大学微积分l知识点总结(二)
微积分知识点简单总结
微积分知识点简单总结1. 函数的导数函数的导数描述了函数在某一点处的变化率,可以简单理解为函数的斜率。
导数的定义为函数在某一点处的极限,即$f'(x_0)=\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}$。
导数的计算可以使用求导法则,包括常数倍法则、幂函数法则、和差法则、乘积法则、商法则等。
2. 高阶导数函数的导数可以进行多次求导,得到的导数称为高阶导数。
高阶导数可以描述函数更加详细的变化情况,例如速度、加速度等概念。
3. 函数的微分微分是导数的一种形式,描述了函数在某一点附近的线性近似。
微分的定义为$dy=f'(x)dx$,可以理解为函数在某一点处的微小改变量。
微分可以用于估计函数的变化,以及在计算积分时的一些技巧和方法中。
4. 不定积分不定积分是积分的一种形式,用于求解函数的原函数。
不定积分的记号为$\intf(x)dx=F(x)+C$,其中$F(x)$为$f(x)$的一个原函数,$C$为积分常数。
不定积分的计算可以使用换元法、分部积分法、有理函数的积分等一系列的积分法则。
5. 定积分定积分是积分的一种形式,用于计算函数在一个区间上的累积变化。
定积分的计算可以使用牛顿-莱布尼茨公式,也可以使用定积分的近似计算法,如矩形法、梯形法、辛普森法等。
6. 微积分基本定理微积分基本定理是微积分的核心定理之一,描述了导数和积分的关系。
第一部分定理称为牛顿-莱布尼茨公式,表明了函数的不定积分可以表示为函数的定积分。
第二部分定理描述了定积分的求导运算,即若函数$f(x)$在区间$[a,b]$上连续,则$\int_{a}^{b}f(x)dx=F(b)-F(a)$,其中$F(x)$为$f(x)$的一个原函数。
7. 微分方程微分方程是微积分的一个重要应用,描述了含有未知函数及其导数的方程。
微分方程可以是常微分方程或偏微分方程,按照阶数、线性性质、系数等分类。
微分方程在物理、工程、经济等领域有着广泛的应用,例如描述物体的运动、电路的动态行为、人口增长等问题。
微积分知识点总结(期末考研笔记)
微积分知识点总结(期末考研笔记)一、第一章:极限与连续第一节:函数1.什么是函数?未知变量x通过某种固定的对应关系确定唯一变量y,称y是x的函数2.什么是复合函数?内层变量导出中间函数的值域,中间函数的值域满足外层函数的定义域,则外层变量是内层变量的复合函数。
3.什么是反函数?能“反”的函数,正函数能由x确定唯一的y与之对应,反函数则要求由y能确定唯一的x与之对应!4.什么是基本初等函数?幂函数,指数函数,对数函数,三角函数,反三角函数通过四则运算把基本初等函数组合构成初等函数5.特殊函数特殊定义的函数:高斯函数,符号函数,狄利克雷函数第二节:极限1.极限定义是什么?●数列极限定义(ε--N),函数极限定义(ε--δ)、(ε--X)\large \epsilon:任意小的正数,可以是是函数值与极限值之差;也可以是数列项与极限值之差。
\large δ:是邻域半径。
2.极限的性质是什么?●唯一性极限存在必唯一。
从左从右逼近相同值。
●保号性极限两侧正负相同●有界性数列极限收敛,必有界,反之不成立;连续函数闭区间有界。
●列与子列同极限数列有极限,子列也存在相同极限;反之不成立。
●极限运算性质1、满足四则运算。
2、满足复合函数嵌套极限。
3、极限存在则左右极限相等。
●极限存在性质迫(夹)敛(逼)定理。
●两个重要极限x\to0 时,\frac{sinx}{x}=1;(1+x)^{1/x} 的1/x次方极限为e●几个特殊关系式●[0,\frac {\pi}{2} ] 时,sinx <x <tanx●x>0 时,\frac{x}{(x+1)} <ln(1+x) <x3.无穷小●什么是无穷小1、定义:自变量趋向某个边界时,f(x)\to 02、无穷小是函数变化极限值,而非确定具体值,即要多小,有多小,但不是0! 3、高阶、同阶、等价无穷小●常用的等价无穷小第三节:连续与间隔1.连续的定义1、该点有定义,且该点极限值等于函数值,则该处连续2、闭区间连续,左边界函数值等于右极限,区间内各点连续,右边界函数值等于左极限2.间断定义第一类间断点:可去间断点,跳跃间断点。
大学微积分的知识点汇总
大学微积分的知识点汇总微积分是数学中的一门重要学科,也是大学数学课程中的一部分。
它主要包括微分学和积分学两个方面。
微分学研究函数的变化率和曲线的切线问题,而积分学研究函数与曲线的面积、体积以及累积等问题。
本文将从微分学和积分学两个方面对大学微积分的知识点进行汇总。
一、微分学1.函数的极限函数的极限是微积分的基本概念之一。
它描述了函数在某一点或正无穷、负无穷处的变化趋势。
例如,当自变量趋近于某一值时,函数的取值是否趋近于一个确定的值。
2.导数导数是函数在某一点的变化率。
它表示了函数在该点的切线的斜率。
导数可以用来解释函数的变化趋势,并且可以通过导数的性质求得函数的极值点和拐点等重要信息。
3.微分微分是导数的另一种形式。
它可以用来表示函数在某一点附近的变化情况。
微分可以用来近似计算函数的值,例如在物理学中的位移和速度之间的关系。
4.高阶导数高阶导数是导数的再次求导。
它描述了函数变化率的变化率。
高阶导数可以用来研究函数的凹凸性和函数曲线上的拐点。
二、积分学1.定积分定积分是对函数在一定区间上的面积进行求解。
它可以用来解决曲线下面积、体积、平均值等问题。
定积分可以通过定义求解,也可以通过积分的性质和定理进行计算。
2.不定积分不定积分是定积分的逆运算。
它可以用来求解函数的原函数。
不定积分可以通过积分表、基本积分公式和换元积分法等方法进行计算。
3.反常积分反常积分是对无界区间上的函数进行积分。
由于函数在无穷远处可能趋于无穷或趋于零,因此需要对反常积分进行特殊处理。
常见的反常积分有瑕积分和无穷积分。
4.积分应用积分的应用非常广泛。
它可以用来计算曲线的弧长、质心和转动惯量等物理量。
在经济学中,积分可以用来计算总收益、总成本和总利润等经济指标。
以上是大学微积分的知识点汇总。
微分学和积分学是微积分的两个重要方面,它们在数学和其他学科中有着广泛的应用。
掌握微积分的知识将有助于解决实际问题和深入理解数学的本质。
希望本文对你在学习微积分过程中有所帮助。
大一微积分每章知识点总结
大一微积分每章知识点总结微积分是数学的重要分支之一,用于研究变化率与累积效应。
在大一微积分课程中,我们学习了许多重要的知识点,这些知识点为我们进一步学习高级数学打下了坚实的基础。
本文将对大一微积分每章的知识点进行总结,以帮助读者巩固所学内容。
第一章:函数与极限在这一章中,我们学习了函数的概念与性质,以及极限的定义与运算法则。
函数是一种将一个数集映射到另一个数集的规则,可以用数学公式或图形表示。
极限是函数在某个点无限接近于某个值的情况,是微积分的基础概念之一。
第二章:导数与微分导数是用来描述函数变化率的概念,它表示函数在某一点处的切线斜率。
我们学习了导数的计算方法,包括基本导数公式、加减乘除法则、链式法则等。
微分则是导数的应用,用于计算函数在某一点的近似值,并研究函数的局部特征。
第三章:微分中值定理与导数的应用在这一章中,我们学习了微分中值定理和导数的应用。
微分中值定理是描述函数在某个区间内存在某点的斜率等于该区间的平均斜率的定理,包括拉格朗日中值定理和柯西中值定理。
导数的应用包括函数的单调性、极值点、凹凸性等的判断与求解。
第四章:不定积分不定积分是导数的逆运算,用于求解函数的原函数。
我们学习了不定积分的基本性质和常用的积分公式,包括换元法、分部积分法、有理函数的积分等。
通过不定积分,我们可以求解函数的面积、曲线长度等问题。
第五章:定积分与定积分的应用定积分是用来计算曲线下面积的工具,也可以表示变化率与累积效应。
我们学习了定积分的定义和性质,以及计算定积分的方法,如换元法、分部积分法和定积分的几何应用等。
定积分的应用包括计算曲线的弧长、质量、物体的质心等。
第六章:微分方程微分方程是用导数和未知函数构成的方程,研究函数之间的关系。
我们学习了常微分方程的基本概念和解法,包括一阶线性微分方程和可分离变量的方程等。
微分方程是实际问题建模与求解的重要工具,应用广泛于物理、化学、工程等领域。
通过对大一微积分每章的知识点进行总结,我们回顾了函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分与定积分的应用、微分方程等内容,巩固了所学知识,并为之后学习高级数学打下了坚实的基础。
微积分笔记整理
微积分笔记整理以下是一份微积分笔记整理的示例,涵盖了微积分的一些关键概念和公式:一、导数(Derivative)1. 定义:函数在某一点的切线斜率。
2. 公式:$(f(x+h)-f(x))\div h$(当$h$趋近于$0$时)。
3. 导数的意义:- 函数的变化率。
- 曲线的切线斜率。
- 判断函数的单调性。
二、微分(Differential)1. 定义:函数在某一点的切线增量。
2. 公式:$df=f^\prime(x)dx$。
3. 微分的意义:- 切线的近似值。
- 函数的增量。
三、积分(Integral)1. 定义:函数在某个区间上的面积。
2. 公式:$\int_{a}^{b}f(x)dx$。
3. 积分的意义:- 函数的面积。
- 函数的平均值。
- 求导的逆运算。
四、微积分基本定理(Fundamental Theorem of Calculus)1. 牛顿-莱布尼茨公式(Newton-Leibniz Formula):若$F^\prime(x)=f(x)$,则$\int_{a}^{b}f(x)dx=F(b)-F(a)$。
2. 不定积分(Indefinite Integral):函数的原函数族。
3. 定积分(Definite Integral):函数在某个区间上的确定积分值。
五、常见函数的导数和积分1. 常数函数:导数为$0$,积分为$cx$($c$为常数)。
2. 线性函数:导数为常数,积分为$cx+d$($c$、$d$为常数)。
3. 指数函数:导数为指数本身,积分为指数加$1$的反函数。
4. 对数函数:导数为$\frac{1}{x}$,积分为$x\ln|x|+c$。
5. 三角函数:正弦函数的导数为余弦函数,余弦函数的导数为负的正弦函数;积分根据不同的三角函数有不同的公式。
大学大一微积分知识点总结
大学大一微积分知识点总结微积分是数学中的重要分支,也是大多数理工科专业学生必修的一门课程。
在大学的微积分课程中,学生们需要掌握一系列基本的知识点,并能够运用这些知识点解决实际问题。
本文将对大学大一微积分课程的知识点进行总结,以帮助学生们更好地理解和掌握微积分的内容。
一、导数与微分1. 导数的定义及求导法则导数表示了函数在某一点上的变化率,可以通过定义或者求导法则来计算。
求导法则包括常数导数、幂函数导数、指数函数导数、对数函数导数、三角函数导数等。
2. 高阶导数与隐函数求导高阶导数表示导数的导数,可以通过递归地求导来计算。
隐函数求导用于求解含有隐含变量的函数的导数。
二、微分应用1. 最值与极值利用导数的概念和性质,可以求解函数的最值和极值问题。
其中,极值点需要通过导数的一阶和二阶导数条件进行判断。
2. 曲线的凹凸性与拐点利用导数的一阶和二阶导数可以判断曲线的凹凸性和拐点位置,从而帮助分析曲线的性质和形状。
3. 泰勒公式与近似计算泰勒公式是一种利用函数在某一点的导数信息来逼近函数值的方法,可以用于计算函数在某一点的近似值。
三、不定积分与定积分1. 不定积分的定义与性质不定积分表示函数的原函数,可以通过反向计算导数来求解。
不定积分具有线性性质和换元积分法则等特点。
2. 基本积分公式与常见积分表达式基本积分公式包括幂函数积分、三角函数积分、指数函数的积分等常用积分表达式,学生需要熟练掌握。
3. 定积分的概念与性质定积分表示函数在一定区间上的累积效果,可以通过面积的概念来理解。
定积分具有线性性质、积分中值定理等特点。
4. 牛顿-莱布尼茨公式与定积分的应用牛顿-莱布尼茨公式表示定积分与不定积分之间的关系,可以简化定积分的计算。
定积分的应用包括求曲线下的面积、求弧长、求体积等。
四、微分方程1. 微分方程的基本概念与分类微分方程描述了函数与其导数之间的关系,可以根据方程中未知函数的阶数和自变量的个数进行分类。
2. 一阶常微分方程的解法一阶常微分方程的解法包括可分离变量法、齐次方程法、一阶线性方程法等方法。
大学微积分l知识点总结(完整版)
大学微积分l 知识点总结【第一部分】大学阶段准备知识 1、不等式:ab 2ba ≥+ab2b a 22≥+3abc 3c b a ≥++ ()n n21n 21...a a a n a ...a a ≥+++abc 3c b a 333≥++2b a 2b a ab b1a 1222+≤+≤≤+b a b a b -a +≤±≤()nn 21n 21n 21n x ...x x y p p x ...x x x ...x x y ⎪⎭⎫⎝⎛+++=+++•••=的最大值为:则为常数,且扩展:若有柯西不等式:设a 1、a 2、...a n ,b 1、b 2、...b n 均是实数,则有:()()()()()()()()()22221222212n n 2211......a a b a ...b a b a n n b b b a +++++≤+++()时取等号为常数,当且仅当,n ...3,2,1i b a i i ==λλ2、函数周期性和对称性的常用结论1、若f (x+a )=±f (x+b ),则f (x )具有周期性;若f (a+x )=±f (b-x ),则f (x )具有对称性。
口诀:“内同表示周期性,内反表示对称性” 2、周期性(1)若f (x+a )=f (b+x ),则T=|b-a| (2)若f (x+a )=-f (b+x ),则T=2|b-a| (3)若f (x+a )=±1/f (x ),则T=2a(4)若f (x+a )=【1-f (x )】/【1+f (x )】,则T=2a (5)若f (x+a )=【1+f (x )】/【1-f (x )】,则T=4a 3、对称性(1)若f (a+x )=f (b-x ),则f (x )的对称轴为x=(a+b )/2(2)若f (a+x )=-f (b-x )+c ,则f (x )的图像关于((a+b )/2,c/2)对称引申双向不等式: 两侧均在ab ≥0或ab ≤0时取等号4、函数图象同时具备两种对称性,即两条对称轴,两个对称中心,一条对称轴和一个对称中心,则函数必定为周期函数,反之亦然。
微积分二知识点总结
微积分二知识点总结引言微积分是数学中的重要分支,用于研究函数的变化和曲线的性质。
微积分可以分为微分学和积分学两个部分。
本文将总结微积分二中的一些重要知识点,包括泰勒展开、泰勒级数、函数的傅里叶级数展开、常微分方程等内容。
泰勒展开和泰勒级数泰勒展开是函数在某一点附近用幂级数逼近的方法。
假设函数f(x)在x=a处具有n阶导数,那么泰勒展开可以表示为:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ... + f^n(a)(x-a)^n/n! + Rn(x)其中Rn(x)为余项,它表示当n趋向于无穷大时的误差。
泰勒级数是泰勒展开的一种特殊情况,当a=0时,泰勒展开可以简化为泰勒级数:f(x) = f(0) + f'(0)x + f''(0)x^2/2! + ... + f^n(0)x^n/n! + Rn(x)泰勒级数的应用非常广泛,可以用来近似计算各种函数的值。
傅里叶级数展开傅里叶级数展开是一种将周期函数表示为正弦和余弦函数的线性组合的方法。
假设f(x)是一个周期为2π的函数,傅里叶级数展开可以表示为:f(x) = a0/2 + Σ(an*cos(nx) + bn*sin(nx))其中a0、an和bn为函数f(x)的系数。
傅里叶级数展开的基本思想是将一个周期函数分解成多个简单的正弦和余弦函数的叠加。
这种表示方法在信号处理和频谱分析中非常有用。
常微分方程常微分方程是描述函数的变化规律与函数本身及其导数之间的关系的方程。
常微分方程可以分为一阶和二阶常微分方程。
一阶常微分方程可以表示为:dy/dx = f(x, y)其中f(x, y)为已知函数。
二阶常微分方程可以表示为:d^2y/dx^2 = f(x, y, dy/dx)常微分方程在物理学、工程学和经济学等领域中都有着广泛的应用。
总结微积分二是微积分的进阶课程,涵盖了泰勒展开、泰勒级数、函数的傅里叶级数展开、常微分方程等重要知识点。
微积分1知识点总结
微积分1知识点总结微积分1是大学数学中的一门重要课程,它主要包括导数和不定积分两大部分。
微积分1是数学系、物理系、工程系等专业的重要基础课程,对学生的数学思维能力、逻辑思维能力和解决实际问题的能力都有较高的要求。
微积分1知识点较多,本文将对微积分1的相关知识点进行总结,以帮助学生更好地理解和掌握微积分1的知识。
一、函数与极限1.1 函数的概念函数是一个变量与变量之间的一种对应关系。
通常用 f(x) 或 y 来表示函数,x 是自变量,y 是因变量。
函数在微积分中有着非常重要的作用,它可以用来描述数学模型中的关系、描述实际问题中的情况等。
1.2 函数的极限极限是微积分中的一个重要概念,它描述的是当自变量趋向于某一点时,函数值的趋势。
极限的概念为后续的导数和积分提供了重要的理论基础。
1.3 极限的性质极限有一些重要的性质,比如极限的唯一性、函数极限存在的条件、函数极限的运算性质等。
掌握这些性质对于理解和计算函数的极限具有重要的意义。
1.4 极限的计算计算极限是微积分中的一个重要技能。
常见的计算技巧包括利用基本极限、利用夹逼定理、利用洛必达法则等。
二、导数2.1 导数的定义导数是函数的变化率,描述了函数在某一点的变化趋势。
导数的定义是函数在某一点的切线的斜率。
2.2 导数的计算导数的计算是微积分1中的重要内容。
常见的计算技巧包括使用导数的定义、使用导数的性质、使用求导法则等。
2.3 导数的性质导数具有一些重要的性质,比如导数存在的条件、导数的运算法则、导数的几何意义等。
2.4 高阶导数导数的概念可以进一步推广到高阶导数,高阶导数描述了函数的变化趋势更加细致的情况。
三、不定积分3.1 不定积分的概念不定积分是导数的逆运算,描述了函数的积分情况。
不定积分的概念是微积分1中的一个重要内容。
3.2 不定积分的计算计算不定积分是微积分1中的一个关键技能。
对于一些特定的函数,可以通过不定积分的性质、不定积分的基本积分公式等来进行计算。
大学微积分知识点归纳总结
大学微积分知识点归纳总结微积分是数学的分支之一,是研究变化率和累积效应的数学工具。
在大学中,微积分通常是理工科学生必修的一门课程,也是后续学习高等数学和其他相关学科的基础。
本文将对大学微积分中的一些重要知识点进行归纳总结,帮助读者复习和回顾相关概念和技巧。
一、导数与微分导数是微积分中最基础的概念之一,表示函数在某一点处的变化率。
导数的计算方法包括用极限和求导法则两种途径。
其中,求导法则主要包括常数法则、幂函数法则、和差法则、乘法法则、除法法则和复合函数法则等。
通过运用这些法则,我们可以计算各种函数的导数。
微分是导数的一种应用形式,表示函数在某一点附近的近似线性变化量。
微分的计算方法是利用导数的概念,通过对变量的微小改变进行线性逼近得到。
微分在物理学、工程学等领域中具有重要的应用价值,例如在运动学中描述物体的速度和加速度。
二、积分与不定积分积分是导数的反运算,表示函数曲线下某一区间上的累积效应。
积分的计算方法包括定积分和不定积分两种形式。
其中,定积分是计算函数在给定区间上的累积值,可以通过黎曼和牛顿-莱布尼茨公式进行求解。
而不定积分是求解函数的原函数,通常表示为一个函数族,通过添加常数项来表示原函数的不确定性。
在应用方面,积分可以用于求解曲线下的面积、物体的质量和流体的体积等问题。
它也是微分方程中的重要工具,用于求解描述变化规律的方程。
三、微分方程与应用微分方程是涉及未知函数及其导数的方程,描述了变量之间的关系。
微分方程在自然科学、经济学和工程学等领域中有广泛的应用。
常见的微分方程类型包括一阶常微分方程、高阶常微分方程、线性微分方程和非线性微分方程等。
求解微分方程的方法主要包括分离变量法、常系数线性微分方程的特征根法、常系数线性微分方程的待定系数法和变化参数法等。
通过运用这些方法,我们可以推导出函数的解析表达式,揭示变量之间的定量关系。
微积分作为数学的一门基础课程,不仅具有理论的重要性,更有实际的应用价值。
微积分到知识点总结
微积分到知识点总结微积分的知识点非常多,本文将介绍微积分的一些基本概念和重要知识点,并对其进行总结和归纳。
一、函数与极限函数是微积分中的基本概念,它描述了一个变量如何依赖于另一个变量。
函数的导数描述了函数在某一点的变化率,而函数的积分则描述了函数所围成的曲线与坐标轴之间的面积。
函数与极限是微积分的重要基础,它们为微积分的后续理论和方法打下了基础。
1. 函数的概念函数是一个特殊的映射关系,它描述了自变量和因变量之间的对应关系。
函数可以用数学公式表示,例如y=f(x),其中x是自变量,y是因变量,f是函数关系。
2. 极限的概念极限描述了函数在某一点附近的性质,是微积分中一个非常重要的概念。
极限可以使我们研究函数在某一点的趋势和性质,从而为导数和积分的研究打下基础。
3. 极限的性质极限具有一些基本的性质,例如极限的唯一性、极限的保号性和极限的四则运算法则等。
这些性质是极限运算的基础,对于求解极限问题非常重要。
4. 极限的计算极限的计算是微积分教学的一大重点,它包括一些常见的极限计算方法,例如无穷大极限、洛必达法则、泰勒展开式等。
熟练掌握这些方法,对于解决极限计算问题大有帮助。
二、导数与微分导数是函数在某一点的变化率,它是微积分中的一个重要概念。
导数可以帮助我们研究函数的单调性、凹凸性以及最值等问题,是微积分中的一个基础工具。
1. 导数的定义导数描述了函数在某一点的瞬时变化率,它可以用函数的极限概念进行定义。
导数的定义包括了函数在某一点的切线斜率以及函数的增量和自变量的增量之比。
2. 导数的性质导数具有一些基本的性质,包括导数的唯一性、导数的和差积商法则、导数的连续性等。
这些性质是导数运算的基础,可以帮助我们进行导数的运算和求解导数的问题。
3. 高阶导数高阶导数是导数的推广概念,它描述了函数的高阶变化率。
高阶导数包括了二阶导数、三阶导数、四阶导数等,它们可以帮助我们研究函数的曲率和波动性。
4. 微分的概念微分是导数的对应概念,它描述了函数在某一点的变化量。
微积分重点知识点梳理
微积分重点知识点梳理微积分是数学的一个重要分支,涉及到函数、极限、导数、积分等概念和方法。
它是研究函数变化规律、求解曲线斜率和曲线面积等问题的数学工具。
本文将对微积分的重点知识点进行梳理,帮助读者理解和掌握微积分的核心内容。
1. 函数的极限函数的极限是微积分的基础,通过研究函数在某一点处的极限可以描述函数的趋势和性质。
在函数的极限求解过程中,常用的方法有代数运算法、夹逼准则法和无穷小量法等。
函数极限的概念和求解方法对于理解微积分的后续内容非常重要。
2. 导数与微分导数表示函数在某一点处的变化率,是微积分的重要概念。
求导的过程可以帮助我们研究函数的斜率和变化趋势。
在求导的过程中,需要掌握基本的导数公式和求导法则,并能够应用它们解决实际问题。
3. 高阶导数与导数应用高阶导数是导数的导数,表示函数变化率的变化率。
通过研究高阶导数,我们可以更深入地理解函数的曲率和变化趋势。
在实际问题中,高阶导数的应用非常广泛,如求解最值、曲线拟合和泰勒展开等。
4. 积分与不定积分积分是导数的逆运算,求解函数曲线下的面积和定积分值。
通过对函数进行积分,我们可以得到函数的原函数或不定积分。
在积分的过程中,需要掌握积分的基本公式和常用积分法则,并能够应用它们解决实际问题。
5. 定积分与面积应用定积分表示函数在给定区间上的面积或曲线长度等量值。
通过定积分,我们可以求解实际问题中的面积、曲线长度、质量和质心等相关量。
在定积分的应用过程中,需要理解积分区间的选择、积分上下限的确定以及定积分的几何和物理意义。
6. 微分方程微分方程是描述变量之间关系的数学方程,是微积分与方程的结合体。
微分方程在自然科学和工程技术等领域中具有广泛的应用,如物理学中的运动学、化学中的反应动力学等。
掌握微分方程的基本概念和解法,可以帮助我们解决与变化和变动有关的实际问题。
总结起来,微积分是一门研究函数变化和趋势的数学学科,涵盖了函数极限、导数与微分、高阶导数与导数应用、积分与不定积分、定积分与面积应用以及微分方程等重要概念和方法。
有关微分与积分章节知识点的总结2
有关微分与积分章节常识点的总结姜维谦PB08207063一元函数的积分一.求不定积分1. 积分根本公式2. 换元积分法凑微分法∫f(u(x))u ’(x)dx =∫f(u(x))du(x)=F(u(x))+C第二换元法∫f(x)dx=∫f(u(t))u ’(t)dt=F(u-1(x))+C注意:x=u(t)应单调〔可以反解〕—不单调时应分类讨论(e:g 开方去绝对值时)3. 分部积分法∫u(x)dv(x)=u(x)v(x)-∫v(x)du(x)适用于解异名函数“反对幂三指〞〔与dx 结合性递增〕应用:解二元方程,递推式e.g:①In=∫(lnx)n(次方)dx,n>=1②In=∫dx/(x2+a2)^n(次方),n>=14. 模式函数:有理函数类⑴整形分式—局部分式法〔通解〕∫P(x)/Q(x)dx ——别离常数得既约真分式与多项式——Q(x)因式分解化为局部分式和 ——待定系数后比拟系数〔还可以结合赋值,求导数,取极限等〕——化为Ik=∫dx/(x-a)^k(次方)类与Jk=∫(Bx+C)/(x2+bx+c)^k(次方)dx 类积分 ⑵三角有理式㈠万能代换〔通解〕㈡特殊代换 R(cosx,sinx)=-R(cosx,-sinx)R(cosx,sinx)=-R(-cosx,sinx)R(cosx,sinx)=R(-cosx,-sinx)⑶可有理化的无理式㈠三角换元㈡代数换元 ∫R(x,(ax+b)/(cx+d)^1/m(次方))∫R(x,(ax2+bx+c)^1/2(次方))——Euler 代换消除平方项注:三角有理式,可有理化的无理式均可以通过代换转化为尺度有理函数形式后积分, 但通解过程均较繁琐。
故而在求解有理函数类积分时应适当考虑凑配,变形等技巧并 操纵上述1.2.3.常用方法简化运算 详见书P103一.求定积分1.N-L 公式〔形式直接易求〕∫在[a,b]上持续,x 在[a,b]上)(积分形式的微积分根本定理)~微分形式:F(x)=是f(t)的一个原函数 2.Riemann 积分步调:分割——求和近似——取极限~求极限〔T (注意x 对应的上下限)3.换元法 ’(t)dt注:①只需注意上下限的变化〔不同积分变元〕②变量代换思路:被积函数,积分上下限,无穷积分与常义积分的转化③不雅察操纵被积函数在积分区间上的对称关系4e.g:Im=次方)dx5.∫ f=lim ∫ ∫ f=lim(∫广义积分也可以用上述注:求定积分时应结合分项积分与分段积分二.积分的性质运用1.单调性2.有界性3.积分绝对值三角不等式〔Riemann 和理解〕——用于放缩为“易积分形式〞如常值积分——有关积分不等式的证明结合微分中值定理结合Rolle 定理7.线性 8.对称性F '(x)=( 〕’=f(Ψ(x))φ’(x)-f(φ(x))φ’(x) ---~1.研究函数极值、拐点、单调性2.结合R ’H 法那么求极限3.Rolle 定理五.定积分的应用举例〔详见书〕一元函数的微分一.导数的求解1. 按照 导数的定义F’(x 0)=lim(f(x )-f(x 0))/(x-x 0)(x ->x 0)~间断点可导性判断:比拟limf ’(x 0)〔x ->x 0〕与lim(f(x )-f(x 0))/(x-x 0)(x->x 0)2. 复合函数〔f-1(y 0)〕’=1/f ’(x 0)(f(x)=f-1(y))3.高阶导数㈠Leibniz 定理 〔uv 〕^(n)(n 阶导数)=Σ㈡化积商形式为和差形式e.g:y=Pn(x)y=㏑(ax+b)&(c/(ax+b))^(n)sinx^(n)=sin(x+nπ/2)~求递推关系三.重要定理的运用Rolle——证明ε存在性的等式〔微分式的转化〕注意①辅助函数的构造②f(a)=f(b)形式Lagrange中值——证明不等式求不决式极限求函数导数~研究函数性质——单调性—不等式证明求极小〔大〕值、最值凹凸性判断㈠定义㈡f’’(x)渐近线求法①垂直渐近线②非垂直渐近线Cauchy中值——证明不等式求不决式极限L’H法那么注:①l可以无穷大,x0任意②适用于0/0、∞/∞型,其他形式不决式应做适当转化Taylor公式——等价无穷小量有关ε的恒等式证明四.求不决式极限㈠R’H法那么〔仅适用于不决式〕㈡中值定理㈢重要极限~幂指函数的转化㈣等价无穷小量〔因子替换〕㈤Taylor展开---统一形式注:各种极限求法各有其使用范围,在具体求解过程中还应考虑比拟优化、综合运用结语:由于个人对常识的理解有限,所以只能在常识点方面作出一点总结,而无法就某个方面作深入的探讨。
微积分二知识点总结
微积分二知识点总结微积分二是大学数学的一门重要的基础课程,它是微积分的延伸和拓展。
在微积分一中,我们学习了函数的极限、连续性、导数和积分等基本概念和定理,而微积分二则进一步研究函数的微分方程、级数、多元函数及其常微分方程的计算方法等内容。
本文将对微积分二的一些重要知识点进行总结。
1. 级数级数是微积分二中的重要概念,它由一列数相加而成。
我们学习了级数的定义、收敛性判定准则(比较判别法、求和公式、积分判别法等)、级数运算(加法、乘法等)以及收敛级数的性质等。
2. 函数的多元极限在微积分一中,我们已经学习了函数的一元极限。
而在微积分二中,我们将进一步研究多元函数的极限。
多元极限研究的是当函数的自变量趋于某个值时,函数的取值趋于的情况。
我们学习了多元极限的定义、极限存在性的判定方法(夹逼准则、两变量函数的极限、多元函数的极限等)以及多元极限的性质等。
3. 偏导数偏导数是微积分二中的重要概念。
它用于描述多元函数在给定点上的变化率。
我们学习了偏导数的定义、求导法则(如多元复合函数的求导法则、高阶偏导数等)以及偏导数应用于切线、法线及极值等问题的求解。
4. 多元函数的微分微分是微积分二的重要内容之一。
我们学习了多元函数的微分定义、微分的性质(如线性性质、乘积规则、链式法则等)以及微分在函数近似计算中的应用等。
5. 多元积分多元积分在微积分二中有着重要的地位。
我们学习了二重积分和三重积分的定义以及性质,如积分的可加性、线性性质、换序性质等。
我们还学习了极坐标和球坐标系下的坐标变换和应用于积分计算的方法。
6. 常微分方程常微分方程是微积分二的重要内容。
我们学习了一阶线性微分方程和高阶线性微分方程的求解方法,如分离变量法、常系数线性齐次微分方程的求解法、特殊非齐次微分方程的求解法等。
我们也学习了常微分方程在生活中的应用,如人口增长问题和生物钟模型等。
通过对微积分二的这些重要知识点的总结,我们可以更好地理解微积分的基本原理和方法,并且能够应用于实际问题的求解。
《微积分二》复习要点整理(基本层次要求)
实用标准文档微积分(II )复习要点(共11页)(此提纲主要针对基础较薄弱的同学使用 建议按照提纲罗列顺序进行复习)Ch6+Ch7两章第一部分计算偏导与全微分(以二元函数为主)或偏导函数 解法:求具体点偏导 —x 0y 0步骤如下:X1代入y y °,则原二元函数变为一元 函数f x,y ° , 2利用上学期方法求上述 一元函数的导数 dz,dx求偏导函数—步骤如下:x 1)将f x,y 中的y 视为常数,2利用上学期方法求z 对x 的导数,所得结果即为—x *类似,将f x,y 中的x 视为常数,对y 求导即得二.y配套练习) 强烈建议严格遵循以下顺序操练!前提一一熟记第三章P63导数公式、P60“四则运算”求导法则、P64 复合函数求导之链式法则!P251 Ex8 2) 1) 4), Ex9 3) 2)问题2.已知z f x,y ,求全微分dz.问题1.已知初等函数z f x,y 具体形式,求解偏导数zx o ,y oXx o ,y oy3最后代入x x o ,即得所求x o ,y° -*类似,可求出-yx o ,y o -解法:利用全微分与偏导的关系一一先分别求出二,二的具体结果x y则dz — dx — dy为所求.x y配套练习) 强烈建议严格遵循以下顺序操练!P253 Ex13 2) 7) 3)问题3•已知初等函数z f x,y具体形式,求解二阶偏导数2 2z z, 2 .y x y*务必准确识别以上四个二阶偏导的含义,参见P225相关定义和记号求法按照符号的定义逐阶求偏导2比如——:首先针对z f x,y求出-^,然后针对求出的结果(即—x y x x再求此新函数关于y的偏导.配套练习) 强烈建议严格遵循以下顺序操练!P253 Ex12 1) 2)问题4.复合函数求导(偏导).要点:借助“路线图”,根据题目实际情况熟练写出链式法则(如P219 公式(7 10),再进一步具体算出各部分结果.配套练习) 强烈建议严格遵循以下顺序操练!P254 Ex16 1) 4)问题5.隐函数求导(偏导或全微分).要点:熟记P223一元隐函数导数公式 (7 15), P224二元隐函数偏导公式(7 16),套用即可.学会P223〜P224两例的法一即可!配套练习) 强烈建议严格遵循以下顺序操练!P254 Ex18 1) 3), Ex19 2) 1)第二部分求二元函数的极值和条件最值问题1.求二元初等函数z f x,y的极值解法步骤:Z x 01)求出Z x,Z y,并令,解此方程组得所有驻点,如x i ,y i , , X k ,y kzy2 求出 Z xx , Z xy , Z yx , Z yy3)针对以上各驻点,逐个利用P229定理7.8结论判定极值与否、极大/极小.*学会P230例2、例3解答过程.配套练习)强烈建议严格遵循以下顺序操练!P254 Ex20 1) 4)问题2.求具有实际背景(尤其经济背景)二元初等函数Z f x,y 在条件 x,y 0下的条件最值.解法步骤:1)令F x,y, f x,y x,y2)求F的驻点,即解下列方程组:令F x f x x 0令F y f y y 0令F x,y 03)若以上驻点x°,y°, 0唯一,则x°,y°为所求条件最值点.该部分课本相应例题解答均有问题,建议参考相关课堂笔记!并依照以上步骤做以下练习:例)某公司通过电台、报纸两种方式做销售某商品的广告.据统计资料,销售收入R 万元与电台广告费用x万元及报纸广告费用y万元之间的关系如下经验公式:2 2R 15 14x 32y 8xy 2x 10y若提供的广告费用为1.5万元且用尽,求相应的最优广告策略.Key : x 0, y 1.5第三部分定积分相关要点基本前提:熟记P119~P120及P131~P132不定积分公式!b问题1.已知f x 具体形式,求解定积分 f x dx.a主要方法)牛顿一莱布尼兹公式:1)利用求不定积分的方法,求出f x 的一个原函数F x , bb2 从而 fxdx F x b F b Fa.a*重点:若f X 是a,b 上的分段函数,比如以C 为分段点,则需利用—I-定积分的“拆区间”性质f f f,使得右端每个被积函数 a a c 1均取明确形式,再进行计算.配套练习)强烈建议严格遵循以下顺序操练!P187 Ex11 1) 2) 3) 4) 8) 10)a特殊方法)当积分区间关于原点对 称时,定积分f 有公式如下: -a0, f 为奇函数a20f, f 为偶函数1 ; -------------------------------例.求解 x 2sinx x£1 x 2x dx.1解:(务必注意积分区间的特点!) x 2sinx, x . 1 X 2均有奇函数,x 2sin xdxxl1 x 2dx 0. 1 111 1x 为偶函数,xdx 2 xdx 2 xdx1.'10 I从而原式 0 0 11.问题2.变限积分的求导及应用要点)x1)熟记函数 x f t dt 的求导公式:x f x .au xf t dt f u x u x进一步有公式:au xa -af t dt f u x u x f v x v xv x2利用以上求导公式,结合L' Hospital法则,可求解某些极限配套练习)强烈建议严格遵循以下顺序操练!P186 Ex5 1), Ex4 1) 2)问题3.定积分的几何应用与经济应用要点)1)几何应用一 --- 求平面图形面积)典型例P162例1 P163例4:注意针对不同的区域形状选择适当的积分变量.配套练习)强烈建议严格遵循以下顺序操练!P189 Ex22 1) 3) 4)2)几何应用二-- 求旋转体体积)熟记P166公式(6 22及其适用的图6 19,熟记公式(6 24及其适用的图6 21.运用以上两公式求解旋转体体积.*注意:以上两公式只能直接用于求解具有“实心”特征的旋转体体积若考察空心旋转体体积,则只能间接利用公式将所求体积转化为若干实心体积.例如P166式(6 23即运用了此原理.配套练习)强烈建议严格遵循以下顺序操练!P189 Ex29 3) 5)3)经济应用 -- 已知边际求总量)原理:若已知F x ,则由牛顿一莱布尼兹公式可得xF x F a F t dt,其中a为选定的常数.熟记 P168 〜169公式(6 26)~(6 28 .典型例:P169例8, P170例9.配套练习)强烈建议严格遵循以下顺序操练!P190 Ex33, Ex34第四部分二重积分相关要点问题1.已知区域D具体形式,将二重积分 f x,y dxdy表达为两种D累次积分次序.解法步骤)1)在平面直角坐标系中画出D的草图2判断D的形状:若D为P239图7 27(a)之“x型”区域,则运用公式(7 21)写出“外x内y”形式的累次积分;若D为P239图7 27(b)之“y 型”区域,则运用公式(7 22写出“外y内x”形式的累次积分3)若D并非标准的“x型”或“y 型”,则需利用分块积分法则(P238性质7.7),将D划分为若干标准的“x型”或“y型”区域,再分别写出累次积分结果.典型例:P241例2配套练习)强烈建议严格遵循以下顺序操练!P255 Ex30 3) 1)问题2.将给定的累次积分交换积分次序.要点)1)根据题目形式写出积分区域D的形状,2)对于f x,y dxdy ,按要求写出另一种累次积分,方法同“问题1D典型例:P241例3配套练习)强烈建议严格遵循以下顺序操练!P255 Ex31 1) 3) 4) 2)问题3.已知f x,y和积分区域D的具体形式,计算f x,y dxdy.D要点)1)画出积分区域D的草图,2根据D的形状及f x,y的形式选择适当的累次积分次序表达,3)由内层至外层逐层计算上述累次积分,最终求出原二重积分.*若区域形状为圆、环、扇形等,且f x,y为关于x2y2或y的形式,x则上述过程宜采用极坐标系计算,即令x rcos ,y rsin ,将原积分化为frcos ,rsin rdrd ,再将此新二重积分化为外层关于、内层关于r的累次积分,具体结果见P244 ~ P245公式(7 24) ~ (7 26),重点熟记(7 25)即可.典型例(建议按以下顺序复习):P242例4,例6,例5,P246例8配套练习) 强烈建议严格遵循以下顺序操练!P255 Ex32 3) 4), Ex33 2) 1)问题4.求以非负曲面z f x,y为顶,xy平面上某区域D为底的曲顶柱体体积.要点:由题意准确识别出作为“顶”的函数z f x,y及作为“底”的平面区域D.则V f x,y dxdy .再利用问题3中方法求此二重积分.D配套练习) 强烈建议严格遵循以下顺序操练!P256 Ex35 1) 2)第五部分其它要点摘录1. 理清z f x,y 偏导函数连续、可微、偏导存在、连续的关系,理清 f x,y 的极值点、驻点的关系.2. 熟用 P147性质 6.3并练习 P186Ex21)2)4).3. 熟记概率积分 e"dx 「. 02+a4.按定义判定无穷限积分 f x dx, f x dx, f x dx 的敛散性;a-能识别瑕积分,并按定义判定瑕积分bf x dx (三类:分别a 、b c a,b 为瑕点)的敛散性。
微积分知识点
微积分知识点微积分知识点概述一、引言微积分是数学的一个分支,主要研究函数的微分和积分,是现代科学和工程学的基础工具。
它起源于17世纪,由艾萨克·牛顿和戈特弗里德·威廉·莱布尼兹独立发展。
微积分的应用范围非常广泛,包括物理学、工程学、经济学和生物学等领域。
二、微分学1. 极限概念- 极限的定义- 极限的性质- 无穷小与无穷大2. 导数基础- 导数的定义- 导数的几何意义- 可导性与连续性的关系3. 常见函数的导数- 幂函数的导数- 三角函数的导数- 指数函数与对数函数的导数4. 高阶导数- 高阶导数的定义- 高阶导数的计算5. 微分法则- 乘积法则- 商法则- 链式法则6. 隐函数与参数方程的微分 - 隐函数的求导- 参数方程的求导7. 微分应用- 相关率- 极值问题- 曲线的切线与法线三、积分学1. 不定积分- 基本积分表- 换元积分法- 分部积分法2. 定积分概念- 定积分的定义- 定积分的几何意义3. 定积分的计算- 计算方法- 特殊技巧4. 积分应用- 面积计算- 体积计算- 平面曲线的弧长5. 无穷级数- 级数的收敛性- 泰勒级数- 傅里叶级数四、多变量微积分1. 偏导数- 偏导数的定义- 高阶偏导数2. 多重积分- 二重积分- 三重积分- 累次积分3. 曲线与曲面积分- 曲线积分- 曲面积分- 格林定理、高斯定理和斯托克斯定理五、微分方程1. 常微分方程- 一阶微分方程- 二阶微分方程- 线性微分方程2. 偏微分方程- 波动方程- 热传导方程- 拉普拉斯方程六、结语微积分作为数学的重要分支,不仅在理论数学中有深刻的意义,而且在应用科学和工程领域中发挥着至关重要的作用。
掌握微积分的基础知识和技能对于理解和解决现实世界中的问题至关重要。
七、附录A. 微积分公式汇总B. 常见微积分习题及解答C. 推荐阅读与学习资源请注意,本文仅为微积分知识点的概述,详细的解释和示例需要在完整的微积分教材或课程中学习。
根据微积分知识点归纳总结(精华版)
根据微积分知识点归纳总结(精华版)根据微积分知识点归纳总结(精华版)
一、导数与微分
1. 导数的定义与计算方法
2. 导数的几何意义与物理应用
3. 微分的概念与计算方法
4. 微分的几何意义与物理应用
二、函数的极限与连续
1. 函数极限的定义与性质
2. 常见函数的极限计算
3. 函数连续的定义与判定方法
4. 连续函数的性质与常见函数的连续性
三、微分中值定理与应用
1. 雅可比中值定理的概念与应用
2. 拉格朗日中值定理的概念与应用
3. 柯西中值定理的概念与应用
4. 罗尔中值定理的概念与应用
四、定积分与面积计算
1. 定积分的概念与性质
2. 定积分的计算方法与性质应用
3. 平面曲线弧长的计算方法
4. 平面图形面积的计算方法
五、微分方程与应用
1. 微分方程的定义与常见类型
2. 一阶微分方程的解法与应用
3. 高阶微分方程的解法与应用
4. 微分方程在科学与工程中的应用
本文档对微积分知识点进行了归纳总结,包括导数与微分、函
数的极限与连续、微分中值定理与应用、定积分与面积计算以及微
分方程与应用。
每个知识点简要介绍了其定义、性质、计算方法以
及常见应用,以帮助读者快速理解与掌握微积分的核心概念与技巧。
总字数:XXX字。
微积分基本知识汇总
定义:如果
具有任意阶导数,则幂级数
在点x=x
称为
在点x
处的泰勒级数。
[1]
=0,得到的级数[2]
在泰勒公式中,取x
称为麦克劳林级数。
函数
的麦克劳林级数是x的幂级数,那么这种展开是唯一的,且必然与
的麦克劳林级数一致。
[3]
注意:如果
的麦克劳林级数在点的某一邻域内收敛,它不一定收敛于f(x)。
因此,如果f(x)在某处有各阶导数,则f(x)的麦克劳林级数虽然能算出来,但这个级数能否在某个区域内收敛,以及是否收敛于f(x)还需要进一步验证。
一些函数无法被展开为泰勒级数,因为那里存在一些奇点。
但是如果变量x是负指数幂的话,仍然可以将其展开为一个级数。
例如
,就可以被展开为一个洛朗级数。
带佩亚诺余项
以下列举一些常用函数的泰勒公式[1]:
定理一
设函数
在
的某个邻域
内具有任意阶导数,则函数
在该邻域内能展开成泰勒级数的充要条件使得泰勒公式中的余项满足[4]
定理二
如果
在区间
能展开成泰勒级数
则右端的幂级数是惟一的。
[
下面给出几个常见函数在x=0处的泰勒级数,即麦克劳林级数。
[2]指数函数:
自然对数:
几何级数:
正弦函数:
余弦函数:
正切函数:。
知识点总结微积分下册
知识点总结微积分下册微积分的发展可以追溯到古希腊时期,当时的数学家阿基米德首先提出了用无穷小和无穷大的概念来研究曲线和面积的方法。
随后,牛顿和莱布尼兹对微积分的发展做出了巨大的贡献,他们分别独立地发明了微分学和积分学,并建立了微积分的基本理论。
微积分在数学中有着重要的地位,它不仅是数学本身的一个重要分支,而且还被广泛应用于物理、工程、经济学等各个领域。
微积分的基本概念和方法对于理解自然界的变化规律和解决实际问题都具有重要意义。
微积分的学习通常分为两个部分,即微分学和积分学。
微分学主要研究函数的导数和微分的概念,它是微积分的基础部分。
而积分学则主要研究函数的不定积分、定积分和曲线积分等问题,它是微积分的延伸和应用部分。
在微积分的学习中,首先需要了解函数的概念。
在数学中,函数是一种用来描述变量之间关系的数学工具,它把一个输入值映射到一个输出值。
函数通常用公式或图形来表示,例如y=f(x)就是一个函数的表达方式,其中x和y分别表示输入值和输出值,f(x)表示函数的取值。
函数是微积分学习的基础,它涉及到函数的定义域、值域、图像、单调性、奇偶性等概念。
在微积分中,导数是一个重要的概念。
导数可以理解为函数在某一点处的变化率,它描述了函数的变化趋势。
导数的计算方法有很多种,常见的有用差商的定义、隐函数求导、参数方程的导数等。
导数的应用也非常广泛,例如在物理学中描述物体的速度、加速度等变化规律,在经济学中描述收入的增长率等等。
积分是微积分的另一个重要概念,它是导数的逆运算。
积分可以理解为曲线下的面积,它也可以用来表示函数的累积变化量。
在微积分中,积分有不定积分和定积分之分。
不定积分是对函数的积分运算,它的结果是一个不定积分函数,而定积分则是对函数在一个区间上的积分,它可以用来计算曲线下的面积和函数在区间上的平均值等。
微积分的应用非常广泛,它不仅可以用来解决数学中的问题,还可以用来解决物理、经济、工程等各个领域的实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【第五部分】不定积分1.书本知识(包含一些补充知识)(1)原函数:F ’(x )=f (x ),x ∈I ,则称F (x )是f (x )的一个“原函数”。
(2)若F (x )是f (x )在区间上的一个原函数,则f (x )在区间上的全体函数为F (x )+c (其中c 为常数) (3)基本积分表⎰⎰+==c x dx dx 1c x dx x +⋅+∂=⋅+∂∂⎰111(α≠1,α为常数) c dx xx +=⋅⎰ln 1 ()()()⎰⎰⎰⎰⎰+-⋅=⋅+-=⋅-+-=⋅++=⋅≠+=⋅cx x x dx x cx x dx x c x arc x dx x c e dx e a a a c a a dx a x x x xln ln arccos arcsin 11cot arctan 1110ln 22或或为常数,,> ()c xa xa a dx x a c axa dx x a c axdx x a cx x dx x +-+⋅=⋅-+=⋅++=⋅-+++=⋅+⎰⎰⎰⎰ln 211arctan 11arcsin 11ln 1122222222c x xxd cshx dx chx cchx dx shx +-=-+=⋅+=⋅⎰⎰⎰cos ln cos coscx dx x c x dx x c x dx x +=⋅+=⋅+-=⋅⎰⎰⎰cos ln tan sin cos cos sinc x dx x +=⋅⎰sin ln cotcx dx x x c x dx x x c x dx x c x dx x c x x dx x c x x dx x c x x dx x c x x dx x cx x dx x c x x dx x +-=⋅⋅+=⋅⋅+-=⋅+=⋅+--=⋅+-=⋅++=⋅+-=⋅+-=⋅++=⋅⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰csc cot csc sec tan sec cot csc tan sec cot cot tan tan 2sin 412cos 2sin 412sin cos csc ln csc tan sec ln sec 222222c x dx ax a x ++=⋅++⎰22ln122(4)零函数的所有原函数都是c (5)C 代表所有的常数函数 (6)运算法则[]⎰⎰⎰⎰⎰⋅±⋅=⋅±⋅⋅=⋅⋅dxx g dx x f dx x g x f dxx f a dx x f a )()()()()()(②①(7)[][]c x F dx x x f +=⋅⎰)()(')(ϕϕϕ复合函数的积分:cb x F dx b x fc b ax F a b axd b ax f a dx b ax f ++=⋅+++⋅=+⋅+⋅=⋅+⎰⎰⎰)()()(1)()(1)(一般地,(9)连续函数一定有原函数,但是有原函数的函数不一定连续,没有原函数的函数一定不连续。
(10)不定积分的计算方法①凑微分法(第一换元法),利用复合函数的求导法则 ②变量代换法(第二换元法),利用一阶微分形式不变性ta x dx a x t a x dx a x t a x dx x a tan sec sin 222222⋅=⇒⋅+⋅=⇒⋅-⋅=⇒⋅-⎰⎰⎰ 数乘运算加减运算线性运算(8)③分部积分法:⎰⎰⎰⎰⎰⎰⋅-⋅=⋅⋅⋅-⋅=⋅⋅⋅⋅⋅⋅==duv v u dv u dx x v x u x v x u dx x v x u dx x v x u dx x v x u x v v x u u 简写为:并有:也存在存在,则均可导,且若)()(')()()(')()(')()()(')(),(【解释:一阶微分形式不变性】 释义:函数 对应:y=f(u)du u f du y dy ⋅=⋅=)(''功能:说明:[][][]()[]变性。
这称为一阶微分形式不,均有是自变量还是中间变量因此,无论带入得:因为的微分形式为:为中间变量,自变量为那么复合函数复合函数求导得:,即变量为函数即为复合函数。
自是中间变量,即如果的微分形式为:是自变量,则函数此时如果设函数为du u f dy u duu f dy du dx x g x g u dx x g x g f dx y dy u x g x x g f y x g x g f y x g y x x g u u duu f du y dy u f y u u f y ⋅=⋅==⋅=⋅⋅=⋅===⋅===⋅=⋅===)(')('.)('),(.)(')(''')()().(')('',)(:),()('')(),((11)c x dx ax a x ++⇒⋅++⎰22ln122(12)分段函数的积分 例题说明:{}dx x ⋅⎰2,1max()需要调整连续的原则,需要说明的一点,依据)>()()<()>()()<(解:321322132222,,1323111-1-3231),1max(111-11-,1max c c c x c x x c x x c x dx x x x x x x x ⎪⎪⎩⎪⎪⎨⎧++≤≤++-=⋅⎪⎩⎪⎨⎧≤≤=⎰(13)在做不定积分问题时,若遇到求三角函数奇次方的积分,最好的方法是将其中的一⎰⎰⋅-=⋅x d x dx x dx cos sin sin 23的部分。
如次方处理到最后化简的目的。
并以达到再进行计算或将二者合量将其转化成同一次方要通过三角函数公式尽则需情况同时出现且指数不同的与,若遇到)在做不定积分问题时(,cosx sinx 14 2x cos 2x sin 2sinx sinx 15⋅=的问题,则中,如果单独遇到)在计算不定积分过程( (16)隐函数求不定积分 例题说明:,带入。
所以:所以:解法带入。
,则:令解法确定的隐函数,试求是由方程例题:设∂∂=∂∂+∂=∂=-∂=-⇒=-+-⇒=--=-==-⋅=-⎰cos sin ;cos sin sin sin 1cos )(11)()(2,1,113y-x 1)(2222222232y x yxy x yxy x x y x y t ty t t x t y x dx x y x y y(17)三角有理函数积分的万能变换公式2222222212tan 2tan ,12sin 11cos 12)12,11(2tan )cos ,(sin t t x x t t t x t t x dt t t t t t R x t dx x x R -=→=⎪⎪⎩⎪⎪⎨⎧+=+-=⋅+⋅++-=⋅⎰⎰其中:令(18)某些无理函数的不定积分()()() (1111)21141822122221t t 222222222=⋅⎪⎭⎫ ⎝⎛-++-=⋅-+-=⋅--⋅⋅+--+=⋅-+=⎰⎰⎰⎰dt t t dt t t t dt t tt t t x x t dx x x x A A 令例如:,即个根号变为(根号),变形时将整①无理函数中带有②欧拉变换at t c b x ax tx a t c bx ax c xt c bx ax c x a t c bx ax a c bx ax -⋅+=+-=++⎪⎩⎪⎨⎧=++=++++222222222-0-0对于②可得:对于①可得:②,令>若①,令>若的积分含有(19)其他形式的不定积分c x f x xf dx x f x f x x df x dx x f x +-=⋅-⋅=⋅=⋅⋅⎰⎰⎰)()(')(')(')(')(''① ()()()()x x I I x dx I I dxx x xI dxxx xI c A x A x A e dx e B x B x B cA x A x A e dx e x c x e A x e A dx x e x x x x x x x cos 2sin ln 21cos 2sin cos cos 2sin sin cos sin sin 212121322122213221221+=+-=⋅=+⋅+=⋅+=++⋅+⋅=⋅⋅+⋅+⋅++⋅+⋅=⋅⋅+⋅⋅+⋅⋅=⋅⋅⎰⎰⎰⎰⎰⎰⑤组合法:④③待定系数法②2.补充知识(课外补充)☆【例谈不定积分的计算方法】☆1、不定积分的定义及一般积分方法2、特殊类型不定积分求解方法汇总1、不定积分的定义及一般积分方法(1)定义:若函数f(x)在区间I 上连续,则f(x)在区间I 上存在原函数。
其中Φ(x)=F(x)+c 0,(c 0为某个常数),则Φ(x)=F(x)+c 0属于函数族F(x)+c被积表达式积分变量被积函数积分号→⋅→→→⎰dx x f x x f )()(dxx f k dx x f dxx f k x f ni i i i ni i ⋅⋅=⋅⋅⋅=⎰∑⎰∑==)()()()(11则:推论:若(2)一般积分方法值得注意的问题: 第一,一般积分方法并不一定是最简便的方法,要注意综合使用各种积分方法,简便计算;第二,初等函数的原函数并不一定是初等函数,因此不一定都能够积出。
不能用普通方法积出的积分:()......10sin 1111ln 1sin ,sin ,223422<<例如:K dx x k dxx dxxdxx dxx dx x x dx e x⋅⋅⋅-⋅+⋅+⋅⋅⋅⋅⎰⎰⎰⎰⎰⎰⎰-2、特殊类型不定积分求解方法汇总 (1)多次分部积分的规律()dxv u v u v u v u dx v u v u v u dx v u v u dx v u n n n n n n n n n n n ⋅⋅⋅-++⋅+⋅-⋅==⋅⋅+⋅-⋅=⋅⋅-⋅=⋅⋅⎰⎰⎰⎰++----+)1(1)2()1()()1()1()()()()1(1...'''......'''')'sin cos ()sin cos (sin cos sin cos sin cos 2x d x c B x d x c A x b x a dx xd x c xb x a ⋅+⋅⋅+⋅+⋅=⋅+⋅⋅⋅+⋅⋅+⋅⎰求解方法为:令的积分)对于(dx xx xx ⋅+-⎰sin cos sin cos 3例如:求即可解:令)'sin (cos )sin (cos sin cos 3x x B x x A x x +++=-(3)简单无理函数的积分被积函数为简单式的有理式,可以通过根式代换化为有理函数的积分()的最小公倍数是其中令③令②设①n m p b ax t dx b ax b ax x R d cx b ax t dx d cx b ax x R b ax t dx b ax x R pm n n n n n ,,,,,),(+=→⋅++++=→⋅⎪⎪⎭⎫ ⎝⎛+++=→⋅+⎰⎰⎰[]dxb x a x b x a x b a I k b a dx b x a x dxI ⋅⎥⎦⎤⎢⎣⎡+⋅++-+⋅-=≠-⋅+⋅+=⎰⎰)sin()sin()()(sin )sin(1,)sin()sin(4解法:π其中)求(nnnn n bx a x t dx bx ax b x a x I n dx b x a x dxI --=⋅----=⋅-⋅-=⎰⎰-+令解法:为自然数其中,)求:(,))((1,)()(511tx dx c bx ax x I m 162=⋅++⋅=⎰解法:令)求(c bx b bx a ba e dx bx e I c bxb bx a b a e dx bx e I ax axaxax+⋅+⋅⋅+=⋅⋅=+⋅-⋅⋅+=⋅⋅=⎰⎰)sin cos (cos )cos sin (sin 7222221)统一公式(tx x x t x x x t x x x t x x x cos arccos 1sin arcsin 1sin 1tan 182222=-=-=-=+时,令和④同时出现时,令和③同时出现时,令和②同时出现时,令和①同时出现)计算技巧(dxx a x a x a x a a I dxx a ⋅-⋅+-++⋅=⋅-⎰⎰)()()()(211922解法:令)求(小结:几分钟含有根号,应当考虑采用合适的方法去掉根号再进行计算。