1-3节 随机事件的概率

合集下载

概率第一章 概 率 论

概率第一章 概 率 论

第三节 概率的加法与乘法公式
由条件概率计算公式,可直接推得概率的乘法公式: 例6 讨论抓阄的公平性.设有10个阄中只有一个物阄,10个人不论 先后顺序抓阄,每人只能抓一次、一个阄,试讨论其结果与顺序 无关.
解 设Ai表示第i(i=1,2,…,10)个人抓到物阄,则第
6)是随机试验的6个基本事件,由于骰子的对称性,出现各个 基本事件的可能性相同,都为1/6,这个结果是可信的,没有人 会怀疑的.这种计算方法就叫做概率的古典概型方法. (1)有限性——样本空间的元素(基本事件)只有有限个,即Ω={ω 1,ω2,ω3,…,ωn}; (2)等可能性——每一个基本事件发生的可能性都相同,即 例2 先后抛掷两枚均匀的硬币,求出现一个正面一个背面的概率.
表格
例1 为实验炮弹在正常条件下的合格率,
第二节 随机事件的概率
对100000发炮弹中的100发炮弹进行发射试验,结果有90发炮弹正 常,合格的频率为90/100=0.9,因此,可以认为该批炮弹的 合格率基本在0.9左右,即任意从中抽取一发炮弹,能正常发射的 可能性为0.9. (1)0≤P(A)≤1; (2)P(Ω)=1; (3)P(⌀)=0; (4)若A⊂B,则P(A)≤P(B); (5)P(A)=1-P(). 二、概率的古典定义
事件组合而成的事件称为复合事件. 二、事件的关系与运算
在随机试验中有许多事件发生,而这些事件之间往往又有联 系.研究事件之间的各种关系与运算,可以帮助我们更深刻地认 识随机事件. 1.事件的包含与相等
第一节 随 机 事 件
2.事件的和(或并)
图 1-1
第一节 随 机 事 件
事件A与事件B至少有一个发生的事件,称为事件A与事件 B的和(或并)事件,记为A∪B(或A+B)(图1⁃2中的阴影 部分).因此,事件的和可以描述为:当且仅当事件A,B中至 少有一个发生时,事件A∪B发生.即A∪B={A,B至少有一 个发生}.

随机事件的概率

随机事件的概率

教学设计:3.1.1随机事件的概率(第1课时)春晖中学袁海峰一、教学任务分析知识与技能:1.了解必然事件、不可能事件、随机事件的概念以及随机事件发生存在的规律性.2.理解随机事件的概率的定义,同时明确频率与概率的联系与区别.3.形成用试验的方法探究科学规律的方法.过程与方法:通过概率统计定义的形成过程,提高探究问题、分析问题的能力,体会归纳过程,掌握对实验数据进行有效的分析和处理的方式和方法.情感态度与价值观:通过概念的形成过程,渗透试验探究的思想方法,体会“必然性寓于偶然性之中”的辩证唯物主义思想.教学方法:试验分析法,发现式、启发式教学.教学手段与工具:多媒体辅助教学,计算机、幻灯片、表格、三角板等.二、教学重点与难点教学重点:通过试验(抛掷硬币等)的方法,形成概率的定义,明确随机试验的随机性、频率的偶然性以及大量试验频率的稳定规律;同时掌握用大量试验的方法获得科学规律的研究方法. 教学难点:从频率到概率的认识过程,以及通过试验的方法体会从偶然到必然的升华。

三、教学基本流程↓↓↓↓四、教学情景设计几点说明:1.随机事件的概率(第1课时)建立在学生在初中已经接触了概率初步知识的基础上。

学生在高中阶段第一次学习这一内容,在后面还将继续学习概率的其他内容, 因此本节课起到承上启下的作用。

2.要把握课堂的重点,试验研究应该是本节课的重中之重。

新课程标准倡导面向学生进行探究性学习,强调学生在老师的引导下去提出问题,发现问题,重视知识的发现和形成过程。

3.教法上层层设问,以问题为载体使教学条理清楚。

4.学生学习是积极主动建构知识的过程,学习应该与学生熟悉的背景相联系。

在教学中,让学生在问题情境中经历知识的形成和发展,通过试验、观察、归纳、思考、探索、交流、反思来实现学生的主体作用,认识和理解数学知识,学会学习,发展能力。

第三节 随机事件的概率

第三节 随机事件的概率

第三节 随机事件的概率考试要求1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别.2.了解两个互斥事件的概率加法公式.[知识排查·微点淘金]知识点1 随机事件的频率与概率(1)频数与频率:在相同的条件S 下进行n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比值f n (A )=n An 为事件A出现的频率.(2)概率:对于给定的随机事件A ,如果随着试验次数n 的增加,事件A 发生的频率f n (A )稳定在某个常数上,则把这个常数记作P (A ),称为事件A 的概率.[微提醒],频数是一个整数,其取值范围为0≤n A ≤n ,n A ∈N ,因此随机事件A 发生的频率f n (A )=n An的可能取值介于0与1之间,即0≤f n (A )≤1.知识点2 事件的关系与运算定义符号表示包含关系一般地,对于事件A 与事件B ,如果事件A 发生,则事件B 一定发生,这时称事件B 包含事件A (或称事件A 包含于事件B )B ⊇A (或A ⊆B ) 相等关系 一般地,若A ⊆B 且B ⊆A ,则称事件A 与事件B 相等 A =B 并事件(或和事件) 若某事件发生当且仅当事件A 发生或事件B 发生,则称此事件为事件A 与事件B 的并事件(或和事件) A ∪B (或A +B ) 交事件(或积事件) 若某事件发生当且仅当事件A 发生且事件B 发生,则称该事件为事件A 与事件B 的交事件(或积事件) A ∩B 或AB 互斥事件 若A ∩B 为不可能事件,那么称事件A 与事件B 互斥 A ∩B =∅ 对立事件若A ∩B 为不可能事件,而A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件A ∩B =∅,且A ∪B =Ω(Ω为全集)(1)互斥事件具体包括三种不同的情形:①事件A 发生且事件B 不发生;②事件A 不发生且事件B 发生;③事件A 与事件B 都不发生.(2)“事件A 与事件B 是对立事件”是“其概率满足P (A )+P (B )=1”的充分不必要条件,这里一定有事件A 或事件B 中的一个发生,且不会同时发生.知识点3 互斥事件的概率和对立事件的 概率(1)概率的加法公式如果事件A 与事件B 互斥,则P (A ∪B )=P (A )+P (B ). (2)对立事件的概率若事件A 与事件B 互为对立事件,则A ∪B 为必然事件,P (A ∪B )=1,P (A )=1-P (B ).[小试牛刀·自我诊断]1.思考辨析(在括号内打“ √”或“×”) (1)事件发生的频率与概率是相同的.(×) (2)在大量重复试验中,概率是频率的稳定值.(√) (3)两个事件的和事件是指两个事件都得发生.(×)(4)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能的.(×)2.(链接教材必修3 P 121T 4)一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是( )A .至多有一次中靶B .两次都中靶C .只有一次中靶D .两次都不中靶解析:选D “至少有一次中靶”的对立事件是“两次都不中靶”.3.(链接教材必修3 P 121例题)如果从不包括大、小王的52张扑克牌中随机抽取一张,取到黑桃的概率是14,取到梅花的概率是14,则取到红色牌的概率是( )A .18B .14C .12D .34解析:选C 由对立事件的概率公式得P =1-⎝⎛⎭⎫14+14=12.4.(链接教材必修3 P 123A 组T 3)某人进行打靶练习,共射击10次,其中有2次中10 环,有3次中9环,有4次中8环,有1次未中靶.假设此人射击1次,则其中靶的概率约为 ;中10环的概率约为 .答案:910 155.(混淆频率与概率)给出下列三个命题,其中正确的命题有 个.①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是37;③随机事件发生的频率就是这个随机事件发生的概率.答案:0一、基础探究点——随机事件的关系(题组练透)1.从四件正品、两件次品中随机取出两件,记“至少有一件次品”为事件A ,则A 的对立事件是( )A .至多有一件次品B .两件全是正品C .两件全是次品D .至多有一件正品解析:选B 从四件正品、两件次品中随机取出两件,记“至少有一件次品”为事件A ,则A 的对立事件是两件全是正品.2.一袋中装有5个大小和形状完全相同的小球,其中红球3个,白球2个,从中任取2个小球,若事件“2个小球全是红球”的概率为310,则概率是710的事件是( )A .恰有一个红球B .两个小球都是白球C .至多有一个红球D .至少有一个红球解析:选C 因为710=1-310,所以概率是710的事件是“2个小球全是红球”的对立事件,应为:“一个红球一个白球”与“两个都是白球”的和事件,即为“至多有一个红球”.3.设条件甲:事件A 与事件B 是对立事件,结论乙:概率满足P (A )+P (B )=1,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若事件A 与事件B 是对立事件,则A ∪B 为必然事件.再由概率的加法公式得P (A )+P (B )=1.投掷一枚硬币3次,满足P (A )+P (B )=1,但A ,B 不一定是对立事件.如事件A :“至少出现一次正面”,事件B :“出现3次正面”,则P (A )=78,P (B )=18,满足P (A )+P (B )=1,但A ,B 不是对立事件.判断互斥、对立事件的两种方法定义法判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件.集合法①由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.②事件A 的对立事件A 所含的结果组成的集合,是全集中由事件A 所含的结果组成的集合的补集.[典例剖析][例1] 某险种的基本保费为a (单位:元),继续购买该保险的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数 0 1 2 3 4 ≥5 保费0.85aa1.25a1.5a1.75a2a出险次数 0 1 2 3 4 ≥5 频数605030302010(1)记A )的估计值;(2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P (B )的估计值;(3)求续保人本年度平均保费的估计值.解:(1)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P (A )的估计值为0.55.(2)事件B 发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.30,故P (B )的估计值为0.30. (3)由所给数据得:保费 0.85a a 1.25a 1.5a 1.75a 2a 频率0.300.250.150.150.100.05调查的200名续保人的平均保费为0.85a ·0.30+a ·0.25+1.25a ·0.15+1.5a ·0.15+1.75a ·0.10+2a ·0.05=1.1925a .因此,续保人本年度平均保费的估计值为1.1925a . [拓展变式]1.[变结论]若本例的条件不变,试求“一续保人本年度的保费不低于基本保费”的概率的估计值.解:设事件“一续保人本年度的保费不低于基本保费”为E ,事件E 对应于出险次数大于或等于1,由本例知出险次数小于1的频率为0.30,故一年内出险次数大于或等于1的频率为1-0.30=0.70,故P (E )的估计值为0.70.2.[变结论]若本例的条件不变,记F 为事件:“一续保人本年度的保费等于基本保费”.求P (F )的估计值.解:“一续保人本年度的保费等于基本保费”的事件F 发生当且仅当一年内出险次数等于1,其频率为0.25,故P (F )的估计值为0.25.1.概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.2.随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.提醒:概率的定义是求一个事件概率的基本方法.[学会用活]1.在投掷一枚硬币的试验中,共投掷了100次,正面朝上的频数为51次,则正面朝上的频率为( )A .49B .0.5C .0.51D .0.49解析:选C 由题意,根据事件发生的频率的定义可知,“正面朝上”的频率为51100=0.51.三、综合探究点——互斥、对立事件的概率(多向思维)[典例剖析]思维点1 互斥、对立事件概率的计算[例2] 一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率; (2)取出1球是红球或黑球或白球的概率.解:解法一:(利用互斥事件求概率)记事件A 1={任取1球为红球},A 2={任取1球为黑球},A 3={任取1球为白球},A 4={任取1球为绿球},则P (A 1)=512,P (A 2)=412=13,P (A 3)=212=16,P (A 4)=112.根据题意知,事件A 1,A 2,A 3,A 4彼此互斥,由互斥事件的概率公式,得 (1)取出1球是红球或黑球的概率为P (A 1∪A 2)=P (A 1)+P (A 2)=512+13=34.(2)取出1球是红球或黑球或白球的概率为P (A 1∪A 2∪A 3)=P (A 1)+P (A 2)+P (A 3)=512+13+16=1112. 解法二:(利用对立事件求概率)(1)由解法一知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A 1∪A 2的对立事件为A 3∪A 4,所以取出1球为红球或黑球的概率为P (A 1∪A 2)=1-P (A 3∪A 4)=1-P (A 3)-P (A 4)=1-16-112=34.(2)因为A 1∪A 2∪A 3的对立事件为A 4,所以P (A 1∪A 2∪A 3)=1-P (A 4)=1-112=1112.思维点2 互斥、对立事件与统计的综合[例3] 如图所示,A 地到火车站共有两条路径L 1和L 2,现随机抽取100位从A 地到达火车站的人进行调查,调查结果如表所示:所用时间(分钟) 10~20 20~30 30~40 40~50 50~60 选择L 1的人数 6 12 18 12 12 选择L 2的人数416164(1)试估计40分钟不能赶到火车站的概率;(2)分别求通过路径L 1和L 2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.解:(1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44人.所以用频率估计相应的概率为0.44.(2)选择L 1的有60人,选择L 2的有40人,故由调查结果得频率为 所用时间(分钟) 10~20 20~30 30~40 40~50 50~60 选择L 1的频率 0.1 0.2 0.3 0.2 0.2 选择L 2的频率0.10.40.40.1(3)A 1,A 2分别表示甲选择L 1和L 2时,在40分钟内赶到火车站;B 1,B 2分别表示乙选择L 1和L 2时,在50分钟内赶到火车站.由(2)得P (A 1)=0.1+0.2+0.3=0.6,P (A 2)=0.1+0.4=0.5,P (A 1)>P (A 2),所以甲应选择L 1;P (B 1)=0.1+0.2+0.3+0.2=0.8,P (B 2)=0.1+0.4+0.4=0.9,P (B 2)>P (B 1), 所以乙应选择L 2.1.求解此类题的关键是正确判断各事件之间的关系,以及把所求事件用已知概率的事件表示出来.2.求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率再求和;二是间接法,先求该事件的对立事件的概率,再由P(A)=1-P(A)求解.当题目涉及“至多”“至少”型问题时,多考虑间接法.解决与统计知识交汇考查随机事件的概率计算问题时,先读懂图表,提取有关信息,用统计知识求频数,频率,再求概率.[学会用活]2.经统计,在某储蓄所一个营业窗口排队的人数相应的概率如下:排队人数012345人及5人以上概率0.10.160.30.30.10.04求:(1)至多2人排队等候的概率;(2)至少3人排队等候的概率.解:记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F彼此互斥.(1)记“至多2人排队等候”为事件G,则G=A+B+C,所以P(G)=P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)(方法一)记“至少3人排队等候”为事件H,则H=D+E+F,所以P(H)=P(D+E +F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.(方法二)记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.限时规范训练基础夯实练1.某医院治疗一种疾病的治愈率为50%,则下列说法正确的是()A.如果第1位病人没有治愈,那么第2位病人一定能治愈B.2位病人中一定有1位能治愈C.每位病人治愈的可能性是50%D.所有病人中一定有一半的人能治愈解析:选C某医院治疗一种疾病的治愈率为50%,对于A,如果第1位病人没有治愈,那么第2位病人治愈的概率为50%,故A错误;对于B,2位病人中每个人治愈的可能性都是50%,或两人都能治愈,或有1位能治愈,或都不能治愈,故B 错误;对于C ,每位病人治愈的可能性是50%,故C 正确;对于D ,所有病人中每个人治愈的可能性都是50%,但所有病人中不一定有一半的人能治愈,故D 错误.故选C .2.从含有质地均匀且大小相同的2个红球、n 个白球的口袋中随机取出一球,若取得红球的概率是25,则取得白球的概率等于( )A .15B .25C .35D .45解析:选C ∵取得红球与取得白球为对立事件,∴取得白球的概率为P =1-25=35.3.(2021·烟台一中月考)在第3,6,16路公共汽车的一个停靠站(假定这个车站只能停靠一辆公共汽车),有一位乘客需在5分钟之内乘上公共汽车赶到厂里,他可乘3路或6路公共汽车到厂里,已知3路车和6路车在5分钟之内到此车站的概率分别为0.20和0.60,则该乘客在5分钟内能乘上所需要的车的概率为( )A .0.20B .0.60C .0.80D .0.12解析:选C “能乘上所需要的车”记为事件A ,则3路或6路车有一辆路过即事件发生.故P (A )=0.20+0.60=0.80.4.设A 与B 是互斥事件,A ,B 的对立事件分别记为A ,B ,则下列说法正确的是( ) A .A 与B 互斥 B .A 与B 互斥 C .P (A +B )=P (A )+P (B )D .P (A +B )=1解析:选C 根据互斥事件的定义可知,A 与B ,A 与B 都有可能同时发生,所以A 与B 互斥,A 与B 互斥是不正确的;P (A +B )=P (A )+P (B )正确;A 与B 既不一定互斥,也不一定对立,所以P (A +B )=1是不正确的.5.对一批产品的长度(单位:mm)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35]上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为( )A .0.09B .0.20C .0.25D .0.45解析:选D 设[25,30)上的频率为x ,由所有矩形面积之和为1,即x +(0.02+0.04+0.03+0.06)×5=1,得[25,30)上的频率为0.25.所以产品为二等品的概率为0.04×5+0.25=0.45.6.容量为20的样本数据,分组后的频数如下表: 分组 [10,20) [20,30) [30,40) [40,50) [50,60) [60,70] 频数234542的频率为 .解析:数据落在区间[10,40)的频率为2+3+420=920=0.45.答案:0.457.“键盘侠”一词描述了部分网民在现实生活中胆小怕事、自私自利,却习惯在网络上大放厥词的一种现象.某地新闻栏目对该地区群众对“键盘侠”的认可程度进行调查:在随机抽取的50人中,有14人持认可态度,其余持反对态度,若该地区有9600人,则可估计该地区对“键盘侠”持反对态度的有 人.解析:在随机抽取的50人中,持反对态度的频率为1-1450=1825,则可估计该地区对“键盘侠”持反对态度的有9600×1825=6912(人).答案:69128.一只袋子中装有大小相同的7个红玻璃球和3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红球的概率为715,取得两个绿球的概率为115,则取得两个同颜色的球的概率为 ;至少取得一个红球的概率为 .解析:由于“取得两个红球”与“取得两个绿球”是互斥事件,取得两个同色球,只需两互斥事件有一个发生即可,因而取得两个同色球的概率为P =715+115=815.由于事件A “至少取得一个红球”与事件B “取得两个绿球”是对立事件,则至少取得一个红球的概率为P (A )=1-P (B )=1-115=1415.答案:815 14159.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.商品顾客人数甲 乙 丙 丁 100 √ × √ √ 217 × √ × √ 200 √ √ √ × 300 √ × √ × 85 √ × × × 98×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买三种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 解:(1)从题中统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001000=0.2.(2)从统计表可以看出,在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了两种商品,所以顾客在甲、乙、丙、丁中同时购买三种商品的概率可以估计为100+2001000=0.3.(3)与(1)同理可得,顾客同时购买甲和乙的概率可以估计为2001000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001000=0.6,顾客同时购买甲和丁的概率可以估计为1001000=0.1,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.综合提升练10.某商场对某一商品搞活动,已知该商品每一个的进价为3元,售价为8元,每天销售的第20个及之后的商品按半价出售,该商场统计了近10天这种商品的销售量,如图所示.设x 为这种商品每天的销售量,y 为该商场每天销售这种商品的利润,从日利润不少于96元的几天里任选2天,则选出的这2天日利润都是97元的概率为( )A .19B .110C .15D .18解析:选B 日销售量不少于20个时,日利润不少于96元,其中日销售量为20个时,日利润为96元;日销售量为21个时,日利润为97元.从条形统计图可以看出,日销售量为20个的有3天,日销售量为21个的有2天,日销售量为20个的3天记为a ,b ,c ,日销售量为21个的2天记为A ,B ,从这5天中任选2天,可能的情况有10种:(a ,b ),(a ,c ),(a ,A ),(a ,B ),(b ,c ),(b ,A ),(b ,B ),(c ,A ),(c ,B ),(A ,B ),其中选出的2天日销售量都为21个的情况只有1种,故所求概率P =110,故选B .11.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率是1235.则从中任意取出2粒恰好是同一色的概率是( )A .17B .1235C .1735D .1解析:选C 设“从中取出2粒都是黑子”为事件A ,“从中取出2粒都是白子”为事件B ,“任意取出2粒恰好是同一色”为事件C ,则C =A ∪B ,且事件A 与B 互斥.所以P (C )=P (A )+P (B )=17+1235=1735,即任意取出2粒恰好是同一色的概率为1735.12.某城市2020年的空气质量状况如表所示: 污染指数T 30 60 100 110 130 140 概率p1101613730215130时,空气质量为轻微污染,则该城市2020年空气质量达到良或优的概率为 .解析:由题意可知2020年空气质量达到良或优的概率为P =110+16+13=35.答案:3513.某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图所示.现随机选取一个成员,他属于至少2个小组的概率是 ,他属于不超过2个小组的概率是 .解析:“至少2个小组”包含“2个小组”和“3个小组”两种情况,故他属于至少2个小组的概率为P =11+10+7+86+7+8+8+10+10+11=35.“不超过2个小组”包含“1个小组”和“2个小组”,其对立事件是“3个小组”.故他属于不超过2个小组的概率是P =1-86+7+8+8+10+10+11=1315.答案:35 131514.(2021·沈阳调研)电影公司随机收集了电影的有关数据,经分类整理得到下表: 电影类型 第一类 第二类 第三类 第四类 第五类 第六类 电影部数 140 50 300 200 800 510 好评率0.40.20.150.250.20.1(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)解:(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000,第四类电影中获得好评的电影部数是200×0.25=50.=0.025.故所求概率为502000(2)由题意知,样本中获得好评的电影部数是140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1=56+10+45+50+160+51=372.故所求概率估计为1-372=0.814.2000(3)增加第五类电影的好评率,减少第二类电影的好评率.创新应用练15.(2021·湖北七市联考)某电子商务公司随机抽取1000名网络购物者进行调查.这1000名购物者2018年网上购物金额(单位:万元)均在区间[0.3,0.9]内,样本分组为[0.3,0.4),[0.4,0.5),[0.5,0.6),[0.6,0.7),[0.7,0.8),[0.8,0.9],购物金额的频率分布直方图如下:电子商务公司决定给购物者发放优惠券,其金额(单位:元)与购物金额关系如下:购物金额分组[0.3,0.5)[0.5,0.6)[0.6,0.8)[0.8,0.9] 发放金额50100150200(2)以这1000名购物者购物金额落在相应区间的频率作为概率,求一个购物者获得优惠券金额不少于150元的概率.解:(1)购物者的购物金额x与获得优惠券金额y的频率分布如下表:x 0.3≤x<0.50.5≤x<0.60.6≤x<0.80.8≤x≤0.9y 50100150200频率0.40.30.280.02 这11000×(50×400+100×300+150×280+200×20)=96.(2)由获得优惠券金额y与购物金额x的对应关系及(1)知P(y=150)=P(0.6≤x<0.8)=0.28,P(y=200)=P(0.8≤x≤0.9)=0.02,从而,获得优惠券金额不少于150元的概率为P(y≥150)=P(y=150)+P(y=200)=0.28+0.02=0.3.。

课件3:3.1.1 随机事件的概率

课件3:3.1.1 随机事件的概率

频率
频数
4.概率 (1)定义:对于给定的随机事件 A,如果随着试验次数 的增加,事件 A 发生的频率 fn(A)会稳定在某个常数上, 把这个常数记为 P(A),称它为事件 A 的概__率__. (2)由概率的定义可知,事件 A 的概率可以通过大量 的重复试验后,用频率值估计概率. (3)必然事件的概率为_1_,不可能事件的概率为_0_, 因此概率的取值范围是[_0_,_1_] .
【变式与拓展】 3.某篮球运动员在同一条件下进行投篮练习,结果如下表:
投篮次数 n/次 8 10 15 20 30 40 50 进球次数 m/次 6 8 12 17 25 32 38
(1)填写表中的进球频率; (2)这位运动员投篮一次,进球的概率大约是多少? 解:(1)从左到右依次填:0.75,0.8,0.8,0.85,0.83,0.8,0.76. (2)由于进球频率都在 0.8 左右摆动,故这位运动员投篮一次,进球 的概率约是 0.8.
第三章 概率
3.1 随机事件的概率
3.1.1 随机事件的概率
1.事件的分类 (1)确定事件: ①必然事件:在条件 S 下,_一__定__会__发__生_的事件; ②不可能事件:在条件 S 下,_一__定__不__会__发__生_的事件. 必然事件与不可能事件统称为相对于条件 S 的确定事件. (2)随机事件: 在条件 S 下,_可__能__发__生__也__可__能__不_发__生__的事件. 确定事件和随机事件统称为事件,一般用大写字母 A,B, C…表示.
(B ) A.3 个都是男生
B.至少有 1 个男生
C.3 个都是女生
D.至少有 1 个女生
2.抛掷一枚骰子两次,请就这个试验写出一个随机事件: 两__次__的__点__数__都__是__奇__数__,一个必然事件:_两__次__点__数__之__和__不__小__于__2_, 一个不可能事件:_两__次__点__数__之__差__的__绝__对__值__等__于___6__.

海南大学《概率论与数理统计》课件-第一二三四章

海南大学《概率论与数理统计》课件-第一二三四章

x2 f ( x)d x;
x1
(4) 若 f ( x) 在点 x 处连续,则有 F( x) f ( x).
注意 对于任意可能值 a ,连续型随机变量取 a 的概率等于零.即
P{ X a} 0.
10、 均匀分布 定义 设连续型随机变量X 具有概率密度
例如某无f些线( x元电) 件元 或件0b,设的1 a备寿, 的命其a寿,电它命x,力服设从b,备指的数寿分命布,. 则称动物X 的在寿区命间等(a都,b)服区从间指上数服分从布均. 匀分布, 记为 X ~ U(a,b).
代表事件 A 在试验中发生的概率,它与试验总

n 有关。若
lim
n
npn
0

lim
n
Cnk
pnk
1 pn
nk
k
k!e
8、 连续型随机变量及其概率密度
设X为 随 机 变 量,F ( x)为X 的 分 布 函 数,若 存 在 非 负 函 数f ( x),使 对 于 任 意 实 数x 有
x
F ( x) f (t)d t,
第一章 随机事件及其概率
1 了解样本空间的概念,理解随机事件的概念,重 点掌握随机事件的关系和运算。 2 理解概率和条件概率的概念,掌握概率的基本性 质,能利用古典概型和几何概型计算一些事件的 概率。 3 掌握概率的加法公式、条件概率公式、乘法公式、 全概率公式和贝叶斯公式计算过事件的概率的方 法 4 理解事件独立性的概念,会利用事件独立性进行 事件概率计算。 5 理解独立重复试验的概率,掌握利用伯努利概型 计算过事件概率的方法。
(3) F () lim F ( x) 0, F () lim F( x) 1;
x
x

人教版高中数学必修三 3.1.1《随机事件的概率》要点梳理+跟踪检测

人教版高中数学必修三 3.1.1《随机事件的概率》要点梳理+跟踪检测

人教版高中数学必修三第三章统计3.1.1《随机事件的概率》要点梳理【学习目标】在具体情境中,了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.【要点梳理·夯实知识基础】12.频数与频率在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中______________为事件A出现的频数,称______________________为事件A 出现的频率.[答案]事件A出现的次数nA 事件A出现的比例fn(A)=nAn3.概率(1)含义:概率是度量随机事件发生的________的量.(2)与频率联系:对于给定的随机事件A,事件A发生的频率fn(A)随着试验次数的增加稳定于________,因此可以用__________来估计概率P(A).[答案](1)可能性(2)概率P(A) 频率fn(A)【考点探究·突破重点难点】考点一:事件类型的判断1.下列事件:①明天下雨;②3>2;③航天飞机发射成功;④x∈R,x2+2<0;⑤某艘商船遭遇索马里海盗;⑥任给x0∈R,x0+2=0.其中随机事件的个数为()A.1B.2C.3D.4答案:D2.下列说法正确的是()A.某人购买福利彩票一注,中奖500万元,是不可能事件B.三角形的两边之和大于第三边,是随机事件C.没有空气和水,人类可以生存下去,是不可能事件D.科学技术达到一定水平后,不需任何能量的“永动机”将会出现,是必然事件答案:C3.从一副牌中抽出5张红桃、4张梅花、3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事情()A.可能发生B.不可能发生C.很可能发生D.必然发生答案:D解析:∵若这10张牌中抽出了全部的红桃与梅花共9张,一定还有1张黑桃;若抽出了全部的梅花与黑桃共7张,则还会有3张红桃;若抽出了全部的红桃与黑桃共8张,则还会有2张梅花;∴这个事件一定发生,是必然事件.考点而:试验的结果分析4.下列命题中正确的个数是()①先后抛掷两枚质地均匀的硬币的结果为正面,正面;正面,反面;反面,反面,共计3种.②从12个同类产品(其中10个是正品,2个次品)中,任意抽取3个产品的每一个结果中一定含有正品.③某地举行运动会,从来自A学校的a,b志愿者中选一人,从来自B学校的c,d,e志愿者中选一人共2人为体操馆服务,则有ac,ad,ae,bc,bd,be,共6种选法. A.0 B.1 C.2 D.3答案:C解析:①中应该有4个结果,即正面,正面;正面,反面;反面,正面;反面,反面.故①不正确.②③正确.5.先后投掷2枚均匀的一分、二分的硬币,观察落地后硬币的正反面情况,则包含3个试验结果的是()A.至少一枚硬币正面向上B.只有一枚硬币正面向上C.两枚硬币都是正面向上D.两枚硬币一枚正面向上,另一枚反面向上答案:A解析:“至少一枚硬币正面向上”包括“一分正面向上,二分正面向上”,“一分正面向上,二分正面向下”,“一分正面向下,二分正面向上”3种试验结果.6.同时转动如图所示的两个转盘,记转盘①得到的数为x,转盘②得到的数为y,结果为(x,y).(1)写出这个试验的所有结果.(2)“x+y=5”包含的结果有哪些?“x<3且y>1”呢? (3)“xy=4”包含的结果有哪些?“x=y ”呢?解:(1)结果为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(2)“x+y=5”包含的结果为(1,4),(2,3),(3,2),(4,1).“x<3且y>1” 包含的结果为(1,2),(1,3),(1,4),(2,2),(2,3),(2,4). (3)“xy=4”包含的结果为(1,4),(2,2),(4,1). “x=y ”包含的结果为(1,1),(2,2),(3,3),(4,4). 考点三:随机事件的频率与概率7.下列说法:①频率反映的是事件发生的频繁程度.概率反映的是事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率nm就是事件A 的概率;③频率是不能脱离具体的n 次的试验值,而概率是确定性的,不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确说法的序号是 . 答案:①③④解析:由频率及概率的定义可知①是正确的.在②中,nm是事件A 发生的频率,虽然概率是与频率接近的一个常数,但是概率不一定等于频率,故②是错误的.由概率的定义知③④是正确的.8.在抛掷骰子的游戏中,将一枚质地均匀的骰子抛掷6次,对于点数4的出现有下列说法:①一定会出现;②出现的频率为61;③出现的概率是61;④出现的频率是32.其中正确的是 . 答案:③9.李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来学生的考试成绩分布:经济学院一年级的学生王小慧下学期将修李老师的高等数学课,用已有的信息估计她得以下分数的概率(结果保留到小数点后三位):(1)90分以上;(2)60~69分;(3)60分以下.解:由题意知总人数为40+200+400+100+40+20=800.则选修李老师高等数学的学生考试成绩在90分以上,60~69分,60分以下的频率分别为80040=201;800100=81;80060=403.用以上信息估计王小慧得分的概率情况如下:(1)“得90分以上”的概率为201,(2)“得60~69分”的概率为81,(3)“得60分以下”的概率为403.[3.1.1《随机事件的概率》跟踪检测一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.32.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .45.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.517.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2%12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确B.错误C.不一定D.无法解释二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .15.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 .18.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 .三、解答题19.从含有两个正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A为“取出两件产品中恰有一件次品”,写出事件A对应的结果.20.对一批U盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U盘,至少需进货多少个U盘?21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.3.1.1《随机事件的概率》跟踪检测解答一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.3答案:A2.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 答案:D解析:三角形的三条边必须满足两边之和大于第三边.3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定答案:B4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .4 答案:B解析:①为必然事件;④为不可能事件. 5.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边 答案: C6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.51答案:B7.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 答案:B解析:从A ,B ,C ,D ,E 五人中选2人,不同的选法有:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E )共10种.8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个答案: C9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 答案:A解析:①错误;②出现正面的概率为21,故错误;③频率与概率不是一回事,故错误. 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}答案: C11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2% 答案: D解析:抽取出次品的频率是1002=2%,用频率估计概率,抽出次品的概率大约是2%. 12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确 B.错误 C.不一定D.无法解释答案: B 二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).答案:52解析:数据在155.5~170.5之间有8名学生,则身高在此范围内的频率为208=52,所以概率约为52.14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .答案: 52 0.5215.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 答案:(-1,2),(1,-2) 解析:由直线与圆相切知,543b a +=1,所以3a+4b=±5,依次取a=-2,-1,0,1,2,验证知,只有⎩⎨⎧=-=21b a ,⎩⎨⎧==2-1b a 满足等式.16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为 . 答案: 0.51 241 800 0.5解析:a=200102=0.51,b=500×0.482=241;c=505.0404=800. 易知正面向上的频率在0.5附近,所以若掷硬币一次,正面向上的概率应为0.5.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 . 答案: 0.3518.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 . 答案: 0.03 三、解答题19.从含有两个正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A 为“取出两件产品中恰有一件次品”,写出事件A 对应的结果. [解析](1)试验所有结果:a 1,a 2;a 1,b 1;a 2,b 1;a 2,a 1;b 1,a 1;b 1,a 2.共6种. (2)事件A 对应的结果为:a 1,b 1;a 2,b 1;b 1,a 1;b 1,a 2. 20.对一批U 盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U 盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U 盘,至少需进货多少个U 盘?[解析](1)表中各个次品频率分别为0.06,0.04,0.025,0.017,0.02,0.018. (2)当抽取件数a 越来越大时,出现次品的频率在0.02附近摆动,所以从这批U 盘中任抽一个是次品的概率是0.02.(3)设需要进货x 个U 盘,为保证其中有2 000个正品U 盘,则x(1-0.02)≥2 000,因为x 是正整数,所以x ≥2 041,即至少需进货2 041个U 盘.21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.解:(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为1513.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为87.以频率估计概率,运动会期间不下雨的概率为87.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.[解析] 设水库中鱼的尾数为n,从水库中任捕一尾,每尾鱼被捕的频率(代替概率)为n2000,第二次从水库中捕出500尾,带有记号的鱼有40尾,则带记号的鱼被捕 的频率(代替概率)为50040,由n 2000=50040,得n=25 000.所以水库中约有25 000尾.。

高中数学教学课例《随机事件的概率》课程思政核心素养教学设计及总结反思

高中数学教学课例《随机事件的概率》课程思政核心素养教学设计及总结反思
教学过程 识,既能激发学生的好奇心和求知欲,也能增强爱国主 义情感,为顺利实施本节课的教学目标打下了良好的基 础.接着教师提出 生活实例 1:抛一枚硬币,在落地前,你能确定那 个面朝上吗? 生活实例 2:班级组织篮球赛,甲同学找到合适机
会,很漂亮地投出一个三分球,那么你能预先确定这个 三分球是否投进吗?
自主权交给学生,让同学们亲历抛掷硬币的随机过程。 唯有如此,才能建构起正确的随机观,才能辩证的理解 随机性中的规律性。
师:接下来,我们增加试验次数,看看有什么新的 发现,历史上有许多数学家为了弄清其中的规律,曾坚 持不懈的做了成千上万次的掷硬币试验.
(引导学生关注数学家的严谨,据说还有一位数学 家,做了八万多次的试验。)
教材分析 第一节课它在人们的生活和生产建设中有着广泛的应
用,也是今后学习概率统计的预备知识,所以它在教材
中处于非常重要的位置。
重点:事件的分类;了解随机事件发生的不确定性
和概率的稳定性;正确理解概率的定义。
难点:随机事件的概率的统计定义。
知识与技能目标:
ቤተ መጻሕፍቲ ባይዱ
(1)了解随机事件,必然事件,不可能事件的概念,
提高.
(2)能利用概率知识正确理解一些现实生活中的随
机现象和实际问题。
情感态度与价值观目标:
(1)能通过亲身试验和感受来理解知识,体会数学
知识与现实世界的联系。
(2)通过发现随机事件的发生既有随机性,又存在
着统计规律性的过程,体会偶然性和必然性的对立统一
的辩证唯物主义思想。
由于大部分学生对于数学缺乏兴趣,学习数学缺少
课例研究综 间的立体信息交互网络,从多方面采取调控措施,保证

探究方向的正确性和探究过程的有效性,主要通过整合

人教课标版高中数学必修三《随机事件的概率(第1课时)》教案-新版

人教课标版高中数学必修三《随机事件的概率(第1课时)》教案-新版

第三章概率3.1 随机事件的概率第1课时一、教学目标1.核心素养通过随机事件概率的学习.初步形成数据分析能力与抽象概括的能力.2.学习目标(1)了解随机事件发生的不确定性.(2)理解随机事件的规律性.(3)进一步理解概率的意义.(4)利用概率的意义解释生活中的事例.3.学习重点频率与概率的关系,对概率含义正确理解.4.学习难点频率与概率的关系,对概率含义正确理解.二、教学设计(一)课前设计1.预习任务任务1阅读教材P108,思考:如何判定一个事件是必然事件、不可能事件还是随机事件?随机事件说法中“同样的条件下”能否去掉?请举例说明.任务2阅读教材P113—118. 明白概率的意义及其在生活中的指导性作用!2.预习自测1.指出下列事件哪些是必然事件.A.某地1月1日刮西北风;B.当x是实数时,x2≥0;C.手电筒的电池没电,灯泡发亮;D.一个电影院某天的上座率超过50%.解:B2.某种新药在使用的患者中进行调查的结果如下表:请填写表中有效频率一栏,则该药的有效概率是多少?A.84% B.87%C.88% D.90%解:C(二)课堂设计1.知识回顾(1)必然事件:有些事件我们事先能肯定其一定会发生;(2)不可能事件:有些事件我们事先能肯定其一定不会发生;(3)随机事件:有些事件我们事先无法肯定其会不会发生;(4)举出现实生活中随机事件,必然事件,不可能事件的案例.2.问题探究问题探究一创设情景,体会随机事件发生的不确定性(★▲)●活动一“麦蒂的35秒奇迹”在火箭队与马刺队的篮球比赛中,麦蒂在最后几十秒已经连续投进了三个三分球,并且在最后关头抢断成功,推进到前场,在距离比赛结束还有1.7秒时再次投出三分球! 为什么在那个时刻,所有人都紧张的注视着麦蒂和他投出的篮球?你能确定神奇的麦蒂在即将开始的NBA比赛中的下一个三分球投进?●活动二“石头,剪刀,布”再看看我们身边的实例,两名同学想看同一本好书,于是采用“石头,剪刀,步”的方式来决定谁先看,那么能预测这两名同学认赢吗?问题探究二重复实验,体会随机事件的规律性.(★▲)●活动一抛掷硬币试验抛掷硬币试验结果表:当抛掷次数很多时,出现正面的频率值是稳定的,接近于常数0.5,并在它附近摆动●活动二某批乒乓球产品质量检查试验:当抽查的球数很多时,抽到优等品的频率接近于常数0.95,并在它附近摆动.●活动三某种油菜籽在相同条件下的发芽试验结果表:当试验的油菜籽的粒数很多时,油菜籽发芽的频率接近于常数0.9,并在它附近摆动●活动四反思活动,感知随机事件的规律性.通过上述三个大量重复性实验,你能发现随机事件具有什么规律性吗?一般地,在大量重复进行同一试验时,事件A发生的频率mn总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率.问题探究三创设生活实例,深化概率意义的理解.(▲)●活动一彩票中奖问题若某种彩票准备发行1000万张,其中1万张可以中奖,则买一张这种彩票的中奖的概率是多少?买1000张的话是否会中奖?分析:中奖的概率为1/ 1000;不一定中奖,因为买彩票是随机的,每张彩票都可能中奖也可能不中奖,买彩票中奖概率为1/1000是指试验次数相当大,即随着购买彩票的数量增加,大约有1/1000的彩票中奖.●活动二游戏的公平性问题某中学在高一年级的二、三班中任选一个班参加社区服务活动,有人提议用如下方法选班:掷两枚硬币,正面朝上的记作2点,反面向上记作1点,两枚硬币的点数和是几,就选几班,你认为这种方法公平吗?分析:不公平,记(x,y)中的x,y分别代表两枚硬币的点数,则有(1,1),(1,2),(2,1), (2,2)。

1-3随机事件的概率

1-3随机事件的概率
(3) 由于A1, A2 ,, Am, 两两互斥,设
(i ) (i ) Ai {1 ,, k }, 则 i
A1 A2 Am=
( ( ( {11) ,, (1);12) ,, ( 2); ;1m ) ,, ( m ); k k k }
共含 ki 个样本点,若设Ω中所含样本点为n, 则 1 ቤተ መጻሕፍቲ ባይዱ P ( A1 A2 Am) ki n i= 1 km k1 P ( A1 ) P ( A2 ) P ( Am). n n
( 2) P () 1, P () 0;
(3) 对于两两互斥的有限多个事件A1 , A2 ,, Am , P ( A1 A2 Am ) P ( A1 ) P ( A2 ) P ( Am )
证明
(1) 显然成立;
( 2) 由于Ω是必然事件,每次试验 均发生,则其 频率恒等于1,自然p 1; 对于, 由于它是不可能事件,每次试验 均
第三节 随机事件的概率
一、频率的定义与性质
二、概率的统计定义
三、古典概型 四、几何概型 五、概率的公理化定义 六、内容小结
下 回

一、频率的定义与性质
1. 定义
在相同的条件下 , 进行了 n 次试验 , 在这 n
次试验中, 事件 A 发生的次数 nA 称为事件 A 发 nA 生的频数.比值 称为事件 A 发生的频率, 并记 n
P ( A)
n! N
n
.
(2) 设 B=“恰有n间房,其中各有一人”
分析 对于事件B,由于未指定哪n个房间,所以 这n间房可以从N个房间中任意选取,共有
n C N 种分法.而对于每一选定的n间房,其中

高一数学必修3课件:3-1-1随机事件的概率

高一数学必修3课件:3-1-1随机事件的概率

[例1] 机事件:
指出下列事件是必然事件、不可能事件还是随
(1)某体操运动员将在某次运动会上获得全能冠军; (2)同一门炮向同一目标发射多发炮弹,其中50%的炮弹 击中目标; (3)某人给其朋友打电话,却忘记了朋友电话号码的最 后一个数字,就随意在键盘上按了一个数字,恰巧是朋友的 电话号码;
第三章 3.1 3.1.1
第三章 3.1
3.1.1
成才之路 ·数学 ·人教A版 · 必修3
[解析]
(1)购买一注彩票,可能中奖,也可能不中奖,
所以是随机事件. (2)所有三角形的内角和均为180° ,所以是必然事件. (3)空气和水是人类生存的必要条件,没有空气和水,人 类无法生存,所以是不可能事件. (4)同时抛掷两枚硬币一次,不一定都是正面向上,所以 是随机事件. (5)任意抽取,可能得到1,2,3,4号签中的任一张,所以是 随机事件.
第三章 3.1
3.1.1
成才之路 ·数学 ·人教A版 · 必修3
新课引入 说一个与足球有关的著名悖论:“生日悖论”,在一个 足球场上有23人(2×11个运动员和1个裁判员),不可思议的 是,在这23人当中至少有两个人的生日是在同一天的几率要 大于50%.这就意味着在一个典型的标准小学班级(30人)中, 存在两个生日相同的可能性更高.对于60个或者更多的人, 这种概率要大于99%,这是为什么呢?带上这个问题进入本 节的学习.
第三章 3.1
3.1.1
成才之路 ·数学 ·人教A版 · 必修3
对下面的描述:①频率是反映事件发生的频繁程度,概 率是反映事件发生的可能性的大小;②做n次随机试验,事件 A发生m次,则事件A发生的频率就是事件A发生的概率;③频 率是一个比值,但概率不是;④频率是不能脱离具体的n次试 验的试验值,而概率是具有确定性的不依赖于试验次数的理 论值;⑤频率是概率的近似值,概率是频率的稳定值.其中 正确的说法有( )

新教材高中数学第七章概率1-3随机事件课件北师大版必修一

新教材高中数学第七章概率1-3随机事件课件北师大版必修一

【思考辨析】 判断下列说法是否正确,正确的在它后面的括号里画“√”,错 误的画“×”. (1)“在常温下焊锡融化”是不可能事件.( √ ) (2)“掷一枚硬币,出现正面朝上”是必然事件.( × ) (3)“一个三角形的三边长分别为1,2,3”是随机事件.( × ) (4)同时抛掷两枚硬币,观察正面、反面出现的情况,此试验的 可能结果有3种.( × ) (5)“导体通电后发热”是必然事件.( √ )
1.正确理解并掌握必然事件、不可能事件和随机事件的概念 是解答本题的关键. 2.要判定事件是何种事件,首先要看清条件,因为三种事件都 是相对于一定条件而言的,然后再看它是一定发生,还是不一 定发生,还是一定不发生,一定发生的是必然事件,不一定发生 的是随机事件,一定不发生的是不可能事件.
1.正确理解并掌握必然事件、不可能事件和随机事件的概念 是解答本题的关键. 2.要判定事件是何种事件,首先要看清条件,因为三种事件都 是相对于一定条件而言的,然后再看它是一定发生,还是不一 定发生,还是一定不发生,一定发生的是必然事件,不一定发生 的是随机事件,一定不发生的是不可能事件.
解:(1)分别用x1,x2表示从甲、乙两个盒子中取出的球的标号, 则x1,x2=1,2,3,4,那么试验的样本空间
Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),
(3,4),(4,1),(4,2),(4,3),(4,4)}. (2)①因为事件A表示的随机事件“从甲盒子中取出3号球”等 价于x1=3,所以事件A={(3,1),(3,2),(3,3),(3,4)}. ②事件B表示的随机事件“取出的两个球上的标号为相邻整 数”等价于x1,x2为相邻整数,所以事件 B={(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)}.

概率论与数理统计第1-3章复习资料

概率论与数理统计第1-3章复习资料

其中λ = n P 例2:在例1的试验中,求: (1)A=“点数和为奇数的概率”; (2)B=“点数不同的概率” 例3:某产品40件,其中有次品3件。现从其中任取3件, 求下列事件的概率: (1)A=“3件中恰有2件次品”;(111/9880) (2)B=“ 3件中至少有1件次品”(633/2964)
xi R , i 1 , , n , n 元函数
F ( x1 ,, xn ) P( X 1 x1 ,, X n xn ) ( 是 X 1 ,, X n ) 的分布函数。
(1)’
注:r, v 取值的规律称 r, v 的分布,分布函数是描 述 r, v 的概分布的主要方法之一。 (二)分布函数的性质: 一维:1、有界性:0 F ( X ) 1
m 4、由公式 P( A) 进行计算 n
(二)几何概型 所求概率为: P(A)=[A所包含的区域度量] / [样本空间的度量] (三)条件概率及其全概率公式 1、条件概率:若P(B) >0,则
P( A B) P( AB) P( B)
2、全概率公式 如果B1,…,Bn为一完备事件组,即满足: (1) B1,…,Bn两两不相容i=1, …,n;
例4:一盒装有10只晶体管,其中有4只次品,6只正品,随 机地抽取 1只测试,直到4只次品晶体管都找到。求最后 一只次品晶体管在下列情况发现的概率: (1)A=“在第 5 次测试发现”。(2/105) (2)B=“在第10次测试发现”。(2/5) 例5:将编号1,2,3的三本书任意地排列在书架上,求事件 A=“至少有一本书自左到右的排列顺序号与它的编号相同” 的概率。 例6:五个乒乓球,其中三个旧球,二个新球,每次取一个, 共取两次,以有放回和无放回两种方式求下列事件的概率: (1)A=“两次都取到新球”; (2)B=“第一次取到新球,第二次取到旧球”; (3)C=“至少有一次取到新球”。

人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率 课件(共25张PPT)

人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率  课件(共25张PPT)
3.抛掷一枚硬币出现正面朝上的概率是 0.5, 所以将一枚硬币投掷10000次,出现正面 朝上的次数很有可能接近于5000次。
事件“甲乙两人进行‘石头剪刀布’的 游戏,结果甲获胜”是哪一类事件?
为了估计上述随机事件发生的概率,我 们可以采用何种方法?
知识小结
1.随机事件的概念
在一定条件下可能发生也可能不发生的 事件,叫做随机事件. 2.随机事件的概率的统计定义
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0
25
10 70 130 310 700 1500 2000 3000 试验次数
结论:当试验的油菜籽的粒数很多时,油菜籽发 芽的频率 m 接近于常数0.9,在它附近摆动。
n
思考:
1.事件A发生的频率 fn(A) 是不是不变的? 2.事件A的概率P(A)是不是不变的? 3.它们之间有什么区别与联系?
优等品的频率 1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0 50
100
200
500
1000 2000 试验次数
结频论率:m 当接抽近查于的常球数数0.很95多,时在,它抽附到近优摆等动品。的
n
某种油菜籽在相同条件下的发芽试验结果表:
某种油菜籽在相同条件下的发芽试验结果表:
发芽的频率
随机事件的概率
1. 引言
在一些人看来,总觉得数学都是研究现实世界中确定性 现象的数量规律,其实不然。大家知道,任何事物的发展 是既有偶然性又有必然性,为了研究一些无法确定的现象 的规律,早在十七世纪数学的重要分支概率统计便应运而 生,最初是欧洲保险业的发展促成这门学科的诞生,经过 几百年的发展和应用概率统计已遍布所有的领域,你比如 利用概率统计,二战中美军破译日军的电报密码,;利用概 率统计我国数学家得出《红楼梦》的前八十回与后四十回 出自两位作家的手笔,解决了红学家长期争论不休的问题; 还是利用概率统计使我们对变化莫测的天气的预报越来越 准……,总之,概率统计这门古老又十分有用的学科,如今 它已经渗透到生活的方方面面。

随机事件的概率

随机事件的概率

随机事件的概率概率理论是一门研究随机事件发生的可能性的数学学科。

通过计算和统计,我们可以了解随机事件发生的概率。

在这篇文章中,我们将探讨随机事件的概念、概率的定义和计算方法,以及一些实际问题中与概率相关的应用。

一、随机事件的概念随机事件是指在一次试验中可能出现的各种结果。

每个结果都有一定的概率发生。

例如,掷骰子时,1到6的点数出现的概率都是相等的,并且总和为1。

我们用事件的符号表示随机事件。

例如,事件A表示掷骰子出现点数为2的结果。

事件B表示掷骰子出现点数为偶数的结果。

事件的发生取决于试验的结果。

如果一个事件发生了,我们称之为该事件发生。

二、概率的定义概率是描述事件发生可能性大小的数值。

概率的取值范围是0到1之间,0表示不可能发生,1表示肯定会发生。

在数学中,我们用P(A)表示事件A的概率。

例如,P(A)表示掷骰子出现点数为2的概率。

概率的计算需要考虑事件发生的可能性和总体样本空间的大小。

三、概率的计算方法1. 经典概率经典概率是指在一次试验中,每个事件发生的可能性相等的情况下,计算事件发生概率的方法。

假设一个袋子里有红、蓝、绿三种颜色的球,每种球的数量相等。

从袋子中随机抽取一球,事件A表示抽到红球的结果。

由于每种颜色出现的概率相等,所以P(A) = 1/3。

2. 统计概率统计概率是通过实验和统计数据来计算事件发生概率的方法。

例如,我们抛硬币的实验中,事件A表示出现正面的结果。

通过大量的实验数据,我们可以统计出正面出现的次数与总实验次数的比值,从而得到事件A的概率。

3. 条件概率条件概率是指在已知一定条件下,某个事件发生的概率。

条件概率用P(A|B)表示,读作在事件B发生的条件下事件A发生的概率。

例如,事件A表示抛一次硬币出现正面的结果,事件B表示抛一次硬币出现的是铜币。

我们知道铜币的一面是正面,因此在已知抛出的是铜币的情况下,事件A发生的概率为1。

四、概率的应用1. 游戏与赌博概率理论在游戏和赌博中扮演着重要的角色。

概率论主要内容概括1-3

概率论主要内容概括1-3

21
概率密度函数的两个性质

连续型的概率非负性和概率完备性表现为 (1)非负性 :f(x) 0,(- <x< +);
= (2)归一性: f ( x)dx 1.

f(x)



f ( x )dx 1
0
x
22
分布函数F(x)性质F(x)=P(Xx), -<x<
(1) 0 F ( x) 1, 对一切x R成立 (2) F ( x)是x的不减函数, 即 任给x1 , x2 R, x2 x1有 F ( x2 ) F ( x1 ) (3) F () lim F ( x) 0
通常求出随机变量的分布并不是一件容易的事, 而人 们更关心的是用一些数字来表示随机变量的特点, 这 些与随机变量有关的数字, 就是随机变量的数字特征. 最常用的数字特征为数学期望, 方差等。
26
期望
EX xk pk
k 1 n

EX

xf ( x)dx
(1)E(c)=c; (2)E(aX)=aE(X); (3)E(X+b)=EX+b;
有利于A的基本事件数 m P( A) 试验的基本事件总数 n
7
概率公理化定义

注意到概率古典定义和频率定义都具有非负性、 正则性、可加性。 1933年,前苏联数学家柯尔 莫哥洛夫通过规定概率应具备的基本性质给出 一般性的公理化定义。 定义:设试验E的样本空间为Ω,对于试验E 的每 一个事件A ,即对于样本空间Ω的每一个子集A, 都赋予一个实数P(A),若P(A)满足下面3条公理: 公理1:对任何事件A,有P(A)≥0。 (非负性) 公理2:对于必然事件Ω, P(Ω)= 1。(正则性) 公理3:对于任意可列个互斥事件A1,A2,…,An, …, 满足P(ΣAi)= ΣP(Ai)。(可列可加性) 则称实数P(A)为事件A的概率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 几何概率
定义
若对于一随机试验 , 每个样本点出现是等可 能的 , 样 本空间 Ω所含的样本点个数为无 穷多个 , 且具有非零 的, 有限的几何度量 , 即0 < m (Ω ) < ∞, 则称这一随机试 验是一几何概型的 .
当随机试验的样本空间是某个区域,并且任 定义 当随机试验的样本空间是某个区域 并且任 长度, 意一点落在度量 (长度 面积 体积 相同的子区域 长度 面积, 体积) 是等可能的,则事件 是等可能的 则事件 A 的概率可定义为
实验者 德.摩根 摩根 蒲丰 K.皮尔逊 皮尔逊 K.皮尔逊 皮尔逊
n
2048 4040 12000 24000
nH
1061 2048 6019 12012
f 0.5181 0.5069 0.5016 0.5005
f (H ) n的增大
1 . 2
重要结论
较小时波动幅度比较大,当 频率当 n 较小时波动幅度比较大 当 n 逐渐增 频率趋于稳定值, 大时 , 频率趋于稳定值 这个稳定值从本质上反映 了事件在试验中出现可能性的大小.它就是事件的 了事件在试验中出现可能性的大小 它就是事件的 概率. 概率
1.3
随机事件的概率
一、频率的定义与性质 二、概率的统计定义 三、古典概型 四、几何概型 五、再论概率
1.31 频率与概率 一、频率的定义与性质 1. 定义 在相同的条件下 , 进行了 n 次试验 , 在这 n 次试验中 , 事件 A 发生的次数 v A 称为事件 A 发 生的频数 .比值 成 f n ( A).
2、实际推断原理(P12) 、实际推断原理( ) • 实际不可能事件 • 实际必然事件 • 实际推断原理
P( A) → 0
P( A) → 1
若在某试验中,一事件A的概率非常接近于 A 零,那么可以实际推断,若进行一次试验,在实 验的结果中事件A是不会出现的,从而实际上 可将A看作以(实际)不可能事件。
第一章 概率论的基本概念
几何概型
解: 以 x , y 分别表示甲乙二船到达的时刻, 于是 0 ≤ x ≤ 24, 0 ≤ y ≤ 24. y 即 点 M 落在图中的阴影部 24 分。所有的点构成一个正 方形,即有无穷多个结果。 由于每船在任一时刻到达 都是等可能的,所以落在正 方形内各点是等可能的。 0 24 x
实例 将一枚硬币抛掷 5 次、50 次、500 次, 各做 7 遍, 观察正面出现的次数及频率 观察正面出现的次数及频率. 试验 序号
1 2 3 4 5 6 7
n=5 nH
2 3 1 5 1 2 4
n = 50
f
0.4 0.6
nH
f
n = 500 nH f
0.44 251 22 0.502 1 在 处 0.50 大 249 波 动较 25 0.498 2 0.2 21 0.42 256 0.512 n的增大 频率 f 呈现出稳定性 的增大, 随1.0 的增大 247 0.494 25 0.50 1 在 处 动 小 波 较 2 24 0.48 0.502 0.2 251 0.4 0.8 18 27 0.36 0.54
称此为概率的古典定义 称此为概率的古典定义. 概率的古典定义 称A中的样本点为A的有利场合。 的有利场合。 的有利场合
3、古典概型的几类基本问题 、 复习: 复习:排列与组合的基本概念 乘法公式:设完成一件事需分两步, 第一步有n1种方法,第二步有n2种方法, 则完成这件事共有n1n2种方法
加法公式:设完成一件事可有两种途径,第 一种途径有n1种方法,第二种途径有n2种方 法,则完成这件事共有n1+n2种方法。
二、概率的统计定义
1.概率的定义 1.概率的定义 在随机试验中,若事件 出现的频率 出现的频率m/n随 在随机试验中,若事件A出现的频率 随 着试验次数n的增加,趋于某一常数 着试验次数 的增加,趋于某一常数p, 0 ≤ p ≤ 1 的增加 则定义事件A的概率为 记作P( )= 的概率为p, )=p 则定义事件 的概率为 ,记作 (A)= . 概率的性质)(P11) 性质 (概率的性质 概率的性质 (1) 非负性:对任一事件 ,有 P( A) ≥ 0; 非负性:对任一事件A 有 (2)规范性:P(Ω) = 1;
k n k n
种取法.
K类n个元素的排列问题 (1) 两类 个元素 两类n个元素
例8(P15) n个乒乓球中有r个白球,n-r个黄球,将这n个球排 成一列,求可能的排列总数。
n 答: 2类n个元素的不同排列数: r
(2) k类n个元素 类 个元素 例:一堆n个球中有k类不同的球,其中第i种球有ri 个, 求这n个球可能的排列总数。
2. 古典概型中事件概率的计算公式
的样本空间由n 个样本点构成, 设试验 E 的样本空间由 个样本点构成 A 的任意一个事件,且包含 个样本点, 为 E 的任意一个事件 且包含 m 个样本点 则事 出现的概率记为: 件 A 出现的概率记为
m A中样本点的个数 . P(A)= = n Ω中样本点总数
波动最小 262 0.524 258 0.516
从上述数据可得 (1) 频率有随机波动性,即对于同样的 n, 所得的 频率有随机波动性 即对于同样的 随机波动性 f 不一定相同 不一定相同; (2) 抛硬币次数 n 较小时 频率 f 的随机波动幅 较小时, 度较大, 呈现出稳定性.即 度较大 但随 n 的增大 , 频率 f 呈现出稳定性 即 附近摆动, 当 n 逐渐增大时频率 f 总是在 0.5 附近摆动 且 逐渐稳定于 0.5.
.M(x,y)
第一章 概率论的基本概念
几何概型
0 两船会面的条件是: 若甲先到,则 ≤ y − x ≤ 6; 若乙先到 ,则 ≤ x − y ≤ 8; 0
阴影部分的面积 P( A ) = 24 正方形的面积 1 242 − (182 +162 ) 2 = = 0.4965 2 24 6
y
y-x =6 y-x = -8
vA
n
称为事件 A 发生的频率 , 并记
2. 性质
的任一事件, 设 A 是随机试验 E 的任一事件 则
(1) 非负性:f n ( A) ≥ 0;
(2)规范性:f n (Ω) = 1;
(3)有限可加性:若事件A与B互不相容,则 f n ( A + B) = f n ( A) + f n ( B)
由这三条性质可推出: (4) f n (Φ ) = 0;
n n-1 n-2
n-k+1
共有A =n(n-1)…(n k+1)种排列方式 (n种排列方式. 共有Ank=n(n-1) (n-k+1)种排列方式. 又称为非重复抽样或不放回抽样. 又称为非重复抽样或不放回抽样
组合:从含有n个元素的集合中随机抽取k个,共有
n A n! C ≡ = = k k! k!(n − k )!
r
r2 2
L xk 的系数;
rk
C 特别:k=2时, n 为二项式系数。
性质(P16)
4.典型例题 • 利用古典概型求解概率的步骤: Step1:求样本点总数n; Step2:求事件A的有利场合数m; m Step3:利用 P(A) 求P(A). P(A)=
n
P17) 球随机地分配到n 例11 (P17)把r个球随机地分配到n个箱子中 (r≤n), 箱子中至多有一球的概率 至多有一球的概率。 去(r≤n),求每箱子中至多有一球的概率。
有重复排列:从含有n个元素的集合中随机 抽取k 次,每次取一个(取后放回),记录 其结果后,将记录结果排成一列,
n n n
n
共有nk种排列方式.
(又称为重复抽样 又称为重复抽样 或又放回抽样) 或又放回抽样
无重复排列:从含有n个元素的集合中随机抽取k 无重复排列:从含有n个元素的集合中随机抽取k 次, 每次取一个,取后不放回,将所取元素排成一列, 每次取一个,取后不放回,将所取元素排成一列,
A p = n
r n r
某班级有n 个人(n≤ 某班级有 个人 ≤365), , 问至少有两个人的生日在同一天 的概率有多大? 的概率有多大?
例12 (P18) 袋中有 a 只黄球,b 只白球.从中任意 取出 k 只球,试求第 k 次取出的球是黄球的概 率. 例13(P19) 设有 100 件产品,其中有 5 件次品,今 从中任取 3 件,问其中恰有 2 件次品的概率是多少?
例13的推广:
N 设有 N 件产品,其中有 1 件次品,有N 2件正品,今 从中任取 n 件,问其中恰有 k ( k ≤ N 1 ) 件次品的概 率是多少?
所求的概率为:
C C p = C
k N1 k n N
n−k N2
此式即为超几何分布 超几何分布的概率公式。 超几何分布
四、几何概型
概率的古典定义具有可计算性的优点, 概率的古典定义具有可计算性的优点,但它也 有明显的局限性.要求样本点有限 点有限,如果样本空间中的 有明显的局限性.要求样本点有限 如果样本空间中的 样本点有无限个, 概率的古典定义就不适用了. 样本点有无限个 概率的古典定义就不适用了. 把有限个样本点推广到无限个样本点的场 人们引入了几何概型 合,人们引入了几何概型 由此形成了确定概率 人们引入了几何概型. 的另一方法 ——几何方法 几何方法. 几何方法
0
8
24 x
பைடு நூலகம்
蒲丰投针试验
蒲丰资料
例2 1777年,法国科学家蒲丰 年 法国科学家蒲丰(Buffon)提出了投针 提出了投针 法国科学家蒲丰 试验问题.平面上画有等距离为 平面上画有等距离为a(>0)的一些平行直 试验问题 平面上画有等距离为 的一些平行直 现向此平面任意投掷一根长为l( 的针,试求 线,现向此平面任意投掷一根长为 <a )的针 试求 现向此平面任意投掷一根长为 的针 针与任一平行直线相交的概率. 针与任一平行直线相交的概率 解 以 x表示针投到平面上时 , 以
相关文档
最新文档