0,+∞)答案:A解析:解:分析不等式||>,故的值必为负数.即,解得0<x<2.故选A.3.若<<0,则下列不等式中不正确的是()A.ab<b2B.a+b<ab C.a2>b2D.+>2答案:C解析:解:∵<<0,∴b<a<0,∴b2>a2,因此C不正确.故选:C.4.设a=0.20.3,b=0.20.2,c=log20.4,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.a<b<c D.b<c<a答案:A解析:解:∵函数y=0.2x是减函数,0.3>0.2,故有a=0.20.3<0.20.2=1,又a=0.20.3>0,可得b>a >0.由于函数y=log2x在(0,+∞)上是增函数,故c=log20.4<log21=0,即c<0.综上可得,b>a>c,故选A.5.已知a、b、c满足c<b<a,且ac<0,那么下列选项中一定不成立的()A.ab>ac B.c(b-a)<0C.cb2≤ab2D.ac(a-c)<0答案:B解析:解:∵c<b<a,且ac<0,∴c<0,a>0,b-a<0;∴ab>ac,cb2≤ab2,c(b-a)>0;ac(a-c)<0;故选B.6.下列各组的大小比较正确的是()B.>C.0.8-2<D.>A.>答案:D解析:解:A.考察指数函数y=0.45x在R单调递减,∴<,不正确;B.考察幂函数在(0,+∞)上单调递减,∴=,不正确;C.∵0.8-2>1,<1,∴<0.8-2,不正确;D.考察对数函数y=在(0,+∞)上单调递增,∴>.正确.故选:D.7.若关于x的不等式mx-2>0的解集是{x|x>2},则实数m等于()A.-1B.-2C.1D.2答案:C解析:解:∵关于x的不等式mx-2>0的解集是{x|x>2},∴m>0,,因此,解得m=1.故选:C.二.填空题(共__小题)8.不等式|2-x|+|x+1|≤a,对∀x∈[1,5]恒成立的实数a 的取值范围______.答案:[9,+∞)解析:解:∵不等式|2-x|+|x+1|≤a,对∀x∈[1,5]恒成立,故|2-x|+|x+1|的最大值小于或等于a.|2-x|+|x+1|表示数轴上的x对应点到-1和2对应点的距离之和,故当x∈[1,5]时,只有x=5时,|2-x|+|x+1|取得最大值9,∴a≥9,故答案为[9,+∞).9.已知正数a,b,c满足abc=1,求证:(a+2)(b+2)(c+2)≥27.答案:解析:证明:由于正数a,b,c满足abc=1,故有(a+2)(b+2)(c+2)=(a+1+1)(b+1+1)(c+1+1)≥3•3•3=27=27,当且仅当a=b=c=1时等号成立,故:(a+2)(b+2)(c+2)≥27成立.10.若角α、β满足,则α-β的取值范围是______.答案:解析:解:∵角α、β满足,∴-π<-β<-,∴-<α-β<,∵α-β<0,∴-<α-β<0,故答案为:;11.已知,,,则a,b,c按从大到小的顺序排列为______.答案:c,a,b解析:解:∵=,<0,=log23>1,∴c>a>b.故答案为:c,a,b.12.比较a=2,b=3,c=4的大小关系为______.答案:a>c>b解析:解:∵a=2>1,b=3=,1>c=4=>.∴a>c>b.故答案为:a>c>b.三.简答题(共__小题)13.求证:-≤≤.答案:证明:要证明-≤≤只需证明-≤,≤成立要证明-≤,只需证明-(2x2+3x+6)≤13(x+2)只需证明2x2+16x+32≥0又△=0,故2x2+16x+32≥0明显成立,∴-≤成立同理,≤成立综上可知,-≤≤14.已知3b=6a-2a,4a=8b-5b,试判断实数a,b的大小关系,并给出证明.答案:解:假设a≥b,则3a≥3b,4a≥4b.∴6a=3b+2a≤3a+2a,8b=4a+5b≥4b+5b,化为f(a)=≥1,g(b)=≤1,利用指数函数的单调性可知:f(x)与g(x)在R上单调递减,f(1)=<1,g(1)=>1,∴f(a)≥1>f(1),g(b)≤1<g(1),∴a<1,b>1,∴a<1<b,与假设a≥b,∴假设不成立.∴a<b.15.设a,b,c都是正实数,求证:(Ⅰ)a+b+c≥++(Ⅱ)(a+b+c)(a2+b2+c2)≥9abc.答案:证明:(Ⅰ)∵a,b,c都是正实数,∴a+b≥2,b+c≥2,a+c≥2∴把以上三个式子相加得:2(a+b+c)≥2+2+2∴a+b+c≥++;(Ⅱ)∵a,b,c都是正实数,∴a+b+c≥,a2+b2+c2≥相乘可得(a+b+c)(a2+b2+c2)≥9abc.16.设x,y均为正数,且x>y,求证:2x+≥2y+3.答案:证明:由题设x>y,可得x-y>0;∵2x+-2y=2(x-y)+=(x-y)+(x-y)+;又(x-y)+(x-y)+,当x-y=1时取“=“;∴2x+-2y≥3,即2x+≥2y+3.17.求证:-≤x≤.答案:证明:∵|x|≤=,∴-≤x≤.18.已知x1,x2,x3为正实数,若x1+x2+x3=1,求证:.答案:证明:∵x1,x2,x3为正实数,∴,,,∴三式相加,可得+x3≥2(x1+x2+x3),∵若x1+x2+x3=1,∴.19.解关于x的不等式|ax-1|>a+1(a>-1).答案:解:|ax-1|>a+1⇔ax-1>a+1或ax-1<-a-1⇔ax>a+2或ax<-a.…(2分)当-1<a<0时,x<或x>-1,∴原不等式的解集为(-∞,)∪(-1,+∞).…(5分)当a=0时,原不等式的解集为φ.…(7分)当a>0时,x>,或x<-1,∴原不等式的解集为(-∞,-1)∪(,+∞).…(10分)20.(1)设x>0,y>0,且,求x+y的最小值.(2)若x∈R,y∈R,求证:.答案:证明:(1)∵x>0,y>0,+=1,∴x+y=(x+y)(+)=8+++2≥2+10=18(当且仅当x=12,y=6时取“=”),∴x+y的最小值为18.(2)∵x∈R,y∈R,∴-=-==≥0,∴≥.21.已知a>b>0,求证:.答案:证明:由于a+-(b+)=(a-b)+(-)=(a-b)(1+)=(a-b)•,因为a>b>0⇒ab>0⇒ab+1>0且a-b>0,所以(a-b)•>0.即a+-(b+)>0.所以a>b>0时,成立.22.已知a>0,b>0,c>0,d>0,求证(ab+cd)(ac+bd)≥4abcd.答案:证明:由于a>0,b>0,c>0,d>0,则(ab+cd)(ac+bd)=a2bc+b2ad+c2ad+d2bc=(a2+d2)bc+(b2+c2)ad≥2adbc+2bcad=4abcd,当且仅当a=d,b=c取得等号.则有(ab+cd)(ac+bd)≥4abcd成立.23.已知实数a,b,c满足a>b>c,求证:++>0.答案:证明:∵实数a,b,c满足a>b>c,∴a-c>a-b>0,b-c>0,∴>•>0,∴+>,∴++>0.24.求证:x∈R时,|x-1|≤4|x3-1|.答案:证明:|x-1|≤4|x3-1||x-1|≤4|(x-1)(x2+x+1)||x-1|≤4|x-1||(x2+x+1)| x=1时,左式=右式=0,符合题意;x≠1时,x2+x+1=(x+)2+>,所以4|x-1||(x2+x+1)|>|x-1|;综上,x∈R时,|x-1|≤4|x3-1|.解析:证明:|x-1|≤4|x3-1||x-1|≤4|(x-1)(x2+x+1)||x-1|≤4|x-1||(x2+x+1)| x=1时,左式=右式=0,符合题意;x≠1时,x2+x+1=(x+)2+>,所以4|x-1||(x2+x+1)|>|x-1|;综上,x∈R时,|x-1|≤4|x3-1|.。

高中数学:不等式典型例题(含答案)

高中数学:不等式典型例题(含答案)

一元二次不等式及其解法1.形如)0)(0(02≠<>++a c bx ax 其中或的不等式称为关于x 的一元二次不等式.2.一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程21、把二次项的系数变为正的。

(如果是负,那么在不等式两边都乘以-1,把系数变为正)2、解对应的一元二次方程。

(先看能否因式分解,若不能,再看△,然后求根)3、求解一元二次不等式。

(根据一元二次方程的根及不等式的方向)一、解下列一元二次不等式:1、0652>++x x2、0652≤--x x3、10732>-x x4、05622<-+-x x5、0542<+-x x6、0442>-+-x x7、0942<-x8、(2)(3)6x x +-<二.填空题1、不等式(1)(12)0x x -->的解集是 ;2.不等式2654x x +<的解集为____________. 3、不等式2310x x -++>的解集是 ; 4、不等式2210x x -+≤的解集是 ; 5、不等式245x x -<的解集是 ;9、已知集合2{|4}M x x =<,2{|230}N x x x =--<,则集合MN = ; 10、不等式220mx mx +-<的解集为R ,则实数m 的取值范围为 ;11、不等式9)12(2≤-x 的解集为__________. 12、不等式0<x 2+x -2≤4的解集是___________ .13、若不等式2(2)2(2)40a x a x -+--<对一切x R ∈恒成立,则a 的取值范围是______________. 三、典型例题:1、已知对于任意实数x ,22kx x k -+恒为正数,求实数k 的取值范围.。

高中数学基本不等式练习题(含答案)

高中数学基本不等式练习题(含答案)

基本不等式【习题1】已知实数0,>y x 且2=xy ,则8482233+++y x y x 的最小值是 .【习题2】若实数0>y ,x 且1=xy ,则y x 2+的最小值是 ,yx y x 2422++的最小值是 .【习题3】已知,x y 满足方程210x y --=,当x >353712x y x y m x y +-+-=+--的最小值为_______.【习题4】已知y x ,为实数,且1)2)((=-+y x y x ,则222y x +的最小值为_______.【习题5】已知a b ∈R ,,45222=+-b ab a ,则a b +的取值范围为 .【习题6】已知a b ∈R ,,45222=+-b ab a ,则ab 的最小值为 .【习题7】若实数y x ,满足02422=+++y y x x ,则y x +2的范围是 . 【习题8】ABC ∆的三边,,a b c 成等差,且22221a b c ,则b 的取值范围是 .【习题9】已知,a b <二次不等式20ax bx c ++≥对任意实数x 恒成立,则24a b cM b a++=-的最小值为___________【习题10】实数,x y 满足224545x xy y -+=,设22S x y =+,则maxmin11S S += . 【习题11】非零向量,a b 夹角为60,且1a b -=,则a b +的取值范围为 .【习题12】已知0,0<>b a ,且9)12)(14(-=+-b a ,若06)2(2≥---abx x b a 总成立,则正实数x的取值范围是_______. 【习题13】正实数y x ,满足111=+yx ,则2210x y xy +-的最小值为 .【习题14】已知实数y x ,满足,32,0,0=+>>y x y x 则xyyx +3的最小值为 ,xy y x ++224 的最小值为 .【习题15】已知直线21ax by +=(其中0ab ≠)与圆221x y +=相交于A 、B 两点,O 为坐标原点,且0120AOB ∠=,则2212a b +的最小值为 . 【习题16】设R b a ∈,,满足43=+-ab b a ,则33-+b a 的最小值是______.【习题17】已知正实数a ,b 满足:1a b +=,则222a ba b a b+++的最大值是 . 【习题18】已知正数y x ,满足1≤xy ,则yx M 21111+++=的最小值为________.【习题19】已知0>a ,0>b ,且12122=+++ba a ,则b a +的最小值是_______,此时=a _______.【习题20】已知0,0a b >>,且1a b +=,则1122a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值是 ;221ab a +的最大值是 .【习题21】已知实数x ,y 满足3xy x y -+=,且1x >,则(8)y x +的最小值是 ( ) A .33 B .26 C .25 D .21【习题22】若实数,x y 满足2x y xy -+≥,则x y +的最小值是 .【习题23】已知实数a ,b 满足:1,2a b R ≥∈,且||1a b +≤,则12b a+的取值范围是 . 【习题24】实数y x ,满足22222=+-y xy x ,则222y x +的最小值是________.【习题25】已知实数R b a ∈,,若322=+-b ab a ,则1)1(222+++b a ab 的值域为 . 【习题26】设b a ,为正实数,则ba bb a a +++2的最小值为 .【习题27】若正数,x y 满足35x y xy +=,则34x y +的最小值是 . 【习题28】若存在正实数y ,使得yx x y xy 451+=-,则实数x 的最大值为_________.【习题29】若0x >,0y >,则xyy x x ++2的最小值为___________.【习题30】已知正数y x ,满足yx yx xy 3+-=,则y 的最大值为__________,当且仅当___________.【习题31】已知,1,0=+>>b a b a 则bb a 214+-的最小值等于 . 【习题32】已知)0,0(24122<<-+=y x xy y x ,则y x 2+的取值范围为__________.【习题33】已知实数y x ,满足322=++y xy x ,则xy 的最小值为________,22y xy x +-的最小值为_______.【习题34】已知实数b a ,满足122=+-b ab a ,则)(|2|b a b a +-的取值范围是________.【习题35】已知0>a ,0>b ,且满足ab a b a +=+23,则b a +2的最小值为________.【习题36】已知非负实数y x ,满足92422222=+++y x y xy x ,则xy y x ++)(22的最大值为 . 【习题37】若164622=++xy y x ,R y x ∈,,则22y x -的最大值为_______. 【习题38】设正实数y x ,,则21||y xy x ++-的最小值为( ) A. 47 B. 2233 C. 2 D.32【习题39】已知b a ,均为正数,且1=+b a ,1>c ,则12)121(2-+⋅-+c c ab a 的最小值为_________. 【习题40】设实数0,0>>y x 且满足k y x =+,则使不等式2)22()1)(1(kk y y x x +≥++恒成立的k 的最大值为______.【习题41】若1≥≥≥z y x ,且4=xyz ,则222222)(log )(log )(log z y x ++的取值范围是______. 【习题42】已知正实数y x ,满足4232=++y x xy ,则y x xy 45++的最小值为________.【习题43】已知实数y x ,满足yxyx9933+=+,则yx yx 332727++的取值范围是_________. 【习题44】已知实数b a ,满足1=ab ,且32≥>b a ,则22b a ba +-的最大值为___________.【习题45】若正数b a ,满足111a b +=,则1911a b +--的最小值为( )A .1B .6C .9D .16【习题46】若正实数,x y 满足244x y xy ++=,且不等式2(2)22340x y a a xy +++-≥恒成立,则实数a 的取值范围是 .【习题47】已知y x ,为正实数,若12=+y x ,则xyxy x ++22的最小值为 .【习题48】若正数y x ,满足12422=+++y x y x ,则xy 的最大值为_________. 【习题49】若实数a 和b 满足132923242++=⨯+⋅-⨯babbaa,则ba 32+的取值范围为__________________. 【习题50】设+∈Rb a ,,4222=-+b a b a ,则ba 11+的最小值是 .基本不等式(答案)【习题1】已知实数0,>y x 且2=xy ,则8482233+++y x y x 的最小值是 .【答案】1【习题2】若实数0>y ,x 且1=xy ,则y x 2+的最小值是 ,yx y x 2422++的最小值是 .【答案】 22,2【习题3】已知,x y 满足方程210x y --=,当x >353712x y x y m x y +-+-=+--的最小值为_______. 【答案】8【习题4】已知y x ,为实数,且1)2)((=-+y x y x ,则222y x +的最小值为_______. 【答案】3322+【习题5】已知a b ∈R ,,45222=+-b ab a ,则a b +的取值范围为 .【答案】]22,22[-【习题6】已知a b ∈R ,,45222=+-b ab a ,则ab 的最小值为 .【习题7】若实数y x ,满足02422=+++y y x x ,则y x +2的范围是 . 【答案】]0,2[-【习题8】ABC ∆的三边,,a b c 成等差,且22221a b c ,则b 的取值范围是 .【答案】]7,6(【习题9】已知,a b <二次不等式20ax bx c ++≥对任意实数x 恒成立,则24a b cM b a++=-的最小值为___________ 【答案】8【习题10】实数,x y 满足224545x xy y -+=,设22S x y =+,则maxmin11S S += . 【答案】85【习题11】非零向量,a b 夹角为60,且1a b -=,则a b +的取值范围为 . 【答案】]3,1(【习题12】已知0,0<>b a ,且9)12)(14(-=+-b a ,若06)2(2≥---abx x b a 总成立,则正实数x 的取值范围是_______. 【答案】),1[+∞【习题13】正实数y x ,满足111=+yx ,则2210x y xy +-的最小值为 . 【答案】36-【习题14】已知实数y x ,满足,32,0,0=+>>y x y x 则xyyx +3的最小值为 ,xy y x ++224 的最小值为 . 【答案】3627+;845【习题15】已知直线21ax by +=(其中0ab ≠)与圆221x y +=相交于A 、B 两点,O 为坐标原点,且0120AOB ∠=,则2212a b +的最小值为 . 【答案】2【习题16】设R b a ∈,,满足43=+-ab b a ,则33-+b a 的最小值是______. 【答案】332-【习题17】已知正实数a ,b 满足:1a b +=,则222a ba b a b +++的最大值是 . 【答案】3332+ 【习题18】已知正数y x ,满足1≤xy ,则yx M 21111+++=的最小值为________. 【答案】222-【习题19】已知0>a ,0>b ,且12122=+++ba a ,则b a +的最小值是_______,此时=a _______. 【答案】212+;2【习题20】已知0,0a b >>,且1a b +=,则1122a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值是 ;221ab a +的最大值是 . 【答案】16;413- 【习题21】已知实数x ,y 满足3xy x y -+=,且1x >,则(8)y x +的最小值是 ( ) A .33 B .26 C .25 D .21 【答案】C【习题22】若实数,x y 满足2x y xy -+≥,则x y +的最小值是 . 【答案】2【习题23】已知实数a ,b 满足:1,2a b R ≥∈,且||1a b +≤,则12b a+的取值范围是 . 【答案】]23,12[-【习题24】实数y x ,满足22222=+-y xy x ,则222y x +的最小值是________.【答案】224-【习题25】已知实数R b a ∈,,若322=+-b ab a ,则1)1(222+++b a ab 的值域为 .【答案】]716,0[【习题26】设b a ,为正实数,则ba bb a a +++2的最小值为 .【答案】222-【习题27】若正数,x y 满足35x y xy +=,则34x y +的最小值是 . 【答案】5【习题28】若存在正实数y ,使得yx x y xy 451+=-,则实数x 的最大值为_________. 【答案】51 【习题29】若0x >,0y >,则xyy x x ++2的最小值为___________.【答案】212-【习题30】已知正数y x ,满足yx yx xy 3+-=,则y 的最大值为__________,当且仅当___________.【答案】31;1=x 【习题31】已知,1,0=+>>b a b a 则bb a 214+-的最小值等于 . 【答案】9【习题32】已知)0,0(24122<<-+=y x xy y x ,则y x 2+的取值范围为__________. 【答案】)1,2[--【习题33】已知实数y x ,满足322=++y xy x ,则xy 的最小值为________,22y xy x +-的最小值为_______. 【答案】3-,1【习题34】已知实数b a ,满足122=+-b ab a ,则)(|2|b a b a +-的取值范围是________.【答案】]3,3[-【习题35】已知0>a ,0>b ,且满足ab a b a +=+23,则b a +2的最小值为________.【答案】223+【习题36】已知非负实数y x ,满足92422222=+++y x y xy x ,则xy y x ++)(22的最大值为 . 【答案】241+【习题37】若164622=++xy y x ,R y x ∈,,则22y x -的最大值为_______. 【答案】51【习题38】设正实数y x ,,则21||y xy x ++-的最小值为( ) A. 47 B. 2233 C. 2 D.32【答案】A【习题39】已知b a ,均为正数,且1=+b a ,1>c ,则12)121(2-+⋅-+c c ab a 的最小值为_________. 【答案】23【习题40】设实数0,0>>y x 且满足k y x =+,则使不等式2)22()1)(1(kk y y x x +≥++恒成立的k 的最大值为______. 【答案】522+【习题41】若1≥≥≥z y x ,且4=xyz ,则222222)(log )(log )(log z y x ++的取值范围是______.【答案】]4,34[【习题42】已知正实数y x ,满足4232=++y x xy ,则y x xy 45++的最小值为________. 【答案】55【习题43】已知实数y x ,满足yxyx9933+=+,则yx yx 332727++的取值范围是_________. 【答案】9[1,]8【习题44】已知实数b a ,满足1=ab ,且32≥>b a ,则22ba ba +-的最大值为___________. 【答案】3097【习题45】若正数b a ,满足111a b +=,则1911a b +--的最小值为( ) A .1 B .6 C .9 D .16【答案】B【习题46】若正实数,x y 满足244x y xy ++=,且不等式2(2)22340x y a a xy +++-≥恒成立,则实数a 的取值范围是 . 【答案】(]5,3,2⎡⎫-∞-+∞⎪⎢⎣⎭【习题47】已知y x ,为正实数,若12=+y x ,则xyxy x ++22的最小值为 .【答案】222+【习题48】若正数y x ,满足12422=+++y x y x ,则xy 的最大值为_________. 【答案】432- 【习题49】若实数a 和b 满足132923242++=⨯+⋅-⨯babbaa, 则ba32+的取值范围为__________________. 【答案】]2,1(【习题50】设+∈R b a ,,4222=-+b a b a ,则ba 11+的最小值是 【答案】24。

高中数学不等式精选练习题及答案

高中数学不等式精选练习题及答案

高中数学不等式精选练习题及答案一、填空题(每题5分,共50分)1、已知x>0,则2x +162x+3的最小值是。

2、已知x>0,y>0,x+y=1,则23 +2 的最大值是。

3、已知正数a,b 满足a+32b=6,则ab 的最大值。

4、已知2<x<3,则x3−x +1x−2的最小值是。

5、已知a>2,b>3,若a+b =7,则2a−2+1b−3最小值是。

6、若x,y 满足不等式2x −y ≥0x ≤y +4x +y ≤7,则3x-y 的最小值是。

7、实数m,n 满足n=1+m,n∈(0,1),则2023n-m+12023m的最小值是。

8、已知a>0,b>0,3a+2b-ab=0,则4a+3b 的最小值是。

9、已知x>0,y>0,4x+y+2xy=52,则4x+y 的最小值是。

10、已知f (x)=丨2x+2丨+丨x -3丨,则f (x)≤5的解集是。

二、解答题(每题10分,共50分)11、已知a>0,b>0,b>0,若a+b+c=1证明:a ³c+b ³a+c ³b ≥abc12、已知x>0,y>0,z>0,若x+y+z=31x+y +1y+z+1z+x≥3213、已知x>0,y>0,z>0,求证:xyz +xzy +yzx≥x+y+z 14、已知x>0,y>0,z>0,x+y+z=2求证:1x+1z+1y9215、已知x>0,y>0,z>0,证明(x+y)(y+z)(z+x)≥8xyz参考答案一、填空题因为x >02x+32 +3=(2x+3)+162 +3-3≥-3=5当且仅当2x+3=162 +3时,等号成立,最小值为5。

第2题因为x>0,y>0,x+y=123 +2=23y +2x又3+2x=(3+2x)∙(x+y)=3+2yx+5=5+2623 +2最大值为=10-46故答案为:10-46因为a>0,b>06=a+32b即:6≥3不等式两边同时乘方32∙a ba b≤6a b最大值为6故答案为:6第4题因为2<x<3所以x-2>0,3-x>0x3−x=−(−x)3−x=−(3−x)+33−x=33−x-1x3−x+1x−2=(33−x-1)+1x−2=(33−x+1x−2)·1-1①又(3-x)+(x-2)=1②将②代替①中的第一个1,得上式=(33−x+1x−2)·[(3-x)+(x-2)]-1=3(x−2)3−x+x−3x−2+3≥3−x+3=3+23 x3−x+1x−2最小值是3+23故答案为:3+23已知a>2,b>3则a-2>0,b-3>0因为a+b =7所以(a-2)+(b-3)=2即:12[(a-2)+(b-3)]=1①2a−2+1b−3=(2a−2+1b−3)∙1②将①代替②中的1,得上式=(2a−2+1b−3)∙12[(a-2)+(b-3)]=12[3+2(b−3)a−2+a−2b−3]≥32+12∙=3+2222a−2+1b−3最小值是3+222第6题联立x =y +42x −y =0解得A(-4,-8)令t=3x-y,所以y=3x-t 当直线y=3x-t 经过A 点时t 最小=-4故答案为:-4第7题因为n∈(0,1),n=1+m 所以-m∈(0,1)由n=1+m,即n -m=1所以:n+(-m)=1............①,其中n∈(0,1),-m∈(0,1)2023n-m+12023m=2023n-(m2023m +12023m)=2023n-12023m-12023=(2023n-12023m)·1-12023将①替换上面的1上式=〔2023n+(-12023m)〕·〔n+(-m)〕-12023=2023+−2023m n+(−n 2023m )≥20252023n-m+12023m 的最小值是2025故答案为:2025第8题已知a>0,b>0,所以3a+2b-ab=0即3a+2b=ab3b+2a=1所以4a+3b=(4a+3b)∙(3b+2a)=12a b+6b a+=17+122即4a+3b 的最小值是17+122故答案为:17+122第9题2xy=12(4x∙y)≤12∙14(4x+y)²=18(4x+y)²即:2xy≤18(4x+y)²①已知4x+y+2xy=52,变换一下,得:2xy=52-(4x+y)②将②代入①52-(4x+y)≤18(4x+y)²整理得:(4x+y)²+8(4x+y)-20≥04x+y≤-10(舍去)4x+y≥2即4x+y的最小值是2故答案为:2第10题f(x)=丨2x+2丨+丨x-3丨=−3x+1,x≤−1 x+5,−1<x<3 3x−1,x≥3(1)当x≤−1时,−3x+1≤5,解得:−43≤x≤−1(2)−1<x<3时,x+5≤5,解得:−1<x≤0,(3)x≥3时,3x−1≤5,x≤2,无解综上,f(x)≤5的解集是−43≤x≤0故答案为:−43≤x≤0第11题证明:因为a>0,b>0,b>0a 2b+b=2ab 2c+c ≥2bc 2a+a ≥2ca 2b+b)+(b2c+c)+(c2a+a)≥2(a+b+c)a 2b+b 2c+c 2a)+(a+b+c)≥2(a+b+c)a 2b +b 2c+c 2a≥a+b+c已知a+b+c=1a2b+b 2c +c 2a≥1等号两边同时乘以abc所以:a ³c+b ³a+c ³b ≥abc第12题因为x+y+z=3所以2(x+y+z)=6即(x+y)+(y+z)+(z+x)=6①1x+y +1y+z+1z+x=16(1x+y+1y+z+1z+x)∙6将①替换上式中的6,得上式=16(1x+y+1y+z+1z+x )∙〔(x+y)+(y+z)+(z+x)〕=16(3+y+zx+y+x+y y+z+z+xx+y+x+y z+x+z+x y+z+y+zz+x)16(3++)=16(3+6)=321x+y +1y+z+1z+x≥32第13题已知x>0,y>0,z>0xyz+xzy≥2=2xxzy +yz x≥2zxy z+yz x ≥2yxy z+xz y+yz x)≥2(x+y+z)xy z+xz y+yz x≥x+y+z第14题已知x>0,y>0,z>0,又x+y+z=2所以12(x+y+z)=1①1x+1z+1y=(1x+1z+1y)·1将①替换上式中的1上式=12(1x +1z+1y )·(x+y+z)=12(3+y x+zx +x y +zy +x z +yz)1292所以:1x+1z+1y92第15题因为x>0,y>0,z>0所以x+y≥2x·y同理y+z≥2y·zz+x≥2z·x三式相乘,得(x+y)(y+z)(z+x)≥8x²·y²∙z²所以:(x+y)(y+z)(z+x)≥8xyz。

(压轴题)高中数学必修五第三章《不等式》测试题(含答案解析)(1)

(压轴题)高中数学必修五第三章《不等式》测试题(含答案解析)(1)

一、选择题1.若正数x ,y 满足21y x+=,则2x y +的最小值为( )A .2B .4C .6D .82.已知2244x y +=,则2211x y +的最小值为( ) A .52B .9C .1D .943.已知实数满足约束条件020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2z x y =-的最小值为( )A .4-B .3-C .2-D .1-4.设x ,y 满足约束条件4100,20,0,0,x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩则23z x y =-的最大值为( )A .10B .8C .5D .6-5.实数x ,y 满足线性约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩,则2z x y =-的最小值为( )A .2-B .1-C .0D .16.不等式112x x ->+的解集是( ). A .{}|2x x <-B .{}|21x x -<<C .{}|1x x <D .{}|x x ∈R7.已知点(x ,y )在直线x +2y =4上移动,则24x y +的最小值是( ) A.B.C .6D .88.已知,20a b c a b c >>++=,则ca的取值范围是( ) A .31ca-<<- B .113c a -<<- C .21ca-<<- D .112c a -<<- 9.已知实数x ,y 满足210210x y x x y -+≥⎧⎪<⎨⎪+-≥⎩,则221z x y =--的取值范围是( )A .5,53⎡⎤⎢⎥⎣⎦B .5,53⎡⎤-⎢⎥⎣⎦C .5,53⎡⎫⎪⎢⎣⎭D .5,53⎡⎫-⎪⎢⎣⎭10.若a ,b ,c ∈R ,a >b ,则下列不等式恒成立的是( )A .1a <1bB .a 2>b 2C .21ac +>21b c + D .a |c |>b |c |11.设,,a b c ∈R ,且a b >,则( ) A .ac bc >B .11a b< C .22a b > D .33a b >12.命题p :变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩,则y z x =的最小值为14,命题q :直线2x =的倾斜角为2π,下列命题正确的是( ) A .p q ∧B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝二、填空题13.已知实数,x y 满足约束条件222,22x y x y x y -≤⎧⎪-≥-⎨⎪+≥⎩则2z x y =-的最大值为___.14.设ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且3cos 2cos a C c A b ⋅=⋅+,则()tan A C -的最大值为__________. 15.已知实数x ,y 满足x y 10x y 20x 0-+≤⎧⎪+-≤⎨⎪≥⎩,则z x 2y =-的最大值为______.16.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________ 17.已知0x >,0y >,且212+=x y ,若2322+≥-x y m m 恒成立,则实数m 的取值范围_______.18.已知2z y x =-,式中变量x ,y 满足下列条件:213201x y x y k y -≥-⎧⎪+-≥⎨⎪≥⎩,若z 的最大值为11,则k 的值为______.19.已知a >0,b >0,则p =2b a﹣a 与q =b ﹣2a b 的大小关系是_____.20.若(0,1)x ∈时,不等式111m x x≤+-恒成立,则实数m 的最大值为________. 三、解答题21.设函数2()(2)3(0)f x ax b x a =+-+≠. (1)若不等式()0f x >的解集为(1,3)-,求,a b 的值; (2)若(1)2,0,0f a b =>>,求19a b+的最小值.22.已知函数()21f x x x =-++. (1)求不等式()5f x ≤的解集; (2)若()f x 的最小值是m ,且3m a b +=,求212a b +的最小值.23.已知函数2()12af x x x =-+ (1)若()0f x ≥,在R 上恒成立,求实数a 的取值范围; (2)若[]1,2,()2x f x ∃∈≥成立,求实数a 的取值范围. 24.已知关于x 的不等式23240x ax -++>. (1)当2a =时,求此不等式的解集;(2)若此不等式的解集为()4,m -,求实数a ,m 的值. 25.已知a R ∈,若关于x 的不等式2(1)460a x x 的解集是(3,1)-.(1)求a 的值;(2)若关于x 的不等式230ax bx ++≥在[0,2]上恒成立,求实数b 的取值范围. 26.已知关于x 的一元二次不等式()22600kx x k k -+<≠.(1)若不等式的解集是{|3x x <-或}2x >-,求k 的值; (2)若不等式的解集是R ,求k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 由21y x +=,对2x y +乘以21y x+=,构造均值不等式求最值 .【详解】22242248x y x xy y x y xy ⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当421xy xy y x ⎧=⎪⎪⎨⎪+=⎪⎩,即412x y =⎧⎪⎨=⎪⎩时,等号成立,∴min 28x y ⎛⎫+= ⎪⎝⎭.故选:D 【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:“一正、二定、三相等” (1) “一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.如果等号成立的条件满足不了,说明函数在对应区间单调,可以利用单调性求最值或值域.2.D解析:D 【分析】利用22222211111(4)4x y x y xy ⎛⎫+=++ ⎪⎝⎭,展开后应用基本不等式可得最小值. 【详解】由题意22222211111(4)4x y x y x y ⎛⎫+=++ ⎪⎝⎭2222141955444y x x y ⎛⎛⎫=++≥+= ⎪ ⎝⎭⎝,当且仅当22224y x x y =,即2242,33x y ==时等号成立.故选:D . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.A解析:A 【分析】根据约束条件作出可行域,将目标函数变形为122zy x =-,通过平移直线法可求出2z -的最大值,从而可得z 的最小值. 【详解】作出已知不等式组所表示的平面区域,如图所示:将目标函数2z x y =-变形为122zy x =-,由图可知当直线经过点(0,2)A 时,截距2z -最大,所以,2z x y =-的最小值为4-. 故选:A 【点睛】方法点睛:解决线性规划问题的关键是正确地作出可行域,准确地理解z 的几何意义,求最优解时采用“平移直线法”. 利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数即可求出最大值或最小值.4.C解析:C 【分析】作出不等式对应的平面区域,利用目标函数的几何意义,求目标函数的最大值即可. 【详解】画出约束条件所表示的平面区域,如图所示, 由23z x y =-得到233zy x =-, 平移直线233zy x =-,当过A 时直线截距最小,z 最大,由4100yx y=⎧⎨--=⎩得到5(,0)2A,所以23z x y=-的最大值为max523052z=⨯-⨯=,故选C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.5.C解析:C【分析】作出约束条件的可行域,将目标函数转化为122zy x=-,利用线性规划即可求解.【详解】解:由2z x y=-得122zy x=-,作出x,y满足约束条件424x yx yx+≥⎧⎪-≥⎨⎪≤⎩对应的平面区域如图(阴影部分ABC):平移直线122z y x =-, 由图象可知当直线122z y x =-过点C 时,直线122zy x =-的截距最大,此时z 最小, 420x x y =⎧⎨--=⎩,解得()4,2A .代入目标函数2z x y =-, 得4220z =-⨯=,∴目标函数2z x y =-的最小值是0.故选:C . 【点睛】本题考查简单的线性规划,解题的关键是作出约束条件的可行域,属于中档题.6.A解析:A 【解析】分析:首先对原式进行移项、通分得到302x ->+,之后根据不等式的性质可得20x +<,从而求得不等式的解集.详解:将原不等式化为1202x x x --->+,即302x ->+, 即302x <+,则有20x +<,解得2x <-, 所以不等式102x x ->+的解集为{}|2x x <-,故选A. 点睛:该题是一道关于求不等式解集的题目,解答该题的关键是熟练掌握分式不等式的解法,属于简单题目.7.D解析:D 【分析】运用基本不等式2422x y +≥=【详解】因为20,40xy>>,所以224228x y x y ++≥===,(当且仅当24x y =时取“=”). 故答案为D. 【点睛】利用两个数的基本不等式求函数的最值必须具备三个条件: ①各项都是正数; ②和(或积)为定值; ③等号取得的条件.8.A解析:A 【分析】先将20a b c ++=变形为2b a c =--,再代入不等式a b >,b c >,解这两个不等式,即可得a 与c 的比值关系,联立可求ca的取值范围 【详解】解:因为,20a b c a b c >>++=, 所以0,0a c ><,2b a c =--, 因为a b c >>,所以2a c a --<,即3a c >-,解得3ca>-, 将2b a c =--代入b c >中,得2a c c -->, 即a c <-,得1ca<-, 所以31ca-<<-, 故选:A 【点睛】此题考查一元一次不等式的应用,考查不等式性质的应用,考查转化思想,属于中档题9.D解析:D 【分析】画出可行域,根据目标函数的截距,利用数形结合,即可求出z 的取值范围. 【详解】 作出可行域如下:由221z x y =--得12zy x +=-, 平移直线12zy x +=-,由平移可知当直线12zy x +=-,经过点C 时, 直线12zy x +=-的截距最小,此时z 取得最大值, 由210x x y =⎧⎨+-=⎩,解得21x y =⎧⎨=-⎩,即(2,1)C -, 此时2214215z x y =--=+-=, 可知当直线12zy x +=-,经过点A 时, 直线12zy y x +==-的截距最大,此时z 取得最小值, 由21010x y x y -+=⎧⎨+-=⎩,得1323x y ⎧=⎪⎪⎨⎪=⎪⎩,即1(3A ,2)3代入221z x y =--得125221333z =⨯-⨯-=-,故5[3z ∈-,5)故选:D . 【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法,属于中档题.10.C解析:C 【分析】首先利用特值法排除A 、B 两项,利用不等式的性质可确定C 项是正确的,再举出反例判断D 项是错误的,从而得到答案. 【详解】当a =1,b =-2时,满足a >b ,但11a b>,a 2<b 2,排除A 、B ; 因为211c +>0,a >b ⇒2211a b c c >++,故C 是正确的;当c =0时,a |c |>b |c |不成立,排除D , 故选:C. 【点睛】该题考查的是有关不等式的问题,涉及到的知识点有利用不等式的性质比较式子的大小,利用特值法排除不正确的选项,坚持做到小题小做的思想,属于简单题目.11.D解析:D【分析】结合不等式的性质、特殊值判断出错误选项,利用差比较法证明正确选项成立. 【详解】A 选项,当0c ≤ 时,由a b >不能得到ac bc >,故不正确;B 选项,当0a >,0b <(如1a =,2b =-)时,由a b >不能得到11a b<,故不正确; C 选项,由()()22a b a b a b -=+-及a b >可知当0a b +<时(如2a =-,3b =-或2a =,3b =-)均不能得到22a b >,故不正确;D 选项,()()()233222324b a b a b a ab b a b a b ⎡⎤⎛⎫-=-++=-⋅++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,因为,a b 不同时为0,所以223024b a b ⎛⎫++> ⎪⎝⎭,所以可由a b >知330a b ->,即33a b >,故正确.故选:D 【点睛】本小题主要考查不等式的性质以及差比较法,属于中档题.12.A解析:A 【分析】由约束条件作出可行域,由yz x=的几何意义求得最小值判断p 为真命题,由直线2x =的倾斜角判断q 为真命题,再由复合命题的真假判断得答案. 【详解】解:变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩作出可行域如图:目标式yz x=表示可行域内点(),x y 与()0,0的连线的斜率,由图可知,当过点()4,1D 时,min 14z =,即y z x =的最小值为14,命题p 为真命题; 直线2x =的倾斜角为2π正确,故命题q 为真命题. 所以p q ∧为真命题,()()p q ⌝∧⌝为假命题,()p q ⌝∧为假命题,()p q ∧⌝为假命题; 故选:A 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,考查复合命题的真假判断,属于中档题.二、填空题13.1【分析】作出不等式组对应的平面区域利用目标函数的几何意义进行求最值即可【详解】由z=x-2y 得作出不等式组对应的平面区域如图(阴影部分):平移直线的截距最小此时z 最大由得A (10)代入目标函数z=解析:1 【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可. 【详解】 由z=x-2y 得1122y x z =-,作出不等式组对应的平面区域如图(阴影部分):平移直线1122y x z =-,,1122y x z =-,的截距最小, 此时z 最大,由2222x y x y -⎧⎨+⎩== ,得A (1,0).代入目标函数z=x-2y , 得z=1-2×0=1, 故答案为1. 【点睛】本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.14.【分析】利用正弦定理将化为然后利用三角形内角和定理将用代换再利用两角和的正弦公式展开整理可得再由同角三角函数关系可得将其代入展开式消去结合基本不等式即可求出的最大值【详解】解:∵由正弦定理边角互化得 解析:612【分析】利用正弦定理将3cos 2cos a C c A b ⋅=⋅+化为3sin cos 2sin cos sin A C C A B ⋅=⋅+,然后利用三角形内角和定理将B 用()A C π-+代换,再利用两角和的正弦公式展开整理可得2sin cos 3sin cos A C C A ⋅=⋅,再由同角三角函数关系可得3tan tan 2A C =,将其代入()tan A C -展开式消去tan A ,结合基本不等式即可求出()tan A C -的最大值. 【详解】解:∵ 3cos 2cos a C c A b ⋅=⋅+由正弦定理边角互化得3sin cos 2sin cos sin A C C A B ⋅=⋅+,又∵ ()()sin sin sin sin cos cos sin B A C A C A C A C π=-+=+=+⎡⎤⎣⎦,∴ 3sin cos 2sin cos sin cos cos sin A C A C C A A C +⋅=⋅+, ∴ 2sin cos 3sin cos A C C A ⋅=⋅∵ 当cos 0C ≤或cos 0A ≤时,等式不成立, ∴ ,0,2A C π⎛⎫∈ ⎪⎝⎭,3tan tan 2A C =, ∴ ()22tan tan tan tan tan tan 112tan ==32123132tan tan tan tan CA C C A C C C A C CC-==++++-,又∵ tan 0C >,∴2tan tan 3C C ≥=+当且仅当23tan tan C C ==,即tan C =等号成立, ∴()tan tan tan tan tan tan 1tan =21123A CA CC CA C -≤++-=.故答案为:12【点睛】本题主要考查正弦定理,两角差的正切公式及基本不等式的应用,需要注意的是在利用基本不等式时,要根据条件确定tan 0C >.15.-2【详解】根据题意得到如图可行域是封闭的三角形顶点是(01)()(02)目标函数可得到当目标函数过点A(01)有最大值-2故得到答案为:-2点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内解析:-2 【详解】根据题意得到如图可行域 是封闭的三角形,顶点是(0,1) (13,22)(0,2)目标函数2z x y =-,1,22zy x =-可得到当目标函数过点A(0,1),有最大值-2, 故得到答案为:-2.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.16.【分析】根据题意令分析可以将不等式在x ∈12上恒成立转化为二次函数的性质列出不等式组解可得m 的取值范围即可得答案【详解】根据题意令若不等式在x ∈12上恒成立则有△=m2﹣4m≤0或或解可得实数m 的最解析:12-【分析】根据题意,令()2f x x mx m ++=,分析可以将不等式20x mx m ++≥在x ∈[1,2]上恒成立转化为二次函数的性质列出不等式组,解可得m 的取值范围,即可得答案. 【详解】根据题意,令()2f x x mx m ++=,若不等式20x mx m ++≥在x ∈[1,2]上恒成立,则有△=m 2﹣4m ≤0或()121120m f m ⎧-≤⎪⎨⎪=+≥⎩或()222430m f m ⎧-≥⎪⎨⎪=+≥⎩,解可得1,2m ⎡⎫∈-+∞⎪⎢⎣⎭,实数m 的最小值为:12-, 故答案为12-. 【点睛】本题考查二次函数的性质,关键是将x 2+mx +m ≥0在x ∈[1,2]上恒成立转化为二次函数y =x 2+mx +m 在x ∈[1,2]上的最值问题.17.【分析】利用1的替换求出的最小值再解不等式即可【详解】因为当且仅当即时等号成立所以解得故答案为:【点睛】本题主要考查基本不等式求最值涉及到解一元二次不等式是一道中档题解析:3,32⎡⎤-⎢⎥⎣⎦【分析】利用“1”的替换求出2x y +的最小值92,再解不等式23922m m -≤即可.【详解】 因为121122192()(2)(5)(54)2222y x x y x y x y x y +=++=++≥+=,当且仅当22y xx y=, 即32x y ==时等号成立,所以23922m m -≤,解得332m -≤≤.故答案为:3,32⎡⎤-⎢⎥⎣⎦【点睛】本题主要考查基本不等式求最值,涉及到解一元二次不等式,是一道中档题.18.23【分析】先画出约束条件所表示的可行域结合图象确定目标函数的最优解代入最优解的坐标即可求解【详解】画出不等式组所表示的可行域如图所示可得交点又由解得目标函数可化为当直线过点C 时直线在轴上的截距最大解析:23 【分析】先画出约束条件所表示的可行域,结合图象确定目标函数的最优解,代入最优解的坐标,即可求解. 【详解】画出不等式组213201x y x y k y -≥-⎧⎪+-≥⎨⎪≥⎩所表示的可行域,如图所示,可得交点(0,1),(7,1)A B , 又由21211x y y x -=-⎧⎨-=⎩,解得(3,7)C ,目标函数2z y x =-可化为122zy x =+, 当直线122zy x =+过点C 时,直线在y 轴上的截距最大,此时目标函数取得最大值, 将C 代入直线320x y k +-=,解得23k =.故答案为:23【点睛】本题主要考查了简单的线性规划的应用,其中解答中正确作出不等式组所表示的平面区域,结合图象得出目标函数的最优解是解答的关键,着重考查数形结合法,以及计算能力.19.【分析】由已知结合作差法进行变形后即可比较大小【详解】因为与所以时取等号所以故答案为:【点睛】本题主要考查了不等式大小的比较作差法的应用是求解问题的关键 解析:p q【分析】由已知结合作差法进行变形后即可比较大小. 【详解】因为0a >,0b >,2b p a a =-与2a qb b=-,所以2222222()()()()0b a b a b a b a b a b a p q a b ab ba-----+-=-==,b a =时取等号, 所以p q .故答案为:p q . 【点睛】本题主要考查了不等式大小的比较,作差法的应用是求解问题的关键.20.【分析】根据题意只需小于等于的最小值即可利用基本不等式可得的最值进而即可得到结论【详解】由则所以当且仅当即时取等号所以即的最大值为故答案为:【点睛】本题主要考查了基本不等式求最值以及恒成立问题同时考 解析:4【分析】根据题意,只需m 小于等于111x x +-的最小值即可,利用基本不等式可得111x x+-的最值,进而即可得到结论. 【详解】由()0,1x ∈,则()10,1x -∈,11x x +-=, 所以,()11111124111x x x x x x x x x x-⎛⎫+=++-=++≥ ⎪---⎝⎭, 当且仅当11x xx x -=-,即12x =时取等号, 所以,4m ≤,即m 的最大值为4.故答案为:4. 【点睛】本题主要考查了基本不等式求最值,以及恒成立问题,同时考查了转化的思想和运算求解的能力,属于基础题.三、解答题21.(1)14a b =-⎧⎨=⎩;(2)16.【分析】(1)由不等式()0f x >的解集(1,3)-.1-,3是方程()0f x =的两根,由根与系数的关系可求a ,b 值;(2)由()12f =,得到1a b +=,将所求变形为1(9)()a ba b ++展开,利用基本不等式求最小值. 【详解】解:(1)∵()2230ax b x +-+>的解集为()1,3-,1,3∴-是()2230ax b x +-+=的两根,21313413b a a b a -⎧-+=-⎪=-⎧⎪∴⇒⎨⎨=⎩⎪-⨯=⎪⎩.(2)由于()12f =,0a >,0b >, 则可知232a b +-+=, 得1a b +=,所以199()()101016b a a b a b a b ++=++≥+=, 当且仅当9b aa b=且1a b +=, 即1434a b ⎧=⎪⎪⎨⎪=⎪⎩时成立,所以19a b +的最小值为16. 【点睛】易错点睛:在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.22.(1)[]23,-;(2)92. 【分析】(1)将()f x 解析式中绝对值符号去掉,求得分段函数解析式;再在每一段中求得()5f x ≤时的解集;从而得出答案;(2)先由(1)求出()f x 的最小值3m =,所以得1a b +=;再将212a b+构造成符合基本不等式的形式,从而求其最小值. 【详解】解:(1)21,1()213,1221,2x x f x x x x x x -+≤⎧⎪=-++=-<<⎨⎪-≥⎩,()5f x ≤等价于1,215x x ≤-⎧⎨-+≤⎩或1235x -<<⎧⎨≤⎩或2215x x ≥⎧⎨-≤⎩,解得21x -≤≤-或12x -<<或23x ≤≤.故不等式()5f x ≤的解集为[]23,-.(2)由(1)可知3m =,则1a b +=, 则21212559()2222222b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭(当23a =,13b =时,等号成立). 故212a b +最小值为92. 【点睛】本题主要考查分段函数和基本不等式的相关性质,考查运算求解能力,属于基础题型.23.(1)[]44-,;(2)(],3∞-. 【分析】(1)由二次不等式()0f x ≥恒成立可得0∆≤,于是可求得a 的取值范围;(2)分离参数得12a x x ≤-在区间[]1,2上有解,转化为求1y x x=-在区间[]1,2上的最大值求解即可. 【详解】(1)由题意得()2102af x x x =-+≥在R 上恒成立, ∴2404a ∆=-≤,解得44a -≤≤,∴实数a 的取值范围为[]4,4-. (2)由题意得[]21,2,122ax x x ∃∈-+≥成立, ∴[]11,2,2a x x x ∃∈≤-成立. 令()[]1,?1,2g x x x x=-∈, 则()g x 在区间[]1,2上单调递增, ∴()()322max g x g ==, ∴322a ≤, 解得3a ≤,∴实数a 的取值范围为(],3∞-. 【点睛】解题时注意以下结论的运用:(1)()a f x >恒成立等价于()max a f x >,()a f x >有解等价于()min a f x >;(2)若函数()f x 的最值不存在,则可利用函数值域的端点值来代替. 24.(1)223x x ⎧⎫-<<⎨⎬⎩⎭;(2)13m =,112a =-.【分析】(1)当2a =时,不等式为23440x x -++>,即23440x x --<,利用一元二次不等式求解.(2)根据不等式的解集为()4,m -,则由4-,m 为方程23240x ax -++=的两根求解. 【详解】(1)当2a =时,不等式为23440x x -++>, 所以23440x x --<, 所以()23203x x ⎛⎫+-< ⎪⎝⎭, 解得223x -<<, 所以不等式23440x x -++>的解集为223x x ⎧⎫-<<⎨⎬⎩⎭; (2)由已知得4-,m 为方程23240x ax -++=的两根, 则有243a m -+=--且443m -=-, 解得13m =,112a =-.【点睛】本题主要考查一元二次不等式的解法以及一元二次不等式与一元二次方程的关系,属于中档题.25.(1)3;(2)6b ≥- 【分析】(1)将1x =代入方程2(1)460a x x ,即可求出a 的值;(2)由(1)可知不等式2330x bx ++≥在[0,2]上恒成立,利用分离参数即可求出b 的取值范围. 【详解】(1)1和3-是2(1)460a x x 的两根,将1x =代入方程解得3a =;(2)由(1)可知不等式2330x bx ++≥在[0,2]上恒成立,即233bx x -≤+在[0,2]上恒成立, 当0x =时,03≤恒成立,此时a R ∈;当2(]0,x ∈时,不等式可转化为13()b x x-≤+在[0,2]上恒成立,因为13()36x x +≥⨯=,当且仅当1x x =,即1x =时,等号成立, 所以6b -≤,所以6b ≥-,综上,实数b 的取值范围为6b ≥-.【点睛】本题主要考查三个二次式关系的应用,不等式恒成立问题的求法,属于中档题.26.(1)25-;(2)⎛-∞ ⎝⎭,. 【分析】(1)由不等式的解集为{}32x x x <->-或知0k <,且3-,2-是方程2260kx x k -+=的两根,代入可解.(2)不等式的解集为R ,知二次函数图像恒在x 轴下方,则利用0k <且24240k ∆=-<可解【详解】(1)∵不等式的解集为{}32x x x <->-或∴3-,2-是方程2260kx x k -+=的两根,且0k < ∴25k =- (2)∵不等式的解集为R∴0k <且24240k ∆=-<∴6k <-∴k 的取值范围是(-∞, 【点睛】解含参数的一元二次不等式时分类讨论的依据(1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应方程的实根的个数不确定时,讨论判别式∆与0的关系.(3)确定无实根时可直接写出解集,确定方程有两个实根时,要讨论两实根的大小关系,从而确定解集形式.。

高中数学不等式练习题

高中数学不等式练习题

高中数学不等式练习题一.选择题〔共16小题〕1.假设a>b>0,且ab=1,那么以下不等式成立的是〔〕A.a+<<log2〔a+b〕〕B.<log2〔a+b〕<a+C.a+<log2〔a+b〕< D.log2〔a+b〕〕<a+<2.设x、y、z为正数,且2x=3y=5z,那么〔〕A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z3.假设x,y满足,那么x+2y的最大值为〔〕A.1 B.3 C.5 D.94.设x,y满足约束条件,那么z=2x+y的最小值是〔〕A.﹣15 B.﹣9 C.1 D.95.x,y满足约束条件,那么z=x+2y的最大值是〔〕A.0 B.2 C.5 D.66.设x,y满足约束条件,那么z=x+y的最大值为〔〕A.0 B.1 C.2 D.37.设x,y满足约束条件那么z=x﹣y的取值围是〔〕A.[﹣3,0] B.[﹣3,2] C.[0,2] D.[0,3]8.变量x,y满足约束条件,那么z=x﹣y的最小值为〔〕A.﹣3 B.0 C.D.39.假设变量x,y满足约束条件,那么目标函数z=﹣2x+y的最大值为〔〕A.1 B.﹣1 C.﹣D.﹣310.假设a,b∈R,且ab>0,那么+的最小值是〔〕A.1 B.C.2 D.211.0<c<1,a>b>1,以下不等式成立的是〔〕A.c a>c b B.a c<b c C.D.log a c>log b c12.x>0,y>0,lg2x+lg8y=lg2,那么的最小值是〔〕A.2 B.2 C.4 D.213.设a>0,b>2,且a+b=3,那么的最小值是〔〕A.6 B.C.D.14.x,y∈R,x2+y2+xy=315,那么x2+y2﹣xy的最小值是〔〕A.35 B.105 C.140 D.21015.设正实数x,y满足x>,y>1,不等式+≥m恒成立,那么m的最大值为〔〕A.2B.4 C.8 D.1616.两正数x,y 满足x+y=1,那么z=的最小值为〔〕A.B.C.D.二.解答题〔共10小题〕17.不等式|2x﹣3|<x与不等式x2﹣mx+n<0的解集一样.〔Ⅰ〕求m﹣n;〔Ⅱ〕假设a、b、c∈〔0,1〕,且ab+bc+ac=m﹣n,求a+b+c的最小值.18.不等式x2﹣2x﹣3<0的解集为A,不等式x2+x﹣6<0的解集为B.〔1〕求A∩B;〔2〕假设不等式x2+ax+b<0的解集为A∩B,求不等式ax2+x+b<0的解集.19.解不等式:≥2.20.不等式ax2+x+c>0的解集为{x|1<x<3}.〔1〕求a,c的值;〔2〕假设不等式ax2+2x+4c>0的解集为A,不等式3ax+cm<0的解集为B,且A⊂B,数m的取值围.21.〔1〕实数x,y均为正数,求证:;〔2〕解关于x的不等式x2﹣2ax+a2﹣1<0〔a∈R〕.22.a,b,c是全不相等的正实数,求证:>3.23.设a、b为正实数,且+=2.〔1〕求a2+b2的最小值;〔2〕假设〔a﹣b〕2≥4〔ab〕3,求ab的值.24.x,y∈〔0,+∞〕,x2+y2=x+y.〔1〕求的最小值;〔2〕是否存在x,y,满足〔x+1〕〔y+1〕=5?并说明理由.25.某车间方案生产甲、乙两种产品,甲种产品每吨消耗A原料6吨、B原料4吨、C原料4吨,乙种产品每吨消耗A原料3吨、B原料12吨、C原料6吨.每天原料的使用限额为A原料240吨、B原料400吨、C原料240吨.生产甲种产品每吨可获利900元,生产乙种产品每吨可获利600元,分别用x,y表示每天生产甲、乙两种产品的吨数〔Ⅰ〕用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;〔Ⅱ〕每天分别生甲、乙两种产品各多少吨,才能使得利润最大?并求出此最大利润.26.某家公司每月生产两种布料A和B,所有原料是三种不同颜色的羊毛.下表给出了生产每匹每种布料所需的羊毛量,以及可供使用的每种颜色的羊毛的总量.羊毛颜色每匹需要/kg供应量/kg布料A布料B红331050绿421200黄261800生产每匹布料A、B的利润分别为60元、40元.分别用x、y表示每月生产布料A、B的匹数.〔Ⅰ〕用x、y列出满足生产条件的数学关系式,并画出相应的平面区域;〔Ⅱ〕如何安排生产才能使得利润最大?并求出最大的利润.高中数学不等式练习题参考答案与试题解析一.选择题〔共16小题〕1.〔2021•〕假设a>b>0,且ab=1,那么以下不等式成立的是〔〕A.a+<<log2〔a+b〕〕B.<log2〔a+b〕<a+C.a+<log2〔a+b〕< D.log2〔a+b〕〕<a+<【分析】a>b>0,且ab=1,可取a=2,b=.代入计算即可得出大小关系.【解答】解:∵a>b>0,且ab=1,∴可取a=2,b=.那么=4,==,log2〔a+b〕==∈〔1,2〕,∴<log2〔a+b〕<a+.应选:B.【点评】此题考察了函数的单调性、不等式的解法与性质,考察了推理能力与计算能力,属于中档题.2.〔2021•新课标Ⅰ〕设x、y、z为正数,且2x=3y=5z,那么〔〕A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【分析】x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.可得3y=,2x=,5z=.根据==,>=.即可得出大小关系.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.==>1,可得2x>3y,同理可得5z>2x.【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.那么x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.那么x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.应选:D.【点评】此题考察了对数函数的单调性、换底公式、不等式的性质,考察了推理能力与计算能力,属于中档题.3.〔2021•〕假设x,y满足,那么x+2y的最大值为〔〕A.1 B.3 C.5 D.9【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最值即可.【解答】解:x,y满足的可行域如图:由可行域可知目标函数z=x+2y经过可行域的A时,取得最大值,由,可得A〔3,3〕,目标函数的最大值为:3+2×3=9.应选:D.【点评】此题考察线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.4.〔2021•新课标Ⅱ〕设x,y满足约束条件,那么z=2x+y的最小值是〔〕A.﹣15 B.﹣9 C.1 D.9【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最小值即可.【解答】解:x、y满足约束条件的可行域如图:z=2x+y 经过可行域的A时,目标函数取得最小值,由解得A〔﹣6,﹣3〕,那么z=2x+y 的最小值是:﹣15.应选:A.【点评】此题考察线性规划的简单应用,考察数形结合以及计算能力.5.〔2021•〕x,y满足约束条件,那么z=x+2y的最大值是〔〕A.0 B.2 C.5 D.6【分析】画出约束条件表示的平面区域,根据图形找出最优解是由解得的点A的坐标,代入目标函数求出最大值.【解答】解:画出约束条件表示的平面区域,如下列图;由解得A〔﹣3,4〕,此时直线y=﹣x+z在y轴上的截距最大,所以目标函数z=x+2y的最大值为z max=﹣3+2×4=5.应选:C.【点评】此题考察了线性规划的应用问题,是中档题.6.〔2021•新课标Ⅰ〕设x,y满足约束条件,那么z=x+y的最大值为〔〕A.0 B.1 C.2 D.3【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最大值即可.【解答】解:x,y满足约束条件的可行域如图:,那么z=x+y经过可行域的A时,目标函数取得最大值,由解得A〔3,0〕,所以z=x+y 的最大值为:3.应选:D.【点评】此题考察线性规划的简单应用,考察约束条件的可行域,判断目标函数的最优解是解题的关键.7.〔2021•新课标Ⅲ〕设x,y满足约束条件那么z=x﹣y的取值围是〔〕A.[﹣3,0] B.[﹣3,2] C.[0,2] D.[0,3]【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的围即可.【解答】解:x,y满足约束条件的可行域如图:目标函数z=x﹣y,经过可行域的A,B时,目标函数取得最值,由解得A〔0,3〕,由解得B〔2,0〕,目标函数的最大值为:2,最小值为:﹣3,目标函数的取值围:[﹣3,2].应选:B.【点评】此题考察线性规划的简单应用,目标函数的最优解以及可行域的作法是解题的关键.8.〔2021•大石桥市校级学业考试〕变量x,y满足约束条件,那么z=x ﹣y的最小值为〔〕A.﹣3 B.0 C.D.3【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域如图,A〔0,3〕,化目标函数z=x﹣y为y=x﹣z,由图可知,当直线y=x﹣z过点A时,直线在y 轴上的截距最大,z有最小值为﹣3.应选:A.【点评】此题考察简单的线性规划,考察数形结合的解题思想方法,是中档题.9.〔2021•天津学业考试〕假设变量x,y满足约束条件,那么目标函数z=﹣2x+y的最大值为〔〕A.1 B.﹣1 C.﹣D.﹣3【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A〔1,1〕,化目标函数z=﹣2x+y为y=2x+z,由图可知,当直线y=2x+z过A时,直线在y 轴上的截距最大,为﹣1.应选:B.【点评】此题考察简单的线性规划,考察了数形结合的解题思想方法,是中档题.10.〔2021•明山区校级学业考试〕假设a,b∈R,且ab>0,那么+的最小值是〔〕A.1 B.C.2 D.2【分析】根据题意,首先由ab>0可得>0且>0,进而由根本不等式可得+≥2,计算可得答案.【解答】解:根据题意,假设a,b∈R,且ab>0,那么>0且>0,+≥2=2,即+的最小值是2;应选:C.【点评】此题考察根本不等式的性质,注意首先要满足根本不等式的使用条件.11.〔2021•资阳模拟〕0<c<1,a>b>1,以下不等式成立的是〔〕A.c a>c b B.a c<b c C.D.log a c>log b c【分析】根据题意,依次分析选项:对于A、构造函数y=c x,由指数函数的性质分析可得A错误,对于B、构造函数y=x c,由幂函数的性质分析可得B错误,对于C、由作差法比较可得C错误,对于D、由作差法利用对数函数的运算性质分析可得D正确,即可得答案.【解答】解:根据题意,依次分析选项:对于A、构造函数y=c x,由于0<c<1,那么函数y=c x是减函数,又由a>b>1,那么有c a>c b,故A错误;对于B、构造函数y=x c,由于0<c<1,那么函数y=x c是增函数,又由a>b>1,那么有a c>b c,故B错误;对于C、﹣==,又由0<c<1,a>b>1,那么〔a﹣c〕>0、〔b﹣c〕>0、〔b﹣a〕<0,进而有﹣<0,故有<,故C错误;对于D、log a c﹣log b c=﹣=lgc〔〕,又由0<c<1,a>b>1,那么有lgc<0,lga>lgb>0,那么有log a c﹣log b c=﹣=lgc〔〕>0,即有log a c>log b c,故D正确;应选:D.【点评】此题考察不等式比较大小,关键是掌握不等式的性质并灵活运用.12.〔2021•全国模拟〕x>0,y>0,lg2x+lg8y=lg2,那么的最小值是〔〕A.2 B.2 C.4 D.2【分析】利用对数的运算法那么和根本不等式的性质即可得出.【解答】解:∵lg2x+lg8y=lg2,∴lg〔2x•8y〕=lg2,∴2x+3y=2,∴x+3y=1.∵x>0,y>0,∴==2+=4,当且仅当x=3y=时取等号.应选C.【点评】熟练掌握对数的运算法那么和根本不等式的性质是解题的关键.13.〔2021•一模〕设a>0,b>2,且a+b=3,那么的最小值是〔〕A.6 B.C.D.【分析】=〔〕〔a+b﹣2〕=2+1++,根据根本不等式即可求出【解答】解:∵a>0,b>2,且a+b=3,∴a+b﹣2=1,∴=〔〕〔a+b﹣2〕=2+1++≥3+2,当且仅当a=〔b﹣2〕时取等号,即b=1+,a=2﹣时取等号,那么的最小值是3+2,应选:D【点评】此题考察了根本不等式的应用,掌握一正二定三相等,属于中档题14.〔2021•乌鲁木齐模拟〕x,y∈R,x2+y2+xy=315,那么x2+y2﹣xy的最小值是〔〕A.35 B.105 C.140 D.210【分析】x,y∈R,x2+y2+xy=315,可得x2+y2=315﹣xy≥2xy,因此xy≤105.即可得出.【解答】解:∵x,y∈R,x2+y2+xy=315,∴x2+y2=315﹣xy,315﹣xy≥2xy,当且仅当x=y=±时取等号.∴xy≤105.∴x2+y2﹣xy=315﹣2xy≥315﹣210=105.应选:B.【点评】此题考察了重要不等式的性质,考察了推理能力与计算能力,属于中档题.15.〔2021•和平区校级二模〕设正实数x,y满足x>,y>1,不等式+≥m恒成立,那么m的最大值为〔〕A.2B.4 C.8 D.16【分析】不等式+≥m恒成立,转化为求+的最小值,可得m 的最大值.将分母转化为整数,设y﹣1=b,那么y=b+1,令2y﹣1=a,y=〔a+1〕,利用根本不等式的性质即可得出.【解答】解:设y﹣1=b,那么y=b+1,令2y﹣1=a,y=〔a+1〕,a>0,b>0.那么:+==〔当且仅当a=b=1即x=2,y=1时取等号.∴+的最小值为8,那么m的最大值为8.应选:C.【点评】此题考察了根本不等式的性质的运用解决恒成立的问题,利用了换元法转化求解,屡次使用根本不等式式解决问题的关键,属于中档题.16.〔2021春•温江区校级月考〕两正数x,y 满足x+y=1,那么z=的最小值为〔〕A.B.C.D.【分析】展开,并根据x+y=1可以得到,可令t=xy,并求出,而根据的单调性即可求出f〔t〕的最小值,进而求出z的最小值.【解答】解:z====;令t=xy,那么;由在上单调递减,故当t=时有最小值,即:时z有最小值.应选B.【点评】考察根本不等式的应用,注意等号成立的条件,要熟悉函数的单调性.二.解答题〔共10小题〕17.〔2021•二模〕不等式|2x﹣3|<x与不等式x2﹣mx+n<0的解集一样.〔Ⅰ〕求m﹣n;〔Ⅱ〕假设a、b、c∈〔0,1〕,且ab+bc+ac=m﹣n,求a+b+c的最小值.【分析】〔Ⅰ〕讨论2x﹣3≥0或2x﹣3<0,求出不等式|2x﹣3|<x的解集,得出不等式x2﹣mx+n<0的解集,利用根与系数的关系求出m、n的值;〔Ⅱ〕根据a、b、c∈〔0,1〕,且ab+bc+ac=1,求出〔a+b+c〕2的最小值,即可得出a+b+c的最小值.【解答】解:〔Ⅰ〕当2x﹣3≥0,即x≥时,不等式|2x﹣3|<x可化为2x﹣3<x,解得x<3,∴≤x<3;当2x﹣3<0,即x<时,不等式|2x﹣3|<x可化为3﹣2x<x,解得x>1,∴1<x<;综上,不等式的解集为{x|1<x<3};∴不等式x2﹣mx+n<0的解集为{x|1<x<3},∴方程x2﹣mx+n=0的两实数根为1和3,∴,∴m﹣n=4﹣3=1;〔Ⅱ〕a、b、c∈〔0,1〕,且ab+bc+ac=m﹣n=1,∴〔a+b+c〕2=a2+b2+c2+2〔ab+bc+ca〕≥〔2ab+2bc+2ac〕+2〔ab+bc+ac〕=3〔ab+bc+ca〕=3;∴a+b+c的最小值是.【点评】此题考察了解不等式以及根与系数的关系应用问题,也考察了根本不等式的应用问题,是综合题.18.〔2021春•市校级期中〕不等式x2﹣2x﹣3<0的解集为A,不等式x2+x﹣6<0的解集为B.〔1〕求A∩B;〔2〕假设不等式x2+ax+b<0的解集为A∩B,求不等式ax2+x+b<0的解集.【分析】〔1〕由一元二次不等式的解法分别求出集合A,B,再利用集合的交集即可求出;〔2〕由一元二次方程的实数根与不等式的解集的关系及判别式与解集的关系即可求出.【解答】解:〔1〕由不等式x2﹣2x﹣3<0,解得﹣1<x<3,∴A=〔﹣1,3〕;由不等式x2+x﹣6<0,解得﹣3<x<2,∴B=〔﹣3,2〕.∴A∩B=〔﹣1,2〕.〔2〕由不等式x2+ax+b<0的解集为A∩B=〔﹣1,2〕,∴解得∴不等式﹣x2+x﹣2<0可化为x2﹣x+2>0,∵△=1﹣4×2=﹣7<0,∴x2﹣x+2>0的解集为R.【点评】熟练掌握一元二次不等式的解法是解题的关键.19.〔2021春•齐河县校级期中〕解不等式:≥2.【分析】把不等式的右边移项到左边,通分后把分子分母都分解因式,得到的式子小于等于0,然后根据题意画出图形,在数轴上即可得到原不等式的解集.【解答】解:不等式移项得:﹣2≥0,变形得:≤0,即2〔x﹣〕〔x﹣6〕〔x﹣3〕〔x﹣5〕≤0,且x≠3,x≠5,根据题意画出图形,如下列图:根据图形得:≤x<3或5<x≤6,那么原不等式的解集为[,3〕∪〔5,6].【点评】此题考察了一元二次不等式的解法,考察了转化的思想及数形结合的思想.此类题先把分子分母分解因式,然后借助数轴到达求解集的目的.20.〔2021春•涞水县校级期中〕不等式ax2+x+c>0的解集为{x|1<x<3}.〔1〕求a,c的值;〔2〕假设不等式ax2+2x+4c>0的解集为A,不等式3ax+cm<0的解集为B,且A⊂B,数m的取值围.【分析】〔1〕由一元二次不等式和对应方程的关系,利用根与系数的关系即可求出a、c的值;〔2〕由〔1〕中a、c的值求解不等式ax2+2x+4c>0,再根据真子集的定义求出m的取值围.【解答】解:〔1〕∵不等式ax2+x+c>0的解集为{x|1<x<3},∴1、3是方程ax2+x+c=0的两根,且a<0,…〔1分〕所以;…〔3分〕解得a=﹣,c=﹣;…〔5分〕〔2〕由〔1〕得a=﹣,c=﹣,所以不等式ax2+2x+4c>0化为﹣x2+2x﹣3>0,解得2<x<6,∴A={x|2<x<6},又3ax+cm<0,即为x+m>0,解得x>﹣m,∴B={x|x>﹣m},…〔8分〕∵A⊂B,∴{x|2<x<6}⊂{x|x>﹣m},∴﹣m≤2,即m≥﹣2,∴m的取值围是[2,+∞〕.…〔10分〕【点评】此题考察了一元二次不等式和对应方程的应用问题,也考察了真子集的定义与应用问题,是中档题目.21.〔2021春•雨城区校级期中〕〔1〕实数x,y均为正数,求证:;〔2〕解关于x的不等式x2﹣2ax+a2﹣1<0〔a∈R〕.【分析】〔1〕化简不等式的左边,利用根本不等式求得最小值即可;〔2〕原不等式可化为[x﹣〔a+1〕]•[x﹣〔a﹣1〕]<0,求出不等式对应方程的根,再写出不等式的解集.【解答】解:〔1〕证明:=,…〔2分〕又因为x>0,y>0,所以,由根本不等式得,,…〔4分〕当且仅当时,取等号,即2y=3x时取等号,所以;…〔5分〕〔2〕原不等式可化为[x﹣〔a+1〕]•[x﹣〔a﹣1〕]<0,…〔7分〕令[x﹣〔a+1〕]•[x﹣〔a﹣1〕]=0,得x1=a+1,x2=a﹣1,又因为a+1>a﹣1,…〔9分〕所以原不等式的解集为〔a﹣1,a+1〕.…〔10分〕【点评】此题考察了根本不等式与一元二次不等式的解法和应用问题,是中档题.22.〔2021•模拟〕a,b,c是全不相等的正实数,求证:>3.【分析】根据a,b,c全不相等,推断出全不相等,然后利用根本不等式求得>2,>2,>2,三式相加整理求得>3,原式得证.【解答】解:∵a,b,c全不相等,∴全不相等∴>2,>2,>2三式相加得,>6∴>3即>3【点评】此题主要考察了根本不等式在最值问题中的应用.使用根本不等式时一定要把握好“一定,二正,三相等〞的原那么.23.〔2021•模拟〕设a、b为正实数,且+=2.〔1〕求a2+b2的最小值;〔2〕假设〔a﹣b〕2≥4〔ab〕3,求ab的值.【分析】〔1〕根据根本不等式得出ab〔a=b时等号成立〕,利用a2+b2≥2ab=〔a=b时等号成立〕求解即可.〔2〕根据+=2.∴a,代入得出〔a+b〕2﹣4ab≥4〔ab〕3,即〔2〕2﹣4ab≥4〔ab〕3求解即可得出ab=1【解答】解:〔1〕∵a、b为正实数,且+=2.∴a、b为正实数,且+=2≥2〔a=b时等号成立〕.即ab〔a=b时等号成立〕∵a2+b2≥2ab=〔a=b时等号成立〕.∴a2+b2的最小值为1,〔2〕∵且+=2.∴a∵〔a﹣b〕2≥4〔ab〕3,∴〔a+b〕2﹣4ab≥4〔ab〕3即〔2〕2﹣4ab≥4〔ab〕3即〔ab〕2﹣2ab+1≤0,〔ab﹣1〕2≤0,∵a、b为正实数,∴ab=1【点评】此题考察了根本不等式,考察了运用根本不等式求函数的最值,运用根本不等式求函数最值时,要保证:“一正、二定、三相等〞,此题是根底题24.〔2021•一模〕x,y∈〔0,+∞〕,x2+y2=x+y.〔1〕求的最小值;〔2〕是否存在x,y,满足〔x+1〕〔y+1〕=5?并说明理由.【分析】〔1〕根据根本不等式的性质求出的最小值即可;〔2〕根据根本不等式的性质得到〔x+1〕〔y+1〕的最大值是4,从而判断出结论即可.【解答】解:〔1〕,当且仅当x=y=1时,等号成立.所以的最小值为2.〔2〕不存在.因为x2+y2≥2xy,所以〔x+y〕2≤2〔x2+y2〕=2〔x+y〕,∴〔x+y〕2﹣2〔x+y〕≤0,又x,y∈〔0,+∞〕,所以x+y≤2.从而有〔x+1〕〔y+1〕≤≤=4,因此不存在x,y,满足〔x+1〕〔y+1〕=5.【点评】此题考察了根本不等式的性质,注意应用性质的条件,此题是一道中档题.25.〔2021•天津一模〕某车间方案生产甲、乙两种产品,甲种产品每吨消耗A原料6吨、B原料4吨、C原料4吨,乙种产品每吨消耗A原料3吨、B原料12吨、C原料6吨.每天原料的使用限额为A原料240吨、B原料400吨、C原料240吨.生产甲种产品每吨可获利900元,生产乙种产品每吨可获利600元,分别用x,y表示每天生产甲、乙两种产品的吨数〔Ⅰ〕用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;〔Ⅱ〕每天分别生甲、乙两种产品各多少吨,才能使得利润最大?并求出此最大利润.【分析】〔Ⅰ〕写出约束条件,画出图象即可,〔Ⅱ〕设出目标函数,欲求利润最大,即求可行域中的最优解,将目标函数看成是一条直线,分析目标函数Z与直线截距的关系,进而求出最优解.【解答】解:〔Ⅰ〕由x,y满足的数学关系式为,该二元一次不等式组所表示的平面区域为图中的阴影局部.〔Ⅱ〕解:设利润为z万元,那么目标函数z=900x+600y,所以y=﹣x+,这是斜率为﹣,在y轴上的截距为的一族平行直线.当取最大值时,z的值最大,又因为x,y满足约束条件,所以由图可知,当直线z=900x+600y经过可行域中的点M时,截距的值最大,即z的值最大.解方程组,得点M的坐标为〔30,20〕,所以Z max=900×30+600×20=39000.故每天生产甲种产品30吨,乙种产品20吨时利润最大,且最大利润为39000元.【点评】此题主要考察生活中的优化问题,利用条件建立二元二次不等式组,利用线性规划的知识进展求解是解决此题的关键.26.〔2021•滨海新区模拟〕某家公司每月生产两种布料A和B,所有原料是三种不同颜色的羊毛.下表给出了生产每匹每种布料所需的羊毛量,以及可供使用的每种颜色的羊毛的总量.羊毛颜色每匹需要/kg供应量/kg布料A布料B红331050绿421200黄261800生产每匹布料A、B的利润分别为60元、40元.分别用x、y表示每月生产布料A、B的匹数.〔Ⅰ〕用x、y列出满足生产条件的数学关系式,并画出相应的平面区域;〔Ⅱ〕如何安排生产才能使得利润最大?并求出最大的利润.【分析】〔Ⅰ〕根据条件建立不等式关系,利用二元一次不等式组表示平面区域进展作图即可.〔Ⅱ〕求出目标函数,利用线性规划的知识进展求解.【解答】解:〔Ⅰ〕设每月生产布料A、B分别为x匹、y匹,利润为Z元,那么,对应的可行域如图:〔Ⅱ〕设最大利润为z,那么目标函数为z=60x+40y,那么y=﹣x+,平移直线y=﹣x+,当直线y=﹣x+经过可行域上M 时,截距最大,即z最大.解方程组,得M的坐标为x=250,y=100所以z max=60x+40y=19000.答:该公司每月生产布料A、B分别为250、100匹时,能够产生最大的利润,最大的利润是19000 元.【点评】此题主要考察线性规划的应用,建立约束条件,利用线性规划的知识进展求解是解决此题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[基础训练A 组]
一、选择题(六个小题,每题5分,共30分)
1.若02522>-+-x x ,则221442-++-x x x 等于( )
A .54-x
B .3-
C .3
D .x 45-
2.函数y =log 1(x +11+x +1) (x > 1)的最大值是 ( )
A .-2
B .2
C .-3
D .3
3.不等式x
x --213≥1的解集是 ( ) A .{x|
43≤x ≤2} B .{x|4
3≤x <2} C .{x|x >2或x ≤43} D .{x|x <2} 4.设a >1>b >-1,则下列不等式中恒成立的是 ( )
A .b
a 11< B .
b a 11> C .a >b 2 D .a 2>2b 5.如果实数x,y 满足x 2+y 2=1,则(1-xy) (1+xy)有 ( )
A .最小值
21和最大值1 B .最大值1和最小值4
3 C .最小值43而无最大值 D .最大值1而无最小值 6.二次方程x 2+(a 2
+1)x +a -2=0,有一个根比1大,另一个根比-1小,
则a 的取值范围是 ( )
A .-3<a <1
B .-2<a <0
C .-1<a <0
D .0<a <2
二、填空题(五个小题,每题6分,共30分) 1.不等式组⎩
⎨⎧->-≥32x x 的负整数解是____________________。

2.一个两位数的个位数字比十位数字大2,若这个两位数小于30,
则这个两位数为____________________。

3.不等式0212<-+x
x 的解集是__________________。

4.当=x ___________时,函数)2(22x x y -=有最_______值,其值是_________。

5.若f(n)=)(21)(,1)(,122N n n
n n n n g n n ∈=
--=-+ϕ,用不等号 连结起来为____________.
三、解答题(四个小题,每题10分,共40分)
1.解log (2x – 3)(x 2-3)>0
2.不等式04
9)1(220822<+++++-m x m mx x x 的解集为R,求实数m 的取值范围。

3.求y x z +=2的最大值,使式中的x 、y 满足约束条件⎪⎩
⎪⎨⎧-≥≤+≤.1,1,y y x x y
4.求证:ca bc ab c b a ++≥++2
22
[综合训练B 组]
一、选择题(六个小题,每题5分,共30分)
1.一元二次不等式ax 2+bx +2>0的解集是(-21,3
1),则a +b 的值是_____。

A. 10 B. -10 C. 14 D. -14
2.下列不等式中:
①0232>-+x x 和 0432>-+x x ②3
58354++>++x x x 和 84>x ③3
58354-+>-+x x x 和 84>x ④023>-+x x 和 0)2)(3(>-+x x 不等价的是( )A .① 和② B .① 和③ C .②和③ D .②、③和④
3.关于x 的不等式(k 2-2k +25)x <(k 2-2k +2
5)1–x 的解集是 ( )
A .x >21
B .x <2
1 C .x >
2 D .x <2 4.下列各函数中,最小值为2的是 ( ) A .y=x +x 1 B .y= sinx +x sin 1,x ∈(0,2
π) C .y=232
2++x x D .y=x +12-x 5.如果x 2+y 2=1,则3x -4y 的最大值是 ( )
A .3
B .
51 C .4 D .5 6.已知函数y=ax 2+bx +c(a ≠0)的图象经过点(-1,3)和(1,1)两点,若0<c <1,
则a 的取值范围是 ( )
A .(1,3)
B . (1,2)
C .[2,3)
D .[1,3]
二、填空题(五个小题,每题6分,共30分)
1.设实数x 、y 满足x 2
+2xy -1=0,则x +y 的取值范围是___________。

2.函数y =2x +1+x 的值域是________________。

3.不等式0)
1()10)(3(2≥---x x x x 的解集是___________. 4.已知f(x)=ux+v,x ∈[-1,1],且2u 2+6v 2=3,那么f(x)的最大值是________.
5.设x 、y ∈R + 且y
x 91+=1,则x+y 的最小值为________. 三、解答题(四个小题,每题10分,共40分)
1. 在函数x y 1=的图象上,求使y x 11+取最小值的点的坐标。

2. 函数4522++=
x x y 的最小值为多少?
3.若a -1≤x 21log ≤a 的解集是[
41,2
1],则求a 的值为多少?
4.设,10<<a 解不等式:()
02log 2<--x x a a a
[提高训练C 组]
一、选择题(六个小题,每题5分,共30分)
1.若方程05)2(2=++++m x m x 只有正根,则m 的取值范围是( ).
A .4-≤m 或4≥m
B . 45-≤<-m
C .45-≤≤-m
D . 25-<<-m
2.若c a >且0>+c b ,则不等式0))((>-+-a
x b x c x 的解集为( ) A .{}c x b x a x ><<-或,| B . {}b x c x a x ><<-或,|
C .{}c x a x b x ><<-或,|
D . {}a x c x b x ><<-或,|
3.不等式lgx 2<lg 2
x 的解集是 ( ) A .(
100
1,1) B .(100,+∞) C . (100
1,1)∪(100,+∞) D .(0,1)∪(100,+∞) 4.若不等式x 2-log a x <0在(0,2
1)内恒成立,则a 的取值范围是 ( ) A .161≤x <1 B .161<a <1 C .0<a ≤161 D .0<a <161 5.若不等式0≤x 2-ax +a ≤1有唯一解,则a 的取值为 ( )
A .0
B .2
C .4
D .6
6.a > b > 0, 下列不等式一定成立的是 ( )
A .a +b b a 11+>
B .b
c a c < C .b a b a b a >++22 D .b a ab ab b a +>>+22
二、填空题(五个小题,每题6分,共30分)
1.不等式log 2 (2x -1) ·log 2 (2x +1-2)<2的解集是_______________。

2.已知a ≥0,b ≥0,a +b =1,则21+
a +21+
b 的范围是____________。

3.函数f(x)=x 1-x(0<x ≤4
1)的最小值为________. 4.设0≠x ,则函数1)1(2-+=x
x y 在x =________时,有最小值__________。

5.不等式24x -+x x
≥0的解集是________________。

三、解答题(四个小题,每题10分,共40分)
1.已知函数y =1
3422+++x n x mx 的最大值为7,最小值为-1,求此函数式。

2.已知2>a ,求证:()()1log log 1+>-a a a a
3.已知集合A=⎭⎬⎫⎩⎨⎧-<-=⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛<---)26(log )9(log |,212|31231)1(3322x x x B x x x x , 又A ∩B={x|x 2
+ax+b <0},求a+b 等于多少?
3. 画出下列不等式组表示的平面区域, ⎪⎪⎩⎪⎪⎨⎧≤≤≤≤≤+≤+.
110,100,3623,242y x y x y x
高中数学必修5第三章不等式题组训练
参考答案
[基础训练A 组]
一、选择题 1.C 2.B 3.B 4.C 5.B 6.C
二、填空题 1.1,2-- 2. 13或24 3.),2(+∞ 4. 1,,1大± 5. )()()(n g n n f <<φ
三、解答题 1.),2()2,3(+∞∈ x 2. 21-
<m 3.3max =Z 4.提示:由ab b a 222≥+ 或作差
[综合训练B 组]
一、选择题 1.D 2.B 3.B 4. 5.D 6.B
二、填空题 1.(][)+∞-∞-,11, 2.[)+∞-,2 3. ()()()10,31,00, ∞- 4. 2 5. 16
三、解答题1.略 2. ()11, 3. 2
5 4. 2=a [提高训练C 组]
一、选择题 1.D 2.D 3.D 4.A 5.B 6.D
二、填空题1.⎪⎭⎫ ⎝⎛32452log ,log 2. ⎥⎦⎤⎢⎣⎡+2,2622 3.415 4. 3,1± 5. [)
(]2,00,3 - 三、解答题1.1
334322+++=x x x y 2. 略3.1- 4. 略。

相关文档
最新文档