2020版高考数学新增分大一轮浙江专用版课件:第八章 立体几何与空间向量8.6
2020版高考数学新增分大一轮新高考专用课件:第八章 8.5 空间向量及其运算
题组三 易错自纠
4.在空间直角坐标系中,已知A(1,2,3),B(-2,-1,6),C(3,2,1),
D(4,3,0),则直线AB与CD的位置关系是
A.垂直
√B.平行
C.异面
D.相交但不垂直
解析 由题意得,A→B=(-3,-3,3),C→D=(1,1,-1),
∴A→B=-3C→D,
∴A→B与C→D共线,又 AB 与 CD 没有公共点,
表示以下各向量:
(1)A→P;
(2)M→P+N→C1.
思维升华
用基向量表示指定向量的方法 (1)结合已知向量和所求向量观察图形. (2)将已知向量和所求向量转化到三角形或平行四边形中. (3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.
跟踪训练 1 (1)如图所示,在长方体 ABCD-A1B1C1D1 中,O 为 AC 的中点.用A→B, A→D,A→A1表示O→C1,则O→C1=_21_A_→_B_+__12_A→_D_+__A_→_A_1_.
cos〈a,b〉= a1b1+a2b2+a3b3 __a_21_+__a_22+__a_23_·___b_21+__b_22_+__b_23_
【概念方法微思考】 1.共线向量与共面向量相同吗? 提示 不相同.平行于同一平面的向量就为共面向量.
2.零向量能作为基向量吗? 提示 不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共 面,故零向量不能作为基向量. 3.空间向量的坐标运算与坐标原点的位置选取有关吗? 提示 无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离 都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.
A.12(-a+b+c) C.12(a-b+c)
(浙江专用)2020版高考数学大一轮复习第八章立体几何8.6立体几何中的向量方法课件
考点三
利用空间向量证明平行、垂直(考点难度★)
【例1】 如图,四棱锥P-ABCD的底面为正方形,侧棱PA⊥底面
ABCD,且PA=AD=2,E,F,H分别是线段PA,PD,AB的中点.
求证:(1)PB∥平面EFH;
(2)PD⊥平面AHF.
-13-
考点一
考点二
考点三
证明:建立如下图的空间直角坐标系A-xyz.
容,重点考察向量方法的应用,题目有一定难度.题目的常见类型
有:(1)利用空间向量求异面直线所成的角;(2)利用空间向量求直线
与平面所成的角;(3)利用空间向量求二面角.
-19-
考点一
考点二
考点三
类型一 利用空间向量求异面直线所成的角
【例2】 将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周
PA=PD,E,F分别为线段AD,PC的中点.
(1)求证:PA∥平面BEF;
(2)假设直线PC与AB所成的角为45°,求线段PE的长.
-23-
考点一
考点二
考点三
(1)证明:∵在四棱锥P-ABCD中,平面PAD⊥平面ABCD,四边形
1
ABCD为直角梯形,BC∥AD,∠ADC=90°,BC=CD= 2 AD=1,
1 2
∴||= (- 2) + 2 + 1 = (2-1)2 + 2 + 1.
1
3
2
30
4பைடு நூலகம்
4
5
29
5
∵ ≤y≤ ,∴当 y= 时,||min=
3
当 y= 时,||max=
4
4
;
.
-18-
考点一
(浙江专用)2020版高考数学大一轮复习第八章立体几何8.5空间向量及其运算课件
.
∵a=(0,-1,1),b=(4,1,0),∴λa+b=(4,1-λ,λ). ∴16+(λ-1)2+λ2=29(λ>0).∴λ=3.
3
关闭 关闭
解析 答案
-9-
知识梳理 双击自测
3.已知在一个60°的二面角的棱上,如图有两个点A,B,AC,BD分别是
在这个二面角的两个半平面内垂直于AB的线段,且AB=4 cm,AC=6
向量表示
坐标表示
数量积 共线 垂直
a·b a=λb(b≠0) a·b=0(a≠0,b≠0)
a1b1+a2b2+a3b3 a1=λb1,a2=λb2,a3=λb3 a1b1+a2b2+a3b3=0
模
|a|
������12 + ������22 + ������32
夹角
<a,b>(a≠0,b≠0)
cos<a,b>
1 8
关闭 关闭
解析 答案
-11知识梳理 双击自测
5.如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点 E,F,G分别是AB,AD,CD的中点,求:
(1)������������ ·������������; (2)������������ ·������������; (3)EG的长; (4)异面直线AG与CE所成角的余弦值.
= ������1������1+������2������2+������3������3
������ 12
+������
22 +������
2 322 +������32
-7-
知识梳理 双击自测
2020版高考数学新增分大一轮浙江专用版讲义:第八章 立体几何与空间向量8.1 含解析
§8.1空间几何体的结构、三视图和直观图1.多面体的结构特征2.旋转体的结构特征3.三视图与直观图概念方法微思考1.底面是正多边形的棱柱是正棱柱吗,为什么?提示 不一定.因为底面是正多边形的直棱柱才是正棱柱. 2.什么是三视图?怎样画三视图?提示 光线自物体的正前方投射所得的正投影称为正视图,自左向右的正投影称为侧视图,自上向下的正投影称为俯视图,几何体的正视图、侧视图和俯视图统称为三视图.画几何体的三视图的要求是正视图与俯视图长对正;正视图与侧视图高平齐;侧视图与俯视图宽相等.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.(×)(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.(×)(3)棱台是由平行于底面的平面截棱锥所得的截面与底面之间的部分.(√)(4)正方体、球、圆锥各自的三视图中,三视图均相同.(×)(5)用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱.(×)(6)菱形的直观图仍是菱形.(×)题组二教材改编2.[P19T2]下列说法正确的是()A.相等的角在直观图中仍然相等B.相等的线段在直观图中仍然相等C.正方形的直观图是正方形D.若两条线段平行,则在直观图中对应的两条线段仍然平行答案 D解析由直观图的画法规则知,角度、长度都有可能改变,而线段的平行关系不变.3.[P8T1]在如图所示的几何体中,是棱柱的为________.(填写所有正确的序号)答案③⑤题组三易错自纠4.某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱答案 A解析由三视图知识知,圆锥、四面体、三棱柱(放倒看)都能使其正视图为三角形,而圆柱的正视图不可能为三角形.5.如图是正方体截去阴影部分所得的几何体,则该几何体的侧视图是()答案 C解析此几何体侧视图是从左边向右边看.故选C.6.(2018·浙江诸暨中学期中)边长为22的正方形,其水平放置的直观图的面积为()A.24B .1C .2 2D .8 答案 C解析 正方形的边长为22,故面积为8,而原图和直观图面积之间的关系为S 直观图S 原图=24,故直观图的面积为8×24=2 2. 7.(2018·全国Ⅰ)某圆柱的高为2,底面周长为16,其三视图如下图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在侧视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .2 5C .3D .2 答案 B解析 先画出圆柱的直观图,根据题中的三视图可知,点M ,N 的位置如图①所示.圆柱的侧面展开图及M ,N 的位置(N 为OP 的四等分点)如图②所示,连接MN ,则图中MN 即为M 到N 的最短路径.|ON |=14×16=4,|OM |=2,∴|MN |=|OM |2+|ON |2=22+42=2 5.故选B.题型一 空间几何体的结构特征1.以下命题:①以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥; ②以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台; ③圆柱、圆锥、圆台的底面都是圆面; ④一个平面截圆锥,得到一个圆锥和一个圆台. 其中正确命题的个数为( ) A .0 B .1 C .2 D .3 答案 B解析 由圆锥、圆台、圆柱的定义可知①②错误,③正确.对于命题④,只有用平行于圆锥底面的平面去截圆锥,才能得到一个圆锥和一个圆台,④不正确.2.给出下列四个命题:①有两个侧面是矩形的立体图形是直棱柱;②侧面都是等腰三角形的棱锥是正棱锥;③侧面都是矩形的直四棱柱是长方体;④底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱.其中不正确的命题为________.(填序号)答案①②③解析对于①,平行六面体的两个相对侧面也可能是矩形,故①错;对于②,对等腰三角形的腰是否为侧棱未作说明(如图),故②错;对于③,若底面不是矩形,则③错;④由线面垂直的判定,可知侧棱垂直于底面,故④正确.综上,命题①②③不正确.思维升华空间几何体概念辨析题的常用方法(1)定义法:紧扣定义,由已知构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,根据定义进行判定.(2)反例法:通过反例对结构特征进行辨析.题型二简单几何体的三视图命题点1已知几何体识别三视图例1 (2018·全国Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()答案 A解析由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应选A.命题点2已知三视图,判断简单几何体的形状例2 如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱答案 B解析由题意知,该几何体的三视图为一个三角形、两个四边形,经分析可知该几何体为三棱柱.命题点3已知三视图中的两个视图,判断第三个视图例3 一个锥体的正视图和侧视图如图所示,下列选项中,不可能是该锥体的俯视图的是()答案 C解析A,B,D选项满足三视图作法规则,C不满足三视图作法规则中的宽相等,故C不可能是该锥体的俯视图.思维升华三视图问题的常见类型及解题策略(1)注意观察方向,看到的部分用实线表示,不能看到的部分用虚线.(2)还原几何体.要熟悉柱、锥、台、球的三视图,结合空间想象还原.(3)由部分视图画出剩余的部分视图.先猜测,还原,再判断.当然作为选择题,也可将选项逐项代入.跟踪训练1 (1)(2018·杭州模拟)如图,在正方体ABCD-A1B1C1D1中,P为BD1的中点,则△P AC在该正方体各个面上的正投影可能是()A .①②B .①④C .②③D .②④答案 B解析 P 点在上下底面投影落在AC 或A 1C 1上,所以△P AC 在上底面或下底面的投影为①,在前、后面以及左、右面的投影为④.(2)(2018·宁波模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )答案 C解析 该几何体为正方体截去一部分后的四棱锥P —ABCD ,如图所示,该几何体的俯视图为C.题型三 空间几何体的直观图例4 已知等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________. 答案22解析 如图所示,作出等腰梯形ABCD 的直观图.因为OE =(2)2-1=1,所以O ′E ′=12,E ′F =24,则直观图A ′B ′C ′D ′的面积S ′=1+32×24=22.思维升华 用斜二测画法画直观图的技巧在原图形中与轴平行的线段在直观图中与轴平行,不平行的线段先画线段的端点再连线.跟踪训练2 如图,一个水平放置的平面图形的直观图(斜二测画法)是一个底角为45°、腰和上底长均为2的等腰梯形,则这个平面图形的面积是( )A .2+ 2B .1+ 2C .4+2 2D .8+4 2答案 D解析 由已知直观图根据斜二测画法规则画出原平面图形,如图所示,所以这个平面图形的面积为4×(2+2+22)2=8+42,故选D.1.在一个密闭透明的圆柱筒内装一定体积的水,将该圆柱筒分别竖直、水平、倾斜放置时,指出圆柱桶内的水平面可以呈现出的几何形状不可能是( ) A .圆面 B .矩形面C .梯形面D .椭圆面或部分椭圆面答案 C解析 将圆柱桶竖放,水面为圆面;将圆柱桶斜放,水面为椭圆面或部分椭圆面;将圆柱桶水平放置,水面为矩形面,所以圆柱桶内的水平面可以呈现出的几何形状不可能是梯形面,故选C.2.如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD 的三视图是(用①②③④⑤⑥代表图形)()A.①②⑥B.①②③C.④⑤⑥D.③④⑤答案 B解析正视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此正视图是①,侧视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此侧视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③. 3.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体答案 C解析截面是任意的且都是圆面,则该几何体为球体.4.某几何体的正视图与侧视图如图所示,则它的俯视图不可能是()答案 C解析若几何体为两个圆锥体的组合体,则俯视图为A;若几何体为四棱锥与圆锥的组合体,则俯视图为B;若几何体为两个四棱锥的组合体,则俯视图为D;不可能为C,故选C.5.(2018·丽水、衢州、湖州三地市质检)若将正方体(如图1)截去两个三棱锥,得到如图2所示的几何体,则该几何体的侧视图是()答案 B解析从左向右看,该几何体的侧视图的外轮廓是一个正方形,且AD1对应的是实线,B1C对应的是虚线.故选B.6.(2011·浙江)若某几何体的三视图如图所示,则这个几何体的直观图可以是()答案 D解析A,B的正视图不符合要求,C的俯视图显然不符合要求,故选D.7.(2019·台州模拟)已知底面是直角三角形的直棱柱的正视图、俯视图如下图所示,则该棱柱的侧视图的面积为()A.18 6 B.18 3C .18 2 D.2722 答案 C解析 设侧视图的长为x ,则x 2=6×3=18,∴x =3 2. 所以侧视图的面积为S =32×6=18 2.故选C. 8.用一个平面去截正方体,则截面不可能是( ) A .直角三角形 B .等边三角形 C .正方形 D .正六边形答案 A解析 用一个平面去截正方体,则截面的情况为:①截面为三角形时,可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形; ②截面为四边形时,可以是梯形(等腰梯形)、平行四边形、菱形、矩形、正方形,但不可能是直角梯形; ③截面为五边形时,不可能是正五边形; ④截面为六边形时,可以是正六边形.9.(2018·湖州模拟)某三棱锥的三视图如图所示,则该三棱锥最长棱的长为( )A. 5 B .2 2 C .3 D .2 3 答案 C解析 在棱长为2的正方体ABCD —A 1B 1C 1D 1中,M ,N 分别为AD ,BC 的中点,该几何体的直观图如图中三棱锥D 1—MNB 1,故通过计算可得D 1B 1=22,D 1M =B 1N =5,MN =2,MB 1=ND 1=3,故该三棱锥中最长棱的长为3.10.一水平放置的平面四边形OABC ,用斜二测画法画出它的直观图O ′A ′B ′C ′如图所示,此直观图恰好是一个边长为1的正方形,则原平面四边形OABC 的面积为________.答案 2 2解析 因为直观图的面积是原图形面积的24倍,且直观图的面积为1,所以原图形的面积为2 2. 11.如图,在正方体ABCD -A 1B 1C 1D 1中,点P 是上底面A 1B 1C 1D 1内一动点,则三棱锥P -ABC 的正视图与侧视图的面积的比值为________.答案 1解析 如题图所示,设正方体的棱长为a ,则三棱锥P -ABC 的正视图与侧视图都是三角形,且面积都是12a 2,故面积的比值为1. 12.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形; ②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱; ④存在每个面都是直角三角形的四面体. 其中正确命题的序号是________. 答案 ②③④解析 ①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面所在的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体ABCD -A 1B 1C 1D 1中的三棱锥C 1-ABC ,四个面都是直角三角形.13.如图,在一个正方体内放入两个半径不相等的球O 1,O 2,这两个球外切,且球O 1与正方体共顶点A 的三个面相切,球O 2与正方体共顶点B 1的三个面相切,则两球在正方体的面AA 1C 1C 上的正投影是( )答案 B解析由题意可以判断出两球在正方体的面上的正投影与正方形相切.由于两球球心连线AB1与面ACC1A1不平行,故两球球心射影所连线段的长度小于两球半径的和,即两个投影圆相交,即为图B.14.我国古代数学家刘徽在学术研究中,不迷信古人,坚持实事求是.他对《九章算术》中“开立圆术”给出的公式产生质疑,为了证实自己的猜测,他引入了一种新的几何体“牟合方盖”:以正方体相邻的两个侧面为底做两次内切圆柱切割,然后剔除外部,剩下的内核部分.如果“牟合方盖”的正视图和侧视图都是圆,则其俯视图的形状为()答案 B解析由题意得在正方体内做两次内切圆柱切割,得到的几何体的直观图如图所示,由图易得其俯视图为B,故选B.15.(2018·嘉兴模拟)某几何体的三视图如图所示,则该几何体的侧视图中的虚线部分是()A .圆弧B .抛物线的一部分C .椭圆的一部分D .双曲线的一部分答案 D解析 根据几何体的三视图,可得侧视图中的虚线部分是由平行于旋转轴的平面截圆锥所得,故侧视图中的虚线部分是双曲线的一部分,故选D.16.(2018·台州模拟)如图是一个几何体的三视图,则该几何体中最长棱的长是________.答案733解析 由三视图可知,该几何体是棱长为2的正方体ABCD —A 1B 1C 1D 1中三棱锥M —A 1B 1N ,如图所示,M 是棱AB 上靠近点A 的一个三等分点,N 是棱C 1D 1的中点,所以A 1B 1=2,A 1N =B 1N =22+12=5, A 1M =22+⎝⎛⎭⎫232=2103, B 1M =22+⎝⎛⎭⎫432=2133, MN =22+22+⎝⎛⎭⎫132=733, 所以该几何体中最长棱的长是733.。
2020版高考数学(理)新增分大一轮人教通用版讲义:第八章 立体几何与空间向量 8.1 Word版含解析
§8.1空间几何体的结构、三视图和直观图1.多面体的结构特征2.旋转体的形成3.三视图与直观图概念方法微思考1.底面是正多边形的棱柱是正棱柱吗,为什么? 提示 不一定.因为底面是正多边形的直棱柱才是正棱柱.2.什么是三视图?怎样画三视图?提示 光线自物体的正前方投射所得的正投影称为主视图,自左向右的正投影称为左视图,自上向下的正投影称为俯视图,几何体的主视图、左视图和俯视图统称为三视图.画几何体的三视图的要求是主视图与俯视图长对正;主视图与左视图高平齐;左视图与俯视图宽相等.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × ) (3)棱台是由平行于底面的平面截棱锥所得的截面与底面之间的部分.( √ ) (4)正方体、球、圆锥各自的三视图中,三视图均相同.( × ) (5)用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱.( × ) (6)菱形的直观图仍是菱形.( × )题组二教材改编2.下列说法正确的是()A.相等的角在直观图中仍然相等B.相等的线段在直观图中仍然相等C.正方形的直观图是正方形D.若两条线段平行,则在直观图中对应的两条线段仍然平行答案 D解析由直观图的画法规则知,角度、长度都有可能改变,而线段的平行关系不变.3.在如图所示的几何体中,是棱柱的为________.(填写所有正确的序号)答案③⑤题组三易错自纠4.某空间几何体的主视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱答案 A解析由三视图知识知,圆锥、四面体、三棱柱(放倒看)都能使其主视图为三角形,而圆柱的主视图不可能为三角形.5.(2019·沈阳模拟)如图是正方体截去阴影部分所得的几何体,则该几何体的左视图是()答案 C解析此几何体左视图是从左边向右边看.故选C.6.如图,直观图所表示的平面图形是()A.正三角形B.锐角三角形C.钝角三角形D.直角三角形答案 D解析由直观图中,A′C′∥y′轴,B′C′∥x′轴,还原后AC∥y轴,BC∥x轴.所以△ABC 是直角三角形.故选D.7.(2018·全国Ⅰ)某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M在主视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M 到N的路径中,最短路径的长度为()A.217B.2 5C.3D.2答案 B解析先画出圆柱的直观图,根据题中的三视图可知,点M,N的位置如图①所示.圆柱的侧面展开图及M,N的位置(N为OP的四等分点)如图②所示,连接MN,则图中MN 即为M到N的最短路径.|ON|=14×16=4,|OM|=2,∴|MN|=|OM|2+|ON|2=22+42=2 5.故选B.题型一空间几何体的结构特征1.以下命题:①以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆面;④一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为()A.0B.1C.2D.3答案 B解析由圆锥、圆台、圆柱的定义可知①②错误,③正确.对于命题④,只有用平行于圆锥底面的平面去截圆锥,才能得到一个圆锥和一个圆台,④不正确.2.给出下列四个命题:①有两个侧面是矩形的立体图形是直棱柱;②侧面都是等腰三角形的棱锥是正棱锥;③侧面都是矩形的直四棱柱是长方体;④底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱.其中不正确的命题为________.(填序号)答案①②③解析对于①,平行六面体的两个相对侧面也可能是矩形,故①错;对于②,对等腰三角形的腰是否为侧棱未作说明(如图),故②错;对于③,若底面不是矩形,则③错;④由线面垂直的判定,可知侧棱垂直于底面,故④正确.综上,命题①②③不正确.思维升华空间几何体概念辨析题的常用方法(1)定义法:紧扣定义,由已知构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,根据定义进行判定.(2)反例法:通过反例对结构特征进行辨析.题型二简单几何体的三视图命题点1已知几何体识别三视图例1(2018·全国Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()答案 A解析 由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应选A.命题点2 已知三视图,判断简单几何体的形状例2 如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱 答案 B解析 由题意知,该几何体的三视图为一个三角形、两个四边形,经分析可知该几何体为三棱柱.命题点3 已知三视图中的两个视图,判断第三个视图例3 (2019·包头质检)图中网格的各小格是单位正方形,粗线构成的上下两个图形分别是正三棱锥与圆台组合体的主视图和俯视图,那么该组合体的左视图的面积为( )A.6+ 3B.152C.6+334D.8 3答案 B解析 由三视图还原可得原图形为一个圆台上面放了一个正三棱锥,所以左视图下面圆台是一个等腰梯形,面积为S 1=(2+4)×22=6,上面是一个三角形,面积为S 2=12×32×2=32,所以左视图的面积为S =S 1+S 2=152,故选B.思维升华 三视图问题的常见类型及解题策略(1)注意观察方向,看到的部分用实线表示,不能看到的部分用虚线. (2)还原几何体.要熟悉柱、锥、台、球的三视图,结合空间想象还原.(3)由部分视图画出剩余的部分视图.先猜测,还原,再判断.当然作为选择题,也可将选项逐项代入.跟踪训练1 (1)(2018·大连模拟)如图,在正方体ABCD -A 1B 1C 1D 1中,P 为BD 1的中点,则△P AC 在该正方体各个面上的正投影可能是( )A.①②B.①④C.②③D.②④ 答案 B解析 P 点在上下底面投影落在AC 或A 1C 1上,所以△P AC 在上底面或下底面的投影为①,在前、后面以及左、右面的投影为④.(2)某几何体的三视图如图所示,则该几何体中最长棱的长度为( )A.3 3B.2 6C.21D.2 5 答案 B解析 由三视图得,该几何体为四棱锥P -ABCD ,如图所示.侧面P AB ⊥底面ABCD ,底面ABCD 为矩形, 过点P 作PE ⊥AB ,垂足为点E , 则AE =1,BE =2,AD =2,PE =4, 则该几何体中最长的棱为PC =42+22+22=26,故选B.题型三 空间几何体的直观图例4 已知等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________. 答案22解析 如图所示,作出等腰梯形ABCD 的直观图.因为OE =(2)2-1=1,所以O ′E ′=12,E ′F =24,则直观图A ′B ′C ′D ′的面积S ′=1+32×24=22.思维升华 用斜二测画法画直观图的技巧在原图形中与轴平行的线段在直观图中与轴平行,不平行的线段先画线段的端点再连线. 跟踪训练2 如图,一个水平放置的平面图形的直观图(斜二测画法)是一个底角为45°、腰和上底长均为2的等腰梯形,则这个平面图形的面积是( )A.2+ 2B.1+ 2C.4+2 2D.8+4 2答案 D解析由已知直观图根据斜二测画法规则画出原平面图形,如图所示,所以这个平面图形的面积为4×(2+2+22)2=8+42,故选D.1.(2018·辽宁部分重点中学协作体模拟)在一个密闭透明的圆柱筒内装一定体积的水,将该圆柱筒分别竖直、水平、倾斜放置时,指出圆柱桶内的水平面可以呈现出的几何形状不可能是()A.圆面B.矩形面C.梯形面D.椭圆面或部分椭圆面答案 C解析将圆柱桶竖放,水面为圆面;将圆柱桶斜放,水面为椭圆面或部分椭圆面;将圆柱桶水平放置,水面为矩形面,所以圆柱桶内的水平面可以呈现出的几何形状不可能是梯形面,故选C.2.如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形)()A.①②⑥B.①②③C.④⑤⑥D.③④⑤答案 B解析主视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此主视图是①,侧视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此左视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③.3.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体答案 C解析截面是任意的且都是圆面,则该几何体为球体.4.某几何体的主视图与左视图如图所示,则它的俯视图不可能是()答案 C解析若几何体为两个圆锥体的组合体,则俯视图为A;若几何体为四棱锥与圆锥的组合体,则俯视图为B;若几何体为两个四棱锥的组合体,则俯视图为D;不可能为C,故选C.5.在一个几何体的三视图中,主视图和俯视图如图所示,则相应的左视图为()答案 D解析由主视图与俯视图知,几何体是一个三棱锥与被轴截面截开的半个圆锥的组合体,故左视图为D.6.如图为几何体的三视图,根据三视图可以判断这个几何体为()A.圆锥B.三棱锥C.三棱柱D.三棱台答案 C7.(2019·赤峰模拟)中国古代数学名著《九章算术》中,将底面是直角三角形的直棱柱称为“堑堵”.已知某“堑堵”的主视图和俯视图如图所示,则该“堑堵”的左视图的面积为()A.18 6B.18 3C.18 2D.272 2答案 C解析 由主视图和俯视图可知,该几何体为直三棱柱, 底面直角三角形斜边的高为6×3=32,该“堑堵”的左视图的面积为32×6=182,故选C. 8.用一个平面去截正方体,则截面不可能是( ) A.直角三角形 B.等边三角形 C.正方形 D.正六边形答案 A解析 用一个平面去截正方体,则截面的情况为:①截面为三角形时,可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形;②截面为四边形时,可以是梯形(等腰梯形)、平行四边形、菱形、矩形,但不可能是直角梯形; ③截面为五边形时,不可能是正五边形; ④截面为六边形时,可以是正六边形.9.一水平放置的平面四边形OABC ,用斜二测画法画出它的直观图O ′A ′B ′C ′如图所示,此直观图恰好是一个边长为1的正方形,则原平面四边形OABC 的面积为________.答案 2 2解析 因为直观图的面积是原图形面积的24倍,且直观图的面积为1,所以原图形的面积为2 2.10.如图,在正方体ABCD -A 1B 1C 1D 1中,点P 是上底面A 1B 1C 1D 1内一动点,则三棱锥P -ABC 的主视图与左视图的面积的比值为________.答案 1解析 如题图所示,设正方体的棱长为a ,则三棱锥P -ABC 的主视图与左视图都是三角形,且面积都是12a 2,故面积的比值为1.11.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形; ②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱; ④存在每个面都是直角三角形的四面体. 其中正确命题的序号是________. 答案 ②③④解析 ①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面所在的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体ABCD -A 1B 1C 1D 1中的三棱锥C 1-ABC ,四个面都是直角三角形.12.某四面体的三视图由如图所示的三个直角三角形构成,则该四面体六条棱长最长的为________.答案41解析四面体如图所示,其中SB⊥平面ABC且在△ABC中,∠ACB=90°.由SB⊥平面ABC,AB⊂平面ABC得SB⊥AB,同理SB⊥BC,所以棱长最长的为SA且SA=SB2+AB2=SB2+AC2+BC2=41.13.如图,在一个正方体内放入两个半径不相等的球O1,O2,这两个球外切,且球O1与正方体共顶点A的三个面相切,球O2与正方体共顶点B1的三个面相切,则两球在正方体的面AA1C1C上的正投影是()答案 B解析由题意可以判断出两球在正方体的面上的正投影与正方形相切.由于两球球心连线AB1与面ACC1A1不平行,故两球球心射影所连线段的长度小于两球半径的和,即两个投影圆相交,即为图B.14.我国古代数学家刘徽在学术研究中,不迷信古人,坚持实事求是.他对《九章算术》中“开立圆术”给出的公式产生质疑,为了证实自己的猜测,他引入了一种新的几何体“牟合方盖”:以正方体相邻的两个侧面为底做两次内切圆柱切割,然后剔除外部,剩下的内核部分.如果“牟合方盖”的主视图和左视图都是圆,则其俯视图的形状为()答案 B解析由题意得在正方体内做两次内切圆柱切割,得到的几何体的直观图如图所示,由图易得其俯视图为B,故选B.15.某几何体的三视图如图所示,则该几何体的左视图中的虚线部分是()A.圆弧B.抛物线的一部分C.椭圆的一部分D.双曲线的一部分答案 D解析根据几何体的三视图,可得左视图中的虚线部分是由平行于旋转轴的平面截圆锥所得,故左视图中的虚线部分是双曲线的一部分,故选D.16.如图,一立在水平地面上的圆锥形物体的母线长为4 m,一只小虫从圆锥的底面圆上的点P出发,绕圆锥表面爬行一周后回到点P处.若该小虫爬行的最短路程为4 2 m,则圆锥底面圆的半径等于________ m.答案 1解析 把圆锥侧面沿过点P 的母线展开成如图所示的扇形,由题意OP =4,PP ′=42,则cos ∠POP ′=42+42-(42)22×4×4=0,且∠POP ′是三角形的内角,所以∠POP ′=π2.设底面圆的半径为r ,则2πr =π2×4,所以r =1.。
2020版高考数学浙江专用新精准大一轮精讲通用版课件:第八章 第1讲 空间几何体的结构特征及三视图和直观图
【解析】 根据直观图以及图中的辅助四边形分析可知,当正 视图和侧视图完全相同时,俯视图为 B,故选 B. 【答案】 B
角度二 由空间几何体的三视图还原直观图 (2017·高考北京卷)某四棱锥的三视图如图所示,则该四
棱锥的最长棱的长度为( )
A.3 2 C.2 2
B.2 3 D.2
【解析】 由三视图还原为如图所示的四棱锥 A-BCC1B1, 从 图 中 易 得 最 长 的 棱 长 为 AC1 = AC2+CC21 =
3.(2019·浙江高校招生选考试题)如图,在三棱锥 A-BCD 中, 侧面 ABD⊥底面 BCD,BC⊥CD,AB=AD=4,BC=6,BD =4 3,则该三棱锥三视图的正视图为( )
解析:选 C.由题意,三棱锥三视图的正视图为等腰三角形, △BCD 中,BC⊥CD,BC=6,BD=4 3,所以 CD=2 3, 设 C 在 BD 上的射影为 E,则 12 3=CE·4 3,所以 CE=3, DE= CD2-CE2= 3,故选 C.
3.三视图 (1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几 何体的_正__前__方、_正__左__方、_正__上__方观察几何体画出的轮廓线. (2)三视图的画法 ①基本要求:_长__对__正__,_高__平__齐__,_宽__相__等__. ②画法规则:_正__侧__一样高,_正__俯__一样长,_侧__俯__一样宽;看 到的线画_实__线,看不到的线画_虚__线.
(2)以下命题:
①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;
②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;
③圆柱、圆锥、圆台的底面都是圆面;
④一个平面截圆锥,得到一个圆锥和一个圆台.
其中正确命题的个数为( )
2020版高考数学新增分大一轮浙江专用版课件:第八章 立体几何与空间向量8.3
大一轮复习讲义第八章 立体几何与空间向量§8.3 空间点、直线、平面之间的位置关系NEIRONGSUOYIN内容索引基础知识 自主学习题型分类 深度剖析课时作业1基础知识 自主学习PART ONE知识梳理1.四个公理公理1:如果一条直线上的在一个平面内,那么这条直线在此平面内.公理2:过的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们 过该点的公共直线.公理4:平行于同一条直线的两条直线互相 .ZHISHISHULI两点不在同一条直线上平行有且只有一条2.直线与直线的位置关系(1)位置关系的分类任何(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的 叫做异面直线a 与b 所成的角(或夹角).平行相交锐角(或直角)3.直线与平面的位置关系有、 、__________三种情况.4.平面与平面的位置关系有、 两种情况.5.等角定理空间中如果两个角的,那么这两个角相等或互补.直线在平面内直线与平面相交直线与平面平行平行相交两边分别对应平行【概念方法微思考】1.分别在两个不同平面内的两条直线为异面直线吗?提示 不一定.因为异面直线不同在任何一个平面内.分别在两个不同平面内的两条直线可能平行或相交.2.空间中如果两个角的两边分别对应平行,那么这两个角一定相等吗?提示 不一定.如果这两个角开口方向一致,则它们相等,若反向则互补.1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个不重合的平面α,β有一条公共直线a ,就说平面α,β相交,并记作α∩β=a .( )(2)两个平面α,β有一个公共点A ,就说α,β相交于过A 点的任意一条直线.( )(3)如果两个平面有三个公共点,则这两个平面重合.( )(4)经过两条相交直线,有且只有一个平面.( )(5)没有公共点的两条直线是异面直线.( )(6)若a ,b 是两条直线,α,β是两个平面,且a ⊂α,b ⊂β,则a ,b 是异面直线.( )基础自测JICHUZICE题组一 思考辨析√××√××题组二 教材改编2.[P52B组T1(2)]如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为A.30°B.45°C.60°D.90°解析 连接B1D1,D1C,则B1D1∥EF,故∠D1B1C即为所求的角.又B1D1=B1C=D1C,∴△B1D1C为等边三角形,∴∠D1B1C=60°.√3.[P45例2]如图,在三棱锥A—BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则AC=BD(1)当AC,BD满足条件________时,四边形EFGH为菱形;解析 ∵四边形EFGH为菱形,∴EF=EH,∴AC=BD.AC=BD且AC⊥BD(2)当AC,BD满足条件___________________时,四边形EFGH为正方形.解析 ∵四边形EFGH为正方形,∴EF=EH且EF⊥EH,∴AC=BD且AC⊥BD.题组三 易错自纠4.α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系不可能是A.垂直B.相交√C.异面D.平行解析 依题意,m∩α=A,n⊂α,∴m与n可能异面、相交(垂直是相交的特例),一定不平行.5.如图,α∩β=l,A,B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C 三点的平面记作γ,则γ与β的交线必通过A.点AB.点BC.点C但不过点MD.点C和点M 解析 ∵AB⊂γ,M∈AB,∴M∈γ.又α∩β=l,M∈l,∴M∈β.根据公理3可知,M在γ与β的交线上.同理可知,点C也在γ与β的交线上.√6.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在3原正方体中互为异面的对数为____.解析 平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH相交,CD与EF平行.故互为异面的直线有且只有3对.2题型分类 深度剖析PART TWO题型一 平面基本性质的应用师生共研例1 如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;证明 如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又AB∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.证明 ∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.(2)CE,D1F,DA三线共点.思维升华共面、共线、共点问题的证明(1)证明共面的方法:①先确定一个平面,然后再证其余的线(或点)在这个平面内;②证两平面重合.(2)证明共线的方法:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定直线上.(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.跟踪训练1 如图,在空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.(1)求证:E,F,G,H四点共面;证明 ∵E,F分别为AB,AD的中点,∴EF∥BD.∴GH∥BD,∴EF∥GH.∴E,F,G,H四点共面.。
2020版高考数学新增分大一轮浙江专用版课件:第八章 立体几何与空间向量8.7
大一轮复习讲义第八章立体几何与空间向量§8.7 立体几何的综合问题NEIRONGSUOYIN内容索引基础知识 自主学习题型分类 深度剖析课时作业1基础知识 自主学习PART ONE知识梳理1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一 向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n为平面α的法向量,则求法向量的方程组为ZHISHISHULI 非零2.空间中平行、垂直关系的证明方法(2)利用直线的方向向量和平面的法向量的关系.3.求两条异面直线所成的角(1)用“平移法”作出异面直线所成角(或其补角).(2)用“向量法”求两直线的方向向量所成的锐角.4.求直线与平面所成的角(1)按定义作出线面角(即找到斜线在平面内的射影)解三角形.(2)直线与平面所成角的求法设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成的角为θ,a与n的夹角为β,则sin θ=|cos β|=_____.5.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=__________.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=_______________,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).|cos 〈n 1,n 2〉|×(6)若二面角α-a -β的两个半平面α,β的法向量n 1,n 2所成角为θ,则二面角α-a -β的大小是π-θ.( )基础自测JICHUZICE 题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面的单位法向量是唯一确定的.( )(2)若两平面的法向量平行,则两平面平行.( )(3)若两直线的方向向量不平行,则两直线不平行.( )(4)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( ) ×√×√√题组二 教材改编2.[P104T2]设u ,v 分别是平面α,β的法向量,u =(-2,2,5),当v =(3,-2,2)时,α与β的位置关系为______;当v =(4,-4,-10)时,α与β的位置关系为______.解析 当v =(3,-2,2)时,u ·v =(-2,2,5)·(3,-2,2)=0得α⊥β.当v =(4,-4,-10)时,v =-2u 得α∥β.α⊥βα∥β3.[P111T3]如图所示,在正方体ABCD-A1B1C1D1中,O是底面正方形ABCD垂直的中心,M是D1D的中点,N是A1B1的中点,则直线ON,AM的位置关系是______.∴ON与AM垂直.4.[P104T2]已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为___________.∴两平面所成二面角为45°或180°-45°=135°.45°或135°题组三 易错自纠5.直线l的方向向量a=(1,-3,5),平面α的法向量n=(-1,3,-5),则有√A.l∥αB.l⊥αC.l与α斜交D.l⊂α或l∥α解析 由a=-n知,n∥a,则有l⊥α,故选B.30°∵0°≤θ≤90°,∴θ=30°.2题型分类 深度剖析PART TWO题型一 证明平行或垂直问题师生共研√A.相交B.平行C.垂直D.MN在平面BB1C1C 内解析 以点C1为坐标原点,分别以C1B1,C1D1,C1C所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系,又C1D1⊥平面BB1C1C,又MN⊄平面BB C C,所以MN∥平面BB C C.2.(2010·浙江)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是√A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥mD.若l∥α,m∥α,则l∥m解析 对于A,由l⊥m及m⊂α,可知l与α的位置关系有平行、相交或在平面内三种,故A不正确.B正确.对于C,由l∥α,m⊂α知,l与m的位置关系为平行或异面,故C不正确.对于D,由l∥α,m∥α知,l与m的位置关系为平行、异面或相交,故D不正确.3.如图,在三棱锥P-ABC中,P A⊥底面ABC,∠BAC=90°.点D,E,N分别为棱P A,PC,BC的中点,M是线段AD的中点,P A=AC=4,AB=2.求证:MN∥平面BDE.由题意,可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).设n=(x,y,z)为平面BDE的一个法向量,。
2020版高考数学新增分大一轮浙江专用版课件:第八章 立体几何与空间向量8.2
大一轮复习讲义第八章 立体几何与空间向量§8.2 空间几何体的表面积与体积NEIRONGSUOYIN内容索引基础知识 自主学习题型分类 深度剖析课时作业1基础知识 自主学习PART ONE知识梳理1.多面体的表面积、侧面积因为多面体的各个面都是平面,所以多面体的侧面积就是 ,表面积是侧面积与底面面积之和.ZHISHISHULI所有侧面的面积之和2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图2πrlπrlπ(r1+r2)l 侧面积公式S圆柱侧=____S圆锥侧=____S圆台侧=__________3.柱、锥、台、球的表面积和体积名称几何体 表面积体积柱体(棱柱和圆柱)S 表面积=S 侧+2S 底V =___锥体(棱锥和圆锥)S 表面积=S 侧+S 底V =____台体(棱台和圆台)S 表面积=S 侧+S 上+S 下球S =_____V =______Sh 4πR 2【概念方法微思考】1.如何求旋转体的表面积?提示 求旋转体的侧面积时需要将曲面展开为平面图形计算,而表面积是侧面积与底面积之和.2.如何求不规则几何体的体积?提示 求不规则几何体的体积要注意分割与补形,将不规则的几何体通过分割或补形转化为规则的几何体求解.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)多面体的表面积等于各个面的面积之和.( )(2)台体的体积可转化为两个锥体的体积之差.( )(3)锥体的体积等于底面积与高之积.( )(4)已知球O 的半径为R ,其内接正方体的边长为a ,则R = a .( )(5)圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS .( )基础自测JICHUZICE√×√√×题组二 教材改编2.[P27练习T1]已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为√A.1 cmB.2 cmC.3 cmD. cm解析 S表=πr2+πrl=πr2+πr·2r=3πr2=12π,∴r2=4,∴r=2.3.[P28A 组T3]如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.1∶47解析 设长方体的相邻三条棱长分别为a ,b ,c ,所以V 1∶V 2=1∶47.题组三 易错自纠4.一个几何体的三视图如图所示,则该几何体的表面积为A.3πB.4π√C.2π+4D.3π+4解析 由几何体的三视图可知,该几何体为半圆柱,直观图如图所示.√A.24π B.18π C.10π D.6π6.已知某几何体的三视图如图所示,则该几何体的体积为_____.2题型分类 深度剖析PART TWO1.(2018·全国Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为题型一 求空间几何体的表面积自主演练√解析 设圆柱的轴截面的边长为x,2.(2018·浙江省“七彩阳光”联盟联考)某四棱锥的三视图如图所示,则该四棱锥的表面积为√解析 由三视图知该四棱锥是如图所示的棱长为2的正方体中的四棱锥P—BCDE,3.(2018·浙江省嘉兴一中联考)一个圆锥的表面积为π,它的侧面展开图是圆心角为120°的扇形,则该圆锥的高为√解析 设圆锥底面半径是r,母线长为l,思维升华空间几何体表面积的求法(1)旋转体的表面积问题注意其侧面展开图的应用.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)以三视图为载体的需确定几何体中各元素之间的位置关系及数量.题型二 求空间几何体的体积命题点1 求以三视图为背景的几何体的体积例1 (2018·浙江省杭州市七校联考)已知图中的网格是由边长为1的小正方形组成的,一个几何体的三视图如图中的粗实线和粗虚线所示,则这个几何体的体积为多维探究√。
2020版高考数学(浙江专用版)新增分大一轮课件:第八章立体几何与空间向量8.2
由几何体的三视图可知,该几何体为半圆柱,直
观图如图所示.
1 表面积为 2×2+2×2×π×12+π×1×2=4+3π.
1
2
3
4
5
6
5.(2018· 浙江省杭州名校协作体月考)三棱锥的三条侧棱两两垂直,其长分别 为 3, 2,1,则该三棱锥的外接球的表面积是
A.24π
B.18π
C.10π
D.6π √
的中点,则三棱锥 A-B1DC1 的体积为 A.3 3 B.2 C.1 √ 3 D. 2
(3)以三视图为载体的需确定几何体中各元素之间的位置关系及数量.
多维探究
题型二
求空间几何体的体积
命题点1 求以三视图为背景的几何体的体积 例1 (2018· 浙江省杭州市七校联考 )已知图中的网格是由边长为 1的小正方形组 成的,一个几何体的三视图如图中的粗实线和粗虚线所示,则这个几何体的体
积为
A.64
则由 x2=8,得 x=2 2,
∴S 圆柱表=2S 底+S 侧=2×π×( 2)2+2π× 2×2 2=12π.故选 B.
2.(2018· 浙江省 “ 七彩阳光 ”联盟联考 )某四棱锥的三视图如图所示,则该四 棱锥的表面积为
A.8+4 √
2
B.6+ 2+2 3 D.6+2 2+2 3
C.6+4 2
2.圆柱、圆锥、圆台的侧面展开图及侧面积公式 圆柱 圆锥 圆台
ห้องสมุดไป่ตู้
侧面展开图
侧面积公式
S圆柱侧=____ 2πrl
S圆锥侧=____ πrl
π(r1+r2)l S圆台侧=__________
3.柱、锥、台、球的表面积和体积 名称 几何体 柱体(棱柱和圆柱) 锥体(棱锥和圆锥) 表面积 S表面积=S侧+2S底 S表面积=S侧+S底 体积 Sh V=___
2020版高考数学新增分大一轮版课件第八章 立体几何与空间向量8.1
题组三 易错自纠
4.某空间几何体的正视图是三角形,则该几何体不可能是
√A.圆柱
B.圆锥
C.四面体
D
解析 由三视图知识知,圆锥、四面体、三棱柱(放倒看)都 三角形,而圆柱的正视图不可能为三角形.
1234567
5.如图是正方体截去阴影部分所得的几何体,则该几何体的侧
√
解析 此几何体侧视图是从左边向右边看.故选C.
1234567
题组二 教材改编 2.[P19T2]下列说法正确的是 A.相等的角在直观图中仍然相等 B.相等的线段在直观图中仍然相等 C.正方形的直观图是正方形
√D.若两条线段平行,则在直观图中对应的两条线段仍然平行
解析 由直观图的画法规则知,角度、长度都有可能改变, 系不变.
1234567
3.[P8T1]在如图所示的几何体中,是棱柱的为_③__⑤___.(填写所
观图可知其俯视图应选A.
命题点2 已知三视图,判断简单几何体的形状
例2 如图,网格纸的各小格都是正方形,粗实线画出的是一
则这个几何体是 A.三棱锥 C.四棱锥
1234567
6.(2018·浙江诸暨中学期中)边长为 2 2的正方形,其水平放 积为
2 A. 4
B.1
√C.2 2
解析 正方形的边长为 2 2,故面积为 8,而原图和直观图
S直观图 为=
S原图
42,故直观图的面积为
8×
42=2
2.
1234567
7.(2018·全国Ⅰ)某圆柱的高为2,底面周长为16,其三视图如 的点M在正视图上的对应点为A,圆柱表面上的点N在侧视图 则在此圆柱侧面上,从M到N的路径中,最短路径的长度为
【概念方法微思考】 1.底面是正多边形的棱柱是正棱柱吗,为什么? 提示 不一定.因为底面是正多边形的直棱柱才是正棱柱.
2020版高中数学(浙江专用)大一轮课件第八章立体几何8.3
相交或异面,B错误;对于C,直线b可能位于平面α 内,C错误;对于D,直线a与
平面β没有公共点,因此a∥β,D正确.故选D. D
解析
关闭
答案
-7-
知识梳理
双击自测
2.(2018浙江高考)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是 “m∥α”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件Biblioteka 5-知识梳理双击自测
2.面面平行的判定与性质
判 定 图形 条件 结论 α∩β=⌀ α∥ β a⊂β,b⊂β, a∩b=P, a∥α,b∥α α∥β α∥β, α∩γ=a, β∩γ=b a∥b α∥β,a⊂β a∥α 定 义 定 理 性 质
3.与垂直相关的平行的判定 (1)a⊥α,b⊥α⇒ a∥b . (2)a⊥α,a⊥β⇒ α∥β .
关闭
如图 ,连接 HN,FN,FH ,则 FH∥DD 1,HN∥BD,则平面 HNF∥平面 B1BDD1,所以当点 M 在线段 FH 上时 ,有 MN∥平面 B1BDD1.
关闭
M∈线段 FH
解析 答案
-11-
知识梳理
双击自测
自测点评 1.推证线面平行时,一定要说明一条直线在平面外,一条直线在平 面内. 2.推证面面平行时,一定要说明一个平面内的两条相交直线平行 于另一个平面. 3.利用线面平行的性质定理把线面平行转化为线线平行时,必须 说明经过已知直线的平面与已知平面相交,则该直线与交线平行.
关闭
当m⊄α ,n⊂α 时,由线面平行的判定定理可知,m∥n⇒m∥α ;但反过来不成 立,即m∥α 不一定有m∥n,m与n还可能异面.故选A. A
解析
关闭
答案
2020版高考数学新增分大一轮浙江专用版课件:第八章 立体几何与空间向量8.4
大一轮复习讲义第八章立体几何与空间向量§8.4直线、平面平行的判定与性质NEIRONGSUOYIN 内容索引基础知识自主学习题型分类深度剖析课时作业1基础知识自主学习PART ONE知识梳理1.线面平行的判定定理和性质定理ZHISHISHULI⎭⎪⎬⎪⎫ l ∥a a ⊂αl ⊄α文字语言图形语言符号语言判定定理平面外一条直线与的一条直线平行,则该直线与此平面平行(简记为“线线平行⇒线面平行”)⇒l ∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的____与该直线平行(简记为“线面平行⇒线线平行”)⇒l ∥b此平面内交线l ∥a l ⊂βα∩β=b ⎭⎪⎬⎪⎫________ ________________2.面面平行的判定定理和性质定理 ⎭⎪⎪⎬⎪⎪⎫________ ________________ ________________ 文字语言图形语言符号语言判定定理一个平面内的两条与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)⇒α∥β性质定理如果两个平行平面同时和第三个平面,那么它们的____平行⇒a ∥b 相交直线相交交线⎭⎪⎬⎪⎫________ ________________ α∥βα∩γ=a β∩γ=b α∥βb ∥βa ∩b =P a ⊂αb ⊂α【概念方法微思考】1.一条直线与一个平面平行,那么它与平面内的所有直线都平行吗?提示不都平行.该平面内的直线有两类,一类与该直线平行,一类与该直线异面.2.一个平面内的两条相交直线与另一个平面内的两条相交直线分别对应平行,那么这两个平面平行吗?提示平行.可以转化为“一个平面内的两条相交直线与另一个平面平行”,这就是面面平行的判定定理.1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.()(2)平行于同一条直线的两个平面平行.()(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.()(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.()(5)若直线a 与平面α内无数条直线平行,则a ∥α.()(6)若α∥β,直线a ∥α,则a ∥β.()基础自测JICHUZICE题组一思考辨析×××√××题组二教材改编2.[P58练习T3]平面α∥平面β的一个充分条件是A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α√D.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析若α∩β=l,a∥l,a⊄α,a⊄β,则a∥α,a∥β,故排除A.若α∩β=l,a⊂α,a∥l,则a∥β,故排除B.若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则a∥β,b∥α,故排除C.故选D.3.[P62A 组T3]如图,在正方体ABCD -A 1B 1C 1D 1中,E 为DD 1的中点,则BD 1与平面AEC 的位置关系为________.平行解析连接BD ,设BD ∩AC =O ,连接EO ,在△BDD 1中,E 为DD 1的中点,O 为BD 的中点,所以EO 为△BDD 1的中位线,则BD 1∥EO ,而BD 1⊄平面ACE ,EO ⊂平面ACE ,所以BD 1∥平面ACE .题组三易错自纠4.对于空间中的两条直线m,n和一个平面α,下列命题是真命题的是A.若m∥α,n∥α,则m∥nB.若m∥α,n⊂α,则m∥n√C.若m∥α,n⊥α,则m∥nD.若m⊥α,n⊥α,则m∥n解析对A,直线m,n可能平行、异面或相交,故A错误;对B,直线m与n可能平行,也可能异面,故B错误;对C,m与n垂直而非平行,故C错误;对D,垂直于同一平面的两直线平行,故D正确.5.若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中√A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线解析当直线a在平面β内且过B点时,不存在与a平行的直线,故选A.6.设α,β,γ为三个不同的平面,a,b为直线,给出下列条件:①a⊂α,b⊂β,a∥β,b∥α;②α∥γ,β∥γ;③α⊥γ,β⊥γ;④a⊥α,b⊥β,a∥b.②④其中能推出α∥β的条件是______.(填上所有正确的序号)解析在条件①或条件③中,α∥β或α与β相交;由α∥γ,β∥γ⇒α∥β,条件②满足;在④中,a⊥α,a∥b⇒b⊥α,又b⊥β,从而α∥β,④满足.2题型分类深度剖析PART TWO题型一直线与平面平行的判定与性质多维探究命题点1直线与平面平行的判定例1(2018·绍兴模拟)如图,在直三棱柱ABC—AB1C1中,∠BAC=90°,AB1=AC=2,点M,N分别为AC1,AB1的中点.1(1)证明:MN∥平面BB1C1C;证明连接AB,BC1,点M,N分别为A1C1,A1B的中点,1所以MN为△ABC1的一条中位线,1,所以MN∥BC1又MN⊄平面BBC1C,BC1⊂平面BB1C1C,1所以MN∥平面BBC1C.1(2)若CM ⊥MN ,求三棱锥M —NAC 的体积.解设点D ,E 分别为AB ,AA 1的中点,AA 1=a ,连接ND ,CD ,则CM 2=a 2+1,MN 2=1+a 2+44=a 2+84,CN 2=a 24+5=a 2+204,由CM ⊥MN ,得CM 2+MN 2=CN 2,解得a =2,又NE ⊥平面AA 1C 1C ,NE =1,V 三棱锥M —NAC =V 三棱锥N —AMC =13S △AMC ·NE =13×12×2×2×1=23.2命题点2直线与平面平行的性质例2在如图所示的几何体中,四边形ABCD是正方形,P A⊥平面ABCD,E,F分别是线段AD,PB的中点,P A=AB=1.(1)证明:EF∥平面PDC;证明取PC 的中点M ,连接DM ,MF ,∵M ,F 分别是PC ,PB 的中点,∴MF ∥CB ,MF =12CB ,∵E 为DA 的中点,四边形ABCD 为正方形,∴DE ∥CB ,DE =12CB ,∴MF ∥DE ,MF =DE ,∴四边形DEFM 为平行四边形,∴EF ∥DM ,∵EF ⊄平面PDC ,DM ⊂平面PDC ,(2)求点F到平面PDC的距离.解∵EF∥平面PDC,∴点F到平面PDC的距离等于点E到平面PDC的距离.∵P A⊥平面ABCD,∴P A⊥DA,在Rt△P AD中,P A=AD=1,∴DP=2,∵P A⊥平面ABCD,∴P A⊥CB,∵CB⊥AB,P A∩AB=A,P A,AB⊂平面P AB,∴CB⊥平面P AB,∴CB⊥PB,则PC=3,∴PD 2+DC 2=PC 2,∴△PDC 为直角三角形,其中PD ⊥CD ,∴S △PDC =12×1×2=22, 则13×h ×22=13×1×12×12×1,∴h =24,连接EP ,EC ,易知V E -PDC =V C -PDE ,设E 到平面PDC 的距离为h ,∵CD ⊥AD ,CD ⊥P A ,AD ∩P A =A ,AD ,P A ⊂平面P AD ,∴CD ⊥平面P AD ,∴F 到平面PDC 的距离为24.思维升华判断或证明线面平行的常用方法(1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).(3)利用面面平行的性质(α∥β,a⊂α⇒a∥β).(4)利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).(1)求证:EF ∥平面P AD ;跟踪训练1 (2019·崇左联考)如图,在四棱锥P -ABCD 中,平面P AC ⊥平面ABCD ,且P A ⊥AC ,P A =AD =2,四边形ABCD 满足BC ∥AD ,AB ⊥AD ,AB=BC =1.点E ,F 分别为侧棱PB ,PC 上的点,且PE PB =PF PC =λ(λ≠0).证明 ∵PE PB =PF PC =λ(λ≠0),∴EF ∥BC .∵BC ∥AD ,∴EF ∥AD .又EF ⊄平面P AD ,AD ⊂平面P AD ,∴EF ∥平面P AD .(2)当λ=12时,求点D 到平面AFB 的距离.∵平面P AC ⊥平面ABCD ,且平面P AC ∩平面ABCD =AC ,P A ⊥AC ,P A ⊂平面P AC ,∴P A ⊥平面ABCD ,∴P A ⊥BC .又AB ⊥AD ,BC ∥AD ,∴BC ⊥AB ,又P A ∩AB =A ,P A ,AB ⊂平面P AB ,∴BC ⊥平面P AB ,解 ∵λ=12,∴F 是PC 的中点,在Rt △P AC 中,P A =2,AC =2,∴PC =P A 2+AC 2=6,∴PF =12PC =62.∴BC ⊥PB ,∴在Rt △PBC 中,BF =12PC =62.连接BD ,DF ,设点D 到平面AFB 的距离为d ,在等腰三角形BAF 中,BF =AF =62,AB =1,∴S △ABF =54,又S △ABD =1,点F 到平面ABD 的距离为1,∴由V F -ABD =V D -AFB ,得13×1×1=13×d ×54,解得d =455,即点D 到平面AFB 的距离为455.例3如图所示,在三棱柱ABC -A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:(1)B ,C ,H ,G 四点共面;题型二平面与平面平行的判定与性质师生共研证明∵G ,H 分别是A 1B 1,A 1C 1的中点,∴GH 是△A 1B 1C 1的中位线,∴GH ∥B 1C 1.又∵B 1C 1∥BC ,∴GH ∥BC ,∴B ,C ,H ,G 四点共面.(2)平面EF A1∥平面BCHG.证明∵E,F分别是AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.又G,E分别为AB1,AB的中点,A1B1∥AB且A1B1=AB,1G∥EB,A1G=EB,∴A1EBG是平行四边形,∴A1E∥GB.∴四边形A1又∵AE⊄平面BCHG,GB⊂平面BCHG,1E∥平面BCHG.∴A1又∵AE∩EF=E,A1E,EF⊂平面EF A1,1∥平面BCHG.∴平面EF A1引申探究1.在本例中,若将条件“E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点”变为“D 1,D 分别为B 1C 1,BC 的中点”,求证:平面A 1BD 1∥平面AC 1D .证明如图所示,连接A 1C ,AC 1,交于点M ,∵四边形A 1ACC 1是平行四边形,∴M 是A 1C 的中点,连接MD ,∵D 为BC 的中点,∴A 1B ∥DM .∵A 1B ⊂平面A 1BD 1,DM ⊄平面A 1BD 1,∴DM ∥平面A 1BD 1,又由三棱柱的性质知,D 1C 1∥BD 且D 1C 1=BD ,∴四边形BDC 1D 1为平行四边形,∴DC 1∥BD 1.又DC 1⊄平面A 1BD 1,BD 1⊂平面A 1BD 1,∴DC 1∥平面A 1BD 1,又DC 1∩DM =D ,DC 1,DM ⊂平面AC 1D ,因此平面A 1BD 1∥平面AC 1D .2.在本例中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“点D,D1分别是AC,A1C1上的点,且平面BC1D∥平面AB1D1”,试的值.求ADDC解连接A 1B ,AB 1,交于点O ,连接OD 1.由平面BC 1D ∥平面AB 1D 1,且平面A 1BC 1∩平面BC 1D =BC 1,平面A 1BC 1∩平面AB 1D 1=D 1O ,所以BC 1∥D 1O ,则A 1D 1D 1C 1=A 1O OB =1. 同理,AD 1∥C 1D ,又AD ∥C 1D 1,所以四边形ADC 1D 1是平行四边形,所以AD =D 1C 1,又AC =A 1C 1,所以A 1D 1D 1C 1=DC AD ,所以DC AD =1,即AD DC =1.思维升华证明面面平行的方法(1)面面平行的定义.(2)面面平行的判定定理.(3)垂直于同一条直线的两个平面平行.(4)两个平面同时平行于第三个平面,那么这两个平面平行.(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.跟踪训练2如图,在多面体ABCDEF中,四边形ABCD是正方形,BF⊥平面ABCD,DE⊥平面ABCD,BF=DE,M为棱AE的中点.(1)求证:平面BDM∥平面EFC;证明如图,设AC与BD交于点N,则N为AC的中点,连接MN,又M为棱AE的中点,∴MN∥EC.∵MN⊄平面EFC,EC⊂平面EFC,∴MN∥平面EFC.∵BF⊥平面ABCD,DE⊥平面ABCD,且BF=DE,∴BF∥DE且BF=DE,∴四边形BDEF为平行四边形,∴BD∥EF.∵BD⊄平面EFC,EF⊂平面EFC,∴BD∥平面EFC.又MN∩BD=N,MN,BD⊂平面BDM,∴平面BDM∥平面EFC.(2)若AB=1,BF=2,求三棱锥A-CEF的体积.解连接EN ,FN .在正方形ABCD 中,AC ⊥BD ,又BF ⊥平面ABCD ,∴BF ⊥AC .又BF ∩BD =B ,BF ,BD ⊂平面BDEF ,∴AC ⊥平面BDEF ,又N 是AC 的中点,∴V 三棱锥A -NEF =V 三棱锥C -NEF ,∴V 三棱锥A -CEF =2V 三棱锥A -NEF =2×13×AN ×S △NEF =2×13×22×12×2×2=23,∴三棱锥A -CEF 的体积为23.题型三平行关系的综合应用师生共研例4如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.(1)求证:AB∥平面EFGH,CD∥平面EFGH;证明∵四边形EFGH为平行四边形,∴EF∥HG.∵HG⊂平面ABD,EF⊄平面ABD,∴EF∥平面ABD.又∵EF⊂平面ABC,平面ABD∩平面ABC=AB,∴EF∥AB,又∵AB⊄平面EFGH,EF⊂平面EFGH,∴AB∥平面EFGH.同理可证,CD∥平面EFGH.(2)若AB =4,CD =6,求四边形EFGH 周长的取值范围.解设EF =x (0<x <4),∵EF ∥AB ,FG ∥CD ,∴CF CB =x 4,则FG 6=BF BC =BC -CF BC =1-x 4.∴FG =6-32x .∵四边形EFGH 为平行四边形,∴四边形EFGH 的周长l =2⎝ ⎛⎭⎪⎪⎫x +6-32x =12-x . 又∵0<x <4,∴8<l <12,即四边形EFGH 周长的取值范围是(8,12).思维升华利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.跟踪训练3如图,E是正方体ABCD-AB1C1D1的棱DD11的中点,过A,C,E三点作平面α与正方体的面相交. (1)画出平面α与正方体ABCD-A1B1C1D1各面的交线;解如图,交线即为EC,AC,AE,平面α即为平面AEC.(2)求证:BD1∥平面α.证明连接AC,BD,设BD与AC交于点O,连接EO,∵四边形ABCD为正方形,∴O是BD的中点,又E为DD1的中点.∴OE∥BD1,又OE⊂平面α,BD1⊄平面α.3课时作业PART THREE基础保分练1.(2018·温州模拟)已知α,β为两个不同的平面,直线l⊂α,那么“l∥β”是“α∥β”的√A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析若l∥β,且l⊂α,则α,β相交或平行,故l∥β且l⊂αD⇒/α∥β,而α∥β且l⊂α⇒l∥β,所以“l∥β”是“α∥β”的必要不充分条件,故选B.2.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线√D.若m,n不平行,则m与n不可能垂直于同一平面解析A项,α,β可能相交,故错误;B项,直线m,n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m,n垂直于同一平面,则必有m∥n,所以原命题正确,故D项正确.3.如图所示的三棱柱ABC -A 1B 1C 1中,过A 1B 1的平面与平面ABC 交于DE ,则DE 与AB 的位置关系是A.异面B.平行C.相交D.以上均有可能解析在三棱柱ABC -A 1B 1C 1中,AB ∥A 1B 1.∵AB ⊂平面ABC ,A 1B 1⊄平面ABC ,∴A 1B 1∥平面ABC .∵平面A 1B 1EC ∩平面ABC =DE ,∴DE ∥A 1B 1,∴DE ∥AB .√4.(2019·台州模拟)若平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有A.0条B.1条√C.2条D.0条或2条解析如图设平面α截三棱锥所得的四边形EFGH是平行四边形,则EF∥GH,EF⊄平面BCD,GH⊂平面BCD,所以EF∥平面BCD,又EF⊂平面ACD,平面ACD∩平面BCD=CD,则EF∥CD,EF⊂平面EFGH,CD⊄平面EFGH,则CD∥平面EFGH,同理AB∥平面EFGH,所以该三棱锥与平面α平行的棱有2条,故选C.5.已知m和n是两条不同的直线,α和β是两个不重合的平面,下列给出的条件中一定能推出m⊥β的是A.α⊥β且m⊂αB.α⊥β且m∥α√C.m∥n且n⊥βD.m⊥n且α∥β解析由线面垂直的判定定理,可知C正确.6.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是√。
(浙江专用)2020版高考数学大一轮复习第八章立体几何8.2空间点、直线、平面之间的位置关系课件
与铅笔所在直线垂直;若铅笔所在直线与地面相交不垂直,则其必在地面
上有一条投影线,在地面上一定存在与此投影线垂直的直线,由三垂线定
理知,与投影垂直的直线一定与此斜线垂直;若铅笔所在直线与地面平行,
过铅笔所在直线的平面与地面的交线与铅笔所在直线平行,在地面内与交
线垂直的直线都与铅笔所在直线垂直.综上,教室内任放一支铅笔,无论怎
直线PQ与RS是异面直线.故选C.
C
关闭
解析
-25答案
考点一
考点二
考点三
(2)假设P是两条异面直线l,m外的任意一点,那么(
)
A.过点P有且仅有一条直线与l,m都平行
B.过点P有且仅有一条直线与l,m都垂直
关闭
C.过点P有且仅有一条直线与l,m都相交
设过点
P 的直线为 n,若 n 与 l,m 都平行,则 l,m 平行,与 l,m 异面矛盾,
面ABC与平面β的交线是(
)
关闭
由题意知,D∈l,l⊂β,∴D∈β.
又D∈AB,
∴D∈平面ABC,
A.直线AC
B.直线AB
∴点D在平面ABC与平面β的交线上.
C.直线CD
D.直线BC
又C∈平面ABC,C∈β,
∴点C在平面β与平面ABC的交线上,
∴平面ABC∩平面β=CD.
关闭
C
解析
-20答案
考点一
AB,AD,B1C1的中点,那么正方体的过P,Q,R的截面图形是(
)
关闭
A.三角形 B.四边形
如图所示,连接 QP 并延长与 CB 的延长线交于 M,连接 MR 交 BB1
C.五边形 D.六边形
于 E,连接 PE,作 RG∥PQ 交 C1D1 于 G,则 PE,RE 为截面的部分外形.
2020版高考数学(理)新增分大一轮人教通用版讲义:第八章 立体几何与空间向量 8.8 含解析
§8.8 立体几何中的向量方法(二)——求空间角和距离1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则l 1与l 2所成的角θa 与b 的夹角β范围 ⎝⎛⎦⎤0,π2 [0,π] 求法cos θ=|a ·b ||a ||b |cos β=a ·b|a ||b |2.斜线和平面所成的角(1)斜线和它在平面内的射影的所成的角叫做斜线和平面所成的角(或斜线和平面的夹角). (2)斜线和它在平面内的射影所成的角,是斜线和这个平面内所有直线所成角中最小的角. 3.二面角(1)从一条直线出发的两个半平面所组成的图形叫做二面角.(2)在二面角α—l —β的棱上任取一点O ,在两半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α—l —β的平面角. 4.空间向量与空间角的关系(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=|cos 〈m 1,m 2〉|. (2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成角θ满足sin θ=|cos 〈m ,n 〉|. (3)求二面角的大小1°如图①,AB 、CD 是二面角α—l —β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.2°如图②③,n 1,n 2分别是二面角α—l —β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉. 概念方法微思考1.利用空间向量如何求线段长度?提示 利用|AB →|2=AB →·AB → 可以求空间中有向线段的长度. 2.如何求空间点面之间的距离? 提示 点面距离的求法:已知AB 为平面α的一条斜线段,n 为平面α的法向量,则点B 到平面α的距离为 |BO →|=|AB →||cos 〈AB →,n 〉|.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)两直线的方向向量所成的角就是两条直线所成的角.( × )(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( × ) (3)两个平面的法向量所成的角是这两个平面所成的角.( × )(4)两异面直线夹角的范围是⎝⎛⎦⎤0,π2,直线与平面所成角的范围是⎣⎡⎦⎤0,π2,二面角的范围是[0,π]. ( √ )(5)若二面角α-a -β的两个半平面α,β的法向量n 1,n 2所成角为θ,则二面角α-a -β的大小是π-θ.( × )题组二 教材改编2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A.45° B.135° C.45°或135° D.90°答案 C解析 cos 〈m ,n 〉=m·n |m||n |=11·2=22,即〈m ,n 〉=45°.∴两平面所成二面角为45°或180°-45°=135°.3.如图,正三棱柱(底面是正三角形的直棱柱)ABC -A 1B 1C 1的底面边长为2,侧棱长为22,则AC 1与侧面ABB 1A 1所成的角为______.答案 π6解析 如图,以A 为原点,以AB →,AE →(AE ⊥AB ),AA 1→所在直线分别为x 轴、y 轴、z 轴(如图)建立空间直角坐标系,设D 为A 1B 1的中点, 则A (0,0,0),C 1(1,3,22),D (1,0,22),∴AC 1→=(1,3,22), AD →=(1,0,22).∠C 1AD 为AC 1与平面ABB 1A 1所成的角, cos ∠C 1AD =AC 1→·AD→|AC 1→||AD →|=(1,3,22)·(1,0,22)12×9=32,又∵∠C 1AD ∈⎣⎡⎦⎤0,π2, ∴∠C 1AD =π6.题组三 易错自纠4.在直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( ) A.110 B.25 C.3010 D.22 答案 C解析 以点C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.设BC =CA =CC 1=2,则可得A (2,0,0),B (0,2,0),M (1,1,2),N (1,0,2),∴BM →=(1,-1,2),AN →=(-1,0,2).∴cos 〈BM →,AN →〉=BM →·AN →|BM →||AN →|=1×(-1)+(-1)×0+2×212+(-1)2+22×(-1)2+02+22=36×5=3010. 5.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为________. 答案 30°解析 设l 与α所成角为θ,∵cos 〈m ,n 〉=-12,∴sin θ=|cos 〈m ,n 〉|=12,∵0°≤θ≤90°,∴θ=30°.题型一 求异面直线所成的角例1 如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.(1)证明 如图所示,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF .在菱形ABCD 中,不妨设GB =1. 由∠ABC =120°, 可得AG =GC = 3.由BE ⊥平面ABCD ,AB =BC =2,可知AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt △EBG 中,可得BE =2,故DF =22. 在Rt △FDG 中,可得FG =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322,从而EG 2+FG 2=EF 2,所以EG ⊥FG .又AC ∩FG =G ,AC ,FG ⊂平面AFC , 所以EG ⊥平面AFC .因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC .(2)解 如图,以G 为坐标原点,分别以GB ,GC 所在直线为x 轴、y 轴,|GB →|为单位长度,建立空间直角坐标系Gxyz ,由(1)可得A (0,-3,0), E (1,0,2),F ⎝⎛⎭⎫-1,0,22,C (0,3,0), 所以AE →=(1,3,2),CF →=⎝⎛⎭⎫-1,-3,22.故cos 〈AE →,CF →〉=AE →·CF →|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33. 思维升华 用向量法求异面直线所成角的一般步骤 (1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.跟踪训练1 三棱柱ABC -A 1B 1C 1中,△ABC 为等边三角形,AA 1⊥平面ABC ,AA 1=AB ,N ,M 分别是A 1B 1,A 1C 1的中点,则AM 与BN 所成角的余弦值为( ) A.110 B.35 C.710 D.45 答案 C解析 如图所示,取AC 的中点D ,以D 为原点,BD ,DC ,DM 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,不妨设AC =2,则A (0,-1,0),M (0,0,2),B (-3,0,0),N ⎝⎛⎭⎫-32,-12,2, 所以AM →=(0,1,2), BN →=⎝⎛⎭⎫32,-12,2,所以cos 〈AM →,BN →〉=AM →·BN →|AM →|·|BN →|=725×5=710,故选C.题型二 求直线与平面所成的角例2 (2018·全国Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. (1)证明 由已知可得BF ⊥PF ,BF ⊥EF , PF ∩EF =F ,PF ,EF ⊂平面PEF , 所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD . (2)解 如图,作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|BF →|为单位长,建立如图所示的空间直角坐标系Hxyz . 由(1)可得,DE ⊥PE . 又DP =2,DE =1, 所以PE = 3.又PF =1,EF =2,所以PE ⊥PF . 所以PH =32,EH =32. 则H (0,0,0),P ⎝⎛⎭⎫0,0,32,D ⎝⎛⎭⎫-1,-32,0, DP →=⎝⎛⎭⎫1,32,32,HP →=⎝⎛⎭⎫0,0,32.又HP →为平面ABFD 的法向量, 设DP 与平面ABFD 所成的角为θ,则sin θ=|cos 〈HP →,DP →〉|=|HP →·DP →||HP →||DP →|=343=34.所以DP 与平面ABFD 所成角的正弦值为34. 思维升华 若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则θ=π2-β或θ=β-π2,故有sin θ=|cos β|=|l ·n ||l ||n |. 跟踪训练2 (2018·全国Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M -P A -C 为30°,求PC 与平面P AM 所成角的正弦值. (1)证明 因为P A =PC =AC =4, O 为AC 的中点,所以OP ⊥AC ,且OP =2 3.如图,连接OB .因为AB =BC =22AC , 所以△ABC 为等腰直角三角形, 所以OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB .因为OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,OB ,AC ⊂平面ABC , 所以PO ⊥平面ABC .(2)解 由(1)知OP ,OB ,OC 两两垂直,则以O 为坐标原点,分别以OB ,OC ,OP 所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系Oxyz ,如图所示.由已知得O (0,0,0),B (2,0,0), A (0,-2,0),C (0,2,0), P (0,0,23),AP →=(0,2,23).由(1)知平面P AC 的一个法向量为OB →=(2,0,0). 设M (a ,2-a ,0)(0≤a ≤2),则AM →=(a ,4-a ,0). 设平面P AM 的法向量为n =(x ,y ,z ). 由AP →·n =0,AM →·n =0,得⎩⎨⎧2y +23z =0,ax +(4-a )y =0,可取y =3a ,得平面P AM 的一个法向量为n =(3(a -4),3a ,-a ), 所以cos 〈OB →,n 〉=OB →·n |OB →||n |=23(a -4)23(a -4)2+3a 2+a 2. 由已知可得|cos 〈OB →,n 〉|=cos 30°=32,所以23|a -4|23(a -4)2+3a 2+a 2=32,解得a =-4(舍去)或a =43.所以n =⎝⎛⎭⎫-833,433,-43.又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34.所以PC 与平面P AM 所成角的正弦值为34. 题型三 求二面角例3 (2018·锦州模拟)如图,在梯形ABCD 中,AB ∥CD ,AD =DC =CB =2,∠ABC =60°,平面ACEF ⊥平面ABCD ,四边形ACEF 是菱形,∠CAF =60°.(1)求证:BF ⊥AE ;(2)求二面角B -EF -D 的平面角的正切值.(1)证明 依题意,在等腰梯形ABCD 中,AC =23,AB =4,∵BC =2,∴AC 2+BC 2=AB 2,即BC ⊥AC ,又∵平面ACEF ⊥平面ABCD ,平面ACEF ∩平面ABCD =AC ,BC ⊂平面ABCD , ∴BC ⊥平面ACEF ,而AE ⊂平面ACEF ,∴AE ⊥BC , 连接CF ,∵四边形ACEF 为菱形,∴AE ⊥FC , 又∵BC ∩CF =C ,BC ,CF ⊂平面BCF , ∴AE ⊥平面BCF ,∵BF ⊂平面BCF ,∴BF ⊥AE . (2)解 取EF 的中点M ,连接MC ,∵四边形ACEF 是菱形,且∠CAF =60°, ∴由平面几何易知MC ⊥AC ,又∵平面ACEF ⊥平面ABCD ,平面ACEF ∩平面ABCD =AC ,CM ⊂平面ACEF ,∴MC ⊥平面ABCD .以CA ,CB ,CM 所在直线分别为x ,y ,z 轴建立空间直角坐标系,各点的坐标依次为C (0,0,0),A (23,0,0),B (0,2,0),D (3,-1,0),E (-3,0,3),F (3,0,3),设平面BEF 和平面DEF 的一个法向量分别为n 1=(a 1,b 1,c 1),n 2=(a 2,b 2,c 2), ∵BF →=(3,-2,3),EF →=(23,0,0),∴⎩⎪⎨⎪⎧BF →·n 1=0,EF →·n 1=0,即⎩⎨⎧3a 1-2b 1+3c 1=0,23a 1=0,即⎩⎪⎨⎪⎧a 1=0,2b 1=3c 1,不妨令b 1=3,则n 1=(0,3,2), 同理可求得n 2=(0,3,-1),设二面角B -EF -D 的大小为θ,由图易知θ为锐角, ∴cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=7130, 故二面角B -EF -D 的平面角的正切值为97.思维升华 利用向量法求二面角的大小的关键是确定平面的法向量,求法向量的方法主要有两种:①求平面的垂线的方向向量;②利用法向量与平面内两个不共线向量的数量积为零,列方程组求解. 跟踪训练3 (2018·全国Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M -ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值.(1)证明 由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,又DM ⊂平面CMD , 故BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM .又BC ∩CM =C ,BC ,CM ⊂平面BMC , 所以DM ⊥平面BMC .又DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系Dxyz .当三棱锥M -ABC 体积最大时,M 为CD 的中点.由题设得 D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1), AM →=(-2,1,1),AB →=(0,2,0),DA →=(2,0,0), 设n =(x ,y ,z )是平面MAB 的法向量,则 ⎩⎪⎨⎪⎧n ·AM →=0,n ·AB →=0,即⎩⎪⎨⎪⎧-2x +y +z =0,2y =0.可取n =(1,0,2),DA →是平面MCD 的一个法向量,因此 cos 〈n ,DA →〉=n ·DA →|n ||DA →|=55,sin 〈n ,DA →〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.利用空间向量求空间角例 (12分)如图,四棱锥S -ABCD 中,△ABD 为正三角形,∠BCD =120°,CB =CD =CS =2,∠BSD =90°.(1)求证:AC ⊥平面SBD ;(2)若SC ⊥BD ,求二面角A -SB -C 的余弦值. (1)证明 设AC ∩BD =O ,连接SO , 如图①,因为AB =AD ,CB =CD ,所以AC 是BD 的垂直平分线, 即O 为BD 的中点,且AC ⊥BD .[1分]在△BCD 中,因为CB =CD =2,∠BCD =120°, 所以BD =23,CO =1.在Rt △SBD 中,因为∠BSD =90°,O 为BD 的中点, 所以SO =12BD = 3.在△SOC 中,因为CO =1,SO =3,CS =2, 所以SO 2+CO 2=CS 2, 所以SO ⊥AC .[4分]因为BD ∩SO =O ,BD ,SO ⊂平面SBD , 所以AC ⊥平面SBD .[5分](2)解 方法一 过点O 作OK ⊥SB 于点K ,连接AK ,CK ,如图②,由(1)知AC ⊥平面SBD ,所以AO ⊥SB . 因为OK ∩AO =O ,OK ,AO ⊂平面AOK , 所以SB ⊥平面AOK .[6分]因为AK ⊂平面AOK ,所以AK ⊥SB . 同理可证CK ⊥SB .[7分]所以∠AKC 是二面角A -SB -C 的平面角. 因为SC ⊥BD ,由(1)知AC ⊥BD ,且AC ∩SC =C ,AC ,SC ⊂平面SAC , 所以BD ⊥平面SAC .而SO ⊂平面SAC ,所以SO ⊥BD . 在Rt △SOB 中,OK =SO ·OB SB =62.在Rt △AOK 中,AK =AO 2+OK 2=422, 同理可求CK =102.[10分] 在△AKC 中,cos ∠AKC =AK 2+CK 2-AC 22AK ·CK =-10535.所以二面角A -SB -C 的余弦值为-10535.[12分]方法二 因为SC ⊥BD ,由(1)知,AC ⊥BD ,且AC ∩SC =C ,AC ,SC ⊂平面SAC , 所以BD ⊥平面SAC . 而SO ⊂平面SAC , 所以SO ⊥BD .[6分]由(1)知,AC ⊥平面SBD ,SO ⊂平面SBD , 所以SO ⊥AC .因为AC ∩BD =O ,AC ,BD ⊂平面ABCD , 所以SO ⊥平面ABCD .[7分]以O 为原点,OA →,OB →,OS →的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,如图③,则A (3,0,0),B (0,3,0),C (-1,0,0),S (0,0,3). 所以AB →=(-3,3,0),CB →=(1,3,0), SB →=(0,3,-3).[8分]设平面SAB 的法向量n =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧AB →·n =-3x 1+3y 1=0,SB →·n =3y 1-3z 1=0,令y 1=3,得平面SAB 的一个法向量为n =(1,3,3). 同理可得平面SCB 的一个法向量为m =(-3,1,1).[10分] 所以cos 〈n ,m 〉=n ·m |n ||m |=-3+3+37×5=10535.因为二面角A -SB -C 是钝角,所以二面角A -SB -C 的余弦值为-10535.[12分]利用向量求空间角的步骤第一步:建立空间直角坐标系,确定点的坐标; 第二步:求向量(直线的方向向量、平面的法向量)坐标; 第三步:计算向量的夹角(或函数值),并转化为所求角.1.已知两平面的法向量分别为m =(1,-1,0),n =(0,1,-1),则两平面所成的二面角为( ) A.60° B.120° C.60°或120° D.90° 答案 C解析 cos 〈m ,n 〉=m·n |m||n |=-12·2=-12,即〈m ,n 〉=120°.∴两平面所成二面角为120°或180°-120°=60°.2.如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1所成角的余弦值为( )A.55 B.53 C.56D.54答案 A解析 设CA =2,则C (0,0,0),A (2,0,0),B (0,0,1),C 1(0,2,0),B 1(0,2,1),可得向量AB 1→=(-2,2,1),BC 1→=(0,2,-1),由向量的夹角公式得cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→||BC 1→|=0+4-14+4+1×0+4+1=15=55,故选A. 3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12 B.23 C.33 D.22 答案 B解析 以A 为原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎫1,0,12,D (0,1,0), ∴A 1D →=(0,1,-1),A 1E →=⎝⎛⎭⎫1,0,-12.设平面A 1ED 的一个法向量为n 1=(1,y ,z ), 则有⎩⎪⎨⎪⎧ A 1D →·n 1=0,A 1E →·n 1=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2,∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23×1=23,即所成的锐二面角的余弦值为23.4.在正方体ABCD —A 1B 1C 1D 1中,AC 与B 1D 所成角的大小为( ) A.π6 B.π4 C.π3 D.π2 答案 D解析 以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设正方体的边长为1,则A (0,0,0),C (1,1,0),B 1(1,0,1),D (0,1,0). ∴AC →=(1,1,0),B 1D →=(-1,1,-1), ∵AC →·B 1D →=1×(-1)+1×1+0×(-1)=0, ∴AC →⊥B 1D →,∴AC 与B 1D 所成的角为π2.5.(2018·包头模拟)已知正三棱柱ABC -A 1B 1C 1,AB =AA 1=2,则异面直线AB 1与CA 1所成角的余弦值为( )A.0B.-14C.14D.12答案 C解析 以A 为原点,在平面ABC 内过A 作AC 的垂线为x 轴,以AC 所在直线为y 轴,以AA 1所在直线为z 轴,建立空间直角坐标系,则A (0,0,0),B 1(3,1,2), A 1(0,0,2),C (0,2,0),AB 1→=(3,1,2),A 1C →=(0,2,-2), 设异面直线AB 1和A 1C 所成的角为θ, 则cos θ=|AB 1→·A 1C →||AB 1→|·|A 1C →|=|-2|8·8=14.∴异面直线AB 1和A 1C 所成的角的余弦值为14.6.如图,点A ,B ,C 分别在空间直角坐标系O -xyz 的三条坐标轴上,OC →=(0,0,2),平面ABC 的法向量为n =(2,1,2),设二面角C -AB -O 的大小为θ,则cos θ等于( )A.43B.53C.23D.-23 答案 C解析 由题意可知,平面ABO 的一个法向量为OC →=(0,0,2), 由图可知,二面角C -AB -O 为锐角,由空间向量的结论可知,cos θ=|OC →·n ||OC →||n |=|4|2×3=23.7.在三棱锥P -ABC 中,P A ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,P A =2,则直线P A 与平面DEF 所成角的正弦值为________. 答案55解析 以A 为原点,AB ,AC ,AP 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,由AB =AC =1,P A =2, 得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝⎛⎭⎫12,0,0,E ⎝⎛⎭⎫12,12,0,F ⎝⎛⎭⎫0,12,1. ∴P A →=(0,0,-2),DE →=⎝⎛⎭⎫0,12,0, DF →=⎝⎛⎭⎫-12,12,1. 设平面DEF 的法向量为n =(x ,y ,z ), 则由⎩⎪⎨⎪⎧n ·DE →=0,n ·DF →=0,得⎩⎪⎨⎪⎧y =0,-x +y +2z =0.取z =1,则n =(2,0,1),设直线P A 与平面DEF 所成的角为θ,则sin θ=|cos 〈n ,P A →〉|=|P A →·n ||P A →||n |=55,∴直线P A 与平面DEF 所成角的正弦值为55. 8.如图,在正方形ABCD 中,EF ∥AB ,若沿EF 将正方形折成一个二面角后,AE ∶ED ∶AD =1∶1∶2,则AF 与CE 所成角的余弦值为________.答案 45解析 ∵AE ∶ED ∶AD =1∶1∶2, ∴AE ⊥ED ,即AE ,DE ,EF 两两垂直, 所以建立如图所示的空间直角坐标系,设AB =EF =CD =2,则E (0,0,0),A (1,0,0),F (0,2,0),C (0,2,1), ∴AF →=(-1,2,0),EC →=(0,2,1), ∴cos 〈AF →,EC →〉=AF →·EC →|AF →||EC →|=45,∴AF 与CE 所成角的余弦值为45.9.如图所示,在三棱柱ABC —A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是__________.答案 60°解析 以B 点为坐标原点,以BC 所在直线为x 轴,BA 所在直线为y 轴,BB 1所在直线为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1), 则EF →=(0,-1,1),BC 1→=(2,0,2), ∴EF →·BC 1→=2,∴cos 〈EF →,BC 1→〉=EF →·BC 1→|EF →||BC 1→|=22×22=12,∵异面直线所成角的范围是(0°,90°], ∴EF 和BC 1所成的角为60°.10.(2019·福州质检)已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的锐二面角的正切值为________. 答案23解析 方法一 延长FE ,CB 相交于点G ,连接AG ,如图所示.设正方体的棱长为3,则GB =BC =3,作BH ⊥AG 于点H ,连接EH ,则∠EHB 为所求锐二面角的平面角.∵BH =322,EB =1,∴tan ∠EHB =EB BH =23.方法二 如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系Dxyz ,设DA =1,由已知条件得 A (1,0,0),E ⎝⎛⎭⎫1,1,13, F ⎝⎛⎭⎫0,1,23,AE →=⎝⎛⎭⎫0,1,13, AF →=⎝⎛⎭⎫-1,1,23, 设平面AEF 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,得⎩⎨⎧y +13z =0,-x +y +23z =0.令y =1,z =-3,x =-1,则n =(-1,1,-3), 取平面ABC 的法向量为m =(0,0,-1), 设平面AEF 与平面ABC 所成的锐二面角为θ, 则cos θ=|cos 〈n ,m 〉|=31111,tan θ=23. 11.(2018·鄂尔多斯联考)如图,在几何体ABC -A 1B 1C 1中,平面A 1ACC 1⊥底面ABC ,四边形A 1ACC 1是正方形,B 1C 1∥BC ,Q 是A 1B 的中点,且AC =BC =2B 1C 1,∠ACB =2π3.(1)证明:B 1Q ⊥A 1C ;(2)求直线AC 与平面A 1BB 1所成角的正弦值.(1)证明 如图所示,连接AC 1与A 1C 交于M 点,连接MQ .∵四边形A 1ACC 1是正方形, ∴M 是AC 1的中点, 又Q 是A 1B 的中点, ∴MQ ∥BC ,MQ =12BC ,又∵B 1C 1∥BC 且BC =2B 1C 1, ∴MQ ∥B 1C 1,MQ =B 1C 1,∴四边形B 1C 1MQ 是平行四边形,∴B 1Q ∥C 1M , ∵C 1M ⊥A 1C ,∴B 1Q ⊥A 1C .(2)解 ∵平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC ,CC 1⊥AC ,CC 1⊂平面A 1ACC 1, ∴CC 1⊥平面ABC .如图所示,以C 为原点,CB ,CC 1所在直线分别为y 轴和z 轴建立空间直角坐标系,令AC =BC =2B 1C 1=2,则C (0,0,0),A (3,-1,0),A 1(3,-1,2),B (0,2,0),B 1(0,1,2), ∴CA →=(3,-1,0),B 1A 1—→=(3,-2,0), B 1B →=(0,1,-2),设平面A 1BB 1的法向量为n =(x ,y ,z ), 则由n ⊥B 1A 1—→,n ⊥B 1B →,可得⎩⎨⎧3x -2y =0,y -2z =0,可令y =23,则x =4,z =3,∴平面A 1BB 1的一个法向量n =(4,23,3), 设直线AC 与平面A 1BB 1所成的角为α, 则sin α=|n ·CA →||n |·|CA →|=23231=9331.12.(2019·盘锦模拟)如图,在四棱锥P -ABCD 中,侧面P AD ⊥底面ABCD ,底面ABCD 为直角梯形,其中AB ∥CD ,∠CDA =90°,CD =2AB =2,AD =3,P A =5,PD =22,点E 在棱AD 上且AE =1,点F 为棱PD 的中点.(1)证明:平面BEF ⊥平面PEC ; (2)求二面角A -BF -C 的余弦值.(1)证明 在Rt △ABE 中,由AB =AE =1, 得∠AEB =45°,同理在Rt △CDE 中,由CD =DE =2,得∠DEC =45°, 所以∠BEC =90°,即BE ⊥EC . 在△P AD 中,cos ∠P AD =P A 2+AD 2-PD 22P A ·AD =5+9-82×3×5=55,在△P AE 中,PE 2=P A 2+AE 2-2P A ·AE ·cos ∠P AE =5+1-2×5×1×55=4, 所以PE 2+AE 2=P A 2,即PE ⊥AD .又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,PE ⊂平面P AD , 所以PE ⊥平面ABCD ,所以PE ⊥BE . 又因为CE ∩PE =E ,CE ,PE ⊂平面PEC , 所以BE ⊥平面PEC ,所以平面BEF ⊥平面PEC .(2)解 由(1)知EB ,EC ,EP 两两垂直,故以E 为坐标原点,以射线EB ,EC ,EP 分别为x 轴、y 轴、z 轴的正半轴建立如图所示的空间直角坐标系,则B (2,0,0),C (0,22,0),P (0,0,2),A ⎝⎛⎭⎫22,-22,0,D (-2,2,0),F ⎝⎛⎭⎫-22,22,1,AB →=⎝⎛⎭⎫22,22,0,BF →=⎝⎛⎭⎫-322,22,1,BC →=(-2,22,0),设平面ABF 的法向量为m =(x 1,y 1,z 1), 则⎩⎨⎧m ·AB →=22x 1+22y 1=0,m ·BF →=-322x 1+22y 1+z 1=0,不妨设x 1=1,则m =(1,-1,22), 设平面BFC 的法向量为n =(x 2,y 2,z 2), 则⎩⎨⎧n ·BC →=-2x 2+22y 2=0,n ·BF →=-322x 2+22y 2+z 2=0,不妨设y 2=2,则n =(4,2,52),记二面角A -BF -C 为θ(由图知应为钝角), 则cos θ=-|m ·n ||m |·|n |=-|4-2+20|10·70=-11735,故二面角A -BF -C 的余弦值为-11735.13.如图,在四棱锥S -ABCD 中,SA ⊥平面ABCD ,底面ABCD 为直角梯形,AD ∥BC ,∠BAD =90°,且AB =4,SA =3.E ,F 分别为线段BC ,SB 上的一点(端点除外),满足SF BF =CEBE =λ,当实数λ的值为________时,∠AFE 为直角.答案916解析 因为SA ⊥平面ABCD ,∠BAD =90°,以A 为坐标原点,AD ,AB ,AS 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Axyz .∵AB =4,SA =3, ∴B (0,4,0),S (0,0,3). 设BC =m ,则C (m ,4,0), ∵SF BF =CEBE =λ, ∴SF →=λFB →.∴AF →-AS →=λ(AB →-AF →).∴AF →=11+λ(AS →+λAB →)=11+λ(0,4λ,3),∴F ⎝⎛⎭⎫0,4λ1+λ,31+λ.同理可得E ⎝⎛⎭⎫m1+λ,4,0,∴FE →=⎝ ⎛⎭⎪⎫m1+λ,41+λ,-31+λ. ∵F A →=⎝ ⎛⎭⎪⎫0,-4λ1+λ,-31+λ,要使∠AFE 为直角,即F A →·FE →=0,则0·m 1+λ+-4λ1+λ·41+λ+-31+λ·-31+λ=0,∴16λ=9,解得λ=916.14.(2018·满洲里模拟)如图,已知直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC =1,AB ⊥AC ,M ,N ,Q 分别是CC 1,BC ,AC 的中点,点P 在直线A 1B 1上运动,且A 1P →=λA 1B 1—→(λ∈[0,1]).(1)证明:无论λ取何值,总有AM ⊥平面PNQ ;(2)是否存在点P ,使得平面PMN 与平面ABC 的夹角为60°?若存在,试确定点P 的位置,若不存在,请说明理由.(1)证明 连接A 1Q .∵AA 1=AC =1,M ,Q 分别是CC 1,AC 的中点, ∴Rt △AA 1Q ≌Rt △CAM , ∴∠MAC =∠QA 1A ,∴∠MAC +∠AQA 1=∠QA 1A +∠AQA 1=90°, ∴AM ⊥A 1Q .∵N ,Q 分别是BC ,AC 的中点,∴NQ ∥AB . 又AB ⊥AC ,∴NQ ⊥AC .在直三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC , ∴NQ ⊥AA 1.又AC ∩AA 1=A ,AC ,AA 1⊂平面ACC 1A 1, ∴NQ ⊥平面ACC 1A 1, ∴NQ ⊥AM .由NQ ∥AB 和AB ∥A 1B 1可得NQ ∥A 1B 1, ∴N ,Q ,A 1,P 四点共面, ∴A 1Q ⊂平面PNQ .∵NQ ∩A 1Q =Q ,NQ ,A 1Q ⊂平面PNQ , ∴AM ⊥平面PNQ ,∴无论λ取何值,总有AM ⊥平面PNQ .(2)解 如图,以A 为坐标原点,AB ,AC ,AA 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则A 1(0,0,1),B 1(1,0,1), M ⎝⎛⎭⎫0,1,12,N ⎝⎛⎭⎫12,12,0, Q ⎝⎛⎭⎫0,12,0,NM →=⎝⎛⎭⎫-12,12,12,A 1B 1→=(1,0,0). 由A 1P →=λA 1B 1→=λ(1,0,0)=(λ,0,0), 可得点P (λ,0,1), ∴PN →=⎝⎛⎭⎫12-λ,12,-1. 设n =(x ,y ,z )是平面PMN 的法向量, 则⎩⎪⎨⎪⎧n ·NM →=0,n ·PN →=0,即⎩⎨⎧-12x +12y +12z =0,⎝⎛⎭⎫12-λx +12y -z =0,得⎩⎨⎧y =1+2λ3x ,z =2-2λ3x ,令x =3,得y =1+2λ,z =2-2λ,∴n =(3,1+2λ,2-2λ)是平面PMN 的一个法向量. 取平面ABC 的一个法向量为m =(0,0,1). 假设存在符合条件的点P , 则|cos 〈m ,n 〉|=|2-2λ|9+(1+2λ)2+(2-2λ)2=12,化简得4λ2-14λ+1=0,解得λ=7-354或λ=7+354(舍去).综上,存在点P ,且当A 1P =7-354时, 满足平面PMN 与平面ABC 的夹角为60°.15.在四棱锥P -ABCD 中,AB →=(4,-2,3),AD →=(-4,1,0),AP →=(-6,2,-8),则这个四棱锥的高h 等于( ) A.1 B.2 C.13 D.26答案 B解析 设平面ABCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ⊥AB →,n ⊥AD →,即⎩⎪⎨⎪⎧4x -2y +3z =0,-4x +y =0,令y =4,则n =⎝⎛⎭⎫1,4,43,则cos 〈n ,AP →〉=n ·AP →|n ||AP →|=-6+8-323133×226=-2626,∴h =2626×226=2. 16.如图所示,在梯形ABCD 中,AB ∥CD ,∠BCD =120°,四边形ACFE 为矩形,且CF ⊥平面ABCD ,AD =CD =BC =CF .(1)求证:EF ⊥平面BCF ;(2)点M 在线段EF 上运动,当点M 在什么位置时,平面MAB 与平面FCB 所成的锐二面角最大,并求此时二面角的余弦值. (1)证明 设AD =CD =BC =1, ∵AB ∥CD ,∠BCD =120°, ∴AB =2,∴AC 2=AB 2+BC 2-2AB ·BC ·cos 60°=3, ∴AB 2=AC 2+BC 2,则BC ⊥AC . ∵CF ⊥平面ABCD ,AC ⊂平面ABCD ,∴AC ⊥CF ,而CF ∩BC =C ,CF ,BC ⊂平面BCF , ∴AC ⊥平面BCF . ∵EF ∥AC , ∴EF ⊥平面BCF .(2)解 以C 为坐标原点,分别以直线CA ,CB ,CF 为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,设FM =λ(0≤λ≤3),则C (0,0,0),A (3,0,0),B (0,1,0),M (λ,0,1), ∴AB →=(-3,1,0),BM →=(λ,-1,1). 设n =(x ,y ,z )为平面MAB 的法向量,由⎩⎪⎨⎪⎧n ·AB →=0,n ·BM →=0,得⎩⎨⎧-3x +y =0,λx -y +z =0,取x =1,则n =(1,3,3-λ).易知m =(1,0,0)是平面FCB 的一个法向量,∴cos 〈n ,m 〉=n ·m |n ||m |=11+3+(3-λ)2×1=1(λ-3)2+4 . ∵0≤λ≤3,∴当λ=0时,cos 〈n ,m 〉取得最小值77, ∴当点M 与点F 重合时,平面MAB 与平面FCB 所成的锐二面角最大,此时二面角的余弦值为77.。
2020版高考数学(浙江专用版)新增分大一轮课件:第八章立体几何与空间向量8.7
第八章
立体几何与空间向量
§8.7 立体几何的综合问题
内容索引
NEIRONGSUOYIN
基础知识
题型分类 课时作业
自主学习
深度剖析
PART ONE
1
基础知识 自主学习
知识梳理
ZHISHISHULI
1.直线的方向向量与平面的法向量的确定
(1)直线的方向向量:在直线上任取一 非零 向量作为它的方向向量.
又C1D1⊥平面BB1C1C,
― ― → 所以C1D1=(0,a,0)为平面 BB1C1C 的一个法向量.
→ ― ― → → ― ― → 因为MN· C1D1=0,所以MN⊥C1D1,
又MN⊄平面BB1C1C,所以MN∥平面BB1C1C.
2.(2010· 浙江)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是
(2)平面的法向量可利用方程组求出:设a,b是平面α内两不共线向量,n
a=0, n · 为平面α的法向量,则求法向量的方程组为 b=0. n·
2.空间中平行、垂直关系的证明方法
(1)利用空间平行、垂直关系的转化: 线线关系 线面关系 面面关系.
(2)利用直线的方向向量和平面的法向量的关系.
A.相交
C.垂直
B.平行 √
D.MN在平面BB1C1C内
解析
以点C1为坐标原点,分别以C1B1,C1D1,C1C所在直线为x轴,y轴,z轴,
建立如图所示的空间直角坐标系,
2a 由于 A1M=AN= 3 ,
则
2a 2a 2a a 2a → a Ma, 3 ,3,N 3 , 3 ,a,MN=-3,0, 3 .
5.求二面角的大小 (1)如图①,AB,CD分别是二面角α-l-β的两个面内与棱l垂直的直线,则二 → → 〈 AB ,CD〉 面角的大小θ=__________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大一轮复习讲义第八章立体几何与空间向量§8.6空间向量及其运算NEIRONGSUOYIN内容索引基础知识自主学习题型分类深度剖析课时作业1基础知识自主学习PART ONE名称概念表示零向量模为的向量0单位向量长度(模)为的向量相等向量方向且模的向量a =b相反向量方向且模的向量a 的相反向量为-a共线向量表示空间向量的有向线段所在的直线互相___________的向量a ∥b共面向量平行于同一个的向量知识梳理1.空间向量的有关概念ZHISHISHULI01相等相同相反相等平行或重合平面2.空间向量中的有关定理(1)共线向量定理空间两个向量a 与b (b ≠0)共线的充要条件是存在实数λ,使得a =λb .(2)共面向量定理共面向量定理的向量表达式:p =________,其中x ,y ∈R ,a ,b 为不共线向量.(3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =___________,{a ,b ,c }叫做空间的一个基底.x a +y b x a +y b +z c做向量a ,b 的夹角,记作_________,其范围是_________________,若〈a ,b 〉=则称a 与b ,记作a ⊥b .②两向量的数量积已知空间两个非零向量a ,b ,则________________叫做向量a ,b 的数量积,记作____,即a ·b =______________.3.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫0≤〈a ,b 〉≤π互相垂直π2, 〈a ,b 〉|a ||b |cos 〈a ,b 〉a ·b |a ||b |cos 〈a ,b 〉(2)空间向量数量积的运算律①(λa )·b =______;②交换律:a ·b =____;③分配律:a ·(b +c )=_________.λ(a ·b )b ·a a ·b +a ·c向量表示坐标表示数量积a·b共线a =λb (b ≠0,λ∈R )垂直a ·b =0(a ≠0,b ≠0)模|a |夹角〈a ,b 〉(a ≠0,b ≠0)4.空间向量的坐标表示及其应用设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23a 21+a 22+a 23a 1b 1+a 2b 2+a 3b 3a 1=λb 1,a 2=λb 2,a 3=λb 3a 1b 1+a 2b 2+a 3b 3=0【概念方法微思考】1.共线向量与共面向量相同吗?提示不相同.平行于同一平面的向量就为共面向量.2.零向量能作为基向量吗?提示不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量.3.空间向量的坐标运算与坐标原点的位置选取有关吗?提示无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.(5)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.( )基础自测JICHUZICE题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)空间中任意两个非零向量a ,b 共面.()(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).()(3)对于非零向量b ,由a ·b =b ·c ,则a =c .()(4)两向量夹角的范围与两异面直线所成角的范围相同.()√××√(6)若a·b <0,则〈a ,b 〉是钝角.()××题组二教材改编2.[P97A 组T2] 如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是A.-12a +12b +cB.12a +12b +cC.-12a -12b +cD.12a -12b +c√解析 BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.[P98T3]正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为______.=12+22+12+2(1×2×cos 120°+0+2×1×cos 120°)=2,解析 |EF →|2=EF →2=(EC →+CD →+DF →)22 =EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)∴|EF →|=2,∴EF 的长为 2.题组三易错自纠4.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是A.垂直B.平行C.异面D.相交但不垂直又AB 与CD 没有公共点,∴AB ∥CD .解析 由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),√∴AB →=-3CD →,∴AB →与CD →共线,5.已知a =(2,3,1),b =(-4,2,x ),且a ⊥b ,则|b |=______.∴x =2,∴|b |=(-4)2+22+22=2 6. 26 解析∵a ⊥b ,∴a ·b =2×(-4)+3×2+1·x =0,解析 ∵P ,A ,B ,C 四点共面,∴34+18+t =1,∴t =18.6.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C 四点共面,则实数t =______. 182题型分类深度剖析PART TWO题型一空间向量的线性运算例1如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:师生共研设AA 1→=a ,AB →=b ,AD →=c , 所以AP →=AA 1→+A 1D 1――→+D 1P →=a +AD →+12D 1C 1――→(1)AP →;解因为P 是C 1D 1的中点,=a +c +12AB →=a +c +12b .解因为M 是AA 1的中点,所以MP →=MA →+AP →=12A 1A →+AP → (2)MP →+NC 1→.=-12a +⎝ ⎛⎭⎪⎪⎫a +c +12b =12a +12b +c . 又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a ,所以MP →+NC 1→=⎝ ⎛⎭⎪⎪⎫12a +12b +c +⎝ ⎛⎭⎪⎪⎫a +12c =32a +12b +32c .思维升华用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1 (1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________.12AB →+12AD →+AA 1→ 解析 ∵OC →=12AC →=12(AB →+AD →),∴OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→.(2)(2018·金华质检)如图,在三棱锥O —ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →等于 A.12(-a +b +c ) B.12(a +b -c ) C.12(a -b +c ) D.12(-a -b +c ) √解析 NM →=NA →+AM →=(OA →-ON →)+12AB →=OA →-12OC →+12(OB →-OA →)=12OA →+12OB →-12OC →=12(a +b -c ).题型二共线定理、共面定理的应用例2如图,在四棱柱ABCD —A 1B 1C 1D 1中,底面ABCD 是平行四边形,E ,F ,G 分别是A 1D 1,D 1D ,D 1C 1的中点.师生共研(1)试用向量AB →,AD →,AA 1→表示AG →;解 设AB →=a ,AD →=b ,AA 1→=c . 由图得AG →=AA 1→+A 1D 1→+D 1G →=c +b +12DC →=12a +b +c=12AB →+AD →+AA 1→.(2)用向量方法证明平面EFG∥平面AB1C.证明 由题图,得AC →=AB →+BC →=a +b , EG →=ED 1→+D 1G →=12b +12a =12AC →,∵EG 与AC 无公共点,∴EG ∥AC ,∵EG ⊄平面AB 1C ,AC ⊂平面AB 1C ,∴EG ∥平面AB 1C .又∵AB 1→=AB →+BB 1→=a +c , FG →=FD 1→+D 1G →=12c +12a =12AB 1→,∵FG 与AB 1无公共点,∴FG ∥AB 1,∵FG ⊄平面AB 1C ,AB 1⊂平面AB 1C ,∴FG ∥平面AB 1C ,又∵FG ∩EG =G ,FG ,EG ⊂平面EFG ,∴平面EFG ∥平面AB 1C .三点(P ,A ,B )共线空间四点(M ,P ,A ,B )共面证明三点共线和空间四点共面的方法比较思维升华P A →=λPB →且同过点PMP →=xMA →+yMB → 对空间任一点O ,OP →=OA →+tAB →对空间任一点O ,OP →=OM →+xMA →+yMB → 对空间任一点O ,OP →=xOA →+(1-x )OB → 对空间任一点O ,OP →=xOM →+yOA →+(1-x -y )OB →跟踪训练2 如图所示,已知斜三棱柱ABC —A 1B 1C 1,点M ,N 分别在AC 1和BC上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面?解 ∵AM →=kAC 1→,BN →=kBC →,∴MN →=MA →+AB →+BN →=kC 1A →+AB →+kBC →=k (C 1A →+BC →)+AB →=k (C 1A →+B 1C 1——→)+AB →=kB 1A →+AB →=AB →-kAB 1→=AB →-k (AA 1→+AB →)=(1-k )AB →-kAA 1→,∴由共面向量定理知向量MN →与向量AB →,AA 1→共面.(2)直线MN 是否与平面ABB 1A 1平行?又由(1)知MN →与AB →,AA 1→共面,解当k =0时,点M ,A 重合,点N ,B 重合,MN 在平面ABB 1A 1内,当0<k ≤1时,MN 不在平面ABB 1A 1内,∴MN ∥平面ABB 1A 1.综上,当k =0时,MN 在平面ABB 1A 1内;当0<k ≤1时,MN ∥平面ABB 1A 1.题型三空间向量数量积的应用例3如图所示,已知空间四边形ABCD的各边和对角线的长都等于a,点M,N分别是AB,CD的中点.(1)求证:MN⊥AB,MN⊥CD;师生共研由题意可知,|p |=|q |=|r |=a ,且p ,q ,r 三个向量两两夹角均为60°.证明 设AB →=p ,AC →=q ,AD →=r .MN →=AN →-AM →=12(AC →+AD →)-12AB →=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0.∴MN →⊥AB →,即MN ⊥AB .同理可证MN ⊥CD .(2)求异面直线AN与CM所成角的余弦值.证明 设向量AN →与MC →的夹角为θ.∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r )·⎝ ⎛⎭⎪⎪⎫q -12p =12⎝ ⎛⎭⎪⎪⎫q 2-12q ·p +r ·q -12r ·p =12⎝ ⎛⎭⎪⎪⎫a 2-12a 2cos 60°+a 2cos 60°-12a 2cos 60°=12⎝ ⎛⎭⎪⎪⎫a 2-a 24+a 22-a 24=a 22. 又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cos θ=23.→→22思维升华(1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角.(3)可以通过|a|=a2,将向量的长度问题转化为向量数量积的问题求解.跟踪训练3如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;解 记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝ ⎛⎭⎪⎪⎫12+12+12=6, →解 BD 1→=b +c -a ,AC →=a +b ,(2)求BD 1→与AC →夹角的余弦值.∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1,∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66. 即BD →与AC →夹角的余弦值为63课时作业PART THREE基础保分练A.(0,3,-6)B.(0,6,-20)C.(0,6,-6)D.(6,6,-6)1.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于√解析 由b =12x -2a ,得x =4a +2b =(8,12,-16)+(-8,-6,-4)=(0,6,-20).2.在下列命题中:①若向量a,b共线,则向量a,b所在的直线平行;②若向量a,b所在的直线为异面直线,则向量a,b一定不共面;③若三个向量a,b,c两两共面,则向量a,b,c共面;④已知空间的三个向量a,b,c,则对于空间的任意一个向量p总存在实数x,y,z使得p=x a+y b+z c.其中正确命题的个数是√A.0B.1C.2D.3解析a与b共线,a,b所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a,b都共面,故②不正确;三个向量a,b,c中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a,b,c不共面时,空间任意一向量p才能表示为p=x a+y b+z c,故④不正确,综上可知四个命题中正确的个数为0,故选A.A.32B.-2C.0D.32或-23.(2018·台州模拟)已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于解析当m =0时,a =(1,3,-1),b =(2,0,0),a 与b 不平行,∴m ≠0,∵a ∥b ,√∴2m +12=3m =m -1-m,解得m =-2.4.在空间直角坐标系中,已知A(1,-2,1),B(2,2,2),点P在z轴上,且满足|P A|=|PB|,则P点坐标为A.(3,0,0)B.(0,3,0)√C.(0,0,3)D.(0,0,-3)解析设P(0,0,z),则有(1-0)2+(-2-0)2+(1-z)2=(2-0)2+(2-0)2+(2-z)2,解得z=3.5.已知a =(1,0,1),b =(x ,1,2),且a·b =3,则向量a 与b 的夹角为解析∵a·b =x +2=3,∴x =1,∴b =(1,1,2),A.5π6B.2π3C.π3D.π6 √∴cos 〈a ,b 〉=a·b |a||b |=32×6=32, 又∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π6,故选D.6.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是解析 ∵BD →=BF →+FE →+ED →,A.3B.2C.1D.3-2 √∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2,故|BD →|=3- 2.7.(2019·舟山模拟)已知a =(2,1,-3),b =(-1,2,3),c =(7,6,λ),若a ,b ,c 三向量共面,则λ=_____.解析由题意知c =x a +y b ,即(7,6,λ)=x (2,1,-3)+y (-1,2,3),∴⎩⎪⎪⎨⎪⎪⎧2x -y =7,x +2y =6,-3x +3y =λ,解得λ=-9. -98.已知a =(x ,4,1),b =(-2,y ,-1),c =(3,-2,z ),a ∥b ,b ⊥c ,则c =_____________.此时a =(2,4,1),b =(-2,-4,-1),又因为b ⊥c ,所以b ·c =0,即-6+8-z =0,解得z =2,于是c =(3,-2,2).解析 因为a ∥b ,所以x -2=4y =1-1,解得x =2,y =-4, (3,-2,2)9.已知V 为矩形ABCD 所在平面外一点,且VA =VB =VC =VD ,VP →=13VC →,VM →=23VB →,VN →=23VD →.则VA 与平面PMN 的位置关系是_______. 平行又VA ⊄平面PMN ,∴VA ∥平面PMN .解析 如图,设VA →=a ,VB →=b ,VC →=c ,则VD →=a +c -b ,由题意知PM →=23b -13c ,PN →=23VD →-13VC →=23a -23b +13c .∴VA →=32PM →+32PN →,∴VA →,PM →,PN →共面.10.已知ABCD -A 1B 1C 1D 1为正方体,其中正确的序号是______.①(A 1A →+A 1D 1――→+A 1B 1――→)2=3A 1B 1――→2;②A 1C →·(A 1B 1――→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|.①②解析 ①中,(A 1A →+A 1D 1――→+A 1B 1――→)2=A 1A →2+A 1D 1――→2+A 1B 1――→2=3A 1B 1――→2,故①正确; ②中,A 1B 1――→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中,两异面直线A 1B 与AD 1所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中,|AB →·AA 1→·AD →|=0,故④也不正确.11.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA→+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面;解 由题意知OA →+OB →+OC →=3OM →,∴OA →-OM →=(OM →-OB →)+(OM →-OC →),即MA →=BM →+CM →=-MB →-MC →,∴MA →,MB →,MC →共面.。