2011中考一次函数与反比例函数的综合应用
反比例函数与一次函数的综合应用 参考答案与试题解析
反比例函数与一次函数的综合应用1.已知一次函数y1=kx﹣b与反比例函数y2=,在同一平面直角坐标系中的图象如图所示,则当kx<+b时,x的取值范围是()A.x<﹣1或0<x<3B.﹣1<x<0或x>3C.﹣3<x<0或x>1D.x>32.如图,一次函数y=k1x+b的图象与x轴,y轴分别交于A,B两点,与反比例函数y=的图象分别交于C,D两点,若点C坐标是(3,6),且AB=BC.(1)求一次函数y=k1x+b与反比例函数y=的解析式;(2)求△COD的面积;(3)直接写出当x取何值时,k1x+b<.3.如图,在平面直角坐标系中,一次函数与反比例函数相交于A(2,m)和B(6,2).(1)求直线AB的表达式;(2)△AOB的面积是;(3)点A到OB的距离AH的长度是.4.如图,一次函数y1=﹣2x+b的图象分别交x轴,y轴于D,C两点,交反比例函数y2=图象于A(﹣1,6),B(m,﹣2)两点.(1)求k,b的值;(2)点E是y轴上点C下方一点,若S=,求E点的坐标;△AEB(3)当y1>y2时,x的取值范围是.5.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(1,2)、B(﹣2,n)两点.(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出满足k1x+b>的x的取值范围;(3)若点P在线段AB上,且S:S△BOP=1:4,求点P的坐标.△AOP参考答案与试题解析1.已知一次函数y1=kx﹣b与反比例函数y2=,在同一平面直角坐标系中的图象如图所示,则当kx<+b时,x的取值范围是()A.x<﹣1或0<x<3B.﹣1<x<0或x>3C.﹣3<x<0或x>1D.x>3【解答】解:根据题意得:当y1<y2时,x的取值范围是﹣1<x<0或x>3,∴当kx<+b时,x的取值范围是﹣1<x<0或x>3.故选:B.2.如图,一次函数y=k1x+b的图象与x轴,y轴分别交于A,B两点,与反比例函数y=的图象分别交于C,D两点,若点C坐标是(3,6),且AB=BC.(1)求一次函数y=k1x+b与反比例函数y=的解析式;(2)求△COD的面积;(3)直接写出当x取何值时,k1x+b<.【解答】解:(1)∵点C(3,6)在反比例函数y=的图象上,∴k2=3×6=18,∴反比例函数的解析式为y=;如图,作CE⊥x轴于E,∵C(3,6),AB=BC,∴B(0,3),∵B、C在y=k1x+b的图象上,∴,解得,∴一次函数的解析式为y=x+3;(2)由,解得或,∴D(﹣6,﹣3),=S△BOC+S△BOD=×3×3+×3×6=;∴S△COD(3)由图象可得,当0<x<3或x<﹣6时,k1x+b<.3.如图,在平面直角坐标系中,一次函数与反比例函数相交于A(2,m)和B(6,2).(1)求直线AB的表达式;(2)△AOB的面积是16;(3)点A到OB的距离AH的长度是.【解答】解:(1)设反比例函数的解析式为y=,由题意可知:k=6×2=12,∴y=,∵A(2,m)在反比例函数y=的图象上,∴m==6,∴A(2,6),∵A(2,6)、B(6,2)在一次函数y=ax+b的图象上,∴,解得,∴直线AB的表达式为y=﹣x+8;(2)设直线AB与x轴的交点为C,令y=0,则﹣x+8=0,解得x=8,∴C(8,0),=S△AOC﹣S△BOC=﹣=16,∴S△AOB故答案为:16;(3)∵B(6,2),∴OB==2,∵S=OB•AH=16,△AOB∴AH==,故答案为:.4.如图,一次函数y1=﹣2x+b的图象分别交x轴,y轴于D,C两点,交反比例函数y2=图象于A(﹣1,6),B(m,﹣2)两点.(1)求k,b的值;=,求E点的坐标;(2)点E是y轴上点C下方一点,若S△AEB(3)当y1>y2时,x的取值范围是x<﹣1或0<x<3.【解答】解:(1)将A(﹣1,6)代入一次函数y=﹣2x+b,得b=4;将A(﹣1,6)代入,得k=﹣6.(2)设E(a,0),将B(m,﹣2)代入,得m=3,∴B(3,﹣2)∴)=2CE=2(4﹣a)=,∴E(0,);(3)观察图象,当y1>y2时,x的取值范围是x<﹣1或0<x<3,故答案为:x<﹣1或0<x<3.5.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(1,2)、B(﹣2,n)两点.(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出满足k1x+b>的x的取值范围;:S△BOP=1:4,求点P的坐标.(3)若点P在线段AB上,且S△AOP【解答】解:(1)∵反比例函数y=经过A(1,2),∴k2=1×2=2,∴反比例函数解析式为y=,∵B(﹣2,n)在比例函数y=的图象上,∴n==﹣1,∴B(﹣2,﹣1),∵直线y=k1x+b经过A(1,2),B(﹣2,﹣1),∴,解得,∴一次函数的解析式为y=x+1;(2)观察图象,k1x+b>的x的取值范围是﹣2<x<0或x>1;(3)设P(x,x+1),:S△BOP=1:4,∵S△AOP∴AP:PB=1:4,即PB=4PA,∴(x+2)2+(x+1+1)2=16[(x﹣1)2+(x+1﹣2)2],解得x1=,x2=2(舍去),∴P点坐标为(,).。
一次函数与反比例函数综合应用教案
一次函数与反比例函数综合应用教案一、教学目标1. 让学生掌握一次函数和反比例函数的基本概念和性质。
2. 培养学生运用一次函数和反比例函数解决实际问题的能力。
3. 引导学生通过合作交流,提高解决问题的策略和思维能力。
二、教学内容1. 一次函数的基本概念和性质。
2. 反比例函数的基本概念和性质。
3. 一次函数和反比例函数的综合应用。
三、教学重点与难点1. 教学重点:一次函数和反比例函数的基本概念、性质和综合应用。
2. 教学难点:一次函数和反比例函数的综合应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究一次函数和反比例函数的性质。
2. 利用案例分析法,让学生通过实际问题体会一次函数和反比例函数的应用价值。
3. 采用合作交流法,培养学生团队协作和沟通能力。
五、教学过程1. 导入新课:通过生活实例引入一次函数和反比例函数的概念。
2. 自主学习:让学生自主探究一次函数和反比例函数的性质。
3. 案例分析:分析实际问题,引导学生运用一次函数和反比例函数解决问题。
4. 合作交流:分组讨论,让学生分享解题策略和心得。
5. 总结提升:总结一次函数和反比例函数的性质及应用,提高学生解决问题的能力。
6. 课后作业:布置相关练习题,巩固所学知识。
六、教学活动设计1. 活动一:引入概念通过展示实际生活中的线性关系图片,如直线轨道上列车的运动,引导学生思考线性关系的表现形式。
引导学生提出一次函数的表达式,并解释其含义。
2. 活动二:探索性质学生通过绘制一次函数图像,观察并总结其在坐标系中的性质。
通过实际例子,让学生理解一次函数的斜率和截距对图像的影响。
3. 活动三:反比例函数的引入引导学生从比例关系出发,思考反比例函数的概念。
通过实际问题,如在固定面积内,距离与面积的关系,引入反比例函数。
七、教学评价设计1. 评价目标:学生能理解并应用一次函数和反比例函数解决实际问题。
通过设计具有挑战性的问题,如购物预算问题,让学生应用所学的函数知识。
3一次函数与反比例函数的综合运用(学生版)
滚动小专题(三)一次函数与反比例函数的综合运用本专题是对一次函数与反比例函数的综合问题进行复习与深化,这类综合题考查的知识点多,能力要求强.试题呈现形式活泼多样,既有一次函数、反比例函数与代数的综合又有与空间几何的综合.解决这类问题首先要理清头绪,挖掘题目中的已知条件和隐含条件,根据实际问题情境或图象列出相应关系式,从而建立函数模型.例如图,一次函数y=kx+5(k为常数,且k≠0)的图象与反比例函数y=-8x的图象交于A(-2,b),B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.方法归纳:解决一次函数和反比例函数的问题常常从反比例函数突破,求两函数的交点问题通常联立成方程组,转化为方程解决.若两函数图象有两个交点,则对应的一元二次方程的Δ>0;若两函数图象有1个交点,则对应的一元二次方程的Δ=0;若两函数图象没有交点,则对应的一元二次方程的Δ<0.1.如图,在平面直角坐标系xOy中,已知一次函数y=kx+b的图象经过点A(1,0),与反比例函数y=mx(x>0)的图象相交于点B(2,1).(1)求m的值和一次函数的解析式;(2)结合图象直接写出:当x>0时,不等式kx+b>mx的解集.2.已知一次函数y=kx-6的图象与反比例函数y=-2kx的图象交于A、B两点,点A的横坐标为2.(1)求k的值和点A的坐标;(2)判断点B的象限,并说明理由.3.如图,在直角坐标系xOy中,直线y=mx与双曲线y=nx相交于A(-1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.(1)求m、n的值;(2)求直线AC的解析式.4.如图,一次函数y=-x+2的图象与反比例函数y=-3x的图象交于A、B两点,与x轴交于D点,且C、D两点关于y轴对称.(1)求A、B两点的坐标;(2)求△ABC的面积.5.如图,在△AOB中,∠ABO=90°,OB=4,AB=8,反比例函数y=kx在第一象限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD=4.(1)求反比例函数解析式;(2)求点C的坐标.6.如图,一次函数y=kx+b(k≠0)的图象过点P(-32,0),且与反比例函数y=mx(m≠0)的图象相交于点A(-2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?。
中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)
中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)知识点总结1. 反比例函数k 的集合意义:①过反比例函数图像上任意一点作坐标轴的垂线,两垂线与坐标轴构成一个矩形,矩形的面积等于k 。
②过反比例函数图像上任意一点作其中一条坐标轴的垂线,并连接这个点与原点,则构成一个三角形。
这个三角形的面积等于2k 。
2. 待定系数法求反比例函数解析式:在反比例函数中只有一个系数k ,所以只需要在图像上找一个对应的点即可求出k 的值,从而求出反比例函数解析式。
3. 反比例函数与一次函数的不等式问题: 若反比例函数()0≠=k x ky 与一次函数()0≠+=k b kx y 有交点,则不等式b kx xk +>的解集取反比例函数图像在一次函数图像上方的部分所对应的自变量取值范围;等式b kx xk+<的解集取反比例函数图像在一次函数图像下方的部分所对应的自变量取值范围。
反比例函数与一次函数的交点把自变量分成三部分。
练习题1、(2022•日照)如图,矩形OABC 与反比例函数y 1=xk1(k 1是非零常数,x >0)的图像交于点M ,N ,与反比例函数y 2=xk2(k 2是非零常数,x >0)的图像交于点B ,连接OM ,ON .若四边形OMBN 的面积为3,则k 1﹣k 2=( )A .3B .﹣3C .23 D .﹣23【分析】根据矩形的性质以及反比例函数系数k 的几何意义即可得出结论. 【解答】解:∵y 1、y 2的图像均在第一象限, ∴k 1>0,k 2>0,∵点M 、N 均在反比例函数y 1=(k 1是非零常数,x >0)的图像上,∴S △OAM =S △OCN =k 1,∵矩形OABC 的顶点B 在反比例函数y 2=(k 2是非零常数,x >0)的图像上,∴S 矩形OABC =k 2,∴S 四边形OMBN =S 矩形OABC ﹣S △OAM ﹣S △OCN =3, ∴k 2﹣k 1=3, ∴k 1﹣k 2=﹣3, 故选:B .2、(2022•牡丹江)如图,等边三角形OAB ,点B 在x 轴正半轴上,S △OAB =43,若反比例函数y =xk(k ≠0)图像的一支经过点A ,则k 的值是( )A .233 B .23C .433 D .43【分析】根据正三角形的性质以及反比例函数系数k 的几何意义,得出S △AOC =S △AOB =2=|k |,即可求出k 的值.【解答】解:如图,过点A 作AC ⊥OB 于点C , ∵△OAB 是正三角形, ∴OC =BC ,∴S △AOC =S △AOB =2=|k |,又∵k >0, ∴k =4,故选:D .3、(2022•郴州)如图,在函数y =x2(x >0)的图像上任取一点A ,过点A 作y 轴的垂线交函数y =﹣x8(x <0)的图像于点B ,连接OA ,OB ,则△AOB 的面积是( )A .3B .5C .6D .10【分析】根据反比例函数系数k 的几何意义进行计算即可. 【解答】解:∵点A 在函数y =(x >0)的图像上, ∴S △AOC =×2=1,又∵点B 在反比例函数y =﹣(x <0)的图像上, ∴S △BOC =×8=4, ∴S △AOB =S △AOC +S △BOC =1+4 =5, 故选:B .4、(2022•黑龙江)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OBAD 的顶点B 在反比例函数y =x 3的图像上,顶点A 在反比例函数y =xk的图像上,顶点D 在x 轴的负半轴上.若平行四边形OBAD 的面积是5,则k 的值是( )A .2B .1C .﹣1D .﹣2【分析】设B (a ,),根据四边形OBAD 是平行四边形,推出AB ∥DO ,表示出A 点的坐标,求出AB =a ﹣,再根据平行四边形面积公式列方程,解出即可.【解答】解:设B (a ,), ∵四边形OBAD 是平行四边形, ∴AB ∥DO , ∴A (,),∴AB =a ﹣,∵平行四边形OBAD 的面积是5, ∴(a ﹣)=5,解得k =﹣2, 故选:D .5、(2022•十堰)如图,正方形ABCD 的顶点分别在反比例函数y =xk 1(k 1>0)和y =xk 2(k 2>0)的图像上.若BD ∥y 轴,点D 的横坐标为3,则k 1+k 2=( )A .36B .18C .12D .9【分析】连接AC交BD于E,延长BD交x轴于F,连接OD、OB,设AE=BE=CE=DE =m,D(3,a),根据BD∥y轴,可得B(3,a+2m),A(3+m,a+m),即知k1=3(a+2m)=(3+m)(a+m),从而m=3﹣a,B(3,6﹣a),由B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,得k1=3(6﹣a)=18﹣3a,k2=3a,即得k1+k2=18﹣3a+3a=18.【解答】解:连接AC交BD于E,延长BD交x轴于F,连接OD、OB,如图:∵四边形ABCD是正方形,∴AE=BE=CE=DE,设AE=BE=CE=DE=m,D(3,a),∵BD∥y轴,∴B(3,a+2m),A(3+m,a+m),∵A,B都在反比例函数y=(k1>0)的图像上,∴k1=3(a+2m)=(3+m)(a+m),∵m≠0,∴m=3﹣a,∴B(3,6﹣a),∵B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,∴k1=3(6﹣a)=18﹣3a,k2=3a,∴k1+k2=18﹣3a+3a=18;故选:B .6、(2022•邵阳)如图是反比例函数y =x1的图像,点A (x ,y )是反比例函数图像上任意一点,过点A 作AB ⊥x 轴于点B ,连接OA ,则△AOB 的面积是( )A .1B .C .2D .【分析】由反比例函数的几何意义可知,k =1,也就是△AOB 的面积的2倍是1,求出△AOB 的面积是.【解答】解:∵A (x ,y ), ∴OB =x ,AB =y ,∵A 为反比例函数y =图像上一点, ∴xy =1,∴S △ABO =AB •OB =xy =1=,故选:B .7、(2022•内江)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数y =x 8和y =xk的图像交于P 、Q 两点.若S △POQ =15,则k 的值为( )A .38B .22C .﹣7D .﹣22【分析】利用k 的几何意义解题即可. 【解答】解:∵直线l ∥y 轴, ∴∠OMP =∠OMQ =90°,∴S △OMP =×8=4,S △OMQ =﹣k . 又S △POQ =15, ∴4﹣k =15, 即k =11,∴k =﹣22. 故选:D .8、(2022•东营)如图,△OAB 是等腰直角三角形,直角顶点与坐标原点重合,若点B 在反比例函数y =x1(x >0)的图像上,则经过点A 的函数图像表达式为 .【分析】作AD ⊥x 轴于D ,BC ⊥x 轴于C ,根据△OAB 是等腰直角三角形,可证明△BOC ≌△OAD ,利用反比例函数k 的几何意义得到S △OBC =,则S △OAD =,所以|k |=,然后求出k 得到经过点A 的反比例函数解析式. 【解答】解:如图,作AD ⊥x 轴于D ,BC ⊥x 轴于C , ∴∠ADO =∠BCO =90°,∵∠AOB =90°, ∴∠AOD +∠BOC =90°, ∴∠AOD +∠DAO =90°, ∴∠BOC =∠DAO , ∵OB =OA ,∴△BOC ≌△OAD (AAS ),∵点B 在反比例函数y =(x >0)的图像上, ∴S △OBC =, ∴S △OAD =, ∴k =﹣1,∴经过点A 的反比例函数解析式为y =﹣. 故答案为:y =﹣.9、(2022•盐城)已知反比例函数的图像经过点(2,3),则该函数表达式为 . 【分析】利用反比例函数的定义列函数的解析式,运用待定系数法求出函数的解析式即可. 【解答】解:令反比例函数为y =(k ≠0), ∵反比例函数的图像经过点(2,3), ∴3=, k =6,∴反比例函数的解析式为y =. 故答案为:y =.10、(2022•湖北)在反比例函数y =xk 1−的图像的每一支上,y 都随x 的增大而减小,且整式x 2﹣kx +4是一个完全平方式,则该反比例函数的解析式为 . 【分析】由整式x 2﹣kx +4是一个完全平方式,可得k =±4,由反比例函y =的图像的每一支上,y 都随x 的增大而减小,可得k ﹣1>0,解得k >1,则k =4,即可得反比例函数的解析式.【解答】解:∵整式x 2﹣kx +4是一个完全平方式,∴k =±4, ∵反比例函数y =的图像的每一支上,y 都随x 的增大而减小,∴k ﹣1>0, 解得k >1, ∴k =4,∴反比例函数的解析式为y =. 故答案为:y =.35.(2022•陕西)已知点A (﹣2,m )在一个反比例函数的图像上,点A '与点A 关于y 轴对称.若点A '在正比例函数y =21x 的图像上,则这个反比例函数的表达式为 .【分析】根据轴对称的性质得出点A '(2,m ),代入y =x 求得m =1,由点A (﹣2,1)在一个反比例函数的图像上,从而求得反比例函数的解析式. 【解答】解:∵点A '与点A 关于y 轴对称,点A (﹣2,m ), ∴点A '(2,m ),∵点A '在正比例函数y =x 的图像上, ∴m ==1,∴A (﹣2,1),∵点A (﹣2,1)在一个反比例函数的图像上, ∴反比例函数的表达式为y =﹣, 故答案为:y =﹣.11、(2022•攀枝花)如图,正比例函数y =k 1x 与反比例函数y =xk 2的图像交于A (1,m )、B 两点,当k 1x ≤xk2时,x 的取值范围是( )A .﹣1≤x <0或x ≥1B .x ≤﹣1或0<x ≤1C .x ≤﹣1或x ≥1D .﹣1≤x <0或0<x ≤1【分析】根据反比例函数的对称性求得B 点的坐标,然后根据图像即可求得. 【解答】解:∵正比例函数y =k 1x 与反比例函数y =的图像交于A (1,m )、B 两点,∴B (﹣1,﹣m ), 由图像可知,当k 1x ≤时,x 的取值范围是﹣1≤x <0或x ≥1,故选:A .37.(2022•东营)如图,一次函数y 1=k 1x +b 与反比例函数y 2=xk 2的图像相交于A ,B 两点,点A 的横坐标为2,点B 的横坐标为﹣1,则不等式k 1x +b <xk2的解集是( )A .﹣1<x <0或x >2B .x <﹣1或0<x <2C .x <﹣1或x >2D .﹣1<x <2【分析】根据两函数图像的上下位置关系结合交点横坐标,即可得出不等式k 1x +b <的解集,此题得解.【解答】解:观察函数图像可知,当﹣1<x <0或x >2时,一次函数y 1=k 1x +b 的图像在反比例函数y 2=的图像的下方,∴不等式k 1x +b <的解集为:﹣1<x <0或x >2,故选:A .12、(2022•朝阳)如图,正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =xk(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点,则不等式ax >xk的解集为( )A .x <﹣2或x >2B .﹣2<x <2C .﹣2<x <0或x >2D .x <﹣2或0<x <2【分析】根据关于原点对称的点的坐标特征求得B (2,﹣m ),然后根据函数的图像的交点坐标即可得到结论.【解答】解:∵正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点, ∴B (2,﹣m ),∴不等式ax >的解集为x <﹣2或0<x <2, 故选:D .13、(2022•无锡)一次函数y =mx +n 的图像与反比例函数y =xm的图像交于点A 、B ,其中点A 、B 的坐标为A (﹣m1,﹣2m )、B (m ,1),则△OAB 的面积是( ) A .3B .413C .27D .415【分析】根据反比例函数图像上点的坐标特征求出m ,进而求出点A 、B 的坐标,根据三角形的面积公式计算即可.【解答】解:∵点A (﹣,﹣2m )在反比例函数y =上, ∴﹣2m =,解得:m =2,∴点A 的坐标为:(﹣,﹣4),点B 的坐标为(2,1), ∴S △OAB =××5﹣××4﹣×2×1﹣×1=,故选:D .14、(2022•荆州)如图是同一直角坐标系中函数y 1=2x 和y 2=x2的图像.观察图像可得不等式2x >x2的解集为( )A .﹣1<x <1B .x <﹣1或x >1C .x <﹣1或0<x <1D .﹣1<x <0或x >1【分析】结合图像,数形结合分析判断.【解答】解:由图像,函数y 1=2x 和y 2=的交点横坐标为﹣1,1, ∴当﹣1<x <0或x >1时,y 1>y 2,即2x >, 故选:D .15、(2022•怀化)如图,直线AB 交x 轴于点C ,交反比例函数y =xa 1−(a >1)的图像于A 、B 两点,过点B 作BD ⊥y 轴,垂足为点D ,若S △BCD =5,则a 的值为( )A.8B.9C.10D.11【分析】设点B的坐标为(m,),然后根据三角形面积公式列方程求解.【解答】解:设点B的坐标为(m,),∵S△BCD=5,且a>1,∴×m×=5,解得:a=11,故选:D.16、(2022•宁夏)在显示汽车油箱内油量的装置模拟示意图中,电压U一定时,油箱中浮子随油面下降而落下,带动滑杆使滑动变阻器滑片向上移动,从而改变电路中的电流,电流表的示数对应油量体积,把电流表刻度改为相应油量体积数,由此知道油箱里剩余油量.在不考虑其他因素的条件下,油箱中油的体积V与电路中总电阻R总(R总=R+R0)是反比例关系,电流I与R总也是反比例关系,则I与V的函数关系是()A.反比例函数B.正比例函数C.二次函数D.以上答案都不对【分析】由油箱中油的体积V与电路中总电阻R总是反比例关系,电流I与R总是反比例关系,可得V=I(为常数),即可得到答案.【解答】解:由油箱中油的体积V与电路中总电阻R总是反比例关系,设V•R总=k(k为常数),由电流I与R总是反比例关系,设I•R总=k'(k为常数),∴=,∴V=I(为常数),∴I与V的函数关系是正比例函数,故选:B.17、(2022•宜昌)已知经过闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系.根据下表判断a和b的大小关系为()A.a>b B.a≥b C.a<b D.a≤b【分析】根据等量关系“电流=”,即可求解.【解答】解:∵闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系,∴40a=80b,∴a=2b,∴a>b,故选:A.18、(2022•丽水)已知电灯电路两端的电压U为220V,通过灯泡的电流强度I(A)的最大限度不得超过0.11A.设选用灯泡的电阻为R(Ω),下列说法正确的是()A.R至少2000ΩB.R至多2000ΩC.R至少24.2ΩD.R至多24.2Ω【分析】利用已知条件列出不等式,解不等式即可得出结论.【解答】解:∵电压U一定时,电流强度I(A)与灯泡的电阻为R(Ω)成反比例,∴I=.∵已知电灯电路两端的电压U为220V,∴I=.∵通过灯泡的电流强度I(A)的最大限度不得超过0.11A,∴≤0.11,∴R≥2000.故选:A.19、(2022•郴州)科技小组为了验证某电路的电压U(V)、电流I(A)、电阻R(Ω)三者之间的关系:I=U,测得数据如下:那么,当电阻R=55Ω时,电流I=A.【分析】由表格数据求出反比例函数的解析式,再将R=55Ω代入即可求出答案.【解答】解:把R=220,I=1代入I=得:1=,解得U=220,∴I=,把R=55代入I=得:I==4,故答案为:4.20、(2022•山西)根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图像如图所示.当S=0.25m2时,该物体承受的压强p的值为Pa.【分析】设p=,把(0.1,1000)代入得到反比例函数的解析式,再把S=0.25代入解析式即可解决问题.【解答】解:设p=,∵函数图像经过(0.1,1000),∴k=100,∴p=,当S=0.25m2时,物体所受的压强p==400(Pa),故答案为:400.。
反比例函数与一次函数综合应用教案
反比例函数与一次函数的综合应用一、学情分析1. 学生:学生已经学过了反比例函数和一次函数,有了一定的了解,但是综合性有待提高;2. 教材:这是初三复习内容;3. 课程:本课程针对中考反比例函数与一次函数结合的题目进行复习练习。
二、教学目标:1、知识目标:(1)一次函数、正比例函数、反比例函数的概念。
(2)一次函数、正比例函数、反比例函数的图象及性质。
2、能力目标:(1)用待定系数法求一次函数、正比例函数、反比例函数的解析式。
(2)会用作出一次函数、正比例函数、反比例函数的图象。
(3)能够应用一次函数与反比例函数的图象与性质分析解决一次函数与反比例函数的综合题。
3、情感态度与价值观:通过解题进一步理解数形结合的数学思想在函数中的应用。
三、教学重点:1.一次函数、正比例函数、反比例函数的图象及性质。
2.用待定系数法求一次函数、正比例函数、反比例函数的解析式。
3.熟练应用一次函数与反比例函数的图象与性质进行解题。
四、教学难点:1.灵活运用一次函数、正比例函数、反比例函数的有关知识解综合题。
2.进一步利用数形结合的思想方法进行解题。
五、教学方法:讲练结合六、学情分析:学生已经基本掌握反比例函数和一次函数的概念、图象和性质,但我校学生计算能力、试图能力和分析能力都有待提高,因此我选择了稍微简单的综合题,意在让学生提高能力的同时增强学习数学的自信心。
七、教学过程(一)源于中考,以点展面(导入)一个函数具有下列性质:①它的图象经过(-1,4);②在每个象限内,函数y 的值随自变量x 的值增大而增大;请你写出一个符合上述条件的函数关系式: .【设计意图:本题属于开放性试题,答案可以是反比例函数(一般学生)也可以是一次函数(好学生),由此引出本节课的内容,反比例函数与一次函数综合应用】(二)综合应用,提升能力(新授课)1.例题分析若xy 4-=的图象与正比例函数y =kx (k ≠0)的图象在第二象限的交点为A (-1,n ),如图.(1)求正比例函数的解析式;(中等学生回答)(2)确定该函数的图象与正比例函数y =kx 的图象另一个交点B 的坐标;(全体学生回答)(3)过点A 、B 向x 轴作垂线,垂足为M 、N ,求S △AOM 、S △BON . (全体学生回答)(4)①若C (2,m ) 为该正比例函数图象上一点,比较m 与n 的大小;(中等学生回答)②若E (-2,m ) 为该正比例函数图象上一点,比较m 与n 的大小;(全体学生回答) ③若反比例函数值大于正比例函数值,确定 x 的取值范围. (中等学生回答)【说明:本题是由4道学生熟悉的小题综合在一起的,难度不大,让学生体验一部分综合题就是由几个有关联的小题放在一起,消除学生抵触心理,为后面难点打基础】2. 方法总结解决函数问题方法总结:(师生共同总结,学生在学案中填写)解决问题 求函数解析式 确定交点坐标 求几何图形面积 比较函数值大小 3. 针对练习:回归中考,能力检测4(学生独立完成,大屏幕展示学生解题过程)(三)变式延伸,拓展思维:1. 例题分析若直线()041>+=k kx y 与反比例函数()02≠=m m xm y 为常数,的图象一个交点为A (-3,1),如图.(1)=1y ;=2y (全体学生)(2)直接写出两函数的另一个交点坐标;(全体学生)(3)当x 取何值时,21y y >;(中等学生)(4)求△OAB 的面积; (较好学生)(5)过点A 作x 轴的垂线,过点B 作y 轴的垂线,两线交于点C .(课外延伸)①若反比例函数()02≠=m m xm y 为常数,的图象与△ABC 有公共点,请直接写出m 的取值范围;②若一次函数y =ax +b 的图象平行于直线 AB ,若直线y =ax +b 与△ABC 有公共点,求b 的取值范围;【说明:本题是本节课的难点,一次函数与反比例函数的结合,以及割补法求面积,利用多媒体教学的优势,用动画展示割补的过程,从而突破难点】2. 方法总结一次函数与反比例函数综合应用方法总结:(师生共同总结,学生在学案中填写)3. 针对练习:回归中考,能力检测5(学生独立完成,大屏幕展示学生解题过程)(四)课堂小结:本节课讲的解决函数问题以及函数综合题的方法,强调交点的重要性.(五)课堂反馈:回归中考,能力检测6八、板书设计策 略 方 法八、教学反思本节课学生基本掌握反比例函数和一次函数的概念、图象和性质以及掌握利用这些知识解较简单的综合题的方法,但是对于数形结合的思想运用、与几何知识的结合、坐标与线段的转化还不是很熟练,需要进一步练习提高。
《一次函数与反比例函数的综合应用》教学设计
(一)、知识与技能:
1、理解和掌握一次函数与反比例函数的表达式,图象及其性质。
2、能熟练运用待定系数法求函数的表达式;利用联立方程组思想求交点坐标;数形结合的思想求变量取值范围,转化思想等方法解决函数综合应用题。
(二)、过程与方法:
1、通过对零散知识点运用思维导图进行系统梳理,让学生对一次函数、反比例函数的知识体系结构化。
2、广东省近几年数学中考中一次函数与反比例函数综合题的考查情况表:
年份2012年2013年2014年
题号第17题第10题第23题
1、学生听
1、教师在此 活 动中,要重点关注的是:
(1)问题的提出是否引起了学生的兴趣;
(2)学生
是否高度重视,有主动积极参与到活动中来, 有种跃跃欲试的感觉。
教师对本
节课内容
1、(2011年湖南怀化中考题)正比例函数
y2x与反比例函数y1在同一坐标系中的
x
大致图像是( B)
2、(2017湖南张家界中考题)在同一平面直角坐标系中,函数y=mx+m(m≠0)与ym
x
m≠0)的图象可能是(D)
针对引例题 2 类型的变式训练题:
3、(2011年浙江杭州中考题)函数y1x1和
引例 2:(2011 年贵州贵阳中考题)如图,反
k1
比例函数y1=x和正比例函数y2=k2x的图象
k1
交于A(-1,-3)、B(1,3)两点,若x>k2x,
则x的取值范围是(C)A、-1<x<0
B、-1<x<1
C、x<-1或0<x<1D、-1<x<0或x>1
k1
解析:根据题意,若x>k2x,则只须y1>y2,
(2)并且无论P怎样移动,△OPA的面积和矩形OAPB的面积都保持不变。
中考考点分析反比例函数与一次函数综合问题
反比例函数与一次函数交叉综合问题【前言】初中数学所涉及的函数无非也就一次函数,反比例函数以及二次函数。
二次函数基本上只会考和一次函数的综合问题,二次函数与反比例函数基本不会涉及。
所以如何掌握好一次函数与反比例函数的综合问题就成为了又一重点。
这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。
所以在中考中面对这类问题,一定要做到避免失分。
【例1】2010,西城,一模将直线4=y x 沿y 轴向下平移后,得到的直线与x 轴交于点904⎛⎫⎪⎝⎭,A ,与双曲线(0)=>ky x x交于点B .⑴求直线AB 的解析式;⑵若点B 的纵标为m ,求k 的值(用含有m 的式子表示).【思路分析】这种平移一个一次函数与反比例函数交与某一点的题目非常常见,一模中有多套题都是这样考法。
题目一般不难,设元以后计算就可以了。
本题先设平移后的直线,然后联立即可。
比较简单,看看就行.【解析】将直线x y 4=沿y 轴向下平移后经过x 轴上点A (0,49), 设直线AB 的解析式为b x y +=4. 则0494=+⨯b . 解得9-=b .∴直线AB 的解析式为94-=x y .-8-6-4-2-2642642OBAy x图3(2)设点B 的坐标为(),B x m , ∵直线AB 经过点B , ∴94-=B x m .∴49+=m x B . ∴B 点的坐标为9,4m m +⎛⎫⎪⎝⎭, ∵点B 在双曲线ky x=()0x >上, ∴49+=m km . ∴492m m k +=.【例2】2010,丰台,一模如图,一次函数1y kx b =+的图象与反比例函数2my x=的图象相交于A 、B 两点. (1)求出这两个函数的解析式;(2)结合函数的图象回答:当自变量x 的取值范围满足什么条件时,12y y <BAOyx-2-6413【思路分析】第一问直接看图写出A ,B 点的坐标(-6,-2)(4,3),直接代入反比例函数中求m ,建立二元一次方程组求k,b 。
《一次函数和反比例函数的综合运用》教学设计
《一次函数和反比例函数的综合运用》教学设计一、教学内容分析教学内容:一次函数和反比例函数的综合运用内容分析:一次函数和反比例函数是在初中阶段比较重要的两个函数问题,是二次函数的基础,学生不仅要掌握函数知识,还应该掌握解决问题的常规方法,利用“方程思想”“数形结合”思想及“转化”的数学思想解决问题。
在教学中要注重类比教学和启发式教学,通过对知识的传授与运用,让学生达到举一反三,触类旁通的目的。
同时也要注重“数形结合”思想的运用,数学是研究现实世界数量关系和空间形式的科学,而“数形结合”就是通过数与形之间的对应和转化来解决问题,以形助数和以数解行两个方面,利用它可使复杂问题简单化,抽象问题具体化。
本节课主要是让学生掌握一次函数和反比例函数的综合运用,近几年的中考也有涉及一次函数和反比例函数的综合运用等相关问题,解决一次函数和反比例函数的综合运用主要是一次函数和反比例函数的相交问题和围成图像的面积计算问题,解决此类问题,主要要熟练一次函数和反比例函数的解析式和性质,借助图像,运用知识,利用“方程思想”“数形结合”思想及“转化”的数学思想解决问题。
二、教学目标:1、知识与技能:理解和掌握一次函数与反比例函数的概念、图像、性质,会运用知识分析解决一次函数与反比例的综合题,培养学生的发散思维能力。
2、过程与方法:让学生经历一次函数与反比例函数的复习过程,进一步领会“方程思想”“数形结合”思想及“转化”的数学思想,遵循“优化”原则。
3、情感、态度、价值观:通过全班互动,小组探究合作学习,培养学生的合作意识,增进学生的感情,培养沟通能力,通过方法探索,培养学生的探索钻研精神。
三、教学重难点重点:熟练应用一次函数与反比例函数的图像和性质进行解题。
难点:利用“数形结合”以及转化思想解决问题。
三、工具、教法和学法1、教学工具:多媒体2、教学方法:本节课根据学生的认识水平采用启发式,练习法等教学方法,讲练结合,在学生和教师共同分析,合作探究,小组讨论,展示交流,互相启发的过程中,教师适时适当地点拨、肯定、表扬学生,给学生提供展示的机会,激发学生的学习积极性,使学生主动参与学习的全过程。
2011中考一次函数与反比例函数的综合应用
(2012年1月最新最细)2011全国中考真题解析考点汇编☆一次函数与反比例函数的综合应用一、选择题1. (2011四川凉山,12,4分)二次函数2y ax bx c =++的图象如图所示,反比列函数ay x=与正比列函数y bx =在同一坐标系内的大致图象是( )考点:二次函数的图象;正比例函数的图象;反比例函数的图象. 专题:数形结合. 分析:由已知二次函数y =ax 2+bx +c 的图象开口方向可以知道a 的取值范围,对称轴可以确定b 的取值范围,然后就可以确定反比例函数xay =与正比例函数y =bx 在同一坐标系内的大致图象.解答:解:∵二次函数y =ax 2+bx +c 的图象开口方向向下,∴a <0,对称轴在y 轴的左边,∴x =-ab2<0,∴b <0, ∴反比例函数xay =的图象在第二四象限, 正比例函数y =bx 的图象在第二四象限. 故选B .点评:此题主要考查了从图象上把握有用的条件,准确选择数量关系解得a 的值,简单的图象最少能反映出2个条件:开口向下a <0;对称轴的位置即可确定b 的值. 2. (2011•青海)一次函数y=﹣2x+1和反比例函数y=的大致图象是( )A 、B 、ABDCC、D、考点:反比例函数的图象;一次函数的图象。
分析:根据一次函数的性质,判断出直线经过的象限;再根据反比例函数的性质,判断出反比例函数所在的象限即可.解答:解:根据题意:一次函数y=﹣2x+1的图象过一、二、四象限;反比例函数y=过一、三象限.故选:D.点评:此题主要考查了一次函数的图象及反比例函数的图象,重点是注意y=k1x+b中k1、b及y=中k2的取值.3.(2011山东青岛,8,3分)已知一次函数y1=kx+b与反比例函数y2=kx在同一直角坐标系中的图象如图所示,则当y1<y2时,x的取值范围是()A.x<﹣1或0<x<3 B.﹣1<x<0或x>3 C.﹣1<x<0 D.x>3 考点:反比例函数与一次函数的交点问题。
2011中考数学真题解析48_一次函数与反比例函数的综合应用含答案
全国中考真题解析一次函数与反比例函数的综合应用一、选择题1、 (2011四川凉山,12,4分)二次函数2y ax bx c =++的图象如图所示,反比列函数ay x=与正比列函数y bx =在同一坐标系内的大致图象就是( )2、 (2011•青海)一次函数y=﹣2x+1与反比例函数y=的大致图象就是( )A 、B 、C 、D 、3、 (2011山东青岛,8,3分)已知一次函数y 1=kx+b 与反比例函数y 2=kx在同一直角坐标系中的图象如图所示,则当y 1<y 2时,x 的取值范围就是( )A.x <﹣1或0<x <3B.﹣1<x <0或x >3C.﹣1<x <0D.x >3(2011杭州,6,3分)如图,函数y 1=x -1与函数 y 2=2x 的图象相交于点M (2,m ),N (-1,n ),若y 1>y 2,则x 的取值范围就是( )O xy O yxAO yxBO yxDO yxCA.x <-1或0<x<2 B.x <-1或x >2 C.-1<x <0或0<x <2 D.-1<x <0或x >24、(2011浙江台州,9,4分)如图,双曲线y =mx与直线y =kx +b 交于点M .N ,并且点M 的坐标为(1,3),点N 的纵坐标为﹣1.根据图象信息可得关于x 的方程mx=kx +b 的解为( )A.﹣3,1B.﹣3,3C.﹣1,1D.﹣1,35、 (2011•丹东,6,3分)反比例函数y=xk的图象如图所示,则一次函数y=kx+k 的图象大致就是( )Oyxxy OOy xxyOOyxA 、B 、C 、D 、6、 (2011•宜昌,15,3分)如图,直线y=x+2与双曲线y=3m x在第二象限有两个交点,那么m 的取值范围在数轴上表示为( )考点:反比例函数与一次函数的交点问题;在数轴上表示不等式的解集。
A 、B 、C 、D 、7、 (2011贵州毕节,9,3分)一次函数)0(≠+=k k kx y 与反比例函数)0(≠=k xky 在同一直角坐标系中的图象大致就是( )8、 (2011•贵阳10,分)如图,反比例函数y 1=xk 1与正比例函数y 2=k 2x 的图象交于A(﹣1,﹣3)、B(1,3)两点,若xk 1>k 2x,则x 的取值范围就是( )A 、﹣1<x <0B 、﹣1<x <1C 、x <﹣1或0<x <1D 、﹣1<x <0或x >1考点:反比例函数与一次函数的交点问题。
一次函数和反比例函数的综合应用
2011全国中考真题解析一次函数与反比例函数的综合应用一、选择题1. (2011四川凉山,12,4分)二次函数2y ax bx c =++的图象如图所示,反比列函数ay x=与正比列函数y bx =在同一坐标系内的大致图象是( )3. (2011山东青岛,8,3分)已知一次函数y 1=kx+b 与反比例函数y 2=kx错误!未找到引用源。
在同一直角坐标系中的图象如图所示,则当y 1<y 2时,x 的取值范围是( )A .x <﹣1或0<x <3B .﹣1<x <0或x >3C .﹣1<x <0D .x >3(2011杭州,6,3分)如图,函数y 1=x -1和函数 y 2=2x 的图象相交于点M (2,m ),N (-1,n ),若y 1>y 2,则x 的取值范围是( )A .x <-1或0<x <2B .x <-1或x >2C .-1<x <0或0<x <2D .-1<x <0或x >24.(2011浙江台州,9,4分)如图,双曲线y =错误!未找到引用源。
mx与直线y =kx +b 交于点M .N ,并且点M 的坐标为(1,3),点N 的纵坐标为﹣1.根据图象信息可得关于x 的方程错误!未找到引用源。
=kx +b 的解为( )A .﹣3,1B .﹣3,3C .﹣1,1D .﹣1,3故选A .12.(2011年山东省东营市,10,3分)如图,直线l 和双曲线(0)ky k x=>交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、0P ,设△AOC 的面积为S 1、△BOD 的面积为S 2、△POE 的面积为S 3,则( )第12题O xy O yxAO yxBO yxDO yxCA 、S 1<S 2<S 3B 、S 1>S 2>S 3C 、S 1=S 2>S 3D 、S 1=S 2<S 3故选D .13. (2011陕西,8,3分)如图,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数xy x y 24=-=和的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为( )A .3B .4C .5D .6 故选A . 二、填空题1. (2011江苏南京,15,2分)设函数y =错误!未找到引用源。
一次函数与反比例函数的综合运用
一次函数与反比例函数的综合运用一次函数和反比例函数是数学中常见的两种函数类型。
它们在生活中有许多实际应用,本文将探讨一次函数和反比例函数的综合运用。
首先,我们来介绍一次函数。
一次函数的一般形式是y = ax + b,其中a和b为常数。
一次函数的图像是一条直线,可以表示许多与线性关系有关的问题。
一次函数的应用之一是在经济学中的成本和收益分析。
假设一个公司的固定成本为2000元,每生产一个单位产品的变动成本为50元。
我们可以用一次函数来表示总成本与生产量之间的关系。
令x表示生产量,y表示总成本,则一次函数的表达式为y=50x+2000。
通过这个函数,我们可以计算出生产不同数量产品时的总成本,并选择最佳的生产数量。
另一个应用一次函数的例子是物理学中的运动学问题。
假设一个物体在t秒内以恒定的速度v移动,我们可以用一次函数来表示物体的位移和时间之间的关系。
令x表示位移,y表示时间,则一次函数的表达式为x= vt。
通过这个函数,我们可以根据已知的速度和时间,计算出物体在不同的时间点上的位移。
接下来,我们来介绍反比例函数。
反比例函数的一般形式是y=k/x,其中k为常数,x和y为变量。
反比例函数的图像是一条双曲线,可以表示许多与反比关系有关的问题。
反比例函数的应用之一是在物理学中的弹簧力和伸长关系问题。
弹簧的力与其伸长的关系通常是反比关系。
假设一个弹簧的弹性常数为k,伸长的长度为x,力为y,则反比例函数的表达式为y=k/x。
通过这个函数,我们可以计算出不同伸长长度下的力,并分析弹簧的弹性特性。
另一个应用反比例函数的例子是电路中的电阻和电流关系问题。
根据欧姆定律,电阻与电流成反比关系。
假设一个电路中的电阻为R,流过的电流为I,则反比例函数的表达式为I=k/R。
通过这个函数,我们可以计算出不同电阻下的电流,并分析电路的特性。
除了以上的例子,一次函数和反比例函数还可以在许多其他领域的问题中得到应用。
例如,在金融学中,可以使用一次函数来分析股票价格的变动趋势;在地理学中,可以使用反比例函数来研究人口密度和土地面积的关系。
反比例函数与一次函数的综合应用
反比例函数与一次函数的综合应用反比例函数和一次函数是数学中最常用的函数之一,它们常被用于实际工作中,可以用来模拟、分析和解决实际问题。
本文旨在探讨反比例函数和一次函数在实践中的运用。
详细探讨了反比例函数和一次函数的定义、特点、性质及其综合应用。
反比例函数的定义反比例函数是一种可以求解反比例关系的函数,它是以x和y两个变量组成的一对变量。
反比例函数也可以表示为y与x的倒数的乘积,也就是y=k/x,其中k为常数。
这种变量使得反比例函数有其独特的特征,使得反比例函数与其他函数不同。
反比例函数的特点反比例函数具有以下几个明显的特点:(1)反比例函数的图像为抛物线;(2)反比例函数的导数为负数;(3)反比例函数的函数值与变量值的乘积不变,即yx=k;(4)以反比例函数表示的关系为反比例关系。
一次函数的定义一次函数是一种最为普遍的函数,它由x和y两个变量组成。
一次函数的表达式可以以y=ax+b的形式来表示,其中a为常数,b为常数。
一次函数的特点一次函数具有以下几个明显的特点:(1)一次函数的图像为直线;(2)一次函数的导数为一恒定的常数;(3)一次函数的函数值与变量值的差值不变,即y-b=a(x-0);(4)以一次函数表示的关系为线性关系。
反比例函数与一次函数的综合应用反比例函数和一次函数能够结合起来运用,用于模拟、分析和解决实际问题。
具体应用如下:1.于具有反比例关系的实际现象,可以用反比例函数建立模型,以研究关系性。
例如,用反比例函数可以研究不同工资水平与物价的变化关系;2.于涉及递减的实际现象,可以用一次函数建立模型,以研究关系性。
例如,用一次函数可以研究不同时间段内物价的变化关系;3.于反比例函数和一次函数具有相似关系的实际现象,可以将它们结合起来建立模型,以研究关系性。
例如,用反比例函数和一次函数可以很好地研究不同金额投资与年利润的变化关系。
结论以上,本文概述了反比例函数和一次函数的定义、特点以及综合应用情况,并且将它们在实践中的运用进行总结,提出了综合应用的建议。
一次函数与反比例函数的综合应用
难 1. 用割补法求三角形的面积; 点 2. 分区域讨论两函数值的大小关系,求自变量的取值范围.
教具准备
PPT , 投影仪.
一次函数与反比例函数综合应用
板
书
1、求函数解析式、交点坐标 (待定系数法)
y
设
2、求三角形的面积.
计
(割补法)
3、比较两函数值大小, 求自变量的取值范围.
(分类讨论)
A
O
C
x
DB
教师活动
学生活动 设计意图
一、知识梳理.
【知识点 1】求函数解析式、交点坐标.
例 1:如图,一次函数 y=kx+b 的图象与反比例函 学 生 思 考 ,
数 y m 的图象交于 A(-2,1)、B(1,n)两点. x
(1)则反比例函数的关系式为_________;
讲解解题 从函数表
思路.
达式求点
比例函数相交于 A(1,3),B(3,1).
观察图象,比较当 x>0 时,两函数值的大小关系.
教
学
过
程
三、感受中考
(2015·安徽,21,12 分)已知反比例函数
y k1 x
与一次函数 y k2x b 的图象交于 A(1,8),B(-4,m).
(1)求 k1、k2、b 的值;
(2)求△AOB 的面积;
变式 1:
的梯度设
如图,一次函数 y=-x-1 的图象与反比例函数
置,对一次
y 2 的图象交于 A(-2,1)、B(1,-2)两点. x
y
函数和反 比例函数 在坐标轴
(3)求△AOB 的面积. A
O
C
中围成的 学生思考, 常 见 三 角 x 得出不同 形面积情
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2012年1月最新最细)2011全国中考真题解析考点汇编☆一次函数与反比例函数的综合应用一、选择题1. (2011四川凉山,12,4分)二次函数2y ax bx c =++的图象如图所示,反比列函数ay x=与正比列函数y bx =在同一坐标系内的大致图象是( )考点:二次函数的图象;正比例函数的图象;反比例函数的图象. 专题:数形结合. 分析:由已知二次函数y =ax 2+bx +c 的图象开口方向可以知道a 的取值范围,对称轴可以确定b 的取值范围,然后就可以确定反比例函数xay =与正比例函数y =bx 在同一坐标系内的大致图象.解答:解:∵二次函数y =ax 2+bx +c 的图象开口方向向下,∴a <0,对称轴在y 轴的左边,∴x =-ab2<0,∴b <0, ∴反比例函数xay =的图象在第二四象限, 正比例函数y =bx 的图象在第二四象限. 故选B .点评:此题主要考查了从图象上把握有用的条件,准确选择数量关系解得a 的值,简单的图象最少能反映出2个条件:开口向下a <0;对称轴的位置即可确定b 的值.2. (2011•青海)一次函数y=﹣2x+1和反比例函数y=错误!未找到引用源。
的大致图象是( )A 、B 、ABDCC、D、考点:反比例函数的图象;一次函数的图象。
分析:根据一次函数的性质,判断出直线经过的象限;再根据反比例函数的性质,判断出反比例函数所在的象限即可.解答:解:根据题意:一次函数y=﹣2x+1的图象过一、二、四象限;反比例函数y=错误!未找到引用源。
过一、三象限.故选:D.点评:此题主要考查了一次函数的图象及反比例函数的图象,重点是注意y=k1x+b中k1、b 及y=错误!未找到引用源。
中k2的取值.3.(2011山东青岛,8,3分)已知一次函数y1=kx+b与反比例函数y2=kx错误!未找到引用源。
在同一直角坐标系中的图象如图所示,则当y1<y2时,x的取值范围是()A.x<﹣1或0<x<3 B.﹣1<x<0或x>3 C.﹣1<x<0 D.x>3 考点:反比例函数与一次函数的交点问题。
专题:数形结合。
分析:根据图象知,两个函数的图象的交点是(﹣1,3),(3,﹣1).由图象可以直接写出当y1<y2时所对应的x的取值范围.解答:解:根据图象知,一次函数y1=kx+b与反比例函数y2=kx的交点是(﹣1,3),(3,﹣1),∴当y1<y2时,﹣1<x<0或x>3;故选B.点评:本题主要考查了反比例函数与一次函数的交点问题.解答此题时,采用了―数形结合‖的数学思想.(2011杭州,6,3分)如图,函数y1=x-1和函数y2=2x的图象相交于点M(2,m),N (-1,n),若y1>y2,则x的取值范围是()A .x <-1或0<x <2B .x <-1或x >2C .-1<x <0或0<x <2D .-1<x <0或x >2 考点:反比例函数与一次函数的交点问题. 专题:计算题.分析:根据反比例函数的自变量取值范围,y 1与y 2图象的交点横坐标,可确定y 1>y 2时,x 的取值范围.解答:解:∵函数y 1=x -1和函数 y 2=2x 的图象相交于点M (2,m ),N (-1,n ), ∴当y 1>y 2时,-1<x <0或x >2. 故选D .点评:本题考查了反比例函数与一次函数的交点问题的运用.关键是根据图象的交点坐标,两个函数图象的位置确定自变量的取值范围.4.(2011浙江台州,9,4分)如图,双曲线y =错误!未找到引用源。
mx与直线y =kx +b 交于点M .N ,并且点M 的坐标为(1,3),点N 的纵坐标为﹣1.根据图象信息可得关于x 的方程错误!未找到引用源。
=kx +b 的解为( )A .﹣3,1B .﹣3,3C .﹣1,1D .﹣1,3 考点:反比例函数与一次函数的交点问题.分析:首先把M 点代入y =错误!未找到引用源。
中,求出反比例函数解析式,再利用反比例函数解析式求出N 点坐标,求关于x 的方程错误!未找到引用源。
=kx +b 的解就是看一次函数与反比例函数图象交点横坐标就是x 的值. 解答:解:∵M (1,3)在反比例函数图象上,∴m =1×3=3,∴反比例函数解析式为:y =错误!未找到引用源。
, ∵N 也在反比例函数图象上,点N 的纵坐标为﹣1.∴x =﹣3,∴N (﹣3,﹣1), ∴关于x 的方程错误!未找到引用源。
=kx +b 的解为:﹣3,1.故选:A . 点评:此题主要考查了反比例函数与一次函数交点问题,关键掌握好利用图象求方程的解时,就是看两函数图象的交点横坐标..5. (2011•丹东,6,3分)反比例函数y=错误!未找到引用源。
xk的图象如图所示,则一次函数y=kx+k 的图象大致是( )A、B、 C、D、考点:反比例函数的图象;一次函数的图象。
专题:数形结合。
分析:根据反比例函数y=错误!未找到引用源。
的图象所在的象限确定k>0.然后根据k >0确定一次函数y=kx+k的图象的单调性及与y轴的交点的大体位置,从而确定该一次函数图象所经过的象限.解答:解:根据图示知,反比例函数y=错误!未找到引用源。
的图象位于第一、三象限,∴k>0,∴一次函数y=kx+k的图象与y轴的交点在y轴的正半轴,且该一次函数在定义域内是增函数,∴一次函数y=kx+k的图象经过第一、二、三象限;故选D.点评:本题考查了反比例函数、一次函数的图象.反比例函数y=xk的图象是双曲线,当k >0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.6.(2011•宜昌,15,3分)如图,直线y=x+2与双曲线y=3mx在第二象限有两个交点,那么m的取值范围在数轴上表示为()考点:反比例函数与一次函数的交点问题;在数轴上表示不等式的解集。
A 、B 、C 、D 、分析:因为直线y=x+2与双曲线y=错误!未找到引用源。
在第二象限有两个交点,联立两方程求出m 的取值范围即可,然后在数轴上表示出m 的取值范围.解答:解:根据题意知,直线y=x+2与双曲线y=错误!未找到引用源。
在第二象限有两个交点,即x+2=错误!未找到引用源。
有两根,即x 2+2x+3﹣m=0有两解, △=4﹣4×(3﹣m )>0, 解得m >2, ∵双曲线在二、四象限, ∴m ﹣3<0, ∴m <3, ∴m 的取值范围为:2<m <3. 故在数轴上表示为.故选B . 点评:本题主要考查反比例函数与一次函数的交点问题和在数轴上表示不等式的解集的知识点,解答本题的关键是联立两方程解得m 的取值范围.7. (2011贵州毕节,9,3分)一次函数)0(≠+=k k kx y 和反比例函数)0(≠=k xky 在同一直角坐标系中的图象大致是( )考点:反比例函数的图象;一次函数的图象。
专题:探究型。
分析:分别根据反比例函数及一次函数图象的特点对各选项进行逐一分析即可.解答:解:A 、由反比例函数的图象在一、三象限可知k >0,由一次函数的图象过二、四象限可知k <0,两结论相矛盾,故本选项错误;B 、由反比例函数的图象在二、四象限可知k <0,由一次函数的图象与y 轴交点在y 轴的正半轴可知k >0,两结论相矛盾,故本选项错误;C 、由反比例函数的图象在二、四象限可知k <0,由一次函数的图象过二、三、四象限可知k <0,两结论一致,故本选项正确;D 、由反比例函数的图象在一、三象限可知k >0,由一次函数的图象与y 轴交点在y 轴的负半轴可知k <0,两结论相矛盾,故本选项错误.故选C .点评:本题考查的是一次函数与反比例函数图象的特点,熟知一次函数与反比例函数的性质是解答此题的关键.8. (2011•贵阳10,分)如图,反比例函数y 1=xk 1错误!未找到引用源。
和正比例函数y 2=k 2x 的图象交于A (﹣1,﹣3)、B (1,3)两点,若xk 1>k 2x 错误!未找到引用源。
,则x 的取值范围是( )A 、﹣1<x <0B 、﹣1<x <1C 、x <﹣1或0<x <1D 、﹣1<x <0或x >1 考点:反比例函数与一次函数的交点问题。
专题:数形结合。
分析:根据题意知反比例函数和正比例函数相交于A 、B 两点,若要错误!未找到引用源。
,只须y 1>y 2,在图象上找到反比例函数图象在正比例函数图象上方x 的取值范围. 解答:解:根据题意知: 若错误!未找到引用源。
, 则只须y 1>y 2,又知反比例函数和正比例函数相交于A 、B 两点, 从图象上可以看出当x <﹣1或0<x <1时y 1>y 2, 故选C .点评:本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y=xk 错误!未找到引用源。
中k 的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.10.(2011广西百色,10,4分)二次函数的图象如图,则反比例函数y=﹣错误!未找x到引用源。
与一次函数y=bx+c的图象在同一坐标系内的图象大致是()A.B.C.D.考点:二次函数的图象;一次函数的图象;反比例函数的图象.分析:根据二次函数的图象,推出a<0,c<0,顶点坐标都为正值,即可推出,b>0,﹣a>0,根据反比例函数和一次函数的图形的性质推出反比例函数在第一、三象限,一次函数经过第一、三,四象限,所以图象大致为B项中的图象.解答:解:∵二次函数图象的开口向下, ∴a <0,∵顶点坐标都为正值, ∴ab2-错误!未找到引用源。
>0, ∴b >0, ∴﹣a >0,∴反比例函数在第一、三象限,一次函数经过第一、三、四象限. 故选B .点评:本题主要考查反比例函数的图象的性质.二次函数图象的性质.反比例函数图象的性质,关键在于通过二次函数图象推出a 、b 的取值范围. 11. (2011•恩施州5,3分)一次函数y 1=k 1x+b 和反比例函数y 2=xk 2错误!未找到引用源。
(k 1∙k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是( )A 、﹣2<x <0或x >1B 、﹣2<x <1C 、x <﹣2或x >1D 、x <﹣2或0<x <1 考点:反比例函数与一次函数的交点问题。
专题:数形结合。
分析:根据图象可以知道一次函数y 1=k 1x+b 和反比例函数错误!未找到引用源。
(k 1∙k 2≠0)的图象的交点的横坐标,若y 1>y 2,则根据图象可以确定x 的取值范围. 解答:解:如图,依题意得一次函数y 1=k 1x+b 和反比例函数错误!未找到引用源。
(k 1∙k 2≠0)的图象的交点的横坐标分别为x=﹣2或x=1, 若y 1>y 2,则y 1的图象在y 2的上面, x 的取值范围是﹣2<x <0或x >1. 故选A . 点评:此题主要考查了反比例函数与一次函数的图象的交点问题,解题的关键是利用数形结合的方法解决问题.13. (2011陕西,8,3分)如图,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数xy x y 24=-=和的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为 ( )A .3B .4C .5D .6考点:反比例函数综合题。