专题23 多边形内角和问题(解析版)
《多边形及其内角和》典型例题
《多边形及其内角和》典型例题典型例题1.一个n边形的内角和与外角和的比是4:1,则n = ( )A.8 B.9 C.10 D.12答案:C说明:因为多边形的外角和为360º,而这个n边形的内角和与它的外角和之比是4:1,所以这个n边形的内角和为360º×4 = 1440º,又因为n边形的内角和为(n−2)×180º,所以(n−2)×180º = 1440º,可解得n = 10,答案为C.2.某同学在计算一个多边形的内角和时,少算了一个内角的度数,结果得出内角和为600º,那么这个多边形的内角和应该_________ ,少算的那个角的度数为_________.答案:720º;120º说明:因为n边形的内角和为(n−2)×180º,而该多边形少算了一个角时内角和为600º,所以(n−2)×180º>600º,并且(n−2)×180º<600º+180º,可解得n = 6,这时这个多边形的内角和为720º,少算的那个角的度数为120º.3.一个多边形除一个内角外,其余内角和是760º,求此多边形的边数以及未求和的内角大小.解析:设此多边形的边数为n,未求和的一个内角为α,则0º<α<180º,由题设(n−2)•180º = 760º+α,所以n =+2 = 6+因为n为整数,所以40º+α是180º的整数倍,又0º<α<180º,所以α= 140º,n = 7为所求.4.有一个多边形的所有内角都相等,且它的一个外角与一个内角的比是2:3,求它的边数.解析1:设此多边形的边数为n,则360º:(n−2)•180º = 2:3,即=,所以2n−4 = 6,2n = 10,n = 5.即此多边形的边数为5.解析2:设此多边形的边数为n,因为多边形的一个内角和一个外角的和是180º,外角的度数:内角的度数= 2:3,所以一个内角的度数是180º×= 108º,于是(n−2)•180º = n•108º,解得n = 5.即此多边形的边数为5.。
多边形的内角和与外角和知识点-例题-习题
第二十四讲 多边形的内角和与外角和【要点梳理】知识点一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形. 2.相关概念:边:组成多边形的各条线段叫做多边形的边. 顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n 边形有n 个内角. 外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角. 对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:要点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可; (2)过n 边形的一个顶点可以引(n-3)条对角线,n 边形对角线的条数为(3)2n n -;(3)过n 边形的一个顶点的对角线可以把n 边形分成(n-2)个三角形. 知识点二、多边形内角和n 边形的内角和为(n-2)·180°(n≥3). 要点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于(2)180n n-°;知识点三、多边形的外角和 多边形的外角和为360°. 要点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n 边形的外角和恒等于360°,它与边数的多少无关;(2)正n 边形的每个内角都相等,所以它的每个外角都相等,都等于360n°;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.凸多边形 凹多边形【典型例题】类型一、多边形的概念例1.如图,在六边形ABCDEF中,从顶点A出发,可以画几条对角线?它们将六边形ABCDEF分成哪几个三角形?【答案与解析】解:如图,P从顶点A出发,可以画三条对角线,它们将六边形ABCDEF分成的三角形分别是:△ABC、△ACD、△ADE、△AEF.【总结升华】从一个多边形一个顶点出发,可以连的对角线的条数(n-3)条,分成的三角形数是个数(n-2)个.举一反三:【变式】过正十二边形的一个顶点有条对角线,一个正十二边形共有条对角线【答案】9,54。
多边形内角和附答案
多边形内角和、外角和及有关性质一.选择题(共11小题)1.如图,把一直尺放置在一个三角形纸片上,则下列结论正确的是()A.∠1+∠6>180°B.∠2+∠5<180°C.∠3+∠4<180°D.∠3+∠7>180°2.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形3.如果一个多边形的内角和是720°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形4.若一个多边形的内角和是900°,则这个多边形的边数是()A.5B.6C.7D.85.若一个正n边形的每个内角为156°,则这个正n边形的边数是()A.13 B.14 C.15 D.166.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.90°+αC.D.360°﹣α7.将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°8.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A.90°B.135°C.270°D.315°9.下列正多边形中,内角和等于外角和的是()A.正三边形B.正四边形C.正五边形D.正六边形10.一个多边形的外角和是内角和的一半,则这个多边形的边数为()A.8B.7C.6D.511.如图,∠1、∠2、∠3、∠4 是五边形ABCDE的4个外角,若∠EAB=120°,则∠1+∠2+∠3+∠4等于()A.540°B.360°C.300°D.240°二.填空题(共4小题)12.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2=_________度.13.一个多边形的内角和比外角和的3倍多180°,则它的边数是_________.14.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3= _______.15.如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2=_________.三.解答题(共5小题)16.一个正多边形的一个内角的度数比相邻外角的6倍还多12°,求这个正多边形的内角和.17.一个多边形的内角和与外角和的度数之比是13:2,求这个多边形的内角和及边数.18.如图,长方形纸片EFGH可以绕着长方形纸片ABCD上的点O自由的旋转,当边EH与AB相交时,形成了∠1,∠2,求∠1+∠2的度数.19.如图,已知在锐角△ABC中,BE、CD分别垂直AC、AB.求证:∠DHE+∠A=180°.20.一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的,求这个多边形的边数及内角和.2014年09月07日752444625的初中数学组卷参考答案与试题解析一.选择题(共11小题)1.(2014•泰安)如图,把一直尺放置在一个三角形纸片上,则下列结论正确的是()A.∠1+∠6>180°B.∠2+∠5<180°C.∠3+∠4<180°D.∠3+∠7>180°考点:平行线的性质;三角形内角和定理;多边形内角与外角.分析:根据平行线的性质推出∠3+∠4=180°,∠2=∠7,根据三角形的内角和定理得出∠2+∠3=180°+∠A,推出结果后判断各个选项即可.解答:解:A、∵DG∥EF,∴∠3+∠4=180°,∵∠6=∠4,∠3>∠1,∴∠6+∠1<180°,故A选项错误;B、∵DG∥EF,∴∠5=∠3,∴∠2+∠5=∠2+∠3=(180°﹣∠1)+(180°﹣∠ALH)=360°﹣(∠1+∠ALH)=360°﹣(180°﹣∠A)=180°+∠A>180°,故B选项错误;C、∵DG∥EF,∴∠3+∠4=180°,故C选项错误;D、∵DG∥EF,∴∠2=∠7,∵∠3+∠2=180°+∠A>180°,∴∠3+∠7>180°,故D选项正确;故选:D.点评:本题考查了平行线的性质,三角形的内角和定理的应用,主要考查学生运用定理进行推理的能力,题目比较好,难度适中.2.(2014•三明)一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形考点:多边形内角与外角.分析:此题可以利用多边形的外角和和内角和定理求解.解答:解:设所求正n边形边数为n,由题意得(n﹣2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.点评:本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于360°,多边形的内角和为(n﹣2)•180°.3.(2014•来宾)如果一个多边形的内角和是720°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形考点:多边形内角与外角.分析:n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.解答:解:这个正多边形的边数是n,则(n﹣2)•180°=720°,解得:n=6.则这个正多边形的边数是6.故选:C.点评:考查了多边形内角和定理,此题比较简单,只要结合多边形的内角和公式,寻求等量关系,构建方程求解.4.(2014•衡阳)若一个多边形的内角和是900°,则这个多边形的边数是()A.5B.6C.7D.8考点:多边形内角与外角.分析:根据多边形的内角和公式(n﹣2)•180°,列式求解即可.解答:解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选:C.点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.(2014•莱芜)若一个正n边形的每个内角为156°,则这个正n边形的边数是()A.13 B.14 C.15 D.16考点:多边形内角与外角.专题:常规题型.分析:由一个正多边形的每个内角都为156°,可求得其外角的度数,继而可求得此多边形的边数,则可求得答案.解答:解:∵一个正多边形的每个内角都为156°,∴这个正多边形的每个外角都为:180°﹣156°=24°,∴这个多边形的边数为:360°÷24°=15,故选:C.点评:此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握多边形的外角和定理是关键.6.(2014•达州)如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.90°+αC.D.360°﹣α考点:多边形内角与外角;三角形内角和定理.专题:几何图形问题.分析:先求出∠ABC+∠BCD的度数,然后根据角平分线的性质以及三角形的内角和定理求解∠P的度数.解答:解:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故选:C.点评:本题考查了多边形的内角和外角以及三角形的内角和定理,属于基础题.7.(2014•临沂)将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°考点:多边形内角与外角.专题:计算题.分析:利用多边形的内角和公式即可求出答案.解答:解:n边形的内角和是(n﹣2)•180°,n+1边形的内角和是(n﹣1)•180°,因而(n+1)边形的内角和比n边形的内角和大(n﹣1)•180°﹣(n﹣2)•180=180°.故选:C.点评:本题主要考查了多边形的内角和公式,是需要识记的内容.8.(2014•大丰市模拟)如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A.90°B.135°C.270°D.315°考点:多边形内角与外角;三角形内角和定理.分析:先根据直角三角形的性质求得两个锐角和是90度,再根据四边形的内角和是360度,即可求得∠1+∠2的值.解答:解:∵∠C=90°,∴∠A+∠B=90°.∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°﹣90°=270°.故选:C.点评:本题考查了直角三角形的性质和四边形的内角和定理.知道剪去直角三角形的这个直角后得到一个四边形,根据四边形的内角和定理求解是解题的关键.9.(2014•燕山区一模)下列正多边形中,内角和等于外角和的是()A.正三边形B.正四边形C.正五边形D.正六边形考点:多边形内角与外角.分析:根据多边形的内角和和外角和列出方程求解即可.解答:解:根据题意得:(n﹣2)×180°=360°,解得:n=4,故选B.点评:本题考查多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征.10.(2014•密云县二模)一个多边形的外角和是内角和的一半,则这个多边形的边数为()A.8B.7C.6D.5考点:多边形内角与外角.分析:根据多边形的外角和是360度,即可求得多边形的内角和的度数,依据多边形的内角和公式即可求解.解答:解:多边形的内角和是:2×360=720°.设多边形的边数是n,则(n﹣2)•180=720,解得:n=6.即这个多边形的边数是6.故选C.点评:本题主要考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化.11.(2014•将乐县质检)如图,∠1、∠2、∠3、∠4 是五边形ABCDE的4个外角,若∠EAB=120°,则∠1+∠2+∠3+∠4等于()A.540°B.360°C.300°D.240°考点:多边形内角与外角.分析:根据题意先求出∠5的度数,然后根据多边形的外角和为360°即可求出∠1+∠2+∠3+∠4的值.解答:解:由题意得,∠5=180°﹣∠EAB=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°﹣∠5=300°.故选:C.点评:本题考查了多边形的外角和等于360°的性质以及邻补角的和等于180°的性质,是基础题,比较简单.二.填空题(共4小题)12.(2014•抚顺)将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2=70度.考点:三角形内角和定理;多边形内角与外角.专题:几何图形问题.分析:分别根据正三角形、正四边形、正五边形各内角的度数及平角的定义进行解答即可.解答:解:∵∠3=32°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,∴∠4=180°﹣60°﹣32°=88°,∴∠5+∠6=180°﹣88°=92°,∴∠5=180°﹣∠2﹣108°①,∠6=180°﹣90°﹣∠1=90°﹣∠1 ②,∴①+②得,180°﹣∠2﹣108°+90°﹣∠1=92°,即∠1+∠2=70°.故答案为:70°.点评:本题考查的是三角形内角和定理,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.13.(2014•自贡)一个多边形的内角和比外角和的3倍多180°,则它的边数是9.考点:多边形内角与外角.专题:计算题.分析:多边形的内角和比外角和的3倍多180°,而多边形的外角和是360°,则内角和是3×360°+180°.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,得到方程,从而求出边数.解答:解:根据题意,得(n﹣2)•180°=3×360°+180°,解得:n=9.则这个多边形的边数是9.故答案为:9.点评:考查了多边形内角与外角,此题只要结合多边形的内角和公式寻求等量关系,构建方程即可求解.14.(2014•通城县模拟)如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3=180.考点:多边形内角与外角;平行线的性质.分析:根据两直线平行,同旁内角互补求出∠B+∠C=180°,从而得到以点B、点C为顶点的五边形的两个外角的度数之和等于180°,再根据多边形的外角和定理列式计算即可得解.解答:解:∵AB∥CD,∴∠B+∠C=180°,∴∠4+∠5=180°,根据多边形的外角和定理,∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3=360°﹣180°=180°.故答案为:180°.点评:本题考查了平行线的性质,多边形的外角和定理,是基础题,理清求解思路是解题的关键.15.(2014•丹徒区二模)如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2= 240°.考点:多边形内角与外角;三角形内角和定理.分析:三角形纸片中,剪去其中一个60°的角后变成四边形,则根据多边形的内角和等于360度即可求得∠1+∠2的度数.解答:解:根据三角形的内角和定理得:四边形除去∠1,∠2后的两角的度数为180°﹣60°=120°,则根据四边形的内角和定理得:∠1+∠2=360°﹣120°=240°.故答案为:240°.点评:主要考查了三角形及四边形的内角和是360度的实际运用与三角形内角和180度之间的关系.三.解答题(共5小题)16.(2012•海曙区模拟)一个正多边形的一个内角的度数比相邻外角的6倍还多12°,求这个正多边形的内角和.考点:多边形内角与外角.专题:计算题.分析:设这个正多边形的一个外角的度数为x,利用一个内角与相邻外角互补得到180°﹣x=6x+12°,解得x=24°,再根据外角和定理计算出正多边形的边数,然后根据多边形内角和定理计算即可.解答:解:设这个正多边形的一个外角的度数为x,根据题意得180°﹣x=6x+12°,解得x=24°,所以这个正多边形边数==15,所以这个正多边形的内角和=(15﹣2)×180°=2340°.点评:本题考查了多边形内角与外角:内角和定理:(n﹣2)•180°(n≥3,且n为整数);多边形的外角和等于360度.17.一个多边形的内角和与外角和的度数之比是13:2,求这个多边形的内角和及边数.考点:多边形内角与外角.分析:一个多边形的内角和与外角和的度数之比是13:2,任何多边形的外角和是360度,因而多边形的内角和是13×(360÷2)=2340度.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:这个多边形的内角和:13×(360÷2)=2340°,设这个多边形的边数为n,依题意得:(n﹣2)180°=2340°,解得n=15.答:这个多边形的内角和是2340°,边数是15.点评:考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.18.如图,长方形纸片EFGH可以绕着长方形纸片ABCD上的点O自由的旋转,当边EH与AB相交时,形成了∠1,∠2,求∠1+∠2的度数.考点:多边形内角与外角.分析:根据多边形外角和为360°可得∠1+∠2=360°﹣3×90°,进而得到答案.解答:解:∵五边形JHGIB外角和为360°,∠B、∠H、∠G的外角都是直角,∴∠1+∠2=360°﹣90°×3=90°.答:∠1+∠2的度数是90°.点评:此题主要考查了多边形的内角与外角,关键是掌握多边形外角和为360°.19.如图,已知在锐角△ABC中,BE、CD分别垂直AC、AB.求证:∠DHE+∠A=180°.考点:多边形内角与外角.专题:证明题.分析:根据垂直,可得直线所成的角是90°,根据四边形的内角和公式,可得答案.解答:证明:∵BE、CD分别垂直AC、AB,∴∠HDA=∠HEA=90°.∵∠A+∠HDA+∠HEA+∠DHE=(4﹣2)180°,∴∠A+∠DHE=360°﹣90°﹣90°,∴∠A+∠DHE=90°点评:本题考查了多边形内角与外角,利用了垂直的定义,四边形的内角和公式.20.一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的,求这个多边形的边数及内角和.考点:多边形内角与外角.分析:此题要结合多边形的内角与外角的关系来寻求等量关系,构建方程求出每个外角.多边形外角和是固定的360°.解答:解:设多边形的一个内角为x度,则一个外角为x度,依题意得x+x=180°,x=180°,x=108°.360°÷(×108°)=5.(5﹣2)×180°=540°.答:这个多边形的边数为5,内角和是540°.点评:本题考查多边形的内角与外角的关系、方程的思想.关键是记住多边形一个内角与外角互补和外角和的特征.。
专题23 多边形内角和问题(解析版)
专题23 多边形内角和问题1.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
2.多边形的内角:多边形相邻两边组成的角叫做它的内角。
3.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫多边形的外角。
4.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
5.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
6.多边形内角和公式:n 边形的内角和等于(n-2)·180°7.多边形的外角和:多边形的内角和为360°。
8.多边形对角线的条数:(1)从n 边形的一个顶点出发可以引(n-3)条对角线,把多边形分成(n-2)个三角形。
(2)n 边形共有23)-n(n 条对角线。
【例题1】(2019贵州铜仁)如图为矩形ABCD ,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a 和b ,则a +b 不可能是( )A .360°B .540°C .630°D .720°【答案】C .【解析】一条直线将该矩形ABCD 分割成两个多边形,每一个多边形的内角和都是180°的倍数,都能被180整除,分析四个答案,只有630不能被180整除,所以a +b 不可能是630°.专题知识回顾 专题典型题考法及解析【例题2】(2019广西梧州)正九边形的一个内角的度数是()A.108°B.120°C.135°D.140°【答案】D.【解析】先根据多边形内角和定理:180°•(n﹣2)求出该多边形的内角和,再求出每一个内角的度数.该正九边形内角和=180°×(9﹣2)=1260°,则每个内角的度数=.【例题3】(2019湖南湘西州)已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【答案】D【解析】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理。
多边形的内角和与外角和练习题及解析
一、选择题1. 从六边形的一个顶点,可以引()条对角线.A.3B.4C.5D.62. 一个凸多边形的每一个内角都等于150∘,则这个多边形所有对角线的条数共有()A.42条B.54条C.66条D.78条3. 一个多边形的内角和是1800∘,则这个多边形是()边形.A.9B.10C.11D.124. 十二边形的外角和是()A.180∘B.360∘C.1800∘D.2160∘5. 从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A.6B.7C.8D.96. 一个多边形的每个外角都等于30∘,则这个多边形的边数是()A.10B.11C.12D.137. 能够铺满地面的正多边形组合是()A.正六边形和正方形B.正五边形和正八边形C.正方形和正八边形D.正三角形和正十边形8. 用同样大小的多边形地砖不能镶嵌成一个平面的是()A.正方形B.正六边形C.正五边形D.正三角形9. 将一长方形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360∘B.540∘C.720∘D.900∘10. 若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是()A.2:1B.1:1C.5:2D.5:411. 一个多边形的内角和是720∘,这个多边形是()A.五边形B.六边形C.七边形D.六边形12. 如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340∘的新多边形,则原多边形的对角线条数为()A.77B.90C.65D.10413. 小明在加一多边形的角的和时,不小心把一个角多加了一次,结果为1500∘,则小明多加的那个角的大小为()A.60∘B.80∘C.100∘D.120∘二、填空题14. 与正三角形组合在一起能铺满地面的另一种正多边形是________.(只要求写出一种即可)15. 从一个多边形的某个顶点出发,分别连接这个点和其余各顶点,可以把这个多边形分割成15个三角形,则这个多边形的边数为________.16. 当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个________时,就拼成一个平面图形.17. 用边长相等的正三角形与正方形能够密铺,设在一个顶点周围有x个正三角形的角,有y个正方形的角,则x=________,y=________.18. 一个正________边形的每个内角都是108∘,则________=________.19. 过m边形的顶点能作7条对角线,n边形没有对角线,k边形有k条对角线,则(m−k)n=________.20. 用两个边长为1的正六边形拼接成如图(a)的图形,其周长为10;用三个边长为1的正六边形可以拼接成如图(b)或(c)的图形,其周长分别为12和14.若要拼接成周长为18的图形,所需这样的正六边形至少为x个,至多为y个,则x+y=________.21. 现有四种地面砖,它们的形状分别是:正三角形.正方形.正六边形.正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有________种.三、解答题22. 小明在计算一个多边形的内角和,求得的内角和为2220∘,经过检查发现少加了一个内角,请问这个内角为多少度?这个多边形是几边形?23. 已知一个正多边形相邻的内角比外角大140∘.(1)求这个正多边形的内角与外角的度数;(2)直接写出这个正多边形的边数;(3)只用这个正多边形若干个,能否镶嵌?并说明理由.24. 一个凸多边形共有20条对角线,它是几边形?是否存在有18条对角线的多边形?如果存在,它是几边形?如果不存在,说明得出结论的道理.25. 凸六边形纸片剪去一个角后,得到的多边形的边数可能是多少?画出图形说明.26. 某单位的地板有三种边长相等的正多边形铺设,一个顶点处每种多边形只用一个,设这三种正多边形的边数分别是x ,y ,z .求1x +1y +1z 的值. 补充练习1.若一个多边形的边数增加1,则它的内角和 ( ) A.不变 B.增加1 C.增加180° D.增加360°2.当一个多边形的边数增加时,其外角和 ( ) A.增加 B.减少 C.不变 D.不能确定3.某学生在计算四个多边形的内角和时,得到下列四个答案,其中错误的是( ) A.180° B.540° C.1900° D.1080°4.已知:如图,五边形ABCDE 中,AE ∥CD,∠A=107°,∠B=121°,求∠C 的度数..EDBCA5. 如图,一个六边形的六个内角都是120°,AB=1,BC=CD=3,DE=2,求该六边形的周长.6. 一个多边形中,每个内角都相等,并且每个外角等于它的相邻内角的23, 求这个多边形的边数及内角和.7.若两个多边形的边数之比是1:2,内角和度数之比为1:3, 求这两个多边形的边数.8.已知四边形ABCD中,∠A:∠B=7:5,∠A-∠C=∠B,∠C=∠D-40°, 求各内角的度数.9.一个多边形除了一个内角等于α,其余角的和等于2750°,求这个多边形的边数及α.E FDBCAAB10、在ΔABC 中,AB =AC ,中线BD 把ΔABC 的周长分为12和9两部分,求ΔABC 各边的长。
多边形内角和(7种题型)-2023年新八年级数学核心知识点与常见题型(人教版)(解析版)
多边形内角和(7种题型)【知识梳理】一、多边形内角和n 边形的内角和为(n-2)·180°(n ≥3).要点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形;二、多边形的外角和多边形的外角和为360°.要点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n 边形的外角和恒等于360°,它与边数的多少无关;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.三.平面镶嵌(密铺)(1)平面图形镶嵌的定义:用形状,大小完全相同的一种或几种平面图形进行拼接.彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的镶嵌.(2)正多边形镶嵌有三个条件限制:①边长相等;②顶点公共;③在一个顶点处各正多边形的内角之和为360°.判断一种或几种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角,若能构成360°,则说明能够进行平面镶嵌,反之则不能.(3)单一正多边形的镶嵌:正三角形,正四边形,正六边形.(4)两种正多边形的镶嵌:3个正三角形和2个正方形、四个正三角形和1个正六边形、2个正三角形和2个正六边形、1个正三角形和2个正十二边形、1个正方形和2个正八边形等.(5)用任意的同一种三角形或四边形能镶嵌成一个平面图案.180°【考点剖析】题型一:利用内角和求边数例1.一个多边形的内角和为540°,则它是( )A.四边形 B.五边形 C.六边形 D.七边形解析:熟记多边形的内角和公式(n-2)·180°.设它是n边形,根据题意得(n-2)·180=540,解得n=5.故选B.方法总结:熟记多边形的内角和公式是解题的关键.【变式1】(2021·河北承德市·八年级期末)一个多边形的内角和是900°,这个多边形的边数是()A.3 B.4 C.5 D.7【答案】D【分析】根据多边形的内角和公式:(n-2)•180°去求.【详解】解:设该多边形的边数为n则:(n-2)•180°=900°,解得:n=7.故选:D.【点睛】本题考查了多边形的内角和,关键是要记住公式并会解方程【变式2】(2021·浙江省余姚市实验学校八年级期中)若一个多边形的内角和是720°,则这个多边形的边数为()A.4 B.5 C.6 D.7【答案】C【分析】根据正多边形的内角和定义(n−2)×180°,先求出边数,再用内角和除以边数即可求出这个正多边形的每一个内角.【详解】解:(n−2)×180°=720°,∴n−2=4,∴n=6.∴这个多边形的边数为6.故选:C.【点睛】考查了多边形内角与外角.解题的关键是掌握好多边形内角和公式:(n−2)×180°.题型二:求多边形的内角和例2.一个多边形的内角和为1800°,截去一个角后,得到的多边形的内角和为( )A.1620° B.1800°C.1980° D.以上答案都有可能解析:1800÷180=10,∴原多边形边数为10+2=12.∵一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1,∴新多边形的边数可能是11,12,13,∴新多边形的内角和可能是1620°,1800°,1980°.故选D.方法总结:一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1.根据多边形的内角和公式求出原多边形的边数是解题的关键.【变式1】(2021·云南临沧·八年级期末)一个八边形的内角和度数为()A.360°B.720°C.900°D.1080°【答案】D【分析】应用多边形的内角和公式计算即可.【详解】(n﹣2)•180=(8﹣2)×180°=1080°.故选:D.【点睛】此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n−2)•180 (n≥3)且n为整数).【变式2】(2021·广西来宾市·八年级期中)已知一个多边形的每一个内角都比它相邻的外角的4倍多30°,求这个多边形是几边形?并求出这个多边形的内角和.【答案】十二边形,1800°【分析】首先设外角为x°,则内角为(4x+30)°,根据内角与相邻的外角是互补关系可得x+4x+30=180,解方程可得x的值,再利用外角和360°÷外角的度数可得边数,进而求出内角和.【详解】解:设外角为x°,由题意得:x+4x+30=180,解得:x=30,360°÷30°=12,∴(12−2)×180=1800°,∴这个多边形的内角和是1800°,是十二边形.【点睛】本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和公式以及外角和,构建方程求解即可.【变式3】(2020·南京市宁海中学八年级开学考试)问题1:如图,我们将图(1)所示的凹四边形称为“镖形”.在“镖形”图中,∠AOC与∠A、∠C、∠P的数量关系为∠AOC=∠A+∠C+∠P.问题2:如图(2),已知AP平分∠BAD,CP平分∠BCD,∠B=28°,∠D=48°,求∠P的大小;小明认为可以利用“镖形”图的结论解决上述问题:由问题1结论得:∠AOC=∠PAO+∠PCO+∠APC,所以2∠AOC=2∠PAO+2∠PCO+2∠APC,即2∠AOC=∠BAO+∠DCO+2∠APC;由“”得:∠AOC=∠BAO+∠B,∠AOC=∠DCO+∠D.所以2∠AOC=∠BAO+∠DCO+∠B+∠D.所以2∠APC= .所以∠APC= .请帮助小明完善上述说理过程,并尝试解决下列问题(问题1、问题2中得到的结论可以直接使用,不需说明理由);解决问题1:如图(3)已知直线平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系为解决问题2:如图(4),已知直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,则∠P与∠B、∠D的关系为【答案】问题1、问题2答案见解析;解决问题1:∠P=180°-12(∠B+∠D);解决问题2:∠P=90°+12(∠B+∠D)【分析】问题1:根据三角形的外角的性质即可得到结论;问题2:根据三角形外角的性质和问题1的结论求解即可;解决问题1:根据四边形的内角和等于360°可得(180°-∠1)+∠P+∠4+∠B=360°,∠2+∠P+(180°-∠3)+∠D=360°,然后整理即可得解;解决问题2:根据(1)的结论∠B+∠BAD=∠D+∠BCD,∠PAD+∠P=∠D+∠PCD,然后整理即可得解.【详解】解:问题1:连接PO并延长.则∠1=∠A+∠2,∠3=∠C+∠4,∵∠2+∠4=∠P,∠1+∠3=∠AOC,∴∠AOC=∠A+∠C+∠P;故答案为:∠AOC=∠A+∠C+∠P;问题2:如图2,由问题1结论得:∠AOC=∠PAO+∠PCO+∠APC,所以2∠AOC=2∠PAO+2∠PCO+2∠APC,即2∠AOC=∠BAO+∠DCO+2∠APC;由“三角形外角的性质”得:∠AOC=∠BAO+∠B,∠AOC=∠DCO+∠D.所以2∠AOC=∠BAO+∠DCO+∠B+∠D.所以2∠APC=∠B+∠D.所以∠APC= 12(∠B+∠D)=38°.解决问题1:如图3,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴(180°-2∠1)+∠B=(180°-2∠4)+∠D,在四边形APCB中,(180°-∠1)+∠P+∠4+∠B=360°,在四边形APCD中,∠2+∠P+(180°-∠3)+∠D=360°,∴2∠P+∠B+∠D=360°,∴∠P=180°-12(∠B+∠D);解决问题2:如图4,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∵(∠1+∠2)+∠B=(180°-2∠3)+∠D,∠2+∠P=(180°-∠3)+∠D,∴2∠P=180°+∠D+∠B,∴∠P=90°+12(∠B+∠D).故答案为:∠P=90°+12(∠B+∠D).【点睛】本题主要考查了三角形外角的性质,角平分线的性质,四边形的内角和,解题的关键在于能够熟练掌握相关知识进行求解.题型三:复杂图形中的角度计算例3.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( )A.450° B.540° C.630° D.720°解析:如图,∵∠3+∠4=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠8+∠9+∠5+∠6+∠7=五边形的内角和=540°,故选B.方法总结:根据图形特点,将问题转化为熟知的问题,体现了转化思想的优越性.【变式1】(2021·全国八年级单元测试)如图,在五边形ABCDE中,∠D=120°,与∠EAB相邻的外角是80°,与∠DEA,∠ABC相邻的外角都是60°,则∠C为________度.【答案】80【分析】利用邻补角的定义分别求出∠DEA,∠ABC,∠EAB的度数;再利用五边形的内角和为540毒,可求出∠C的度数.【详解】解:∵与∠EAB相邻的外角是80°,与∠DEA,∠ABC相邻的外角都是60°,∴∠DEA=180°-60°=120°,∠ABC=180°-60°=120°,∠EAB=180°-80°=100°;五边形的内角和为(5-2)×180°=540°;∴∠C=540°-120°-120°-120°-100°=80°.故答案为:80.【点睛】此题考查了多边形内角和的性质,涉及了邻补角的定义,熟练掌握相关基本性质是解题的关键.【变式2】(2020·南京市宁海中学八年级开学考试)如图,五边形ABCDE的两个内角平分线相交于点O,∠1,∠2,∠3是五边形的3个外角,若∠1+∠2+∠3=220°,则∠AOB=___________.【答案】70°【分析】先求出与∠EAB和∠CBA相邻的外角的度数和,然后根据多边形外角和定理即可求解.【详解】如图,∵∠1+∠2+∠3=220°,∴∠4+∠5=360°-220°=140°,∴∠EAB+∠CBA=220°,∵AO,BO分别平分∠EAB,∠ABC,∴∠OAB+∠OBA=110°,∴∠AOB=180°-(∠OAB+∠OBA)=70°.故答案是:70°.【点睛】本题主要考查了多边形外角和定理,三角形的内角和定理,熟练掌握多边形的外角和等于360°是解题的关键.【变式3】(2022春•武冈市期中)如图,求∠1+∠2+∠3+∠4+∠5+∠6+∠7的度数.【分析】利用三角形内角和定理将不规则图形转化成规则图形:五边形.【解答】解:如图,由三角形内角和定理得:∠1+∠5=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠5+∠2+∠3+∠4+∠6+∠7=∠8+∠9+∠2+∠3+∠4+∠6+∠7=180°×(5﹣2)=540°.【点评】本题主要考查多边形内角和,解题关键是利用三角形内角和定理将不规则图形转化成规则图形.【变式4】(2022春•宿城区校级月考)利用“模型”解决几何综合问题往往会取得事半功倍的效果.几何模型:如图(1),我们称它为“A”型图案,易证明:∠EDF=∠A+∠B+∠C.运用以上模型结论解决问题:(1)如图(2),“五角星”形,求∠A1+∠A2+∠A3+∠A4+∠A5=?分析:图中A1A3DA4是“A”型图,于是∠A2DA5=∠A1+∠A3+∠A4,所以∠A1+∠A2+∠A3+∠A4+∠A5=;(2)如图(3),“七角星”形,求∠A1+∠A2+∠A3+∠A4+∠A5+∠A6+∠A7的度数.【分析】(1)根据三角形外角的性质把5个角转化到一个三角形中可得答案;(2)根据三角形外角的性质把7个角转化到一个三角形中可得答案.【解答】解:(1)如图,由三角形外角的性质可得,∠1=∠A1+∠A4,∵∠A2DA5=∠1+∠A3,∴∠A2DA5=∠A1+∠A4+∠A3,∵∠A2DA5+∠A2+∠A5=180°,∴∠A1+∠A2+∠A3+∠A4+∠A5=180°,故答案为:180°;(2)如图,由(1)得,∠1=∠A1+∠A4+∠A5,∠2=∠A2+∠A3+∠A6,∵∠1+∠2+∠A7=180°,∴∠A1+∠A2+∠A3+∠A4+∠A5+∠A6+∠A7=180°.【点评】本题考查多边形的内角和与三角形外角的性质,能够根据三角形外角的性质进行转化是解题关键.题型四:利用方程和不等式确定多边形的边数例4.一个同学在进行多边形的内角和计算时,求得内角和为1125°,当他发现错了以后,重新检查,发现少算了一个内角,问这个内角是多少度?他求的是几边形的内角和?解析:本题首先由题意找出不等关系列出不等式,进而求出这一内角的取值范围;然后可确定这一内角的度数,进一步得出这个多边形的边数.解:设此多边形的内角和为x ,则有1125°<x <1125°+180°,即180°×6+45°<x <180°×7+45°,因为x 为多边形的内角和,所以它是180°的倍数,所以x =180°×7=1260°.所以7+2=9,1260°-1125°=135°.因此,漏加的这个内角是135°,这个多边形是九边形.方法总结:解题的关键是由题意列出不等式求出这个多边形的边数. 【变式1】.(2023春·全国·八年级专题练习)看图回答问题:(1)内角和为2014°,小明为什么说不可能?(2)小华求的是几边形的内角和?【答案】(1)理由见详解(2)13【分析】(1(2)根据题意设多边形的边数为x ,根据多边形的内角和定理即可求解.【详解】(1)解:∵设多边形的边数为n ,则n 边形的内角和是180(2)n ︒⨯−,∴内角和一定是180︒度的倍数,∵20141801134÷=,∴内角和为2014︒不可能.(2)解:设多边形的边数为x ,∴180(2)2014x ︒⨯−<︒,解得,171390x <, ∴多边形的边数是13,∴小华求的是十三边形的内角和.【点睛】本题主要考查多边形的内角和定理,掌握多边形的内角和定理是解题的关键.【变式2】(2023春·全国·八年级专题练习)解决多边形问题:(1)一个多边形的内角和是外角和的3倍,它是几边形?(2)小华在求一个多边形的内角和时,重复加了一个角的度数,计算结果是1170︒,这个多边形是几边形?【答案】(1)八边形(2)八边形【分析】(1)根据多边形的内角和公式、多边形的外角和等于360︒建立方程,解方程即可得;(2)设这个多边形是n 边形,重复加的一个角的度数为x ,则0180x ︒<<︒,再根据多边形的内角和公式建立等式,结合0180x ︒<<︒建立不等式组,解不等式组即可得.【详解】(1)解:设这个多边形是n 边形,由题意得:()18023360n ︒−=⨯︒,解得8n =,答:这个多边形是八边形.(2)解:设这个多边形是n 边形,重复加的一个角的度数为x ,则0180x ︒<<︒,由题意得:()18021170n x ︒−+=︒,解得1530180x n =︒−︒,则01530180180n ︒<︒−︒<︒,即153018001530180180n n ︒−︒>︒⎧⎨︒−︒<︒⎩,解得151722n <<, n Q 为正整数,8n ∴=,答:这个多边形是八边形.【点睛】本题考查了多边形的内角和与外角和、一元一次不等式组的应用,正确建立方程和不等式组是解题关键.题型五:已知各相等外角的度数,求多边形的边数例5.正多边形的一个外角等于36°,则该多边形是正( )A .八边形B .九边形C .十边形D .十一边形解析:正多边形的边数为360°÷36°=10,则这个多边形是正十边形.故选C.方法总结:如果已知正多边形的一个外角,求边数可直接利用外角和除以这个角即可.【变式1】.(2022春·八年级单元测试)已知一个多边形的每个外角都是30︒,那么这个多边形的边数是__________.【答案】12【分析】利用任何多边形的外角和是360︒除以外角度数即可求出答案.÷=,【详解】解:多边形的外角的个数是3603012所以多边形的边数是12,故答案为:12.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.【变式2】(2021·广西八年级期中)己知一个n边形的每一个外角都等于30°.(1)求n的值.(2)求这个n边形的内角和.【答案】(1)12;(2)1800°【分析】(1)用360°除以外角度数可得答案.(2)先求出每个内角的度数,再利用内角度数×内角的个数即可.【详解】解:(1)∵n边形的每一个外角都等于30°∴n=360°÷30°=12;(2)∵每个内角=180°-30°=150∴内角和=12×150°=1800°.【点睛】此题主要考查了多边形的内角和、外角和,关键是掌握多边形的外交和等于360°.题型六:多边形内角和与外角和的综合运用例6.一个多边形的内角和与外角和的和为540°,则它是( )A.五边形 B.四边形 C.三角形 D.不能确定解析:设这个多边形的边数为n,则依题意可得(n-2)×180°+360°=540°,解得n=3,∴这个多边形是三角形.故选C.方法总结:熟练掌握多边形的内角和定理及外角和定理,解题的关键是由已知等量关系列出方程从而解决问题.【变式1】(2021·陕西)一个多边形的内角和与外角和的度数之和为1260︒,求这个多边形的边数.【答案】多边形的边数为7【分析】设这个多边形的边数为n,根据这个多边形的内角和+外角和360°=1800°,列出方程求解即可.【详解】解:设多边形的边数是n,由题意得,()21803601260n−⨯︒+︒=︒,n=.解得:7答:多边形的边数为7.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关,熟练多边形的内角和定理是解题的关键.【变式2】(2021·广西来宾市·八年级期中)已知一个多边形的每一个内角都比它相邻的外角的4倍多30°,求这个多边形是几边形?并求出这个多边形的内角和.【答案】十二边形,1800°【分析】首先设外角为x°,则内角为(4x+30)°,根据内角与相邻的外角是互补关系可得x+4x+30=180,解方程可得x的值,再利用外角和360°÷外角的度数可得边数,进而求出内角和.【详解】解:设外角为x°,由题意得:x+4x+30=180,解得:x=30,360°÷30°=12,∴(12−2)×180=1800°,∴这个多边形的内角和是1800°,是十二边形.【点睛】本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和公式以及外角和,构建方程求解即可.【变式3】(2021秋•泰州期末)【相关概念】将多边形的内角一边反向延长,与另一条边相夹形成的那个角叫做多边形的外角.如图,将△ABC中∠ACB的边CB反向延长,与另一边AC形成的∠ACD即为△ACB的一个外角.三角形外角和与三角形内角和对应,为与三个内角分别相邻的三个外角的和.【求解方法】借助一组内角与外角的数量关系,可以求出三角形的外角和.如图,△ABC的外角和=(180°﹣∠ACB)+(180°﹣∠CAB)+(180°﹣∠ABC)=540°﹣(∠ACB+∠ABC+∠CAB)=540°﹣180°=360°.【自主探究】根据以上提示,完成下列问题:(1)将下列表格补充完整.(2)如果一个八边形的每一个内角都相等,请用两种不同的方法求出这个八边形一个内角的度数.【分析】(1)根据n 边形的内角和为(n ﹣2)×180°,n 边形的外角和为360°即可得出答案;(2)根据多边形的内角和公式和多边形的外角和360°即可得出答案.【解答】解:(1)内角和分别为:四边形内角和是:(4﹣2)×180°=360°,,五边形内角和是:(5﹣2)×180°=540°,n 边形内角和是:180°(n ﹣2);外角和分别为:360°、360°、360°;故答案为:360°、540°、180°(n﹣2),360°、360°、360°;(2)这个八边形一个内角的度数是:方法一:(8﹣2)×180°÷8=135°,方法二:180°﹣360°÷8=135°.【点评】本题考查了多边形内角与外角:n边形的内角和为(n﹣2)×180°;n边形的外角和为360°.题型七:平面镶嵌例7.(2022春·八年级单元测试)用同一种下列形状的图形地砖不能进行平面镶嵌的是()A.正三角形B.长方形C.正八边形D.正六边形【答案】C【分析】分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可求出答案.【详解】解:A.正三角形的每个内角是60︒,能整除360︒,能密铺,故A不符合题意;B.长方形的每个内角是90︒,能整除360︒,能密铺,故B不符合题意;C.正八边形的每个内角为:1803608135︒−︒÷=︒,不能整除360︒,不能密铺,故C符合题意;D.正六边形的每个内角为120︒度,能整除360︒,能密铺,故D不符合题意.故选:C.【点睛】本题主要考查了平面镶嵌,解题的关键是熟练掌握一种正多边形的镶嵌应符合一个内角度数能整除360︒.【变式】(2022春·八年级单元测试)用正多边形来镶嵌平面的原理是共顶点的各个角之和必须等于360︒.现在有七种不同的正多边形:①正三角形、②正方形、③正六边形、④正八边形、⑤正十边形、⑥正十二边形、⑦正十五边形.请你用其中的不同的三种正多边形来镶嵌平面,这三种正多边形可以是:________.(请用序号表示,只需写出两种即可)【答案】①②③或①②⑥或②③⑥【分析】先分别求出正三角形、正方形、正五边形、正六边形、正七边形、正八边形的每个内角,然后根据平面镶嵌的条件解答即可.【详解】解:用公式()1802nn︒⨯−分别计算出正三角形的内角为60︒,正方形的内角为90︒,正六边形的内角为120︒,正八边形内角为135︒,正十边形的内角为144︒,正十二边形的内角为150︒,正十五边形的内角为156︒,∵609090120360︒+︒+︒+︒=︒,∴正三角形、正方形、正六边形可以进行平面镶嵌;∵606090150360︒+︒+︒+︒=︒,∴正三角形、正方形、正十二边形可以进行平面镶嵌;∵90120150360︒+︒+︒=︒,∴正方形、正六边形、正十二边形可以进行平面镶嵌;故答案为:①②③或①②⑥或②③⑥.【点睛】本题主要考查了镶嵌的条件,镶嵌的条件是看位于同一顶点处的几个角之和能否为360︒.【过关检测】一、单选题A.180︒B.360【答案】B【分析】根据多边形的外角和等于360︒解答即可.【详解】解:由多边形的外角和等于360︒可知,123456360∠+∠+∠+∠+∠+∠=︒,故选:B.【点睛】本题考查的是多边形的外角和,掌握多边形的外角和等于360︒是解题的关键.2.(2023春·山东泰安·八年级校考期末)正多边形的内角和为720︒,则这个多边形的一个内角为()A.90︒B.60︒C.120︒D.135︒【答案】C【分析】由正多边形的内角和为720︒,可得()2180720n−︒=︒,再求解n可得答案.【详解】解:∵正多边形的内角和为720︒,∴()2180720 n−︒=︒,解得:6n=,∴这个多边形的一个内角为720=1206︒︒;故选C【点睛】本题考查的是正多边形的内角和问题,熟记多边形的内角和公式与正多边形的定义是解本题的关键.3.(2023春·浙江·八年级专题练习)一个多边形的内角和是其外角和的2倍,则这个多边形是()A.六边形B.七边形C.八边形D.九边形【答案】A【分析】设这个多边形的边数为n,根据多边形的内角和公式和多边形的外角和都是360︒,列出方程即可求出结论.【详解】解:设多边形的边数是n,根据题意得,()21802360n−⨯︒=⨯︒,解得:6n=,∴这个多边形为六边形.故选:A.【点睛】本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键.4.(2023春·浙江·八年级专题练习)一个多边形的每个内角都相等,这个多边形的外角不可能是()A.30︒B.40︒C.50︒D.60︒【答案】C【分析】根据多边形的每个内角都相等,则这个多边形的每一个外角均相等,根据外角和等于360︒即可求解.【详解】解:由题意得,多边形的每个内角都相等,∴这个多边形的每一个外角均相等.∴每一个外角的度数整除360︒,∵30︒、40︒、60︒均能整除360︒,50︒不能整除360︒,∴选项C 符合题意.故选:C .【点睛】本题考查了多边形的外角和,熟记知识点是解题关键. 5.(2023春·全国·八年级专题练习)如图,A B C D E F ∠+∠+∠+∠+∠+∠等于( )A .240︒B .300︒C .360︒D .540︒【答案】C 【分析】连接BD ,根据四边形内角和可得360A ABO OBD BDO CDO C ∠+∠++∠+∠+∠=︒,再由“8”字三角形可得OBD ODB E F ∠+∠=∠+∠,进而可得答案.【详解】解:连接BD ,如图,∵360A ABO OBD BDO CDO C ∠+∠+∠+∠+∠+∠=︒,OBD ODB E F ∠+∠=∠+∠,∴360A ABO E F CDO C ∠+∠+∠+∠+∠+∠=︒,故选C .【点睛】本题考查了多边形的内角和,以及“8”字三角形的特点,正确作出辅助线是解答本题的关键.6.(2022春·八年级单元测试)将一个多边形切去一个角后所得的多边形内角和为2520,则原多边形的边数为( )A .15或16B .16或17C .15或16或17D .16或17或18【答案】C【分析】因为一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,根据多边形的内角和即可解决问题.【详解】解:多边形的内角和可以表示成()2180n −⋅︒(3n ≥且n 是正整数),一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,根据题意得()21802520n −⋅︒=︒,解得:16n =,则多边形的边数是15或16或17,故C 正确.故选:C .【点睛】本题主要考查了多边形的内角和定理,本题容易出现的错误是:认为截取一个角后角的个数减少1. 7.(2023秋·广西钦州·八年级统考期末)小红:我计算出一个多边形的内角和为2020︒;老师:不对呀,你可能少加了一个角!则小红少加的这个角的度数是( )A .110︒B .120︒C .130︒D .140︒【答案】D【分析】设这个多边形的边数为n ,少加的角的度数为x ,由多边形内角和定理可得等式:180(2)2020n x −=+,由n 为整数即可确定x 的值.【详解】设这个多边形的边数为n ,少加的角的度数为x ,由题意得:180(2)2020n x −=+,4013180xn +∴=+,由于n 为整数,x 为正数且小于180,40180x ∴+=,则140x =,故选:D .【点睛】本题考查了多边形内角和定理,关键是设多边形的边数及少加的角的度数,由多边形内角和定理得到等式,根据边数为整数确定少加的角.8.(2023·全国·八年级假期作业)已知一个多边形内角和为1080︒,则这个多边形可连对角线的条数是( )A .10B .16C .20D .40【答案】C【分析】先根据多边形内角和计算公式求出这个多边形是八边形,再根据多边形对角线计算公式求解即可.【详解】解:设这个多边形为n边形,由题意得,()180210802n⨯−=,∴8n=,∴这个多边形为八边形,∴这个多边形可连对角线的条数是()883202⨯−=,故选C.【点睛】本题主要考查了多边形内角和定理,多边形对角线计算公式,熟知n边形的对角线条数是()32 n n−是解题的关键.9.(2023秋·八年级课时练习)一个多边形截去一角后,变成一个八边形,则这个多边形原来的边数是()A.8或9B.7或8C.7或8或9D.8或9或10【答案】C【分析】画出所有可能的情况,即可作答.【详解】如图所示∴这个多边形原来是7边形或8边形或9边形故选C.【点睛】本题考查的知识点是多边形内角与外角,解题关键是注意分情况作答.二、填空题10.(2023春·安徽淮北·八年级淮北一中校联考阶段练习)若n边形的每个内角都是108,则边数n为___.【答案】5【分析】根据多边形的内角和公式()2180n︒−⋅列方程求解即可.【详解】解:由题意得, ()2180108n n ︒︒−⋅=⋅解得:5n =.故答案为:5.【点睛】本题考查了多边形的内角和,熟记内角和公式并列出方程是解题的关键. 11.(2022春·八年级单元测试)如图是由射线AB 、BC 、CD 、DA 组成的平面图形,则1234∠+∠+∠+∠=______°.【答案】360【分析】根据多边形的外角和为360︒求解即可.【详解】解:由图可知,1∠、2∠、3∠、4∠为组成的四边形的外角,∴1234360∠+∠+∠+∠=︒,故答案为:360.【点睛】本题考查多边形的外角性质,熟知多边形的外角和为360︒是解题的关键.12.(2023春·浙江宁波·八年级校联考期中)一个正n 多边形的一个内角是它的外角的4倍,则n =___________.【答案】10【分析】由多边形的每一个内角与相邻的这个外角互补先求解每一个外角,从而可得答案.【详解】解:∵一个正n 多边形的一个内角是它的外角的4倍,∴正多边形的每一个外角为:180365︒=︒,∴3601036n ︒==︒,故答案为:10.【点睛】本题考查的是正多边形的内角和与外角和的综合,熟记多边形的每一个内角与相邻的这个外角互补是解本题的关键.13.(2023春·全国·八年级专题练习)若一个多边形的每个外角均为36︒,则这个多边形的内角和为_______度.【答案】1440【分析】依据多边形外角和为360︒求得边数,再依据多边形内角和公式代入求解即可.【详解】解:因为多边形的每个外角均为36︒,且外角和为360︒,所以这个多边形边数:3603610︒÷︒=,则这个多边形的内角和为:()1021801440−⨯︒=︒,故答案为:1440.【点睛】本题考查了多边形内角和公式、外角和为360︒;通过外角和求得边数是解题的关键.【答案】12【分析】设这个多边形的边数为n,根据题意得多边形的内角和是外角和的5倍,列出方程求解即可.【详解】解:设这个多边形的边数为n,根据题意得多边形的内角和是外角和的5倍,∴() 36052180n⨯=−⨯,解得:12n=,所以这个多边形的边数为12.故答案为:12.【点睛】题目主要考查一元一次方程的应用及多边形的内角和与外角和等,理解题意,列出方程是解题关键.15.(2023春·陕西西安·八年级西安行知中学校考阶段练习)一个多边形的内角和是外角和的3倍,则它是____________边形.【答案】八【分析】多边形的外角和是360度,多边形的内角和是外角和的3倍,则多边形的内角和是()3603︒⨯度,根据多边形的内角和可以表示成()2180n−⋅︒,依此列方程可求解.【详解】解:设多边形边数为n.则() 36032180n⨯=−⋅,解得8n=.∴这个多边形是八边形.故答案为:八.【点睛】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.16.(2023·全国·八年级假期作业)一个n边形的所有内角和等于540︒,则n的值等于__.【答案】5【分析】已知n边形的内角和为540︒,根据多边形内角和的公式易求解.【详解】解:依题意有()2180540n−⋅︒=︒,解得5n=.故答案为:5.【点睛】主要考查的是多边形的内角和公式,本题的难度简单.掌握多边形的内角和为()2180n−⋅︒是解题的关键.【答案】1080°【分析】连KF,GI,根据n边形的内角和定理得到7边形ABCDEFK的内角和=(7-2)×180°=900°,则∠A +∠B+∠C+∠D+∠E+∠F+∠K+(∠1+∠2)=900°,由三角形内角和定理可得到∠1+∠2=∠3+∠4,∠5+∠6+∠H=180°,则∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠3+∠4)+∠5+∠6+∠H=900°+180°,即可得到∠A +∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K的度数.【详解】解:连KF,GI,如图,。
多边形的内角和与外角和综合练习题
多边形的内角和与外角和综合练习题多边形是几何学中的基础概念,拥有不同边数的多边形呈现出各种形状。
在研究多边形的性质时,我们常常关注多边形的内角和与外角和。
本文将通过综合练习题来巩固和加深对多边形内、外角和的理解。
练习题1:已知凸多边形的一个内角为75°,其余内角的度数依次递增,最大的内角是其中的第几个内角?解析:凸多边形的每个内角的度数总和等于(边数 - 2) × 180°。
由于题目没有给出具体的边数,我们无法计算出每个内角的具体度数,但可以根据给定信息确定出最大的内角所在的位置。
由于内角度数递增且凸多边形的每个内角都小于180°,最大的内角一定是最后一个内角。
练习题2:已知凸多边形的内角和为1080°,该多边形的边数是多少?解析:根据凸多边形的每个内角的度数总和等于(边数 - 2) × 180°,我们可以得到方程 (边数 - 2) × 180° = 1080°。
则边数 - 2 = 6,边数 = 8。
所以该多边形的边数为8。
练习题3:已知一个内角和为1620°的凸多边形,求它的边数。
解析:同样地,根据凸多边形的每个内角的度数总和等于(边数 - 2) × 180°,我们可以得到方程 (边数 - 2) × 180° = 1620°。
则边数 - 2 = 9,边数 = 11。
所以该多边形的边数为11。
练习题4:一个凸多边形的一个内角的度数是其他内角度数的3倍,且所有内角度数的和为1080°,求这个多边形的边数。
解析:我们设这个内角的度数为3x,则其他内角的度数分别为x。
根据凸多边形的每个内角的度数总和等于(边数 - 2) × 180°,我们可以得到方程 3x + x(边数 - 1) = 1080°。
化简得到 x(边数 + 2) = 1080°。
人教版八年级数学.11.3.2 多边形的内角和-八年级数学人教版(上)(解析版)
第十一章三角形11.3.2多边形的内角和一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.若一个多边形的内角和等于1080°,则这个多边形的边数为A.6 B.7 C.8 D.9【答案】C【解析】设多边形边数有x条,由题意得:180(x−2)=1080,解得x=8,故选C.2.已知一个多边形的外角和是内角和的2倍,则这个多边形是A.三角形B.四边形C.五边形D.六边形【答案】A3.如果一个正多边形的一个内角和它相邻外角的比是3∶1,那么这个多边形是A.正六边形B.正八边形C.正十边形D.正十二边形【答案】B【解析】设这个多边形的边数是n,则(2)180nn-⋅∶360n=3∶1,解得n=8.故选B.4.设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是A.a>b B.a=b C.a<b D.b=a+180°【答案】B【解析】∵四边形的内角和等于a,∴a=(4-2)·180°=360°.∵五边形的外角和等于b,∴b=360°,∴a=b.故选B.学科&网二、填空题:请将答案填在题中横线上.5.若正多边形的一个外角为40°,则这个正多边形是__________边形.【答案】九【解析】根据正多边形的外角和为360°,正多边形的每个外角都相等,可得360÷40=9,因此这个正多边形是正九边形.故答案为:九.6.若一个多边形的边数增加1,则它的内角和增加__________.【答案】180°【解析】设多边形边数为n,那么增加1条即为n+1,原来内角和:(n-2)×180°=n×180°-360°,现在内角和:(n+1-2)×180°=n×180°-180°,内角和增加了180°,故答案为:180°.三、解答题:解答应写出文字说明、证明过程或演算步骤.7.某多边形的内角和与外角和的总和为2160°,求此多边形的边数.【解析】设这个多边形的边数为n,根据题意得(n-2)·180+360=2160,解得x=12,所以此多边形的边数是12.8.某同学采用把多边形内角逐个相加的方法计算多边形的内角和,求得一个多边形的内角和为1520°,当他发现错了以后,重新检查,发现少加了一个内角.问:这个内角是多少度?他求的这个多边形的边数是多少?。
专题23 多边形篇(解析版)
专题23 多边形考点一:多边形1. 多边形的概念:由多条线段首位顺次连接组成的图形叫做多边形。
2. 多边形的对角线:连接任意两个不相邻的顶点得到的线段叫多边形的对角线。
多边形一个顶点引出的对角线条数为:()3-n条,把多边形分成了()2-n个三角形。
多边形所有对角线条数为:()23-nn条。
(n表示多边形的边数)3. 对变形的内角和:多边形的内角和计算公式为:()︒⨯-1802n。
(n表示多边形的边数)4. 多边形的外角和:任意多边形的外角和都是360°。
1.(2022•大连)六边形内角和的度数是( )A.180°B.360°C.540°D.720°【分析】根据多边形的内角和公式可得答案.【解答】解:六边形的内角和的度数是(6﹣2)×180°=720°.故选:D.2.(2022•柳州)如图,四边形ABCD的内角和等于( )A.180°B.270°C.360°D.540°【分析】根据四边形的内角和等于360°解答即可.【解答】解:四边形ABCD的内角和为360°.故选:C.3.(2022•临沂)如图是某一水塘边的警示牌,牌面是五边形,这个五边形的内角和是( )A.900°B.720°C.540°D.360°【分析】根据多边形的内角和公式:(n﹣2)•180°即可得出答案.【解答】解:(5﹣2)×180°=540°,故选:C.4.(2022•河北)如图,将三角形纸片剪掉一角得四边形,设△ABC与四边形BCDE的外角和的度数分别为α,β,则正确的是( )A.α﹣β=0B.α﹣β<0C.α﹣β>0D.无法比较α与β的大小【分析】利用多边形的外角和都等于360°,即可得出结论.【解答】解:∵任意多边形的外角和为360°,∴α=β=360°.∴α﹣β=0.故选:A.5.(2022•怀化)一个多边形的内角和为900°,则这个多边形是( )A.七边形B.八边形C.九边形D.十边形【分析】根据多边形的内角和公式:(n﹣2)•180°列出方程,解方程即可得出答案.【解答】解:设多边形的边数为n,(n﹣2)•180°=900°,解得:n =7.故选:A .6.(2022•福建)四边形的外角和度数是 .【分析】根据多边形的外角和都是360°即可得出答案.【解答】解:四边形的外角和度数是360°,故答案为:360°.7.(2022•淮安)五边形的内角和是 °.【分析】根据多边形的内角和是(n ﹣2)•180°,代入计算即可.【解答】解:根据题意得:(5﹣2)•180°=540°,故答案为:540°.8.(2022•眉山)一个多边形外角和是内角和的92,则这个多边形的边数为 .【分析】多边形的内角和定理为(n ﹣2)×180°,多边形的外角和为360°,根据题意列出方程求出n 的值.【解答】解:设这个多边形的边数为n ,根据题意可得:,解得:n =11,故答案为:11.考点二:正多边形1. 正多边形的概念:每一条边都相等且每个角都相等的多边形叫做正多边形。
八年级数学多边形及其内角和(含解析答案)
多边形和内角和练习题温故而知新:1.多边形多边形的内角和:n边形内角和等于_(n-2)·180°__多边形的外角和:任意多边形外角和等于__360°_多边形的对角线:凸n边形共有_1(3)2n n-_条对角线。
2.平面镶嵌定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌)问题.说明:正三角形、正方形和正六边形可以镶嵌平面图案,正五边形不能镶嵌平面图案.多边形的对角线例 1 今年暑假,佳一学校安排全校师生的假期社会实践活动,将每班分成三个组,每组派1名教师作为指导教师,为了加强同学间的联系,学校要求该班每两人之间(包括指导教师)每周至少通一次电话,现知该校七(1)班共有50名学生,那么该班师生之间每周至少要通几次电话?为了解决这一问题,小明把该班师生人数n与每周至少通话次数s之间的关系用下列模型表示,如图。
解析:师生53人看作是53边形的53个顶点,n边形的对角线条数公式为:1(3)2n n-。
答案:解:将七(1)班师生53人看作是53边形的53个顶点,由多边形对角线条数公式1(3)2n n-得1⨯⨯-=53(533)13252所以1325+53=1378次。
答:该班每周师生之间至少要通1378次电话小结:(1)建立数学模型是解决实际问题的基本方法;(2)n边形的对角线的条数公式是1(3)n n-2多边形的内角和与外角和例2 已知一个多边形的外角和等于内角和的1/3,求这个多边形的边数。
解析:多边形的外角和为360°,根据多边形的内角和及外角和列方程.答案:解:设这个多边形的边数为n,根据题意,得1n-⨯=(2)1803603解得 n=8答:这个多边形的边数是8.小结:利用方程求解是解决此类问题的一般方法。
例3 如图,小陈从O点出发,前进5米后向右转20°,再前进5米后又向右转20°,……这样一直走下去,他第一次回到出发点O时一共走了()A.60米B.100米C.90米D.120米解析:根据多边形的外角和求出这个多边形的边数。
人教版2021-2022学年八年级数学 《多边形的内角和》含答案解析
专题03 多边形的内角和一、单选题1.(2020·重庆市第二十九中学校八年级月考)某多边形的内角和是其外角和的4倍,则此多边形的边数是()A.10B.9C.8D.7【答案】A【分析】任何多边形的外角和是360°,即这个多边形的内角和是4×360°.n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】解:设多边形的边数为n,根据题意,得(n﹣2)•180=4×360,解得n=10.则这个多边形的边数是10.故选:A.【点睛】本题考查了多边形的内角和与外角和,解答本题的关键是根据多边形内角和公式与外角和定理,利用方程法求边数.2.(2021·四川七年级期末)某校新建的科技馆准备用正多边形地砖铺设地面,下列组合中能铺满地面的是()A.正方形和正六边形B.正三角形和正六边形C.正五边形和正八边形D.正方形和正十边形【答案】B【分析】正多边形的组合能否铺满地面,看位于同一顶点处的几个角之和能否为360°进行判定即可.【详解】解:A、正方形和正六边形内角分别为90°、120°,显然不能构成360°的周角,故不能铺满;B、正三角形和正六边形内角分别为60°、120°,显然能构成360°的周角,故能铺满;C、正五边形和正八边形内角分别为108°、135°,显然不能构成360°的周角,故不能铺满.D、正方形和正十边形内角分别为90°、144°,显然不能构成360°的周角,故不能铺满.故选B.【点睛】本题主要考查了平面几何图形镶嵌,解题的关键是明确围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.3.(2021·全国八年级课前预习)下列叙述正确的是( )A .每条边都相等的多边形是正多边形;B .如果画出多边形某一条边所在的直线,这个多边形都在这条直线的同一侧,那么它一定是凹多边形;C .每个角都相等的多边形叫正多边形;D .每条边、每个角都相等的多边形叫正多边形【答案】D 【详解】由题意可知,A 、B 、Cj 均不正确,只有D 是正确的。
多边形及其内角和(2)基础强化解析版-人教版八年级数学上册教材知识点变式提高培训系列
人教版八年级数学上册教材知识点变式提高培训系列11.3 多边形及其内角和(2)基础强化作业解析一、选择题1.若一个多边形的边数增加1,它的内角和()A.不变 B.增加1 C.增加180° D.增加360°【考点】多边形内角与外角.【分析】设原来的多边形是n,则新的多边形的边数是n+1.根据多边形的内角和定理即可求得.【解答】解:n边形的内角和是(n﹣2)•180°,边数增加1,则新的多边形的内角和是(n+1﹣2)•180°.则(n+1﹣2)•180°﹣(n﹣2)•180°=180°.故选C.【点评】本题考查多边形的内角和计算公式,解答时要会根据公式进行正确运算、变形和数据处理.2.当多边形的边数增加时,其外角和()A.增加 B.减少 C.不变 D.不能确定【考点】多边形内角与外角.【分析】根据多边形的外角和定理即可判断.【解答】解:任何多边形的外角和是360°,因而当多边形的边数增加时,其外角和不变.故选C.【点评】任何多边形的外角和是360°,不随边数的变化而变化.3.某学生在计算四个多边形的内角和时,得到下列四个答案,其中错误的是()A.180° B.540° C.1900° D.1080°【考点】多边形内角与外角.【分析】利用多边形的内角和公式可知,多边形的内角和一定是180的整数倍,由此即可找出答案.【解答】解:∵n(n≥3)边形的内角和是(n﹣2)180°,所以多边形的内角和一定是180的整数倍.∴在这四个选项中不是180的倍数的是1900°.故选C.【点评】本题考查了多边形的内角与外角,熟记多边形的内角和公式是解题的关键.4.如果一个多边形的内角和是720°,那么这个多边形的对角线的条数是()A.6 B.9 C.14 D.20【考点】多边形内角与外角;多边形的对角线.【专题】计算题.【分析】首先根据多边形的内角和计算公式:(n﹣2)×180°,求出多边形的边数;再进一步代入多边形的对角线计算方法:求得结果.【解答】解:多边形的边数n=720°÷180°+2=6;对角线的条数:6×(6﹣3)÷2=9.故选B.【点评】此题考查多边形的内角和计算公式以及多边形的对角线条数的计算方法,属于需要识记的知识.5.如果一个多边形的内角和是它的外角和的n倍,则这个多边形的边数是()A.n B.2n﹣2 C.2n D.2n+2【考点】多边形内角与外角.【分析】根据多边形的外角和是360度,即可求得多边形的内角的度数,然后利用多边形的内角和定理即可求解.【解答】解:设多边形的边数为m,根据题意列方程得,(m﹣2)•180°=n×360°,m﹣2=2n,m=2n+2.故选D.【点评】本题主要考查了多边形的外角和定理,注意多边形的外角和不随边数的变化而变化.6.一个多边形截去一个角(截线不过顶点)之后,所形成的多边形的内角和是2520°,那么原多边形的边数是()A.19 B.17 C.15 D.13【考点】多边形内角与外角.【分析】一个多边形截去一个角(截线不过顶点)之后,则多边形的角增加了一个,求出内角和是2520°的多边形的边数,即可求得原多边形的边数.【解答】解:设内角和是2520°的多边形的边数是n.根据题意得:(n﹣2)•180=2520,解得:n=16.则原来的多边形的边数是16﹣1=15.故选C.【点评】本题主要考查了多边形的内角和公式,理解新多边形的边数比原多边形的边数增加1是解题的关键.7.已知一个多边形的内角和是外角和的4倍,则这个多边形是()A.八边形 B.九边形 C.十边形 D.十二边形【考点】多边形内角与外角.【分析】先设这个多边形的边数为n,得出该多边形的内角和为(n﹣2)×180°,根据多边形的内角和是外角和的4倍,列方程求解.【解答】解:设这个多边形的边数为n,则该多边形的内角和为(n﹣2)×180°,依题意得(n﹣2)×180°=360°×4,解得n=10,∴这个多边形的边数是10.故选:C.【点评】本题主要考查了多边形内角和定理与外角和定理,多边形内角和=(n﹣2)•180 (n≥3且n为整数),而多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和始终为360°.8.一个多边形中,除一个内角外,其余各内角和是120°,则这个角的度数是()A.60° B.80° C.100° D.120°【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°可知多边形的内角和是180°的倍数,然后用960°÷180°所得商的整数部分加1就是多边形的边数.【解答】解:∵一个内角外,其余各内角和是120°,∴这个角的度数是60°.故选A.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.同时要注意每一个内角都应当大于0°而小于180度.二、填空题9.n边形的内角和=(n﹣2)×180度,外角和=360度.【考点】多边形内角与外角.【分析】根据多边形的内角和定理和外角和特征即可求出答案.【解答】解:任意n边形的内角和是(n﹣2)×180度,外角和是360度.故答案为:(n﹣2)×180,360.【点评】本题考查了多边形的外角和定理和内角和定理,这是一个需要熟记的内容.10.从n边形(n>3)的一个顶点出发,可以画n﹣3条对角线,这些对角线把n边形分成n﹣2三角形,分得三角形内角的总和与多边形的内角和相等.【考点】多边形内角与外角;三角形内角和定理;多边形的对角线.【分析】多边形上任何不相邻的两个顶点之间的连线就是对角线,n边形有n个顶点,和它不相邻的顶点有n﹣3个,因而从n边形(n>3)的一个顶点出发的对角线有n﹣3条,把n 边形分成n﹣2个三角形,根据三角形内角和定理即可求得n边形的内角和与分得三角形内角的总和相等,都等于(n﹣2)•180°.【解答】解:从n边形(n>3)的一个顶点出发的对角线有n﹣3条,可以把n边形划分为n﹣2个三角形,由此,可得n边形的内角和与分得三角形内角的总和相等,故答案为:n﹣3,n﹣2,相等.【点评】本题考查多边形的对角线与三角形内角和定理,多边形的问题可以通过作对角线转化为三角形的问题解决,是转化思想在多边形中的应用.11.已知一个多边形的内角和与它的外角和正好相等,则这个多边形是四边形.【考点】多边形内角与外角.【专题】计算题.【分析】根据多边形的外角和为360°,由一个多边形的内角和与它的外角和正好相等,得到内角和,再根据多边形的内角和定理即可得到多边形的边数.【解答】解:∵多边形的外角和为360°,而一个多边形的内角和与它的外角和正好相等,设这个多边形为n边形,∴(n﹣2)•180°=360°,∴n=4,故答案为:四.【点评】本题考查了边形的内角和定理:边形的内角和=(n﹣2)•180°;多边形的外角和为360°.12.一个多边形的内角和等于它的外角和的5倍,那么此多边形的边数为12.【考点】多边形内角与外角.【分析】一个多边形的内角和等于它的外角和的5倍,任何多边形的外角和是360度,因而这个正多边形的内角和为5×360度.n边形的内角和是(n﹣2)•180°,代入就得到一个关于n的方程,就可以解得边数n.【解答】解:根据题意,得(n﹣2)•180=5×360,解得:n=12.所以此多边形的边数为12.【点评】已知多边形的内角和求边数,可以转化为解方程的问题解决.13.若n边形的每个内角都是150°,则n=12.【考点】多边形内角与外角.【分析】由题可得,该多边形的内角和为(n﹣2)×180°,根据n边形的每个内角都是150°,可得该正多边形的内角和为n×150°,再列方程求解.【解答】解:依题意得,(n﹣2)×180°=n×150°,解得n=12故答案为:12【点评】本题主要考查了多边形内角和定理,多边形内角和=(n﹣2)•180 (n≥3且n为整数).14.一个多边形的每一个外角都为36°,则这个多边形是十边形.【考点】多边形内角与外角.【分析】根据多边形的外角和即可求出答案.【解答】解:这个多边形是360÷36=10边形.故答案为:十.【点评】根据外角和的大小与多边形的边数无关,由外角和求多边形的边数,是常见的题目,需要熟练掌握.15.如果一个多边形的每个内角都相等,且内角的度数是与它相邻的外角度数的2倍,那么这个边形的每个内角是120度,其内角和等于720度.【考点】多边形内角与外角.【分析】设多边形的外角为n度,则根据内角的度数是与它相邻的外角度数的2倍,可求出n的值,进而求出多边形的内角度数,根据多边形外角和为360度,可求出多边形的边数,然后求出其内角和即可.【解答】解:设多边形的外角为n度,则根据内角的度数是与它相邻的外角度数的2倍,可得:n+2n=180°,解得:n=60°,∴2n=120°,根据多边形外角和为360度,可求出多边形的边数为:360÷60=6,∵多边形的每个内角都相等,∴多边形内角和为:120×6=720°.故答案为:120,720.【点评】本题考查了多边形内角与外角,解答本题的关键在于熟练掌握多边形内角和定理与多边形外角和为360度.16.一个多边形的内角和是1800°,这个多边形是12边形.【考点】多边形内角与外角.【分析】首先设这个多边形是n边形,然后根据题意得:(n﹣2)×180=1800,解此方程即可求得答案.【解答】解:设这个多边形是n边形,根据题意得:(n﹣2)×180=1800,解得:n=12.∴这个多边形是12边形.故答案为:12.【点评】此题考查了多边形的内角和定理.注意多边形的内角和为:(n﹣2)×180°.17.n边形的内角和等于(n﹣2)•180度.任意多边形的外角和等于360度.【考点】多边形内角与外角.【分析】根据多边形内角和定理:(n﹣2)•180 ((n≥3)且n为整数),且多边形的外角和等于360度,进行求解即可.【解答】解:根据多边形内角和定理可得n边形的内角和为:(n﹣2)•180,任意多边形的外角和等于360度.故答案为:(n﹣2)•180,360.【点评】本题考查了多边形内角和外角,解答本题的关键在于熟练掌握多边形内角和定理和多边形的外角和等于360度.18.若一个多边形的外角和是它的内角和的,则此多边形的边数是10.【考点】多边形内角与外角.【分析】多边形的外角和是360度,外角和是它的内角和的,则内角和是1440度.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得(n﹣2)•180=1440,解得:n=10.则此多边形的边数是10.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.19.如果十边形的每个内角都相等,那么它的每个内角都等于144度,每个外角都等于36度.【考点】多边形内角与外角.【分析】利用十边形的外角和是360度,并且每个外角都相等,即可求出每个外角的度数;再根据内角与外角的关系可求出每个内角的度数.【解答】解:∵十边形的每个内角都相等,∴十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.∴每个内角的度数为180°﹣36°=144°.故答案为:144,36.【点评】本题主要考查了多边形的外角性质及内角与外角的关系.多边形的外角性质:多边形的外角和是360度.边形的内角与它的外角互为邻补角.20.若一个多边形的内角和为1080°,则这个多边形8边形.【考点】多边形内角与外角.【分析】首先设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180(n﹣2)=1080,解此方程即可求得答案.【解答】解:设这个多边形的边数为n,根据题意得:180(n﹣2)=1080,解得:n=8,故答案为:8.【点评】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.21.外角和等于内角和的多边形一定是四边形.对.(判断对错)【考点】多边形内角与外角.【分析】任意多边形的外角和为360°,然后依据多边形的内角和公式求得多边形的边数,从而可作出判断.【解答】解:设多边形的边数为n.根据题意得:(n﹣2)×180°=360°.解得:n=4.所以该多边形为四边形.故答案为:对.【点评】本题主要考查的是多边形的内角和与外角和,掌握多边形的内角和公式是解题的关键.22.如果一个多边形的内角和等于1800°,则这个多边形是十二边形;如果一个n边形每一个内角都是135°,则n=8;如果一个n边形每一个外角都是36°,则n=10.【考点】多边形内角与外角.【分析】n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.【解答】解:这个正多边形的边数是n,则(n﹣2)•180°=1800°,解得:n=12,则这个正多边形是12.如果一个n边形每一个内角都是135°,∴每一个外角=45°,则n= =8,如果一个n边形每一个外角都是36°,则n= =10,故答案为:十二,8,10.【点评】此题考查了多边形的内角和定理.注意多边形的内角和为:(n﹣2)×180°.三、解答题23.若两个多边形的边数之比是1:2,内角和度数之和为1440°,求这两个多边形的边数.【考点】多边形内角与外角.【分析】本题根据等量关系“两个多边形的内角之和为1440°”列方程求解,解答时要会根据公式进行正确运算、变形和数据处理.【解答】解:设多边形较少的边数为n,则(n﹣2)•180°+(2n﹣2)•180°=1440°,解得n=4.2n=8.故这两个多边形的边数分别为4,8.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,考查多边形的内角和、方程的思想.关键是记住内角和的公式.。
多边形及其内角和经典例题透析
知识要点梳理定义:由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。
凸多边形分类1:凹多边形正多边形:各边相等,各角也相等的多边形叫做正多边形。
分类2:多边形非正多边形:1、n边形的内角和等于180°(n-2)。
多边形的定理2、任意凸形多边形的外角和等于360°。
3、n边形的对角线条数等于1/2·n(n-3)只用一种正多边形:3、4、6/。
镶嵌拼成360度的角只用一种非正多边形(全等):3、4。
知识点一:多边形及有关概念1、多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.(1)多边形的一些要素:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角。
外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
(2)在定义中应注意:①一些线段(多边形的边数是大于等于3的正整数);②首尾顺次相连,二者缺一不可;③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间多边形.2、多边形的分类:(1)多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图1).本章所讲的多边形都是指凸多边形.凸多边形凹多边形图1(2)多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.知识点二:正多边形各个角都相等、各个边都相等的多边形叫做正多边形。
如正三角形、正方形、正五边形等。
正三角形正方形正五边形正六边形正十二边形要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形知识点三:多边形的对角线多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 如图2,BD为四边形ABCD的一条对角线。
多边形的内角和专题(含答案)
13.一个正多边形的每个外角为 ફ ,那么这个正多边形的内角和是________.
14.如图,
ꡰમ⺁
三、解答题 1 一个多边形的各内角都等于 1ꡰફ ,它是几边形?
1 一个多边形的内角和等于 1ꡰ ફ ,它是几边形?
17.如图,在四边形 ꡰમ⺁ 中, 与 મ 互补, ꡰમ、 ⺁મ 的平分线分别交 મ⺁、 ꡰ 于点 、 ܧ䁞䁞 ꡰ,交 ꡰમ
ꡰમ ⺁મ ફ 1ౘફ 1ౘફ ,
ꡰ 、⺁ 分别平分 ꡰમ、 ⺁મ,
1
1 ꡰ
⺁મ,
ꡰ
ܧ䁞䁞 ꡰ,
1 ꡰ
ꡰમ,
ꡰ
ꡰ,
1
ꡰ
1 ꡰ
⺁મ
1 ꡰ
ꡰમ
Ꟑફ ,
即 1 与 ꡰ 互余.
ꡰમ
1ફફ , 1 ꡰꡰ ,
મ ౘફ , ꡰ ꡰౘ ,
ꡰ
મꡰ ꡰౘ ,
ꡰ મ 1ౘફ ꡰౘ ౘફ ꡰ ,
મ ܧꡰ ꡰౘ ꡰ .
因为多边形的外角和为 ફ ,
所以这个多边形的边数为 ફ ફ ,
所以这个多边形是六边形.
16.【答案】解:设这个多边形是 边形,
根据多边形内角和公式,得 ꡰમ 1ౘફ 1ꡰ ફ , 解得 Ꟑ
所以这个多边形是九边形.
17.【答案】解: 1મ 1 与 ꡰ 互余.
四边形 ꡰમ⺁ 的内角和为 ફ , 与 મ 互补,
A. ꡰ1ફ
B. 11ફ
C. 1 ફ
D. 1ફફ
1
10.若一个正 边形的每个内角为1ꡰꡰ ,则这个正 边形的所有对角线的条数是 ( )
A.
B. 1ફ
C.
D. ફ
二、填空题
11.若一个多边形的内角和是外角和的两倍,则该多边形的边数是______.
2023年初中数学多边形的内角和与外角和题型总结
初中数学多边形的内角和与外角和题型总结1、多边形的内角和等于〔n-2〕180˚,n是多边形的边数。
2、多边形的外角和等于360˚。
这两个结论的证明也比拟简单,在这里简单说明一下。
1、一个多边形,边数为n,将一个顶点与其它顶点相连,可以把这个多边形分割成〔n-2〕个三角形,每个三角形的内角和是360˚,所以多边形的内角和就是〔n-2〕180˚。
2、一个多边形,边数为n,每一个内角和它相邻的外角构成一个平角,n条边就构成n个平角。
外角和就等于n 个平角减去多边形的内角和,也就是360˚。
这两个知识在考查时,主要有四种类型,我们来看一下。
1、考查多边形边数和内角和的关系。
这类型题主要是了解边数求出内角和,或者了解内角和求出边数。
第〔1〕题,了解边数,求内角和。
第〔2〕题,了解内角和,求边数。
第〔3〕题,略微复杂,两个多边形,了解边数之比和内角和之比,列方程求出边数。
第〔4〕、〔5〕、〔6〕题,稍为复杂,了解边数,先求出内角和,再去求多边形中的某个内角。
这些题型都比拟简单。
这里还有一道题比拟复杂一点,同学们可以尝试做一下。
2、外角和与内角和相结合这类型的关键点是,要了解多边形的内角和是隐藏的已知量,它等于360˚。
这类题型都是依据多边形内角和与外角和的关系,列一个方程,求出边数。
3、多边形,少一个角,其余内角和是肯定值。
这种题型,运用到了不等式,是一个难点和重点。
它的运用的知识是,多边形的一个内角,它的取值范围是大于0,小于180。
除去的这个角的度数等于内角和减去其余内角和,据此,可以列一个不等式组,进行求解。
下面有练习,大家可以试一下。
4、正多数形正多边形的内角相等,边相等。
考查类型,1、了解边数,求内角;2、了解内角,求边数;3、了解外角,求边数。
在考试中,经常考察的方法是这样的。
这类题,它没有告诉你这是一个正多边形的题,但你要了解,这个人所走的路径是一个正多边形,然后运用正多边形的知识求解。
多边形的内角和与外角和典型热点考题
多边形的内角和与外角和典型热点考题例1 已知:四边形的四个外角度数比为1∶2∶3∶4,求各外角的度数? 点悟:考查四边形外角和定理,由四边形外角和定理和各外角之间的比例关系很容易求出各角.解:设四边形的最小外角为x°,则其他三角分别为2x°,3x°,4x°,根据四边形外角和定理:x°+2x°+3x°+4x°=360°.∴ x°=36°, 2x°=72°, 3x°=108°, 4x°=144°.∴ 四边形各外角度数分别为36°,72°,108°,144°.点拨:本例应用了设参数x 的代数方法求出四边形四个外角的度数,不少的几何线段的计算,角的计算以及证明题,如果应用代数方法求解,可使过程简洁,清晰,特别是已知条件中如果出现比例关系时,采用设参数法是最常见的解题思路,通过设参数,结合几何知识,把问题转化为解方程,学生一定要掌握这种技巧.例 2 多边形的内角和与某一个外角的度数总和为1350°,求多边形的边数?解法一:设边数为n ,这个外角为x 度,则0<x <180,依题意有:(n-2)·180+x=1350,∴18090921801350x x n -+=+-=.又∵ 0<x <180, ∴-90<90-x <90,∴ n=9.解法二:∵0<x <180;∴ 1350-180<1350-x <1350;即 1170<1350-x <1350,又∵ (n-2)·180=1350-x ,∴ 1170<(n-2)·180<1350.∴ 8.5<n <9.5;∵ n 的边数必为整数, ∴ n=9.注:此类题都隐含着边数为正整数这个条件.解法一是利用整数方程来解的.解法二是利用不等式确定边数范围然后通过边数为整数来解的.例 3 如图,已知在四边形ABCD 中,AB=3,BC=4,CD=13,AD=12,∠B=90°.求:四边形ABCD 的面积.点悟:由∠B=90°,AB=3,BC=4,想到连接AC ,利用勾股定理解题得AC=5,又AD=12,CD=13由勾股定理的逆定理有∠DAC 为直角,从而ACD ABC ABCD S S S ∆∆+=四边形.解:连结AC .在Rt △ABC 中,有254322222=+=+=BC AB AC ∴ AC=5.∵ CD=13,AD=12,有22213512=+即 222CD AC AD =+.∴ △ACD 是直角三角形,∠DAC=90°,∴ A C D ABC ABCD S S S ∆∆+=四边形=AC AD BC AB ⋅+⋅2121=36512214321=⨯⨯+⨯⨯点拨:当题目中有线段长度时,一般利用勾股定理的逆定理判定某三角形是否为直角三角形.四边形问题通常转化为三角形问题来解决,在构造三角形时必须同已知条件结合起来,不要随意连线.例4 一个n 边形每个内角都是150°,则这个多边形的内角和是多少? 点悟:由于这个n 边形每个内角都是150°,所以可以推知它的每个外角都为30°,而任意多边形的外角和都为360°,从而可以知道这个n 边形的边数,再利用多边形内角和定理即可.解:方法一:∵ 这个n 边形的每个内角都为150°,∴ 此n 边形的每个外角为30°,又∵ 任意多边形的外角和为360°,∴ n=360°÷30°=12.∴ 此n 边形的内角和为180°(n-2)=180°×10=1800°.方法二:设这个多边形的边数为n ,由题意得:150°·n=180°(n-2).解这个方程,得n=12.则此多边形的内角和为:180°(n-2)=180°×10=1800°.点悟:如图,在n 边形内部取一点O ,连接O 与各个顶点的线段,把n 边形分成n 个三角形,因为这n个三角形的内角和等于n·180°,以O 为公共顶点的n个角的和是360°,即2×180°,所以n 边形的内角和是n·180°-2×180°=(n-2)×180°.我们还可以这样求n 边形内角和,如下图所示,作经过n 边形某一个顶点的所有对角线,把n 边形分成(n-2)个三角形,则n 边形的内角和即为(n-2)个三角形的内角和.即(n-2)·180°.例5 已知一个多边形的每个内角都为钝角,则这样的多边形有多少个?边数最少的一个是几边形?点悟:此题首先要利用多边形内角和定理表示出每一个内角,然后列出不等式.解:设多边形是n 边形,由题意得:︒<︒⋅-<︒180180)2(90n n即 ⎪⎪⎩⎪⎪⎨⎧︒>︒⋅-︒<︒⋅-,90n 180)2n (,180n 180)2n ( 解得 ⎩⎨⎧>>.4,0n n∴n>4.∴内角都为钝角的多边形有无数个.又∵ n>4,n为整数,∴n的最小值为5,即边数最少的一个是五边形.注:对于此题的最后一个问题,实际上是对不等式附加某些条件,然后可求出具体未知数,但要注意的是,五个角都是钝角的五边形是存在的,但五四形不一定五个角都是钝角.点拨:如果有4个或4个以上内角为锐角,那么与这些锐角相邻的外角都是钝角,所以这些外角的和将大于360°,这与多边形外角和恒等于360°相矛盾,故在多边形的内角中,锐角的个数不能多于3个.。
多边形内角和典型例题
性.
解析:本题考查了四边形的不稳定性.答案:不稳定
精品课件
题型一 应用多边形的内角和与与外角和求边数
例1 若一个多边形的内角和与外角和之和是1800°,
则此多边形是(
)
A八边形 B.十边形 C.十二边形 D.十四边形
解析:设此多边形的边数为n,则 (n-2)·180°+360°=1800°, 解得:n=10, 故选B.答案:B
可得(n-2)×180°=900°,解得n=7.
答案:C
精品课件
例如图19-1-5所示,一块实验田的形状是三角形(设其为
△ABC)管理员从BC边上的一点D出发,沿DC→CA→AB→BD
的方向走了一圈回到D处,则管理员从出发到回到原处的
途中,他(
)
A.转了90° B.转了 180°
C.转了270° 360°
因为0<x<180,所以0<(n-2)·180-2750<180,
解得 17 5 18
<n<18 185 ,又因为n是整数,所以n=18.
答:这个多边形的边数是18.
精品课件
例1 若一个n边形的边数增加一倍,则内角和将增
加
.
解析:n边形的内角和可以表示成(n-2)·180°,边 数增加一倍,则新的多边形的内角和为(2n2)·180°,所以内角和将增加 (2n-2)·180°-(n-2)·180°=180°·n, 答案:180°n
精品课件
例2 十二边形的内角和等于
。
解析:根据n边形的内角和等于(n-2)·180°,可得十二 边形的内角和等于(12-2)×180°=1800°. 答案:1800°
例3 若一个多边形的内角和是900°,则这个多边形是
专题23多边形-重难点题型(学生版)
专题4.1 多边形-重难点题型【题型1 多边形的截角问题】【例1】(2020秋•巴州区期末)若一个多边形截去一个角后,变成十四边形,则原来的多边形的边数可能为( )A .14或15B .13或14C .13或14或15D .14或15或16【变式1-1】(2020秋•海淀区期末)如图,将五边形ABCDE 沿虚线裁去一个角得到六边形ABCDGF ,则该六边形的周长一定比原五边形的周长 (填:大或小),理由为 .【变式1-2】(2020春•文登区期末)将一个多边形纸片沿一条直线剪下一个三角形后,变成一个六边形,则原多边形纸片的边数不可能是( )A .5B .6C .7D .8【变式1-3】(2020秋•肇源县期末)把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是( )A .16B .17C .18D .19【知识点1 多边形的对角线】连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.从一个n 边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个n 边形分割成(n -2)个三角形, 共有12n (n ﹣3)条对角线. 【题型2 多边形的对角线】【例2】分别画出下列各多边形的对角线,并观察图形完成下列问题:(1)试写出用n 边形的边数n 表示对角线总条数S 的式子: .(2)从十五边形的一个顶点可以引出 条对角线,十五边形共有 条对角线:(3)如果一个多边形对角线的条数与它的边数相等,求这个多边形的边数.【变式2-2】(2020春•福清市校级期末)阅读下列内容,并答题:我们知道计算n 边形的对角线条数公式为n(n−3)2,如果有一个n 边形的对角线一共有20条,则可以得到方程n(n−3)2=20,去分母得n (n ﹣3)=40;∵n 为大于等于3的整数,且n 比n ﹣3的值大3,∴满足积为40且相差3的因数只有8和5,符合方程n (n ﹣3)=40的整数n =8,即多边形是八边形.根据以上内容,问:(1)若有一个多边形的对角线一共有14条,求这个多边形的边数;(2)A 同学说:“我求得一个多边形的对角线一共有30条.”你认为A 同学说地正确吗?为什么?【变式2-3】(2020秋•东湖区校级月考)如图,先研究下面三角形、四边形、五边形、六边形…多边形的边数n 及其对角线条数t 的关系,再完成下面问题:(1)若一个多边形是七边形,它的对角线条数为 ,n 边形的对角线条数为t = (用n 表示).(2)求正好65条对角线的多边形是几边形.【知识点2 多边形的内角和】n 边形的内角和为(n -2)·180°(n ≥3).【题型3 多边形的内角和】【例3】(2021春•江阴市校级月考)下列哪个度数不可能是一个多边形的内角和( )A .360°B .450°C .900°D .1800°【变式3-1】(2020秋•路南区期中)小红:我计算出一个多边形的内角和为2020°;老师:不对呀,你可能少加了一个角!则小红少加的这个角的度数是( )A .110°B .120°C .130°D .140°【变式3-2】(2021春•玄武区校级月考)一个多边形截去一个角后,形成的另一个多边形的内角和是1620°,则原来多边形的边数是( )A .10或11B .11或12或13C .11或12D .10或11或12【变式3-3】(2020春•新化县月考)如果一个正五边形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是 .【知识点3 多边形的外角和】在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n 边形的外角和恒等于360°,它与边数的多少无关.【题型4 多边形的外角和】【例4】(2021春•金牛区校级期中)若正多边形的一个外角是45°,则该正多边形的内角和为( )A .720°B .540°C .1080°D .900°【变式4-1】(2020春•永州期末)富有灿烂文化的永州,现今保留着许多具有历史和文化价值的建筑,古朴的建筑代表,无规则多边形的形状,蕴含了丰富而和谐的数学美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的多边形,根据绘制的图形,则∠1+∠2+∠3+∠4+∠5的度数为()A.72°B.108°C.360°D.540°【变式4-2】(2020秋•越秀区校级月考)五边形ABCDE中,∠A、∠B、∠C、∠D对应的邻补角和等于215°,则∠E的度数为()A.30°B.35°C.40°D.45°【变式4-3】(2020春•郓城县期末)如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=75°,∠AED的度数是()A.120°B.115°C.105°D.100°【题型5 多边形的内角和与外角和的实际应用】【例5】(2020秋•汤阴县期中)八年级一班的同学体育课上玩游戏,让小聪同学从A出发前进10米后左转30°,再前进10米后左转30°,按照这样方法一直走下去,当他回到A时,共走了()A.60米B.100米C.120米D.150米【变式5-1】(2020秋•兰山区期末)科技馆为某机器人编制了一个程序,如果机器人在平地上按照图中所示的步骤行走,那么该机器人所走的总路程为()A.12米B.16米C.18米D.20米【变式5-2】(2020春•永年区期末)小磊利用最近学习的数学知识,给同伴出了这样一道题:假如从点A出发,沿直线走5米后向左转θ,接着沿直线前进5米后,再向左转θ……如此下去,当他第一次回到A点时,发现自己走了60米,θ的度数为()【变式5-3】(2021•昆明模拟)将若干个大小相等的正五边形排成环状,如图所示是前3个五边形,要完成这一圆环还需_______个正五边形()A.6B.7C.8D.9【题型6 多边形的内角和与外角和的综合应用】【例6】(2020春•遂宁期末)如图,七边形ABCDEFG中,AB、ED的延长线交于点O,若∠1,∠2,∠3,∠4相邻的外角的和等于230°,则∠BOD的度数是()A.50°B.55°C.40°D.45°【变式6-1】(2020秋•朝阳区校级月考)如图,l1∥l2,正五边形ABCDE的顶点A、B分别落在l1、l2上,若∠1=25°,则∠2的大小为()A.60°B.61°C.62°D.65°【变式6-2】(2021春•宜兴市期中)如图,四边形ABCD中,∠A=110°,∠C=70°,点M、N分别在AB、BC 上,将△BMN沿MN翻折,得△FMN.若MF∥AD,FN∥DC,则∠B的度数为°.【变式6-3】(2020秋•路北区期中)如图,在六边形ABCDEF中,若∠A+∠B+∠C+∠D=500°,∠DEF与∠AFE 的平分线交于点G,则∠G等于()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题23 多边形内角和问题
1.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
2.多边形的内角:多边形相邻两边组成的角叫做它的内角。
3.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫多边形的外角。
4.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
5.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
6.多边形内角和公式:n边形的内角和等于(n-2)·180°
7.多边形的外角和:多边形的内角和为360°。
8.多边形对角线的条数:
(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分成(n-2)个三角形。
(2)n边形共有
23)
-
n(n
条对角线。
【例题1】(2019贵州铜仁)如图为矩形ABCD,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a和b,则a+b不可能是()
A.360°B.540°C.630°D.720°。